WO2012000866A1 - 11c-labelled peptide for detecting a diseased tissue - Google Patents

11c-labelled peptide for detecting a diseased tissue Download PDF

Info

Publication number
WO2012000866A1
WO2012000866A1 PCT/EP2011/060448 EP2011060448W WO2012000866A1 WO 2012000866 A1 WO2012000866 A1 WO 2012000866A1 EP 2011060448 W EP2011060448 W EP 2011060448W WO 2012000866 A1 WO2012000866 A1 WO 2012000866A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
hla
antigen
amino acid
antigen complex
Prior art date
Application number
PCT/EP2011/060448
Other languages
German (de)
French (fr)
Inventor
Oliver Lade
Jan Alexander Hiss
Hartmuth C. Kolb
Ursus KRÜGER
Gisbert Schneider
Arno Steckenborn
Original Assignee
Siemens Aktiengesellschaft
Johann Wolfgang Goethe-Universität
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Johann Wolfgang Goethe-Universität filed Critical Siemens Aktiengesellschaft
Publication of WO2012000866A1 publication Critical patent/WO2012000866A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/60Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances involving radioactive labelled substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • G01N2333/70539MHC-molecules, e.g. HLA-molecules

Definitions

  • the invention relates to the use of a peptide for the manufacture ⁇ position of an agent for detecting a diseased tissue. It further relates to a radiopharmaceutical for the localization of a diseased tissue comprising such a peptide. In modern diagnostics are used to characterize
  • the invention is therefore based on the object, an agent be ⁇ riding determine by which a diseased tissue can be specifically and regardless of its size detected.
  • Object is achieved by the use of a peptide for the manufacture ⁇ development of an agent for detecting a pathological tissue, which forms a human leukocyte antigen (HLA) antigen complex.
  • HLA human leukocyte antigen
  • TCR TCR Receptor
  • peptide refers to an organic compound of at least two amino acids linked via a peptide bond. It includes both oligopeptides of up to about ten amino acids, as well as polypeptides of up to about 30 amino acids, regardless of their primary, secondary or tertiary structure. Both naturally occurring and biotechnologically or synthetically produced compounds are included.
  • the peptide used in the present invention is selected to have an amino acid sequence of a CDR3 loop of a TCR directed against an HLA antigen complex of the diseased tissue. Almost all cells of the human body present peptides, which are fragments of proteins that are inside them, on their surface. Specialized cells of the immune system recognize the protein fragments and distinguish whether they are of the body's own and foreign origin.
  • HLA antigen complex refers to a complex of an HLA transmembrane protein which is also “major histocompatible”. bility complex "(MHC) is called, and an antigen.
  • antigen denotes short-chain peptides or protein fragments, resulting in the degradation of their own and others pro ⁇ teinen in the cell and anchored by an HLA on the cell surface
  • the extracellular part of the HLA-antigen complex is recognized and bound by T-cells of the immune system, based on the interactions between the antigen of the HLA-antigen complex and the T-cell TCR
  • Two identical or different polypeptide chains (A, B) that bind together to form the HLA-antigen complex have been found so far: In total, four different human TCR polypeptide chains have been identified, designated alpha, beta, gamma and delta a highly variable region, the so-called complementarity determining region (CDR) 3 loop.) The amino acid sequence of the CDR3 loop is different in the TCR of each T cell and esp Takes the binding specificity of the receptor.
  • CDR complementarity determining region
  • the TCR binds only a specific protein fragment (antigen) because the amino acids of the CDR3 loop interact specifically with the amino acids of the antigen.
  • the CDR3 loop may be about two to 21 amino acids in length. It usually comprises about 7 to 14 amino acids (Rock et al., 1994).
  • the amino acid sequence of the peptide used in the present invention binds the same antigen as the TCR.
  • To determine the Ami ⁇ acid sequence of a CDR3 loop are isolated T cells from the blood of a patient and grown clonally in culture. Since a T cell expresses only an individual TCR, the cells of a T cell clone all produce the same TCR. From the cells of a clone the DNA Se acid sequence of the TCR or the CDR3 loop is Polymerasenketten- reactions with specific primers amplified and sequenced. Subsequently, a peptide with this sequence is Herge ⁇ provides that has the same binding specificities as the TCR.
  • the peptide is chosen so that the bond between the peptide and the HLA antigen complex is a linear coefficient called. KD value of ⁇ 100 nM, be ⁇ vorzugt of ⁇ 10 nM, most preferably of 7, 5 nM on ⁇ points.
  • KD value of ⁇ 100 nM be ⁇ vorzugt of ⁇ 10 nM, most preferably of 7, 5 nM on ⁇ points.
  • diseased tissue refers to cells, parts of organs or whole organs that do not or not fully fulfill their physiological function. These include, for example, viruses or bacteria infected cells hy pertrophes tissue, inflamed tissue and organs, hyperplasti ⁇ MOORISH and neoplastic tissue, such as ulcers, tumors and cancers. Diseased cells often form proteins whose expression is typical of a particular disease, for example because they are derived from the genetic material of a virus or bacterium. The cell then presents HLA complexes on their surface bind the fragments of these pro ⁇ proteins so that they can be recognized by a TCR. By specifically binding the antigen of the HLA-antigen complex, the peptide allows a reliable localization of the diseased tissue.
  • positrons also referred to as ß + radiation
  • ß + radiation Upon decay of the X1 C carbon isotope, positrons, also referred to as ß + radiation, are formed. If the positrons hit an electron, they form two photons, which move away from each other at an angle of 180 °, ie exactly in the opposite direction. The photons can be detected and from this the position of the positron emission, or the 11 C- Carbon atoms, to be calculated.
  • the integration of a C-11 carbon atom in the peptide used according to the invention allows both the presence of as well as the positi on of the peptide ⁇ detect and image.
  • An advantage of using an 11 C-labeled peptide is its structure of endogenous amino acids, making it compatible with the organism.
  • the peptide and its individual amino acids are non-toxic, they can of course be metabolized, broken down and excreted.
  • the use of an integrated 11 C carbon atom also makes it possible to prevent a radioactive foreign substance, such as fluorine, xenon, or gallium, from having to be introduced into the organism.
  • Another advantage of the peptide directly labeled with X1 C lies in the favorable signal / background ratio during the detection of the peptide.
  • the peptide binds to the HLA complex, with which it forms a stable compound that is difficult to access for enzymatic degradation. Free, unbound peptides, however rapidly metabolized and excreted from the Or ⁇ organism because they are degraded rapidly by endogenous enzymes. This results in a strong and specific signal at the position of the HLA-antigen complex, and the background signal is minimized.
  • the agent is a radiopharmaceutical.
  • radiopharmaceuticals records medicines containing radionuclides whose radiation is used for diagnosis and therapy. The main applications are in oncology, Kar ⁇ ogy and neurology, as well as pharmaceutical research.
  • radionuclides are gamma or beta radiation emitting nuclides, for example Xenon 133, "technetium, gallium 68, fluorine 18 and used.
  • Kom ⁇ formers such as diethylene triamine pentaacetate (DTPA), 1,4,7,10 - tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (DOTA) or ethylenediaminetetraacetate (EDTA) bound to mono- or polysaccharides
  • DTPA diethylene triamine pentaacetate
  • DOTA 1,4,7,10 - tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid
  • EDTA ethylenediaminetetraacetate
  • the nuclides are, depending on the nature of their radiation, by scintigraphy, Single Photon Emission Computed Tomography (SPECT) or positron emission tomography (PET) is detected. Because of their non-physiological constituents parts but conventional radiopharmaceuticals can Crowddlingun ⁇ gen as anaphylactic or allergic reactions that cause the Kör ⁇ by a patient.
  • the C-carbon atom is a carbonyl carbon atom of an amino acid.
  • the carbonyl groups are part of the peptide bonds between the amino acids and are located inside the peptide. This ensures that the ⁇ C carbon atom is not cleaved off the peptide, as would be possible with a side chain of one of the amino acids.
  • the C-carbon atom is the carbonyl carbon atom of the N-terminal amino acid of the peptide.
  • This embodiment is particularly preferred because the peptide can be used directly after the on ⁇ bring the 11 C-labeled amino acid.
  • 11 C-carbon has a half-life of only about 20 Minu ⁇ th, so that the radiation dose must be chosen the higher, the more time is between the synthesis of the peptide and its ⁇ ner use. If the 11 C-labeling with the N-terminal amino acid and thus in the last step of the synthesis is applied, the peptide can be used immediately after its synthesis.
  • the time between the processing of the 11 C carbon and the use of the peptide is reduced, so that the radiation loss during the preparation of the peptide is minimized. Therefore, the radiation dose that must be used in the processing of the 11 C carbon to ensure a certain radiation intensity of the product, be correspondingly lower.
  • the peptide has at least one D-amino acid.
  • D-amino acid With the exception of glycine, all amino acids have a chiral center at their alpha carbon atom and can therefore exist as configurational isomers, namely as the D or L amino acid.
  • Endogenous peptides and proteins are largely composed of amino acids in L configuration.
  • most natural proteases and peptidases work stereoselectively and metabolize mainly L-amino acids. Therefore, the degradation of D-amino acids by endogenous enzymes takes longer than that of L-amino acids.
  • non-natural amino acids are metabolized more slowly because the body's own proteolytic enzymes are specially adapted to the degradation of natural amino acids.
  • the unnatural amino acids should be chosen, however, that the binding affinity of the peptide is not changed ⁇ changed.
  • other chemical modifications of individual amino acids of the peptide are possible in order to obtain the
  • Example ⁇ as can be Replace the terminal amino group of the peptide by a isonitrile. Such modification redu ⁇ the sheet, conveyed from the amino group, interaction with proteolytic enzymes without altering the bond between the peptide used in the invention and the antibody.
  • Another object of the invention is a radiopharmaceutical comprising a peptide having an 11 C carbon atom for the localization of a diseased tissue which forms an HLA antigen complex.
  • the peptide has an amino acid sequence of a complementary determining region (CDR) 3 loop of a TCR directed against the HLA-antigen complex. As a result, the peptide binds specifically to the antigen of the HLA
  • the radiopharmaceutical according to the invention provides a sensitive and specific agent for determining the position of a diseased tissue in vivo.
  • the radiopharmaceutical is administered to the patient, and the peptides contained therein are rapidly and efficiently distributed in the body because of their size. They bind to the HLA antigen complex of diseased tissue and collect on its surface. This tissue can play as a center of inflammation to be infected cells or tumor by viruses or bacteria at ⁇ .
  • the accumulation of radioactively labeled peptides is detected by positron emission tomography (PET), which determines the exact position of the infected cells, the inflammation or the tumor in the patient's body.
  • PET positron emission tomography
  • the 11 C-carbon atom is a carbonyl carbon atom of an amino acid, preferably the carbonyl carbon atom of the N-terminal amino acid of the peptide.
  • the radiopharmaceutical is a PET biomarker.
  • PET is an established method for detecting the radiation of radioactive elements and determining their position (Massoud TF, Gambhir SS, 2003). With the aid of detector devices arranged annularly around the patient, sectional images are created on which the decay events are represented in their spatial distribution in the interior of the body. The PET also makes it possible to determine the amount of mar ⁇ -labeled molecules quantitatively in a tissue.
  • a method of localizing a diseased tissue in an organism comprising the steps of a) providing a peptide, b) administering the peptide to the organism, c) detecting the peptide in the organism Organism using positron emission tomography (PET).
  • PET positron emission tomography
  • the peptide has an amino acid sequence of a CDR3 loop of a T cell receptor (TCR), which is directed against the HLA antigen complex, and binds to an antigen of the HLA antigen complex.
  • TCR T cell receptor
  • the peptide also has an 11 C carbon atom.
  • an antigen of an HLA-antigen complex is tektiert de- inside an organism, and isolated, so that the distribution of an HLA antigen complex, observed in a patient's body ⁇ the can. In this way, for example, the size or extent of an infection or a tumor can be determined.
  • the peptide used according to the invention is therefore outstandingly suitable for observing the course and success of a treatment, so-called therapy monitoring.
  • FIG. 1A schematically shows a diseased tissue 18 on the surface of which a human leukocyte antigen (HLA) 5 with an antigen 4 is located. Together they form an HLA-antigen complex 20, to which in turn a T-cell receptor (TCR) 6 is attached.
  • the TCR 6 consists of two different polypeptide chains (A, B) (8, 9), both of which have a highly variable region, a so-called CDR3 loop 7.
  • the CDR3 loop 7 binds directly to the antigen 4.
  • the HLA 5 is formed by the cells of the diseased tissue 18 and presented on its surface. HLA 5 binds short peptides from proteins inside the cell descend and act as antigens 4.
  • the TCR 6 recognizes the antigen 4 and binds the HLA-antigen complex 20.
  • the specifi ⁇ specific binding affinity between the HLA-antigen complex 20 and the TCR 6 comes about due to chemical interactions between the antigen 4 and the CDR3 loop 7 , Its amino acid sequence determines the specificity of TCR 6, which recognizes and binds only one particular antigen 4.
  • FIG. 1B schematically shows peptide 1 bound to antigen 4.
  • Peptide 1 comprises nine amino acids 2, of which the N-terminal amino acid 3 is radioactively labeled with an 11 C carbon atom. The radioactive label is represented by an asterisk (*).
  • the amino acid sequence of the 11 C-labeled peptide 1 corresponds to the amino acid sequence of the CDR3 loop 7 of the TCR 6, such that the peptide 1, the binding affinity of the CDR3 loop be sitting ⁇ 7 and specifically binds to the antigen.
  • 4 Due to the binding specificity ser ⁇ the 11 C-labeled peptide 1 for de- tetechnisch 4 of the antigen may be used.
  • the positrons released upon decay of the 11 C carbon are detected by positron emission tomography (PET). The location of the positron emission corresponds to the location of the peptide 1 and the antigen 4 bound thereto.
  • PET positron emission tomography
  • the DNA region of the CDR3 loop 7 of a TCR 6 is selectively amplified and sequenced. Subsequently, an 11 C-labeled peptide 1, corresponding to the amino acid sequence of the CDR3 loop 7, is produced.
  • Peptide 1 is administered to the patient in the form of a pharmaceutical composition binds to the antigen 4 and accumulates in the cells of the krankhaf ⁇ th tissue 18, such as a tumor. This accumulation is seen in positron emission tomography (PET). bar, so that the distribution of the antigen 4 or the position of the tumor 18 in the body of the patient can be determined. In this way, newly formed metastases carrying the HLA-antigen complex 20 are detected by means of PET.
  • PET positron emission tomography
  • FIG. 2 shows a representation of a peptide having the sequence SEQ ID NO: 1 by means of a chemical formula.
  • the peptide comprises 9 amino acids 2 of the following sequence: arginine-serine-glycine-tyrosine-asparagine-threonine-aspartate-lysine-leucine-isoleucine.
  • the N-terminal arginine is by structural formula represents ⁇ Darge, the following amino acids 2 by their respective three-letter code.
  • the sequence of the peptide is also given in SEQ ID NO: 1.
  • the carbonyl carbon atom of N-terminal arginine is an 11 C carbon atom, represented by the number 11 above the carbonyl carbon atom.
  • Peptide 1 is prepared by conventional protein synthesis methods and the 11 C-labeled N-terminal amino acid 3 is added in the last step, because the half-life of the X1 carbon carbon isotope is only about 20 minutes. By completing the peptide synthesis with the 11 C-labeled amino acid, peptide 1 can be used immediately after radioactive labeling.
  • the peptide of SEQ ID NO: 1 has the sequence of the CDR3 loop 7 of a TCR 6, which is formed by a T cell of a patient with a diffuse large-cell B-cell lymphoma (DLBCL) (Yin Q et al., 2010).
  • the DLBCL is a Malig ⁇ ne lymph node enlargement, in addition to the normal lymphocytes especially many lymphoblasts are formed. On the basis of the morphology of the lymphoblast, a distinction is made between among others, centroblastic and immunoblastic lymphomas.
  • DLBCL is one of the aggressive non-Hodgkin's lymphomas and occurs at a frequency of approximately 3-5 / 100,000 persons per year.
  • T cells are isolated and expanded in culture.
  • the T cells produce the TCR 6 directed against the HLA antigen complex 20 located on the DLBCL.
  • the clone of a single T cell is used to determine the amino acid sequence of the CDR3
  • ⁇ td is a 11 C-labeled peptide 1, which comprises this sequence on ⁇ and specifically binds to the antigen 4 prepared.
  • the peptide of SEQ ID NO: 1 locates antigen 4 or DLBCL.
  • Figure 3 shows a schematic representation (greatly simplified by Faller A, Schünke M, The Human Body, Thieme, 2008) of a circulatory system 10 of an organism and the distribution of a peptide 1 therein.
  • the circulatory system 10 comprises various schematically represented organs, such as lung 12, heart 13, liver 14, intestine 15 and kidney 16, and the main arteries 11, which connect these organs.
  • the peptide 1 is represented by triangles along the wires 11.
  • the degradation products 17 of the peptide 1 are represented by individual lines within the outline of the kidney 16 Darge ⁇ .
  • Left of center of the circulatory system 10 is additionally ⁇ a diseased tissue 18, for example, a tumor or an inflammation, shown, are attached to the increased peptides.
  • the distribution of peptide 1 in the circulatory system 10 comprises four phases, which are listed along the top-down view. Phase I: Peptide 1 is injected into the circulatory system 10 of the organism.
  • Phase II Via the blood circulation system 10, the peptide 1 is transported into the organs 12, 13, 14, 15, and 16 of the organism.
  • Phase III The circulating peptide 1 binds specifically to the antigen 4 and accumulates on the diseased tissue 18 because it presents the HLA-antigen complex 20 with the antigen 4 on its surface.
  • Phase IV Unbound peptide 1 is rapidly metabolised and enzymatically degraded.
  • the organism not failed ⁇ det between own peptides and the peptide 1, because it is composed of amino acids 2, 3, which correspond to the body's own molecules.
  • the degradation products 17 of the peptide of amino acids 1 and 2, 3 collect predominantly they are over the bladder and the ureter excreted ⁇ in the kidney 16 from where.
  • Massoud TF, Gambhir SS Molecular imaging in living subjects: seeing fundamental biological processes in a new light; Genes Dev. 2003 Mar 1; 17 (5): 545-80. Neundorf I, Rennert R, Franke J, Közle I, Bergmann R; Detailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides; Bioconjug Chem. 2008 Aug; 19 (8): 1596-603.

Abstract

The use of a peptide (1) to produce an agent for detecting a diseased tissue (18) which forms a human leukocyte antigen (HLA)-antigen complex (20) is described. In this case, the peptide (1) has an amino acid sequence of a complementary determining region (CDR) 3 loop (7) of a T-cell receptor (TCR) (6) directed against the HLA-antigen complex (20) and binds to an antigen (4) of the HLA-antigen complex (20). Furthermore, the peptide (1) also has a 11C carbon atom. A radiopharmaceutical for locating a diseased tissue (18) which forms an HLA-antigen complex (20) is also described, which radiopharmaceutical comprises such a peptide (1).

Description

Beschreibung description
C-markiertes Peptid zur Detektion eines krankhaften Gewebes Die Erfindung betrifft die Verwendung eines Peptids zur Her¬ stellung eines Agens zur Detektion eines krankhaften Gewebes. Sie betrifft ferner ein Radiopharmakon zur Lokalisation eines krankhaften Gewebes, das ein solches Peptid umfasst. In der modernen Diagnostik werden zur Charakterisierung vonC-labeled peptide for detection of a diseased tissue The invention relates to the use of a peptide for the manufacture ¬ position of an agent for detecting a diseased tissue. It further relates to a radiopharmaceutical for the localization of a diseased tissue comprising such a peptide. In modern diagnostics are used to characterize
Krankheiten vor allem biochemische Analysen von Blut, anderen Körperflüssigkeiten und Gewebeproben eingesetzt. Dabei wird die Anwesenheit und Menge von Molekülen untersucht, die für eine bestimmte Krankheit typisch sind. Neben Fremdstoffen werden auch körpereigene Stoffe nachgewiesen, die beispiels¬ weise nur bei einer Infektion durch Viren oder Bakterien gebildet werden. Zu diesen Produkten zählen vor allem Bestandteile des Immunsystems, insbesondere Antikörper, die vom Or¬ ganismus selbst gebildet werden. Durch derartige in vitro Un- tersuchungen kann das Vorliegen einer Krankheit diagnostiziert werden, es ist aber nicht möglich, auch den genauen Ort des erkrankten Gewebes festzustellen. Zu diesem Zweck werden in der Regel bildgebende Verfahren, wie beispielsweise Rönt¬ gen, Ultraschall und Kernspinntomographie verwendet. Mit ih- nen lassen sich vor allem ektopische Zellansammlungen, wie etwa Tumore, oder Schwellungen einzelner Organe lokalisieren. Zeigt ein krankhaftes Gewebe jedoch keine deutlichen morpho¬ logischen Auffälligkeiten, oder ist es verhältnismäßig klein, kann es bei traditionellen Untersuchungen leicht übersehen werden. Diseases mainly used biochemical analyzes of blood, other body fluids and tissue samples. It examines the presence and amount of molecules that are typical of a particular disease. In addition to foreign substances also endogenous substances are detected, which are ¬ example, only formed in an infection by viruses or bacteria. These products include mainly components of the immune system, in particular antibodies that are formed from the Or ¬ organism itself. Such in vitro studies may diagnose the presence of a disease, but it is not possible to determine the exact location of the diseased tissue. For this purpose, imaging techniques such as Rönt ¬ gen, ultrasound and magnetic resonance imaging are generally used. In particular, ectopic cell aggregates, such as tumors, or swellings of individual organs can be located with them. Shows an abnormal tissue but no significant morpho ¬ logical abnormalities, or it is relatively small, it can be easily overlooked in traditional studies.
Der Erfindung liegt daher die Aufgabe zugrunde ein Agens be¬ reitzustellen, mit dem ein krankhaftes Gewebe spezifisch und unabhängig von seiner Größe detektiert werden kann. Diese Aufgabe wird durch die Verwendung eines Peptids zur Herstel¬ lung eines Agens zur Detektion eines krankhaften Gewebes, das einen humanen Leukozytenantigen (HLA) -Antigen-Komplex bildet, gelöst. Indem das Peptid eine Aminosäuresequenz einer comple- mentary determining region (CDR) 3-Schleife eines T-Zell-The invention is therefore based on the object, an agent be ¬ riding determine by which a diseased tissue can be specifically and regardless of its size detected. These Object is achieved by the use of a peptide for the manufacture ¬ development of an agent for detecting a pathological tissue, which forms a human leukocyte antigen (HLA) antigen complex. By the peptide, an amino acid sequence of a complementarity determining region (CDR) 3 loop of a T cell
Rezeptors (TCR) , der gegen den HLA-Antigen-Komplex gerichtet ist, aufweist und an den HLA-Antigen-Komplex bindet, kann das erkrankte Gewebe spezifisch nachgewiesen werden. Indem das Peptid ein 11C-Kohlenstoffatom aufweist, können selbst wenige Zellen eines krankhaften Gewebes an Hand des radioaktiven Signals lokalisiert werden. Receptor (TCR), which is directed against the HLA antigen complex, and binds to the HLA antigen complex, the diseased tissue can be specifically detected. By having an 11 C carbon atom, even a few cells of a diseased tissue can be localized by the radioactive signal.
Der Begriff "Peptid" bezeichnet eine organische Verbindung aus mindestens zwei, über eine Peptidbindung verknüpften, Aminosäuren. Er umfasst dabei sowohl Oligopeptide aus bis zu ca. zehn Aminosäuren, als auch Polypeptide aus bis zu ca. 30 Aminosäuren, unabhängig von deren Primär-, Sekundär- oder Tertiärstruktur. Dabei sind sowohl natürlich vorkommende als auch biotechnologisch oder synthetisch hergestellte Verbin- düngen umfasst. Das erfindungsgemäß verwendete Peptid wird so gewählt, dass es eine Aminosäuresequenz einer CDR3-Schleife eines TCR aufweist, der gegen einen HLA-Antigen-Komplex des krankhaften Gewebes gerichtet ist. Fast alle Zellen des menschlichen Körpers präsentieren Peptide, bei denen es sich um Fragmente von Proteinen handelt, die sich in ihrem Inneren befinden, auf ihrer Oberfläche. Spezialisierte Zellen des Immunsystems erkennen die Proteinfragmente und unterscheiden, ob sie körpereigenen und fremdem Ur- sprungs sind. Präsentiert eine Zelle fremde Moleküle, wird sie vom Immunsystem abgetötet und entfernt. Die Präsentation der Fragmente erfolgt in Form von HLA-Antigen-Komplexen . Der Begriff "HLA-Antigen-Komplex" bezeichnet einen Komplex aus einem HLA Transmembranprotein, das auch "major histocompati- bility complex" (MHC) genannt wird, und einem Antigen. Der Begriff "Antigen" bezeichnet dabei kurzkettige Peptide bzw. Proteinfragmente, die beim Abbau von eigenen und fremden Pro¬ teinen in der Zelle entstehen und von einem HLA an der Zell- Oberfläche verankert werden. Der extrazelluläre Teil des HLA- Antigen-Komplexes wird von T-Zellen des Immunsystems erkannt und gebunden. Die Bindung beruht dabei auf den Wechselwirkungen zwischen dem Antigen des HLA-Antigen-Komplexes und dem TCR der T-Zelle. Der TCR ist aus zwei gleichen oder unter- schiedlichen Polypeptidketten (A, B) aufgebaut, die gemeinsam den HLA-Antigen-Komplex binden. Insgesamt wurden bisher vier verschiedene humane TCR Polypeptidketten gefunden, die mit alpha, beta, gamma und delta bezeichnet wurden. Jede dieser Polypeptidketten weist einen hoch variablen Bereich, die so- genannte complementary determining region (CDR) 3-Schleife, auf. Die Aminosäuresequenz der CDR3-Schleife ist bei den TCR jeder T-Zelle anders und bestimmt die Bindungsspezifität des Rezeptors. Ähnlich einem Antikörper bindet der TCR nur ein bestimmtes Proteinfragment (Antigen) , weil die Aminosäuren der CDR3-Schleife spezifisch mit den Aminosäuren des Antigens interagieren . Je nach Art der Polypeptidkette (alpha, beta, gamma, delta) kann die CDR3-Schleife in ihrer Länge etwa zwei bis 21 Aminosäuren lang sein. Gewöhnlich umfasst sie etwa 7 bis 14 Aminosäuren (Rock et al . , 1994) . The term "peptide" refers to an organic compound of at least two amino acids linked via a peptide bond. It includes both oligopeptides of up to about ten amino acids, as well as polypeptides of up to about 30 amino acids, regardless of their primary, secondary or tertiary structure. Both naturally occurring and biotechnologically or synthetically produced compounds are included. The peptide used in the present invention is selected to have an amino acid sequence of a CDR3 loop of a TCR directed against an HLA antigen complex of the diseased tissue. Almost all cells of the human body present peptides, which are fragments of proteins that are inside them, on their surface. Specialized cells of the immune system recognize the protein fragments and distinguish whether they are of the body's own and foreign origin. If a cell presents foreign molecules, it is killed and removed by the immune system. The presentation of the fragments takes place in the form of HLA-antigen complexes. The term "HLA antigen complex" refers to a complex of an HLA transmembrane protein which is also "major histocompatible". bility complex "(MHC) is called, and an antigen. The term" antigen "denotes short-chain peptides or protein fragments, resulting in the degradation of their own and others pro ¬ teinen in the cell and anchored by an HLA on the cell surface The extracellular part of the HLA-antigen complex is recognized and bound by T-cells of the immune system, based on the interactions between the antigen of the HLA-antigen complex and the T-cell TCR Two identical or different polypeptide chains (A, B) that bind together to form the HLA-antigen complex have been found so far: In total, four different human TCR polypeptide chains have been identified, designated alpha, beta, gamma and delta a highly variable region, the so-called complementarity determining region (CDR) 3 loop.) The amino acid sequence of the CDR3 loop is different in the TCR of each T cell and esp Takes the binding specificity of the receptor. Similar to an antibody, the TCR binds only a specific protein fragment (antigen) because the amino acids of the CDR3 loop interact specifically with the amino acids of the antigen. Depending on the nature of the polypeptide chain (alpha, beta, gamma, delta), the CDR3 loop may be about two to 21 amino acids in length. It usually comprises about 7 to 14 amino acids (Rock et al., 1994).
Indem die Aminosäuresequenz des erfindungsgemäß verwendeten Peptids eine Aminosäuresequenz einer CDR3-Schleife eines TCR aufweist, bindet es dasselbe Antigen wie der TCR. Um die Ami¬ nosäuresequenz einer CDR3-Schleife zu ermitteln, werden T- Zellen aus dem Blut eines Patienten isoliert und in Kultur klonal gezüchtet. Da eine T-Zelle nur einen individuellen TCR exprimiert, produzieren die Zellen eines T-Zell-Klons alle denselben TCR. Aus den Zellen eines Klons wird die DNA Se¬ quenz des TCR bzw. der CDR3-Schleife durch Polymerasenketten- reaktionen mit spezifischen Primern amplifiziert und sequenziert. Anschließend wird ein Peptid mit dieser Sequenz herge¬ stellt, das dieselben Bindungspezifitäten wie der TCR aufweist. Vorzugsweise wird das Peptid dabei so gewählt, dass die Bindung zwischen dem Peptid und dem HLA-Antigen-Komplex einen linearen Koeffizient, sog. kD-Wert, von < 100 nM, be¬ vorzugt von < 10 nM, am meisten bevorzugt von 7,5 nM auf¬ weist. Mit diesem Peptid kann der HLA-Antigen-Komplex auf der Oberfläche des krankhaften Gewebes nachgewiesen werden. By having an amino acid sequence of a CDR3 loop of a TCR, the amino acid sequence of the peptide used in the present invention binds the same antigen as the TCR. To determine the Ami ¬ acid sequence of a CDR3 loop are isolated T cells from the blood of a patient and grown clonally in culture. Since a T cell expresses only an individual TCR, the cells of a T cell clone all produce the same TCR. From the cells of a clone the DNA Se acid sequence of the TCR or the CDR3 loop is Polymerasenketten- reactions with specific primers amplified and sequenced. Subsequently, a peptide with this sequence is Herge ¬ provides that has the same binding specificities as the TCR. Preferably, the peptide is chosen so that the bond between the peptide and the HLA antigen complex is a linear coefficient called. KD value of <100 nM, be ¬ vorzugt of <10 nM, most preferably of 7, 5 nM on ¬ points. With this peptide, the HLA-antigen complex can be detected on the surface of the diseased tissue.
Der Begriff "krankhaftes Gewebe" bezeichnet Zellen, Teile von Organen oder ganze Organe, die ihre physiologische Funktion nicht oder nicht in vollem Umfand erfüllen. Dazu zählen beispielsweise mit Viren oder Bakterien infizierte Zellen, hy- pertrophes Gewebe, entzündete Gewebe und Organe, hyperplasti¬ sches und neoplastisches Gewebe, etwa Geschwüre, Tumore und Karzinome. Krankhafte Zellen bilden häufig Proteine, deren Expression für eine bestimmte Erkrankung typisch ist, beispielsweise weil sie vom genetischen Material eines Virus oder eines Bakteriums abstammen. Die Zelle präsentiert dann HLA Komplexe auf ihrer Oberfläche, die Fragmente dieser Pro¬ teine binden, so dass sie von einem TCR erkannt werden können. Indem das Peptid speziell das Antigen des HLA-Antigen- Komplexes bindet, ermöglicht es eine zuverlässige Lokalisati- on des krankhaften Gewebes. The term "diseased tissue" refers to cells, parts of organs or whole organs that do not or not fully fulfill their physiological function. These include, for example, viruses or bacteria infected cells hy pertrophes tissue, inflamed tissue and organs, hyperplasti ¬ MOORISH and neoplastic tissue, such as ulcers, tumors and cancers. Diseased cells often form proteins whose expression is typical of a particular disease, for example because they are derived from the genetic material of a virus or bacterium. The cell then presents HLA complexes on their surface bind the fragments of these pro ¬ proteins so that they can be recognized by a TCR. By specifically binding the antigen of the HLA-antigen complex, the peptide allows a reliable localization of the diseased tissue.
Die Detektion des Peptids erfolgt über seine radioaktive Mar¬ kierung mit einem 11C-Kohlenstoffatom. Beim Zerfall des X1C- Kohlenstoffisotops werden Positronen, die auch als ß+-Strah- lung bezeichnet werden, gebildet. Stoßen die Positronen auf ein Elektron, bilden sie zwei Photonen, die sich in einem Winkel von 180°, also genau in entgegen gesetzter Richtung, von einander entfernen. Die Photonen können detektiert und daraus die Position der Positronenemission, bzw. des 11C- Kohlenstoffatoms , berechnet werden. Die Integration eines 11C-Kohlenstoffatom in das erfindungsgemäß verwendete Peptid ermöglicht es, sowohl das Vorhandensein, als auch die Positi¬ on des Peptids nachzuweisen und abzubilden. Zur Herstellung eines erfindungsgemäß zu verwendenden Peptids sind insbeson¬ dere die Verfahren, die in den Patentanmeldungen DE 10 2009 035 648.7, und DE 10 2009 035 465.2 beschrieben werden, geeignet. Des Weiteren kann auch die Menge an Peptiden, die sich an einer bestimmten Stelle befindet, quantifiziert wer- den. The detection of the peptide via its radioactive Mar ¬ kierung with a C-11 carbon atom. Upon decay of the X1 C carbon isotope, positrons, also referred to as ß + radiation, are formed. If the positrons hit an electron, they form two photons, which move away from each other at an angle of 180 °, ie exactly in the opposite direction. The photons can be detected and from this the position of the positron emission, or the 11 C- Carbon atoms, to be calculated. , The integration of a C-11 carbon atom in the peptide used according to the invention allows both the presence of as well as the positi on of the peptide ¬ detect and image. For the preparation of an inventive peptide are to be used insbeson ¬ particular, the method described in the patent applications DE 10 2009 035 648.7 and DE 10 2009 035 465.2, are suitable. Furthermore, the amount of peptides that is located at a certain point can also be quantified.
Ein Vorteil der Verwendung eines 11C-markierten Peptids liegt in seinem Aufbau aus körpereigenen Aminosäuren, wodurch es für den Organismus verträglich ist. Das Peptid und seine ein- zelnen Aminosäuren sind nicht toxisch, sie können natürlich verstoffwechselt , abgebaut und ausgeschieden werden. Durch die Verwendung eines integrierten 11C-Kohlenstoffatoms kann außerdem vermieden werden, dass ein radioaktiver Fremdstoff, wie beispielsweise Fluor, Xenon, oder Gallium, m den Organismus eingebracht werden muss. An advantage of using an 11 C-labeled peptide is its structure of endogenous amino acids, making it compatible with the organism. The peptide and its individual amino acids are non-toxic, they can of course be metabolized, broken down and excreted. The use of an integrated 11 C carbon atom also makes it possible to prevent a radioactive foreign substance, such as fluorine, xenon, or gallium, from having to be introduced into the organism.
Ein weiterer Vorteil des direkt mit X1C markierten Peptids liegt in dem günstigen Signal/Hintergrund Verhältnis während der Detektion des Peptids. Das Peptid bindet an den HLA Kom- plex, mit dem es eine stabile, für den enzymatischen Abbau schwer zugängliche, Verbindung bildet. Freie, ungebundene Peptide werden dagegen rasch verstoffwechselt und aus dem Or¬ ganismus ausgeschieden, weil sie von endogenen Enzymen zügig abgebaut werden. Dadurch entsteht ein starkes und spezifi- sches Signal an der Position des HLA-Antigen-Komplexes, und das Hintergrundsignal wird minimiert. Another advantage of the peptide directly labeled with X1 C lies in the favorable signal / background ratio during the detection of the peptide. The peptide binds to the HLA complex, with which it forms a stable compound that is difficult to access for enzymatic degradation. Free, unbound peptides, however rapidly metabolized and excreted from the Or ¬ organism because they are degraded rapidly by endogenous enzymes. This results in a strong and specific signal at the position of the HLA-antigen complex, and the background signal is minimized.
In einer vorteilhaften Weiterbildung der Erfindung ist das Agens ein Radiopharmakon . Der Begriff "Radiopharmaka" be- zeichnet Arzneimittel, die Radionuklide enthalten, deren Strahlung zur Diagnostik und Therapie verwendet wird. Die wichtigsten Anwendungsgebiete sind dabei die Onkologie, Kar¬ diologie und Neurologie, aber auch die Arzneimittelforschung. Als Radionuklide werden Gamma- bzw. Beta-Strahlen emittierende Nuklide, zum Beispiel 133Xenon, "Technetium, 68Gallium, und 18Fluor, verwendet. Sie werden üblicherweise über Kom¬ plexbildner wie Diethylentriaminpentaacetat (DTPA), 1,4,7,10- tetraazacyclododecane-1 , 4, 7, 10-tetraacetic acid (DOTA) oder Ethylendiamintetraacetat (EDTA) an Mono- oder Polysaccharide gebunden. Die Nuklide werden, je nach der Art ihrer Strahlung, mittels Szintigraphie, Single Photon Emission Computed Tomography (SPECT) oder Positronen-Emissions-Tomographie (PET) detektiert. Aufgrund ihrer unphysiologischen Bestand- teile können herkömmliche Radiopharmaka jedoch Nebenwirkun¬ gen, wie anaphylaktische oder allergische Reaktionen, im Kör¬ per eines Patienten verursachen. Die Verwendung eines Peptids aus körpereigenen Aminosäuren reduziert diese Gefahr deutlich, weil weder das Peptid selbst, noch seine Abbauprodukte toxisch sind. Zudem ist Kohlenstoff, im Gegensatz zu Techne¬ tium oder Xenon, ein im Körper vorkommendes Element, das na¬ türlich verstoffwechselt werden kann. In an advantageous embodiment of the invention, the agent is a radiopharmaceutical. The term "radiopharmaceuticals" records medicines containing radionuclides whose radiation is used for diagnosis and therapy. The main applications are in oncology, Kar ¬ ogy and neurology, as well as pharmaceutical research. When radionuclides are gamma or beta radiation emitting nuclides, for example Xenon 133, "technetium, gallium 68, fluorine 18 and used. They are usually about Kom ¬ formers such as diethylene triamine pentaacetate (DTPA), 1,4,7,10 - tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (DOTA) or ethylenediaminetetraacetate (EDTA) bound to mono- or polysaccharides The nuclides are, depending on the nature of their radiation, by scintigraphy, Single Photon Emission Computed Tomography (SPECT) or positron emission tomography (PET) is detected. Because of their non-physiological constituents parts but conventional radiopharmaceuticals can Nebenwirkun ¬ gen as anaphylactic or allergic reactions that cause the Kör ¬ by a patient. The use of a peptide from endogenous amino acids reduces this risk significantly because neither the peptide itself, nor its degradation products are toxic. in addition, carbon, unlike Techne ¬ consortium or xenon, egg n in the body occurring element that can be metabolized na ¬ Türlich.
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist das ^C-Kohlenstoffatom ein Carbonylkohlenstoffatom einer Aminosäure. Die Carbonylgruppen sind Teil der Peptidbindungen zwischen den Aminosäuren und liegen im Inneren des Peptids. Dadurch ist gewährleistet, dass das ^C-Kohlenstoffatom nicht vom Peptid abgespalten wird, wie es etwa bei einer Seitenket- te einer der Aminosäuren möglich wäre. According to an advantageous embodiment of the invention, the C-carbon atom is a carbonyl carbon atom of an amino acid. The carbonyl groups are part of the peptide bonds between the amino acids and are located inside the peptide. This ensures that the ^ C carbon atom is not cleaved off the peptide, as would be possible with a side chain of one of the amino acids.
Gemäß einer weiter bevorzugten Ausführungsform der Erfindung ist das ^C-Kohlenstoffatom das Carbonylkohlenstoffatom der N-terminalen Aminosäure des Peptids. Diese Ausführungsform ist besonders bevorzugt, weil das Peptid direkt nach dem An¬ bringen der 11C-markierten Aminosäure verwendet werden kann. 11C-Kohlenstoff hat eine Halbwertszeit von nur ca. 20 Minu¬ ten, so dass die Strahlungsdosis desto höher gewählt werden muss, je mehr Zeit zwischen der Synthese des Peptids und sei¬ ner Verwendung liegt. Wird die 11C-Markierung mit der N- terminalen Aminosäure und damit im letzten Schritt der Synthese angebracht, kann das Peptid sofort nach seiner Synthese verwendet werden. Auf diese Weise wird die Zeitspanne zwi- sehen der Verarbeitung des 11C-Kohlenstoffs und dem Einsatz des Peptids reduziert, so dass der Strahlungsverlust während der Herstellung des Peptids minimiert wird. Deshalb kann die Strahlendosis, die bei der Verarbeitung des 11C-Kohlenstoffs eingesetzt werden muss um eine bestimmte Strahlungsstärke des Produkts zu gewährleisten, entsprechend geringer sein. DieIn a further preferred embodiment of the invention, the C-carbon atom is the carbonyl carbon atom of the N-terminal amino acid of the peptide. This embodiment is particularly preferred because the peptide can be used directly after the on ¬ bring the 11 C-labeled amino acid. 11 C-carbon has a half-life of only about 20 Minu ¬ th, so that the radiation dose must be chosen the higher, the more time is between the synthesis of the peptide and its ¬ ner use. If the 11 C-labeling with the N-terminal amino acid and thus in the last step of the synthesis is applied, the peptide can be used immediately after its synthesis. In this way, the time between the processing of the 11 C carbon and the use of the peptide is reduced, so that the radiation loss during the preparation of the peptide is minimized. Therefore, the radiation dose that must be used in the processing of the 11 C carbon to ensure a certain radiation intensity of the product, be correspondingly lower. The
Herstellung wird dadurch kostengünstiger und die Strahlenbelastung für das technische Personal, welches das Peptid her¬ stellt, verringert. In einer vorteilhaften Weiterbildung der Erfindung weist das Peptid mindestens eine D-Aminosäure auf. Mit Ausnahme des Glycins besitzen alle Aminosäuren an ihrem alpha-C-Kohlen- stoffatom ein chirales Zentrum und können daher als Konfigurationsisomere, nämlich als D- oder L-Aminosäure, vorliegen. Endogene Peptide und Proteine sind weitgehend aus Aminosäuren in L-Konfiguration aufgebaut. Zudem arbeiten die meisten natürlichen Proteasen und Peptidasen stereoselektiv und ver- stoffwechseln hauptsächlich L-Aminosäuren . Daher dauert der Abbau von D-Aminosäuren durch körpereigene Enzyme länger als der von L-Aminosäuren. Dieser Umstand kann verwendet werden, um die Halbwertszeit eines Proteins oder Peptids zu verlän¬ gern, indem neben L-Aminosäuren auch D-Aminosäuren verwendet werden (Neundorf I et al . , 2008) . Dadurch kann die pharmakologische Clearance, also die Zeit bis das Peptid aus dem Or- ganismus ausgeschieden ist, positiv beeinflusst werden. Bei dem Austausch einzelner L-Aminosäuren gegen ihre D-Konfiguration ist jedoch darauf zu achten, dass die Bindungsspezifi- tät des Peptids nicht verändert wird. Eine weitere Möglich- keit, die pharmakologische Clearance des Peptids zu beein¬ flussen, besteht darin einzelne der Aminosäuren des Peptids durch nicht natürliche Aminosäuren mit ähnlichen chemischen Eigenschaften zu ersetzen. Die nicht natürlichen Aminosäuren werden langsamer verstoffwechselt , weil die körpereigenen proteolytischen Enzyme speziell an den Abbau natürlicher Aminosäuren angepasst sind. Bei der Modifizierung des Peptids sollten die nicht natürlichen Aminosäuren jedoch so gewählt werden, dass die Bindungsaffinität des Peptids nicht verän¬ dert wird. Darüber hinaus sind auch andere chemische Modifi- kationen einzelner Aminosäuren des Peptids möglich, um dieProduction is less expensive and thus the radiation exposure for the technical staff that forth ¬ represents the peptide reduced. In an advantageous embodiment of the invention, the peptide has at least one D-amino acid. With the exception of glycine, all amino acids have a chiral center at their alpha carbon atom and can therefore exist as configurational isomers, namely as the D or L amino acid. Endogenous peptides and proteins are largely composed of amino acids in L configuration. In addition, most natural proteases and peptidases work stereoselectively and metabolize mainly L-amino acids. Therefore, the degradation of D-amino acids by endogenous enzymes takes longer than that of L-amino acids. This fact can be used to the half-life of a protein or peptide to Longer side ¬ liked by also D-amino acids are used in addition to L-amino acids (Neundorf I et al., 2008). Thus, the pharmacological clearance, ie the time until the peptide from the Or- is excreted, positively influenced. However, when replacing single L-amino acids with their D-configuration, care must be taken not to alter the binding specificity of the peptide. Another possibility of the pharmacological clearance of the peptide to stunning ¬ influence, consists of individual amino acids of the peptide to be replaced by non-natural amino acids with similar chemical properties. The non-natural amino acids are metabolized more slowly because the body's own proteolytic enzymes are specially adapted to the degradation of natural amino acids. In the modification of the peptide the unnatural amino acids should be chosen, however, that the binding affinity of the peptide is not changed ¬ changed. In addition, other chemical modifications of individual amino acids of the peptide are possible in order to obtain the
Halbwertszeit des Peptids gezielt zu beeinflussen. Beispiels¬ weise kann die endständige Aminogruppe des Peptids durch eine Isonitrilgruppe ersetz werden. Eine solche Modifikation redu¬ ziert die, von der Aminogruppe vermittelte, Interaktion mit proteolytischen Enzymen, ohne die Bindung zwischen dem erfindungsgemäß verwendeten Peptid und dem Antikörper zu verändern . To selectively influence the half-life of the peptide. Example ¬ as can be Replace the terminal amino group of the peptide by a isonitrile. Such modification redu ¬ the sheet, conveyed from the amino group, interaction with proteolytic enzymes without altering the bond between the peptide used in the invention and the antibody.
Ein weiterer Gegenstand der Erfindung ist ein Radiopharmakon das ein Peptid mit einem 11C-Kohlenstoffatom umfasst, zur Lokalisation eines krankhaften Gewebes, das einen HLA-Antigen- Komplex bildet. Das Peptid weist dabei eine Aminosäuresequenz einer complementary determining region (CDR) 3-Schleife eines TCR auf, der gegen den HLA-Antigen-Komplex gerichtet ist. Da- durch bindet das Peptid spezifisch an das Antigen des HLA-Another object of the invention is a radiopharmaceutical comprising a peptide having an 11 C carbon atom for the localization of a diseased tissue which forms an HLA antigen complex. The peptide has an amino acid sequence of a complementary determining region (CDR) 3 loop of a TCR directed against the HLA-antigen complex. As a result, the peptide binds specifically to the antigen of the HLA
Antigen-Komplexes , so dass selbst wenige Zellen eines krank¬ haften Gewebes, das diesen HLA-Antigen-Komplex bildet, spezi¬ fisch nachgewiesen werden können. Auf Grund der Vorteile des enthaltenen Peptids bietet das er¬ findungsgemäße Radiopharmakon ein sensitives und spezifisches Agens, um die Position eines krankhaften Gewebes in vivo zu bestimmen. Das Radiopharmakon wird dem Patienten verabreicht und die darin enthaltenen Peptide verteilen sich, auf Grund ihrer Größe, schnell und effizient in dessen Körper. Sie bin¬ den an den HLA-Antigen-Komplex des krankhaften Gewebes und sammeln sich an dessen Oberfläche. Dieses Gewebe kann bei¬ spielsweise ein Entzündungsherd, durch Viren oder Bakterien infizierte Zellen oder ein Tumor sein. Die Häufung der radioaktiv markierten Peptide wird mittels Positronen-Emissions- Tomographie (PET) nachgewiesen und so die genaue Position der infizierten Zellen, der Entzündung oder des Tumors im Körper des Patienten bestimmt. Antigen complex, so that even a few cells of a sick ¬ haften tissue, which forms this HLA antigen complex, can be specifically ¬ fisch demonstrated. Due to the advantages of the contained peptide, the radiopharmaceutical according to the invention provides a sensitive and specific agent for determining the position of a diseased tissue in vivo. The radiopharmaceutical is administered to the patient, and the peptides contained therein are rapidly and efficiently distributed in the body because of their size. They bind to the HLA antigen complex of diseased tissue and collect on its surface. This tissue can play as a center of inflammation to be infected cells or tumor by viruses or bacteria at ¬. The accumulation of radioactively labeled peptides is detected by positron emission tomography (PET), which determines the exact position of the infected cells, the inflammation or the tumor in the patient's body.
Gemäß einer vorteilhaften Weiterbildung ist das 11C-Kohlen- stoffatom ein Carbonylkohlenstoffatom einer Aminosäure, bevorzugt das Carbonylkohlenstoffatom der N-terminalen Aminosäure des Peptids. According to an advantageous development, the 11 C-carbon atom is a carbonyl carbon atom of an amino acid, preferably the carbonyl carbon atom of the N-terminal amino acid of the peptide.
In einer bevorzugten Ausführungsform ist das Radiopharmakon ein PET Biomarker. Die PET ist ein etabliertes Verfahren um die Strahlung radioaktiver Elemente zu erfassen und ihre Position zu bestimmen (Massoud TF, Gambhir SS, 2003) . Mit Hilfe von ringförmig um den Patienten angeordneten Detektorgeräten werden Schnittbilder erstellt, auf denen die Zerfallsereig- nisse in ihrer räumlichen Verteilung im Körperinneren dargestellt werden. Die PET ermöglicht es auch, die Menge an mar¬ kierten Molekülen in einem Gewebe quantitativ zu bestimmen. In a preferred embodiment, the radiopharmaceutical is a PET biomarker. PET is an established method for detecting the radiation of radioactive elements and determining their position (Massoud TF, Gambhir SS, 2003). With the aid of detector devices arranged annularly around the patient, sectional images are created on which the decay events are represented in their spatial distribution in the interior of the body. The PET also makes it possible to determine the amount of mar ¬-labeled molecules quantitatively in a tissue.
Außerdem wird ein Verfahren zur Lokalisation eines krankhaften Gewebes in einem Organismus offenbart, umfassend die Schritte a) Bereitstellen eines Peptids, b) Verabreichen des Peptids an den Organismus, c) Detektieren des Peptids in dem Organismus mittels Positronen-Emissions-Tomographie (PET) . Dabei weist das Peptid eine Aminosäuresequenz einer CDR3- Schleife eines T-Zell-Rezeptors (TCR) , der gegen den HLA- Antigen-Komplex gerichtet ist, auf und bindet an ein Antigen des HLA-Antigen-Komplexes . Des Weiteren weist das Peptid auch ein 11C-Kohlenstoffatom auf. Also disclosed is a method of localizing a diseased tissue in an organism, comprising the steps of a) providing a peptide, b) administering the peptide to the organism, c) detecting the peptide in the organism Organism using positron emission tomography (PET). In this case, the peptide has an amino acid sequence of a CDR3 loop of a T cell receptor (TCR), which is directed against the HLA antigen complex, and binds to an antigen of the HLA antigen complex. Furthermore, the peptide also has an 11 C carbon atom.
Mit dem erfindungsgemäß verwendeten Peptid wird ein Antigen eines HLA-Antigen-Komplexes im Inneren eines Organismus de- tektiert und lokalisiert, so dass die Verteilung eines HLA- Antigen-Komplexes, im Körper eines Patienten beobachtet wer¬ den kann. Auf diese Weise kann beispielsweise die Größe oder Ausdehnung einer Infektion oder eines Tumors bestimmt werden. Das erfindungsgemäß verwendete Peptid ist daher hervorragend zur Beobachtung von Verlauf und Erfolg einer Behandlung, sog. Therapiemonitoring, geeignet. With the peptide according to the invention an antigen of an HLA-antigen complex is tektiert de- inside an organism, and isolated, so that the distribution of an HLA antigen complex, observed in a patient's body ¬ the can. In this way, for example, the size or extent of an infection or a tumor can be determined. The peptide used according to the invention is therefore outstandingly suitable for observing the course and success of a treatment, so-called therapy monitoring.
Im Folgenden werden bevorzugte Ausführungsformen der Erfin- dung anhand der beigefügten schematischen Zeichnungen erläutert . In the following, preferred embodiments of the invention are explained with reference to the attached schematic drawings.
Figur 1A zeigt schematisch ein krankhaftes Gewebe 18, auf dessen Oberfläche sich ein humanes Leukozytenantigen (HLA) 5 mit einem Antigen 4 befindet. Gemeinsam bilden sie einen HLA- Antigen-Komplex 20, an den wiederum ein T-Zell-Rezeptor (TCR) 6 angelagert ist. Der TCR 6 besteht aus zwei unterschiedliche Polypeptidketten (A, B) (8, 9), die beide einen hoch variablen Bereich, eine sogenannte CDR3-Schleife 7, aufweisen. Die CDR3-Schleife 7 bindet direkt an das Antigen 4. FIG. 1A schematically shows a diseased tissue 18 on the surface of which a human leukocyte antigen (HLA) 5 with an antigen 4 is located. Together they form an HLA-antigen complex 20, to which in turn a T-cell receptor (TCR) 6 is attached. The TCR 6 consists of two different polypeptide chains (A, B) (8, 9), both of which have a highly variable region, a so-called CDR3 loop 7. The CDR3 loop 7 binds directly to the antigen 4.
Das HLA 5 wird von den Zellen des krankhaften Gewebes 18 gebildet und auf ihrer Oberfläche präsentiert. HLA 5 bindet kurze Peptide, die von Proteinen aus dem Inneren der Zelle abstammen und als Antigene 4 wirken. Der TCR 6 erkennt das Antigen 4 und bindet den HLA-Antigen-Komplex 20. Die spezifi¬ sche Bindungsaffinität zwischen dem HLA-Antigen-Komplex 20 und dem TCR 6 kommt auf Grund chemischer Wechselwirkungen zwischen dem Antigen 4 und der CDR3-Schleife 7 zustande. Ihre Aminosäuresequenz bestimmt die Spezifität des TCR 6, der nur ein bestimmtes Antigen 4 erkennt und bindet. The HLA 5 is formed by the cells of the diseased tissue 18 and presented on its surface. HLA 5 binds short peptides from proteins inside the cell descend and act as antigens 4. The TCR 6 recognizes the antigen 4 and binds the HLA-antigen complex 20. The specifi ¬ specific binding affinity between the HLA-antigen complex 20 and the TCR 6 comes about due to chemical interactions between the antigen 4 and the CDR3 loop 7 , Its amino acid sequence determines the specificity of TCR 6, which recognizes and binds only one particular antigen 4.
Figur 1B zeigt schematisch das Peptid 1, das an das Antigen 4 gebunden ist. Das Peptid 1 umfasst neun Aminosäuren 2, von denen die N-terminale Aminosäure 3 mit einem 11C-Kohlenstoff- atom radioaktiv markiert ist. Die radioaktive Markierung ist durch einen Stern (*) dargestellt. Die Aminosäuresequenz des 11C-markierten Peptids 1 entspricht der Aminosäuresequenz der CDR3-Schleife 7 des TCR 6, so dass das Peptid 1 die Bindungsaffinität der CDR3-Schleife 7 be¬ sitzt und spezifisch an das Antigen 4 bindet. Auf Grund die¬ ser Bindungspezifität kann das 11C-markierte Peptid 1 zur De- tektion des Antigens 4 verwendet werden. Die beim Zerfall des 11C-Kohlenstoffatoms abgegebenen Positronen werden mittels Positronen-Emissions-Tomographie (PET) nachgewiesen. Der Ort der Positronenemission entspricht dem Ort des Peptids 1, und des daran gebundenen Antigens 4. FIG. 1B schematically shows peptide 1 bound to antigen 4. Peptide 1 comprises nine amino acids 2, of which the N-terminal amino acid 3 is radioactively labeled with an 11 C carbon atom. The radioactive label is represented by an asterisk (*). The amino acid sequence of the 11 C-labeled peptide 1 corresponds to the amino acid sequence of the CDR3 loop 7 of the TCR 6, such that the peptide 1, the binding affinity of the CDR3 loop be sitting ¬ 7 and specifically binds to the antigen. 4 Due to the binding specificity ser ¬ the 11 C-labeled peptide 1 for de- tektion 4 of the antigen may be used. The positrons released upon decay of the 11 C carbon are detected by positron emission tomography (PET). The location of the positron emission corresponds to the location of the peptide 1 and the antigen 4 bound thereto.
Um die Aminosäuresequenz der CDR3-Schleife 7 des TCR 6 zu analysieren, wird die DNA Region der CDR3-Schleife 7 eines TCR 6 selektiv amplifiziert und sequenziert. Anschließend wird ein 11C-markiertes Peptid 1, entsprechend der Aminosäu- resequenz der CDR3-Schleife 7, hergestellt. Das Peptid 1 wird dem Patienten in Form eines Arzneimittels verabreicht, bindet an das Antigen 4 und sammelt sich an den Zellen des krankhaf¬ ten Gewebes 18, beispielsweise eines Tumors. Diese Anhäufung wird bei einer Positronen-Emissions-Tomographie (PET) sieht- bar, so dass die Verteilung des Antigens 4 bzw. die Position des Tumors 18 im Körper des Patienten bestimmt werden können. Auf diese Art werden auch neu gebildete Metastasen, die den HLA-Antigen-Komplex 20 tragen, mittels PET aufgespürt. To analyze the amino acid sequence of the CDR3 loop 7 of the TCR 6, the DNA region of the CDR3 loop 7 of a TCR 6 is selectively amplified and sequenced. Subsequently, an 11 C-labeled peptide 1, corresponding to the amino acid sequence of the CDR3 loop 7, is produced. Peptide 1 is administered to the patient in the form of a pharmaceutical composition binds to the antigen 4 and accumulates in the cells of the krankhaf ¬ th tissue 18, such as a tumor. This accumulation is seen in positron emission tomography (PET). bar, so that the distribution of the antigen 4 or the position of the tumor 18 in the body of the patient can be determined. In this way, newly formed metastases carrying the HLA-antigen complex 20 are detected by means of PET.
Figur 2 zeigt eine Darstellung eines Peptids mit der Sequenz SEQ ID Nr.: 1 mittels chemischer Formel. FIG. 2 shows a representation of a peptide having the sequence SEQ ID NO: 1 by means of a chemical formula.
Das Peptid umfasst 9 Aminosäuren 2 der folgenden Sequenz: Ar- ginin - Serin - Glycin - Tyrosin - Asparagin - Threonin - Aspartat - Lysin - Leucin - Isoleucin. The peptide comprises 9 amino acids 2 of the following sequence: arginine-serine-glycine-tyrosine-asparagine-threonine-aspartate-lysine-leucine-isoleucine.
Das N-terminale Arginin ist mittels Strukturformel darge¬ stellt, die folgenden Aminosäuren 2 durch ihren jeweiligen Drei-Buchstaben Code. Die Sequenz des Peptids ist auch in SEQ ID Nr.: 1 angegeben. Das Carbonylkohlenstoffatom des N-ter- minalen Arginins ist ein 11C-Kohlenstoffatom, dargestellt durch die Ziffer 11 oberhalb des Carbonylkohlenstoffatoms . Das Peptid 1 wird mit herkömmlichen Proteinsyntheseverfahren hergestellt und die 11C-markierte N-terminale Aminosäure 3 im letzten Schritt hinzu gefügt, weil die Halbwertszeit des X1C- Kohlenstoffisotops bei nur ca. 20 Minuten liegt. Indem die Peptidsynthese mit der 11C-markierten Aminosäure abgeschlos- sen wird, kann das Peptid 1 nach der radioaktiven Markierung sofort verwendet werden. The N-terminal arginine is by structural formula represents ¬ Darge, the following amino acids 2 by their respective three-letter code. The sequence of the peptide is also given in SEQ ID NO: 1. The carbonyl carbon atom of N-terminal arginine is an 11 C carbon atom, represented by the number 11 above the carbonyl carbon atom. Peptide 1 is prepared by conventional protein synthesis methods and the 11 C-labeled N-terminal amino acid 3 is added in the last step, because the half-life of the X1 carbon carbon isotope is only about 20 minutes. By completing the peptide synthesis with the 11 C-labeled amino acid, peptide 1 can be used immediately after radioactive labeling.
Das Peptid der SEQ ID Nr.: 1 weist die Sequenz der CDR3- Schleife 7 eines TCR 6 auf, der von einer T-Zelle eines Pati- enten mit einem diffusen groß-zelligen B-Zell Lymphom (DLBCL) gebildet wird (Yin Q et al . , 2010) . Das DLBCL ist eine malig¬ ne Lymphknotenvergrößerung, bei der neben den normalen Lymphozyten besonders viele Lymphoblasten gebildet werden. An Hand der Morphologie des Lymphoblasten unterscheidet man un- ter anderem zentroblastische und immunoblastische Lymphome. DLBCL gehört zu den aggressiven Non-Hodgkin-Lymphomen und tritt mit einer Häufigkeit von ca. 3-5/100.000 Personen im Jahr auf. The peptide of SEQ ID NO: 1 has the sequence of the CDR3 loop 7 of a TCR 6, which is formed by a T cell of a patient with a diffuse large-cell B-cell lymphoma (DLBCL) (Yin Q et al., 2010). The DLBCL is a Malig ¬ ne lymph node enlargement, in addition to the normal lymphocytes especially many lymphoblasts are formed. On the basis of the morphology of the lymphoblast, a distinction is made between among others, centroblastic and immunoblastic lymphomas. DLBCL is one of the aggressive non-Hodgkin's lymphomas and occurs at a frequency of approximately 3-5 / 100,000 persons per year.
Aus dem peripheren Blut des DLBCL Patienten werden T-Zellen isoliert und in Kultur expandiert. Die T-Zellen produzieren den TCR 6, der gegen den HLA-Antigen-Komplex 20 gerichtet, der sich auf dem DLBCL befindet. Der Klon einer einzelnen T- Zelle wird verwendet, um die Aminosäuresequenz der CDR3-From the peripheral blood of the DLBCL patient T cells are isolated and expanded in culture. The T cells produce the TCR 6 directed against the HLA antigen complex 20 located on the DLBCL. The clone of a single T cell is used to determine the amino acid sequence of the CDR3
Schleife 7 des TCR 6 dieser T-Zelle zu analysieren. Anschlie¬ ßend wird ein 11C-markiertes Peptid 1, das diese Sequenz auf¬ weist und spezifisch an das Antigen 4 bindet, hergestellt. Mit dem Peptid der SEQ ID Nr.: 1 wird das Antigen 4 bzw. das DLBCL lokalisiert. Loop 7 of the TCR 6 of this T cell to analyze. Subsequently ¬ ßend is a 11 C-labeled peptide 1, which comprises this sequence on ¬ and specifically binds to the antigen 4 prepared. The peptide of SEQ ID NO: 1 locates antigen 4 or DLBCL.
Figur 3 zeigt eine schematische Darstellung (stark vereinfacht nach Faller A, Schünke M, Der Körper des Menschen, Thieme, 2008) eines Blutkreislaufsystems 10 eines Organismus und die Verteilung eines Peptids 1 darin. Figure 3 shows a schematic representation (greatly simplified by Faller A, Schünke M, The Human Body, Thieme, 2008) of a circulatory system 10 of an organism and the distribution of a peptide 1 therein.
Das Blutkreislaufsystem 10 umfasst verschiedene schematisch dargestellte Organe, wie Lunge 12, Herz 13, Leber 14, Darm 15 und Niere 16 und die Hauptadern 11, welche diese Organe ver- binden. Das Peptid 1 ist durch Dreiecke entlang der Adern 11 dargestellt. Die Abbauprodukte 17 des Peptids 1 sind durch einzelne Striche innerhalb der Umrisse der Niere 16 darge¬ stellt. Links der Mitte des Blutkreislaufsystems 10 ist zu¬ sätzlich ein krankhaftes Gewebe 18, zum Beispiel ein Tumor oder eine Entzündung, dargestellt, an das vermehrt Peptide 1 angelagert sind. Die Verteilung des Peptids 1 im Blutkreislaufsystem 10 um- fasst vier Phasen, die entlang der Darstellung von oben nach unten aufgeführt sind. Phase I: Das Peptid 1 wird in das Blutkreislaufsystem 10 des Organismus injiziert. The circulatory system 10 comprises various schematically represented organs, such as lung 12, heart 13, liver 14, intestine 15 and kidney 16, and the main arteries 11, which connect these organs. The peptide 1 is represented by triangles along the wires 11. The degradation products 17 of the peptide 1 are represented by individual lines within the outline of the kidney 16 Darge ¬ . Left of center of the circulatory system 10 is additionally ¬ a diseased tissue 18, for example, a tumor or an inflammation, shown, are attached to the increased peptides. 1 The distribution of peptide 1 in the circulatory system 10 comprises four phases, which are listed along the top-down view. Phase I: Peptide 1 is injected into the circulatory system 10 of the organism.
Phase II: Über das Blutkreislaufsystem 10 wird das Peptid 1 in die Organe 12, 13, 14, 15, und 16 des Organismus transpor- tiert. Phase II: Via the blood circulation system 10, the peptide 1 is transported into the organs 12, 13, 14, 15, and 16 of the organism.
Phase III: Das zirkulierende Peptid 1 bindet spezifisch an das Antigen 4 und sammelt sich an dem krankhaften Gewebe 18, weil dieses den HLA-Antigen-Komplex 20 mit dem Antigen 4 an seiner Oberfläche präsentiert. Phase III: The circulating peptide 1 binds specifically to the antigen 4 and accumulates on the diseased tissue 18 because it presents the HLA-antigen complex 20 with the antigen 4 on its surface.
Phase IV: Nicht gebundenes Peptid 1 wird schnell verstoff- wechselt und enzymatisch abgebaut. Der Organismus unterschei¬ det nicht zwischen eigenen Peptiden und dem Peptid 1, weil es aus Aminosäuren 2, 3 aufgebaut ist, die den körpereigenen Molekülen entsprechen. Die Abbauprodukte 17 des Peptids 1 und der Aminosäuren 2, 3 sammeln sich vorwiegend in der Niere 16 von wo aus sie über die Blase und den Harnleiter ausgeschie¬ den werden. Phase IV: Unbound peptide 1 is rapidly metabolised and enzymatically degraded. The organism not failed ¬ det between own peptides and the peptide 1, because it is composed of amino acids 2, 3, which correspond to the body's own molecules. The degradation products 17 of the peptide of amino acids 1 and 2, 3 collect predominantly they are over the bladder and the ureter excreted ¬ in the kidney 16 from where.
Referenzen : References :
Faller A, Schünke M; Der Körper des Menschen; Thieme-Verlag; 2008 Faller A, Schünke M; The body of man; Thieme-Verlag; 2008
Massoud TF, Gambhir SS; Molecular imaging in living subjects: seeing fundamental biological processes in a new light; Genes Dev. 2003 Mar 1 ; 17 (5) : 545-80. Neundorf I, Rennert R, Franke J, Közle I, Bergmann R; De- tailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides; Bio- conjug Chem. 2008 Aug; 19 (8) : 1596-603. Massoud TF, Gambhir SS; Molecular imaging in living subjects: seeing fundamental biological processes in a new light; Genes Dev. 2003 Mar 1; 17 (5): 545-80. Neundorf I, Rennert R, Franke J, Közle I, Bergmann R; Detailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides; Bioconjug Chem. 2008 Aug; 19 (8): 1596-603.
Rock EP, Sibbald PR, Davis MM, Chien YH; CDR3 length in anti- gen-specific immune receptors; J Exp Med. 1994 Jan 1; Rock EP, Sibbald PR, Davis MM, Chien YH; CDR3 length in antigen-specific immune receptors; J Exp Med. 1994 Jan 1;
179 (1) :323-8. 179 (1): 323-8.
Yin Q, Tan H, Chen S, Yang L, Ye J, Li Y; Characterization of conserved CDR3 sequence of TCR alpha- and beta-chain genes in peripheral blood T-cells from patients with diffuse large B- cell lymphoma; Hematology . 2010 Feb; 15(1): 48-57. Yin Q, Tan H, Chen S, Yang L, Ye J, Li Y; Characterization of conserved CDR3 sequence of TCR alpha and beta-chain genes in peripheral blood T-cells from patients with diffuse large B-cell lymphoma; Hematology. 2010 Feb; 15 (1): 48-57.

Claims

Patentansprüche claims
1. Verwendung eines Peptids (1) zur Herstellung eines Agens zur Detektion eines krankhaften Gewebes (18), das einen humanen Leukozytenantigen (HLA) -Antigen-Komplex (20) bildet, Use of a peptide (1) for the preparation of an agent for detecting a diseased tissue (18) which forms a human leukocyte antigen (HLA) antigen complex (20),
dadurch gekennzeichnet,  characterized,
dass das Peptid (1)  that the peptide (1)
a) eine Aminosäuresequenz einer complementary determi- ning region (CDR) 3-Schleife (7) eines T-Zell- Rezeptors (TCR) (6), der gegen den HLA-Antigen- Komplex (20) gerichtet ist, aufweist,  a) an amino acid sequence of a complementary determinant region (CDR) 3 loop (7) of a T cell receptor (TCR) (6) which is directed against the HLA antigen complex (20),
b) an ein Antigen (4) des HLA-Antigen-Komplexes (20) bindet, und  b) binds to an antigen (4) of the HLA-antigen complex (20), and
c) ein 11C-Kohlenstoffatom aufweist. c) has an 11 C carbon atom.
2. Verwendung nach Anspruch 1, 2. Use according to claim 1,
dadurch gekennzeichnet,  characterized,
dass das Agens ein Radiopharmakon ist.  that the agent is a radiopharmaceutical.
3. Verwendung nach Anspruch 1 oder 2, 3. Use according to claim 1 or 2,
dadurch gekennzeichnet,  characterized,
dass das 11C-Kohlenstoffatom das Carbonylkohlenstoffatom einer Aminosäure (2), vorzugsweise der N-terminalen Aminosäure (3) des Peptids (1) ist. the 11 C carbon atom is the carbonyl carbon atom of an amino acid (2), preferably of the N-terminal amino acid (3) of the peptide (1).
4. Radiopharmakon zur Lokalisation eines krankhaften Gewebes (18), das einen HLA-Antigen-Komplex (20) bildet, um¬ fassend ein Peptid (1) mit einem 11C-Kohlenstoffatom, dadurch gekennzeichnet, 4. Radiopharmaceutical for the localization of a diseased tissue (18), which forms an HLA-antigen complex (20), comprising ¬ a peptide (1) with an 11 C-carbon atom, characterized
dass das Peptid (1) eine Aminosäuresequenz einer CDR3- Schleife (7) eines TCR (6), der gegen den HLA-Antigen- Komplex (20) gerichtet ist, aufweist und an das Antigen (4) des HLA-Antigen-Komplexes (20) bindet. Radiopharmakon nach Anspruch 4, in that the peptide (1) has an amino acid sequence of a CDR3 loop (7) of a TCR (6) directed against the HLA-antigen complex (20) and to the antigen (4) of the HLA-antigen complex ( 20) binds. Radiopharmaceutical according to claim 4,
dadurch gekennzeichnet, characterized,
dass das 11C-Kohlenstoffatom das Carbonylkohlenstoffatom einer Aminosäure (2), vorzugsweise der N-terminalen Aminosäure (3) des Peptids (1) ist. the 11 C carbon atom is the carbonyl carbon atom of an amino acid (2), preferably of the N-terminal amino acid (3) of the peptide (1).
Radiopharmakon nach Anspruch 4 oder 5, Radiopharmaceutical according to claim 4 or 5,
dadurch gekennzeichnet, characterized,
dass es ein Positronen-Emissions-Tomographie (PET) Bio- marker ist. that it is a positron emission tomography (PET) biomarker.
PCT/EP2011/060448 2010-06-30 2011-06-22 11c-labelled peptide for detecting a diseased tissue WO2012000866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010026064 DE102010026064A1 (en) 2010-06-30 2010-06-30 11C-labeled peptide for the detection of a diseased tissue
DE102010026064.9 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012000866A1 true WO2012000866A1 (en) 2012-01-05

Family

ID=44511800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/060448 WO2012000866A1 (en) 2010-06-30 2011-06-22 11c-labelled peptide for detecting a diseased tissue

Country Status (2)

Country Link
DE (1) DE102010026064A1 (en)
WO (1) WO2012000866A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083693A2 (en) * 2000-04-28 2001-11-08 Glaxo Group Limited Compounds having affinity for the vascular endothelial growth factor receptor-2 (vegfr-2) and associated uses
WO2006017619A2 (en) * 2004-08-06 2006-02-16 The Regents Of The University Of California Receptor-binding cyclic peptides and methods of use
DE102009035465A1 (en) 2009-07-31 2011-02-03 Daimler Ag Battery i.e. lithium ion battery, for use in e.g. fuel cell vehicle, utilized for transporting passengers, has cooling channel structure integrated in cell connector plate, and cell connectors heat-conductively connected with plate
DE102009035648B3 (en) 2009-07-29 2011-03-17 Siemens Aktiengesellschaft A process for the preparation of a radiolabeled carboxylate and the use of a microelectrode for the electrochemical synthesis of a radiolabeled carboxylate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2865688A1 (en) * 2002-03-01 2015-04-29 Immunomedics, Inc. Internalizing anti-CD74 antibodies and methods of use
WO2009045579A2 (en) * 2007-06-14 2009-04-09 The Regents Of The University Of California Multimodal imaging probes for in vivo targeted and non-targeted imaging and therapeutics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083693A2 (en) * 2000-04-28 2001-11-08 Glaxo Group Limited Compounds having affinity for the vascular endothelial growth factor receptor-2 (vegfr-2) and associated uses
WO2006017619A2 (en) * 2004-08-06 2006-02-16 The Regents Of The University Of California Receptor-binding cyclic peptides and methods of use
DE102009035648B3 (en) 2009-07-29 2011-03-17 Siemens Aktiengesellschaft A process for the preparation of a radiolabeled carboxylate and the use of a microelectrode for the electrochemical synthesis of a radiolabeled carboxylate
DE102009035465A1 (en) 2009-07-31 2011-02-03 Daimler Ag Battery i.e. lithium ion battery, for use in e.g. fuel cell vehicle, utilized for transporting passengers, has cooling channel structure integrated in cell connector plate, and cell connectors heat-conductively connected with plate

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
FALLER A, SCHÜNKE M: "Der Körper des Menschen", 2008, THIEME-VERLAG
HARTVIG P ET AL: "Kinetics of four <11>C-labelled enkephalin peptides in the brain, pituitary and plasma of Rhesus monkeys", REGULATORY PEPTIDES, ELSEVIER SCIENCE BV, NL, vol. 16, no. 1, 1 December 1986 (1986-12-01), pages 1 - 13, XP023462538, ISSN: 0167-0115, [retrieved on 19861201], DOI: 10.1016/0167-0115(86)90190-4 *
HENRIKSEN G ET AL: "Proof of principle for the use of 11C-labelled peptides in tumour diagnosis with PET", EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, SPRINGER VERLAG, HEIDELBERG, DE, vol. 31, no. 12, 10 August 2004 (2004-08-10), pages 1653 - 1657, XP002383248, ISSN: 1619-7070, DOI: 10.1007/S00259-004-1582-1 *
MASSOUD TF, GAMBHIR SS: "Molecular imaging in living subjects: seeing fundamental biological processes in a new light", GENES DEV, vol. 17, no. 5, 1 March 2003 (2003-03-01), pages 545 - 80, XP007905304, DOI: doi:10.1101/gad.1047403
NEUNDORF I, RENNERT R, FRANKE J, KÖZLE I, BERGMANN R: "Detailed analysis concerning the biodistribution and metabolism of human calcitonin-derived cell-penetrating peptides", BIOCONJUG CHEM., vol. 19, no. 8, August 2008 (2008-08-01), pages 1596 - 603, XP002575961, DOI: doi:10.1021/bc800149f
ROCK EP, SIBBALD PR, DAVIS MM, CHIEN YH: "CDR3 length in antigen-specific immune receptors", J EXP MED., vol. 179, no. 1, 1 January 1994 (1994-01-01), pages 323 - 8, XP000647839, DOI: doi:10.1084/jem.179.1.323
YIN Q, TAN H, CHEN S, YANG L, YE J, LI Y: "Characterization of conserved CDR3 sequence of TCR alpha- and beta-chain genes in peripheral blood T-cells from patients with diffuse large B-cell lymphoma", HEMATOLOGY, vol. 15, no. 1, February 2010 (2010-02-01), pages 48 - 57

Also Published As

Publication number Publication date
DE102010026064A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
EP1784422B1 (en) Glp-1 and exendin related invention
Kilbourn et al. Positron emission tomography imaging of (2R, 3R)-5-[18F] fluoroethoxybenzovesamicol in rat and monkey brain: a radioligand for the vesicular acetylcholine transporter
EP0606683A2 (en) Means for diagnosis of angiogenic diseases
DE60318466T2 (en) BINDING COMPOUND TO LEUKOCYTES AND THIS COMPOUND IN MARKED CONDITION AS AN ACTIVE MEDICAL COMPOSITION
WO2012000866A1 (en) 11c-labelled peptide for detecting a diseased tissue
EP3271374B1 (en) Peptides which bind to a specific a-beta-species for the therapy and/or diagnosis of alzheimer&#39;s disease
US20220354894A1 (en) Cell Composition Comprising Radiolabled Mesenchymal Stem Cells, Use Thereof and Method for Preparing Radiolabeled Mesenchymal Stem Cells
WO2012000861A1 (en) 11c-labelled aptamer for detecting a diseased tissue
WO2012000862A1 (en) 11c-labelled peptide for detecting a diseased tissue
WO2012000763A1 (en) 11c-marked peptide for detecting a diseased tissue that expresses an igf receptor
WO2012000784A1 (en) 11c-labelled peptide for detecting neurons which express an acetylcholine receptor
AU2003217467A1 (en) Avidin dimers effective in increasing the concentration of radioactive biotin in pretargeted radioimmunotherapy
DE4337599A1 (en) Metal-binding cysteine-free peptides for diagnosis and therapy, processes for their preparation and pharmaceutical compositions containing these compounds
WO2012000791A2 (en) Diagnostic for localizing a diseased tissue
WO2012000746A1 (en) 11c-labelled peptide for detecting diseased tissue which expresses a chemokine receptor
EP1454137B1 (en) Use of a labeled ligand having human cd4 specificity for producing a diagnostic used in the analysis of migration and/or distribution patterns of cell populations
WO2012000843A1 (en) 11c-labelled peptide for detecting an antigen
DE102010026056A1 (en) 11C-labeled peptide for detection of a tumor expressing a peptide transporter
DE102010026065A1 (en) 11C-labeled peptide for detection of a tumor expressing a bombesin receptor
DE102010026060A1 (en) 11C-labeled peptide for detection of a tumor expressing a somatostatin receptor
DE102010026061A1 (en) 11C-labeled peptide for detection of a tumor expressing a Her2 / neu receptor
DE102010026058A1 (en) 11C-labeled peptide for the detection of an antibody
US11098124B2 (en) CD31 shed as a molecular target for imaging of inflammation
DE102011118030A1 (en) Preparation and use of a peptide having an N-terminal 11 C-labeled acetyl group
DE102010026062A1 (en) Aptamer complex for the detection of a diseased tissue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11728812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11728812

Country of ref document: EP

Kind code of ref document: A1