WO2012001752A1 - 慣性フィルタおよび粒子分級装置 - Google Patents

慣性フィルタおよび粒子分級装置 Download PDF

Info

Publication number
WO2012001752A1
WO2012001752A1 PCT/JP2010/006458 JP2010006458W WO2012001752A1 WO 2012001752 A1 WO2012001752 A1 WO 2012001752A1 JP 2010006458 W JP2010006458 W JP 2010006458W WO 2012001752 A1 WO2012001752 A1 WO 2012001752A1
Authority
WO
WIPO (PCT)
Prior art keywords
inertial filter
classification
flow rate
sheet
particle classification
Prior art date
Application number
PCT/JP2010/006458
Other languages
English (en)
French (fr)
Inventor
池田 卓司
大谷 吉生
正美 古内
瀬戸 章文
真人 水野
Original Assignee
ニッタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッタ株式会社 filed Critical ニッタ株式会社
Priority to CA2803088A priority Critical patent/CA2803088C/en
Priority to US13/806,118 priority patent/US8978490B2/en
Priority to EP10854049.3A priority patent/EP2589441B1/en
Publication of WO2012001752A1 publication Critical patent/WO2012001752A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2205Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0255Investigating particle size or size distribution with mechanical, e.g. inertial, classification, and investigation of sorted collections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0272Investigating particle size or size distribution with screening; with classification by filtering

Definitions

  • the present invention relates to an inertial filter that is arranged in a fluid passage and can classify particles in a fluid by an inertial collision effect and the like, and a particle classifier equipped with the inertial filter.
  • a conventional inertial filter 100 will be described with reference to FIG.
  • a conventional inertial filter 100 is arranged in a fluid passage and can be classified, and includes a columnar filter body 101.
  • the filter body 101 includes a through hole 102 having a circular cross section that extends from the fluid passage upstream side to the downstream side direction.
  • the through hole 102 includes a reduced diameter through hole 102a in which the inner diameter of the fluid passage upstream side is gradually reduced, and a constant diameter through hole 102b having a constant inner diameter coupled to the reduced diameter through hole 102a on the downstream side.
  • the constant diameter through hole 102b is filled with a metal fiber 103 which is an example of an incompressible fiber.
  • the metal fiber 103 is prevented from coming out downward in the fluid passage direction from the constant diameter through hole 102b by a mechanism not shown.
  • inertial filter 100 fluid is generated in the through-hole 102 in the direction of arrow A to B in the figure by the pressure difference generated by both pressures by lowering the internal pressure of the inertial filter 100 below the external pressure by the suction force of a pump (not shown). This allows the particles to be classified.
  • the fluid rises in velocity in the reduced diameter through hole 102a and flows into the constant diameter through hole 102b and becomes constant.
  • the fine particles contained in the fluid collide with the metal fiber 103 and are captured (collected) in the constant diameter through hole 102b.
  • the fiber has a non-constant spatial density distribution, orientation, and shape, it is difficult to obtain the intended initial classification characteristics.
  • the metal fibers 103 are compressed in the fluid passage direction by the pressure received from the airflow during the classification operation, the classification characteristics change, and as a result, stable classification is difficult.
  • An inertial filter according to the present invention is an inertial filter installed in a fluid passage, and the inertial filter includes a particle classification sheet having a plurality of particle classification holes in a uniform arrangement mode, and The particle classification sheet has a larger sheet area than the fluid passage area at the position where the particle classification sheet is installed, and a part of the sheet separates the fluid passage into two in the fluid passage direction for particle classification. It is installed in.
  • the particle classification sheet is a single sheet in the fluid passage direction.
  • a plurality of the particle classification sheets are laminated in the fluid passage direction.
  • the particle classification sheet is a sheet provided with a large number of through holes in a mesh arrangement as the particle classification holes.
  • the particle classification sheet is a mesh sheet having a wire diameter of 5 to 20 ⁇ m and an opening of 40 to 300 ⁇ m.
  • a flow rate adjustment nozzle having a reduced diameter through hole that is reduced in diameter in the fluid passage direction on the upstream side in the fluid passage direction of the particle classification sheet is different in the diameter reduction rate of the reduced diameter through hole when adjusting the fluid flow rate. It is arranged so that it can be recombined with other flow control nozzles.
  • a flow rate adjusting nozzle having a reduced diameter through hole that is reduced in diameter in the fluid passage direction on the upstream side in the fluid passage direction of the particle classification sheet is used for another flow rate in which the number of reduced diameter through holes is different when adjusting the flow rate. Arranged so that it can be combined with the adjustment nozzle.
  • a flow rate adjusting nozzle having a flow path that is reduced in diameter in the fluid passage direction is disposed upstream of the particle classification sheet in the fluid passage direction, and a plurality of the particle classification sheets are alternately arranged with the interposed spacer. Laminate.
  • the classification can be controlled by controlling the number of stacked interposition spacers.
  • the flow rate can be adjusted by changing the flow rate adjustment nozzle to another flow rate adjustment nozzle having a different flow path.
  • the classification can be controlled by controlling the spacer thickness of the interposition spacer.
  • the flow rate can be adjusted by controlling the number of flow paths of the flow rate adjustment nozzle and the number of through holes of the corresponding spacer.
  • an inertial filter filled with incompressible fibers is arranged on the upstream side in the fluid passage direction for removing coarse particles, and the inertial filter of (1) above is nanoparticle classification on the downstream side. It is arranged for use.
  • the above fluid includes not only gas but also liquid and others.
  • the particles collected or captured by the inertia filter are not limited to particles floating in the gas, but may include other solvents such as particles floating in a liquid or others.
  • the particles to be classified are not particularly limited, and examples thereof include resin fine particles, inorganic fine particles, metal fine particles, and ceramic fine particles.
  • the shape of the particles is not particularly limited.
  • the incompressible fiber can be preferably composed of a metal fiber.
  • the metal fibers are preferably stainless steel fibers, for example, but are not limited to stainless steel fibers, and may be one or more metal fibers selected from aluminum fibers, copper fibers, and other metal fibers.
  • the non-compressible fiber may be a fiber that is non-compressible and hardly changes in volume even when a high-speed airflow passes, and is not limited to a metal fiber.
  • an inertial filter that has excellent initial classification characteristics and can perform particle classification stably over a long period of time.
  • FIG. 1 is a view showing a configuration of a particle classifier provided with an inertial filter according to an embodiment of the present invention as viewed from the side.
  • FIG. 2A-1 is an enlarged cross-sectional view of a main part of a first shape example (plain weave shape) of the nanoparticle classification sheet provided in the inertial filter of the embodiment of the present invention.
  • FIG. 2A-2 is an enlarged plan view of an essential part of a first shape example (plain weave shape) of the nanoparticle classification sheet provided in the inertial filter of the embodiment of the present invention.
  • FIG. 2B-1 is an enlarged cross-sectional view of a main part of a second shape example (twill weave shape) of the nanoparticle classification sheet provided in the inertial filter of the embodiment of the present invention.
  • FIG. 2B-2 is an enlarged plan view of a main part of a second shape example (twill weave shape) of the nanoparticle classification sheet provided in the inertial filter of the embodiment of the present invention.
  • FIG. 3A is an enlarged plan view of a main part of a third shape example (circular hole shape) of the nanoparticle classification sheet provided in the inertial filter according to the embodiment of the present invention.
  • FIG. 3B is an enlarged plan view of a main part of a fourth shape example (long hole shape) of the nanoparticle classification sheet provided in the inertial filter according to the embodiment of the present invention.
  • FIG. 3C is an enlarged plan view of a main part of a fifth shape example (square hole shape) of the nanoparticle classification sheet provided in the inertial filter according to the embodiment of the present invention.
  • FIG. 4A is an enlarged plan view showing a main part of the nanoparticle classification sheet for each of the diffusion filter and the inertial filter.
  • FIG. 4B is a diagram comparing the shapes of the nanoparticle classification sheets of the diffusion filter and the inertial filter having the configuration of FIG. 4A.
  • FIG. 5 is a diagram used for explaining flow rate adjustment by a flow rate adjustment nozzle in the nanoparticle classification inertial filter used in the particle classification device of FIG.
  • FIG. 6A-1 is a cross-sectional view of a first inertial filter for classifying nanoparticles used in the particle classification device of FIG.
  • FIG. 6A-2 is a surface view of the first inertial filter for classifying nanoparticles.
  • FIG. 6A-3 is a back view of the first nanoparticle classification inertial filter.
  • FIG. 6B-1 is a cross-sectional view of a second inertial filter for classifying nanoparticles used in the particle classifier of FIG.
  • FIG. 6B-2 is a surface view of a second inertial filter for classifying nanoparticles.
  • FIG. 6B-3 is a back view of the second nanoparticle classification inertial filter.
  • FIG. 7 is a side view of a particle classifier provided with a plurality of stacked inertial filters according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing a 50% cutoff diameter with respect to the number of inertia filters of FIG.
  • FIG. 9A is a perspective view showing an external configuration of the nanoparticle classification inertial filter of FIG. 7 in an exploded state.
  • FIG. 9B is a diagram showing a cross-sectional configuration in a state in which the nanoparticle classification inertial filter of FIG. 7 is assembled.
  • FIG. 10 is a diagram used for explaining the relationship between the particle size and the collection efficiency when the number of stacked particle classification sheets is changed in the particle classification apparatus using the inertial filter of FIG. FIG.
  • FIG. 11 is a diagram used for explaining the relationship between the particle size and the collection efficiency when the flow rate adjustment nozzle and a plurality of intervening spacers are recombined in the particle classifier using the inertial filter of FIG.
  • FIG. 12 is a diagram used for explaining the relationship between the particle diameter and the collection efficiency when the arrangement intervals of a plurality of inertia filters are rearranged in the particle classifier using the inertia filter of FIG. 13A-1 is a cross-sectional view of an inertial filter (part 1) in which the shape or number of through holes of each of the flow rate adjusting nozzle and the plurality of intervening spacers is rearranged in the particle classifier using the inertial filter of FIG.
  • FIG. 13A-2 is a diagram showing the shape of the flow rate adjustment nozzle incorporated in the inertial filter (part 1) shown in FIG. 13A-1, in which the left side is a plan view and the right side is a back view.
  • FIG. 13A-3 is a plan view of an interposed spacer incorporated in the inertial filter (part 1) of FIG. 13A-1.
  • FIG. 13B-1 is a cross-sectional view of an inertial filter (part 2) in which the shape or number of through holes of each of the flow rate adjusting nozzle and the plurality of interposed spacers are rearranged in the particle classifier using the inertial filter of FIG.
  • FIG. 13B-2 is a view showing the shape of the flow rate adjusting nozzle incorporated in the inertial filter (part 2) of FIG. 13B-1, wherein the left side is a plan view and the right side is a back view.
  • FIG. 13B-3 is a plan view of an interposed spacer incorporated in the inertial filter (part 2) of FIG. 13B-1.
  • FIG. 14 is a diagram in which the horizontal axis for verifying the filter performance of the inertial filter according to the embodiment of the present invention is the aerodynamic diameter, and the vertical axis is the collection efficiency.
  • FIG. 15 is a diagram illustrating an inertial filter according to an embodiment of the present invention.
  • FIG. 16 is a side view of a conventional inertial filter.
  • FIG. 1 shows a cross-sectional configuration of the particle classifier.
  • the fluid in which the particles to be classified are suspended can include gas, liquid, and other solvents.
  • a particle classification device 1 shown in FIG. 1 includes a coarse particle removing inertia filter 3 as a pre-inert filter and a nano particle classification inertia filter 5 as a pre-inert filter from the upstream side to the downstream side in the fluid passage direction indicated by an arrow A. And a nanoparticle collection / device introduction unit 7.
  • the inertia filter 3 for removing coarse particles includes a cylindrical plate 3a.
  • the cylindrical plate 3a is coupled to a reduced diameter through hole 3b capable of increasing the fluid flow velocity in the same direction by gradually reducing the inner diameter in the fluid passing direction, and a downstream opening of the reduced diameter through hole 3b.
  • a constant-diameter through-hole 3c that has a constant inner diameter in the same direction and can maintain a constant fluid flow rate.
  • the coarse particle removing inertia filter 3 is densely entangled with metal fibers, preferably SUS (stainless) fibers 3d, which hardly change in volume even when a high-speed air flow passes through the constant-diameter through-hole 3c as an incompressible fiber. It is filled in a state.
  • the metal fiber is not limited to SUS fiber, and may be one or more metal fibers selected from aluminum fiber, copper fiber, and other metal fibers. Further, the fibers are not limited to metal fibers as long as they are fibers that are incompressible and hardly change in volume even when a high-speed airflow passes through them.
  • the nanoparticle classification inertial filter 5 is continuously arranged immediately downstream of the fluid with respect to the coarse particle removal inertial filter 3 and connected to the coarse particle removal inertial filter 3.
  • the nanoparticle classification inertial filter 5 includes a cylindrical plate 5a having the same outer diameter as that of the coarse particle removing inertial filter 3 and having a constant inner diameter, and the same outer diameter as that of the cylindrical plate 5a. And a columnar plate 5b which is arranged downstream of the cylindrical plate 5a, thereby forming a filter space 5c therein.
  • the cylindrical plate 5b is formed with a reduced diameter through hole 5d whose inner diameter gradually decreases from the upstream side to the downstream side in the fluid passage direction at the center of the plate.
  • a constant diameter through hole 5e having an inner diameter larger than the inner diameter of the downstream opening of the reduced diameter through hole 5d and having a constant diameter is provided at the lower end of the reduced diameter through hole 5d.
  • a sheet 9 is disposed.
  • the particle classification sheet 9 has a number of holes for nanoparticle classification (not shown in FIG. 1) that are uniformly and densely arranged, for example, in the form of a mesh, and the fluid passage at the position where the holes are installed.
  • the area in this example, has a sheet area larger than the inner diameter of the fluid passage downstream opening of the reduced diameter through-hole 5d, and a part 9a of the fluid passage for the particle classification is shown in FIG. It is installed in a partition shape that is separated into two in the passing direction.
  • the nanoparticle collection / device introduction section 7 includes a cylindrical plate 7a having the same outer diameter as the outer diameter of the nanoparticle classification inertial filter 5 and having a constant inner diameter, and an outer diameter of the cylindrical plate 7a.
  • a columnar plate 7b having the same outer diameter and arranged downstream of the cylindrical plate 7a, and a collection space 7c is formed inside thereof.
  • the cylindrical plate 7b has a reduced diameter through hole 7d whose inner diameter gradually decreases from the upstream side to the downstream side in the fluid passage direction in the center of the plate, and a constant diameter with a constant inner diameter coupled to the reduced diameter through hole 7d.
  • Through holes 7e are formed, and the collected nanoparticles can be introduced into the apparatus.
  • the fluid can be exhausted by sucking the fluid with a suction pump (not shown) as indicated by an arrow A.
  • the particle classification device 1 of the embodiment unlike the conventional structure in which the nanoparticle classification inertial filter 5 is filled with incompressible fibers in the constant-diameter through holes, a large number of fine through-holes are used. A particle classification sheet 9 having pores is used.
  • the structure of the particle classification sheet 9 will be described with reference to FIGS. 2 to 4B.
  • Many fine through holes in the particle classification sheet 9 have a mesh shape.
  • examples of the mesh shape include the following sheets 9a to 9e.
  • the seed 9a has a cross section when the fiber 11 having a predetermined wire diameter d made of plastic or metal is seen from the side surface shown in FIG. 2A-1 in a state of a predetermined opening D, and is seen from the plane shown in FIG. 2A-2.
  • Many fine through-holes 9a1 are formed by weaving in a plain weave shape.
  • the sheet 9b has a cross-sectional shape as viewed from the side surface of FIG. 2B-1, and a large number of fine through holes 9b1 are formed by weaving in a twill shape as viewed from the plane shown in FIG. 2B-2.
  • a large number of circular micro through holes 9c1 are formed by etching with respect to a normal sheet.
  • a large number of elongated micro through-holes 9d1 are formed in the sheet 9e.
  • a large number of square hole-shaped minute through holes 9e1 are formed in the sheet 9e.
  • FIG. 4A shows a through-hole 10c formed by meshing lines 10a and 10b.
  • the mesh shape in the diffusion filter and the inertia filter is, as shown in FIG. 4B, in the diffusion filter, the wire diameters d of the lines 10a and 10b are about 20 ⁇ m, and the opening D is about 20 ⁇ m, which is the size of the through hole 10c.
  • the fluid filtration rate is 0.001 to 0.1 m / s.
  • the wire diameter d 5 to 20 ⁇ m
  • the aperture D 40 to 300 ⁇ m
  • the fluid filtration rate is 1 to 100 m / s.
  • the term “aperture” means the maximum diameter of spherical particles that can pass through, and what is important for the classification accuracy is the uniformity of the aperture. It is preferable that the opening ratio is in the above range because the filter strength is high, the pressure loss is small, and the fluid flow rate can be increased.
  • the mesh-like particle classification sheet examples include nylon mesh, polyester mesh, polypropylene mesh, Teflon (registered trademark) mesh, and polyethylene mesh as woven plastic fibers.
  • the fiber woven with two or more types of fibers such as a nylon mesh woven with carbon fiber and a nylon mesh woven with carbon fiber, can be exemplified.
  • An example of the metal fiber is a mesh filter woven from SUS or the like. Further, a metal film provided with a large number of minute through holes can be used by etching the metal film or the like.
  • the mesh shape is a shape in which a plurality of fine through holes for classification are regularly formed per fixed area or unit length.
  • the particle classification sheet 9 has a larger sheet area than the inner diameter of the downstream opening of the reduced diameter through hole 5d, and a part 9a is formed in the downstream opening of the reduced diameter through hole 5d. It is only installed as a part that performs nanoparticle classification. Therefore, the non-uniformity of the fine through holes due to fraying of the mesh that may occur in the vicinity of the outer periphery of the particle classification sheet 9, the gap between the outer periphery of the particle classification sheet 9 and the cylindrical plate 5b, and the like. The influence on the classification accuracy in the part 9a is reduced.
  • the diameter-reduced through hole 3b of the coarse particle removing inertial filter 3 decreases in diameter toward the downstream side of the fluid, so that the fluid gradually accelerates and then passes through the constant diameter through-hole 3c at a constant speed. In this passage, coarse particles are collected.
  • the constant diameter through hole 3c has a filter structure in which the metal fibers 3d are layered, the Stokes number Stk and the Peclet number Pe that can be used to select the gas flow velocity and fiber diameter are applied. Can do.
  • the Stokes number Stk is a dimensionless value representing the followability of particles to a gas flow in a filter having a metal fiber structure. The formula is omitted.
  • the Stokes number Stk is proportional to the flow velocity and particle density, is proportional to the square of the particle diameter, and is inversely proportional to the fiber diameter.
  • the particle size of the particles to be collected can be selected by controlling the gas flow rate and selecting the fiber diameter.
  • the fiber diameter of the metal fiber is extremely small, it is not necessary to increase the flow velocity as much as the impactor.
  • metal fibers can collect particles not only by the inertia of the particles but also by collection mechanisms such as interception, gravity, electrostatic force, and diffusion.
  • the Peclet number Pe is a number that represents the ratio between the effect that particles are carried by airflow and the effect that particles are carried by diffusion, and is proportional to the flow velocity and fiber diameter and inversely proportional to the diffusion coefficient. In order to reduce the influence of diffusion, it is necessary to increase the Peclet number Pe. The smaller the particle size, the larger the diffusion coefficient and the smaller the fiber diameter selected, so it can be seen that increasing the flow rate is preferable for increasing the particle size selectivity. From the above, by arbitrarily selecting the flow velocity, fiber diameter, etc. (specifically, at least one of the fiber diameter, mesh size, porosity, and space shape in the particle classification sheet is arbitrarily selected). The target particles can be collected or classified by metal fibers.
  • the void inside the constant diameter through hole 3c of the coarse particle removal inertial filter 3 is adjusted.
  • the rate and changing the fiber diameter of the metal fiber 3d the airflow in the constant-diameter through hole 3c is not significantly reduced, and the pressure loss can be reduced.
  • the particle inertia effect necessary for removing coarse particles can be obtained even when a small flow rate is sucked by a small airflow suction pump.
  • Nanoparticles can be classified by the particle classification sheet 9 of the nanoparticle classification inertial filter 5, which is a feature of the embodiment. Since the particle classification sheet 9 has a mesh shape, the fluid pressure Is applied, the mesh is not compressed in the fluid passage direction, and the space ratio and space shape are made uniform by the mesh shape, thereby making it possible to sharpen the classification characteristics. Moreover, since the filling rate of the particle classification sheet 9 can be made uniform, the classification diameter can be easily controlled, and the classification diameter can be easily adjusted on-site by laminating the particle classification sheets 9 in, for example, multiple layers. Will be able to.
  • the fluidity of the fluid in the particle classification sheet 9 is hardly lowered, it is necessary for the nanoparticle classification while suppressing the pressure loss to a small level even when sucked at a small flow rate as a suction pump. A particle inertia effect can be obtained.
  • the cylindrical plate 5b in the nanoparticle classification inertial filter 5 shown in FIG. 1 is replaced with another flow rate adjustment nozzle 13a-13c as shown in (a1), (b1), (c1) in FIG.
  • the flow rate can be adjusted by replacing the nozzle.
  • Particle classification sheets 15a to 15c are respectively arranged on the lower end opening sides of the respective flow rate adjusting nozzles 13a to 13c.
  • O-rings 17a to 17c are arranged on the outer circumferences of the particle classification sheets 15a to 15c, whereby the fluid passages indicated by arrows in the figure are sealed from the outside.
  • the diameter reduction rate per unit length in the fluid passage direction of the diameter reduction through hole 13a1 is normal, and the fluid flow rate becomes the reference flow rate. ing. Accordingly, when the particle size is taken on the horizontal axis and the collection efficiency is taken on the vertical axis in (a2) in FIG. 5, the collection characteristic is represented by the characteristic c1.
  • the inertial filter 5b including the flow rate adjusting nozzle 13b shown in (b1) in FIG. 5 the diameter reduction rate of the reduced diameter through hole 13b1 of the flow rate adjusting nozzle 13b1 is large, and the fluid flow velocity is increased.
  • the collection efficiency is changed from efficiency c1 to efficiency c2, and the 50% cut-off (classification) diameter is reduced.
  • the inertial filter 5c provided with the flow rate adjusting nozzle 13c shown in (c1) in FIG. 5
  • the diameter reduction rate of the reduced diameter through hole 13c1 of the flow rate adjusting nozzle 13c1 is small, and the fluid flow velocity becomes small.
  • the collection efficiency changes from efficiency c1 to efficiency c3, and the classification diameter increases.
  • the classification diameter is changed step by step by changing the flow rate adjustment nozzle to the flow rate adjustment nozzles 13a to 13c, so that the particle size distribution can be understood and connected to a device with a different flow rate.
  • the classification diameter can be made constant by making the fluid passage speed constant. This is useful when used in applications where the classified diameter should be constant for specific applications, such as environmental measurements.
  • the inertial filter 25a shown in FIG. 6A-1 includes a flow rate adjustment nozzle 19a, a particle classification sheet 21a, and an O-ring. 23a.
  • 6A-2 shows the surface of the flow rate adjusting nozzle 19a
  • FIG. 6A-3 shows the back side of the flow rate adjusting nozzle 19a.
  • the inertial filter 25b shown in FIG. 6B-1 includes a flow rate adjusting nozzle 19b, a particle classification sheet 21b, and an O-ring 23b.
  • 6B-2 shows the front surface of the flow rate adjusting nozzle 19b
  • FIG. 6B-3 shows the back surface of the flow rate adjusting nozzle 19b.
  • the arrow indicates the direction of fluid passage.
  • 6A-1 has a reduced diameter through hole 27a in the flow rate adjustment nozzle 19a, compared with the reduced diameter through hole 27b in the flow rate adjustment nozzle 19b in the inertial filter 25b in FIG. 6B-1. Since the number is plural, the flow rate can be increased more while keeping the classification characteristic constant.
  • a particle classification device 29 according to another embodiment of the present invention will be described with reference to FIG. 7.
  • a coarse particle removal inertial filter 31 and a nanoparticle classification device are used.
  • a particle classification sheet 37 disposed on the nanoparticle classification inertia filter 33 is laminated with a plurality of particle classification sheets 37a to 37c.
  • the horizontal axis indicates the number of particle classification sheets to be stacked, and the vertical axis indicates 50% cutoff diameter (classification diameter). As the number of stacked layers increases as shown in FIG.
  • Reference numeral 39 denotes a flow rate adjusting nozzle in the nanoparticle classification inertial filter 33.
  • the number of the particle classification sheets 37 is three for convenience of illustration, but is not limited to three.
  • Fig. 9A shows an inertial filter 41 for classifying nanoparticles
  • Fig. 9B shows a decomposition configuration thereof.
  • the inertial filter 41 for nanoparticle classification includes a flow rate adjusting nozzle 45 that can be recombined inside the filter case 43, a plurality of recombinable particle classification sheets 47a to 47c, and a plurality of interposable spacers 49a to 49c that can be recombined. ,including.
  • the particle classification sheets 47a to 47c have a predetermined sheet thickness and a circular sheet area that is larger than the circular area of the downstream opening of the flow rate adjusting nozzle 45, and a part of them has the flow rate adjusting nozzle 45.
  • the interposition spacers 49a to 49c are alternately stacked on the particle classification sheets 47a to 47c, and have the same circular shape and the same area as the particle classification sheets 47a to 47c, respectively.
  • through holes 50a to 50c having the same spacer thickness and the same diameter as the downstream opening of the flow rate adjusting nozzle 45 are formed.
  • a through hole having a constant fluid flow rate can be formed by a group of these through holes 50a to 50c having a stacked structure of the interposed spacers 49a to 49c.
  • the components constituting each can be rearranged, so that the fluid flow rate is controlled or the classification is controlled by recombination thereof. Can be easily done.
  • FIG. 10 a plurality of particle classification sheets 47a to 47c and interposable spacers 49a to 49c are rearranged by the nanoparticle classification inertial filter 41 shown in FIGS. 9A and 9B.
  • A1 in FIG. 10 shows an inertial filter 51 having three particle classification sheets 47a to 47c and three interposed spacers 49a to 49c
  • (a2) in FIG. A classification characteristic c4 is shown.
  • FIG. 10 (b1) shows an inertial filter 53 having five particle classification sheets 47a to 47e and four intervening spacers 49a to 49d
  • FIG. 10 (b2) shows the classification. Characteristic c5 is shown.
  • FIG. 10 shows an inertial filter 55 having two particle classification sheets 47a and 47b and two interposed spacers 49a and 49b, and FIG. 10 (c2) shows its classification characteristic c6. Is shown. (D) in FIG. 10 shows a classification diameter characteristic in which the horizontal axis is the number of particle classification sheets and the vertical axis is the classification. As shown in FIG. 10 (d), it can be seen that the classification diameter decreases as the number of laminated particle classification sheets increases.
  • FIG. 11 shows an example in which the classification diameter is controlled by the flow rate adjustment nozzle and the interposed spacer.
  • (a1) shows an inertial filter 57 having a flow rate adjusting nozzle 45a for providing a reference flow velocity, particle classification sheets 47a to 47c, and interposed spacers 48a1 to 48a3.
  • (A2) in FIG. 11 shows the classification characteristic c7 of the inertial filter 57.
  • This classification characteristic c7 is given by the diameter reduction ratio of the diameter per unit length in the fluid passage direction of the reduced diameter through hole 51a provided in the flow rate adjusting nozzle 45a and the interposed spacers 48a1 to 48a3. Let flow rate.
  • FIG. 11 shows an inertial filter 57 having a flow rate adjusting nozzle 45a for providing a reference flow velocity, particle classification sheets 47a to 47c, and interposed spacers 48a1 to 48a3.
  • (b1) shows an inertial filter 59 having a flow rate adjusting nozzle 45b that gives a flow rate higher than the reference flow rate, particle classification sheets 47a to 47c, and interposition spacers 48b1 to 48b3.
  • (B2) in FIG. 11 shows the classification characteristic c8 of the inertial filter 59.
  • the diameter reduction rate of the reduced diameter through hole 51b of the flow rate adjusting nozzle 45b is large, and the diameter of the through holes of the interposition spacers 48b1 to 48b3 is small. Therefore, the fluid flow velocity is larger than the reference fluid flow velocity, and inertia collision of nanoparticles in the fluid occurs. As a result, the classification characteristic is changed from characteristic c7 to characteristic c8, and nanoparticles having a smaller particle diameter can be collected.
  • (C1) in FIG. 11 shows an inertial filter 61 having a flow rate adjusting nozzle 45c that gives a flow rate larger than the reference flow rate, particle classification sheets 47a to 47c, and interposition spacers 48c1 to 48c3.
  • (C2) in FIG. 11 shows the classification characteristic c9 of the inertial filter 61.
  • the diameter reduction rate of the reduced diameter through hole 51c of the flow rate adjusting nozzle 45c is small, and the through hole diameters of the interposed spacers 48c1 to 48c3 are large.
  • the fluid flow velocity is smaller than the reference fluid flow velocity, and the inertial collision effect of nanoparticles in the fluid is reduced.
  • the classification characteristic changes from characteristic c7 to characteristic c9.
  • the classification diameter can be controlled by recombination of the flow rate adjusting nozzles 45a to 45c and the interposition spacers 48a1 to 48a3, 48b1 to 48b3, 48c1 to 48c3.
  • FIG. 12 shows an example in which the classification diameter is controlled by the interposed spacer.
  • (a1) shows an inertial filter 63 having interposed spacers 49a1 to 49c1 that give reference space ratios
  • (a2) in FIG. 12 shows a classification characteristic c9 of the inertial filter 63.
  • the space ratio in the inertial filter 63 is set as a reference space ratio.
  • the spacer thickness of each of the interposed spacers 49a1 to 49c1 in the inertial filter 63 is, for example, t.
  • the constant-diameter through hole length constituted by the interposed spacers 49a1 to 49c1 is a hole length 3t.
  • 47a to 47c are particle classification sheets.
  • FIG. 12 (b1) shows the inertial filter 65 of the interposed spacers 49a2 to 49c2
  • FIG. 12 (b2) shows the classification characteristic c10 of the inertial filter 65.
  • the spacer thickness of each of the interposition spacers 49a2 to 49c2 is, for example, 2t, so that the constant-diameter through-hole length constituted by the interposition spacers 49a2 to 49c2 as compared with the inertia filter 63 Becomes the hole length 6t. Therefore, the space ratio becomes large (the filling ratio is small), and the classification characteristics can collect nanoparticles having a smaller particle diameter.
  • (C1) in FIG. 12 shows the inertial filter 67 having the interposition spacers 49a3 to 49c3, and (c2) in FIG. 12 shows the classification characteristic c11 of the inertial filter 67.
  • the spacer thickness of each of the interposition spacers 49a3 to 49c3 is, for example, 0.5t, so that the constant diameter through-holes constituted by the interposition spacers 49a3 to 49c3 as compared with the inertial filter 63.
  • the length is 1.5t. Therefore, the space ratio becomes small (the filling rate is large).
  • the classification diameter can be controlled as shown in (a2), (b2), and (c2) in FIG.
  • the inertial filter 69 shown in FIG. 13A-1 includes a flow rate adjusting nozzle 50a, particle classification sheets 52a to 52c, and interposed spacers 54a1 to 54c1.
  • 13A-2 shows a plan view and a back view of the flow rate adjusting nozzle 50a
  • FIG. 13A-3 shows a plan view of the interposition spacers 54a1 to 54c1.
  • the flow rate adjustment nozzle 50a, the particle classification sheets 52a to 52c, and the interposed spacers 54a1 to 54c1 have the same outer dimensions in a plane perpendicular to the fluid passage direction.
  • the particle classification sheets 52a to 52c are stacked in a state of being alternately sandwiched between the flow rate adjusting nozzle 50a and the interposed spacers 54a1 to 54c1.
  • the intervening spacers 54a1 to 54c1 single through holes 70a to 70c having the same diameter as the downstream opening of the reduced diameter through hole 70 of the flow rate adjusting nozzle 50a are formed, and these single through holes 70a to 70c are the same. It overlaps the fluid passage direction A0 at the position.
  • the inertial filter 71 shown in FIG. 13B-1 has a flow rate adjusting nozzle 50b, particle classification sheets 52a to 52c, and interposition spacers 54a2 to 54c2.
  • FIG. 13B-2 shows a plan view and a back view of the flow rate adjusting nozzle 50b
  • FIG. 13B-3 shows a plan view of the interposed spacers 54a2 to 54c2.
  • the flow rate adjusting nozzle 50b, the particle classification sheets 52a to 52c, and the interposed spacers 54a2 to 54c2 have the same outer dimensions in the plane perpendicular to the fluid passage direction.
  • the particle classification sheets 52a to 52c are stacked in a state of being alternately sandwiched between the flow rate adjusting nozzle 50b and the interposed spacers 54a2 to 54c2.
  • the flow rate adjusting nozzle 50b is formed with a plurality of reduced diameter through holes 70, and the interposed spacers 54a2 to 54c2 correspond to the downstream openings of the plurality of reduced diameter through holes 70 'of the flow rate adjusting nozzle 50b, respectively.
  • a plurality of through holes 70a to 70c having the same diameter are formed, and the plurality of through holes 70a to 70c overlap each other at the same position in the fluid passage direction A1-A3.
  • the inertial filter 69 shown in FIG. 13A-1 and the inertial filter 71 shown in FIG. 13B-1 differ in the number of through holes in the fluid passage direction, but the fluid passage of the inertial filter 69 in FIG. 13A-1
  • the fluid flow rate in the direction A0 and the fluid flow rates of the fluid passages A1 to A3 of the inertial filter 71 in FIG. 13B-1 are constant and the same, and the flow rate of the inertial filter 71 is larger than the flow rate of the inertial filter 69. be able to.
  • the abscissa indicates the aerodynamic diameter
  • the ordinate indicates the classification characteristics of the inertia filter having the collection efficiency.
  • c12 is a classification characteristic based on theoretical values
  • black squares ⁇ and black triangles ⁇ are classification characteristics of the first and second inertial filters having five particle classification sheets and five interposition spacers
  • x is It is a classification characteristic of the 3rd inertial filter which has five sheets for particle classification, and 20 interposition spacers.
  • the flow rate is 1.5 liters / minute.
  • This inertial filter includes a pair of two male and female connectors 80 and 81, and the leading convex portion 80a of one male connector 80 is inserted into the concave portion 81a of the other female connector 81 so that the fluid can pass therethrough in the direction of the arrow.
  • the nut 82 is turned from the male connector 80 side into the outer peripheral spiral groove 81 b of the female connector 81, whereby both the connectors 80 and 81 are fastened by the nut 82.
  • it has the structure which provided the through-hole 80b diameter-reduced in the arrow direction inside the front-end
  • the particle classification sheet having a plurality of particle classification holes in a uniform arrangement mode is provided, and the area of the particle classification sheet is defined as a fluid passage area at a position where the particle classification sheet is installed.
  • the inertia filter has a structure in which a part of the fluid passage is separated into two in the fluid passage direction for particle classification, so that the inertia is filled with fibers in the constant-diameter through hole. Unlike a filter, it is possible to provide an inertial filter that easily obtains intended initial classification performance and has stable classification characteristics over a long period of time.
  • the initial classification characteristics are not difficult to control because the packing density, orientation, and spatial shape of the fibers are not uniform, as in the case where fibers are packed into constant-diameter through holes as in the past.
  • the fiber is compressed in the fluid passage direction by the pressure received from the airflow and stable classification is not difficult, and since the fiber is replaced with the sheet, the filter can be easily cleaned and the inertial filter can be reused easily.
  • it is possible to provide an inertial filter that is easy to obtain the intended initial classification performance and that can perform stable particle classification that does not easily reduce the collection efficiency over a long period of time.
  • the present invention is particularly useful as an inertial filter that is arranged in a fluid passage and can classify particles in a fluid by an inertial collision effect or the like, and a particle classifier equipped with the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 本慣性フィルタは、流体通過路に設置されるもので複数の粒子分級穴を一様な配列態様で有する粒子分級用シートを具備する。この粒子分級用シートは、それが設置される位置における流体通過面積よりも大きいシート面積を有し、かつ、その一部が当該流体通過路を粒子分級のため流体通過方向で2つに隔てる隔壁状に設置された構成を備える。

Description

慣性フィルタおよび粒子分級装置
 本発明は、流体通過路内に配置されて流体中の粒子を慣性衝突効果等により分級することができる慣性フィルタおよびこれを備えた粒子分級装置に関するものである。
 図16を参照して従来の慣性フィルタ100を説明する。従来の慣性フィルタ100は、流体通過路内に配置されて粒子分級することができるものであり、円柱状のフィルタ本体101を備える。フィルタ本体101は、流体通過上流側から下流側方向にかけて貫通した断面円形の貫通孔102を具備する。この貫通孔102は流体通過上流側の内径が漸次縮径する縮径貫通孔102aと、この縮径貫通孔102aに下流側で連成される内径が一定の定径貫通孔102bとを含む。この定径貫通孔102b内に、非圧縮性繊維の一例である金属繊維103が充填されている。金属繊維103は図示略の機構により定径貫通孔102bから流体通過方向下方へ抜け止めされている。
 この慣性フィルタ100では、図示略のポンプの吸引力により、慣性フィルタ100の内圧を外圧以下に下げて両圧力で生成する圧力差で貫通孔102内に図中矢印AからB方向へ流体を発生させて粒子を分級させることができるようになっている。上記流体は、縮径貫通孔102a内で速度上昇して定径貫通孔102b内に流入して一定となる。そして、定径貫通孔102b内において流体に含む微粒子は金属繊維103に衝突して捕捉(捕集)される。
特開2008-70222号公報
 上記の慣性フィルタ100においては、第1に、繊維は空間密度分布、配向、形状が一定でないので、意図した初期分級特性を得難い。また、第2に定径貫通孔102b内に金属繊維103を一様な密度で充填することが難しく、そのため、定径貫通孔102b内における金属繊維103の充填密度のばらつきにより分級特性がばらつき易く、安定した分級が難しい。第3に分級動作中に気流から受ける圧力で金属繊維103が流体通過方向に圧縮してしまって、分級特性が変化し、結果、安定した分級が難しい。第4に慣性フィルタ洗浄中に定径貫通孔102b内における金属繊維103の空間密度に変化が起こり得るが、このような変化は定量化しにくく、そのため当該慣性フィルタを再利用しにくい、といった課題がある。
 したがって、本発明においては、上記に鑑みて、意図した初期分級性能を得やすく、かつ、長期にわたり捕集効率が低下しにくく安定した粒子分級を行うことができる慣性フィルタを提供することを課題としている。
 (1)本発明による慣性フィルタは、流体通過路に設置される慣性フィルタであって、当該慣性フィルタは、複数の粒子分級穴を一様な配列態様で有する粒子分級用シートを具備し、上記粒子分級用シートは、それが設置される位置における流体通過面積よりも大きいシート面積を有し、かつ、その一部が当該流体通過路を粒子分級のため流体通過方向で2つに隔てる隔壁状に設置されている、ことを特徴とする。
 好ましくは、上記粒子分級用シートは、流体通過方向において単一のシートで構成されている。
 好ましくは、上記粒子分級用シートは、流体通過方向において複数枚になって積層されている。
 好ましくは、上記粒子分級用シートは、上記粒子分級穴として多数の貫通孔をメッシュ状の配列態様で備えたシートである。
 好ましくは、上記粒子分級用シートは、線径が5~20μm、目開きが40~300μmのメッシュ状シートである。
 好ましくは、上記粒子分級用シートの流体通過方向上流側に当該流体通過方向に縮径する縮径貫通孔を備えた流量調節ノズルを、流体流速調整に際して当該縮径貫通孔の縮径率が相違する他の流量調節ノズルと組み替え可能に配置する。
 好ましくは、上記粒子分級用シートの流体通過方向上流側に当該流体通過方向に縮径する縮径貫通孔を備えた流量調節ノズルを、流量調整に際して縮径貫通孔の数が相違する他の流量調節ノズルと組み替え可能に配置する。
 好ましくは、上記粒子分級用シートの流体通過方向上流側に当該流体通過方向に縮径する流路を備えた流量調節ノズルを配置すると共に、上記粒子分級用シートの複数を介装スペーサと交互に積層する。
 好ましくは、上記介装スペーサを流路が相違する別の介装スペーサと組み替え可能として流速調整可能とする。
 好ましくは、上記介装スペーサの積層枚数制御で分級制御可能とする。
 好ましくは、上記流量調節ノズルを流路が相違する別の流量調節ノズルと組み替え可能として流速調整可能とする。
 好ましくは、上記介装スペーサのスペーサ厚さ制御で分級制御可能とする。
 好ましくは、上記流量調節ノズルの流路数およびこれに対応する介装スペーサの貫通孔数の制御で流量調整可能とする。
 (2)本発明による粒子分級装置は、流体通過方向上流側に非圧縮性繊維を充填した慣性フィルタを粗粒子除去用として配置し、下流側に、上記(1)の慣性フィルタをナノ粒子分級用として配置した、ことを特徴とする。
 なお、上記流体には気体に限らず、液体、その他のものを含む。
 なお、上記慣性フィルタで捕集ないし捕捉される粒子は、気体中に浮遊する粒子に限定されず、他の溶媒例えば液中やその他を浮遊する粒子を含むことができる。また、分級する粒子は特に限定されず、樹脂微粒子、無機微粒子、金属微粒子、セラミック微粒子等が例示できる。粒子の形状は、特に限定されない。
 なお、上記非圧縮性繊維は好ましくは金属繊維で構成することができる。また金属繊維として例えばステンレス繊維が好ましいが、ステンレス繊維に限定するものではなく、アルミ繊維、銅繊維、その他の金属繊維から選ばれる1種以上の金属繊維でもよい。また、非圧縮性繊維は、非圧縮性で高速気流が通過しても体積変化が殆どない繊維であればよく、金属繊維に限定されない。
 本発明によれば、初期分級特性に優れ、長期にわたり安定して粒子分級を行うことができる慣性フィルタを提供することができる。
図1は本発明の実施の形態にかかる慣性フィルタを備えた粒子分級装置を側面から見た構成を示す図である。 図2A-1は本発明の実施形態の慣性フィルタが備えるナノ粒子分級用シートの第1の形状例(平織り形状)の要部拡大断面図である。 図2A-2は本発明の実施形態の慣性フィルタが備えるナノ粒子分級用シートの第1の形状例(平織り形状)の要部拡大平面図である。 図2B-1は本発明の実施形態の慣性フィルタが備えるナノ粒子分級用シートの第2の形状例(綾織形状)の要部拡大断面図である。 図2B-2は本発明の実施形態の慣性フィルタが備えるナノ粒子分級用シートの第2の形状例(綾織形状)の要部拡大平面図である。 図3Aは本発明の実施形態の慣性フィルタが備えるナノ粒子分級用シートの第3の形状例(円穴形状)の要部拡大平面図である。 図3Bは本発明の実施形態の慣性フィルタが備えるナノ粒子分級用シートの第4の形状例(長孔形状)の要部拡大平面図である。 図3Cは本発明の実施形態の慣性フィルタが備えるナノ粒子分級用シートの第5の形状例(角孔形状)の要部拡大平面図である。 図4Aは拡散フィルタと慣性フィルタそれぞれのナノ粒子分級用シートの形状を示す要部拡大平面図である。 図4Bは、図4Aの構成を有する拡散フィルタと慣性フィルタそれぞれのナノ粒子分級用シートの形状を比較して示す図である。 図5は図1の粒子分級装置に用いるナノ粒子分級用慣性フィルタにおいて流量調整ノズルによる流速調整の説明に用いる図である。 図6A-1は図1の粒子分級装置に用いる第1のナノ粒子分級用慣性フィルタの断面図である。 図6A-2は第1のナノ粒子分級用慣性フィルタの表面図である。 図6A-3は第1のナノ粒子分級用慣性フィルタの裏面図である。 図6B-1は図1の粒子分級装置に用いる第2のナノ粒子分級用慣性フィルタの断面図である。 図6B-2は第2のナノ粒子分級用慣性フィルタの表面図である。 図6B-3は第2のナノ粒子分級用慣性フィルタの裏面図である。 図7は本発明の実施の形態にかかる慣性フィルタを複数枚積層して備えた粒子分級装置の側面図である。 図8は図7の慣性フィルタの枚数に対する50%カットオフ径を示す図である。 図9Aは図7のナノ粒子分級用慣性フィルタを分解した状態の外観構成を示す斜視図である。 図9Bは図7のナノ粒子分級用慣性フィルタを組み立てた状態で断面構成を示す図である。 図10は図7の慣性フィルタを用いた粒子分級装置において粒子分級用シートの積層枚数を組み替えたときの粒径と捕集効率との関係の説明に用いる図である。 図11は図7の慣性フィルタを用いた粒子分級装置において流量調整ノズルおよび複数の介装スペーサーを組み替えたときの粒径と捕集効率との関係の説明に用いる図である。 図12は図7の慣性フィルタを用いた粒子分級装置において複数の慣性フィルタをその配置間隔を組み替えたときの粒径と捕集効率との関係の説明に用いる図である。 図13A-1は、図7の慣性フィルタを用いた粒子分級装置において流量調整ノズルと複数の介装スペーサーそれぞれの貫通孔の形状ないし個数を組み替えた慣性フィルタ(その1)の断面図である。 図13A-2は、図13A-1の慣性フィルタ(その1)に組み込まれた流量調整ノズルの形状を示す図であって、左側が平面図であり、右側が裏面図である。 図13A-3は、図13A-1の慣性フィルタ(その1)に組み込まれた介装スペーサーの平面図である。 図13B-1は、図7の慣性フィルタを用いた粒子分級装置において流量調整ノズルと複数の介装スペーサーそれぞれの貫通孔の形状ないし個数を組み替えた慣性フィルタ(その2)の断面図である。 図13B-2は、図13B-1の慣性フィルタ(その2)に組み込まれた流量調整ノズルの形状を示す図であって、左側が平面図であり、右側が裏面図である。 図13B-3は、図13B-1の慣性フィルタ(その2)に組み込まれた介装スペーサーの平面図である。 図14は本発明の実施形態の慣性フィルタのフィルタ性能を検証するための横軸を空気力学径とし、縦軸を捕集効率とした図である。 図15は本発明の実施形態の慣性フィルタを示す図である。 図16は従来の慣性フィルタの側面図である。
 以下、添付した図面を参照して、本発明の実施の形態に係る慣性フィルタおよびこれを備えた粒子分級装置を説明する。図1に上記粒子分級装置の断面構成が示される。なお、実施の形態において分級対象となる粒子が浮遊する流体は、気体、液体、その他の溶媒を含むことができる。図1に示される粒子分級装置1は、矢印Aで示される流体通過方向上流側から下流側にかけて、プレ慣性フィルタとして粗粒子除去用慣性フィルタ3と、本慣性フィルタとしてナノ粒子分級用慣性フィルタ5と、ナノ粒子捕集/装置導入部7と、を備える。
 粗粒子除去用慣性フィルタ3は、円柱状プレート3aを備える。この円柱状プレート3aは流体通過方向へ内径が漸次縮径して同方向への流体流速を早くすることができる縮径貫通孔3bと、この縮径貫通孔3bの下流側開口に連成し同方向へ内径が一定とされて流体流速を一定化することができる定径貫通孔3cと、を備える。そしてこの粗粒子除去用慣性フィルタ3はその定径貫通孔3c内部に非圧縮性繊維として高速気流が通過しても体積変化が殆どない金属繊維好ましくはSUS(ステンレス)繊維3dが緻密に絡まった状態で充填されている。なお、金属繊維としてはSUS繊維に限定するものではなく、アルミ繊維、銅繊維、その他の金属繊維から選ばれる1種以上の金属繊維でもよい。また、非圧縮性で高速気流が通過しても体積変化が殆どない繊維であれば、金属繊維に限定しない。
 ナノ粒子分級用慣性フィルタ5は、粗粒子除去用慣性フィルタ3に対して流体下流側直下に連続配置されて当該粗粒子除去用慣性フィルタ3に連結されている。ナノ粒子分級用慣性フィルタ5は、粗粒子除去用慣性フィルタ3外径と同じ外径で上流側に配置した内径が一定の円筒状プレート5aと、その円筒状プレート5aの外径と同外径で下流側に円筒状プレート5aに連成配置した円柱状プレート5bと、を含み、これらにより内部にフィルタ空間5cを構成する。円柱状プレート5bは、当該プレート中央に流体通過方向上流側から下流側へかけて内径が漸次縮径する縮径貫通孔5dが形成されている。そして、縮径貫通孔5dの下端に縮径貫通孔5dの下流側開口の内径よりも内径が大径でかつ一定径の定径貫通孔5eが設けられ、この定径貫通孔5eに粒子分級用シート9が配置されている。
 この粒子分級用シート9は、図1では図示略のナノ粒子分級用の多数の穴を一様かつ密な配列態様例えばメッシュ状で有しており、かつ、それが設置される位置における流体通過面積、この例では縮径貫通孔5dの流体通過下流側開口の内径よりも大きいシート面積を有し、かつ、その一部9aが図中矢印Aで示される流体通過路を粒子分級のため流体通過方向において2つに隔てる隔壁状に設置されている。
 ナノ粒子捕集/装置導入部7は、ナノ粒子分級用慣性フィルタ5の外径と同じ外径で上流側に配置した内径が一定の円筒状プレート7aと、その円筒状プレート7aの外径と同外径で下流側に円筒状プレート7aに連成配置した円柱状プレート7bと、を含み、これらにより内部に捕集空間7cを構成する。円柱状プレート7bは、当該プレート中央に流体通過方向上流側から下流側へかけて内径が漸次縮径する縮径貫通孔7dと、この縮径貫通孔7dに連成した内径が一定の定径貫通孔7eとが形成されており、捕集したナノ粒子を装置に導入することができるようになっている。この装置側では、流体を矢印Aで示されるように図示略の吸引ポンプで吸引することで流体を排気することができるようになっている。
 以上の構成において、実施形態の粒子分級装置1においては、ナノ粒子分級用慣性フィルタ5に、従来のように非圧縮性繊維を定径貫通穴内に充填した構造とは異なって、多数の微小貫通孔を有する粒子分級用シート9を用いたことを特徴とする。
 ここで粒子分級用シート9の構造を図2~図4Bを参照して説明する。この粒子分級用シート9における多数の微小貫通孔はメッシュ状となっている。ここでメッシュ状とは、以下のシート9a~9eを例示することができる。
 シード9aは、プラスチックまたは金属からなる所定線径dの繊維11を所定の目開きDの状態に図2A-1に示される側面からみた断面を有し、図2A-2に示される平面から見た平織り形状で織ることで多数の微小貫通孔9a1が形成されている。シート9bは、図2B-1の側面からみた断面形状を有し、図2B-2に示される平面から見て綾織り形状で織ることで多数の微小貫通孔9b1が形成されている。
 シート9cでは、図3Aに示されるように、通常のシートに対してエッチングで多数の円状微小貫通孔9c1が形成されている。シート9dでは、図3Bに示されるように、多数の長孔状微小貫通孔9d1が形成されている。シート9eでは、図3Cに示されるように、多数の角孔状微小貫通孔9e1が形成されている。
 これら貫通孔はもちろんナノ粒子の分級に要する孔径を有する。このことを、図4A、図4Bを参照して説明すると、図4Aには線10a,10bが交差してメッシュ状に形成される貫通孔10cが示される。そして、拡散フィルタと慣性フィルタとにおけるメッシュ状は、図4Bに示されるように、拡散フィルタでは線10a,10bの線径d=20μm程度、貫通孔10cのサイズである目開きD=20μm程度、流体ろ過速度は0.001~0.1m/sである。これに対して慣性フィルタでは、線径d=5~20μm、目開きD=40~300μm、流体ろ過速度は1~100m/sである。なお、目開きとは、通過できる球状粒子の最大直径をいい、分級精度に重要となるのが、目開きの均一性である。この目開き率が上記範囲内であると、フィルタ強度が高く、また、圧力損失が少なく、流体流量を多くすることができるので好ましい。
 上記メッシュ状の粒子分級用シートとしては、プラスチック繊維を織ったものとしては、ナイロンメッシュ、ポリエステルメッシュ、ポリプロピレンメッシュ、テフロン(登録商標)メッシュ、ポリエチレンメッシュを例示することができる。また、カーボンファイバを織り込んだナイロンメッシュ、カーボンファイバを織り込んだナイロンメッシュ等、2種以上の繊維で織られた繊維を例示することができる。金属繊維としては、SUS等を織ったメッシュ状フィルタを例示することができる。また、金属膜をエッチングする等により、多数の微小貫通孔を設けた金属膜も使用することができる。
 以上のようにメッシュ状は、一定面積あるいは単位長当たりに規則的に複数の分級用の微小貫通孔が開けられた形状である。そして本実施形態では、粒子分級用シート9は縮径貫通孔5dの下流側開口の内径よりも大きいシート面積を有しており、該縮径貫通孔5dの下流側開口にその一部9aがナノ粒子分級を行う部分として設置されるだけである。そのため、粒子分級用シート9の外周部付近で起こり得る、メッシュのほつれなどによる微小貫通孔の不均一性や、粒子分級用シート9の外周部と円柱状プレート5bとの隙間などが、当該一部9aでの分級精度に影響を与えることが少なくなる。
 以上の構成において、粗粒子除去用慣性フィルタ3の縮径貫通孔3bは流体下流側方向へ直径が小さくなっていくので、流体は徐々に加速した後、定径貫通孔3cを一定速度で通過し、この通過の際に粗粒子を捕集する。この定径貫通孔3cは金属繊維3dが層状になったフィルタ構造になっているので、気体の流速、繊維径の選択に用いることができるストークス数Stkと、ペクレ数Peと、を適用することができる。ストークス数Stkは、金属繊維構造のフィルタ内での、気体の流れに対する粒子の追従性を表す無次元の値である。その式は省略する。ストークス数Stkは、流速、粒子密度に比例し、粒径の2乗に比例し、繊維径に反比例する。
 ストークス数Stkの式によると、気体の流速が大きくなるに従い、粒径が大きい浮遊粒子から順に気体の運動に追従できなくなり、気体の流路から外れて金属繊維と衝突するようになる。このストークス数Stkを参考にしつつ、気体の流速を制御することと、繊維径を選択することとにより、捕集目的の粒子の粒径を選択することができる。実施の形態では金属繊維の繊維径は極めて小さいので、インパクタほど流速を大きくする必要がない。また、金属繊維は、粒子の慣性だけではなく、さえぎり、重力、静電気力、拡散などの捕集機構によっても粒子を捕集することができる。
 ペクレ数Peは、気流により粒子が運ばれる効果と、拡散によって粒子が運ばれる効果との比率を表す数であり、流速、繊維径に比例し、拡散係数に反比例する。拡散の影響を少なくするには、ペクレ数Peを大きくする必要がある。粒径が小さいほど、拡散係数が大きくなり、繊維径は小さい値が選択されているので、流速を高めることが粒径の選択性を高めることに好ましいことがわかる。以上から、流速、繊維径等を任意に選択する(具体的には、粒子分級用シートにおける繊維径と目開きと空間率と空間形状とのうちの少なくとも一つを任意に選択する)ことで、目的とする粒子を金属繊維により捕集ないし分級することができる。
 そして、実施の形態では、特に、粗粒子除去用慣性フィルタ3の定径貫通孔3c内の金属繊維3dの充填量調整により、当該粗粒子除去用慣性フィルタ3の定径貫通孔3c内部の空隙率調整を行うことと、金属繊維3dの繊維径を変更することにより、定径貫通孔3c内における気流流通性を大きく低下させず圧損を小さく抑制することができる。その結果、小型の気流吸引ポンプで小流量吸引しても粗粒子除去に必要な粒子慣性効果が得られる。
 また、実施形態の特徴であるナノ粒子分級用慣性フィルタ5の粒子分級用シート9により、ナノ粒子を分級することができるが、この粒子分級用シート9がメッシュ状になっているので、流体圧力が作用しても流体通過方向に圧縮されるようなことがなく、また、メッシュ状により空間率、空間形状も均一化し、これにより分級特性をシャープにすることができる。また、粒子分級用シート9の充填率を均一にすることができるので、分級径を制御しやすいうえに、粒子分級用シート9を例えば多層に積層することで分級径を現場で容易に調整することができるようになる。
 また、粒子分級用シート9における流体の流通性はほとんど低下するようなことがないので、吸引ポンプとしても小型のもので小流量吸引しても圧損を小さく抑制しつつ、ナノ粒子分級に必要な粒子慣性効果を得ることができるようになる。
 図1で示されるナノ粒子分級用慣性フィルタ5における円柱状プレート5bを、図5における(a1)、(b1)、(c1)でそれぞれ示されるように流量調整ノズル13a~13cとして別の流量調整ノズルと交換可能として、流量調整を行うことができるようにしている。各流量調整ノズル13a~13cそれぞれの下端開口側には、それぞれ粒子分級用シート15a~15cが配置されている。この粒子分級用シート15a~15cの外周にはOリング17a~17cが配置され、これにより図中矢印で示される流体通過路は外部から密封されている。
 図5における(a1)の流量調整ノズル13aを備えた慣性フィルタ5aの場合は、縮径貫通孔13a1の流体通過方向単位長さ当たりの縮径率は通常であり、流体流速は基準流速となっている。これにより、図5における(a2)で横軸に粒径、縦軸に捕集効率をとると、その捕集特性は特性c1で示されるようになる。そして、図5における(b1)で示される流量調節ノズル13bを備えた慣性フィルタ5bの場合、流量調整ノズル13b1の縮径貫通孔13b1の縮径率が大きく、流体流速が大きくなるので、図5における(b2)で示されるように捕集効率は効率c1から効率c2になり、50%カットオフ(分級)径が小さくなる。また、図5における(c1)に示される流量調節ノズル13cを備えた慣性フィルタ5cの場合、流量調整ノズル13c1の縮径貫通孔13c1の縮径率が小さく、流体流速が小さくなるので、図5における(c2)で示されるように捕集効率は効率c1から効率c3になり、分級径が大きくなる。
 すなわち、使用流量が一定の場合、流量調整ノズルを流量調整ノズル13a~13cに組み替えることにより分級径を段階的に変更し、これにより粒径分布が分かり、また、流量が相違する装置に接続しても、流体通過速度を一定にすることで、分級径を一定にすることができる。これは特定用途で分級径が一定であるべき用途例えば環境測定で用いると有用である。
 図6A-1~図6A-3を参照して流量調整ノズルによる流量調整を説明すると、図6A-1に示される慣性フィルタ25aは、流量調整ノズル19aと、粒子分級用シート21aと、Oリング23aとを有する。図6A-2には流量調整ノズル19aの表面が、図6A-3は同流量調整ノズル19aの裏面がそれぞれ示される。これに対して図6B-1に示される慣性フィルタ25bは、流量調整ノズル19bと、粒子分級用シート21bと、Oリング23bとを有する。図6B-2は流量調整ノズル19bの表面、図6B-3は同流量調整ノズル19bの裏面がそれぞれ示される。なお、矢印は流体通過方向が示される。
 図6A-1の慣性フィルタ25aでは流量調整ノズル19aにおける縮径貫通孔27aが1つであるのと比較して、図6B-1の慣性フィルタ25bでは流量調整ノズル19bにおける縮径貫通孔27bが複数であるので、分級特性を一定にして流量をより多く増加させることができるようになる。
 図7を参照して本発明の別の実施形態にかかる粒子分級装置を説明する、この粒子分級装置29においては、図1のそれと同様に、粗粒子除去用慣性フィルタ31と、ナノ粒子分級用慣性フィルタ33と、粒子捕集/装置導入部35とを有する一方で、ナノ粒子分級用慣性フィルタ33に配置される粒子分級用シート37が複数の粒子分級用シート37a~37cで積層されて構成されている。そしてこのように粒子分級用シート37a~37cの積層構造とされている場合、図8で横軸に粒子分級用シートの積層枚数、縦軸に50%カットオフ径(分級径)とした分級特性で示されるように積層枚数が増加すると、分級径が小さくなるので、このことを利用して、分級径を現場で調整することができる。なお、39はナノ粒子分級用慣性フィルタ33における流量調整ノズルである。また、図7では粒子分級用シート37の枚数は図解の都合で、3枚となっているが、3枚にはなんら限定されない。
 図9Aにナノ粒子分級用慣性フィルタ41が示され、図9Bにその分解構成が示される。このナノ粒子分級用慣性フィルタ41は、フィルタケース43内部に組み替え可能な流量調整ノズル45と、組み替え可能な複数の粒子分級用シート47a~47cと、組み替え可能な複数の介装スペーサ49a~49cと、を含む。
 粒子分級用シート47a~47cは、所定のシート厚さを有すると共に流量調節ノズル45の下流側開口の円形状の面積より大きい円形状のシート面積を有し、そのうちの一部が流量調節ノズル45の下流側開口に対向していると共に、介装スペーサ49a~49cは粒子分級用シート47a~47cに対して交互に積層され、それぞれ、粒子分級用シート47a~47cと同じ円形状で同面積であると共に同程度のスペーサ厚さを有して流量調節ノズル45の下流側開口と同径の貫通孔50a~50cが形成されている。これにより、介装スペーサ49a~49cの積層構造によるこれら貫通孔50a~50cの集合により流体流速を一定とする貫通孔を構成することができる。
 以上により図9A、図9Bで示されるナノ粒子分級用慣性フィルタ41にあっては、それぞれを構成する部品が組み替え可能であるので、それらの組み換えで流体流速を制御したり分級を制御したりすることが容易にできるようになる。
 図10を参照して図9A、図9Bに示されるナノ粒子分級用慣性フィルタ41で複数の粒子分級用シート47a~47cと、組み替え可能な介装スペーサ49a~49cと、を組み替えることで分級径を制御する例を説明する。図10における(a1)には、3枚の粒子分級用シート47a~47cと、3枚の介装スペーサ49a~49cとを有する慣性フィルタ51が示され、図10における(a2)には、その分級特性c4が示される。図10における(b1)には、5枚の粒子分級用シート47a~47eと4枚の介装スペーサ49a~49dとを有する慣性フィルタ53が示され、図10における(b2)には、その分級特性c5が示される。図10における(c1)には、2枚の粒子分級用シート47a,47bと2枚の介装スペーサ49a,49bとを有する慣性フィルタ55が示され、図10(c2)にはその分級特性c6が示される。図10における(d)には、粒子分級用シートの枚数を横軸、分級を縦軸とする分級径特性が示される。図10における(d)に示されるように、粒子分級用シートの積層枚数が増加すると、分級径が小さくなることがわかる。
 図11を参照して流量調整ノズルおよび介装スペーサにより分級径を制御する例を説明する。図11における(a1)には、基準流速を与える流量調整ノズル45a、粒子分級用シート47a~47c、および介装スペーサ48a1~48a3を有する慣性フィルタ57が示される。図11における(a2)には、慣性フィルタ57の分級特性c7が示される。この分級特性c7は流量調節ノズル45aが備える縮径貫通孔51aの流体通過方向での単位長さ当たりの直径の縮径率および介装スペーサ48a1~48a3により与えられるものであり、これを基準流体流速とする。そして図11における(b1)には、基準流速より大きい流速を与える流量調整ノズル45b、粒子分級用シート47a~47c、および介装スペーサ48b1~48b3を有する慣性フィルタ59が示される。図11における(b2)には、慣性フィルタ59の分級特性c8が示される。この流量調節ノズル45bの縮径貫通孔51bの縮径率は大きく、介装スペーサ48b1~48b3の貫通孔径は小さい、そのため、流体流速が上記基準流体流速よりも大きく流体中のナノ粒子の慣性衝突効果が大きくなる結果、この分級特性は特性c7から特性c8になり、より粒径が小さいナノ粒子を捕集することができるようになる。
 図11における(c1)には、基準流速より大きい流速を与える流量調整ノズル45c、粒子分級用シート47a~47c、および介装スペーサ48c1~48c3を有する慣性フィルタ61が示される。図11における(c2)には、慣性フィルタ61の分級特性c9が示される。この流量調節ノズル45cの縮径貫通孔51cの縮径率は小さく、介装スペーサ48c1~48c3の貫通孔径は大きい。そのため、流体流速が上記基準流体流速よりも小さく流体中のナノ粒子の慣性衝突効果が小さくなる結果、この分級特性は、特性c7から特性c9に変化する。
 これらの図で明らかであるように、流量調整ノズル45a~45cおよび介装スペーサ48a1~48a3,48b1~48b3,48c1~48c3の組み換えで、分級径を制御することができることがわかる。
 図12を参照して介装スペーサで分級径を制御する例を説明する。図12における(a1)には、基準空間率を与える介装スペーサ49a1~49c1を有する慣性フィルタ63が示され、図12における(a2)には、慣性フィルタ63の分級特性c9が示される。この慣性フィルタ63における空間率を基準空間率とする。この慣性フィルタ63における介装スペーサ49a1~49c1それぞれのスペーサ厚さを例えばtとする。全体では介装スペーサ49a1~49c1により構成される定径貫通孔長さは、孔長3tである。47a~47cは粒子分級用シートである。
 そして図12における(b1)には、介装スペーサ49a2~49c2の慣性フィルタ65が示され、図12における(b2)には、慣性フィルタ65の分級特性c10が示される。この慣性フィルタ65の場合、介装スペーサ49a2~49c2それぞれのスペーサ厚さは例えば2tであり、これにより、慣性フィルタ63と比較して介装スペーサ49a2~49c2により構成される定径貫通孔長さは、孔長6tとなる。そのため、空間率が大きくなって(充填率は小)、分級特性はより粒径が小さいナノ粒子を捕集することができるようになる。
 図12における(c1)には、介装スペーサ49a3~49c3を有する慣性フィルタ67が示され、図12における(c2)には慣性フィルタ67の分級特性c11が示される。この慣性フィルタ67の場合、介装スペーサ49a3~49c3それぞれのスペーサ厚さは例えば0.5tであり、これにより、慣性フィルタ63と比較して介装スペーサ49a3~49c3により構成される定径貫通孔長さは、孔長1.5tとなる。そのため、空間率が小さくなる(充填率は大)。これらの図で明らかであるように、介装スペーサの組み換えで、分級径を図12における(a2)、(b2)、(c2)に示されるように制御することができることがわかる。
 図13A-1~図13B-3を参照して流量調整ノズルと介装スペーサとによる流量調整を行う例を説明する。図13A-1に示される慣性フィルタ69は、流量調整ノズル50a、粒子分級用シート52a~52c、および介装スペーサ54a1~54c1を有する。図13A-2には、流量調整ノズル50aの平面図と裏面図とが示され、図13A-3には、介装スペーサ54a1~54c1の平面図が示される。流量調整ノズル50a、粒子分級用シート52a~52c、および介装スペーサ54a1~54c1は、それぞれ流体通過方向に直交する面内での外形寸法は同じである。粒子分級用シート52a~52cは、流量調節ノズル50aと介装スペーサ54a1~54c1とに交互に挟まれた状態で積層されている。介装スペーサ54a1~54c1にはそれぞれ流量調整ノズル50aの縮径貫通孔70の下流側開口と同径の単一貫通孔70a~70cが形成されており、それら単一貫通孔70a~70cは同一位置で流体通過方向A0と重なっている。
 図13B-1に示される慣性フィルタ71は、流量調整ノズル50b、粒子分級用シート52a~52c、および介装スペーサ54a2~54c2を有する。図13B-2には流量調整ノズル50bの平面図と裏面図とが示され、図13B-3には、介装スペーサ54a2~54c2の平面図が示される。流量調整ノズル50b、粒子分級用シート52a~52c、介装スペーサ54a2~54c2は、それぞれ流体通過方向に直交する面内での外形寸法は同じである。粒子分級用シート52a~52cは、流量調節ノズル50bと介装スペーサ54a2~54c2とに交互に挟まれた状態で積層されている。流量調節ノズル50bには、複数の縮径貫通孔70が形成され、介装スペーサ54a2~54c2にはそれぞれ流量調整ノズル50bの複数の縮径貫通孔70´それぞれの下流側開口と対応しかつそれと同径の複数の貫通孔70a~70cが形成されており、それら複数の貫通孔70a~70cはそれぞれ同一位置で流体通過方向A1-A3で重なっている。
 図13A-1に示される慣性フィルタ69と図13B-1に示される慣性フィルタ71とは、流体通過方向における貫通孔の数が相違しているが、図13A-1の慣性フィルタ69の流体通過方向A0での流体流速と、図13B-1の慣性フィルタ71の流体通過路A1~A3の流体流速とを一定で互いに同じとし、慣性フィルタ69の流量よりも慣性フィルタ71の流量をより多くすることができる。
 図14を参照して実施形態の慣性フィルタの実用例を説明する。図14において横軸に空気力学径、縦軸に捕集効率をとる慣性フィルタの分級特性が示される。c12は理論値による分級特性であり、黒四角◆、黒三角▲は5枚の粒子分級用シートと5枚の介装スペーサとを有する第1、第2慣性フィルタの分級特性であり、×は5枚の粒子分級用シートと20枚の介装スペーサとを有する第3慣性フィルタの分級特性である。ΔP=4.14、4.34、5.41(kPa)は各第1~第3慣性フィルタの初期圧力損失であり、cut-off径=165,160,130(nm)は、各第1~第3慣性フィルタの分級径である。また、流量は1.5リットル/分である。以上から、実施形態の慣性フィルタでは、理論値と実験値とが略一致しており、良好な分級特性を有する慣性フィルタであることが判る。
 図15を参照して、製品としての慣性フィルタが示される。この慣性フィルタは、2つの円筒状雌雄一対のコネクタ80,81を備え、一方の雄コネクタ80の先端凸部80aを他方の雌コネクタ81の凹部81aに入れ込むことで内部に矢印方向の流体通過路を構成する。そして、この状態で雌コネクタ81の外周螺旋溝81bに雄コネクタ80側からナット82を回し込むことで、該ナット82で両コネクタ80,81を締結した構造となっている。そして、雄コネクタ80の先端凸部80aの内部に矢印方向に縮径する貫通孔80bと、複数の粒子分級用シート80cおよび介装スペーサ80dを設けた構成となっている。
 以上説明したように本実施形態では、複数の粒子分級穴を一様な配列態様で有する粒子分級用シートを具備し、この粒子分級用シートの面積を、それが設置される位置における流体通過面積よりも大きくすると共に、その一部を当該流体通過路を粒子分級のため流体通過方向で2つに隔てる隔壁状に設置した慣性フィルタ構成としたので、定径貫通孔内に繊維を詰め込んだ慣性フィルタとは異なり、意図した初期分級性能を得やすく、かつ、長期にわたり分級特性が安定した慣性フィルタを提供することができる。特に、従来のように定径貫通孔に繊維を詰め込んだ場合のように、繊維の充填密度、配向、空間形状が不均一なため初期分級特性が制御し難いことはなく、また、分級動作中に気流から受ける圧力で繊維が流体通過方向に圧縮されて安定した分級が難しくなることはなく、また、繊維からシートに代わったのでフィルタ洗浄も容易となり、慣性フィルタの再利用も容易となる、など、意図した初期分級性能を得やすく、かつ、長期にわたり捕集効率が低下しにくく安定した粒子分級を行うことができる慣性フィルタを提供することができる。
 本発明にかかるは、流体通過路内に配置されて流体中の粒子を慣性衝突効果等により分級することができる慣性フィルタおよびこれを備えた粒子分級装置として特に有用である。
 1 粒子分級装置
 3 粗粒子除去用慣性フィルタ
 5 ナノ粒子分級用慣性フィルタ
 9 粒子分級用シート

Claims (18)

  1.  流体通過路に設置される慣性フィルタであって、
     当該慣性フィルタは、複数の粒子分級穴を一様な配列態様で有する粒子分級用シートを具備し、
     上記粒子分級用シートは、それが設置される位置における流体通過面積よりも大きいシート面積を有し、かつ、その一部が当該流体通過路を粒子分級のため流体通過方向で2つに隔てる隔壁状に設置されている、
     ことを特徴とする慣性フィルタ。
  2.  上記粒子分級用シートは、流体通過方向において単一のシートで構成されている、
     請求項1に記載の慣性フィルタ。
  3.  上記粒子分級用シートは、流体通過方向において複数枚になって積層されている、
     請求項1に記載の慣性フィルタ。
  4.  上記粒子分級用シートは、上記粒子分級穴として多数の貫通孔をメッシュ状の配列態様で備えたシートである、
     請求項1に記載の慣性フィルタ。
  5.  上記粒子分級用シートは、線径が5~20μm、目開きが40~300μmのメッシュ状シートである、
     請求項4に記載の慣性フィルタ。
  6.  上記粒子分級用シートの流体通過方向上流側に当該流体通過方向に縮径する縮径貫通孔を備えた流量調節ノズルを、流体流速調整に際して当該縮径貫通孔の縮径率が相違する他の流量調節ノズルと組み替え可能に配置した、
     請求項1に記載の慣性フィルタ。
  7.  上記粒子分級用シートを、繊維径と目開きと空間率と空間形状とのうちの少なくとも一つが相違する他の粒子分級用シートと組み替え可能に配置した、
     請求項1に記載の慣性フィルタ。
  8.  複数の粒子分級用シートの流体通過方向間に介装スペーサを介装して積層すると共に、当該介装スペーサを貫通孔の径が相違する他の介装スペーサと組み替え可能に配置した、
     請求項1に記載の慣性フィルタ。
  9.  上記粒子分級用シートの流体通過方向上流側に当該流体通過方向に縮径する縮径貫通孔を備えた流量調節ノズルを、流量調整に際して縮径貫通孔の数が相違する他の流量調節ノズルと組み替え可能に配置した、
     請求項1に記載の慣性フィルタ。
  10.  上記粒子分級用シートの流体通過方向上流側に当該流体通過方向に縮径する流路を備えた流量調節ノズルを配置すると共に、上記粒子分級用シートの複数を介装スペーサと交互に積層した、
     請求項1に記載の慣性フィルタ。
  11.  上記粒子分級用シートを、繊維径と目開きと空間率と空間形状とのうちの少なくとも一つが相違する他の粒子分級用シートと組み替えることで分級制御可能とした、
     請求項10に記載の慣性フィルタ。
  12.  上記粒子分級用シートの積層枚数制御で分級制御可能とした、
     請求項11に記載の慣性フィルタ。
  13.  上記介装スペーサの積層枚数制御で分級制御可能とした、
     請求項10に記載の慣性フィルタ。
  14.  上記流量調節ノズルを流路が相違する別の流量調節ノズルと組み替え可能として流速調整可能とした、
     請求項10に記載の慣性フィルタ。
  15.  上記介装スペーサを貫通孔の径が相違する他の介装スペーサと組み替え可能として流速調整可能とした、
     請求項10に記載の慣性フィルタ。
  16.  上記介装スペーサのスペーサ厚さ制御で分級制御可能とした、
     請求項11に記載の慣性フィルタ。
  17.  上記流量調節ノズルの流路数およびこれに対応する介装スペーサの貫通孔数の制御で流量調整可能とした、
     請求項11に記載の慣性フィルタ。
  18.  流体通過方向上流側に非圧縮性繊維を充填した慣性フィルタを粗粒子除去用として配置し、
     下流側に、請求項1に記載の慣性フィルタをナノ粒子分級用として配置した、 ことを特徴とする粒子分級装置。
PCT/JP2010/006458 2010-06-30 2010-11-02 慣性フィルタおよび粒子分級装置 WO2012001752A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2803088A CA2803088C (en) 2010-06-30 2010-11-02 Inertial filter and particle classification apparatus
US13/806,118 US8978490B2 (en) 2010-06-30 2010-11-02 Inertial filter and particle classification apparatus
EP10854049.3A EP2589441B1 (en) 2010-06-30 2010-11-02 Inertial filter and particle classification apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010148870A JP4714915B1 (ja) 2010-06-30 2010-06-30 慣性フィルタおよび粒子分級装置
JP2010-148870 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012001752A1 true WO2012001752A1 (ja) 2012-01-05

Family

ID=44350466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006458 WO2012001752A1 (ja) 2010-06-30 2010-11-02 慣性フィルタおよび粒子分級装置

Country Status (6)

Country Link
US (1) US8978490B2 (ja)
EP (1) EP2589441B1 (ja)
JP (1) JP4714915B1 (ja)
CA (1) CA2803088C (ja)
TW (1) TWI524924B (ja)
WO (1) WO2012001752A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832608B1 (ja) * 2011-06-20 2011-12-07 ニッタ株式会社 慣性フィルタ
CN102743924A (zh) * 2012-06-12 2012-10-24 东莞理工学院 惯性滤膜及其粒子分级采样装置
CN102680288A (zh) * 2012-06-12 2012-09-19 东莞理工学院 粒子分级用惯性纤维滤膜装置
CN102914491B (zh) * 2012-10-19 2015-09-09 东莞市汇海环保科技有限公司 具有实时监测功能的采集器
US10315164B2 (en) 2013-04-03 2019-06-11 William A. Kelley Nanoscale gaseous material filtering and pumping systems and methods of use thereof
US20140298762A1 (en) * 2013-04-03 2014-10-09 William A Kelley Nano Filter Pump
GB201516802D0 (en) * 2015-09-22 2015-11-04 Nanopharm Ltd Apparatus and method for determination of the dose of a powder inhalation formulation
CN105750203B (zh) * 2016-03-18 2017-12-22 盐城市自强化纤机械有限公司 多级鼓风筛料设备
JP6780275B2 (ja) * 2016-03-28 2020-11-04 富士ゼロックス株式会社 送風管、送風装置及び画像形成装置
TWI656904B (zh) * 2017-11-28 2019-04-21 濾能股份有限公司 無膠式氣密過濾設備
EP3721203A4 (en) 2017-12-07 2021-05-12 The Governors of the University of Alberta FILTERS TO IMITATE A REGIONAL LUNG DEPOSIT
US12098859B2 (en) * 2020-12-01 2024-09-24 AirPure Control Systems, LLC Feedback-driven air treatment system for new and existing buildings

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015542A (ja) * 1983-07-07 1985-01-26 Agency Of Ind Science & Technol ダスト粒径分布測定用試料採取装置
JPS6121768A (ja) * 1984-04-19 1986-01-30 プロ−デイ ビツトリオ 空気中の浮遊粒子を粒径に応じて分級する装置
JPS61291014A (ja) * 1985-06-19 1986-12-20 Sumitomo Metal Ind Ltd 多層フイルタを使用したダスト捕集方法
JP2001104736A (ja) * 1999-10-08 2001-04-17 Nippon Soda Co Ltd 粉塵を含む排ガス処理方法
JP2002035698A (ja) * 2000-07-27 2002-02-05 Kubota Corp 風力篩装置及び篩網構造
JP2006198577A (ja) * 2005-01-24 2006-08-03 Canon Inc 微粒子の分級方法および成膜方法
JP2006263713A (ja) * 2005-02-28 2006-10-05 Sekisui Plastics Co Ltd 風力式分選装置
JP2007501339A (ja) * 2003-08-06 2007-01-25 コロンボ,アントニオ,プリモ 個人保護用の空気圧式装置およびそのような装置を含む関連する衣類
JP2008070222A (ja) 2006-09-14 2008-03-27 Kanomax Japan Inc 微小粒子分級装置、及び微小粒子サンプラ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100643A (ja) * 1972-10-25 1974-09-24
IT1179316B (it) * 1984-04-19 1987-09-16 Vittorio Prodi Dispositivo per la separazione in classi granulometriche di particelle di aerosol
JP2515187Y2 (ja) * 1990-02-17 1996-10-30 株式会社堀場製作所 薬品含浸フィルタを用いたガス中の特定成分捕集装置
AU2001229358A1 (en) * 2000-01-14 2001-07-24 Pall Corporation Filter for gas analysis

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015542A (ja) * 1983-07-07 1985-01-26 Agency Of Ind Science & Technol ダスト粒径分布測定用試料採取装置
JPS6121768A (ja) * 1984-04-19 1986-01-30 プロ−デイ ビツトリオ 空気中の浮遊粒子を粒径に応じて分級する装置
JPS61291014A (ja) * 1985-06-19 1986-12-20 Sumitomo Metal Ind Ltd 多層フイルタを使用したダスト捕集方法
JP2001104736A (ja) * 1999-10-08 2001-04-17 Nippon Soda Co Ltd 粉塵を含む排ガス処理方法
JP2002035698A (ja) * 2000-07-27 2002-02-05 Kubota Corp 風力篩装置及び篩網構造
JP2007501339A (ja) * 2003-08-06 2007-01-25 コロンボ,アントニオ,プリモ 個人保護用の空気圧式装置およびそのような装置を含む関連する衣類
JP2006198577A (ja) * 2005-01-24 2006-08-03 Canon Inc 微粒子の分級方法および成膜方法
JP2006263713A (ja) * 2005-02-28 2006-10-05 Sekisui Plastics Co Ltd 風力式分選装置
JP2008070222A (ja) 2006-09-14 2008-03-27 Kanomax Japan Inc 微小粒子分級装置、及び微小粒子サンプラ

Also Published As

Publication number Publication date
JP2012013487A (ja) 2012-01-19
US20130086876A1 (en) 2013-04-11
EP2589441A4 (en) 2018-01-10
EP2589441A1 (en) 2013-05-08
TWI524924B (zh) 2016-03-11
CA2803088A1 (en) 2012-01-05
TW201210672A (en) 2012-03-16
EP2589441B1 (en) 2019-12-25
CA2803088C (en) 2017-02-14
JP4714915B1 (ja) 2011-07-06
US8978490B2 (en) 2015-03-17

Similar Documents

Publication Publication Date Title
WO2012001752A1 (ja) 慣性フィルタおよび粒子分級装置
JP4832608B1 (ja) 慣性フィルタ
Qian et al. Effect of filtration operation and surface treatment on pulse-jet cleaning performance of filter bags
US20160214049A1 (en) High efficiency paint arrestance filter
JP4822433B2 (ja) 微小粒子分級装置、及び微小粒子サンプラ
Patel et al. Gravity orientation and woven drainage structures in coalescing filters
US20210069792A1 (en) Sintered porous material having nodes and fibers of different materials, with different sintering points, and related methods of preparation and use
Zhang et al. Filtration performance of electrospun acrylonitrile-butadiene elastic fiber mats in solid aerosol filtration
US7645327B2 (en) Fractal structured nanoagglomerates as filter media
WO2011001626A1 (ja) 粒子分級装置
JP2011012977A (ja) 微粒子分級用慣性フィルタ
KR102387451B1 (ko) 3차원 격자구조를 가진 미세입자 포집 필터
Yoshida et al. Effect of aperture structure of Dutch weave mesh on flow resistivity
WO2011099093A1 (ja) 粒子分級に用いる慣性フィルタ
JP2011012974A (ja) 粒子分級装置
Pan et al. Experimental and Numerical Investigation of Slip Effect on Nanofiber Filter Performance at Low Pressures
TWI580908B (zh) 濾網裝置、其製造方法以及包含其之空氣濾淨設備
Agui et al. Investigation of the filtration of lunar dust simulants at low pressures
WO2015049301A1 (de) Vorrichtung zur fraktionierung von in einer flüssigkeit enthaltenen partikeln
RU46198U1 (ru) Аэрозольный фильтр
Mullins et al. and Wolfgang Heikamp 2 1Curtin University, Perth, WA, Australia, 2Raschig GmbH, Ludwigshafen, Germany
Wiegmann et al. Simulation studies of deposition mechanisms for aerosol particles in fibrous filters including slip flow
Mackey et al. Reduced Pressure Cyclone Separation Studies using Synthetic Lunar Regolith
Agui et al. Testing of Regeneration Filtration Concepts for Future Spacecraft Applications
Budyka et al. 17 Filtration and Sampling of Aerosols by Fibrous Filters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854049

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2803088

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010854049

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13806118

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE