WO2012000865A1 - 11c-marked peptide for detecting a tumor that expresses an her2/neu receptor - Google Patents

11c-marked peptide for detecting a tumor that expresses an her2/neu receptor Download PDF

Info

Publication number
WO2012000865A1
WO2012000865A1 PCT/EP2011/060447 EP2011060447W WO2012000865A1 WO 2012000865 A1 WO2012000865 A1 WO 2012000865A1 EP 2011060447 W EP2011060447 W EP 2011060447W WO 2012000865 A1 WO2012000865 A1 WO 2012000865A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
her2
neu receptor
tumor
carbon atom
Prior art date
Application number
PCT/EP2011/060447
Other languages
German (de)
French (fr)
Inventor
Friedrich Herberg
Hartmuth C. Kolb
Ursus KRÜGER
Oliver Lade
Arno Steckenborn
Original Assignee
Siemens Aktiengesellschaft
Universität Kassel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Universität Kassel filed Critical Siemens Aktiengesellschaft
Publication of WO2012000865A1 publication Critical patent/WO2012000865A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/534Production of labelled immunochemicals with radioactive label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the invention relates to the use of a peptide for the manufacture ⁇ position of an agent for detecting a tumor expressing a Her2 / neu receptor. It further relates to a radiopharmaceutical comprising such a peptide for the localization of a tumor expressing a Her2 / neu receptor.
  • tumor cells In addition to soluble substances that are released into body fluids, tumor cells also produce molecules that remain anchored to their cell surface. This is mainly to cell receptors, such as receptors of the epidermal growth factor, insulin-like growth factor or wax ⁇ tumshormons. On the basis of these surface molecules, a biochemical chemical detection of tumor cells in vivo by visualizing them using imaging techniques.
  • the Her2 / neu receptor also known as ErbB2 is expressed by a large number of different cancers. It belongs to the family of epidermal growth factor (EGF) receptors. Unlike other receptors of this family, the Her2 / neu receptor itself does not bind ligands, but forms heterodimers with other EGF receptors after they have been ligated. The Her2 / neu receptor thereby contributes to the enhancement of the, via the tyrosine kinase function of the EGF receptors mediated intracellular signal, which is triggered by the binding of the ligand.
  • EGF epidermal growth factor
  • Suitable ligands were radiolabeled so that they could be detected by scintigraphy / positron emission tomography (PET) in the patient's body.
  • PET scintigraphy / positron emission tomography
  • radionuclides via large chelator molecules, for example 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) (Smith-Jones PM et al., 2006).
  • DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
  • the invention is therefore based on the object, a cost-effective and well-tolerated for the patient agent for the detection of a tumor expressing a Her2 / neu receptor to provide.
  • This object is achieved by the use of a peptide for the production of an agent for detection of a tumor expressing a Her2 / neu receptor.
  • peptide refers to an organic compound of at least two amino acids linked via a peptide bond. It includes both oligopeptides of up to about ten amino acids, polypeptides up to about 50 Amino Text ⁇ ren and proteins of up to 150 amino acids, regardless of their primary, secondary or tertiary structure. In this case, both naturally occurring and biotechnologically or synthetically produced compounds are included.
  • the peptide used according to the invention is chosen so that it binds to the Her2 / neu receptor.
  • the peptides can be used to detect tumors that form the Her2 / neu receptor.
  • the peptide is chosen so that the Bin ⁇ connection between the peptide and the Her2 / neu receptor, a so-called lithium-linear coefficient. KD value of ⁇ 100 nM, preferably ⁇ 10 nM, most preferably of 7 , 5 nM.
  • the peptide itself is made of amino acids, that is constructed so that it is very well tolerated by the patient from venezue ⁇ nen or body similar molecules. It is non-toxic and can be naturally metabolized, broken down and excreted ⁇ to be.
  • tumor refers to a local increase in Vo ⁇ lumens of tissue, such as an inflammatory Anschwel- or a spontaneous, unrestrained new formation of cells. Tumor cells often express certain receptor molecules that sit on the cell surface and are bound by specific ligands. These receptors also belong
  • Her2 / neu receptors which are strongly expressed in breast cancers, among others. Many of the tumors expressing the Her2 / neu receptor show aggressively invasive behavior, resulting in a correspondingly unfavorable disease prognosis. In most cases, the extremely increased expression of the Her2 / neu receptor is due to amplification of the
  • Her2 / neu gene (c-erbB2) returned to tumor cells.
  • Tumor cells expressing Her2 / neu receptor can therefore be distinguished well from healthy tissue by means of the peptide used according to the invention, since the tumor cells carry substantially larger amounts of Her2 / neu receptors and therefore more
  • positrons also referred to as ⁇ + radiation
  • positrons hit an electron, they form two photons which move away from each other at an angle of 180 °, ie exactly in the opposite direction.
  • the photons can be detected and used to calculate the position of the positron emission, or of the 11 C carbon atom.
  • the Integra ⁇ tion of a C-11 carbon atom in the peptide used in the invention makes it possible to avoid the use of chemical, physi- perfremder substances.
  • Another advantage of the peptide directly labeled with X1 C lies in the favorable signal / background ratio during detection.
  • the peptide binds specifically to the Her2 / neu receptor and forms a stable complex with it. Free, unbound peptides, on the other hand, are rapidly metabolized and excreted from the organism because they can be rapidly degraded by endogenous enzymes. This creates a strong and specific signal at the position of the Her2 / neu receptor, and the background signal is minimized.
  • the peptide has at least one D-amino acid.
  • D-amino acid With the exception of glycine, amino acids have a chiral center at their alpha carbon atom and can therefore exist as configurational isomers, namely as the D or L amino acid.
  • Endogenous peptides and proteins are largely made up of amino acids in ⁇ L-configuration.
  • most natural proteases and peptidases work stereoselectively and mainly metabolize L-amino acids. Therefore, the degradation of D-amino acids by endogenous enzymes takes longer than that of L-amino acids. This fact can be used to predict the half-life of a protein or peptide.
  • the non-natural amino acids should be chosen so that the binding affinity of the peptide is not altered.
  • other chemical Mo ⁇ dischenen individual amino acids of the peptide are possible to influence the half-life of the peptide specifically.
  • the terminal amino group of the peptide can be replaced by an isonitrile group.
  • Such modes ⁇ fication reduces, mediated by the amino group, in ⁇ ter syndrome with proteolytic enzymes, without the bond between the peptide used in the invention and the
  • the agent is a radiopharmaceutical.
  • radiopharmaceuticals refers to medicines containing radionuclides whose radiation is used for diagnosis and therapy. The main applications are in oncology, Kar ⁇ ogy and neurology, as well as pharmaceutical research.
  • radionuclides gamma or beta-emitting nuclides, for example 133 xenon, "technetium, 68 gallium, and fluorine, used. They are usually attached via Kom ⁇ formers such as DOTA, DTPA or EDTA mono- or polysaccharides.
  • the nuclides are detected by scintigraphy, single photon emission com- puted tomography (SPECT) or positron emission tomography (PET), depending on the nature of their radiation.
  • SPECT single photon emission com- puted tomography
  • PET positron emission tomography
  • conventional radiopharmaceuticals can cause side effects such as anaphylactic or allergic Reaktio ⁇ nen, in the body of a patient.
  • the use of a peptide from the body's own amino acids reduces these
  • the tumor expresses increased levels of the Her2 / neu receptor.
  • the cells of different tumors carry particularly high amounts of Her2 / neu receptors on their surface.
  • Her2 / neu receptors include, for example, lung, breast, and ovarian cancer, carcino ⁇ me, such as breast cancer, and tumors of the gastrointestinal tract.
  • the C-carbon atom is the carbonyl carbon atom of an amino acid.
  • the carbonyl groups are part of the peptide bonds between the amino acids and are located inside the peptide. This ensures that the ⁇ C carbon atom is not cleaved off the peptide, as would be possible with a side chain of one of the amino acids.
  • the C-carbon atom is the carbonyl carbon atom of the N-terminal amino acid of the peptide.
  • This embodiment is particularly preferred because the peptide can be used directly after the on ⁇ bring the 11 C-labeled amino acid.
  • 11 C-carbon has a half-life of only about 20 Minu ⁇ th, so that the radiation dose must be chosen the higher, the more time is between the synthesis of the peptide and its ⁇ ner use. If the 11 C-labeling with the N-terminal amino acid and thus in the last step of the synthesis is applied, the peptide can be used immediately after its synthesis.
  • the time between the processing of the 11 C carbon and the use of the peptide is reduced, so that the radiation loss during the preparation of the peptide is minimized. Therefore, the radiation dose that must be used in the processing of the 11 C carbon to ensure a certain radiation intensity of the product, be correspondingly lower.
  • Another object of the invention is a radiopharmaceutical comprising a peptide having an 11 C carbon atom for the localization of a tumor expressing a Her2 / neu receptor.
  • the radiopharmaceutical invention provides a host ⁇ economically and medically beneficial agent to the posi- tion of a tumor that expresses a Her2 / neu receptor to determine in vivo.
  • the peptides contained therein are distributed into the body and specifically bind to Her2 / neu receptors. As a result, they accumulate on the cells of the tumor where they are detected by the radioactive signal of the C carbon atom. In this way, the position of the tumor in the body of the patient is determined.
  • the tumor expressed in comparison to healthy tissue increased amounts of the Her2 / neu receptor, as WUR observed for various tumor types ⁇ de.
  • Carbon atom is a carbonyl carbon atom of an amino acid, preferably the carbonyl carbon atom of the N-terminal amino acid of the peptide.
  • the radiopharmaceutical is a PET biomarker.
  • PET is an established method for detecting the radiation of radioactive elements and determining their position (Massoud TF, Gambhir SS, 2003). With the aid of detector devices arranged annularly around the patient, sectional images are created on which the decay events are represented in their spatial distribution in the interior of the body. In contrast to the usual scintigraphic chromatography method is nenemission a more precise spatial localization of the positron by the annular configuration of the PET detectors and hence a much more precise and detailed ⁇ profiled image of the tumor possible.
  • PET also makes it possible to quantify the amount of labeled molecules in a tissue.
  • a method of localizing a tumor expressing a Her2 / neu receptor in an organism comprising the steps of a) providing a peptide, b) administering the peptide to the organism, and c) detecting the peptide in the organism Organism using positron Emission tomography (PET).
  • PET positron Emission tomography
  • the peptide used in the invention is a Her2 / neu receptor in the interior of an organism is detected and jui ⁇ Siert, so that the distribution of the Her2 / neu receptor in Kör ⁇ can be observed by a patient. In this way, for example, the size or extent of an infection or of a tumor expressing the Her2 / neu receptor can be determined.
  • the peptide used according to the invention is therefore outstandingly suitable for observing the course and success of a treatment, so-called therapy monitoring.
  • FIG. 1 shows schematically the binding between a peptide 1 and a Her2 / neu receptor 4.
  • Peptide 1 comprises 19 amino acids 2, of which the N-terminal amino acid 3 is radioactively labeled with an 11 C carbon atom.
  • the radioactive label is represented by an asterisk (*).
  • Part of the peptide 1 is attached to the Her2 / neu receptor 4, which is located on the surface of a tumor 18.
  • the 11 C-labeled peptide 1 binds specifically to the Her2 / neu receptor 4, but not to other molecules.
  • the peptide 1 can therefore be used to detect the Her2 / neu receptor 4 ⁇ .
  • the positrons released upon decay of the 11 C carbon are detected by positron emission tomography (PET).
  • PET positron emission tomography
  • the location of the positron emission corresponds to the location of peptide 1 and the bound Her2 / neu- Receptor 4.
  • Peptide 1 can therefore be used to determine the position of a tumor 18 that forms the Her2 / neu receptor 4.
  • a patient is administered a radiopharmaceutical containing the 11 C-labeled peptide 1.
  • Peptide 1 binds specifically to the Her2 / neu receptor 4 and thus accumulates on the tumor 18, whose cells form the Her2 / neu receptor 4. This accumulation is represented by PET and the distribution of the Her2 / neu receptor 4 or the localization of the tumor 18 in the body of the patient is determined. In this way, newly formed metastases carrying the Her2 / neu receptor can be identified by PET.
  • the medication of a tumor therapeutic for example, drug amount and
  • FIG. 2 shows a representation of a peptide having the sequence SEQ ID NO: 1 by means of a chemical formula.
  • the peptide of SEQ ID NO: 1 comprises 35 amino acids 2 of the following sequence: homocysteine proline aspartic acid aspartic acid tyrosine isoleucine serine arginine isoleucine lysine alanine arginine lysine glutamine glutamine asparagine asparagine Leucine-asparagine-proline-aspartic acid-leucine-alanine-alanine-glutamic acid-tryptophan-tyrosine-arginine-asparagine-arginine-methionine-glutamic acid-lysine-asparagine homocysteine.
  • the N-terminal amino acids 2 proline and homocysteine are represented by structural formula, the following amino acids 2 by their respective three-letter code.
  • the amino acid homocysteine is designated Cys H.
  • the sequence of the peptide is also given in SEQ ID NO: 1.
  • the carbonyl carbon atom of the N-terminal homocysteine is a X1 C carbon atom, represented by the number 11 above the carbonyl carbon atom.
  • Peptide 1 is prepared by conventional protein synthesis methods and the 11 C-labeled N-terminal amino acid 3 is added in the last step because the half-life of the 11 C carbon isotope is only about 20 minutes. Characterized in that the peptide synthesis is closed with the 11 C-labeled amino acid from ⁇ , Peptide 1 can be used immediately after labeling.
  • SEQ ID NO: 1 corresponds to the Her2 / neu receptor-binding 2-helix protein MUT-DS (Ren G et al., 2009).
  • the peptide of the sequence SEQ ID NO: 1 belongs to the so-called Affibodies. These are artificial peptides or proteins derived from one of the IgG-binding domains of protein A of the bacterium Staphylococcus aureus. They regularly include 3 alpha helices and are about 7 kDa in size. You do not trigger immunological reactions and are therefore geeig ⁇ net as biomolecules for preparing a radiopharmaceutical.
  • the peptide of sequence SEQ ID NO: 1 comprises only the two alpha helices actually involved in binding to the Her2 / neu receptor 4 (Ren G et al., 2009).
  • Peptide 1 binds specifically to the Her2 / neu receptor 4, which is formed in large quantities by some tumor cells, and it is used to localize ⁇ ren these tumor cells.
  • a mark by 11 C-carbon is particular ⁇ DERS suitable because it does not affect the physiological structure of the Pep ⁇ TIDS 1 and neither the tissue distribution and tolerability of the peptide 1 impaired.
  • Figure 3 shows a schematic representation (greatly simplified by Faller A, Schünke M, The Human Body, Thieme, 2008) of a circulatory system 10 of an organism and the distribution of a peptide 1 therein.
  • the circulatory system 10 comprises various schematically represented organs, such as lung 12, heart 13, liver 14, intestine 15 and kidney 16, and the main arteries 11, which connect these organs.
  • the peptide 1 is represented by triangles along the wires 11.
  • the degradation products 17 of the peptide 1 are represented by individual lines within the outline of the kidney 16 Darge ⁇ .
  • a tumor is to be ⁇ additionally shown 18, are attached to the increased Her2 / neu receptors 4 and peptides thereon. 1
  • the distribution of the peptide 1 in the circulatory system 10 comprises four phases, which are listed along the top-down view.
  • Phase I Peptide 1 is injected into the circulatory system 10 of the organism.
  • Phase II Via the circulatory system 10, the peptide 1 is transpo ted into the organs 12, 13, 14, 15, and 16 of the organism.
  • Phase III The circulating peptide 1 binds specifically to the Her2 / neu receptor 4 and accumulates on the tumor 18 because it produces the Her2 / neu receptor 4.
  • Phase IV Unbound peptide 1 is rapidly metabolised and enzymatically degraded. The organism not failed ⁇ det between own peptides and the peptide 1, because it is composed of amino acids 2, 3, which correspond to the body's own molecules. The degradation products 17 of the peptide of amino acids 1 and 2, 3 collect predominantly they are over the bladder and the ureter excreted ⁇ in the kidney 16 from where.
  • Massoud TF, Gambhir SS Molecular imaging in living subjects: seeing fundamental biological processes in a new light; Genes Dev. 2003 Mar 1; 17 (5): 545-80.

Abstract

The invention relates to the use of a peptide (1) for producing an agent for detecting a tumor (18) that expresses an HER2/neu receptor (4). The peptide (1) bonds to the HER2/neu receptor (4) and has an 11C carbon atom. The invention further relates to a radiopharmaceutical for locating a tumor (18) that expresses an HER2/neu receptor (4). Said radiopharmaceutical comprises a peptide (1) that bonds to the HER2/neu receptor (4) and has an 11C carbon atom.

Description

Beschreibung description
11C-markiertes Peptid zur Detektion eines Tumors, der einen Her2 /neu-Rezeptor exprimiert 11 C-labeled peptide for the detection of a tumor expressing a Her2 / neu receptor
Die Erfindung betrifft die Verwendung eines Peptids zur Her¬ stellung eines Agens zur Detektion eines Tumors, der einen Her2 /neu-Rezeptor exprimiert. Sie betrifft ferner ein Radi- opharmakon, das ein solches Peptid umfasst, zur Lokalisation eines Tumors, der einen Her2 /neu-Rezeptor exprimiert. The invention relates to the use of a peptide for the manufacture ¬ position of an agent for detecting a tumor expressing a Her2 / neu receptor. It further relates to a radiopharmaceutical comprising such a peptide for the localization of a tumor expressing a Her2 / neu receptor.
In der modernen Krebsdiagnostik werden sowohl biochemische Analysen von Blut und anderen Körperflüssigkeiten, als auch bildgebende Verfahren zum Nachweis von Tumoren eingesetzt. Traditionell werden Röntgen, Ultraschall und Kernspintomogra¬ phie verwendet, um ektopische Zellansammlungen zu lokalisie¬ ren. Neuere Verfahren nutzen dazu die erhöhte Stoffwechselak- tivität von Tumorzellen im Vergleich zu gesundem Gewebe. Dabei werden dem Patienten radioaktiv markierte Zuckermoleküle injiziert, die sich in den Tumorzellen ansammeln. Anschließend wird die radioaktive Strahlung dieser Moleküle, bei¬ spielsweise mit einer Gamma Kamera, zur sogenannten Szinti¬ graphie, aufgenommen und die Position des Tumors festge¬ stellt. Biochemisch werden Krebserkrankungen an Hand von Tu- mor spezifischen Molekülen nachgewiesen. Dabei wird die Anwesenheit und Menge dieser Stoffe in Blut- oder Gewebeproben des Patienten bestimmt. Neben löslichen Stoffen, die in die Körperflüssigkeiten abgegeben werden, produzieren Tumorzellen aber auch Moleküle, die an ihrer Zelloberfläche verankert bleiben. Dabei handelt es sich vor allem um Zellrezeptoren, wie beispielsweise Rezeptoren des Epidermalen Wachstumsfaktors, des Insulinähnlichen Wachstumsfaktors oder des Wachs¬ tumshormons. An Hand dieser Oberflächenmoleküle ist ein bio- chemischer Nachweis von Tumorzellen in vivo möglich, indem sie mit bildgebenden Verfahren sichtbar gemacht werden. In modern cancer diagnostics, both biochemical analyzes of blood and other body fluids, as well as imaging techniques for the detection of tumors are used. Traditionally, X-ray, ultrasound and Kernspintomogra ¬ phy be used to take advantage of ectopic cell clusters to localize ¬ ren. Newer methods, the increased metabolic activity of tumor cells compared to healthy tissue. The patient is injected with radioactively labeled sugar molecules that accumulate in the tumor cells. Subsequently, the radioactivity of these molecules, taken at ¬ game as with a gamma camera, the so-called Szinti ¬ chromatography, and the position of the tumor Festge provides ¬. Biochemically, cancers are detected using tumor-specific molecules. The presence and amount of these substances in blood or tissue samples of the patient is determined. In addition to soluble substances that are released into body fluids, tumor cells also produce molecules that remain anchored to their cell surface. This is mainly to cell receptors, such as receptors of the epidermal growth factor, insulin-like growth factor or wax ¬ tumshormons. On the basis of these surface molecules, a biochemical chemical detection of tumor cells in vivo by visualizing them using imaging techniques.
Der Her2 /neu-Rezeptor, auch als ErbB2 bezeichnet, wird von einer großen Anzahl verschiedener Krebsarten exprimiert. Er gehört zur Familie der Epidermalen Wachstumsfaktoren (epidermal growthfactor, EGF) -Rezeptoren . Im Gegensatz zu anderen Rezeptoren dieser Familie bindet der Her2 /neu-Rezeptor selbst keine Liganden, sondern bildet Heterodimere mit anderen EGF- Rezeptoren, nachdem diese durch Liganden gebunden wurden. Der Her2 /neu-Rezeptor trägt dadurch zur Verstärkung des, über die Tyrosin-Kinase Funktion der EGF-Rezeptoren vermittelten, intrazellulären Signals bei, das durch die Bindung des Liganden ausgelöst wird. Um Her2 /neu-Rezeptoren in vivo nachzuweisen, wurden geeignete Liganden radioaktiv markiert, so dass sie mittels Szintigraphie/Positronen-Emissions-Tomographie (PET) im Körper des Patienten detektiert werden konnten. Dazu wurden sie über große Chelatormoleküle, beispielsweise 1,4,7,10- tetraazacyclododecane-1 , 4, 7, 10-tetraacetic acid (DOTA) , mit Radionukliden versehen (Smith-Jones PM et al . , 2006) . DieThe Her2 / neu receptor, also known as ErbB2, is expressed by a large number of different cancers. It belongs to the family of epidermal growth factor (EGF) receptors. Unlike other receptors of this family, the Her2 / neu receptor itself does not bind ligands, but forms heterodimers with other EGF receptors after they have been ligated. The Her2 / neu receptor thereby contributes to the enhancement of the, via the tyrosine kinase function of the EGF receptors mediated intracellular signal, which is triggered by the binding of the ligand. To detect Her2 / neu receptors in vivo, suitable ligands were radiolabeled so that they could be detected by scintigraphy / positron emission tomography (PET) in the patient's body. For this they were provided with radionuclides via large chelator molecules, for example 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) (Smith-Jones PM et al., 2006). The
Herstellung solcher radioaktiv-markierter Moleküle ist jedoch sehr aufwendig, da die drei Komponenten, Ligand, Chelator und Radionuklid, erst individuell bereitgestellt und anschließend verbunden werden müssen. Darüber hinaus verursachen herkömm- liehe radioaktiv-markierte Her2 /neu-Rezeptor-Liganden durch ihre körperfremden radioaktiven Elemente und chemischen Chelatormoleküle bei vielen Patienten Nebenwirkungen, wie Unwohlsein oder Allergien. Der Erfindung liegt daher die Aufgabe zugrunde, ein kostengünstiges und für den Patienten gut verträgliches Agens zur Detektion eines Tumors, der einen Her2 /neu-Rezeptor exprimiert, bereitzustellen. Diese Aufgabe wird durch die Verwendung eines Peptids zur Herstellung eines Agens zur Detektion eines Tumors, der einen Her2 /neu-Rezeptor exprimiert, gelöst. Indem ein Peptid, das an den Her2 /neu-Rezeptor bindet und ein 11C-Kohlenstoffatom aufweist, verwendet wird, kann das Agens kostengünstig hergestellt und in dem Organismus, in dem der Tumor nachgewiesen wird, gut verstoffwechselt werden. However, preparation of such radiolabeled molecules is very expensive, since the three components, ligand, chelator and radionuclide, must first be provided individually and then connected. In addition, conventional radioactive-labeled Her2 / neu receptor ligands cause side effects such as malaise or allergies in many patients due to their foreign radioactive elements and chemical chelator molecules. The invention is therefore based on the object, a cost-effective and well-tolerated for the patient agent for the detection of a tumor expressing a Her2 / neu receptor to provide. This object is achieved by the use of a peptide for the production of an agent for detection of a tumor expressing a Her2 / neu receptor. By using a peptide which binds to the Her2 / neu receptor and has an 11 C carbon atom, the agent can be inexpensively produced and metabolized well in the organism in which the tumor is detected.
Der Begriff "Peptid" bezeichnet eine organische Verbindung aus mindestens zwei, über eine Peptidbindung verknüpften, Aminosäuren. Er umfasst dabei sowohl Oligopeptide aus bis zu ca. zehn Aminosäuren, Polypeptide aus bis zu ca. 50 Aminosäu¬ ren als auch Proteine von bis zu 150 Aminosäuren, unabhängig von deren Primär-, Sekundär- oder Tertiärstruktur. Dabei sind sowohl natürlich vorkommende als auch biotechnologisch oder synthetisch hergestellte Verbindungen umfasst. Das erfin- dungsgemäß verwendete Peptid wird so gewählt, dass es an den Her2 /neu-Rezeptor bindet. Geeignet sind dazu Antikörper und deren Fragmente, wie beispielsweise Trastuzumab, Affibodies (US 2010/0048868), Nanobodies (WO 2009/068625) und andere Po¬ lypeptide (wie in WO 2009/080810 beschrieben), die an den Her2 /neu-Rezeptor binden. Durch ihre spezifische Bindung an den Her2 /neu-Rezeptor können die Peptide zum Nachweis von Tumoren eingesetzt werden, die den Her2 /neu-Rezeptor bilden. Vorzugsweise wird das Peptid dabei so gewählt, dass die Bin¬ dung zwischen dem Peptid und dem Her2/neu Rezeptor einen li- nearen Koeffizienten, sog. kD-Wert, von < 100 nM, bevorzugt von < 10 nM, am meisten bevorzugt von 7,5 nM aufweist. Das Peptid selbst ist aus Aminosäuren, das heißt aus körpereige¬ nen bzw. körperähnlichen Molekülen aufgebaut, so dass es für den Patienten sehr gut verträglich ist. Es ist nicht toxisch und kann natürlich verstoffwechselt , abgebaut und ausgeschie¬ den werden. The term "peptide" refers to an organic compound of at least two amino acids linked via a peptide bond. It includes both oligopeptides of up to about ten amino acids, polypeptides up to about 50 Aminosäu ¬ ren and proteins of up to 150 amino acids, regardless of their primary, secondary or tertiary structure. In this case, both naturally occurring and biotechnologically or synthetically produced compounds are included. The peptide used according to the invention is chosen so that it binds to the Her2 / neu receptor. Suitable are, antibodies and fragments thereof, such as trastuzumab, affibodies (US 2010/0048868), Nanobodies (WO 2009/068625), and other Po ¬ lypeptide, (as described in WO 2009/080810 described) to the Her2 / neu receptor tie. By their specific binding to the Her2 / neu receptor, the peptides can be used to detect tumors that form the Her2 / neu receptor. Preferably, the peptide is chosen so that the Bin ¬ connection between the peptide and the Her2 / neu receptor, a so-called lithium-linear coefficient. KD value of <100 nM, preferably <10 nM, most preferably of 7 , 5 nM. The peptide itself is made of amino acids, that is constructed so that it is very well tolerated by the patient from körpereige ¬ nen or body similar molecules. It is non-toxic and can be naturally metabolized, broken down and excreted ¬ to be.
Der Begriff "Tumor" bezeichnet eine örtliche Zunahme des Vo¬ lumens eines Gewebes, etwa durch eine entzündliche Anschwel- lung oder eine spontane, ungehemmte Neubildung von Zellen. Tumorzellen exprimieren häufig bestimmte Rezeptormoleküle, die auf der Zelloberfläche sitzen und von spezifischen Liganden gebunden werden. Zu diesen Rezeptoren gehören auch The term "tumor" refers to a local increase in Vo ¬ lumens of tissue, such as an inflammatory Anschwel- or a spontaneous, unrestrained new formation of cells. Tumor cells often express certain receptor molecules that sit on the cell surface and are bound by specific ligands. These receptors also belong
Her2 /neu-Rezeptoren, die unter anderem in Mammakarzinomen stark exprimiert werden. Viele der Tumore, die den Her2/neu- Rezeptor exprimieren, zeigen ein aggressiv invasives Verhalten, was zu einer entsprechend ungünstigen Krankheitsprognose führt. In den meisten Fällen geht die extrem erhöhte Expres- sion des Her2 /neu-Rezeptors auf eine Amplifikation des Her2 / neu receptors, which are strongly expressed in breast cancers, among others. Many of the tumors expressing the Her2 / neu receptor show aggressively invasive behavior, resulting in a correspondingly unfavorable disease prognosis. In most cases, the extremely increased expression of the Her2 / neu receptor is due to amplification of the
Her2/neu Gens (c-erbB2) in Tumorzellen zurück. Her2/neu- Rezeptor exprimierende Tumorzellen können daher, mittels des erfindungsgemäß verwendeten Peptids, gut von gesundem Gewebe unterschieden werden, da die Tumorzellen wesentlich größere Mengen an Her2 /neu-Rezeptoren tragen und deshalb auch mehr Her2 / neu gene (c-erbB2) returned to tumor cells. Tumor cells expressing Her2 / neu receptor can therefore be distinguished well from healthy tissue by means of the peptide used according to the invention, since the tumor cells carry substantially larger amounts of Her2 / neu receptors and therefore more
Peptide an sie binden. Das ermöglicht eine zuverlässige Loka¬ lisation des Tumors. Bind peptides to them. This allows a reliable Loka ¬ lization of the tumor.
Die Detektion des Peptids und des daran gebundenen Her2/neu- Rezeptors erfolgt über ein integriertes 11C-Kohlenstoffatom. Beim Zerfall des 11C-Kohlenstoffisotops werden Positronen, die auch als ß+-Strahlung bezeichnet werden, gebildet. Stoßen die Positronen auf ein Elektron, bilden sie zwei Photonen, die sich in einem Winkel von 180°, also genau in entgegen ge- setzter Richtung, von einander entfernen. Die Photonen können detektiert und daraus die Position der Positronenemission, bzw. des 11C-Kohlenstoffatoms , berechnet werden. Die Integra¬ tion eines 11C-Kohlenstoffatom in das erfindungsgemäß verwendete Peptid, ermöglicht es, die Verwendung chemischer, kör- perfremder Stoffe zu vermeiden. Durch den direkten Einbau des 11C-Kohlenstoffisotops in das Peptid ist die radioaktive Mar¬ kierung ohne Komplexbildner, wie Diethylentriaminpentaacetat (DTPA) , 1,4,7, 10-tetraazacyclododecane-l, 4,7, 10-tetraacetic acid (DOTA) oder Ethylendiamintetraacetat (EDTA) , möglich. Außerdem kann vermieden werden, dass ein radioaktiver Fremd- Stoff, wie beispielsweise Fluor, Xenon, oder Gallium, m den Organismus eingebracht werden muss. Zur Herstellung eines erfindungsgemäß zu verwendenden Peptids sind insbesondere die Verfahren, die in den Patentanmeldungen DE 10 2009 035 648.7 und DE 10 2009 035 645.2 beschrieben werden, geeignet. Somit kann durch die erfindungsgemäße Verwendung des Peptids sowohl des Vorhandensein, als auch die Position des Her2/neu- Rezeptors nachgewiesen und abgebildet werden. Des Weiteren kann auch die Menge an Peptiden, die sich an einer bestimmten Stelle befindet, quantifiziert werden. Detection of the peptide and the Her2 / neu receptor bound thereto is via an integrated 11 C carbon atom. Upon decay of the 11 C carbon isotope, positrons, also referred to as β + radiation, are formed. If the positrons hit an electron, they form two photons which move away from each other at an angle of 180 °, ie exactly in the opposite direction. The photons can be detected and used to calculate the position of the positron emission, or of the 11 C carbon atom. The Integra ¬ tion of a C-11 carbon atom in the peptide used in the invention, makes it possible to avoid the use of chemical, physi- perfremder substances. By the direct incorporation of 11 C-carbon isotope in the peptide is the radioactive Mar ¬ kierung without complexing agents such as diethylene triamine pentaacetate (DTPA), 1,4,7, 10-tetraazacyclododecanes-l, 4,7, 10-tetraacetic acid (DOTA) or ethylenediamine tetraacetate (EDTA), possible. In addition, it can be avoided that a radioactive foreign substance, such as fluorine, xenon, or gallium, must be introduced into the organism. For the preparation of a peptide to be used according to the invention, the processes described in patent applications DE 10 2009 035 648.7 and DE 10 2009 035 645.2 are particularly suitable. Thus, by the use of the peptide according to the invention, both the presence and the position of the Her2 / neu receptor can be detected and mapped. Furthermore, the amount of peptides located at a particular site can also be quantified.
Ein weiterer Vorteil des direkt mit X1C markierten Peptids liegt in dem günstigen Signal/Hintergrund Verhältnis während der Detektion. Das Peptid bindet spezifisch an den Her2/neu- Rezeptor und bildet mit diesem einen stabilen Komplex. Freie, ungebundene Peptide werden dagegen rasch verstoffwechselt und aus dem Organismus ausgeschieden, weil sie von endogenen Enzymen zügig abgebaut werden können. Dadurch entsteht ein starkes und spezifisches Signal an der Position des Her2/neu- Rezeptors, und das Hintergrundsignal wird minimiert. Another advantage of the peptide directly labeled with X1 C lies in the favorable signal / background ratio during detection. The peptide binds specifically to the Her2 / neu receptor and forms a stable complex with it. Free, unbound peptides, on the other hand, are rapidly metabolized and excreted from the organism because they can be rapidly degraded by endogenous enzymes. This creates a strong and specific signal at the position of the Her2 / neu receptor, and the background signal is minimized.
In einer vorteilhaften Weiterbildung der Erfindung weist das Peptid mindestens eine D-Aminosäure auf. Mit Ausnahme des Glycins, besitzen Aminosäuren an ihrem alpha-C-Kohlenstoff- atom ein chirales Zentrum und können daher als Konfigurationsisomere, nämlich als D- oder L-Aminosäure, vorliegen. Körpereigene Peptide und Proteine sind weitgehend aus Amino¬ säuren in L-Konfiguration aufgebaut. Zudem arbeiten die meis- ten natürlichen Proteasen und Peptidasen stereoselektiv und verstoffwechseln hauptsächlich L-Aminosäuren . Daher dauert der Abbau von D-Aminosäuren durch körpereigene Enzyme länger als der von L-Aminosäuren. Dieser Umstand kann verwendet werden, um die Halbwertszeit eines Proteins oder Peptids zu ver- b längern, indem neben L-Aminosäuren auch D-Aminosäuren verwendet werden (Neundorf I et al . , 2008) . Dadurch kann die pharmakologische Clearance, also die Zeit bis das Peptid aus dem Organismus ausgeschieden wird, positiv beeinflusst werden. Bei dem Austausch einzelner L-Aminosäuren gegen ihre D- Konfiguration ist jedoch darauf zu achten, dass die Bin- dungsspezifität des Peptids nicht verändert wird. Eine weite¬ re Möglichkeit, die pharmakologische Clearance des Peptids zu beeinflussen, besteht darin einzelne der Aminosäuren des Pep- tids durch nicht natürliche Aminosäuren mit ähnlichen chemischen Eigenschaften zu ersetzen. Die nicht natürlichen Aminosäuren werden langsamer verstoffwechselt , weil die körperei¬ genen proteolytischen Enzyme speziell an den Abbau natürlicher Aminosäuren angepasst sind. Bei der Modifizierung des Peptids sollten die nicht natürlichen Aminosäuren jedoch so gewählt werden, dass die Bindungsaffinität des Peptids nicht verändert wird. Darüber hinaus sind auch andere chemische Mo¬ difikationen einzelner Aminosäuren des Peptids möglich, um die Halbwertszeit des Peptids gezielt zu beeinflussen. Bei- spielsweise kann die endständige Aminogruppe des Peptids durch eine Isonitrilgruppe ersetzt werden. Eine solche Modi¬ fikation reduziert die, von der Aminogruppe vermittelte, In¬ teraktion mit proteolytischen Enzymen, ohne die Bindung zwischen dem erfindungsgemäß verwendeten Peptid und dem In an advantageous embodiment of the invention, the peptide has at least one D-amino acid. With the exception of glycine, amino acids have a chiral center at their alpha carbon atom and can therefore exist as configurational isomers, namely as the D or L amino acid. Endogenous peptides and proteins are largely made up of amino acids in ¬ L-configuration. In addition, most natural proteases and peptidases work stereoselectively and mainly metabolize L-amino acids. Therefore, the degradation of D-amino acids by endogenous enzymes takes longer than that of L-amino acids. This fact can be used to predict the half-life of a protein or peptide. b longer, in addition to L-amino acids and D-amino acids are used (Neundorf I et al., 2008). As a result, the pharmacological clearance, ie the time until the peptide is eliminated from the organism, can be positively influenced. However, when replacing individual L-amino acids with their D-configuration, care must be taken not to alter the binding specificity of the peptide. A further possibility to influence the pharmacological clearance of the peptide is to replace some of the amino acids of the peptide with non-natural amino acids having similar chemical properties. The non-natural amino acids are metabolized more slowly because the körperei ¬-related proteolytic enzymes are specially adapted to the exploitation of natural amino acids. However, when modifying the peptide, the non-natural amino acids should be chosen so that the binding affinity of the peptide is not altered. In addition, other chemical Mo ¬ difikationen individual amino acids of the peptide are possible to influence the half-life of the peptide specifically. For example, the terminal amino group of the peptide can be replaced by an isonitrile group. Such modes ¬ fication reduces, mediated by the amino group, in ¬ teraktion with proteolytic enzymes, without the bond between the peptide used in the invention and the
Her2 /neu-Rezeptor zu verändern. To change Her2 / neu receptor.
In einer vorteilhaften Weiterbildung der Erfindung ist das Agens ein Radiopharmakon . Der Begriff "Radiopharmaka" bezeichnet Arzneimittel, die Radionuklide enthalten, deren Strahlung zur Diagnostik und Therapie verwendet wird. Die wichtigsten Anwendungsgebiete sind dabei die Onkologie, Kar¬ diologie und Neurologie, aber auch die Arzneimittelforschung. Als Radionuklide werden Gamma- bzw. Beta-Strahlen emittierende Nuklide, zum Beispiel 133Xenon, "Technetium, 68Gallium, und Fluor, verwendet. Sie werden üblicherweise über Kom¬ plexbildner wie DOTA, DTPA oder EDTA an Mono- oder Polysaccharide gebunden. Die Nuklide werden, je nach der Art ihrer Strahlung, mittels Szintigraphie, Single Photon Emission Com- puted Tomography (SPECT) oder Positronen-Emissions- Tomographie (PET) detektiert. Aufgrund ihrer unphysiologi¬ schen Bestandteile können herkömmliche Radiopharmaka jedoch Nebenwirkungen, wie anaphylaktische oder allergische Reaktio¬ nen, im Körper eines Patienten verursachen. Die Verwendung eines Peptids aus körpereigenen Aminosäuren reduziert dieseIn an advantageous embodiment of the invention, the agent is a radiopharmaceutical. The term "radiopharmaceuticals" refers to medicines containing radionuclides whose radiation is used for diagnosis and therapy. The main applications are in oncology, Kar ¬ ogy and neurology, as well as pharmaceutical research. As radionuclides, gamma or beta-emitting nuclides, for example 133 xenon, "technetium, 68 gallium, and fluorine, used. They are usually attached via Kom ¬ formers such as DOTA, DTPA or EDTA mono- or polysaccharides. The nuclides are detected by scintigraphy, single photon emission com- puted tomography (SPECT) or positron emission tomography (PET), depending on the nature of their radiation. However, due to their unphysiologi ¬ rule ingredients conventional radiopharmaceuticals can cause side effects such as anaphylactic or allergic Reaktio ¬ nen, in the body of a patient. The use of a peptide from the body's own amino acids reduces these
Gefahr deutlich, weil weder das Peptid selbst, noch seine Ab¬ bauprodukte toxisch sind. Zudem ist Kohlenstoff, im Gegensatz zu Technetium oder Xenon, ein im Körper vorkommendes Element, das natürlich verstoffwechselt werden kann. Danger clearly, because neither the peptide itself, nor its Ab ¬ building products are toxic. In addition, unlike technetium or xenon, carbon is an element found in the body that naturally can be metabolized.
In einer bevorzugten Ausführungsform exprimiert der Tumor erhöhte Mengen des Her2 /neu-Rezeptors . Im Vergleich zu gesundem Gewebe tragen die Zellen verschiedener Tumore besonders hohe Mengen an Her2 /neu-Rezeptoren auf ihrer Oberfläche. Zu diesen zählen zum Beispiel Lungen-, Brust-, und Ovarkrebs, Karzino¬ me, wie beispielsweise das Mammakarzinom, sowie Tumore des Gastro-Intestinal-Trakts. In a preferred embodiment, the tumor expresses increased levels of the Her2 / neu receptor. In comparison to healthy tissue, the cells of different tumors carry particularly high amounts of Her2 / neu receptors on their surface. These include, for example, lung, breast, and ovarian cancer, carcino ¬ me, such as breast cancer, and tumors of the gastrointestinal tract.
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist das ^C-Kohlenstoffatom das Carbonylkohlenstoffatom einer Aminosäure. Die Carbonylgruppen sind Teil der Peptidbindungen zwischen den Aminosäuren und liegen im Inneren des Peptids. Dadurch ist gewährleistet, dass das ^C-Kohlenstoffatom nicht vom Peptid abgespalten wird, wie es etwa bei einer Seitenket- te einer der Aminosäuren möglich wäre. According to an advantageous development of the invention, the C-carbon atom is the carbonyl carbon atom of an amino acid. The carbonyl groups are part of the peptide bonds between the amino acids and are located inside the peptide. This ensures that the ^ C carbon atom is not cleaved off the peptide, as would be possible with a side chain of one of the amino acids.
Gemäß einer weiter bevorzugten Ausführungsform der Erfindung ist das ^C-Kohlenstoffatom das Carbonylkohlenstoffatom der N-terminalen Aminosäure des Peptids. Diese Ausführungsform ist besonders bevorzugt, weil das Peptid direkt nach dem An¬ bringen der 11C-markierten Aminosäure verwendet werden kann. 11C-Kohlenstoff hat eine Halbwertszeit von nur ca. 20 Minu¬ ten, so dass die Strahlungsdosis desto höher gewählt werden muss, je mehr Zeit zwischen der Synthese des Peptids und sei¬ ner Verwendung liegt. Wird die 11C-Markierung mit der N- terminalen Aminosäure und damit im letzten Schritt der Synthese angebracht, kann das Peptid sofort nach seiner Synthese verwendet werden. Auf diese Weise wird die Zeitspanne zwi- sehen der Verarbeitung des 11C-Kohlenstoffs und dem Einsatz des Peptids reduziert, so dass der Strahlungsverlust während der Herstellung des Peptids minimiert wird. Deshalb kann die Strahlendosis, die bei der Verarbeitung des 11C-Kohlenstoffs eingesetzt werden muss um eine bestimmte Strahlungsstärke des Produkts zu gewährleisten, entsprechend geringer sein. DieIn a further preferred embodiment of the invention, the C-carbon atom is the carbonyl carbon atom of the N-terminal amino acid of the peptide. This embodiment is particularly preferred because the peptide can be used directly after the on ¬ bring the 11 C-labeled amino acid. 11 C-carbon has a half-life of only about 20 Minu ¬ th, so that the radiation dose must be chosen the higher, the more time is between the synthesis of the peptide and its ¬ ner use. If the 11 C-labeling with the N-terminal amino acid and thus in the last step of the synthesis is applied, the peptide can be used immediately after its synthesis. In this way, the time between the processing of the 11 C carbon and the use of the peptide is reduced, so that the radiation loss during the preparation of the peptide is minimized. Therefore, the radiation dose that must be used in the processing of the 11 C carbon to ensure a certain radiation intensity of the product, be correspondingly lower. The
Herstellung wird dadurch kostengünstiger und die Strahlenbelastung für das technische Personal, welches das Peptid her¬ stellt, verringert. Ein weiterer Gegenstand der Erfindung ist ein Radiopharmakon, das ein Peptid mit einem 11C-Kohlenstoffatom umfasst, zur Lokalisation eines Tumors, der einen Her2 /neu-Rezeptor expri- miert. Indem ein Peptid, das an den Her2 /neu-Rezeptor bindet und ein 11C-Kohlenstoffatom aufweist, verwendet wird, ist das Radiopharmakon für den Patienten gut verträglich und kann kostengünstig produziert werden. Production is less expensive and thus the radiation exposure for the technical staff that forth ¬ represents the peptide reduced. Another object of the invention is a radiopharmaceutical comprising a peptide having an 11 C carbon atom for the localization of a tumor expressing a Her2 / neu receptor. By using a peptide that binds to the Her2 / neu receptor and has an 11 C carbon atom, the radiopharmaceutical is well tolerated by the patient and can be produced inexpensively.
Das erfindungsgemäße Radiopharmakon bietet daher ein wirt¬ schaftlich und medizinisch vorteilhaftes Agens, um die Posi- tion eines Tumors, der einen Her2 /neu-Rezeptor exprimiert, in vivo zu bestimmen. Nachdem das Radiopharmakon einem Patienten verabreicht wurde, verteilen sich die darin enthaltenen Peptide in dessen Körper und binden spezifisch an Her2/neu- Rezeptoren. Dadurch sammeln sie sich an den Zellen des Tumors wo sie durch das radioaktive Signal des C-Kohlenstoffatoms nachgewiesen werden. Auf diese Weise wird die Position des Tumors im Körper des Patienten bestimmt. In einer bevorzugten Ausführungsform exprimiert der Tumor, im Vergleich zu gesundem Gewebe, erhöhte Mengen des Her2/neu- Rezeptors, wie es für verschiedene Tumorarten beobachtet wur¬ de . Gemäß einer vorteilhaften Ausführungsform ist das X1C-Therefore, the radiopharmaceutical invention provides a host ¬ economically and medically beneficial agent to the posi- tion of a tumor that expresses a Her2 / neu receptor to determine in vivo. After the radiopharmaceutical has been administered to a patient, the peptides contained therein are distributed into the body and specifically bind to Her2 / neu receptors. As a result, they accumulate on the cells of the tumor where they are detected by the radioactive signal of the C carbon atom. In this way, the position of the tumor in the body of the patient is determined. In a preferred embodiment of the tumor expressed in comparison to healthy tissue, increased amounts of the Her2 / neu receptor, as WUR observed for various tumor types ¬ de. According to an advantageous embodiment, the X1 C-
Kohlenstoffatom ein Carbonylkohlenstoffatom einer Aminosäure, bevorzugt das Carbonylkohlenstoffatom der N-terminalen Aminosäure des Peptids. In einer bevorzugten Ausführungsform ist das Radiopharmakon ein PET Biomarker. Die PET ist ein etabliertes Verfahren um die Strahlung radioaktiver Elemente zu erfassen und ihre Position zu bestimmen (Massoud TF, Gambhir SS, 2003) . Mit Hilfe von ringförmig um den Patienten angeordneten Detektorgeräten werden Schnittbilder erstellt, auf denen die Zerfallsereig- nisse in ihrer räumlichen Verteilung im Körperinneren dargestellt werden. Im Gegensatz zu den bisher üblichen Szintigra- phie-Verfahren ist durch die ringförmige Anordnung der PET- Detektoren eine exaktere räumliche Lokalisation der Positro- nenemission und damit eine wesentlich genauere und detail¬ lierter Abbildung des Tumors möglich. Die PET ermöglicht es auch, die Menge an markierten Molekülen in einem Gewebe quantitativ zu bestimmen. Außerdem wird ein Verfahren zur Lokalisation eines Tumors, der einen Her2 /neu-Rezeptor exprimiert, in einem Organismus, offenbart, umfassend die Schritte, a) Bereitstellen eines Peptids, b) Verabreichen des Peptids an den Organismus und c) Detektieren des Peptids in dem Organismus mittels Positronen- Emissions-Tomographie (PET) . Dabei bindet das Peptid an den Her2 /neu-Rezeptor und weist ein 11C-Kohlenstoffatom auf. Carbon atom is a carbonyl carbon atom of an amino acid, preferably the carbonyl carbon atom of the N-terminal amino acid of the peptide. In a preferred embodiment, the radiopharmaceutical is a PET biomarker. PET is an established method for detecting the radiation of radioactive elements and determining their position (Massoud TF, Gambhir SS, 2003). With the aid of detector devices arranged annularly around the patient, sectional images are created on which the decay events are represented in their spatial distribution in the interior of the body. In contrast to the usual scintigraphic chromatography method is nenemission a more precise spatial localization of the positron by the annular configuration of the PET detectors and hence a much more precise and detailed ¬ profiled image of the tumor possible. PET also makes it possible to quantify the amount of labeled molecules in a tissue. Also disclosed is a method of localizing a tumor expressing a Her2 / neu receptor in an organism, comprising the steps of a) providing a peptide, b) administering the peptide to the organism, and c) detecting the peptide in the organism Organism using positron Emission tomography (PET). The peptide binds to the Her2 / neu receptor and has an 11 C carbon atom.
Mit dem erfindungsgemäß verwendeten Peptid wird ein Her2/neu- Rezeptor im Inneren eines Organismus detektiert und lokali¬ siert, so dass die Verteilung des Her2 /neu-Rezeptors im Kör¬ per eines Patienten beobachtet werden kann. Auf diese Weise kann beispielsweise die Größe oder Ausdehnung einer Infektion oder eines Tumors, der den Her2 /neu-Rezeptor exprimiert, be- stimmt werden. Das erfindungsgemäß verwendete Peptid ist da¬ her hervorragend zur Beobachtung von Verlauf und Erfolg einer Behandlung, sog. Therapiemonitoring, geeignet. With the peptide used in the invention is a Her2 / neu receptor in the interior of an organism is detected and lokali ¬ Siert, so that the distribution of the Her2 / neu receptor in Kör ¬ can be observed by a patient. In this way, for example, the size or extent of an infection or of a tumor expressing the Her2 / neu receptor can be determined. The peptide used according to the invention is therefore outstandingly suitable for observing the course and success of a treatment, so-called therapy monitoring.
Im Folgenden werden bevorzugte Ausführungsformen der Erfin- dung anhand der beigefügten schematischen Zeichnungen erläutert . In the following, preferred embodiments of the invention are explained with reference to the attached schematic drawings.
Figur 1 zeigt schematisch die Bindung zwischen einem Peptid 1 und einem Her2 /neu-Rezeptor 4. FIG. 1 shows schematically the binding between a peptide 1 and a Her2 / neu receptor 4.
Das Peptid 1 umfasst 19 Aminosäuren 2, von denen die N- terminale Aminosäure 3 mit einem 11C-Kohlenstoffatom radioaktiv markiert ist. Die radioaktive Markierung ist durch einen Stern (*) dargestellt. Ein Teil des Peptids 1 ist an den Her2 /neu-Rezeptor 4 angelagert, der sich auf der Oberfläche eines Tumors 18 befindet. Peptide 1 comprises 19 amino acids 2, of which the N-terminal amino acid 3 is radioactively labeled with an 11 C carbon atom. The radioactive label is represented by an asterisk (*). Part of the peptide 1 is attached to the Her2 / neu receptor 4, which is located on the surface of a tumor 18.
Das 11C-markierte Peptid 1 bindet spezifisch an den Her2/neu- Rezeptor 4, nicht aber an andere Moleküle. Das Peptid 1 kann daher zur Detektion des Her2 /neu-Rezeptors 4 verwendet wer¬ den. Die beim Zerfall des 11C-Kohlenstoffatoms abgegebenen Positronen werden mittels Positronen-Emissions-Tomographie (PET) nachgewiesen. Der Ort der Positronenemission entspricht dem Ort des Peptids 1 und des daran gebundenen Her2/neu- Rezeptors 4. Das Peptid 1 kann daher zur Bestimmung der Position eines Tumors 18 verwendet werden, der den Her2/neu- Rezeptor 4 bildet. Zur Lokalisation eines Tumors 18 im Rahmen einer Krebsdiagnose wird einem Patienten ein Radiopharmakon verabreicht, welches das 11C-markierte Peptid 1 enthält. Das Peptid 1 bindet spezifisch an den Her2 /neu-Rezeptor 4 und sammelt sich so an dem Tumor 18, dessen Zellen den Her2 /neu-Rezeptor 4 bilden. Diese Anhäufung wird durch PET abgebildet und die Verteilung des Her2 /neu-Rezeptors 4 bzw. die Lokalisation des Tumors 18 im Körper des Patienten bestimmt. Auf diese Art lassen sich auch neu gebildete Metastasen, die den Her2 /neu-Rezeptor tragen, mittels PET identifizieren. Außerdem kann die Medikation eines Tumortherapeutikums , zum Beispiel Wirkstoffmenge undThe 11 C-labeled peptide 1 binds specifically to the Her2 / neu receptor 4, but not to other molecules. The peptide 1 can therefore be used to detect the Her2 / neu receptor 4 ¬ . The positrons released upon decay of the 11 C carbon are detected by positron emission tomography (PET). The location of the positron emission corresponds to the location of peptide 1 and the bound Her2 / neu- Receptor 4. Peptide 1 can therefore be used to determine the position of a tumor 18 that forms the Her2 / neu receptor 4. To localize a tumor 18 as part of a cancer diagnosis, a patient is administered a radiopharmaceutical containing the 11 C-labeled peptide 1. Peptide 1 binds specifically to the Her2 / neu receptor 4 and thus accumulates on the tumor 18, whose cells form the Her2 / neu receptor 4. This accumulation is represented by PET and the distribution of the Her2 / neu receptor 4 or the localization of the tumor 18 in the body of the patient is determined. In this way, newly formed metastases carrying the Her2 / neu receptor can be identified by PET. In addition, the medication of a tumor therapeutic, for example, drug amount and
Verabreichungsplan, entsprechend der Position, Größe und Verteilung des Tumors 18 angepasst werden. Administration schedule, according to the position, size and distribution of the tumor 18 adapted.
Figur 2 zeigt eine Darstellung eines Peptids mit der Sequenz SEQ ID Nr.: 1 mittels chemischer Formel. FIG. 2 shows a representation of a peptide having the sequence SEQ ID NO: 1 by means of a chemical formula.
Das Peptid der SEQ ID Nr.: 1 umfasst 35 Aminosäuren 2 der folgenden Sequenz : Homocystein-Prolin-Asparaginsäure- Asparaginsäure-Tyrosin-Isoleucin-Serin-Arginin-Isoleucin- Lysin-Alanin-Arginin-Lysin-Glutamin-Glutamin-Asparagin- Asparagin-Leucin-Asparagin-Prolin-Asparaginsäure-Leucin- Alanin-Alanin-Glutaminsäure-Tryptophan-Tyrosin-Arginin- Asparagin-Arginin-Methionin-Glutaminsäure-Lysin-Asparagin- Homocystein . The peptide of SEQ ID NO: 1 comprises 35 amino acids 2 of the following sequence: homocysteine proline aspartic acid aspartic acid tyrosine isoleucine serine arginine isoleucine lysine alanine arginine lysine glutamine glutamine asparagine asparagine Leucine-asparagine-proline-aspartic acid-leucine-alanine-alanine-glutamic acid-tryptophan-tyrosine-arginine-asparagine-arginine-methionine-glutamic acid-lysine-asparagine homocysteine.
Die N-terminalen Aminosäuren 2 Prolin und Homocystein sind mittels Strukturformel dargestellt, die folgenden Aminosäuren 2 durch ihren jeweiligen Drei-Buchstaben Code. Die Aminosäure Homocystein ist mit CysH bezeichnet. Die Sequenz des Peptids ist auch in SEQ ID Nr.: 1 angegeben. Das Carbonylkohlenstof- fatom des N-terminalen Homocysteins ist ein X1C- Kohlenstoffatom, dargestellt durch die Ziffer 11 oberhalb des Carbonylkohlenstoffatoms . The N-terminal amino acids 2 proline and homocysteine are represented by structural formula, the following amino acids 2 by their respective three-letter code. The amino acid homocysteine is designated Cys H. The sequence of the peptide is also given in SEQ ID NO: 1. The carbonyl carbon atom of the N-terminal homocysteine is a X1 C carbon atom, represented by the number 11 above the carbonyl carbon atom.
Das Peptid 1 wird mit herkömmlichen Proteinsyntheseverfahren hergestellt und die 11C-markierte N-terminale Aminosäure 3 im letzten Schritt hinzu gefügt, weil die Halbwertszeit des 11C- Kohlenstoffisotops bei nur ca. 20 Minuten liegt. Dadurch, dass die Peptidsynthese mit der 11C-markierten Aminosäure ab¬ geschlossen wird, kann das Peptid 1 nach der radioaktiven Markierung sofort verwendet werden. Peptide 1 is prepared by conventional protein synthesis methods and the 11 C-labeled N-terminal amino acid 3 is added in the last step because the half-life of the 11 C carbon isotope is only about 20 minutes. Characterized in that the peptide synthesis is closed with the 11 C-labeled amino acid from ¬, Peptide 1 can be used immediately after labeling.
Die SEQ ID Nr.: 1 entspricht dem Her2 /neu-Rezeptor-bindenden 2-Helix Protein MUT-DS (Ren G et al . , 2009). Das Peptid der Sequenz SEQ ID Nr.: 1 gehört zu den sogenannten Affibodies. Dabei handelt es sich um künstliche Peptide oder Proteine, die von einer der IgG bindenden Domänen des Proteins A des Bakteriums Staphylococcus aureus abgeleitet sind. Sie umfas- sen regelmäßig 3 alpha-Helices und sind ca. 7 kDa groß. Sie lösen keine immunologischen Reaktionen aus und sind deshalb als Biomoleküle zur Herstellung eines Radiopharmakons geeig¬ net. Um einen Her2 /neu-Rezeptor bindenden Affibody zu finden, werden entsprechende Bibliotheken mittels der Phagen-Display- Technologie gescreent (Wikman M et al . , 2004) . Für die Ver¬ wendung zur Herstellung eines Radiopharmakons werden kleine Moleküle, die eine bessere Verteilung und Clearance im Körper zeigen, bevorzugt. Daher umfasst das Peptid der Sequenz SEQ ID Nr.: 1 nur die zwei, an der Bindung an den Her2/neu- Rezeptor 4 tatsächlich beteiligten alpha-Helices (Ren G et al . , 2009) . SEQ ID NO: 1 corresponds to the Her2 / neu receptor-binding 2-helix protein MUT-DS (Ren G et al., 2009). The peptide of the sequence SEQ ID NO: 1 belongs to the so-called Affibodies. These are artificial peptides or proteins derived from one of the IgG-binding domains of protein A of the bacterium Staphylococcus aureus. They regularly include 3 alpha helices and are about 7 kDa in size. You do not trigger immunological reactions and are therefore geeig ¬ net as biomolecules for preparing a radiopharmaceutical. To find a Her2 / neu receptor-binding affibody, corresponding libraries are screened by phage display technology (Wikman M et al., 2004). Small molecules that show a better distribution and clearance in the body are preferred for Ver ¬ application for preparing a radiopharmaceutical. Therefore, the peptide of sequence SEQ ID NO: 1 comprises only the two alpha helices actually involved in binding to the Her2 / neu receptor 4 (Ren G et al., 2009).
Das Peptid 1 bindet spezifisch an den Her2 /neu-Rezeptor 4, der in große Mengen von einigen Tumorzellen gebildet wird, und es wird dazu verwendet, diese Tumorzellen zu lokalisie¬ ren. Eine Markierung mittels 11C-Kohlenstoff ist dabei beson¬ ders geeignet, weil sie die physiologische Struktur des Pep¬ tids 1 nicht beeinflusst und weder die Verteilung im Gewebe noch die Verträglichkeit des Peptids 1 beeinträchtigt. Peptide 1 binds specifically to the Her2 / neu receptor 4, which is formed in large quantities by some tumor cells, and it is used to localize ¬ ren these tumor cells. A mark by 11 C-carbon is particular ¬ DERS suitable because it does not affect the physiological structure of the Pep ¬ TIDS 1 and neither the tissue distribution and tolerability of the peptide 1 impaired.
Figur 3 zeigt eine schematische Darstellung (stark vereinfacht nach Faller A, Schünke M, Der Körper des Menschen, Thieme, 2008) eines Blutkreislaufsystems 10 eines Organismus und die Verteilung eines Peptids 1 darin. Figure 3 shows a schematic representation (greatly simplified by Faller A, Schünke M, The Human Body, Thieme, 2008) of a circulatory system 10 of an organism and the distribution of a peptide 1 therein.
Das Blutkreislaufsystem 10 umfasst verschiedene schematisch dargestellte Organe, wie Lunge 12, Herz 13, Leber 14, Darm 15 und Niere 16 und die Hauptadern 11, welche diese Organe ver- binden. Das Peptid 1 ist durch Dreiecke entlang der Adern 11 dargestellt. Die Abbauprodukte 17 des Peptids 1 sind durch einzelne Striche innerhalb der Umrisse der Niere 16 darge¬ stellt. Links der Mitte des Blutkreislaufsystems 10 ist zu¬ sätzlich ein Tumor 18 dargestellt, an den vermehrt Her2/neu- Rezeptoren 4 und daran Peptide 1 angelagert sind. The circulatory system 10 comprises various schematically represented organs, such as lung 12, heart 13, liver 14, intestine 15 and kidney 16, and the main arteries 11, which connect these organs. The peptide 1 is represented by triangles along the wires 11. The degradation products 17 of the peptide 1 are represented by individual lines within the outline of the kidney 16 Darge ¬ . Left of center of the circulatory system 10, a tumor is to be ¬ additionally shown 18, are attached to the increased Her2 / neu receptors 4 and peptides thereon. 1
Die Verteilung des Peptids 1 im Blutkreislaufsystem 10 umfasst vier Phasen, die entlang der Darstellung von oben nach unten aufgeführt sind. The distribution of the peptide 1 in the circulatory system 10 comprises four phases, which are listed along the top-down view.
Phase I: Das Peptid 1 wird in das Blutkreislaufsystem 10 des Organismus injiziert. Phase I: Peptide 1 is injected into the circulatory system 10 of the organism.
Phase II: Über das Blutkreislaufsystem 10 wird das Peptid 1 in die Organe 12, 13, 14, 15, und 16 des Organismus transpo tiert . Phase III: Das zirkulierende Peptid 1 bindet spezifisch an den Her2 /neu-Rezeptor 4 und sammelt sich an dem Tumor 18, weil dieser den Her2 /neu-Rezeptor 4 produziert. Phase IV: Nicht gebundenes Peptid 1 wird schnell verstoff- wechselt und enzymatisch abgebaut. Der Organismus unterschei¬ det nicht zwischen eigenen Peptiden und dem Peptid 1, weil es aus Aminosäuren 2, 3 aufgebaut ist, die den körpereigenen Molekülen entsprechen. Die Abbauprodukte 17 des Peptids 1 und der Aminosäuren 2, 3 sammeln sich vorwiegend in der Niere 16 von wo aus sie über die Blase und den Harnleiter ausgeschie¬ den werden. Phase II: Via the circulatory system 10, the peptide 1 is transpo ted into the organs 12, 13, 14, 15, and 16 of the organism. Phase III: The circulating peptide 1 binds specifically to the Her2 / neu receptor 4 and accumulates on the tumor 18 because it produces the Her2 / neu receptor 4. Phase IV: Unbound peptide 1 is rapidly metabolised and enzymatically degraded. The organism not failed ¬ det between own peptides and the peptide 1, because it is composed of amino acids 2, 3, which correspond to the body's own molecules. The degradation products 17 of the peptide of amino acids 1 and 2, 3 collect predominantly they are over the bladder and the ureter excreted ¬ in the kidney 16 from where.
Referenzen : References :
Cheng Z, De Jesus GP, Namavari M, De Ä, Levi J, Webster JM, Zhang R, Lee B, Syud FA, Gambhir SS Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules; J Nucl Med, 2008 May; 49 (5) : 804-13. Cheng Z, De Jesus GP, Namavari M, De A, Levi J, Webster JM, Zhang R, Lee B, Syud FA, Gambhir SS Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F- labeled protein scaffold molecules; J Nucl Med, 2008 May; 49 (5): 804-13.
Faller A, Schünke M; Der Körper des Menschen; Thieme-Verlag; 2008 Faller A, Schünke M; The body of man; Thieme-Verlag; 2008
Massoud TF, Gambhir SS; Molecular imaging in living subjects: seeing fundamental biological processes in a new light; Genes Dev. 2003 Mar 1; 17 (5) : 545-80. Massoud TF, Gambhir SS; Molecular imaging in living subjects: seeing fundamental biological processes in a new light; Genes Dev. 2003 Mar 1; 17 (5): 545-80.
Neundorf I, Rennert R, Franke J, Közle I, Bergmann R; De- tailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides; Bio- conjug Chem. 2008 Aug; 19 (8) : 1596-603. Neundorf I, Rennert R, Franke J, Közle I, Bergmann R; Detailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides; Bioconjug Chem. 2008 Aug; 19 (8): 1596-603.
Ren G, Zhang R, Liu Z, Webster JM, Miao Z, Gambhir SS, Syud FA, Cheng Z; A 2-helix small protein labeled with 68Ga for PET imaging of HER2 expression.; J Nucl Med. 2009 Ren G, Zhang R, Liu Z, Webster JM, Miao Z, Gambhir SS, Syud FA, Cheng Z; A 2-helix small protein labeled 68Ga for PET imaging of HER2 expression .; J Nucl Med. 2009
Sep;50 (9) :1492-9. Sep; 50 (9): 1492-9.
Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM; Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET; J Nucl Med. 2006 May; 47 (5) : 793-6. Wikman M, Steffen AC, Gunneriusson E, Tolmachev V, Adams GP, Carlsson J, Stähl S; Selection and characterization of Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM; Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET; J Nucl Med. 2006 May; 47 (5): 793-6. Wikman M, Steffen AC, Gunneriusson E, Tolmachev V, Adam's GP, Carlsson J, Stahl S; Selection and characterization of
HER2 /neu-binding affibody ligands; Protein Eng Des Sei. 2004 May;17 (5) :455-62. US 2010/0048868 WO 2009/068625 WO 2009/080810 HER2 / neu-binding affibody ligands; Protein Eng Des Sei. 2004 May; 17 (5): 455-62. US 2010/0048868 WO 2009/068625 WO 2009/080810

Claims

Verwendung eines Peptids (1) zur Herstellung eines Agens zur Detektion eines Tumors (18), der einen Her2/neu- Rezeptor (4) exprimiert, Use of a peptide (1) for the production of an agent for the detection of a tumor (18) expressing a Her2 / neu receptor (4),
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass das Peptid (1) an den Her2 /neu-Rezeptor (4) bindet und ein 11C-Kohlenstoffatom aufweist. the peptide (1) binds to the Her2 / neu receptor (4) and has an 11 C carbon atom.
Verwendung nach Anspruch 1, Use according to claim 1,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass das Peptid (1) mindestens eine D-Aminosäure (2) aufweist . the peptide (1) has at least one D-amino acid (2).
Verwendung nach Anspruch 1 oder 2, Use according to claim 1 or 2,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass das Agens ein Radiopharmakon ist. that the agent is a radiopharmaceutical.
Verwendung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , Use according to one of the preceding claims, characterized in that
dass der Tumor (18), im Vergleich zu gesundem Gewebe, erhöhte Mengen des Her2 /neu-Rezeptors (4) exprimiert. the tumor (18) expresses increased levels of the Her2 / neu receptor (4) compared to healthy tissue.
Verwendung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , Use according to one of the preceding claims, characterized in that
dass das 11C-Kohlenstoffatom das Carbonylkohlenstoffatom einer Aminosäure (2), vorzugsweise der N-terminalen Aminosäure (3) des Peptids (1) ist. the 11 C carbon atom is the carbonyl carbon atom of an amino acid (2), preferably of the N-terminal amino acid (3) of the peptide (1).
Radiopharmakon zur Lokalisation eines Tumors (18), der einen Her2 /neu-Rezeptor (4) exprimiert, umfassend ein Peptid (1), A radiopharmaceutical for the localization of a tumor (18) expressing a Her2 / neu receptor (4), comprising a peptide (1),
d a d u r c h g e k e n n z e i c h n e t , dass das Peptid (1) an den Her2 /neu-Rezeptor (4) bindet und ein 11C-Kohlenstoffatom aufweist. characterized , the peptide (1) binds to the Her2 / neu receptor (4) and has an 11 C carbon atom.
7. Radiopharmakon nach Anspruch 6, 7. radiopharmaceutical according to claim 6,
d a d u r c h g e k e n n z e i c h n e t ,  characterized ,
dass der Tumor (18), im Vergleich zu gesundem Gewebe, erhöhte Mengen des Her2 /neu-Rezeptors (4) exprimiert.  the tumor (18) expresses increased levels of the Her2 / neu receptor (4) compared to healthy tissue.
8. Radiopharmakon nach Anspruch 6 oder 7, 8. radiopharmaceutical according to claim 6 or 7,
d a d u r c h g e k e n n z e i c h n e t ,  characterized ,
dass das 11C-Kohlenstoffatom das Carbonylkohlenstoffatom einer Aminosäure (2), vorzugsweise der N-terminalen Aminosäure (3) des Peptids (1) ist. the 11 C carbon atom is the carbonyl carbon atom of an amino acid (2), preferably of the N-terminal amino acid (3) of the peptide (1).
9. Radiopharmakon nach einem der Ansprüche 6 bis 8, 9. radiopharmaceutical according to any one of claims 6 to 8,
d a d u r c h g e k e n n z e i c h n e t ,  characterized ,
dass es ein Positronen-Emissions-Tomographie (PET) Bio- marker ist.  that it is a positron emission tomography (PET) biomarker.
PCT/EP2011/060447 2010-06-30 2011-06-22 11c-marked peptide for detecting a tumor that expresses an her2/neu receptor WO2012000865A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010026061 DE102010026061A1 (en) 2010-06-30 2010-06-30 11C-labeled peptide for detection of a tumor expressing a Her2 / neu receptor
DE102010026061.4 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012000865A1 true WO2012000865A1 (en) 2012-01-05

Family

ID=44514128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/060447 WO2012000865A1 (en) 2010-06-30 2011-06-22 11c-marked peptide for detecting a tumor that expresses an her2/neu receptor

Country Status (2)

Country Link
DE (1) DE102010026061A1 (en)
WO (1) WO2012000865A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083693A2 (en) * 2000-04-28 2001-11-08 Glaxo Group Limited Compounds having affinity for the vascular endothelial growth factor receptor-2 (vegfr-2) and associated uses
WO2006017619A2 (en) * 2004-08-06 2006-02-16 The Regents Of The University Of California Receptor-binding cyclic peptides and methods of use
WO2009068625A2 (en) 2007-11-27 2009-06-04 Ablynx N.V. Amino acid sequences directed against her2 and polypeptides comprising the same for the treatment of cancers and/or tumors
WO2009080810A1 (en) 2007-12-21 2009-07-02 Affibody Ab New polypeptides having affinity for her2
US20100048868A1 (en) 2003-07-04 2010-02-25 Affibody Ab Polypeptides Having Binding Affinity for Her2
DE102009035645A1 (en) 2009-07-29 2011-02-03 Siemens Aktiengesellschaft Process for the preparation of a radiolabeled peptide
DE102009035648B3 (en) 2009-07-29 2011-03-17 Siemens Aktiengesellschaft A process for the preparation of a radiolabeled carboxylate and the use of a microelectrode for the electrochemical synthesis of a radiolabeled carboxylate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100183504A1 (en) * 2007-06-14 2010-07-22 Fanqing Frank Chen Multimodal imaging probes for in vivo targeted and non-targeted imaging and therapeutics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083693A2 (en) * 2000-04-28 2001-11-08 Glaxo Group Limited Compounds having affinity for the vascular endothelial growth factor receptor-2 (vegfr-2) and associated uses
US20100048868A1 (en) 2003-07-04 2010-02-25 Affibody Ab Polypeptides Having Binding Affinity for Her2
WO2006017619A2 (en) * 2004-08-06 2006-02-16 The Regents Of The University Of California Receptor-binding cyclic peptides and methods of use
WO2009068625A2 (en) 2007-11-27 2009-06-04 Ablynx N.V. Amino acid sequences directed against her2 and polypeptides comprising the same for the treatment of cancers and/or tumors
WO2009080810A1 (en) 2007-12-21 2009-07-02 Affibody Ab New polypeptides having affinity for her2
DE102009035645A1 (en) 2009-07-29 2011-02-03 Siemens Aktiengesellschaft Process for the preparation of a radiolabeled peptide
DE102009035648B3 (en) 2009-07-29 2011-03-17 Siemens Aktiengesellschaft A process for the preparation of a radiolabeled carboxylate and the use of a microelectrode for the electrochemical synthesis of a radiolabeled carboxylate

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHENG Z, DE JESUS OP, NAMAVARI M, DE A, LEVI J, WEBSTER JM, ZHANG R, LEE B, SYUD FA, GAMBHIR SS: "Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules", J NUCL MED., vol. 49, no. 5, May 2008 (2008-05-01), pages 804 - 13
FALLER A, SCHÜNKE M: "Der Körper des Menschen", 2008, THIEME-VERLAG
HARTVIG P ET AL: "Kinetics of four <11>C-labelled enkephalin peptides in the brain, pituitary and plasma of Rhesus monkeys", REGULATORY PEPTIDES, ELSEVIER SCIENCE BV, NL, vol. 16, no. 1, 1 December 1986 (1986-12-01), pages 1 - 13, XP023462538, ISSN: 0167-0115, [retrieved on 19861201], DOI: 10.1016/0167-0115(86)90190-4 *
HENRIKSEN G ET AL: "Proof of principle for the use of 11C-labelled peptides in tumour diagnosis with PET", EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, SPRINGER VERLAG, HEIDELBERG, DE, vol. 31, no. 12, 10 August 2004 (2004-08-10), pages 1653 - 1657, XP002383248, ISSN: 1619-7070, DOI: 10.1007/S00259-004-1582-1 *
MASSOUD TF, GAMBHIR SS: "Molecular imaging in living subjects: seeing fundamental biological processes in a new light", GENES DEV., vol. 17, no. 5, 1 March 2003 (2003-03-01), pages 545 - 80, XP007905304, DOI: doi:10.1101/gad.1047403
NEUNDORF I, RENNERT R, FRANKE J, KÖZLE I, BERGMANN R: "Detailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides", BIOCONJUG CHEM., vol. 19, no. 8, August 2008 (2008-08-01), pages 1596 - 603, XP002575961, DOI: doi:10.1021/bc800149f
REN G, ZHANG R, LIU Z, WEBSTER JM, MIAO Z, GAMBHIR SS, SYUD FA, CHENG Z: "A 2-helix small protein labeled with 68Ga for PET imaging of HER2 expression", J NUCL MED., vol. 50, no. 9, September 2009 (2009-09-01), pages 1492 - 9
SMITH-JONES PM, SOLIT D, AFROZE F, ROSEN N, LARSON SM: "Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET", J NUCL MED., vol. 47, no. 5, May 2006 (2006-05-01), pages 793 - 6
WIKMAN M, STEFFEN AC, GUNNERIUSSON E, TOLMACHEV V, ADAMS GP, CARLSSON J, STAHL S: "Selection and characterization of HER2/neu-binding affibody ligands", PROTEIN ENG DES SEL., vol. 17, no. 5, May 2004 (2004-05-01), pages 455 - 62, XP002982293, DOI: doi:10.1093/protein/gzh053

Also Published As

Publication number Publication date
DE102010026061A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
Anderson et al. Radiotherapy, toxicity and dosimetry of copper-64-TETA-octreotide in tumor-bearing rats
EP1784422B1 (en) Glp-1 and exendin related invention
Hausner et al. In vitro and in vivo evaluation of the effects of aluminum [18F] fluoride radiolabeling on an integrin αvβ6-specific peptide
Guleria et al. Formulation and clinical translation of [177 Lu] Lu-trastuzumab for radioimmunotheranostics of metastatic breast cancer
Hanaoka et al. Evaluation of 64 Cu-labeled DOTA-d-Phe 1-Tyr 3-octreotide (64 Cu-DOTA-TOC) for imaging somatostatin receptor-expressing tumors
AU2009240789B2 (en) Methods for radiolabelling macromolecules
DE60318466T2 (en) BINDING COMPOUND TO LEUKOCYTES AND THIS COMPOUND IN MARKED CONDITION AS AN ACTIVE MEDICAL COMPOSITION
AT405906B (en) RADIO-MARKED SOMATOSTATIN RECEPTOR LIGANDS FOR DIAGNOSIS AND THERAPY
WO2012000865A1 (en) 11c-marked peptide for detecting a tumor that expresses an her2/neu receptor
FI115035B (en) In vivo imaging using peptide derivatives
WO2012000763A1 (en) 11c-marked peptide for detecting a diseased tissue that expresses an igf receptor
DE69630761T2 (en) METHOD FOR REDUCING THE RENAL ENTRANCE OF ANTIBODY FRAGMENTS
DE4337599A1 (en) Metal-binding cysteine-free peptides for diagnosis and therapy, processes for their preparation and pharmaceutical compositions containing these compounds
WO2012000764A1 (en) 11c-labelled peptide for detecting a tumour which expresses a bombesin receptor
WO2012000781A2 (en) 11c-labelled peptide for detecting a tumour which expresses a somatostatin receptor
WO2012000784A1 (en) 11c-labelled peptide for detecting neurons which express an acetylcholine receptor
WO2012000749A1 (en) 11c-labelled peptide for detecting a tumour which expresses a peptide transporter
WO2012000843A1 (en) 11c-labelled peptide for detecting an antigen
WO2012000862A1 (en) 11c-labelled peptide for detecting a diseased tissue
WO2012000746A1 (en) 11c-labelled peptide for detecting diseased tissue which expresses a chemokine receptor
DE102010026058A1 (en) 11C-labeled peptide for the detection of an antibody
DE102010026066A1 (en) 11C-labeled aptamer for the detection of a diseased tissue
WO2012000866A1 (en) 11c-labelled peptide for detecting a diseased tissue
DE102010026057A1 (en) Diagnostic for the localization of a diseased tissue
DE102011118030A1 (en) Preparation and use of a peptide having an N-terminal 11 C-labeled acetyl group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11729947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11729947

Country of ref document: EP

Kind code of ref document: A1