WO2012002228A1 - 人工弁 - Google Patents

人工弁 Download PDF

Info

Publication number
WO2012002228A1
WO2012002228A1 PCT/JP2011/064298 JP2011064298W WO2012002228A1 WO 2012002228 A1 WO2012002228 A1 WO 2012002228A1 JP 2011064298 W JP2011064298 W JP 2011064298W WO 2012002228 A1 WO2012002228 A1 WO 2012002228A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial valve
valve
artificial
valve support
skeleton
Prior art date
Application number
PCT/JP2011/064298
Other languages
English (en)
French (fr)
Inventor
真和 下山
中川 雄司
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2012002228A1 publication Critical patent/WO2012002228A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0061Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof swellable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped

Definitions

  • the present invention relates to a prosthetic valve, particularly a stent-type prosthetic valve that is placed in a living body.
  • prosthetic valves are also used in various operations such as artificial heart.
  • prosthetic valves are classified into mechanical valves and biological valves according to their constituent materials.
  • artificial valves are durable, biocompatible, and blood compatible (especially hemolysis and thrombus suppression / prevention). ), Flexibility and the like are required.
  • an artificial valve that opens and closes by heartbeat in a living body performs opening and closing movements about 100,000 times a day, and the durability required as an artificial valve is considerable.
  • the surface characteristics of the artificial valves that come into contact with blood are important in order to prevent the formation of blood components (hemolysis) from acting as foreign substances on the blood. A smooth surface is required.
  • the material and shape of the prosthetic valve are important because the blood flow state due to the mechanism of the prosthetic valve itself is involved in thrombus formation as well as the characteristics of the material for blood coagulation. Artificial valves that satisfy such requirements are described, for example, in the following three prior art documents.
  • FIGS. 1 to 3 of WO2005 / 007017 there is described a prosthetic valve which is composed of three flexible flaps and each flap is attached so as to overlap a rigid annular portion. Since the three flaps themselves have a curved surface and are curved on a circular arc toward the center, the fluid can pass in the direction A shown in FIG. 3 of WO2005 / 007017. Furthermore, since the valve is closed by overlapping adjacent flaps in the reverse direction, it is also disclosed that the valve functions and functions as a valve.
  • JP-A-2007-37764 a sponge-like tube having three isosceles triangular extensions is attached to one end of a mandrel, and is embedded in a living body so that the mandrel and the surface of the tube are placed on the mandrel. It is described that after forming a tissue body, it is pulled out, a mandrel is taken out, a cut is made, and decellularization treatment is performed as necessary to produce an artificial valve. Further, when a tissue body is grown in its own body in the artificial valve of JP-A-2007-37764, it becomes a prosthetic valve having excellent biocompatibility and blood compatibility, and a dead cell such as a bioprosthesis. In contrast to the pork valve made in the above, the claim that it is excellent in durability is disclosed.
  • WO2007 / 121072 discloses a stent made of a shape-compatible biocompatible material such as nitinol.
  • a replacement valve is described in which an artificial valve is attached to the support structure and the entire surface of the support structure is coated with a hydrogel.
  • a particular problem in the clinical use of artificial valves is the loss of valve functions due to the durability and blood compatibility of the artificial valves.
  • a mechanical valve having a titanium or titanium alloy flap such as the above WO2005 / 007017 exhibits durability that can withstand opening and closing movements of about 100,000 times a day. It is inferior to biological valves such as bovine tissue valves or self-tissues such as JP-A-2007-37764, and thrombi are likely to form due to hemolysis and blood flow (turbulent flow, laminar flow) disorders.
  • a stent-type prosthetic valve that does not require a thoracotomy as in the above-mentioned WO2007 / 121072 has been developed.
  • a stent-type prosthetic valve such as the above-mentioned WO2007 / 121072 is placed, the prosthetic valve cannot be sutured to the valve opening like a prosthetic valve that is surgically replaced. .
  • the artificial valve of the above-mentioned WO2007 / 121072 is placed on the calcified self-lobe, the artificial valve is coated with a hydrogel that absorbs moisture over the entire surface of the metal stent. Since it cannot be fixed to the self-lobe that has progressed calcification and the volume corresponding to the self-lobe cannot be deformed, there is a gap between the blood vessel wall and the prosthetic valve in the artificial valve mouth. . Therefore, when an artificial valve is placed on the calcified self-lobe, there is a problem that blood flow leaks between the blood vessel wall and the artificial valve.
  • one of the objects of the present invention is to suppress / prevent position shift of the artificial valve itself and blood flow leak between the blood vessel wall and the artificial valve. It is to provide an artificial valve.
  • the present invention has a tubular artificial valve support and a valve body attached to the artificial valve support body and allowing flow in one direction, and is in contact with tissue in a living body.
  • Protrusions having an outer peripheral surface and projecting radially outward from the surfaces of both end portions of the artificial valve support, and a valve leaf housing portion into which the leaflets enter between the projecting portions of the both end portions are formed.
  • the protruding portion is an artificial valve characterized by being formed of a swelling member.
  • FIG. 2A It is a top view which shows another one aspect
  • a first aspect of the present invention includes a tubular artificial valve support and a valve body attached to the artificial valve support and allowing flow in one direction, and has an outer peripheral surface that comes into contact with tissue in a living body. And a protrusion projecting radially outward from the surfaces of both ends of the artificial valve support, and a valve leaf housing part into which a leaflet enters between the protrusions of the both ends,
  • the protruding portion is an artificial valve characterized by being formed of a swelling member.
  • the prosthetic valve of the present invention has a valve body and a tubular artificial valve support that supports the valve body, and has an outer peripheral surface that comes into contact with a tissue in a living body in an artificial valve that is placed percutaneously.
  • the protrusion part which protrudes in the radial direction outward from the surface of the both ends of the artificial valve support, and the valve leaf housing part into which the valve leaf enters between the protrusion parts of the both ends are formed, and the protrusion The part is formed of a swelling member.
  • the prosthetic valve according to the present invention has a protruding portion at both ends, and a leaflet accommodating portion into which a leaflet (in particular, a valve leaf in a patient's body or a self-leaflet) enters between the protruding portions. Since it is formed, even if the leaflet is calcified, it can be accommodated in the accommodating portion. Moreover, if the said valve leaf accommodating part and the valve leaf in a patient's body fit, the position shift of an artificial valve can be suppressed or prevented. Furthermore, since the said protrusion part is formed with the swelling member, the said protrusion part itself can swell.
  • in vivo tissue such as a blood vessel wall and the outer peripheral surface of the protruding portion can be in contact with each other, the adhesion to the blood vessel wall is high, and there is no gap between the artificial valve and the blood vessel wall. Flow leakage can be suppressed / prevented.
  • the projecting portion installed on the surface of the artificial valve support is installed so as to sandwich the self-leaflet, so that the position of the artificial valve itself is shifted or between the blood vessel wall and the artificial valve. It is possible to suppress or prevent blood flow leakage. Moreover, a calcification site
  • An artificial valve according to the present invention includes a tubular artificial valve support and a valve body attached to the artificial valve support and allowing flow in one direction, and has an outer peripheral surface that comes into contact with tissue in a living body. And a projecting portion projecting radially outward from the surfaces of both end portions of the artificial valve support, and a leaflet accommodating portion into which a leaflet enters between the projecting portions of the both end portions,
  • the protrusion is formed of a swelling member.
  • the prosthetic valve support according to the present invention is molded so as to exhibit a tubular shape as a whole. Further, the artificial valve support includes a skeleton of the artificial valve support, a graft that covers at least a part of the surface of the skeleton of the artificial valve support, if necessary, and side surfaces at both ends of the artificial valve support. It is preferable to have a protrusion protruding outward in the radial direction, and it is preferable that the protrusion is formed on the surface of the graft.
  • FIG. 1 is a perspective view showing an embodiment of a skeleton (or also referred to as a stent body) of a prosthetic valve support according to the present invention.
  • the skeleton 10 of the artificial valve support is molded so as to present a cylindrical body that is open at both ends.
  • the side surface of the cylindrical body has a large number of notches communicating with the outer side surface and the inner side surface, and is deformed so that the cylindrical body can expand and contract in the radial direction. It is placed in the lumen of such vessels and maintains its shape.
  • the skeleton 10 of the artificial valve support is made of an elastic wire, and an element in which both ends of a wire shaped in the same plane are connected in a ring shape as a basic unit.
  • a structure in which a plurality of axial peaks are connected so that the tops of the corrugated troughs coincide with each other, and a part of the corrugated peaks 2 (or troughs) of the formed wire rod in the basic unit (three in FIG. 1) Is a structure having an extended portion 2 that extends in the axial direction from the other corrugated peaks 1 (or valleys 3).
  • the skeleton of the prosthetic valve support has a plurality of substantially oval shaped cutouts that are continuously arranged with their ends aligned on the same line and are joined together in an annular shape. Only the elliptical elements 12 (three in FIG. 1) are longer in the axial direction than the other substantially elliptical elements 11. Therefore, the skeleton of the artificial valve support has a cylindrical body with both ends opened by such a configuration. The side surface of the cylindrical body has a substantially elliptical cutout, and the cutout can be deformed to expand and contract in the radial direction of the cylindrical body.
  • the structure of the skeleton of the artificial valve support according to the present invention is not limited to the illustrated embodiment, and both end portions are open and are cylindrical bodies extending in the longitudinal direction between the both end portions, On the side surface, it has a large number of notches communicating the outer side surface and the inner side surface, and this notch portion is a concept that broadly includes a structure that can be expanded and contracted in the radial direction of the cylindrical body. Is also included in the concept of the present invention. For this reason, in FIG. 1, the two basic units are connected in the axial direction so that the peak of the corrugated peak and the peak of the corrugated valley coincide with each other. They can be appropriately connected in the axial direction.
  • the shape of the notch constituting the skeleton of the artificial valve support is not limited to the ellipse as shown in FIG. 1, and other shapes such as a circle, a diamond, a triangle, a square, a rectangle, a rectangle, other polygons, etc.
  • the shape may also be
  • the number of corrugated peaks of the wire rod formed by extending in the axial direction from the other corrugated peaks is three in FIG. 1, but it is naturally limited to this. However, the number is preferably 2 to 6, and the number of leaflets used in the valve body according to the present invention may be equal to the number of the extending portions.
  • Examples of the material of the skeleton of the artificial valve support according to the present invention include polymer materials, metal materials, carbon fibers, ceramics, and the like. These materials may be used alone or in appropriate combination.
  • the material is not particularly limited as long as it has a certain degree of rigidity and elasticity, but is preferably a material having biocompatibility, more preferably a metal material, a polymer material, or carbon fiber, and a metal material or a polymer material. More preferably it is.
  • polystyrene resin for example, polyethylene and polypropylene, aromatic polyesters such as polyethylene terephthalate, aliphatic polyesters such as polylactic acid and polyglycolic acid, and cellulose-based materials such as cellulose acetate and cellulose nitrate.
  • aromatic polyesters such as polyethylene terephthalate
  • aliphatic polyesters such as polylactic acid and polyglycolic acid
  • cellulose-based materials such as cellulose acetate and cellulose nitrate.
  • fluorine-containing polymers such as polytetrafluoroethylene and tetrafluoroethylene-ethylene copolymers are preferred.
  • the metal material examples include stainless steel, tantalum, tantalum alloy, titanium, titanium alloy, nickel titanium alloy, tantalum titanium alloy, nickel aluminum alloy, inconel, gold, platinum, iridium, tungsten, tungsten alloy, cobalt alloy, and the like. Is preferred.
  • stainless steels SUS316L, which has the best corrosion resistance, is preferable.
  • cobalt-based alloys MP35N and L605 are preferable.
  • tungsten alloys W-Rh 25% and W-Rh 26% are preferable.
  • the skeleton of the artificial valve support according to the present invention can be suitably formed from the above-exemplified materials and appropriately selected materials according to the application location or expansion means.
  • the metal material is excellent in strength, so that the prosthetic valve can be reliably placed in the lesion.
  • the skeleton of the prosthetic valve support is formed of a polymer material, the polymer material is excellent in flexibility, and thus exhibits an excellent effect in terms of reachability (delivery property) of the prosthetic valve to the lesioned part.
  • the artificial valve support is a self-expanding type, a restoring force to the original shape is required, so a super elastic alloy such as a nickel titanium alloy is preferable, and when it is a balloon expansion type, the shape returns after expansion.
  • Stainless steel or the like is preferable because it is preferable that the occurrence of the problem is difficult.
  • the skeleton of the artificial valve support is made of carbon fiber, it exhibits excellent effects in that it has high strength, excellent flexibility, and high safety in vivo.
  • skeleton of the artificial valve support body which concerns on this invention according to an application location.
  • the outer diameter before expansion is 2 to 12 mm and the length is 10 to 30 mm.
  • the length in the width direction of the linear member configured to have a large number of notches is as follows. , Preferably 0.1 to 1.0 mm, more preferably 0.3 to 0.7 mm It is.
  • the method for producing the skeleton of the artificial valve support according to the present invention is not particularly limited, and may be appropriately selected from commonly used production methods according to the structure and material of the skeleton of the artificial valve support.
  • an etching technique such as laser etching or chemical etching, and a manufacturing method using a laser cut technique can be selected.
  • the protruding portion according to the present invention has an outer peripheral surface that comes into contact with the tissue in the living body, and protrudes radially outward from the surfaces of both end portions of the artificial valve support. It is preferable that the shape of the protrusion is formed over the entire circumference of the tubular artificial valve support, that is, over the entire surface radially outward from the surfaces of both ends of the artificial valve support.
  • the inner wall of the vascular vessel such as a blood vessel can be contacted on the entire circumferential surface. Deviation and blood leakage can be suppressed or prevented.
  • FIG. 2A is a perspective view showing an example of a preferred form of the artificial valve according to the present invention. That is, in the artificial valve (or artificial valve support) shown in FIG. 2A, the graft 8 is attached so as to cover all the side surfaces of the skeleton 10 of the artificial valve support shown in FIG. A protrusion projecting radially outward is attached to the graft surface.
  • FIG. 3 is a longitudinal sectional view of FIG. 2A and is an example of an artificial valve support body excluding the valve body 7.
  • the skeleton 33 of the artificial valve support is covered with the graft 32 and further protrudes radially outward from the surface of the graft 32.
  • the protrusion 31 is provided.
  • the said protrusion part 31 is provided in the both ends of the artificial valve support body 30, the valve leaf accommodating part (space which has the width
  • the protrusion 31 according to the present invention is preferably formed in a layered manner over the entire circumference of the end portion of the artificial valve support 30, and the average of the protrusions 31 (corresponding to the protrusion 6 in FIG. 2) in that case
  • the thickness (average thickness in the dry state of the swelling member forming the protruding portion 31) b is preferably 0.5 to 5 mm, and more preferably 1 to 2 mm.
  • the “average thickness” here is b shown in FIG. 3, and the thickness of the graft 32 (corresponding to the graft 8 in FIG. 2) and the artificial radius from the radius of the cross section including the protrusion 31 in the artificial valve support. This is the value obtained by subtracting the radius of the skeleton 33 of the valve support (corresponding to the skeleton 10 of the artificial valve support in FIG. 2), and means the arithmetic mean of five times of the measurement. The measurement result.
  • the valve When the average thickness of the protrusions is in the range of 1 to 2 mm, there is no hindrance during insertion into the living body, and the valve can be effectively housed in the leaflet accommodating part between the protrusions at both ends.
  • the position of the protrusion 31 according to the present invention is appropriately selected depending on the size of the leaflets of each patient and is not particularly limited.
  • the longitudinal direction of the artificial valve support The average length e is preferably formed at a position about 1 to 40% of the total average length e from the end.
  • the width a of the protrusion 31 according to the present invention is appropriately selected depending on the size of the leaflets of each patient and is not particularly limited. For example, as shown in FIG. When the average length e in the longitudinal direction of the body (diameter in the longitudinal direction of the other non-extending substantially elliptical elements described above) is 100, each of them has a width of about 20 to 40%. It is preferable that the average length of the specific width is 2 to 12 mm.
  • the calcified leaflets can be stored effectively.
  • protrusions 31 are formed at both ends of the artificial valve support, respectively, and a leaflet accommodating part into which the valve leaf enters between the protrusions 31. Is formed.
  • the width d of the leaflet accommodating portion is appropriately selected depending on the size of the leaflets of each patient and is not particularly limited. 2 to 18 mm is preferable, and 4 to 10 mm is more preferable.
  • the average depth c of the valve leaf accommodating portion (the difference between the radius f of the cross section including the protruding portion of the artificial valve support and the radius of the cross section of the coupling portion 34 of the artificial valve support) is the valve leaf of each patient.
  • the size is appropriately selected depending on the size of the film, and is not particularly limited. For example, 0.5 to 5 mm is preferable, and 1 to 2 mm is more preferable.
  • the valve can be effectively stored in the leaflet accommodating portion between the protruding portions at both ends.
  • the protrusion according to the present invention is formed of a swelling member.
  • the protruding portion is formed of a swelling member that can swell by absorbing blood, body fluid, or the like
  • the swelling member itself swells regardless of the deformed form or material of the artificial valve support.
  • the protrusion and the blood vessel wall are in close contact with each other, and the gap between them is filled. Therefore, the leak between the artificial valve and the blood vessel wall that can occur after the artificial valve is placed in the living body can be prevented.
  • the patient's leaflets fit snugly in the recesses between the protrusions formed by the swelling members at both ends, and so to speak, it is considered that the artificial valve of the present invention is difficult to slip.
  • the swelling degree of the swelling member is preferably 0.1 to 5, and more preferably 1 to 3.
  • the degree of swelling is less than 0.1, the gap between the protrusion and the blood vessel wall may not be sufficiently filled. Further, when the degree of swelling is more than 5, the swelling of the swelling member may apply compressive stress to the skeleton of the artificial valve support, and the skeleton itself may be deformed.
  • the degree of swelling referred to here is defined by “weight of swelling member impregnated in water for 1 hour ⁇ weight of swelling member after absolutely dry” ⁇ “weight of swelling member gel”.
  • barbs may be provided on the protruding portion on the side of the artificial valve support that contacts the inner wall of the vascular vessel, such as a blood vessel, and the barb portion may be thickly covered with a swelling member. You can also.
  • the protruding portions 31 at both ends and the connecting portion 34 for connecting the protruding portions at both ends are integrally formed. Are formed independently and do not have to include the connecting portion 34.
  • the protrusion 31 according to the present invention is formed of a swelling member that swells by absorbing blood, body fluid, or the like
  • the swelling member (described later) is provided only at both ends of the skeleton of the artificial valve support covered with the graft 32. May be provided, or a swelling member may be coated between the protrusions at both ends, but only the ends of the skeleton of the artificial valve support covered with the graft are swollen. It is more preferable to provide a protrusion made of a member.
  • the method of covering the swelling member in the leaflet accommodating portion is not particularly limited, for example, the swelling member (necessary) Is applied to the surface of the artificial valve support until a predetermined thickness is obtained using a micro syringe pump, micro dispenser, ink jet, spray, etc., and then used in the solution.
  • the swelling member according to the present invention is not particularly limited as long as it absorbs blood or body fluids in the living body and exhibits biocompatibility and blood compatibility, and is preferably a hydrogel.
  • the hydrogel is preferably a biodegradable or non-biodegradable hydrogel.
  • the hydrogel according to the present invention is not particularly limited, and known hydrogels can be used.
  • the method for installing the protrusions formed from the swelling member at both ends of the artificial valve support according to the present invention is not particularly limited.
  • a solution containing the swelling member a drug described later if necessary
  • a syringe pump, micro dispenser, ink jet, spray, etc. apply to the surface of both ends of the artificial valve support (including the one with the swelling member coated between the protrusions on both ends) until a predetermined thickness is reached.
  • the organic solvent used in the solution is volatilized by vacuum drying or heat drying, or a swelling member having a predetermined thickness is prepared in advance and cut into a predetermined size, and then an artificial valve covered with a graft Examples thereof include a method of wrapping around both ends of the support and bonding to the graft surface by a hot press method or the like.
  • both end portions of the artificial valve support body are swollen so that both end portions of the artificial valve support body (including the above-described one in which the swelling member is coated between the protrusion portions at both ends) become protrusion portions of a predetermined thickness.
  • At least one monomer component, a crosslinking agent and a polymerization initiator are mixed in a predetermined solvent and applied onto the graft of the artificial valve support, and then polymerized by a thin film polymerization method or a spray polymerization method.
  • at least one or more monomer components, a polymerization initiator, and a crosslinking agent are mixed in a predetermined solvent and polymerized by a solution polymerization method to prepare a gel having a predetermined thickness.
  • the emulsion polymerization method, the suspension polymerization method, or the reverse phase suspension polymerization method in which at least one monomer component, a polymerization initiator, and a crosslinking agent are mixed in a predetermined solvent in advance.
  • a prosthetic valve support covered with a skeleton or graft of the artificial valve support Soak both ends of the skeleton of the The gel fine particles were adhered to a predetermined thickness, and if necessary, a condensing agent and post-crosslinking were performed to immobilize on the graft, and formed from swelling members at both ends of the artificial valve according to the present invention. It is preferable to install a protrusion.
  • examples of the polymerization control method include adiabatic polymerization, temperature-controlled polymerization, and isothermal polymerization.
  • a method of initiating polymerization by irradiating with radiation, electron beam, ultraviolet rays or the like can also be employed.
  • a reverse phase suspension polymerization method using a polymerization initiator is preferred.
  • the monomer is not particularly limited. Specific examples include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N- n-butyl (meth) acrylamide, N-isobutyl (meth) acrylamide, Ns-butyl (meth) acrylamide, Nt-butyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-ethyl- N-methyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-methyl-N-isopropyl (meth) acrylamide, N-methyl-Nn-propyl (meth) acrylamide, N-ethyl-N- Isopropyl (meth) acrylamide, N-ethyl-Nn-propyl
  • crosslinking agent examples include, for example, N, N′-methylenebisacrylamide, N, N′-methylenebismethacrylamide, N, N′-ethylenebisacrylamide, N, N′-ethylenebismethacrylamide, N , N′-hexamethylenebisacrylamide, N, N′-hexamethylenebismethacrylamide, N, N′-benzylidenebisacrylamide, N, N′-bis (acrylamidemethylene) urea, ethylene glycol di (meth) acrylate, polyethylene Glycol di (meth) acrylate, propylene glycol di (meth) acrylate, glycerin (di or tri) acrylate, trimethylolpropane triacrylate, triallylamine, triallyl cyanurate, triallyl isocyanurate, tetraallyloxy Ethane, pentaerythritol triallyl ether, (poly) ethylene glycol di (meth) acrylate, (poly) propylene
  • aliphatic organic solvents such as n-hexane, n-heptane, n-octane, n-decane, cyclohexane, methylcyclohexane, liquid paraffin, toluene
  • Organic solvents such as aromatic organic solvents such as xylene and halogen organic solvents such as 1,2-dichloroethane can be used, but aliphatic organic solvents such as n-hexane, cyclohexane and liquid paraffin are more preferable.
  • the said solvent can also be used individually or in mixture of 2 or more types.
  • a dispersion stabilizer can be added to the continuous phase. By appropriately selecting the type and amount of the dispersion stabilizer, the particle size of the resulting gel fine particles can be controlled.
  • dispersion stabilizer examples include, for example, polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, sorbitan sesquioleate (sorbitan sesquioleate), sorbitan trioleate, sorbitan monolaurate, sorbitan Monooleate, sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, glycerol monostearate, glycerol monooleate, glyceryl stearate, glyceryl caprylate, sorbitan stearate, sorbitan oleate, sorbitan sesquioleate, coconut
  • Nonionic surfactants such as fatty acid sorbitan are preferably used.
  • the dispersion stabilizer is preferably used in the range of 0.04 to 20% by mass, more preferably in the range of 1 to 12% by mass, based on the continuous phase solvent. If it is such a range, the polymer obtained at the time of superposition
  • the concentration of the monomer component in the reverse phase suspension polymerization method is not particularly limited as long as it is a conventionally known range, and is preferably 2 to 7% by mass, for example, and more preferably 3 to 5% by mass.
  • Examples of the polymerization initiator used in the reverse phase suspension polymerization method include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, and di-t-butyl peroxide.
  • persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, and di-t-butyl peroxide.
  • Peroxides such as oxide, t-butylcumyl peroxide, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide, 2,2′-azobis [2 -(N-phenylamidino) propane] dihydrochloride, 2,2'-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2'-azobis ⁇ 2- [1- (2-hydroxy Ethyl) -2-imidazolin-2-yl] propane ⁇ dihydrochloride, 2,2′-azobis ⁇ 2-methyl-N- [1,1-bis ( Droxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide], 4,4′-azobis (4-cyanovaleric acid), etc.
  • azo compounds may be used, and these may be used alone or in combination of two or more.
  • persulfate is preferable, and potassium persulfate, ammonium persulfate, and sodium persulfate are more preferable.
  • the above polymerization initiator is used in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-ascorbic acid, N, N, N ′, N′-tetramethylethylenediamine, and redox polymerization is initiated. It can also be used as an agent.
  • a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-ascorbic acid, N, N, N ′, N′-tetramethylethylenediamine, and redox polymerization is initiated. It can also be used as an agent.
  • the amount of the polymerization initiator used is preferably 2 to 6 parts by mass and more preferably 3 to 5 parts by mass with respect to 100 parts by mass of the total amount of monomers. If it is such a range, a polymerization reaction will fully advance, the range of the molecular weight of the polymer obtained can be adjusted appropriately, and also a viscosity rise will be suppressed and a polymer will not aggregate.
  • a chain transfer agent may be used in the copolymerization.
  • the chain transfer agent include, for example, thiols (n-lauryl mercaptan, mercaptoethanol, triethylene glycol dimercaptan, etc.), thiolic acids (thioglycolic acid, thiomalic acid, etc.), secondary alcohols (isopropanol). Etc.), amines (dibutylamine, etc.), hypophosphites (sodium hypophosphite, etc.) and the like.
  • the polymerization conditions in the reverse phase suspension polymerization method are not particularly limited, and for example, the polymerization temperature can be appropriately set depending on the type of catalyst used, but is preferably 35 to 75 ° C, more preferably 40 to 50 ° C. is there.
  • the polymerization time is preferably 1 hour or longer.
  • the pressure in the polymerization system is not particularly limited, and may be any of normal pressure (atmospheric pressure), reduced pressure, and increased pressure.
  • the atmosphere in the reaction system may be an air atmosphere or an inert gas atmosphere such as nitrogen or argon.
  • the reaction temperature at the time of performing the condensation with the condensing agent or the post-crosslinking reaction varies depending on the type of the condensing agent and the cross-linking agent to be used, and thus cannot be generally determined, but is usually 50 to 150 ° C.
  • the reaction time is usually 1 to 48 hours.
  • a saturated carboxylic acid salt When a saturated carboxylic acid salt is used in the above, it is preferable to carry out an acid treatment after copolymerization to convert the monomeric carboxylate portion into a carboxyl group.
  • the conditions for the acid treatment are not particularly limited, and for example, the treatment may be carried out in a low pH aqueous solution such as a hydrochloric acid aqueous solution, preferably in a temperature range of 15 to 60 ° C., preferably for 1 to 24 hours.
  • the pore-forming agent when copolymerization is performed, can be made porous by being supersaturated and suspended in the monomer solution. At this time, it is preferable to use a pore-forming agent that is insoluble in the monomer solution but soluble in the cleaning solution.
  • a pore making agent sodium chloride, potassium chloride, ice, sucrose, sodium hydrogencarbonate, etc. are mentioned preferably, More preferably, it is sodium chloride.
  • a preferable concentration of the pore-forming agent is preferably 5 to 50% by mass, more preferably 10 to 30% by mass in the monomer solution.
  • the swelling member forming the protruding portion according to the present invention preferably contains a drug, and the drug includes a calcification inhibitor, a lime dissolving agent, an anticancer agent, an immunosuppressant, an antibiotic, an antirheumatic agent, and an antithrombotic agent.
  • HMG-CoA reductase inhibitor HMG-CoA reductase inhibitor, ACE inhibitor, calcium antagonist, antihyperlipidemic agent, integrin inhibitor, antiallergic agent, antioxidant, GPIIbIIIa antagonist, retinoid, flavonoid, carotenoid, lipid improver
  • It may be at least one selected from the group consisting of a DNA synthesis inhibitor, a tyrosine kinase inhibitor, an antiplatelet drug, an anti-inflammatory drug, a biological material, an interferon, and a NO production promoting substance, or a mixture thereof.
  • it contains a calcification inhibitor and / or a lime dissolving agent.
  • calcification inhibitor for example, etidronate, clodronate, tiludronate, medronate, aledronate, ibandronate, incadronate, olvadronate, solvadronate, neridronate, pamidronate, minodronate, risedronate, EB1053 and the like are preferable.
  • lime solubilizer for example, ursodeoxycholic acid, chenodeoxycholic acid or methyl-t-butyl ether is preferable.
  • anticancer agent for example, paclitaxel, docetaxel, vinblastine, vindesine, irinotecan, pirarubicin and the like are preferable.
  • immunosuppressant for example, sirolimus, everolimus, pimecrolimus, sirolimus derivatives such as ABT-578, tacrolimus, azathioprine, cyclosporine, cyclophosphamide, mycophenolate mofetil, gusperimus and the like are preferable.
  • antibiotic for example, mitomycin, adriamycin, doxorubicin, actinomycin, daunorubicin, idarubicin, pirarubicin, aclarubicin, epirubicin, dinostatin stimamarer and the like are preferable.
  • the anti-rheumatic agent for example, methotrexate, sodium thiomalate, penicillamine, lobenzalit and the like are preferable.
  • the antithrombotic agent for example, aspirin, ticlopidine and the like are preferable.
  • Preferred examples of the HMG-CoA reductase inhibitor include cerivastatin, cerivastatin sodium, atorvastatin, pitavastatin, fluvastatin, fluvastatin sodium, simvastatin, lovastatin, and the like.
  • ACE inhibitor for example, quinapril, trandolapril, temocapril, delapril, enalapril maleate, captopril and the like are preferable.
  • calcium antagonist for example, hifedipine, nilvadipine, benidipine, nisoldipine and the like are preferable.
  • antihyperlipidemic agent for example, probucol is preferable.
  • the integrin inhibitor for example, AJM300 is preferable.
  • antiallergic agent for example, tranilast is preferable.
  • antioxidant for example, ⁇ -tocopherol, catechin, dibutylhydroxytoluene, butylhydroxyanisole and the like are preferable.
  • GPIIbIIIa antagonist for example, abciximab is preferable.
  • retinoid for example, all-trans retinoic acid is preferable.
  • flavonoid for example, epigallocatechin, anthocyanin, proanthocyanidin and the like are preferable.
  • Preferred examples of the carotenoid include ⁇ -carotene and lycopene.
  • lipid improving agent for example, eicosapentaenoic acid is preferable.
  • the DNA synthesis inhibitor for example, 5-FU is preferable.
  • the tyrosine kinase inhibitor for example, genistein, tyrphostin, arbustatin and the like are preferable.
  • the antiplatelet drug for example, ticlopidine, cilostazol (500), clopidogrel and the like are preferable.
  • steroids such as dexamethasone and prednisolone are preferable.
  • EGF epidermal growth factor
  • VEGF basic endowment growth factor
  • HGF hepatocyte growth factor
  • PDGF platelet gender, etc.
  • interferon- ⁇ 1a is preferable.
  • NO production promoting substance for example, L-arginine is preferable.
  • the drug is preferably contained in an amount of 0.1 to 50% by mass, more preferably 0.5 to 15% by mass, based on the total mass of the swelling member.
  • the drug according to the present invention may be contained in the swelling member in a state of being encapsulated in fine particles, polymer micelles or liposomes.
  • the material forming the graft according to the present invention is not particularly limited, and examples thereof include woven polyester, polyethylene terephthalate, polytetrafluoroethylene, high-density polyethylene, expanded porous polytetrafluoroethylene (ePTFE), and Examples include at least one of polyurethanes. Among them, polyethylene terephthalate is preferable because the swelling member can be easily fixed.
  • the thickness of the graft is not particularly limited, but is preferably 100 to 1,000 ⁇ m, for example, and the size (inner diameter / length) of the graft is the extension of the artificial valve support according to the present invention. There is no particular limitation as long as it covers all substantially oval elements.
  • the graft When the graft is coated on the skeleton of the artificial valve support, the graft may be sewn with a known suture such as the same material or polyester as necessary, or may be fixed by a known method such as an adhesive.
  • a predetermined length formed from a substance having high X-ray contrast properties such as gold, platinum, tungsten, an alloy thereof, or a silver-palladium alloy is provided near the center of the artificial valve support according to the present invention. It is preferable to provide the ring-shaped thing which has, or the thing which formed the linear body in the coil shape on the outer surface of the artificial valve support body.
  • a substance with high X-ray contrast properties makes it possible to grasp the central portion of the artificial valve and serve as an index for the position where the swelling member is installed and for placement.
  • the valve body that can be used for the artificial valve according to the present invention is a valve that allows one flow, and more preferably a valve that allows one flow and restricts the other flow.
  • the valve body is not particularly limited as long as it can contract and expand, and can be used as a mechanical valve or a biological valve. Or an inorganic material, but is not particularly limited.
  • the mechanical valve may be, for example, a valve having a leaflet and an annulus portion that supports the leaflet, and an up-and-down valve that moves up and down: a Starr-Edwards type, a Discoid type, a SAM type, and a fan-like inclination.
  • Valve Alvarez type, Tilting type, St. Jude type and the like, and examples of biological valves include those using animal valvular tissue or pericardial tissue as valve leaflets, Hancock type such as commercially available pig valves, bovine valves, horse valves, and caged-discs.
  • the valve body used in the above three prior art documents can be mentioned, and a known valve body can be used, but a biological valve is preferable from the viewpoint of blood compatibility.
  • FIG. 2B is a plan view of FIG. 2A. As shown in FIG. 2B, both ends of the three fan-shaped leaflets 13 are fixed to the extending portion 9, and the chord portions of the three fan-shaped leaflets 13 are directed outward in the axial direction. It protrudes so as to contact each other, and the arc portion of the valve leaf 13 is fixed to the artificial valve support 9 (or annulus (not shown)). Therefore, when the fluid flows outward in the axial direction, the flow in that direction can be allowed.
  • FIG. 2C is an artificial valve to which another form of the valve body of the present invention is attached.
  • Both ends of the substantially elliptical leaflet are fixed to the artificial valve support 9 (or annulus (not shown)), and a part of the leaflet is arranged in a superposed state with the adjacent leaflet. Therefore, one flow can be allowed similarly.
  • 2A, 2B, and 2C illustrate an example of a valve body having three leaflets, but the number of leaflets is not particularly limited.
  • the diameter of the valve body according to the present invention (the diameter of the valve body after expanding the artificial valve support) is appropriately adjusted according to the size of the artificial valve support, and is preferably 10 to 40 mm, for example. More preferably, it is 20 to 30 mm.
  • the method for fixing the valve body inside the artificial valve support according to the present invention is not particularly limited, and the cuff part of the valve body is made of a polyester suture thread or the like in the same manner as fixing the graft. It can be tightly fixed to the skeleton of the graft and / or artificial valve support by sewing.
  • a preferred embodiment of the artificial valve according to the present invention has a plurality of extending portions 2 shown in FIG. 1 (there are three extending portions 2 in FIG. 1, corresponding to the extending portions 9 in FIG. 2A, In 2A, the extension part 2 is hidden because the valve body is attached), and the entire surface of a low mountain (a mountain other than the extension part, low mountain 1 in FIG. 1) in the skeleton of the artificial valve support.
  • a cylindrical body is formed so as to cover the entire circumference with the graft 8, and the valve body 7 is attached to the inside of the cylindrical body, and the skeleton of the artificial valve support is covered with the graft 8.
  • projecting portions 6 projecting radially outward from the surface are formed at both ends of the formed cylindrical body. Further, if necessary, an X-ray contrast member 5 may be provided, and a fixing portion 4 may be provided in order to improve the adhesion between the skeleton of the artificial valve support and the graft.
  • the said valve body is arrange
  • the number of the extending portions 2 is three, but it is naturally not limited thereto, and the number of leaflets and the number of extending portions may be matched.
  • a calcified leaflet B for example, an aortic valve, a mitral valve, etc.
  • a calcified leaflet B for example, an aortic valve, a mitral valve, etc.
  • FIG. 4 the aortic sinus and the coronary artery opening C
  • the calcified leaflet B is compressed, so that the compressed leaflet (about 0.1 to 0.5 cm in length) is compressed.
  • Production of artificial valves Manufacture of prosthetic valve support
  • the skeleton of the prosthetic valve support is composed of two surgical stainless steel wires (made by Oba Kiko) with a width of 0.55 mm. Three peaks with a folding height of 14 mm were prepared so that the peaks with a folding height of 14 mm were equally spaced. In addition, 15 8 mm-high ridges were formed on the other wire. The two wires were bent so as to form a circle with a diameter of 23 mm, and the ends were welded.
  • a graft made of polyethylene terephthalate having a width of 16 mm was welded to the skeleton of the produced artificial valve support with polyester sutures (manufactured by Matsuda Medical Industry) and the upper and lower ends around the skeleton of the artificial valve support. Sewed on the middle part of the skeleton. Furthermore, platinum wires (manufactured by Tanaka Metal Industry Co., Ltd.) were sewn evenly at 3 locations each 5 mm from the upper end and lower end of the skeleton of the artificial valve support.
  • Protrusion of prosthetic valve support by polyacrylamide coating Acrylamide (Wako Pure Chemical Industries), Sodium acrylate (Wako Pure Chemical Industries) and N, N-methylenebisacrylamide (Wako Pure Chemical Industries)
  • the polyacrylamide microparticles were synthesized by reverse phase suspension polymerization.
  • the skeleton of the artificial valve support (hereinafter, artificial valve cylinder) to which the graft produced above was sewn was immersed in an aqueous solution of 0.1% by mass polyacrylamide fine particles (particle diameter: 15 ⁇ m) and dried.
  • the operation of immersing and drying the surface of 5 mm from the upper end of the artificial valve cylinder in an aqueous solution of 1% by mass polyacrylamide fine particles was repeated. The same operation was performed on the surface 5 mm from the lower end of the artificial valve cylinder.
  • the artificial valve cylinder was immersed in a 0.1% by mass aqueous solution of water-soluble carbodiimide (manufactured by Dojin Chemical), heated at 60 ° C. and dried to immobilize the polyacrylamide fine particles on the graft of the artificial valve support.
  • the final thickness after drying was 0.1 mm near the center (leaflet accommodating part) and 1.3 mm at both ends (protruding parts).
  • a highly calcified sheep heart valve is expanded in advance with a balloon catheter for artificial valve replacement (manufactured by Edwards Life Sciences), and the prosthetic valve is delivered percutaneously.
  • the aortic annulus was placed so as to be in between the platinum wires placed on the prosthetic valve.
  • Prosthetic valve placement in animals A prosthetic valve in which neither acrylamide nor ursodeoxycholic acid is immobilized is prepared using the artificial valve described above, and a highly calcified sheep heart valve is replaced with a balloon catheter for replacement of the artificial valve (Edwards Life)
  • the prosthetic valve that had been expanded in advance by Cicence Co., Ltd. was delivered percutaneously, and placed in a fluoroscopic image so that the aortic annulus entered between the platinum wires installed on the prosthetic valve.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

【課題】位置ずれや血流のリークを抑制・防止することが可能な人工弁を提供する。 【解決手段】本発明は、弁体および前記弁体を支持する管状の人工弁支持体を有し、経皮的に留置する人工弁において、 生体内組織と接触する外周面を有し、かつ前記人工弁支持体の両端部の表面から放射方向外方に突出する突出部と、 前記両端部の突出部の間に弁葉が入り込む弁葉収容部と、が形成されており、前記突出部は、膨潤部材で形成されていることを特徴とする位置ずれや血流のリークを抑制・防止することが可能な人工弁である。

Description

人工弁
 本発明は、人工弁、特に生体内に留置するステント型の人工弁に関する。
 弁膜症の外科手術にあたり、大動脈弁を主にした障害弁の代替となる代用弁の研究が行われて以来、現在では弁膜症の外科治療において人工弁の弁置換手術は必須なものとされており、その他人工心臓などの種々の手術にも人工弁は利用されている。一般に、人工弁は、その構成基材により機械弁と生体弁とに分類されるが、いずれにおいても、人工弁は、耐久性、生体適合性、血液適合性(特に溶血や血栓を抑制・防止)、可撓性などが要求される。
 換言すると、生体内で心拍動により開閉運動を行う人工弁は、1日約10万回の開閉運動を行うことになり、人工弁として要求される耐久性は相当なものである。また、生体内で血流に直接接触する人工弁は、血液に対し異物として作用し血液有形成分の破壊(溶血)が生ずるのを防止するべく、人工弁の血液に接する表面特性が重要になり潤滑な表面が要求される。さらに血液に直接晒される人工弁は、血液凝固に対する材質の特性とともに、人工弁自体の機構による血流状態が血栓形成に関与するため、人工弁の材質や形状が重要になる。かかる要求を満たす人工弁としては、例えば、以下3つの先行技術文献に記載されている。
 WO2005/007017の図1~3では、可撓性を有する3枚のフラップからなり、各フラップがそれぞれ剛性の環状部に重なるように取り付けられた人工弁が記載されている。当該3枚のフラップ自身が曲面を有しており、かつ中心に向かって円弧上に湾曲しているため、WO2005/007017の図3に示されるAの方向に流体を通過することができる。さらに、逆方向では隣接するフラップが重なり合うことにより弁が閉鎖されるため、弁として作用・機能することも開示されている。
 JP-A-2007-37764では、マンドレルの一端に3つの二等辺三角形状の延出部を有するスポンジ状のチューブを装着し、生体内に埋入されることで、マンドレルおよびチューブの表面上に組織体を形成させた後、それを引き抜き、マンドレルを取り出して切り込みを入れ、必要により脱細胞処理して人工弁を作製することが記載されている。また、JP-A-2007-37764の人工弁において自己の体内で組織体を成長させる場合には、非常に生体適合性および血液適合性にすぐれた人工弁となり、生体弁のような死亡した細胞で作製されたブタ弁と相違して耐久性に優れているとの主張が開示されている。
 また、近年カテーテルでの送出システムの使用により経動脈もしくは経静脈を通して送出できる埋め込み型ステント弁が開発されたことに鑑み、WO2007/121072では、ニチノールなどの形状記憶の生体適合性材料でできたステントである支持体構造物に、人工弁が取り付けられ、かつ支持体構造物の表面全体にヒドロゲルがコーティングしている置換弁が記載されている。
 人工弁の臨床使用にあたり特に問題となることは、人工弁の耐久性や血液適合性に起因した弁機能の喪失である。例えば、上記WO2005/007017のようなチタンまたはチタン合金のフラップを持つ機械弁は、1日十万回程度の開閉運動に耐えうる耐久性を示すが、血液適合性については、市販されているブタやウシの組織弁またはJP-A-2007-37764のような自己組織などの生体弁より劣り、特に溶血や血流(乱流、層流)障害により血栓が形成しやすい。また、市販されているブタやウシの組織弁またはJP-A-2007-37764のような自己組織などの生体弁を臨床使用した場合、術後7~8年以後にみられる弁の菲薄化に伴う断裂や石灰沈着による弁機能不全がみられ、それぞれ一長一短がある。さらに、これらの人工弁を使用するにあたり、開胸手術の必要があり患者に身体的または肉体的負担をかけ、Q.O.Lの観点からもデメリットがある。
 これらの点を解決するために、上記WO2007/121072のような開胸手術を必要としないステント型の人工弁が開発されている。しかし、上記WO2007/121072のようなステント型の人工弁を留置する場合、外科的に置換される人工弁のように弁口に人工弁を縫合する事ができない為、位置ずれが起こる場合がある。
 さらに上記WO2007/121072の人工弁を、石灰化の進行した自己弁葉上に留置する場合、当該人工弁は金属製のステントの全面に渡って水分を吸収するヒドロゲルがコーティングされているため、効果的に石灰化の進行した自己弁葉に固定することができず、かつ当該自己弁葉の体積相当分が変形しえないため、人工弁口における血管壁と人工弁との間に隙間が生じる。そのため、石灰化の進行した自己弁葉上に人工弁を留置すると血管壁と人工弁との間で血流のリークが起こる問題がある。
 そこで、上記問題を解決するために、本発明の目的の一つは、人工弁自体の位置ずれや、血管壁と人工弁との間での血流のリークを抑制・防止することが可能な人工弁を提供することである。
 上記目的を達成するために、本発明は、管状の人工弁支持体と、前記人工弁支持体内に取り付けられ、一方向の流れを許容する弁体と、を有し、生体内組織と接触する外周面を有し、かつ前記人工弁支持体の両端部の表面から放射方向外方に突出する突出部と、前記両端部の突出部の間に弁葉が入り込む弁葉収容部と、が形成されており、前記突出部は、膨潤部材で形成されていることを特徴とする人工弁である。本発明のさらに他の目的、特徴および特質は、以後の説明および添付図面に例示される好ましい実施の形態を参酌することによって、明らかになるであろう。
本発明に係る人工弁支持体の骨格の一態様を示す斜視図である。 本発明の人工弁の一態様を示す斜視図である。 図2Aの平面図である。 本発明の人工弁の他の一態様を示す平面図である。 本発明の人工弁支持体の中心軸を通る縦断面を示す図である。 本発明の実施形態の一例を示す図である。
 以下、本発明の実施の形態を詳細に説明する。
 なお、本出願は、2010年6月28日に出願された日本国特許出願第2010-146229号に基づいており、その開示内容は、参照により全体として引用されている。
 本発明の第一は、管状の人工弁支持体と、前記人工弁支持体内に取り付けられ、一方向の流れを許容する弁体と、を有し、生体内組織と接触する外周面を有し、かつ前記人工弁支持体の両端部の表面から放射方向外方に突出する突出部と、前記両端部の突出部の間に弁葉が入り込む弁葉収容部と、が形成されており、前記突出部は、膨潤部材で形成されていることを特徴とする人工弁である。
 すなわち、本発明の人工弁は、弁体および前記弁体を支持する管状の人工弁支持体を有し、経皮的に留置する人工弁において、生体内組織と接触する外周面を有し、かつ前記人工弁支持体の両端部の表面から放射方向外方に突出する突出部と、前記両端部の突出部の間に弁葉が入り込む弁葉収容部と、が形成されており、前記突出部は、膨潤部材で形成されていることを特徴とするものである。
 本発明に係る人工弁は、両端部に突出部を有しており、かつ両突出部間に弁葉(特に、患者の体内の弁葉、自己弁葉とも称する)が入り込む弁葉収容部が形成されているため、当該弁葉が石灰化されていたとしても当該収容部に収まることができる。また、当該弁葉収容部と患者の体内の弁葉とが嵌合すれば人工弁の位置ずれを抑制または防止することができる。さらに、前記突出部が膨潤部材で形成されているため、当該突出部自体が膨潤することができる。これにより、生体内組織、例えば血管壁などと前記突出部の外周面とが接触することができるため、血管壁との密着性が高く、人工弁と血管壁との間に隙間が生じず血流のリークを抑制・防止することができる。
 すなわち、本発明によれば、人工弁支持体表面に設置された突出部が自己弁葉を挟み込むように設置される事で、人工弁自体の位置ずれや、血管壁と人工弁との間での血流のリークを抑制または防止することが可能である。また石灰化溶解剤などを突出部に含有させる事で、人工弁留置後に石灰化部位を縮小できる。
 本発明に係る人工弁は、管状の人工弁支持体と、前記人工弁支持体内に取り付けられ、一方向の流れを許容する弁体と、を有し、生体内組織と接触する外周面を有し、かつ前記人工弁支持体の両端部の表面から放射方向外方に突出する突出部と、前記両端部の突出部の間に弁葉が入り込む弁葉収容部と、から構成されており、前記突出部は、膨潤部材で形成されている。図1、図2Aおよび図2Bを参照して各構成を以下説明する。
 「人工弁支持体」
 本発明に係る人工弁支持体は、全体が管状を呈するように成形されている。また、前記人工弁支持体は、人工弁支持体の骨格と、必要により当該人工弁支持体の骨格の表面の少なくとも一部を被覆するグラフトと、当該人工弁支持体の両端部の側表面から放射方向外方に突出する突出部と、を有することが好ましく、当該グラフトの表面に前記突出部が形成されていることが好ましい。
 次に、人工弁支持体の骨格を構成する各構成要素について、図1を参照して以下説明する。図1は、本発明に係る人工弁支持体の骨格(または、ステント本体とも称する)の一態様を示す斜視図である。図1に示す本発明の一態様において、人工弁支持体の骨格10は、全体が両端部に開口する円筒体を呈するように成形されている。円筒体の側面は、その外側面と内側面とを連通する多数の切欠部を有し、この切欠部が変形することによって、円筒体の径方向に拡縮可能な構造になっており、血管のような脈管の内腔に留置され、その形状を維持する。前記人工弁支持体の骨格10は、弾性線材からなり、同一平面上に波形に成形した線材の両端を環状になるよう連結した要素を基本単位とし、当該基本単位を、波形の山の頂点と波形の谷の頂点とが一致するよう軸方向に複数個連結した構造であって、かつ当該基本単位において、成形した線材の波形の山2(または谷)の一部(図1では3つ)を他の波形の山1(または谷3)よりも軸方向に延出させた延出部2を有する構造である。換言すると、人工弁支持体の骨格は、複数の略楕円形の要素である切欠部が同一線上で端部を揃えて連続して配置され結合され環状にしたものであって、一部の略楕円形の要素12(図1では3つ)だけが他の略楕円形の要素11よりも軸方向に長い構造である。そのため人工弁支持体の骨格は、このような構成により、両末端部が開口した円筒体をなしている。そして円筒体の側面は、略楕円形の切欠部を有しており、この切欠部が変形することによって、円筒体の径方向に拡縮可能な構造になっている。
 なお、本発明に係る人工弁支持体の骨格の構造は、図示した態様に限定されず、両末端部が開口し、該両末端部の間を長手方向に延在する円筒体であって、その側面上に、外側面と内側面とを連通する多数の切欠部を有し、この切欠部が変形することによって、円筒体の径方向に拡縮可能な構造を広く含む概念であり、コイル形状もまた本発明の概念に含まれる。そのため、図1では、前記基本単位を波形の山の頂点と波形の谷の頂点とが一致するよう軸方向に2個連結した構造であるが、この2個連結した構造を一つの単位としてさらに軸方向に適宜連結することができる。
 また、上記人工弁支持体の骨格を構成する切欠部の形状についても、図1に示すような楕円形に限定されず、円形、菱形、三角形、正方形、長方形、矩形、その他多角形等、他の形状であってもよい。
 前記他の波形の山よりも軸方向に延出させて成形した線材の波形の山の数、すなわち延出部の数は、図1では3個であるが、当然のことながらこれに限定されることはなく、好ましくは2~6個であり、本発明に係る弁体に使用する弁葉の数と当該延出部の数を一致させればよい。
 本発明に係る人工弁支持体の骨格の材料としては、ポリマー材料、金属材料、炭素繊維、セラミックス等が挙げられ、これらの材料は単独で使用されてもあるいは適宜組み合わせて使用されても良く、ある程度の剛性と弾性を有するものであれば特に制限はないが、生体適合性を有する材料であることが好ましく、金属材料、ポリマー材料、炭素繊維であることがより好ましく、金属材料もしくはポリマー材料であることがさらに好ましい。
 具体的には、前記ポリマー材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート等の芳香族ポリエステル、ポリ乳酸、ポリグリコール酸等の脂肪族ポリエステル、セルロースアセテート、セルロースナイトレート等のセルロース系ポリマー、ポリテトラフルオロエチレン、テトラフルオロエチレン-エチレン共重合体等の含フッ素ポリマー等が好ましい。
 前記金属材料としては、例えば、ステンレス鋼、タンタル、タンタル合金、チタン、チタン合金、ニッケルチタン合金、タンタルチタン合金、ニッケルアルミニウム合金、インコネル、金、プラチナ、イリジウム、タングステン、タングステン合金、コバルト系合金等が好ましい。ステンレス鋼の中では、最も耐食性が良好であるSUS316Lが好ましい。コバルト系合金の中では、MP35N、L605が好ましい。タングステン合金の中では、W-Rh25%、W-Rh26%が好ましい。
 本発明に係る人工弁支持体の骨格は、上記例示した材料から、その適用箇所または拡張手段に応じて適宜選択した材料により好適に形成することができる。例えば人工弁支持体の骨格を金属材料で形成した場合、金属材料は強度に優れているため、人工弁を病変部に確実に留置することが可能である。人工弁支持体の骨格を高分子材料で形成した場合、高分子材料は柔軟性に優れているため、人工弁の病変部への到達性(デリバリー性)という点で優れた効果を発揮する。
 また、人工弁支持体が自己拡張型である場合、元の形状への復元力が必要なことからニッケルチタン合金等の超弾性合金等が好ましく、バルーン拡張型である場合、拡張後の形状復帰が起こりにくいことが好ましいことからステンレス鋼等が好ましい。
 また、人工弁支持体の骨格を炭素繊維で作製した場合、高強度で、かつ柔軟性に優れており、しかも生体内での安全性が高いという点で優れた効果を発揮する。
 本発明に係る人工弁支持体の骨格の大きさは、適用箇所に応じて適宜選択すればよい。例えば、心臓の大動脈弁に用いる場合は、通常拡張前における外径は2~12mm、長さは10~30mmが好ましい。図1に示すように、人工弁支持体の骨格が線状部材で構成される場合、人工弁支持体の骨格を多数の切欠部を有するように構成する線状部材の幅方向の長さは、好ましくは0.1~1.0mmであり、より好ましくは0.3~0.7mm
である。
 本発明に係る人工弁支持体の骨格の製造方法は、特に限定されず、人工弁支持体の骨格
の構造および材料に応じて、通常使用される製造方法から適宜選択すればよい。例えば、レーザエッチング、化学エッチング等のエッチング技術、およびレーザーカット技術を利
用した製造方法を選択することができる。
 本発明に係る突出部は、生体内組織と接触する外周面を有し、かつ前記人工弁支持体の両端部の表面から放射方向外方に突出している。前記突出部の形状は、管状の人工弁支持体の全周にわたって形成されていること、すなわち人工弁支持体の両端部の表面から放射方向外方の全面にわたって形成されていることが好ましい。
 これにより、上記突出部が人工弁支持体の端部の全周にわたって層状に形成されていると、血管のような脈管の内壁と全周面で接触することができるため、人工弁の位置ずれや血液のリークを抑制または防止することができる。
 次に、本発明に係る突出部について、図2Aおよび図3を参照して以下説明する。図2Aは、本発明に係る人工弁の好ましい形態の一例を示す斜視図である。すなわち図2Aに示された人工弁(または人工弁支持体)は、図1の人工弁支持体の骨格10の側面を全て覆うようにグラフト8が取り付けられ、かつ両端部の側面のグラフト表面から放射方向外方に突出する突出部が当該グラフト表面に取り付けられている。また、図3は、図2Aの縦断面図であって、かつ弁体7を除いた人工弁支持体の一例である。
 図3で示す本発明に係る人工弁支持体の一態様では、人工弁支持体の骨格33がグラフト32によって覆われており、さらに当該グラフト32の表面から放射方向外方に突出されるように、突出部31が設けられている。また、前記突出部31は、人工弁支持体30の両端部に設けられているため、当該突出部31の間に弁葉が入り込む弁葉収容部(dの幅を有する空間)が形成されている。また、両端部の突出部31は、両端部の突出部31を連結する連結部34を介して連結して形成されている。
 本発明に係る突出部31は、人工弁支持体30の端部の全周にわたって層状に形成されていることが好ましく、その場合の当該突出部31(図2の突出部6に対応)の平均厚み(突出部31を形成する膨潤部材の乾燥状態における平均厚み)bは、0.5~5mmが好ましく、1~2mmがより好ましい。
 なお、ここでいう「平均厚み」とは、図3に示すbであって、人工弁支持体における突出部31を含む断面の半径からグラフト32(図2のグラフト8に対応)の厚みおよび人工弁支持体の骨格33(図2の人工弁支持体の骨格10に対応)の半径を引いたものであり、その測定を5回試行した相加平均値をいい、以下の「平均」も同様の測定結果をいう。
 突出部の平均厚みが1~2mmの範囲であると、生体への挿入時に支障をきたすことがなく、かつ両端の突出部間の弁葉収容部に弁を有効に収めることができる。
 本発明に係る突出部31の位置は、各患者の弁葉の大きさによって適宜選択されるものであり特に制限されることはないが、例えば図3で示すように人工弁支持体の長手方向の平均長さeにおいて、端から全体の平均長さeの1~40%程度の位置にそれぞれ形成されていることが好ましい。
 また、本発明に係る突出部31の幅aも、各患者の弁葉の大きさによって適宜選択されるものであり特に制限されることはないが、例えば、図3で示すように人工弁支持体の長手方向の平均長さe(上記の延出していない他の略楕円形の要素の長手方向の径)を100とすると、20~40%程度の長さの幅を有してそれぞれ形成されていることが好ましく、具体的な幅の平均長さとしては2~12mmであることが好ましい。
 突出部の位置や幅が上記範囲であると、石灰化した弁葉を有効に収納することができる。
 本発明に係る人工弁支持体(または人工弁)には、当該人工弁支持体の両端部に突出部31がそれぞれ形成されており、当該突出部31の間に弁葉が入り込む弁葉収容部が形成されている。当該弁葉収容部の幅d(両端部に形成された突出部間の平均長さ)は、各患者の弁葉の大きさなどにより適宜選択されるものであり特に制限されることはないが、2~18mmが好ましく、4~10mmがより好ましい。
 また前記弁葉収容部の平均深さc(人工弁支持体の突出部を含む断面の半径fと、人工弁支持体の連結部34の断面の半径との差)は、各患者の弁葉の大きさによって適宜選択されるものであり特に制限されることはないが、例えば、0.5~5mmが好ましく、1~2mmがより好ましい。
 前記弁葉収容部の平均幅および平均深さがそれぞれ0.5~5mmおよび1~2mmの範囲であると、両端の突出部間の弁葉収容部に弁を有効に収めることができる。
 本発明に係る突出部は、膨潤部材で形成されている。生体内において、血液や体液などを吸収することで膨潤することができる膨潤部材で前記突出部を形成すると、人工弁支持体の変形する形態や材質などに関係なく、前記膨潤部材自体が膨潤することによって突出部と血管壁とが密着しこれらの間の隙間が埋まる。そのため、人工弁を生体内に留置した後に起こりうる人工弁と血管壁との間のリークを防止することができる。また、両端の膨潤部材で形成された突出部間の凹部に患者の弁葉がぴったりと収まり、いわば嵌合された状態になるため、本発明の人工弁はずれにくいと考えられる。
 前記膨潤部材の膨潤度は、0.1~5が好ましく、1~3がより好ましい。膨潤度が0.1未満の場合、突出部と血管壁との間の隙間が十分埋まらないことがある。また、膨潤度が5超の場合、膨潤部材の膨潤によって人工弁支持体の骨格に圧縮応力が加わり、骨格自体が変形することがある。なお、ここで言う膨潤度は、「1時間水に含浸させた膨潤部材の重量-絶乾後の膨潤部材の重量」÷「膨潤部材のゲルの重量」により規定される。
 また、人工弁支持体の血管のような脈管の内壁と接触する側に、位置ずれを防止するかえし(棘)を突出部に設けてもよく、さらにかえし部分に膨潤部材を厚く被覆させる事もできる。
 図3で示す本発明に係る人工弁支持体では、両端部の突出部31と、両端部の突出部を連結する連結部34と、が一体に形成されているが、両端部の突出部31が独立して形成され、連結部34を有していなくともよい。例えば、本発明に係る突出部31が血液や体液などを吸収することで膨潤する膨潤部材で形成されている場合、グラフト32で覆った人工弁支持体の骨格の両端部だけに膨潤部材(後述する薬剤を含んでも良い)からなる突出部を設けてもよく、または両端の突出部間に膨潤部材をコーティングしてもよいが、グラフトで覆った人工弁支持体の骨格の両端部だけに膨潤部材からなる突出部を設けることがより好ましい。
 前記両端の突出部間に膨潤部材をコーティングする場合(突出部間に連結部を設ける場
合)、すなわち弁葉収容部内に膨潤部材を被覆する方法は、特に制限されず、例えば、膨潤部材(必要に応じて後述の薬剤)を含む溶液を、マイクロシリンジポンプ、マイクロディスペンサー、インクジェット、スプレーなどを用いて、所定の厚みになるまで人工弁支持体の表面に塗布し、その後溶液に用いられている有機溶媒を真空乾燥または加熱乾燥により揮発させる方法や、人工弁支持体の全体を、膨潤部材(必要に応じて後述の薬剤)を含む溶液に含浸させる方法や、予め所定の厚さの膨潤部材を作製し、所定の大きさに切断した後、グラフトで被覆された人工弁支持体の全面または両端部以外に巻きつけホットプレス法などでグラフト表面に接合する方法などが挙げられる。なお、これらの方法により膨潤部材を被覆した後、後述する方法で突出部を設けることが好ましい。
 本発明に係る膨潤部材は、生体内において、血液や体液などを吸収して、生体適合性および血液適合性を示すものであれば特に制限されることはなく、ヒドロゲルであることが好ましい。
 前記ヒドロゲルは生分解性または非生分解性ヒドロゲルであることが好ましい。
 本発明に係るヒドロゲルとしては、特に制限されることはなく、公知のヒドロゲルを使用することができるが、例えば、ポリビニルアルコール、ポリアクリルアミド、ポリ-N-ビニルピロリドン、ポリ(ヒドロキシルエチルメタクリレート)、ポリエチレンオキシド、ポリエチレングリコール、ポリエチレングリコールモノメチルエーテル、セルロース、ポリアクリレート、ポリメタクリレート、ポリアクリル酸メチル、ポリ乳酸、ポリビニルスルホン酸、ポリアミド、ポリ(L-リシン)、親水性ポリウレタン、無水マレイン酸ポリマー、タンパク質、線維素、コラーゲン、セルロース系ポリマー、メチルセルロース、カルボキシメチルセルロース、デキストラン、カルボキシメチルデキストラン、改良デキストラン、アルギン酸塩、アルギン酸、ペクチン酸、ヒアルロン酸、キチン、プルラン、エラスチン、ラミニン、アガロース、ゼラチン、ジェラン、キサン、カルボキシメチル澱粉、コンドロイチン硫酸、グアー、澱粉及びそれらの共重合体、混合物及び誘導体を含むものからなる群から選択される少なくとも一つであることが好ましく、ポリアクリルアミドもしくはゼラチンもしくはコラーゲンであることがより好ましい。
 本発明に係る人工弁支持体の両端部に膨潤部材から形成された突出部を設置する方法は、特に制限されず、例えば、膨潤部材(必要に応じて後述の薬剤)を含む溶液を、マイクロシリンジポンプ、マイクロディスペンサー、インクジェット、スプレーなどを用いて、所定の厚みになるまで人工弁支持体(上述の両端の突出部間に膨潤部材をコーティングしたものも含む)の両端部の表面に塗布し、その後溶液に用いられている有機溶媒を真空乾燥または加熱乾燥により揮発させる方法や、予め所定の厚さの膨潤部材を作製し、所定の大きさに切断した後、グラフトで被覆された人工弁支持体の両端部に巻きつけホットプレス法などでグラフト表面に接合する方法などが挙げられる。
 その他、人工弁支持体(上述の両端の突出部間に膨潤部材をコーティングしたものも含む)の両端部が所定の厚さの突出部になるように、人工弁支持体の両端部を、膨潤部材(必要に応じて後述の薬剤)含有溶液に浸漬して、その後当該溶液に用いられている有機溶媒を真空乾燥または加熱乾燥する工程を繰り返して本発明の突出部を設けてもよい。
 以下、本発明に係る人工弁の両端部に膨潤部材から形成された突出部を設置する方法の一例について以下説明するが、本発明の範囲はこれに限定されることはない。
 少なくとも1種以上の単量体成分と架橋剤と重合開始剤とを所定の溶媒に混合して、人工弁支持体のグラフト上に塗布した後、薄膜重合法、または噴霧重合法で重合させる、または予め少なくとも1種以上の単量体成分と重合開始剤と架橋剤とを所定の溶媒に混合して溶液重合法で重合させて所定の厚みのゲルを作製し、円筒状の人工弁支持体の両端部に接合する、または予め少なくとも1種以上の単量体成分と重合開始剤と架橋剤とを所定の溶媒に混合して乳化重合法、懸濁重合法、または逆相懸濁重合法により重合させて所定の粒子径5~100μmのゲル微粒子を作製し、当該ゲル微粒子を0.01~10質量%添加した溶液に、人工弁支持体の骨格やグラフトで覆われた人工弁支持体の骨格の両端部を浸漬させて当該グラフト上などにゲル微粒子を所定の厚みになるよう付着させ、さらに必要に応じて縮合剤や後架橋を行うことにより、グラフト上で固定化して本発明に係る人工弁の両端部に膨潤部材から形成された突出部を設置することが好ましい。
 なお、この際の重合制御の方法としては、断熱重合法、温度制御重合法、等温重合法などが挙げられる。また、重合開始剤により重合を開始させる方法の他に、放射線、電子線、紫外線等を照射して重合を開始させる方法を採用することもできる。好ましくは、重合開始剤を使用した逆相懸濁重合法である。
 前記単量体は、特に制限されない。具体的な例としては、例えば、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-イソブチル(メタ)アクリルアミド、N-s-ブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-エチル-N-メチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-メチル-N-イソプロピル(メタ)アクリルアミド、N-メチル-N-n-プロピル(メタ)アクリルアミド、N-エチル-N-イソプロピル(メタ)アクリルアミド、N-エチル-N-n-プロピル(メタ)アクリルアミド、N,N-ジ-n-プロピル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、(メタ)アクリル酸、マレイン酸、フマル酸、グルタコン酸、イタコン酸、クロトン酸、ソルビン酸などの不飽和カルボン酸、およびこれら不飽和カルボン酸のナトリウム塩、カリウム塩、アンモニウム塩などの塩も使用することができる。不飽和カルボン酸の塩を共重合に用いた場合は、後述する酸処理を行うことができる。さらにこれらの単量体、不飽和カルボン酸(またはその塩)は、単独でもまたは2種以上を組み合わせても用いることができる。
 前記架橋剤の具体例としては、例えば、N,N’-メチレンビスアクリルアミド、N,N’-メチレンビスメタクリルアミド、N,N’-エチレンビスアクリルアミド、N,N’-エチレンビスメタクリルアミド、N,N’-ヘキサメチレンビスアクリルアミド、N,N’-ヘキサメチレンビスメタクリルアミド、N,N’-ベンジリデンビスアクリルアミド、N,N’-ビス(アクリルアミドメチレン)尿素、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、グリセリン(ジ又はトリ)アクリレート、トリメチロールプロパントリアクリレート、トリアリルアミン、トリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリロキシエタン、ペンタエリスリトールトリアリルエーテル、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチルロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリ(メタ)アリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、エチレンジアミン、エチレンカーボネート、プロピレンカーボネート、グリシジル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、多価アルコール(例えば、エチレングリコール、ジエチレングリコール、グリセリン、プロピレングリコール、トリメチロールプロパン等)、アルカノールアミン(例えば、ジエタノールアミン等)、およびポリアミン(例えば、ポリエチレンイミン等)等が挙げられる。
 前記逆相懸濁重合を行なう場合の連続相の溶媒としては、n-ヘキサン、n-へプタン、n-オクタン、n-デカン、シクロヘキサン、メチルシクロヘキサン、流動パラフィン等の脂肪族系有機溶媒、トルエン、キシレン等の芳香族系有機溶媒、1,2-ジクロロエタン等のハロゲン系有機溶媒等の有機溶媒が使用できるが、n-ヘキサン、シクロヘキサン、流動パラフィン等の脂肪族系有機溶媒がより好ましい。なお、前記溶媒は、単独でもまたは2種以上を混合して用いることもできる。
 前記連続相には、分散安定剤を添加することができる。この分散安定剤の種類や使用量を適宜選択することにより、得られるゲル微粒子の粒径を制御することができる。
 前記分散安定剤の例としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルエーテル、ソルビタンセスキオレエート(セスキオレイン酸ソルビタン)、ソルビタントリオレート、ソルビタンモノラウレート、ソルビタンモノオレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリステアレート、グリセロールモノステアレート、グリセロールモノオレエート、ステアリン酸グリセリル、カプリル酸グリセリル、ステアリン酸ソルビタン、オレイン酸ソルビタン、セスキオレイン酸ソルビタン、ヤシ脂肪酸ソルビタンなどの非イオン系界面活性剤が好適に用いられる。
 前記分散安定剤は、連続相の溶媒に対して、好ましくは0.04~20質量%の範囲、より好ましくは1~12質量%の範囲で用いられる。かような範囲であれば、重合時に得られる重合体が凝集せず、得られるゲル微粒子の粒径のばらつきがより小さくなる。
 前記逆相懸濁重合法における単量体成分の濃度は、従来公知の範囲であれば特に限定されず、例えば、2~7質量%が好ましく、3~5質量%がより好ましい。
 前記逆相懸濁重合法で用いられる重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物、2,2’-アゾビス〔2-(N-フェニルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス〔2-(N-アリルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス{2-〔1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル〕プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-〔1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル〕プロピオンアミド}、2,2’-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド〕、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物等が挙げられ、これらは、単独で用いても2種以上を併用してもよい。これらのなかでは、入手が容易で取り扱いが容易であるという観点から、過硫酸塩が好ましく、過硫酸カリウム、過硫酸アンモニウム及び過硫酸ナトリウムがより好ましい。
 なお、上記重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、L-アスコルビン酸、N、N,N’,N’-テトラメチルエチレンジアミン等の還元剤と併用して、レドックス重合開始剤として用いることもできる。
 重合開始剤の使用量は、単量体の総量100質量部に対して、2~6質量部が好ましく、3~5質量部がより好ましい。かような範囲であれば、重合反応が十分に進行し、得られる重合体の分子量の範囲を適切に調節でき、さらに粘性の上昇を抑えて、重合体が凝集しない。
 必要に応じて、共重合の際に連鎖移動剤を使用してもよい。前記連鎖移動剤の例としては、例えば、チオール類(n-ラウリルメルカプタン、メルカプトエタノール、トリエチレングリコールジメルカプタン等)、チオール酸類(チオグリコール酸、チオリンゴ酸等)、2級アルコール類(イソプロパノ-ル等)、アミン類(ジブチルアミン等)、次亜燐酸塩類(次亜燐酸ナトリウム等)等を挙げることができる。
 前記逆相懸濁重合法における重合条件は特に制限されず、例えば、重合温度は使用する触媒の種類によって適宜設定することができるが、好ましくは35~75℃、より好ましくは40~50℃である。また、重合時間は、好ましくは1時間以上である。
 重合系内の圧力は、特に限定されるものではなく、常圧(大気圧)下、減圧下、加圧下のいずれであってもよい。また、反応系内の雰囲気も、空気雰囲気であってもよいし、窒素、アルゴンなどの不活性ガス雰囲気下であってもよい。
 また、上記逆相懸濁重合で合成したゲル微粒子を人工弁支持体の骨格表面に被覆されたグラフト上に付着した後、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩などの水溶性カルボジイミドを縮合剤として縮合させ、グラフト上に微粒子を固定化させることが好ましい。
 縮合剤による縮合または後架橋反応を行う際の反応温度は、使用する縮合剤や架橋剤の種類等によっても異なるため、一概には決定できないが、通常50~150℃である。また、反応時間は、通常1~48時間である。
 上記で飽和カルボン酸の塩を用いた場合、共重合後に酸処理を行い、単量体のカルボン酸塩の部分をカルボキシル基に変換しておくことが好ましい。酸処理の条件は特に限定されず、例えば、塩酸水溶液などの低pH水溶液中で、好ましくは15~60℃の温度範囲で、好ましくは1~24時間処理すればよい。
 また、共重合を行う際、単量体溶液中に造孔剤を過飽和懸濁させることによって多孔質とすることもできる。この際、単量体溶液には不溶であるが洗浄溶液には可溶である造孔剤を用いることが好ましい。造孔剤の例としては、塩化ナトリウム、塩化カリウム、氷、スクロース、または炭酸水素ナトリウムなどが好ましく挙げられ、より好ましくは塩化ナトリウムである。造孔剤の好ましい濃度は、単量体溶液中、好ましくは5~50質量%、より好ましくは10~30質量%の範囲である。
 本発明に係る突出部を形成する膨潤部材は、薬剤を含有することが好ましく、前記薬剤は、石灰化抑制剤、石灰溶解剤、抗癌剤、免疫抑制剤、抗生物質、抗リウマチ剤、抗血栓薬、HMG-CoA還元酵素阻害剤、ACE阻害剤、カルシウム拮抗剤、抗高脂血症薬、インテグリン阻害薬、抗アレルギー剤、抗酸化剤、GPIIbIIIa拮抗薬、レチノイド、フラボノイド、カロチノイド、脂質改善薬、DNA合成阻害剤、チロシンキナーゼ阻害剤、抗血小板薬、抗炎症薬、生体由来材料、インターフェロン、及び、NO産生促進物質からなる群から選択される少なくとも1つ、もしくは、これらの混合物であることが好ましく、石灰化抑制剤および/または石灰溶解剤を含有することがより好ましい。
 前記石灰化抑制剤としては、例えばエチドロネート、クロドロネート、チルドロネート、メドロネート、アレドロネート、イバンドロネート、インカドロネート、オルバドロネート、ソルバドロネート、ネリドロネート、パミドロネート、ミノドロネート、リセドロネート、EB1053等が好ましい。
 前記石灰溶解剤としては、例えば、ウルソデオキシコール酸、ケノデオキシコール酸またはメチル-t-ブチルエーテル等が好ましい。
 前記抗癌剤としては、例えば、パクリタキセル、ドセタキセル、ビンブラスチン、ビンデシン、イリノテカン、ピラルビシン等が好ましい。
 前記免疫抑制剤としては、例えば、シロリムス、エベロリムス、ピメクロリムス、ABT-578等のシロリムス誘導体、タクロリムス、アザチオプリン、シクロスポリン、シクロフォスファミド、ミコフェノール酸モフェチル、グスペリムス等が好ましい。
 前記抗生物質としては、例えば、マイトマイシン、アドリアマイシン、ドキソルビシン、アクチノマイシン、ダウノルビシン、イダルビシン、ピラルビシン、アクラルビシン、エピルビシン、ジノスタチンスチマラマー等が好ましい。
 前記抗リウマチ剤としては、例えば、メトトレキサート、チオリンゴ酸ナトリウム、ペニシラミン、ロベンザリット等が好ましい。前記抗血栓薬としては、例えば、アスピリン、チクロピジン等が好ましい。前記HMG-CoA還元酵素阻害剤としては、例えば、セリバスタチン、セリバスタチンナトリウム、アトルバスタチン、ピタバスタチン、フルバスタチン、フルバスタチンナトリウム、シンバスタチン、ロバスタチン等が好ましい。
 前記ACE阻害剤としては、例えば、キナプリル、トランドラプリル、テモカプリル、デラプリル、マレイン酸エナラプリル、カプトプリル等が好ましい。前記カルシウム拮抗剤としては、例えば、ヒフェジピン、ニルバジピン、ベニジピン、ニソルジピン等が好ましい。前記抗高脂血症剤としては、例えば、プロブコールが好ましい。前記インテグリン阻害薬としては、例えば、AJM300が好ましい。前記抗アレルギー剤としては、例えば、トラニラストが好ましい。
 前記抗酸化剤としては、例えば、α-トコフェロール、カテキン、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール等が好ましい。前記GPIIbIIIa拮抗薬としては、例えば、アブシキシマブが好ましい。
 前記レチノイドとしては、例えば、オールトランスレチノイン酸が好ましい。前記フラボノイドとしては、例えば、エピガロカテキン、アントシアニン、プロアントシアニジン等が好ましい。前記カロチノイドとしては、例えば、β―カロチン、リコピン等が好ましい。前記脂質改善薬としては、例えば、エイコサペンタエン酸が好ましい。
 前記DNA合成阻害剤としては、例えば、5-FUが好ましい。前記チロシンキナーゼ阻害剤としては、例えば、ゲニステイン、チルフォスチン、アーブスタチン等が好ましい。前記抗血小板薬としては、例えば、チクロピジン、シロスタゾール(500)、クロピドグレル等が好ましい。前記抗炎症剤としては、例えば、デキサメタゾン、プレドニゾロン等のステロイドが好ましい。
 前記生体由来材料としては、例えば、EGF(epidermal growth factor)、VEGF(vascular endothelial growth factor)、HGF(hepatocyte growth factor)、PDGF(platelet derived growth factor)、BFGF(basic fibrolast growth factor)等が好ましい。
 前記インターフェロンとしては、例えば、インターフェロン-γ1aが好ましい。前記NO産生促進物質としては、例えば、L-アルギニンが好ましい。
 また、当該薬剤は、膨潤部材の全質量に対して、0.1~50質量%含むことが好ましく、0.5~15質量%含むことがより好ましい。
 さらに、本発明に係る薬剤は、微粒子、高分子ミセルまたはリポソームに封入された状態で膨潤部材に含有されてもよい。
 これにより、D.D.Sとして必要な箇所に必要な量の薬剤をリリースすることができるため、弁体を生体弁にした場合は、当該生体弁の石灰化を抑制・防止することができる。
 本発明に係るグラフトを形成する材料は、特に制限されることはなく、例えば、織り合わされたポリエステル、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、高密度ポリエチレン、延伸多孔質ポリテトラフルオロエチレン(ePTFE)、およびポリウレタンのうちの少なくとも1種が挙げられ、中でも膨潤部材の固定化が容易であることからポリエチレンテレフタレートが好ましい。
 前記グラフトの厚さは、特に制限されることはないが、例えば100~1,000μmが好ましく、また当該グラフトの大きさ(内径・長さ)は、本発明に係る人工弁支持体の延出していない略楕円形の要素を全て覆うものであれば特に制限されることはない。
 なお、当該グラフトを人工弁支持体の骨格に被覆する場合、必要により、当該グラフトと同一の素材またはポリエステルなど公知の縫合糸で縫いつける、または接着剤など公知の方法で固定してもよい。
 また、本発明に係る人工弁支持体の中央部付近に例えば、金、白金、タングステンあるいはそれらの合金、あるいは銀-パラジウム合金等のX線造影性の高い物質から形成された所定の長さを有するリング状のもの、もしくは線状体をコイル状に形成したものを人工弁支持体の外表面に設けることが好ましい。
 X線造影性の高い物質は、人工弁の中央部を把握させ、膨潤部材を設置した位置および留置の際の指標となる。
 「弁体」
 本発明に係る人工弁に使用できる弁体は、一方の流れを許容する弁であり、より好ましくは一方の流れを許容し、他方の流れを制限する弁である。また当該弁体は、収縮および拡張できる弁体であれば特に制限されることはなく、機械弁であっても生体弁であっても使用することができ、材料についても金属材料、高分子材料、または無機材料などが挙げられるが、特に限定されない。
 当該機械弁としては、例えば、弁葉と当該弁葉を支持する弁輪部とを有するものであればよく、上下運動する上下弁:Starr-Edwards型、Discoid型、SAM型、扇状運動する傾斜弁:Alvarez型、Tilting型、St.Jude型などが挙げられ、生体弁としては、例えば、動物の弁膜組織または心嚢組織を弁葉として用いたものであり、市販のブタ弁、ウシ弁、ウマ弁などのHancock型やCaged-Disc valve型の他に、上記3つの先行技術文献で使用されている弁体が挙げられ、公知の弁体を使用することができるが、血液適合性の観点から生体弁が好ましい。
 本発明に係る弁体の好ましい一形態を、図2A、図2B、および図2Cを参照して説明する。図2Bは、図2Aの平面図である。当該図2Bで示すように、三枚の扇状の弁葉13の両端が延出部9に固定され、かつ当該三枚の扇状の弁葉13の弦部が、軸方向外方向に向ってそれぞれ相互に接触するように突出して設けられ、さらに当該弁葉13の弧部は人工弁支持体9(または弁輪(図示せず))に固定されている。そのため、流体が軸方向外方向に向って流れる場合は、その方向に対しての流れを許容することができる。また、図2Cは、本発明の弁体の他の形態を取り付けた人工弁である。略楕円状の弁葉の両端を人工弁支持体9(または弁輪(図示せず))に固定し、かつ当該弁葉の一部が隣接する弁葉と重合状態に配置されている。そのため同様に、一方の流れを許容することができる。また、図2A、図2B、および図2Cは、3枚の弁葉を有する弁体の例を図示しているが、特に弁葉の枚数は制限されない。
 なお、本発明に係る弁体の直径(人工弁支持体を拡張した後の弁体の直径)は、人工弁支持体の大きさによって適宜調整するものであるが、例えば10~40mmが好ましく、20~30mmがより好ましい。
 また、当該弁体を本発明に係る人工弁支持体の内部に固定する方法は、特に制限されることはなく、グラフトの固定と同様に、弁体のカフ部をポリエステル製の縫合糸などで縫うことによりグラフトおよび/または人工弁支持体の骨格と密着固定させることができる。
 以下、上記人工弁支持体および上記弁体を有する経皮的に留置する人工弁について好ましい一形態を説明する。
 「人工弁」
 本発明に係る人工弁の好ましい一態様は、図1に示される複数の延出部2(図1では延出部2が3つあり、図2Aの延出部9と対応しており、図2Aでは弁体が取り付けられているため延出部2が隠れている)を有する人工弁支持体の骨格における低い山(延出部以外の山であり、図1では低い山1)の全面を覆うように、グラフト8で全周にわたって被覆された円筒体を形成しており、かつ当該円筒体内部に弁体7が取り付けられており、前記人工弁支持体の骨格をグラフト8で被覆して形成された円筒体の両端部に表面から放射方向外方に突出する突出部6が形成されている構造である。また必要によりX線造影部材5を備えてもよく、人工弁支持体の骨格とグラフトとの密着性を高めるために固定部4を設けてもよい。
 当該弁体は、円筒状の人工弁支持体の骨格に設けられた複数個の延出部2間に配置され、かつその両端が前記延出部2(図2Aでは延出部9に対応)に固定されている。そして、前記両端間に設けられたカフ部が、前記骨格の内周面に密着するように取り付けられ、前記カフ部から放射方向内方に突出させた自由端部を有する構造となっている。なお、図1では延出部2の数は3個であるが当然のことながらこれに限定されることはなく、弁葉の数と延出部の数を一致させればよい。
 図4で示すように、本発明に係る人工弁40を、例えば、大動脈洞および冠状動脈口Cにおける石灰化した弁葉B(例えば、大動脈弁、僧坊弁など)上に留置する際(図4左図)、人工弁支持体を自己拡張、またはバルーンカテーテルにより拡張させて当該弁葉B上に留置すると、人工弁支持体の骨格だけでなく突出部41も拡張する。これにより、当該突出部41の表面と血管の内壁とが密着し、かつ石灰化した弁葉Bが圧縮されることで、当該圧縮された弁葉(約0.1~0.5cmの長さに収縮)42が、当該突出部31間に形成された弁葉収容部43に収まることができる。そのため、人工弁の位置ずれや血流Aのリークを抑制・防止することができると考えられる(図4右図)。また、本発明に係る人工弁40には、X線造影部材Dが取り付けられているため、留置場所を確認することができる。
 以下、本発明を実施例により更に具体的に説明するが、本発明はこれらに限定されるものではない。
 「人工弁の作製」
 1.人工弁支持体の作製
 人工弁支持体の骨格は、幅0.55mmの2本の外科ステンレスワイヤ(大場機工製)からなり、そのうちの1本のワイヤに折り曲げ高さ8mmの12個の山と折り曲げ高さ14mmの3個の山を、折り曲げ高さ14mmの山が等間隔になるように作製した。また、もう一本のワイヤには15個の8mmの折り曲げ高さの山を作製した。2本のワイヤは直径が23mmの円になるように折り曲げ、端同士を溶接した。作製した人工弁支持体の骨格には、幅16mmのポリエチレンテレフタレート製のグラフト(デュポン製)をポリエステル製の縫合糸(松田医科工業製)で人工弁支持体の骨格の周囲の上下端および溶接した骨格の中間部の上に縫いつけた。さらに、当該人工弁支持体の骨格の上端部および下端部から5mmのそれぞれ3箇所に均等にプラチナ線(田中金属工業製)を縫いつけた。
 2.ポリアクリルアミドのコーティングによる人工弁支持体への突出部の作製
 アクリルアミド(和光純薬工業製)、アクリル酸ナトリウム(和光純薬工業製)およびN,N-メチレンビスアクリルアミド(和光純薬工業製)を用いて、逆相懸濁重合によりポリアクリルアミド微粒子を合成した。上記で作製したグラフトが縫いつけられた人工弁支持体の骨格(以下、人工弁円筒体)を0.1質量%ポリアクリルアミド微粒子(粒子径15μm)の水溶液に浸漬、乾燥させた。その後、当該人工弁円筒体の上端から5mmの表面を1質量%ポリアクリルアミド微粒子(粒子径は上記同様15μm)の水溶液に浸漬、乾燥させる操作を繰り返し行った。同様の操作を人工弁円筒体の下端から5mmの表面について行った。次に、人工弁円筒体を水溶性カルボジイミド(同仁化学製)の0.1質量%水溶液に浸漬、60℃で加熱、乾燥し、ポリアクリルアミド微粒子を上記人工弁支持体のグラフトに固定化した。最終的な乾燥後の厚みは、中央付近(弁葉収容部)で0.1mm、両端(突出部)で1.3mmであった。
 3.人工弁支持体への薬剤の充填
 エタノールで溶解したウルソデオキシコール酸(田辺三菱製薬製)溶液に、前記のポリアクリルアミド微粒子を固定化した人工弁支持体を浸漬、乾燥させた。ポリアクリルアミド内に充填されたウルソデオキシコール酸の量を液体クロマトグラフィーで測定したところ1.2mgであった。その後、人工弁支持体をEOGで滅菌した。
 4.人工弁およびデリバリーシステムの作製
 弁体には屠殺した100kgのブタからとりだした直径23mmの心臓弁を用いた。心臓弁は人工弁支持体に縫い付ける前にグルタルアルデヒドで処理した。洗浄した心臓弁は動物への留置直前にクリーンベンチ内で人工弁支持体に隙間がないよう骨格の中間部の溶接部にポリエステルからなる糸(松田医科工業製)で縫い付けた。心臓弁の端は骨格の三つの高い山に縫合して本発明に係る人工弁を作製した。その後、人口弁置換用のバルーンカテーテル(エドワーズ・ライフサイセンス社製)にクリーンベンチ内で当該人工弁をクリンプした。
 5.動物への人工弁の留置
 高度に石灰化した羊の心臓弁を、人工弁置換用バルーンカテーテル(エドワーズ・ライフサイセンス社製)であらかじめ拡張し、前記人工弁を経皮的にデリバリーし、X線透視画像で大動脈弁輪が人工弁上に設置したプラチナ線の間に入るように留置した。
 6.人工弁の位置保持の評価
 1ヶ月後、人工弁を留置した付近をX線透視画像により確認した。その結果、留置した人工弁の位置が保持されている事を確認した。
 7.人工弁の血流リークの評価
 1ヵ月後、超音波診断装置(GEヘルスケア製)によって弁前後の血流の圧力差を測定した。その結果、血流のリークがない事を確認した。
 8.人工弁周囲の石灰化の評価
 1ヶ月後、人工弁を留置した付近の組織を摘出し、ウルソデオキシコール酸を充填した人工弁から溶出するウルソデオキシコール酸の効果を病理標本により評価した。その結果、石灰の付着量が減少している事が確認された。
 (比較例)
 動物への人工弁の留置
 前記の人工弁でアクリルアミドもウルソデオキシコール酸も固定化していない人工弁を作製し、高度に石灰化した羊の心臓弁を、人工弁置換用バルーンカテーテル(エドワーズ・ライフサイセンス社製)であらかじめ拡張し、作製した人工弁を経皮的にデリバリーし、X線透視画像で大動脈弁輪が人工弁上に設置したプラチナ線の間に入るように留置した。
 人工弁の位置保持の評価
 実施例と同様に、1ヶ月後、人工弁を留置した付近をX線透視画像により確認した。その結果、留置した人工弁の位置が保持されていない事を確認された。
 人工弁の血流リークの評価
 実施例と同様に、1ヵ月後、超音波診断装置によって弁前後の血流の圧力差を測定した。その結果、血流のリークが確認された。
  人工弁周囲の石灰化の評価
 実施例と同様に、1ヶ月後、人工弁を留置した付近の組織を摘出し病理標本を作製した。その結果、石灰の減少は認められなかった。
   1  人工弁支持体の骨格における低い山
  2,9  成形した線材の波形の山または延出部
  3  人工弁支持体の骨格における低い谷
  4  固定部
  5  X線造影性部材
  6,31,41  突出部
  7  弁体
  8,32  グラフト
  10,33 人工弁支持体の骨格
  11 他の略楕円形の要素
  12 一部の略楕円形の要素
  13 弁葉
  20,40 人工弁
  30 人工弁支持体
  a  突出部の平均幅
  b  突出部の平均厚さ
  c  平均深さ
  d  両端部の突出部間の平均長さ、弁葉収容部の幅
  e  人工弁支持体の長手方向の長さ
  f  人工弁支持体の突出部を含む断面の半径
  A  血流
  B  石灰化した弁葉
  C  大動脈洞および冠状動脈口
  D  X線造影部材
  34 連結部
  42 圧縮された弁葉(約0.1~0.5cmの長さに収縮)
  43 弁葉収容部

Claims (5)

  1.  管状の人工弁支持体と、
     前記人工弁支持体内に取り付けられ、一方向の流れを許容する弁体と、を有し、
     生体内組織と接触する外周面を有し、かつ前記人工弁支持体の両端部の表面から放射方向外方に突出する突出部と、
     前記両端部の突出部の間に弁葉が入り込む弁葉収容部と、が形成されており、
     前記突出部は、膨潤部材で形成されていることを特徴とする人工弁。
  2.  前記膨潤部材は、ヒドロゲルである、請求項1に記載の人工弁。
  3.  前記ヒドロゲルは生分解性または非生分解性ヒドロゲルである、請求項2に記載の人工弁。
  4.  前記膨潤部材は、薬剤を含有する、請求項1~3のいずれか1項に記載の人工弁。
  5.  前記人工弁支持体の表面の少なくとも一部がグラフトで被覆されている、請求項1~4のいずれか1項に記載の人工弁。
PCT/JP2011/064298 2010-06-28 2011-06-22 人工弁 WO2012002228A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-146229 2010-06-28
JP2010146229A JP2013188235A (ja) 2010-06-28 2010-06-28 人工弁

Publications (1)

Publication Number Publication Date
WO2012002228A1 true WO2012002228A1 (ja) 2012-01-05

Family

ID=45401948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064298 WO2012002228A1 (ja) 2010-06-28 2011-06-22 人工弁

Country Status (2)

Country Link
JP (1) JP2013188235A (ja)
WO (1) WO2012002228A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144009A (ja) * 2012-01-13 2013-07-25 Naisemu:Kk 医療用具縫着用縫合糸、その使用法及び該縫合糸を使用して縫着した医療用具
WO2014140230A1 (en) * 2013-03-13 2014-09-18 Symetis Sa Prosthesis seals and methods for sealing an expandable prosthesis
WO2015061431A1 (en) * 2013-10-22 2015-04-30 ConcieValve LLC Methods for inhibiting stenosis, obstruction, or calcification of a stented heart valve or bioprosthesis
EP2822506A4 (en) * 2012-03-05 2015-10-28 Univ Pennsylvania SUPERABSORBENT-COATED STENTS FOR VASCULAR REDUCTION AND VALVE REPLACEMENT ANCHOR
JP2017502750A (ja) * 2014-03-24 2017-01-26 金仕生物科技(常熟)有限公司 無細胞コラーゲン組織及び無細胞コラーゲン組織を含む人工弁膜の処理方法
US10058630B2 (en) 2012-10-22 2018-08-28 Concievalve, Llc Methods for inhibiting stenosis, obstruction, or calcification of a stented heart valve or bioprosthesis
US10265167B2 (en) 2005-12-22 2019-04-23 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
CN111801070A (zh) * 2017-12-11 2020-10-20 加州理工学院 与血管内可植入人工瓣膜的制造有关的系统、装置和方法
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531355A (ja) * 2001-07-03 2004-10-14 アドヴァンスド バイオ プロスセティック サーフェシーズ リミテッド 金属または擬似金属構造を有する弁状人工器官および製造方法
JP2005535736A (ja) * 2002-03-12 2005-11-24 フィディア アドヴァンスド バイオポリマーズ ソシエタ ア レスポンサビリタ リミタータ 光硬化によるハイドロゲル材料の調製のためのヒアルロン酸のエステル誘導体
US20060282162A1 (en) * 2005-06-09 2006-12-14 Nguyen Trong T Expandable annuloplasty ring and associated ring holder
JP2007516055A (ja) * 2003-12-23 2007-06-21 サドラ・メディカル・インコーポレーテッド 再配備可能な心臓弁
WO2007081820A1 (en) * 2006-01-09 2007-07-19 Children's Medical Center Corporation Transcatheter delivery of a replacement heart valve
WO2009026563A2 (en) * 2007-08-23 2009-02-26 Direct Flow Medical, Inc. Translumenally implantable heart valve with formed in place support
JP2009513265A (ja) * 2005-10-26 2009-04-02 バイオキュア・インコーポレーテッド 膨潤可能な物品を有するヒドロゲル椎間板移植片
US20090222084A1 (en) * 2006-10-02 2009-09-03 Edwards Lifesciences Corporation Sutureless heart valve attachment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531355A (ja) * 2001-07-03 2004-10-14 アドヴァンスド バイオ プロスセティック サーフェシーズ リミテッド 金属または擬似金属構造を有する弁状人工器官および製造方法
JP2005535736A (ja) * 2002-03-12 2005-11-24 フィディア アドヴァンスド バイオポリマーズ ソシエタ ア レスポンサビリタ リミタータ 光硬化によるハイドロゲル材料の調製のためのヒアルロン酸のエステル誘導体
JP2007516055A (ja) * 2003-12-23 2007-06-21 サドラ・メディカル・インコーポレーテッド 再配備可能な心臓弁
US20060282162A1 (en) * 2005-06-09 2006-12-14 Nguyen Trong T Expandable annuloplasty ring and associated ring holder
JP2009513265A (ja) * 2005-10-26 2009-04-02 バイオキュア・インコーポレーテッド 膨潤可能な物品を有するヒドロゲル椎間板移植片
WO2007081820A1 (en) * 2006-01-09 2007-07-19 Children's Medical Center Corporation Transcatheter delivery of a replacement heart valve
US20090222084A1 (en) * 2006-10-02 2009-09-03 Edwards Lifesciences Corporation Sutureless heart valve attachment
WO2009026563A2 (en) * 2007-08-23 2009-02-26 Direct Flow Medical, Inc. Translumenally implantable heart valve with formed in place support

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US10265167B2 (en) 2005-12-22 2019-04-23 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US10299922B2 (en) 2005-12-22 2019-05-28 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US10314701B2 (en) 2005-12-22 2019-06-11 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US11154398B2 (en) 2008-02-26 2021-10-26 JenaValve Technology. Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
JP2013144009A (ja) * 2012-01-13 2013-07-25 Naisemu:Kk 医療用具縫着用縫合糸、その使用法及び該縫合糸を使用して縫着した医療用具
EP2822506A4 (en) * 2012-03-05 2015-10-28 Univ Pennsylvania SUPERABSORBENT-COATED STENTS FOR VASCULAR REDUCTION AND VALVE REPLACEMENT ANCHOR
US10729811B2 (en) 2012-10-22 2020-08-04 Concievalve, Llc Methods for inhibiting stenosis, obstruction, or calcification of a stented heart valve or bioprosthesis
US10058630B2 (en) 2012-10-22 2018-08-28 Concievalve, Llc Methods for inhibiting stenosis, obstruction, or calcification of a stented heart valve or bioprosthesis
US10420658B2 (en) 2013-03-13 2019-09-24 Symetis Sa Prosthesis seals and methods for sealing an expandable prosthesis
WO2014140230A1 (en) * 2013-03-13 2014-09-18 Symetis Sa Prosthesis seals and methods for sealing an expandable prosthesis
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
CN110075355A (zh) * 2013-10-22 2019-08-02 康斯瓦维有限责任公司 用于抑制支架型心瓣膜或生物假体的狭窄、阻塞或钙化的方法
JP2016539682A (ja) * 2013-10-22 2016-12-22 コンシーヴァルブ エルエルシー ステント装着した心臓弁または生体補綴弁の狭窄、閉塞、または石灰化を阻害するための方法
WO2015061431A1 (en) * 2013-10-22 2015-04-30 ConcieValve LLC Methods for inhibiting stenosis, obstruction, or calcification of a stented heart valve or bioprosthesis
JP2017502750A (ja) * 2014-03-24 2017-01-26 金仕生物科技(常熟)有限公司 無細胞コラーゲン組織及び無細胞コラーゲン組織を含む人工弁膜の処理方法
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
CN111801070A (zh) * 2017-12-11 2020-10-20 加州理工学院 与血管内可植入人工瓣膜的制造有关的系统、装置和方法

Also Published As

Publication number Publication date
JP2013188235A (ja) 2013-09-26

Similar Documents

Publication Publication Date Title
WO2012002228A1 (ja) 人工弁
JP4368631B2 (ja) 被覆処理した脈管装置
JP4703969B2 (ja) 被覆血管内器具の改造型送達システム
JP4767511B2 (ja) 一定の治療剤の調整された放出のための被膜
JP4932152B2 (ja) 脈管の傷害後の再狭窄を防止するための単独またはシロリムスとの組み合わせにおけるトリコスタチンの局所的な脈管配給
JP4823489B2 (ja) 移植可能な医療装置の高められた生体相容性
JP4675560B2 (ja) 吻合部位を治療するための薬物放出型吻合装置
JP4279114B2 (ja) 吻合部位を治療するための吻合装置および方法
JP4781681B2 (ja) 脈管の傷害後の再狭窄を防ぐためのラパマイシンとの組み合わせにおけるミコフェノール酸の局所的脈管配給
EP1515667B1 (en) Implantable prosthesis with leak-resistant seal
JP5207629B2 (ja) 膨張可能な多孔性インプラント
US6613084B2 (en) Stent having cover with drug delivery capability
US7947074B2 (en) Implantable prosthetic valve
JP4971580B2 (ja) ステントおよびステントの製造方法
US20160106538A1 (en) Means for Controlled Sealing of Endovascular Devices
JP5432909B2 (ja) 生体内留置用ステントおよびステントデリバリーシステム
JP2005199054A (ja) 長さに沿って区別可能な多孔度を有する脈管内移植片
JP2005246056A (ja) 医療装置のための放射線保護性の配合物の被膜
US20030009213A1 (en) Stent having cover with drug delivery capability
JP5602432B2 (ja) 経皮的冠動脈インターベンション用の多剤溶出冠動脈ステント
CA2847687A1 (en) Means for controlled sealing of endovascular devices
JP6321809B2 (ja) 吻合コネクタ
US8858618B2 (en) Stent
CN109640883A (zh) 减少支架移植物内漏的带涂层缝合线
JP4330970B2 (ja) ステントおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP