WO2012000746A1 - 11c-labelled peptide for detecting diseased tissue which expresses a chemokine receptor - Google Patents

11c-labelled peptide for detecting diseased tissue which expresses a chemokine receptor Download PDF

Info

Publication number
WO2012000746A1
WO2012000746A1 PCT/EP2011/059448 EP2011059448W WO2012000746A1 WO 2012000746 A1 WO2012000746 A1 WO 2012000746A1 EP 2011059448 W EP2011059448 W EP 2011059448W WO 2012000746 A1 WO2012000746 A1 WO 2012000746A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
chemokine receptor
diseased tissue
carbon atom
cells
Prior art date
Application number
PCT/EP2011/059448
Other languages
German (de)
French (fr)
Inventor
Oliver Lade
Ursus KRÜGER
Arno Steckenborn
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2012000746A1 publication Critical patent/WO2012000746A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins

Definitions

  • C-labeled peptide for detection of a pathological tissue ⁇ bes which expresses a chemokine receptor
  • the invention relates to the use of a peptide for the manufacture ⁇ position of an agent for detecting a diseased tissue expressing a chemokine receptor. It further relates to a radiopharmaceutical which comprises such a peptide, for Loka- neutralization of a diseased tissue expressing a Chemokinrezep ⁇ tor.
  • biochemical analyzes of blood and other bodily fluids as well as imaging methods for example for the detection of tumors.
  • X-ray, ultrasound, and magnetic resonance imaging have been used to localize diseased tissue and ectopic cell aggregates.
  • Newer methods use the increased metabolic activity of tumor cells compared to healthy tissue.
  • the patient is injected with radioactively labeled sugar molecules that accumulate in the tumor cells.
  • the radioactivity of these molecules for example using a gamma ⁇ Ka ra, the so-called scintigraphy was added and the polyvinyl sition of the tumor is observed.
  • Biochemically, cancer diseases, as well as other diseases are detected by specific molecules.
  • Pati ⁇ ducks The presence and amount of these substances in blood or tissue samples of Pati ⁇ ducks is determined.
  • diseased cells In addition to soluble substances that are released into the body fluids, diseased cells also produce molecules that remain anchored to their cell surface. These are, above all, cell receptors, such as chemokine receptors. On the basis of these surface molecules, biochemical detection of pathological cells in vivo are possible by visualizing them using imaging techniques.
  • Chemokines are small, often pro-inflammatory proteins belonging to the cytokine family. They have a high chemotactic activity and are mainly for the In ⁇ munzellmigration and during angiogenesis is important. Chemokines bind to specific G protein-coupled trans ⁇ membrane receptors, called chemokine receptors. Your activated by chemokines vation leads to the so-called chemotaxis, that is a transformation of the cytoskeleton and Induct ⁇ on cell migration along the chemokine gradient. So far, a total of 20 chemokine receptors are known to be Natli ⁇ chamba, expressed mainly by cells of the immune system, beispiels- example of T cells.
  • chemokine receptors CCR1, CCR5 and CXCR4 have been detected in various cancers (Meier R et al., 2007, Erreni M et al., 2009).
  • chemokine receptors in diseased tissue, whether on the surface of immune cells or on the cells of the tissue itself, has been demonstrated using antibodies in vitro.
  • biopsies of a suspected tissue are removed and these cells are examined by conventional immunocytological and / or immunohistological methods. Besides being an invasive intervention is required for this proceedingswei ⁇ se, it does not allow to determine the actual distribution of chemokine receptor-expressing cells in an organism or within a specific tissue / organ.
  • the invention is therefore based on the object, a cost-effective and well-tolerated for the patient agent for Detecting a diseased tissue that expresses a chemokine receptor.
  • This object is achieved by the use of a peptide for the production of an agent for the detection of a diseased tissue that expresses a chemokine receptor.
  • a peptide which binds to the Chemokinre ⁇ Zeptor and having a 11 C carbon atom is used, the agent can be produced inexpensively and in which Or ⁇ organism in which the pathological tissue is detected, well metabolized.
  • peptide refers to an organic compound of at least two amino acids linked via a peptide bond. It includes both oligopeptides of up to about ten amino acids, polypeptides of up to about 50 amino acids and proteins of up to 150 amino acids, regardless of their primary, secondary or tertiary structure. In this case, both naturally occurring and biotechnologically or synthetically produced compounds are included.
  • the peptide used in the invention is chosen so that it binds to the chemokine receptor. Antibodies, their fragments and other polypeptides that bind to the chemokine receptor are suitable for this purpose. By their specific binding to the chemokine receptor, the peptides can be used to detect diseased tissues that form the chemokine receptor.
  • the peptide is chosen so that the Bin ⁇ connection between the peptide and the chemokine receptor, so called a linear coefficient.
  • KD value comprising of ⁇ 100 nM, preferably ⁇ 10 nM, more preferably of 7.5 nM.
  • the peptide itself is composed of amino acids, that is, of the body's own or body-like molecules, so that it is very well tolerated by the patient. It is non-toxic and can be naturally metabolized, broken down and excreted ⁇ to.
  • the term "diseased tissue” refers to cells, parts of organs or whole organs that do not or not fully fulfill their physiological function.
  • chemokines express diseased cells, they attract immune cells that detect the chemokines with their chemokine receptors.
  • large amounts of chemokine receptor positive cells accumulate in the diseased tissue.
  • CCR5-expressing T cells have been found in the affected kidney tissue (Segerer S et al., 1999).
  • Such accumulations of Chemokinre ⁇ Zeptor positive cells can be detected by means of the inventively used peptide.
  • tumor cells often express themselves chemokine receptors that sit on the cell surface and can be bound by the erfindungsge ⁇ Gurss peptide used there. So far, chemokine receptors have been found mainly on breast cancer and colon cancer ⁇ cells.
  • chemokine receptors have been found mainly on breast cancer and colon cancer ⁇ cells.
  • metastases of such tumors can be detected, provided that they also form the chemokine receptor.
  • the detection of the peptide and of the chemokine receptor bound thereto takes place via an integrated 11 C carbon atom.
  • positrons also referred to as ⁇ + radiation
  • ⁇ + radiation Upon decay of the 11 C carbon isotope, positrons, also referred to as ⁇ + radiation, are formed. Push the positron on an electron, they form two photons away at an angle of 180 °, which is exactly opposite in ge ⁇ modifying the direction of each other.
  • the photons can detected and from the position of the positron emission, or the 11 C carbon, are calculated.
  • the Integra ⁇ tion of a C-11 carbon atom in the peptide used in the invention makes it possible to avoid the use of chemical, physi- per advertder substances.
  • Another advantage of the peptide directly labeled with X1 C lies in the favorable signal / background ratio during detection.
  • the peptide binds specifically to the chemokine receptor and forms a stable complex with it. Free, unbound peptides, on the other hand, are rapidly metabolized and excreted from the organism because they can be rapidly degraded by endogenous enzymes. This results in a strong and specific signal at the position of the chemokine receptor, and the background signal is minimized.
  • the peptide has at least one D-amino acid.
  • D-amino acid With the exception of glycine, amino acids have their alpha-C-carbon atom is a chiral center and can therefore be present as configuration isomers, namely as D- or L-amino acid.
  • Endogenous peptides and proteins are largely made up of amino acids in ⁇ L-configuration.
  • most natural proteases and peptidases work stereoselectively and mainly metabolize L-amino acids. Therefore, the degradation of D-amino acids by endogenous enzymes takes longer than that of L-amino acids.
  • the non-natural amino acids are metabolized more slowly because the stressesei ⁇ -related proteolytic enzymes are specially adapted to the exploitation of natural amino acids.
  • the non-natural amino acids should be chosen so that the binding affinity of the peptide is not altered.
  • other chemical Mo ⁇ dtechniken individual amino acids of the peptide are possible to influence the half-life of the peptide specifically.
  • the terminal amino group of the peptide may be replaced by an isonitrile group.
  • Such modes ⁇ fication reduces, mediated by the amino group, in ⁇ ter syndrome with proteolytic enzymes without altering the bond between the peptide used in the invention and the chemo- kinrezeptor.
  • the peptide is an antagonist of the chemokine receptor.
  • Chemokine receptors are usually activated by the binding of chemokines and mediate changes in the cytoskeleton and directed migration of the cell.
  • the peptide binds to the chemokine receptor without activating it.
  • Particularly suitable for this purpose are peptides that lust as antagonists of the chemokine receptor fun ⁇ . They show specific binding affinity to the receptor, but do not result in the activation of subsequent cellular signaling pathways.
  • the agent is a radiopharmaceutical.
  • radiopharmaceuticals refers to medicines containing radionuclides whose radiation is used for diagnosis and therapy. The main applications are in oncology, Kar ⁇ ogy and neurology, as well as pharmaceutical research.
  • radionuclides are gamma or beta radiation emitting nuclides, for example Xenon 133, "technetium, gallium 68, fluorine 18 and used. They are usually bound via com- formers such as DOTA, DTPA or EDTA mono- or polysaccharides.
  • the nuclides are detected by scintigraphy, single photon emission com- puted tomography (SPECT) or positron emission tomography (PET), depending on the nature of their radiation, but conventional radiopharma- ceuticals can be used because of their non-physiological components
  • the diseased tissue expresses increased amounts of the chemokine receptor.
  • the cells in different diseased tissues carry particularly high levels of chemokine receptors on their surface. In some diseases, such as many kidney diseases, large amounts of T cells carrying chemokine receptors migrate into the diseased tissue.
  • chemokine receptors can express even increased amounts of chemokine receptors, as has been observed, for example, in breast and colon cancer cells. In both cases, local accumulations of chemokine receptors arise, which can be detected by the peptide used according to the invention.
  • the C-carbon atom is the carbonyl carbon atom of an amino acid.
  • the carbonyl groups are part of the peptide bonds between the amino acids and are located inside the peptide. This ensures that the ⁇ C carbon atom is not cleaved off the peptide, as would be possible with a side chain of one of the amino acids.
  • the C-carbon atom is the carbonyl carbon atom of the N-terminal amino acid of the peptide.
  • This embodiment is particularly preferred because the peptide immediately after the on ⁇ bring the 11 C-labeled amino acid can be used.
  • ⁇ C-carbon has a half-life of only about 20 Minu ⁇ th, so that the radiation dose to be selected the higher, the more time between the synthesis of the peptide and sides ner use is. If the 11 C-labeling with the N-terminal amino acid and thus in the last step of the synthesis is applied, the peptide can be used immediately after its synthesis.
  • the time between the processing of the 11 C carbon and the use of the peptide is reduced, so that the radiation loss during the preparation of the peptide is minimized. Therefore, the radiation dose that must be used in the processing of the 11 C carbon to ensure a certain radiation intensity of the product, be correspondingly lower.
  • Another object of the invention is a radiopharmaceutical comprising a peptide having an 11 C carbon atom for the localization of a diseased tissue expressing a chemokine receptor.
  • the radiopharmaceutical invention provides a host ⁇ economically and medically beneficial agent to the posi- tion of a diseased tissue that expresses a chemokine receptor to determine in vivo.
  • the peptides contained therein are distributed into the body and bind specifically to chemokine receptors.
  • they accumulate on the cells of the diseased tissue, where they are detected by the radioactive signal of the 11 C carbon atom.
  • the diseased tissue expresses increased amounts of the chemokine receptor.
  • the cells in different diseased tissues carry particularly high levels of chemokine receptors on their surface.
  • the 11 C carbon atom is a carbonyl carbon atom of an amino acid, preferably the carbonyl carbon atom of the N-terminal amino acid of the peptide.
  • the radiopharmaceutical is a PET biomarker.
  • PET is an established method for detecting the radiation of radioactive elements and determining their position (Massoud TF, Gambhir SS, 2003). With the aid of detector devices arranged annularly around the patient, sectional images are created on which the decay events are represented in their spatial distribution in the interior of the body. In contrast to the usual scintigraphic chromatography method, is by the annular configuration of the PET detectors a more precise spatial localization of the positron ⁇ nenemission and thus a substantially more accurate and detailed ⁇ profiled imaging the diseased tissue is possible. PET also makes it possible to quantify the amount of labeled molecules in a tissue.
  • a method for localization of a diseased tissue in an organism which expresses a chemokine receptor comprising the steps of a) Treatmenttel- len a peptide b) administering the peptide to the Orga ⁇ mechanism and c) detecting the peptide in the Organism with ⁇ positron emission tomography (PET).
  • PET ⁇ positron emission tomography
  • the peptide binds to the chemokine receptor and has an 11 C carbon atom.
  • the peptide used in the invention is a chemokine receptor in the interior of an organism is detected and lenti ⁇ Siert, so that the distribution of the chemokine receptor can be observed in the body of a patient.
  • the size or extent of a pathological tissue are determined at ⁇ game as an infection or a tumor expressing the chemo- kinrezeptor.
  • the peptide used according to the invention is therefore outstandingly suitable for observing the course and success of a treatment, so-called therapy monitoring.
  • Figure 1 shows schematically the binding between a peptide 1 and a chemokine receptor 4.
  • the peptide 1 comprises 8 amino acids 2, of which the N-terminal amino acid 3 is radioactively labeled with an 11 C carbon atom.
  • the radioactive label is represented by an asterisk (*).
  • a part of the peptide 1 is attached to the Che ⁇ mokinrezeptor 4, which is located on the surface of a diseased tissue 18th
  • the ⁇ C-labeled peptide 1 binds specifically to the chemokine ⁇ receptor 4, but not to other molecules.
  • the peptide 1 can therefore be used for the detection of the chemokine receptor 4.
  • the Po ⁇ sitronen delivered at the decay of the 11 C carbon are detected by positron emission tomography (PET).
  • PET positron emission tomography
  • the location of the positron emission corresponds to the location of the peptide 1 and attached thereto Chemokinrezep ⁇ tors 4.
  • the peptide 1 can therefore be used to determine the position a diseased tissue 18 can be used which forms the chemo ⁇ kinrezeptor 4.
  • a patient is administered a radiopharmaceutical containing the 11 C-labeled peptide 1.
  • the peptide 1 binds specifically to the chemokine receptor 4 and thus accumulates on the diseased tissue 18 with the cells that form the chemokine receptor 4. This accumulation is represented by PET and determines the distribution of the chemokine receptor 4 or the localization of the diseased tissue 18 in the body of the patient.
  • the medication of a therapeutic agent for example active ingredient and amount of administration ⁇ plan be adjusted according to the position, size and distribution of the diseased tissue 18th
  • FIG. 2 shows a representation of a peptide having the sequence SEQ ID NO: 1 by means of a chemical formula.
  • the peptide of SEQ ID NO: 1 comprises 8 amino acids 2 of the following sequence: D-alanine-serine-threonine-threonine-threonine-asparagine-tyrosine-threonine Am i c i.
  • the N-terminal amino acids 2 D-alanine and serine are represented by the structural formula, the following amino acids 2 by their respective three-letter code.
  • the amino acid threonine Am i d is designated Thr A and has a C-termial amide.
  • the sequence of the peptide is also given in SEQ ID NO: 1.
  • the carbonyl carbon atom of the N-terminal D-alanine is an 11 C carbon atom represented by the number 11 above the carbonyl carbon atom.
  • Peptide 1 is prepared by conventional protein synthesis methods and the 11 C-labeled N-terminal amino acid 3 im added last step, because the half-life of the C-carbon isotope is only about 20 minutes. By completing the peptide synthesis with the 11 C-labeled amino acid 3, the peptide 1 can be used immediately after the radioactive labeling.
  • the peptide of SEQ ID No .: 1 specifically binds to the chemo- kinrezeptor-5 (CCR5) 4.
  • CCR5 4 This receptor is located in the gro ⁇ SEN amounts at the surface of T cells, which migrate into the interstitial tium diseased kidneys (Segerer S et al., 1999). It is also ectopically expectorated by tumor cells, such as breast or intestinal cells.
  • the natural ligands of CCR5 4 include the cytokines RANTES, MIP-la (macrophage inflammatory protein la) and MIP-lß.
  • peptide 1 also referred to as DAPTA, binds to CCR5 4 without activating it (Polianova MT et al., 2005). It is Antago ⁇ nist of the used inter alia as CCR5 4 to inhibit the binding of the human immune ⁇ weakness virus (HIV) to T cells.
  • HAV human immune ⁇ weakness virus
  • the peptide of SEQ ID NO: 1 binds to CCR5 4 but without inducing cellular signaling (Polianova MT et al., 2005). It is therefore particularly suitable for the detection of a CCR5 4-expressing tissue.
  • the peptide of SEQ ID NO: 1 with only eight amino acids 2 is particularly small and therefore fast and easy to metabolize for the patient. Labeling by means of 11 C carbon is particularly suitable because it does not affect the physiological structure of peptide 1 and does not adversely affect the distribution in the tissue or the compatibility of peptide 1.
  • FIG. 3 shows a schematic representation (greatly simplified according to Faller A, Schünke M, The human body, Thieme, 2008) of a circulatory system 10 of an organism and the distribution of a peptide 1 therein.
  • the circulation system 10 includes various organs schematically represented, such as the lungs 12, heart 13, liver 14, 15 intestine and kidney 16 and the main wires 11 which these organs ver ⁇ bind.
  • the peptide 1 is represented by triangles along the wires 11.
  • the degradation products 17 of the peptide 1 are represented by individual lines within the outline of the kidney 16. Left of center of the circulatory system 10, a diseased tissue is additionally shown ⁇ 18 with chemokine receptors 4, are attached to the increased peptides. 1
  • the distribution of peptide 1 in the circulatory system 10 comprises four phases, which are listed along the top-down view.
  • Phase I Peptide 1 is injected into the circulatory system 10 of the organism.
  • Phase II is via the blood circulatory system 10 Peptide 1 in the organs 12, 13, 14, 15, and 16 of the body transported ⁇ advantage.
  • Phase III The circulating peptide 1 binds specifically to the chemokine receptor 4 and accumulates on the diseased tissue 18 because it produces the chemokine receptor 4.
  • Phase IV Unbound peptide 1 is rapidly metabolised and enzymatically degraded.
  • the organism not failed ⁇ det between own peptides and the peptide 1, because it is composed of amino acids 2, 3, which correspond to the body's own molecules.
  • the degradation products 17 of the peptide 1 and the amino acids 2, 3 accumulate predominantly in the kidney 16 from where they are ejected via the bladder and the ureter.
  • Massoud TF, Gambhir SS Molecular imaging in living subjects: seeing fundamental biological processes in a new light; Genes Dev. 2003 Mar 1; 17 (5): 545-80. Meier R, Mühlethaler Mottet A, Flahaut M, Coulon A, Fusco C, Louache F, Auderset K, Bourloud KB, Daudigeos E, Ruegg C, Vassal G, Gross N, Joseph JM; The chemokine receptor CXCR4 strongly promotes neuroblastoma primary tumor and metastatic growth, but not invasion; PLoS One, 2007 Oct 10; 2 (10): elOl 6.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The use of a peptide (1) for producing an agent for detecting diseased tissue (18) which expresses a chemokine receptor (4) is described. The peptide (1) binds to the chemokine receptor (4) and has an 11C carbon atom. Also described is a radiopharmacon for localizing diseased tissue (18) which expresses a chemokine receptor (4). This comprises a peptide (1) which binds to the chemokine receptor (4) and has an 11C carbon atom.

Description

Beschreibung description
C-markiertes Peptid zur Detektion eines krankhaften Gewe¬ bes, das einen Chemokinrezeptor exprimiert C-labeled peptide for detection of a pathological tissue ¬ bes which expresses a chemokine receptor
Die Erfindung betrifft die Verwendung eines Peptids zur Her¬ stellung eines Agens zur Detektion eines krankhaften Gewebes, das einen Chemokinrezeptor exprimiert. Sie betrifft ferner ein Radiopharmakon, das ein solches Peptid umfasst, zur Loka- lisation eines krankhaften Gewebes, das einen Chemokinrezep¬ tor exprimiert. The invention relates to the use of a peptide for the manufacture ¬ position of an agent for detecting a diseased tissue expressing a chemokine receptor. It further relates to a radiopharmaceutical which comprises such a peptide, for Loka- neutralization of a diseased tissue expressing a Chemokinrezep ¬ tor.
In der modernen Diagnostik werden sowohl biochemische Analysen von Blut und anderen Körperflüssigkeiten, als auch bild- gebende Verfahren, beispielsweise zum Nachweis von Tumoren eingesetzt. Traditionell werden Röntgen, Ultraschall und Kernspintomographie verwendet, um krankhafte Gewebe und ekto- pische Zellansammlungen zu lokalisieren. Neuere Verfahren nutzen dazu die erhöhte StoffWechselaktivität von Tumorzellen im Vergleich zu gesundem Gewebe. Dabei werden dem Patienten radioaktiv markierte Zuckermoleküle injiziert, die sich in den Tumorzellen ansammeln. Anschließend wird die radioaktive Strahlung dieser Moleküle, beispielsweise mit einer Gamma Ka¬ mera, zur sogenannten Szintigraphie, aufgenommen und die Po- sition des Tumors festgestellt. Biochemisch werden Krebserkrankungen, wie auch andere Erkrankungen, an Hand von spezifischen Molekülen nachgewiesen. Dabei wird die Anwesenheit und Menge dieser Stoffe in Blut- oder Gewebeproben des Pati¬ enten bestimmt. Neben löslichen Stoffen, die in die Körper- flüssigkeiten abgegeben werden, produzieren krankhafte Zellen aber auch Moleküle, die an ihrer Zelloberfläche verankert bleiben. Dabei handelt es sich vor allem um Zellrezeptoren, wie beispielsweise Chemokinrezeptoren . An Hand dieser Oberflächenmoleküle ist ein biochemischer Nachweis von krankhaf- ten Zellen in vivo möglich, indem sie mit bildgebenden Verfahren sichtbar gemacht werden. In modern diagnostics, biochemical analyzes of blood and other bodily fluids as well as imaging methods, for example for the detection of tumors, are used. Traditionally, X-ray, ultrasound, and magnetic resonance imaging have been used to localize diseased tissue and ectopic cell aggregates. Newer methods use the increased metabolic activity of tumor cells compared to healthy tissue. The patient is injected with radioactively labeled sugar molecules that accumulate in the tumor cells. Subsequently, the radioactivity of these molecules, for example using a gamma ¬ Ka ra, the so-called scintigraphy was added and the polyvinyl sition of the tumor is observed. Biochemically, cancer diseases, as well as other diseases, are detected by specific molecules. The presence and amount of these substances in blood or tissue samples of Pati ¬ ducks is determined. In addition to soluble substances that are released into the body fluids, diseased cells also produce molecules that remain anchored to their cell surface. These are, above all, cell receptors, such as chemokine receptors. On the basis of these surface molecules, biochemical detection of pathological cells in vivo are possible by visualizing them using imaging techniques.
Chemokine sind kleine, häufig pro-inflammatorische Proteine, die zur Familie der Zytokine gehören. Sie weisen eine hohe chemotaktische Aktivität auf und sind vor allem für die Im¬ munzellmigration und während der Angiogenese von Bedeutung. Chemokine binden an spezielle G-Protein-gekoppelte Trans¬ membranrezeptoren, sogenannte Chemokinrezeptoren . Ihre Akti- vierung durch Chemokine führt zur sogenannten Chemotaxis, das heißt zu einer Umgestaltung des Zytoskeletts und zur Indukti¬ on der Zellmigration entlang des Chemokingradienten . Bisher sind insgesamt 20 Chemokinrezeptoren bekannt, die natürli¬ cherweise vor allem von Zellen des Immunsystems, beispiels- weise von T-Zellen, exprimiert werden. Daneben werden sie aber auch von Zellen krankhafter Gewebe gebildet, beispielsweise von Tumorzellen. Insbesondere die Chemokinrezeptoren CCR1, CCR5 und CXCR4 wurden in verschiedenen Krebsarten nachgewiesen (Meier R et al . , 2007, Erreni M et al . , 2009). Chemokines are small, often pro-inflammatory proteins belonging to the cytokine family. They have a high chemotactic activity and are mainly for the In ¬ munzellmigration and during angiogenesis is important. Chemokines bind to specific G protein-coupled trans ¬ membrane receptors, called chemokine receptors. Your activated by chemokines vation leads to the so-called chemotaxis, that is a transformation of the cytoskeleton and Induct ¬ on cell migration along the chemokine gradient. So far, a total of 20 chemokine receptors are known to be Natürli ¬ cherweise, expressed mainly by cells of the immune system, beispiels- example of T cells. In addition, they are also formed by cells of diseased tissue, such as tumor cells. In particular, the chemokine receptors CCR1, CCR5 and CXCR4 have been detected in various cancers (Meier R et al., 2007, Erreni M et al., 2009).
Bisher wird die Existenz von Chemokinrezeptoren in krankhaftem Gewebe, sei es auf der Oberfläche von Immunzellen oder auf den Zellen des Gewebes selbst, mit Hilfe von Antikörpern in vitro nachgewiesen. Dazu werden Biopsien eines vermutlich krankhaften Gewebes entnommen und diese Zellen mit herkömmlichen immunozytologischen und/oder immunohistologischen Methoden untersucht. Abgesehen davon, dass für diese Vorgehenswei¬ se ein invasiver Eingriff notwendig ist, ermöglicht sie es nicht, die tatsächliche Verteilung der Chemokinrezeptor exprimierenden Zellen in einem Organismus oder innerhalb eines bestimmten Gewebes/Organs zu bestimmen. To date, the existence of chemokine receptors in diseased tissue, whether on the surface of immune cells or on the cells of the tissue itself, has been demonstrated using antibodies in vitro. For this purpose, biopsies of a suspected tissue are removed and these cells are examined by conventional immunocytological and / or immunohistological methods. Besides being an invasive intervention is required for this Vorgehenswei ¬ se, it does not allow to determine the actual distribution of chemokine receptor-expressing cells in an organism or within a specific tissue / organ.
Der Erfindung liegt daher die Aufgabe zugrunde, ein kostengünstiges und für den Patienten gut verträgliches Agens zur Detektion eines krankhaften Gewebes, das einen Chemokinrezep- tor exprimiert, bereitzustellen. Diese Aufgabe wird durch die Verwendung eines Peptids zur Herstellung eines Agens zur Detektion eines krankhaften Gewebes, das einen Chemokinrezeptor exprimiert, gelöst. Indem ein Peptid, das an den Chemokinre¬ zeptor bindet und ein 11C-Kohlenstoffatom aufweist, verwendet wird, kann das Agens kostengünstig hergestellt und in dem Or¬ ganismus, in dem das krankhafte Gewebe nachgewiesen wird, gut verstoffwechselt werden. The invention is therefore based on the object, a cost-effective and well-tolerated for the patient agent for Detecting a diseased tissue that expresses a chemokine receptor. This object is achieved by the use of a peptide for the production of an agent for the detection of a diseased tissue that expresses a chemokine receptor. By using a peptide which binds to the Chemokinre ¬ Zeptor and having a 11 C carbon atom is used, the agent can be produced inexpensively and in which Or ¬ organism in which the pathological tissue is detected, well metabolized.
Der Begriff "Peptid" bezeichnet eine organische Verbindung aus mindestens zwei, über eine Peptidbindung verknüpften, Aminosäuren. Er umfasst dabei sowohl Oligopeptide aus bis zu ca. zehn Aminosäuren, Polypeptide aus bis zu ca. 50 Aminosäu- ren als auch Proteine von bis zu 150 Aminosäuren, unabhängig von deren Primär-, Sekundär- oder Tertiärstruktur. Dabei sind sowohl natürlich vorkommende als auch biotechnologisch oder synthetisch hergestellte Verbindungen umfasst. Das erfindungsgemäß verwendete Peptid wird so gewählt, dass es an den Chemokinrezeptor bindet. Geeignet sind dazu Antikörper, deren Fragmente und andere Polypeptide, die an den Chemokinrezeptor binden. Durch ihre spezifische Bindung an den Chemokinrezeptor können die Peptide zum Nachweis von krankhaften Geweben eingesetzt werden, die den Chemokinrezeptor bilden. Vorzugsweise wird das Peptid dabei so gewählt, dass die Bin¬ dung zwischen dem Peptid und dem Chemokinrezeptor einen linearen Koeffizienten, sog. kD-Wert, von < 100 nM, bevorzugt von < 10 nM, weiter bevorzugt von 7,5 nM aufweist. Das Peptid selbst ist aus Aminosäuren, das heißt aus körpereigenen bzw. körperähnlichen Molekülen aufgebaut, so dass es für den Patienten sehr gut verträglich ist. Es ist nicht toxisch und kann natürlich verstoffwechselt , abgebaut und ausgeschieden wer¬ den . Der Begriff "krankhaftes Gewebe" bezeichnet Zellen, Teile von Organen oder ganze Organe, die ihre physiologische Funktion nicht oder nicht in vollem Umfang erfüllen. Dazu zählen beispielsweise mit Viren oder Bakterien infizierte Zellen, hy- pertrophes Gewebe, entzündete Gewebe und Organe, hyperplasti¬ sches und neoplastisches Gewebe, etwa Geschwüre, Tumore und Karzinome. Krankhafte Zellen bilden häufig Proteine, deren Expression für eine bestimmte Erkrankung spezifisch ist, beispielsweise Chemokine und/oder Chemokinrezeptoren. Exprimie- ren erkrankte Zellen Chemokine, so locken sie dadurch Immunzellen an, die die Chemokine mit ihren Chemokinrezeptoren de- tektieren. Dadurch sammeln sich große Mengen Chemokinrezeptor positiver Zellen in dem krankhaften Gewebe. Beispielsweise wurden bei entzündlichen Nierenerkrankungen große Mengen CCR5 exprimierender T-Zellen im betroffenen Nierengewebe gefunden (Segerer S et al . , 1999) . Solche Ansammlungen an Chemokinre¬ zeptor positiven Zellen können mittels des erfindungsgemäß verwendeten Peptids nachgewiesen werden. Darüber hinaus exprimieren Tumorzellen häufig selbst Chemokinrezeptoren, die auf der Zelloberfläche sitzen und dort von dem erfindungsge¬ mäß verwendeten Peptid gebunden werden können. Bisher wurden Chemokinrezeptoren vor allem auf Brustkrebs- und Darmkrebs¬ zellen gefunden. Durch das erfindungsgemäß verwendete Peptid können solche Tumore zuverlässig lokalisiert werden. Ebenso können Metastasen solcher Tumore nachgewiesen werden, sofern auch sie den Chemokinrezeptor bilden. The term "peptide" refers to an organic compound of at least two amino acids linked via a peptide bond. It includes both oligopeptides of up to about ten amino acids, polypeptides of up to about 50 amino acids and proteins of up to 150 amino acids, regardless of their primary, secondary or tertiary structure. In this case, both naturally occurring and biotechnologically or synthetically produced compounds are included. The peptide used in the invention is chosen so that it binds to the chemokine receptor. Antibodies, their fragments and other polypeptides that bind to the chemokine receptor are suitable for this purpose. By their specific binding to the chemokine receptor, the peptides can be used to detect diseased tissues that form the chemokine receptor. Preferably, the peptide is chosen so that the Bin ¬ connection between the peptide and the chemokine receptor, so called a linear coefficient. KD value, comprising of <100 nM, preferably <10 nM, more preferably of 7.5 nM. The peptide itself is composed of amino acids, that is, of the body's own or body-like molecules, so that it is very well tolerated by the patient. It is non-toxic and can be naturally metabolized, broken down and excreted ¬ to. The term "diseased tissue" refers to cells, parts of organs or whole organs that do not or not fully fulfill their physiological function. These include, for example, viruses or bacteria infected cells hy pertrophes tissue, inflamed tissue and organs, hyperplasti ¬ MOORISH and neoplastic tissue, such as ulcers, tumors and cancers. Diseased cells often form proteins whose expression is specific for a particular disease, for example chemokines and / or chemokine receptors. If chemokines express diseased cells, they attract immune cells that detect the chemokines with their chemokine receptors. As a result, large amounts of chemokine receptor positive cells accumulate in the diseased tissue. For example, in inflammatory kidney disease, large amounts of CCR5-expressing T cells have been found in the affected kidney tissue (Segerer S et al., 1999). Such accumulations of Chemokinre ¬ Zeptor positive cells can be detected by means of the inventively used peptide. In addition, tumor cells often express themselves chemokine receptors that sit on the cell surface and can be bound by the erfindungsge ¬ Mäss peptide used there. So far, chemokine receptors have been found mainly on breast cancer and colon cancer ¬ cells. By means of the peptide used according to the invention, such tumors can be reliably localized. Similarly, metastases of such tumors can be detected, provided that they also form the chemokine receptor.
Die Detektion des Peptids und des daran gebundenen Chemokin- rezeptors erfolgt über ein integriertes 11C-Kohlenstoffatom. Beim Zerfall des 11C-Kohlenstoffisotops werden Positronen, die auch als ß+-Strahlung bezeichnet werden, gebildet. Stoßen die Positronen auf ein Elektron, bilden sie zwei Photonen, die sich in einem Winkel von 180°, also genau in entgegen ge¬ setzter Richtung, von einander entfernen. Die Photonen können detektiert und daraus die Position der Positronenemission, bzw. des 11C-Kohlenstoffatoms , berechnet werden. Die Integra¬ tion eines 11C-Kohlenstoffatom in das erfindungsgemäß verwendete Peptid, ermöglicht es, die Verwendung chemischer, kör- perfremder Stoffe zu vermeiden. Durch den direkten Einbau des 11C-Kohlenstoffisotops in das Peptid ist die radioaktive Mar¬ kierung ohne Komplexbildner, wie Diethylentriaminpentaacetat (DTPA) , 1,4,7, 10-tetraazacyclododecane-l, 4,7, 10-tetraacetic acid (DOTA) oder Ethylendiamintetraacetat (EDTA) , möglich. Außerdem kann vermieden werden, dass ein radioaktiver Fremd- Stoff, wie beispielsweise Fluor, Xenon, oder Gallium, m den Organismus eingebracht werden muss. Zur Herstellung eines erfindungsgemäß zu verwendenden Peptids sind insbesondere die Verfahren, die in den Patentanmeldungen DE 10 2009 035 648.7 und DE 10 2009 035 645.2 beschrieben werden, geeignet. Somit kann durch die erfindungsgemäße Verwendung des Peptids sowohl des Vorhandensein, als auch die Position des Chemokinrezep- tors nachgewiesen und abgebildet werden. Des Weiteren kann auch die Menge an Peptiden, die sich an einer bestimmten Stelle befindet, quantifiziert werden. The detection of the peptide and of the chemokine receptor bound thereto takes place via an integrated 11 C carbon atom. Upon decay of the 11 C carbon isotope, positrons, also referred to as β + radiation, are formed. Push the positron on an electron, they form two photons away at an angle of 180 °, which is exactly opposite in ge ¬ modifying the direction of each other. The photons can detected and from the position of the positron emission, or the 11 C carbon, are calculated. The Integra ¬ tion of a C-11 carbon atom in the peptide used in the invention, makes it possible to avoid the use of chemical, physi- perfremder substances. By the direct incorporation of 11 C-carbon isotope in the peptide is the radioactive Mar ¬ kierung without complexing agents such as diethylene triamine pentaacetate (DTPA), 1,4,7, 10-tetraazacyclododecanes-l, 4,7, 10-tetraacetic acid (DOTA) or ethylenediamine tetraacetate (EDTA), possible. In addition, it can be avoided that a radioactive foreign substance, such as fluorine, xenon, or gallium, must be introduced into the organism. For the preparation of a peptide to be used according to the invention, the processes described in patent applications DE 10 2009 035 648.7 and DE 10 2009 035 645.2 are particularly suitable. Thus, by the use according to the invention of the peptide both the presence and the position of the chemokine receptor can be detected and imaged. Furthermore, the amount of peptides located at a particular site can also be quantified.
Ein weiterer Vorteil des direkt mit X1C markierten Peptids liegt in dem günstigen Signal/Hintergrund Verhältnis während der Detektion. Das Peptid bindet spezifisch an den Chemokin- rezeptor und bildet mit diesem einen stabilen Komplex. Freie, ungebundene Peptide werden dagegen rasch verstoffwechselt und aus dem Organismus ausgeschieden, weil sie von endogenen Enzymen zügig abgebaut werden können. Dadurch entsteht ein starkes und spezifisches Signal an der Position des Chemokin- rezeptors, und das Hintergrundsignal wird minimiert. Another advantage of the peptide directly labeled with X1 C lies in the favorable signal / background ratio during detection. The peptide binds specifically to the chemokine receptor and forms a stable complex with it. Free, unbound peptides, on the other hand, are rapidly metabolized and excreted from the organism because they can be rapidly degraded by endogenous enzymes. This results in a strong and specific signal at the position of the chemokine receptor, and the background signal is minimized.
In einer vorteilhaften Weiterbildung der Erfindung weist das Peptid mindestens eine D-Aminosäure auf. Mit Ausnahme des Glycins, besitzen Aminosäuren an ihrem alpha-C-Kohlenstoff- atom ein chirales Zentrum und können daher als Konfigurationsisomere, nämlich als D- oder L-Aminosäure, vorliegen. Körpereigene Peptide und Proteine sind weitgehend aus Amino¬ säuren in L-Konfiguration aufgebaut. Zudem arbeiten die meis- ten natürlichen Proteasen und Peptidasen stereoselektiv und verstoffwechseln hauptsächlich L-Aminosäuren . Daher dauert der Abbau von D-Aminosäuren durch körpereigene Enzyme länger als der von L-Aminosäuren. Dieser Umstand kann verwendet werden, um die Halbwertszeit eines Proteins oder Peptids zu ver- längern, indem neben L-Aminosäuren auch D-Aminosäuren verwendet werden (Neundorf I et al . , 2008) . Dadurch kann die pharmakologische Clearance, also die Zeit bis das Peptid aus dem Organismus ausgeschieden wird, positiv beeinflusst werden. Bei dem Austausch einzelner L-Aminosäuren gegen ihre D- Konfiguration ist jedoch darauf zu achten, dass die Bin- dungsspezifität des Peptids nicht verändert wird. Eine weite¬ re Möglichkeit, die pharmakologische Clearance des Peptids zu beeinflussen, besteht darin einzelne der Aminosäuren des Peptids durch nicht natürliche Aminosäuren mit ähnlichen chemi- sehen Eigenschaften zu ersetzen. Die nicht natürlichen Aminosäuren werden langsamer verstoffwechselt , weil die körperei¬ genen proteolytischen Enzyme speziell an den Abbau natürlicher Aminosäuren angepasst sind. Bei der Modifizierung des Peptids sollten die nicht natürlichen Aminosäuren jedoch so gewählt werden, dass die Bindungsaffinität des Peptids nicht verändert wird. Darüber hinaus sind auch andere chemische Mo¬ difikationen einzelner Aminosäuren des Peptids möglich, um die Halbwertszeit des Peptids gezielt zu beeinflussen. Bei¬ spielsweise kann die endständige Aminogruppe des Peptids durch eine Isonitrilgruppe ersetzt werden. Eine solche Modi¬ fikation reduziert die, von der Aminogruppe vermittelte, In¬ teraktion mit proteolytischen Enzymen, ohne die Bindung zwischen dem erfindungsgemäß verwendeten Peptid und dem Chemo- kinrezeptor zu verändern. In einer vorteilhaften Ausführungsform der Erfindung ist das Peptid ein Antagonist des Chemokinrezeptors . Chemokinrezepto- ren werden in der Regel durch die Bindung von Chemokinen ak- tiviert und vermitteln Änderungen des Zytoskeletts und die gerichtete Migration der Zelle. Um zu vermeiden, dass es durch die Bindung des erfindungsgemäß verwendeten Peptids an den Chemokinrezeptor zu einer Mobilisierung der Zelle kommt, ist es vorteilhaft, wenn das Peptid an den Chemokinrezeptor bindet, ohne diesen zu aktivieren. Besonders geeignet hierfür sind Peptide, die als Antagonisten des Chemokinrezeptors fun¬ gieren. Sie zeigen eine spezifische Bindungsaffinität zu dem Rezeptor, führen aber nicht zur Aktivierung der nachfolgenden zellulären Signalwege. In an advantageous embodiment of the invention, the peptide has at least one D-amino acid. With the exception of glycine, amino acids have their alpha-C-carbon atom is a chiral center and can therefore be present as configuration isomers, namely as D- or L-amino acid. Endogenous peptides and proteins are largely made up of amino acids in ¬ L-configuration. In addition, most natural proteases and peptidases work stereoselectively and mainly metabolize L-amino acids. Therefore, the degradation of D-amino acids by endogenous enzymes takes longer than that of L-amino acids. This fact can be used to extend the half-life of a protein or peptide by using D-amino acids in addition to L-amino acids (Neundorf I et al., 2008). As a result, the pharmacological clearance, ie the time until the peptide is eliminated from the organism, can be positively influenced. However, when replacing individual L-amino acids with their D-configuration, care must be taken not to alter the binding specificity of the peptide. A further possibility to influence the pharmacological clearance of the peptide is to replace some of the amino acids of the peptide with non-natural amino acids with similar chemical properties. The non-natural amino acids are metabolized more slowly because the körperei ¬-related proteolytic enzymes are specially adapted to the exploitation of natural amino acids. However, when modifying the peptide, the non-natural amino acids should be chosen so that the binding affinity of the peptide is not altered. In addition, other chemical Mo ¬ difikationen individual amino acids of the peptide are possible to influence the half-life of the peptide specifically. In ¬ play, the terminal amino group of the peptide may be replaced by an isonitrile group. Such modes ¬ fication reduces, mediated by the amino group, in ¬ teraktion with proteolytic enzymes without altering the bond between the peptide used in the invention and the chemo- kinrezeptor. In an advantageous embodiment of the invention, the peptide is an antagonist of the chemokine receptor. Chemokine receptors are usually activated by the binding of chemokines and mediate changes in the cytoskeleton and directed migration of the cell. In order to avoid mobilization of the cell as a result of the binding of the peptide used according to the invention to the chemokine receptor, it is advantageous if the peptide binds to the chemokine receptor without activating it. Particularly suitable for this purpose are peptides that lust as antagonists of the chemokine receptor fun ¬. They show specific binding affinity to the receptor, but do not result in the activation of subsequent cellular signaling pathways.
In einer vorteilhaften Weiterbildung der Erfindung ist das Agens ein Radiopharmakon . Der Begriff "Radiopharmaka" bezeichnet Arzneimittel, die Radionuklide enthalten, deren Strahlung zur Diagnostik und Therapie verwendet wird. Die wichtigsten Anwendungsgebiete sind dabei die Onkologie, Kar¬ diologie und Neurologie, aber auch die Arzneimittelforschung. Als Radionuklide werden Gamma- bzw. Beta-Strahlen emittierende Nuklide, zum Beispiel 133Xenon, "Technetium, 68Gallium, und 18Fluor, verwendet. Sie werden üblicherweise über Kom- plexbildner wie DOTA, DTPA oder EDTA an Mono- oder Polysaccharide gebunden. Die Nuklide werden, je nach der Art ihrer Strahlung, mittels Szintigraphie, Single Photon Emission Com- puted Tomography (SPECT) oder Positronen-Emissions- Tomographie (PET) detektiert. Aufgrund ihrer unphysiologi- sehen Bestandteile können herkömmliche Radiopharmaka jedochIn an advantageous embodiment of the invention, the agent is a radiopharmaceutical. The term "radiopharmaceuticals" refers to medicines containing radionuclides whose radiation is used for diagnosis and therapy. The main applications are in oncology, Kar ¬ ogy and neurology, as well as pharmaceutical research. When radionuclides are gamma or beta radiation emitting nuclides, for example Xenon 133, "technetium, gallium 68, fluorine 18 and used. They are usually bound via com- formers such as DOTA, DTPA or EDTA mono- or polysaccharides. The nuclides are detected by scintigraphy, single photon emission com- puted tomography (SPECT) or positron emission tomography (PET), depending on the nature of their radiation, but conventional radiopharma- ceuticals can be used because of their non-physiological components
Nebenwirkungen, wie anaphylaktische oder allergische Reaktio¬ nen, im Körper eines Patienten verursachen. Die Verwendung eines Peptids aus körpereigenen Aminosäuren reduziert diese Gefahr deutlich, weil weder das Peptid selbst, noch seine Ab- bauprodukte toxisch sind. Zudem ist Kohlenstoff, im Gegensatz zu Technetium oder Xenon, ein im Körper vorkommendes Element, das natürlich verstoffwechselt werden kann. In einer bevorzugten Ausführungsform exprimiert das krankhafte Gewebe erhöhte Mengen des Chemokinrezeptors . Im Vergleich zu gesundem Gewebe tragen die Zellen in verschiedenen krankhaften Geweben besonders hohe Mengen an Chemokinrezeptoren auf ihrer Oberfläche. Bei einigen Krankheiten, wie beispiels- weise bei vielen Nierenerkrankungen, wandern große Mengen T- Zellen, die Chemokinrezeptoren tragen, in das krankhafte Gewebe ein. Andererseits können aber auch krankhafte Zellen selbst erhöhte Mengen an Chemokinrezeptoren exprimieren, wie es beispielsweise bei Brust- und Darmkrebszellen beobachtet wurde. In beiden Fällen entstehen lokale Anhäufungen von Chemokinrezeptoren, die durch das erfindungsgemäß verwendete Peptid detektiert werden können. Cause side effects such as anaphylactic or allergic Reaktio ¬ nen in the body of a patient. The use of a peptide from the body's own amino acids significantly reduces this risk because neither the peptide itself nor its abatement Building products are toxic. In addition, unlike technetium or xenon, carbon is an element found in the body that naturally can be metabolized. In a preferred embodiment, the diseased tissue expresses increased amounts of the chemokine receptor. Compared to healthy tissue, the cells in different diseased tissues carry particularly high levels of chemokine receptors on their surface. In some diseases, such as many kidney diseases, large amounts of T cells carrying chemokine receptors migrate into the diseased tissue. On the other hand, even diseased cells can express even increased amounts of chemokine receptors, as has been observed, for example, in breast and colon cancer cells. In both cases, local accumulations of chemokine receptors arise, which can be detected by the peptide used according to the invention.
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist das ^C-Kohlenstoffatom das Carbonylkohlenstoffatom einer Aminosäure. Die Carbonylgruppen sind Teil der Peptidbindungen zwischen den Aminosäuren und liegen im Inneren des Peptids. Dadurch ist gewährleistet, dass das ^C-Kohlenstoffatom nicht vom Peptid abgespalten wird, wie es etwa bei einer Seitenket- te einer der Aminosäuren möglich wäre. According to an advantageous development of the invention, the C-carbon atom is the carbonyl carbon atom of an amino acid. The carbonyl groups are part of the peptide bonds between the amino acids and are located inside the peptide. This ensures that the ^ C carbon atom is not cleaved off the peptide, as would be possible with a side chain of one of the amino acids.
Gemäß einer weiter bevorzugten Ausführungsform der Erfindung ist das ^C-Kohlenstoffatom das Carbonylkohlenstoffatom der N-terminalen Aminosäure des Peptids. Diese Ausführungsform ist besonders bevorzugt, weil das Peptid direkt nach dem An¬ bringen der 11C-markierten Aminosäure verwendet werden kann. ^C-Kohlenstoff hat eine Halbwertszeit von nur ca. 20 Minu¬ ten, so dass die Strahlungsdosis desto höher gewählt werden muss, je mehr Zeit zwischen der Synthese des Peptids und sei- ner Verwendung liegt. Wird die 11C-Markierung mit der N- terminalen Aminosäure und damit im letzten Schritt der Synthese angebracht, kann das Peptid sofort nach seiner Synthese verwendet werden. Auf diese Weise wird die Zeitspanne zwi- sehen der Verarbeitung des 11C-Kohlenstoffs und dem Einsatz des Peptids reduziert, so dass der Strahlungsverlust während der Herstellung des Peptids minimiert wird. Deshalb kann die Strahlendosis, die bei der Verarbeitung des 11C-Kohlenstoffs eingesetzt werden muss um eine bestimmte Strahlungsstärke des Produkts zu gewährleisten, entsprechend geringer sein. DieIn a further preferred embodiment of the invention, the C-carbon atom is the carbonyl carbon atom of the N-terminal amino acid of the peptide. This embodiment is particularly preferred because the peptide immediately after the on ¬ bring the 11 C-labeled amino acid can be used. ^ C-carbon has a half-life of only about 20 Minu ¬ th, so that the radiation dose to be selected the higher, the more time between the synthesis of the peptide and sides ner use is. If the 11 C-labeling with the N-terminal amino acid and thus in the last step of the synthesis is applied, the peptide can be used immediately after its synthesis. In this way, the time between the processing of the 11 C carbon and the use of the peptide is reduced, so that the radiation loss during the preparation of the peptide is minimized. Therefore, the radiation dose that must be used in the processing of the 11 C carbon to ensure a certain radiation intensity of the product, be correspondingly lower. The
Herstellung wird dadurch kostengünstiger und die Strahlenbelastung für das technische Personal, welches das Peptid her¬ stellt, verringert. Ein weiterer Gegenstand der Erfindung ist ein Radiopharmakon, das ein Peptid mit einem 11C-Kohlenstoffatom umfasst, zur Lokalisation eines krankhaften Gewebes, das einen Chemokinre- zeptor exprimiert. Indem ein Peptid, das an den Chemokinre- zeptor bindet und ein 11C-Kohlenstoffatom aufweist, verwendet wird, ist das Radiopharmakon für den Patienten gut verträglich und kann kostengünstig produziert werden. Production is less expensive and thus the radiation exposure for the technical staff that forth ¬ represents the peptide reduced. Another object of the invention is a radiopharmaceutical comprising a peptide having an 11 C carbon atom for the localization of a diseased tissue expressing a chemokine receptor. By using a peptide that binds to the chemokine receptor and has an 11 C carbon atom, the radiopharmaceutical is well tolerated by the patient and can be produced inexpensively.
Das erfindungsgemäße Radiopharmakon bietet daher ein wirt¬ schaftlich und medizinisch vorteilhaftes Agens, um die Posi- tion eines krankhaften Gewebes, das einen Chemokinrezeptor exprimiert, in vivo zu bestimmen. Nachdem das Radiopharmakon einem Patienten verabreicht wurde, verteilen sich die darin enthaltenen Peptide in dessen Körper und binden spezifisch an Chemokinrezeptoren . Dadurch sammeln sie sich an den Zellen des krankhaften Gewebes, wo sie durch das radioaktive Signal des 11C-Kohlenstoffatoms nachgewiesen werden. Auf diese Weise wird die Position des krankhaften Gewebes im Körper des Patienten bestimmt. In einer bevorzugten Ausführungsform exprimiert das krankhafte Gewebe erhöhte Mengen des Chemokinrezeptors . Im Vergleich zu gesundem Gewebe tragen die Zellen in verschiedenen krankhaften Geweben besonders hohe Mengen an Chemokinrezeptoren auf ihrer Oberfläche. Therefore, the radiopharmaceutical invention provides a host ¬ economically and medically beneficial agent to the posi- tion of a diseased tissue that expresses a chemokine receptor to determine in vivo. After the radiopharmaceutical has been administered to a patient, the peptides contained therein are distributed into the body and bind specifically to chemokine receptors. As a result, they accumulate on the cells of the diseased tissue, where they are detected by the radioactive signal of the 11 C carbon atom. In this way, the position of the diseased tissue in the body of the patient is determined. In a preferred embodiment, the diseased tissue expresses increased amounts of the chemokine receptor. Compared to healthy tissue, the cells in different diseased tissues carry particularly high levels of chemokine receptors on their surface.
Gemäß einer vorteilhaften Ausführungsform ist das 11C- Kohlenstoffatom ein Carbonylkohlenstoffatom einer Aminosäure, bevorzugt das Carbonylkohlenstoffatom der N-terminalen Amino- säure des Peptids. According to an advantageous embodiment, the 11 C carbon atom is a carbonyl carbon atom of an amino acid, preferably the carbonyl carbon atom of the N-terminal amino acid of the peptide.
In einer bevorzugten Ausführungsform ist das Radiopharmakon ein PET Biomarker. Die PET ist ein etabliertes Verfahren um die Strahlung radioaktiver Elemente zu erfassen und ihre Po- sition zu bestimmen (Massoud TF, Gambhir SS, 2003) . Mit Hilfe von ringförmig um den Patienten angeordneten Detektorgeräten werden Schnittbilder erstellt, auf denen die Zerfallsereig- nisse in ihrer räumlichen Verteilung im Körperinneren dargestellt werden. Im Gegensatz zu den bisher üblichen Szintigra- phie-Verfahren, ist durch die ringförmige Anordnung der PET- Detektoren eine exaktere räumliche Lokalisation der Positro¬ nenemission und damit eine wesentlich genauere und detail¬ lierter Abbildung des krankhaften Gewebes möglich. Die PET ermöglicht es auch, die Menge an markierten Molekülen in ei- nem Gewebe quantitativ zu bestimmen. In a preferred embodiment, the radiopharmaceutical is a PET biomarker. PET is an established method for detecting the radiation of radioactive elements and determining their position (Massoud TF, Gambhir SS, 2003). With the aid of detector devices arranged annularly around the patient, sectional images are created on which the decay events are represented in their spatial distribution in the interior of the body. In contrast to the usual scintigraphic chromatography method, is by the annular configuration of the PET detectors a more precise spatial localization of the positron ¬ nenemission and thus a substantially more accurate and detailed ¬ profiled imaging the diseased tissue is possible. PET also makes it possible to quantify the amount of labeled molecules in a tissue.
Außerdem wird ein Verfahren zur Lokalisation eines krankhaften Gewebes in einem Organismus, das einen Chemokinrezeptor exprimiert, offenbart, umfassend die Schritte, a) Bereitstel- len eines Peptids, b) Verabreichen des Peptids an den Orga¬ nismus und c) Detektieren des Peptids in dem Organismus mit¬ tels Positronen-Emissions-Tomographie (PET) . Dabei bindet das Peptid an den Chemokinrezeptor und weist ein 11C-Kohlenstoff- atom auf. Mit dem erfindungsgemäß verwendeten Peptid wird ein Chemokin- rezeptor im Inneren eines Organismus detektiert und lokali¬ siert, so dass die Verteilung des Chemokinrezeptors im Körper eines Patienten beobachtet werden kann. Auf diese Weise kann die Größe oder Ausdehnung eines krankhaften Gewebes, bei¬ spielsweise einer Infektion oder eines Tumors, der den Chemo- kinrezeptor exprimiert, bestimmt werden. Das erfindungsgemäß verwendete Peptid ist daher hervorragend zur Beobachtung von Verlauf und Erfolg einer Behandlung, sog. Therapiemonitoring, geeignet . In addition, a method for localization of a diseased tissue in an organism which expresses a chemokine receptor, disclosed, comprising the steps of a) Bereitstel- len a peptide b) administering the peptide to the Orga ¬ mechanism and c) detecting the peptide in the Organism with ¬ positron emission tomography (PET). The peptide binds to the chemokine receptor and has an 11 C carbon atom. With the peptide used in the invention is a chemokine receptor in the interior of an organism is detected and lokali ¬ Siert, so that the distribution of the chemokine receptor can be observed in the body of a patient. In this way, the size or extent of a pathological tissue, are determined at ¬ game as an infection or a tumor expressing the chemo- kinrezeptor. The peptide used according to the invention is therefore outstandingly suitable for observing the course and success of a treatment, so-called therapy monitoring.
Im Folgenden werden bevorzugte Ausführungsformen der Erfindung anhand der beigefügten schematischen Zeichnungen erläu- tert. In the following, preferred embodiments of the invention will be explained with reference to the accompanying diagrammatic drawings.
Figur 1 zeigt schematisch die Bindung zwischen einem Peptid 1 und einem Chemokinrezeptor 4. Das Peptid 1 umfasst 8 Aminosäuren 2, von denen die N- terminale Aminosäure 3 mit einem 11C-Kohlenstoffatom radioaktiv markiert ist. Die radioaktive Markierung ist durch einen Stern (*) dargestellt. Ein Teil des Peptids 1 ist an den Che¬ mokinrezeptor 4 angelagert, der sich auf der Oberfläche eines krankhaften Gewebes 18 befindet. Figure 1 shows schematically the binding between a peptide 1 and a chemokine receptor 4. The peptide 1 comprises 8 amino acids 2, of which the N-terminal amino acid 3 is radioactively labeled with an 11 C carbon atom. The radioactive label is represented by an asterisk (*). A part of the peptide 1 is attached to the Che ¬ mokinrezeptor 4, which is located on the surface of a diseased tissue 18th
Das ^C-markierte Peptid 1 bindet spezifisch an den Chemokin¬ rezeptor 4, nicht aber an andere Moleküle. Das Peptid 1 kann daher zur Detektion des Chemokinrezeptors 4 verwendet werden. Die beim Zerfall des 11C-Kohlenstoffatoms abgegebenen Po¬ sitronen werden mittels Positronen-Emissions-Tomographie (PET) nachgewiesen. Der Ort der Positronenemission entspricht dem Ort des Peptids 1 und des daran gebundenen Chemokinrezep¬ tors 4. Das Peptid 1 kann daher zur Bestimmung der Position eines krankhaften Gewebes 18 verwendet werden, das den Chemo¬ kinrezeptor 4 bildet. The ^ C-labeled peptide 1 binds specifically to the chemokine ¬ receptor 4, but not to other molecules. The peptide 1 can therefore be used for the detection of the chemokine receptor 4. The Po ¬ sitronen delivered at the decay of the 11 C carbon are detected by positron emission tomography (PET). The location of the positron emission corresponds to the location of the peptide 1 and attached thereto Chemokinrezep ¬ tors 4. The peptide 1 can therefore be used to determine the position a diseased tissue 18 can be used which forms the chemo ¬ kinrezeptor 4.
Zur Lokalisation eines krankhaften Gewebes 18 im Rahmen einer Krankheitsdiagnose wird einem Patienten ein Radiopharmakon verabreicht, welches das 11C-markierte Peptid 1 enthält. Das Peptid 1 bindet spezifisch an den Chemokinrezeptor 4 und sammelt sich so an dem krankhaften Gewebe 18 mit den Zellen, die den Chemokinrezeptor 4 bilden. Diese Anhäufung wird durch PET abgebildet und die Verteilung des Chemokinrezeptors 4 bzw. die Lokalisation des krankhaften Gewebes 18 im Körper des Patienten bestimmt. Außerdem kann die Medikation eines Therapeutikums, zum Beispiel Wirkstoffmenge und Verabreichungs¬ plan, entsprechend der Position, Größe und Verteilung des krankhaften Gewebes 18 angepasst werden. To localize a diseased tissue 18 as part of a disease diagnosis, a patient is administered a radiopharmaceutical containing the 11 C-labeled peptide 1. The peptide 1 binds specifically to the chemokine receptor 4 and thus accumulates on the diseased tissue 18 with the cells that form the chemokine receptor 4. This accumulation is represented by PET and determines the distribution of the chemokine receptor 4 or the localization of the diseased tissue 18 in the body of the patient. In addition, the medication of a therapeutic agent, for example active ingredient and amount of administration ¬ plan be adjusted according to the position, size and distribution of the diseased tissue 18th
Figur 2 zeigt eine Darstellung eines Peptids mit der Sequenz SEQ ID Nr.: 1 mittels chemischer Formel. Das Peptid der SEQ ID Nr.: 1 umfasst 8 Aminosäuren 2 der folgenden Sequenz: D-Alanin-Serin-Threonin-Threonin-Threonin- Asparagin-Tyrosin-ThreoninAmici . FIG. 2 shows a representation of a peptide having the sequence SEQ ID NO: 1 by means of a chemical formula. The peptide of SEQ ID NO: 1 comprises 8 amino acids 2 of the following sequence: D-alanine-serine-threonine-threonine-threonine-asparagine-tyrosine-threonine Am i c i.
Die N-terminalen Aminosäuren 2 D-Alanin und Serin sind mit- tels Strukturformel dargestellt, die folgenden Aminosäuren 2 durch ihren jeweiligen Drei-Buchstaben Code. Die Aminosäure ThreoninAmid ist mit ThrA bezeichnet und besitzt ein C- termiales Amid. Die Sequenz des Peptids ist auch in SEQ ID Nr.: 1 angegeben. Das Carbonylkohlenstoffatom des N- terminalen D-Alanins ist ein 11C-Kohlenstoffatom, dargestellt durch die Ziffer 11 oberhalb des Carbonylkohlenstoffatoms . The N-terminal amino acids 2 D-alanine and serine are represented by the structural formula, the following amino acids 2 by their respective three-letter code. The amino acid threonine Am i d is designated Thr A and has a C-termial amide. The sequence of the peptide is also given in SEQ ID NO: 1. The carbonyl carbon atom of the N-terminal D-alanine is an 11 C carbon atom represented by the number 11 above the carbonyl carbon atom.
Das Peptid 1 wird mit herkömmlichen Proteinsyntheseverfahren hergestellt und die 11C-markierte N-terminale Aminosäure 3 im letzten Schritt hinzu gefügt, weil die Halbwertszeit des C- Kohlenstoffisotops bei nur ca. 20 Minuten liegt. Dadurch, dass die Peptidsynthese mit der 11C-markierten Aminosäure 3 abgeschlossen wird, kann das Peptid 1 nach der radioaktiven Markierung sofort verwendet werden. Peptide 1 is prepared by conventional protein synthesis methods and the 11 C-labeled N-terminal amino acid 3 im added last step, because the half-life of the C-carbon isotope is only about 20 minutes. By completing the peptide synthesis with the 11 C-labeled amino acid 3, the peptide 1 can be used immediately after the radioactive labeling.
Das Peptid der SEQ ID Nr.: 1 bindet spezifisch an den Chemo- kinrezeptor-5 (CCR5) 4. Dieser Rezeptor befindet sich in gro¬ ßen Mengen an der Oberfläche von T-Zellen, die ins Intersti- tium erkrankter Nieren einwandern (Segerer S et al . , 1999) . Er wird aber auch von Tumorzellen, wie von Brust- oder Darmkebszellen, ektopisch expimiert. Zu den natürlichen Liganden des CCR5 4 gehören unter anderem die Zytokine RANTES, MIP- la (macrophage inflammatory protein la) und MIP-lß. Im Gegen- satz zu diesen Molekülen, bindet das Peptid 1, das auch als DAPTA bezeichnet wird, an CCR5 4 ohne ihn zu aktivieren (Po- lianova MT et al . , 2005) . Es wird unter anderem als Antago¬ nist des CCR5 4 verwendet, um die Bindung des Humanen Immun¬ schwäche Virus (HIV) an T-Zellen zu hemmen. The peptide of SEQ ID No .: 1 specifically binds to the chemo- kinrezeptor-5 (CCR5) 4. This receptor is located in the gro ¬ SEN amounts at the surface of T cells, which migrate into the interstitial tium diseased kidneys (Segerer S et al., 1999). It is also ectopically expectorated by tumor cells, such as breast or intestinal cells. The natural ligands of CCR5 4 include the cytokines RANTES, MIP-la (macrophage inflammatory protein la) and MIP-lß. In contrast to these molecules, peptide 1, also referred to as DAPTA, binds to CCR5 4 without activating it (Polianova MT et al., 2005). It is Antago ¬ nist of the used inter alia as CCR5 4 to inhibit the binding of the human immune ¬ weakness virus (HIV) to T cells.
Das Peptid der SEQ ID Nr.: 1 bindet an CCR5 4 ohne jedoch zelluläre Signalketten zu induzieren (Polianova MT et al . , 2005) . Es ist deshalb für die Detektion eines CCR5 4 expri- mierenden Gewebes besonders geeignet. Zudem ist das Peptid der SEQ ID Nr.: 1 mit nur acht Aminosäuren 2 besonders klein und daher schnell und einfach für den Patienten zu verstoff- wechseln. Eine Markierung mittels 11C-Kohlenstoff ist dabei besonders geeignet, weil sie die physiologische Struktur des Peptids 1 nicht beeinflusst und weder die Verteilung im Gewe- be noch die Verträglichkeit des Peptids 1 beeinträchtigt. The peptide of SEQ ID NO: 1 binds to CCR5 4 but without inducing cellular signaling (Polianova MT et al., 2005). It is therefore particularly suitable for the detection of a CCR5 4-expressing tissue. In addition, the peptide of SEQ ID NO: 1 with only eight amino acids 2 is particularly small and therefore fast and easy to metabolize for the patient. Labeling by means of 11 C carbon is particularly suitable because it does not affect the physiological structure of peptide 1 and does not adversely affect the distribution in the tissue or the compatibility of peptide 1.
Figur 3 zeigt eine schematische Darstellung (stark vereinfacht nach Faller A, Schünke M, Der Körper des Menschen, Thieme, 2008) eines Blutkreislaufsystems 10 eines Organismus und die Verteilung eines Peptids 1 darin. FIG. 3 shows a schematic representation (greatly simplified according to Faller A, Schünke M, The human body, Thieme, 2008) of a circulatory system 10 of an organism and the distribution of a peptide 1 therein.
Das Blutkreislaufsystem 10 umfasst verschiedene schematisch dargestellte Organe, wie Lunge 12, Herz 13, Leber 14, Darm 15 und Niere 16 und die Hauptadern 11, welche diese Organe ver¬ binden. Das Peptid 1 ist durch Dreiecke entlang der Adern 11 dargestellt. Die Abbauprodukte 17 des Peptids 1 sind durch einzelne Striche innerhalb der Umrisse der Niere 16 darge- stellt. Links der Mitte des Blutkreislaufsystems 10 ist zu¬ sätzlich ein krankhaftes Gewebe 18 mit Chemokinrezeptoren 4 dargestellt, an das vermehrt Peptide 1 angelagert sind. The circulation system 10 includes various organs schematically represented, such as the lungs 12, heart 13, liver 14, 15 intestine and kidney 16 and the main wires 11 which these organs ver ¬ bind. The peptide 1 is represented by triangles along the wires 11. The degradation products 17 of the peptide 1 are represented by individual lines within the outline of the kidney 16. Left of center of the circulatory system 10, a diseased tissue is additionally shown ¬ 18 with chemokine receptors 4, are attached to the increased peptides. 1
Die Verteilung des Peptids 1 im Blutkreislaufsystem 10 um- fasst vier Phasen, die entlang der Darstellung von oben nach unten aufgeführt sind. The distribution of peptide 1 in the circulatory system 10 comprises four phases, which are listed along the top-down view.
Phase I: Das Peptid 1 wird in das Blutkreislaufsystem 10 des Organismus injiziert. Phase I: Peptide 1 is injected into the circulatory system 10 of the organism.
Phase II: Über das Blutkreislaufsystem 10 wird das Peptid 1 in die Organe 12, 13, 14, 15, und 16 des Organismus transpor¬ tiert . Phase III: Das zirkulierende Peptid 1 bindet spezifisch an den Chemokinrezeptor 4 und sammelt sich an dem krankhaften Gewebe 18, weil dieses den Chemokinrezeptor 4 produziert. Phase II: is via the blood circulatory system 10 Peptide 1 in the organs 12, 13, 14, 15, and 16 of the body transported ¬ advantage. Phase III: The circulating peptide 1 binds specifically to the chemokine receptor 4 and accumulates on the diseased tissue 18 because it produces the chemokine receptor 4.
Phase IV: Nicht gebundenes Peptid 1 wird schnell verstoff- wechselt und enzymatisch abgebaut. Der Organismus unterschei¬ det nicht zwischen eigenen Peptiden und dem Peptid 1, weil es aus Aminosäuren 2, 3 aufgebaut ist, die den körpereigenen Molekülen entsprechen. Die Abbauprodukte 17 des Peptids 1 und der Aminosäuren 2, 3 sammeln sich vorwiegend in der Niere 16 von wo aus sie über die Blase und den Harnleiter ausgeschie¬ den werden. Phase IV: Unbound peptide 1 is rapidly metabolised and enzymatically degraded. The organism not failed ¬ det between own peptides and the peptide 1, because it is composed of amino acids 2, 3, which correspond to the body's own molecules. The degradation products 17 of the peptide 1 and the amino acids 2, 3 accumulate predominantly in the kidney 16 from where they are ejected via the bladder and the ureter.
Referenzen references
Erreni M, Bianchi P, Laghi L, Mirolo M, Fabbri M, Locati M, Mantovani A, Allavena P; Expression of chemokines and chemo- kine receptors in human colon Cancer; Methods Enzymo1. 2009; 460 : 105-21. Erreni M, Bianchi P, Laghi L, Mirolo M, Fabbri M, Locati M, Mantovani A, Allavena P; Expression of chemokines and chemokine receptors in human colon cancer; Methods Enzymo1. 2009; 460: 105-21.
Faller A, Schünke M; Der Körper des Menschen; Thieme-Verlag; 2008 Faller A, Schünke M; The body of man; Thieme-Verlag; 2008
Massoud TF, Gambhir SS; Molecular imaging in living subjects: seeing fundamental biological processes in a new light; Genes Dev. 2003 Mar 1; 17 (5) : 545-80. Meier R, Mühlethaler-Mottet A, Flahaut M, Coulon A, Fusco C, Louache F, Auderset K, Bourloud KB, Daudigeos E, Ruegg C, Vassal G, Gross N, Joseph JM; The chemokine receptor CXCR4 strongly promotes neuroblastoma primary tumour and metastatic growth, but not invasion; PLoS One, 2007 Oct 10 ; 2 ( 10 ) : elOl 6. Massoud TF, Gambhir SS; Molecular imaging in living subjects: seeing fundamental biological processes in a new light; Genes Dev. 2003 Mar 1; 17 (5): 545-80. Meier R, Mühlethaler Mottet A, Flahaut M, Coulon A, Fusco C, Louache F, Auderset K, Bourloud KB, Daudigeos E, Ruegg C, Vassal G, Gross N, Joseph JM; The chemokine receptor CXCR4 strongly promotes neuroblastoma primary tumor and metastatic growth, but not invasion; PLoS One, 2007 Oct 10; 2 (10): elOl 6.
Neundorf I, Rennert R, Franke J, Közle I, Bergmann R; De- tailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides; Bio- conjug Chem. 2008 Aug; 19 (8) : 1596-603. Neundorf I, Rennert R, Franke J, Közle I, Bergmann R; Detailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides; Bioconjug Chem. 2008 Aug; 19 (8): 1596-603.
Polianova MT, Ruscetti FW, Pert CB, Ruff MR; Chemokine recep- tor-5 (CCR5) is a receptor for the HIV entry inhibitor Peptide T (DAPTA) ; Antiviral Res. 2005 Aug; 67(2): 83-92. Segerer S, Mack M, Regele H, Kerjaschki D, Schlöndorff D; Ex¬ pression of the C-C chemokine receptor 5 in human kidney dis¬ eases; Kidney Int. 1999 Jul; 56(l):52-64. Polianova MT, Ruscetti FW, Pert CB, Ruff MR; Chemokine receptor-5 (CCR5) is a receptor for the HIV entry inhibitor Peptide T (DAPTA); Antiviral Res. 2005 Aug; 67 (2): 83-92. Segerer S, Mack M, Rule H, Kerjaschki D, Schlöndorff D; Ex ¬ pression of the CC chemokine receptor 5 in human kidney dis ¬ eases; Kidney Int. 1999 Jul; 56 (l): 52-64.

Claims

Patentansprüche claims
1. Verwendung eines Peptids (1) zur Herstellung eines Agens zur Detektion eines krankhaften Gewebes (18), das einen Chemokinrezeptor (4) exprimiert, 1. Use of a peptide (1) for the production of an agent for the detection of a diseased tissue (18) which expresses a chemokine receptor (4),
dadurch gekennzeichnet,  characterized,
dass das Peptid (1) an den Chemokinrezeptor (4) bindet und ein 11C-Kohlenstoffatom aufweist. the peptide (1) binds to the chemokine receptor (4) and has an 11 C carbon atom.
2. Verwendung nach Anspruch 1, 2. Use according to claim 1,
dadurch gekennzeichnet,  characterized,
dass das Peptid (1) mindestens eine D-Aminosäure (2) aufweist .  the peptide (1) has at least one D-amino acid (2).
3. Verwendung nach Anspruch 1 oder 2, 3. Use according to claim 1 or 2,
dadurch gekennzeichnet,  characterized,
dass das Peptid (1) ein Antagonist des Chemokinrezeptors (4) ist.  the peptide (1) is an antagonist of the chemokine receptor (4).
4. Verwendung nach einem der vorhergehenden Ansprüche, 4. Use according to one of the preceding claims,
dadurch gekennzeichnet,  characterized,
dass das Agens ein Radiopharmakon ist.  that the agent is a radiopharmaceutical.
5. Verwendung nach einem der vorhergehenden Ansprüche, 5. Use according to one of the preceding claims,
dadurch gekennzeichnet,  characterized,
dass Zellen in dem krankhaften Gewebe (18), im Vergleich zu gesundem Gewebe, erhöhte Mengen des Chemokinrezeptors (4) tragen.  that cells in the diseased tissue (18) carry increased amounts of the chemokine receptor (4) compared to healthy tissue.
6. Verwendung nach einem der vorhergehenden Ansprüche, 6. Use according to one of the preceding claims,
dadurch gekennzeichnet,  characterized,
dass das 11C-Kohlenstoffatom das Carbonylkohlenstoffatom einer Aminosäure (2), vorzugsweise der N-terminalen Aminosäure (3) des Peptids (1) ist. the 11 C carbon atom is the carbonyl carbon atom of an amino acid (2), preferably of the N-terminal amino acid (3) of the peptide (1).
7. Radiopharmakon zur Lokalisation eines krankhaftes Gewebes (18), das einen Chemokinrezeptor (4) exprimiert, um¬ fassend ein Peptid (1), 7. radiopharmaceutical for the localization of a diseased tissue (18) having a chemokine receptor (4) expressed to collectively ¬ a peptide (1),
dadurch gekennzeichnet,  characterized,
dass das Peptid (1) an den Chemokinrezeptor (4) bindet und ein 11C-Kohlenstoffatom aufweist. the peptide (1) binds to the chemokine receptor (4) and has an 11 C carbon atom.
8. Radiopharmakon nach Anspruch 7, 8. radiopharmaceutical according to claim 7,
dadurch gekennzeichnet,  characterized,
dass Zellen in dem krankhaften Gewebe (18), im Vergleich zu gesundem Gewebe, erhöhte Mengen des Chemokinrezeptors (4) tragen.  that cells in the diseased tissue (18) carry increased amounts of the chemokine receptor (4) compared to healthy tissue.
9. Radiopharmakon nach Anspruch 7 oder 8, 9. radiopharmaceutical according to claim 7 or 8,
dadurch gekennzeichnet,  characterized,
dass das 11C-Kohlenstoffatom das Carbonylkohlenstoffatom einer Aminosäure (2), vorzugsweise der N-terminalen Ami¬ nosäure (3) des Peptids (1) ist. that the C-11 carbon atom is the carbonyl carbon of an amino acid (2), preferably the N-terminal Ami ¬ nosäure (3) of the peptide (1).
10. Radiopharmakon nach einem der Ansprüche 7 bis 9, 10. radiopharmaceutical according to any one of claims 7 to 9,
dadurch gekennzeichnet,  characterized,
dass es ein Positronen-Emissions-Tomographie (PET) Bio- marker ist.  that it is a positron emission tomography (PET) biomarker.
PCT/EP2011/059448 2010-06-30 2011-06-08 11c-labelled peptide for detecting diseased tissue which expresses a chemokine receptor WO2012000746A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010026059 DE102010026059A1 (en) 2010-06-30 2010-06-30 11C-labeled peptide for the detection of a diseased tissue that expresses a chemokine receptor
DE102010026059.2 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012000746A1 true WO2012000746A1 (en) 2012-01-05

Family

ID=44627101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/059448 WO2012000746A1 (en) 2010-06-30 2011-06-08 11c-labelled peptide for detecting diseased tissue which expresses a chemokine receptor

Country Status (2)

Country Link
DE (1) DE102010026059A1 (en)
WO (1) WO2012000746A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009027706A2 (en) * 2007-08-30 2009-03-05 Technische Universität München Cancer imaging and treatment
DE102009035645A1 (en) 2009-07-29 2011-02-03 Siemens Aktiengesellschaft Process for the preparation of a radiolabeled peptide
DE102009035648B3 (en) 2009-07-29 2011-03-17 Siemens Aktiengesellschaft A process for the preparation of a radiolabeled carboxylate and the use of a microelectrode for the electrochemical synthesis of a radiolabeled carboxylate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100183504A1 (en) * 2007-06-14 2010-07-22 Fanqing Frank Chen Multimodal imaging probes for in vivo targeted and non-targeted imaging and therapeutics
US20120020881A1 (en) * 2008-12-12 2012-01-26 Bayer Schering Pharma Aktiengesellschaft Triaryl-sulphonium compounds, kit and methods for labeling positron emitting isotopes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009027706A2 (en) * 2007-08-30 2009-03-05 Technische Universität München Cancer imaging and treatment
DE102009035645A1 (en) 2009-07-29 2011-02-03 Siemens Aktiengesellschaft Process for the preparation of a radiolabeled peptide
WO2011012414A1 (en) * 2009-07-29 2011-02-03 Siemens Aktiengesellschaft Method for producing a radioactively marked peptide
DE102009035648B3 (en) 2009-07-29 2011-03-17 Siemens Aktiengesellschaft A process for the preparation of a radiolabeled carboxylate and the use of a microelectrode for the electrochemical synthesis of a radiolabeled carboxylate

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ERRENI M, BIANCHI P, LAGHI L, MIROLO M, FABBRI M, LOCATI M, MANTOVANI A, ALLAVENA P: "Expression of chemokines and chemokine receptors in human colon cancer", METHODS ENZYMOL., vol. 460, 2009, pages 105 - 21
FALLER A, SCHÜNKE M: "Der Körper des Menschen", 2008, THIEME-VERLAG
HAN Y ET AL: "PREPARATION OF THE NOVEL FLUORINE-18-LABELED T140 ANALOG FOR PET IMAGING", JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, vol. 52, no. Suppl. 1, 2009, & 18TH INTERNATIONAL SYMPOSIUM ON RADIOPHARMACEUTICAL SCIENCES; EDMONTON, CANADA; JULY 12 -17, 2009, pages S342, XP002662611, ISSN: 0362-4803 *
HARTVIG P ET AL: "Kinetics of four <11>C-labelled enkephalin peptides in the brain, pituitary and plasma of Rhesus monkeys", REGULATORY PEPTIDES, ELSEVIER SCIENCE BV, NL, vol. 16, no. 1, 1 December 1986 (1986-12-01), pages 1 - 13, XP023462538, ISSN: 0167-0115, [retrieved on 19861201], DOI: 10.1016/0167-0115(86)90190-4 *
HENRIKSEN G ET AL: "Proof of principle for the use of 11C-labelled peptides in tumour diagnosis with PET", EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, SPRINGER VERLAG, HEIDELBERG, DE, vol. 31, no. 12, 10 August 2004 (2004-08-10), pages 1653 - 1657, XP002383248, ISSN: 1619-7070, DOI: 10.1007/S00259-004-1582-1 *
MASSOUD TF, GAMBHIR SS: "Molecular imaging in living subjects: seeing fundamental biological processes in a new light", GENES DEV., vol. 17, no. 5, 1 March 2003 (2003-03-01), pages 545 - 80
MEIER R, MÜHLETHAIER-MOTTET A, FLAHAUT M, COULON A, FUSCO C, LOUACNE F, AUDERSET K, BOURLOUD KB, DAUDIGEOS E, RUEGG C: "The chemokine receptor CXCR44 strongly promotes neuroblastoma primary tumour and metastatic growth, but not invasion", PLOS ONE, vol. 2, no. 10, 10 October 2007 (2007-10-10), pages E1016
NEUNDORF I, RENNERT R, FRANKE J, KÖZLE I, BERGMANN R: "Detailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides", BIOCONJUG CHEM., vol. 19, no. 8, August 2008 (2008-08-01), pages 1596 - 603
POLIANOVA MT, RUSCETTI. FW, PERT CB, RUFF MR: "Chemokine receptor-5 (CCR5) is a receptor for the HIV entry inhibitor peptide T (DAPTA", ANTIVIRAL RES., vol. 67, no. 2, August 2005 (2005-08-01), pages 83 - 92
SEGERER S, MACK M, REGELE H, KERJASCHKI D, SCHLÖNDORFF D: "Expression of the C-C chemokine receptor 5 in human kidney diseases", KIDNEY INT., vol. 56, no. 1, July 1999 (1999-07-01), pages 52 - 64
WANG M ET AL: "Synthesis of new carbon-11 labeled naphthalene-sulfonamides for PET imaging of human CCR8", APPLIED RADIATION AND ISOTOPES, ELSEVIER, OXFORD, GB, vol. 66, no. 10, 1 October 2008 (2008-10-01), pages 1406 - 1413, XP023785013, ISSN: 0969-8043, [retrieved on 20080320], DOI: 10.1016/J.APRADISO.2008.03.010 *

Also Published As

Publication number Publication date
DE102010026059A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
EP1784422B1 (en) Glp-1 and exendin related invention
DE60318466T2 (en) BINDING COMPOUND TO LEUKOCYTES AND THIS COMPOUND IN MARKED CONDITION AS AN ACTIVE MEDICAL COMPOSITION
WO2012000746A1 (en) 11c-labelled peptide for detecting diseased tissue which expresses a chemokine receptor
US20220354894A1 (en) Cell Composition Comprising Radiolabled Mesenchymal Stem Cells, Use Thereof and Method for Preparing Radiolabeled Mesenchymal Stem Cells
WO2012000763A1 (en) 11c-marked peptide for detecting a diseased tissue that expresses an igf receptor
FI115035B (en) In vivo imaging using peptide derivatives
DE102010026053A1 (en) 11C-labeled peptide for the detection of neurons expressing an acetylcholine receptor
WO2012000861A1 (en) 11c-labelled aptamer for detecting a diseased tissue
DE102010026060A1 (en) 11C-labeled peptide for detection of a tumor expressing a somatostatin receptor
DE102010026065A1 (en) 11C-labeled peptide for detection of a tumor expressing a bombesin receptor
DE4337599A1 (en) Metal-binding cysteine-free peptides for diagnosis and therapy, processes for their preparation and pharmaceutical compositions containing these compounds
WO2012000862A1 (en) 11c-labelled peptide for detecting a diseased tissue
DE102010026056A1 (en) 11C-labeled peptide for detection of a tumor expressing a peptide transporter
DE102010026064A1 (en) 11C-labeled peptide for the detection of a diseased tissue
DE102010026061A1 (en) 11C-labeled peptide for detection of a tumor expressing a Her2 / neu receptor
DE102010026057A1 (en) Diagnostic for the localization of a diseased tissue
EP1454137B1 (en) Use of a labeled ligand having human cd4 specificity for producing a diagnostic used in the analysis of migration and/or distribution patterns of cell populations
DE102010026058A1 (en) 11C-labeled peptide for the detection of an antibody
DE102011118030A1 (en) Preparation and use of a peptide having an N-terminal 11 C-labeled acetyl group
DE102010026054A1 (en) 11C-labeled peptide for the detection of an antigen
DE112011105133T5 (en) Octapeptide for the manufacture of radiopharmaceuticals, the drugs produced therefrom and diagnostic methods of somatostatin receptor-expressing tumors
WO2012000863A1 (en) Aptamer complex for detecting a diseased tissue
Wang Biological characterization of 99m/99Tc (V)-cysteine complexes: A potential renal functional imaging agent
Soares et al. Biodistribution and SPECT imaging of 125/131 I-crotoxin on mice bearing Ehrlich solid tumour
DE10232189A1 (en) Use of a labeled ligand with specificity for the human CD4 molecule for the production of a diagnostic agent for the analysis of migration and / or distribution patterns of cell populations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11725698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11725698

Country of ref document: EP

Kind code of ref document: A1