WO2012000238A1 - 热感供电装置和自供电设备 - Google Patents

热感供电装置和自供电设备 Download PDF

Info

Publication number
WO2012000238A1
WO2012000238A1 PCT/CN2010/077101 CN2010077101W WO2012000238A1 WO 2012000238 A1 WO2012000238 A1 WO 2012000238A1 CN 2010077101 W CN2010077101 W CN 2010077101W WO 2012000238 A1 WO2012000238 A1 WO 2012000238A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
module
output
voltage
power supply
Prior art date
Application number
PCT/CN2010/077101
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012000238A1 publication Critical patent/WO2012000238A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/001Energy harvesting or scavenging
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to the field of mobile communications, and in particular to a thermal power supply device and a self-powered device. Background technique
  • the current mobile terminal solar power supply device can realize self-power supply without external power supply, but it must work in a place with a light source, and cannot be self-powered due to external conditions. Summary of the invention
  • the present invention mainly provides a thermal power supply device and a self-powered device, and uses the thermoelectric conversion technology to supply power to the device itself without relying on an external power source.
  • a thermal power supply device for powering a small power device including:
  • thermoelectric conversion module for absorbing heat energy and converting it into an electrical energy output
  • thermoelectric conversion module coupled to the output of the thermoelectric conversion module, for storing electrical energy output by the thermoelectric conversion module to output a required supply voltage of the device
  • the filter voltage regulator module is connected to the output end of the charge pump module, and is configured to filter and stabilize the output voltage of the charge pump module to output a DC stabilized voltage.
  • the thermoelectric conversion module includes an adjustable resistor and a thermoelectric material connected in series, the thermoelectric material includes two different metals or two different semiconductors connected at both ends, and the connection points of the two metals or the two semiconductors are provided with at least one heat Induction component.
  • the heat-sensitive component includes a heat-sensitive electronic component that is high in temperature sensitivity and that can accumulate temperature, or a heat absorbing material, or a combination of the heat-sensitive electronic component and the heat absorbing material.
  • the charge pump module is a switching regulator boost pump circuit.
  • a self-powered device including a rechargeable battery, further comprising:
  • a power management module connected to the rechargeable battery, for controlling a charging process
  • thermal power supply device connected to the power management module, for providing a DC stabilized voltage to the rechargeable battery, the thermal power supply device comprising:
  • thermoelectric conversion module for absorbing heat energy and converting it into an electrical energy output
  • thermoelectric conversion module coupled to the output of the thermoelectric conversion module, for storing electrical energy output by the thermoelectric conversion module to output a required charging voltage of the rechargeable battery
  • the filter voltage stabilizing module is connected to the output end of the charge pump module, and is configured to filter and stabilize the voltage outputted by the charge pump module to output a DC stabilized voltage.
  • thermoelectric conversion module includes an adjustable resistor and a thermoelectric material connected in series, the thermoelectric material includes two different metals or two different semiconductors connected at both ends, and the connection points of the two metals or the two semiconductors are provided with at least one heat Induction component.
  • the heat-sensitive component includes a heat-sensitive electronic component that is high in temperature sensitivity and that can accumulate temperature, or a heat absorbing material, or a combination of the heat-sensitive electronic component and the heat absorbing material.
  • the charge pump module is a switching regulator boost pump circuit.
  • the device also includes a charging display module coupled to the power management module to indicate whether charging is in progress.
  • the power management module includes: an external power detector for detecting a charging mode of the rechargeable battery; a current monitor for detecting a charging current; a charging controller, connecting the external A power detector and current monitor for controlling the start or end of charging.
  • the thermal power supply device and the self-power supply device proposed by the invention convert the internal and external heat of the device into a power supply for supplying power to the device by using the thermoelectric conversion technology, so that the device can be self-powered anytime and anywhere, without relying on an external power source.
  • a convenient and quick power supply mode is provided, which greatly facilitates the user's use of the small power device, and no need to worry about finding an external power source, and has high practicability.
  • Figure 1 is a schematic diagram of thermoelectric technology
  • FIG. 2 is a schematic structural view of a thermal power supply device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a circuit of a thermoelectric conversion module of a thermal power supply device according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a mobile terminal according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a power management module of a mobile terminal according to an embodiment of the present invention. detailed description
  • the thermal power supply device and the mobile terminal of the present invention utilize the thermal power supply technology to convert the internal and external heat of the mobile terminal into electrical energy that can be supplied by the mobile terminal, so that the mobile terminal can self-power at any time.
  • FIG. 1 shows the schematic diagram of the thermoelectric technology.
  • the two nodes of the metal A and the metal B are TH and TC, which are a hot node and a cold node, respectively.
  • TH and TC which are a hot node and a cold node, respectively.
  • VOUT electromotive force
  • thermoelectric effect as long as there is a temperature difference of 5 °C, the temperature difference can be used to convert the voltage required for the mobile terminal, and the metal A and the metal B can be replaced by the inductive temperature difference silicon.
  • a sheet or other semiconductor material a material having a thermoelectric effect composed of the above metal or semiconductor It is called a thermoelectric material.
  • a thermal power supply device 100 of the present invention is provided, which can be used in a mobile terminal, including:
  • thermoelectric conversion module 10 for absorbing thermal energy and converting it into an electrical energy output
  • the charge pump module 20 is connected to the output end of the thermoelectric conversion module 10 for storing the electrical energy outputted by the thermoelectric conversion module 10 to output a power supply voltage required by the mobile terminal;
  • the filter voltage regulator module 30 is connected to the output end of the charge pump module 20, and is used for filtering and regulating the voltage outputted by the charge pump module 20 to output a DC stabilized voltage.
  • the thermoelectric conversion module 10 includes adjustable resistors R1, R2 and a thermoelectric material 101.
  • the thermoelectric conversion module 10 may include one or more adjustable resistors connected in series.
  • the thermoelectric conversion module 10 includes a coarse resistance resistor and A trimming resistor.
  • the thermoelectric material 101 includes two different metals or two different semiconductors connected at both ends, and the connection points of the two metals or the two semiconductors are provided with at least one heat-sensitive component.
  • the heat-sensitive component is a heat-sensitive electronic component, a heat absorbing material, or a combination of both that is high in temperature sensitivity and can accumulate temperature.
  • the heat absorbing material may be a heat absorbing film, a silicon wafer, a semiconductor or the like.
  • the charge pump module 20 is a switching regulator booster pump circuit.
  • the thermoelectric conversion module 10 absorbs the internal and external thermal energy of the mobile terminal, converts it into electrical energy, and sends it to the charge pump module 20.
  • the output voltage of the thermoelectric conversion module 10 is very small, which is not enough to provide the voltage required by the mobile terminal, and the charge pump module 20 converts the thermoelectricity.
  • the small voltage outputted by the module 10 is accumulated into the voltage required by the mobile terminal, that is, the charge pump module 20 stores the DC voltage in a controlled manner after outputting the power to the filter voltage stabilizing module 30, and the voltage output from the voltage regulator module 30 to the charge pump module 20 is filtered. After DC filtering and voltage regulation, the output is output to the mobile terminal to complete the power supply.
  • the thermoelectric material 101 comprises gold of two different materials connected at both ends.
  • a semiconductor of two or different materials preferably, a P-type semiconductor and an N-type semiconductor having relatively high heat conversion efficiency are used, and the two connection points of the two metals or the two semiconductors are a hot node and a cold node, respectively.
  • the thermoelectric material 101 further includes at least two heat-sensitive components connected to the cold node and the heat node, respectively, the heat-sensing component at the heat node absorbs heat energy, and the heat-sensing component at the cold node is placed at a normal temperature lower than the temperature of the heat node, the heat
  • the inductive component can use a temperature sensitive and heat accumulating thermal sensing electronic component, a heat absorbing material, or a combination of both.
  • the heat-sensitive component is a heat absorbing material having a large area to better absorb heat energy and improve heat conversion efficiency.
  • the adjustable resistors Rl and R2 in the thermoelectric conversion module 10 can be coarse adjustment resistors and trimming resistors respectively, and the two types of resistance adjustment methods are used for coarse adjustment and fine adjustment, which can make the load resistance quickly match with the impedance of the thermal induction component due to the temperature difference change, and optimize Output voltage value.
  • the voltage outputted by the thermoelectric conversion module 10 is a relatively small voltage, which is not enough to supply power to the mobile terminal.
  • the charge pump module 20 uses a switching regulator booster pump circuit to store energy through a capacitor through an internal low voltage FET ( The FET) switch array controls the charge and discharge of the capacitor, so that the voltage output from the thermoelectric conversion module 10 is multiplied by a multiple of 4 to 10 times to reach the voltage required by the mobile terminal.
  • the FET The FET
  • the voltage output from the charge pump module 20 has a certain ripple and glitch, and the power supply to the mobile terminal requires a stable operating voltage and current.
  • the filter voltage regulator module 30 performs DC filtering on the voltage outputted by the charge pump module 20 to remove the AC component, and then provides voltage regulation to provide the required stable DC voltage to the mobile terminal.
  • the filter voltage regulator module 30 also outputs the output of the charge pump module 20. The voltage is over-voltage protected to prevent damage to the mobile terminal due to excessive transient voltage.
  • the thermal power supply device 100 can be used for power supply of a small power device such as a mobile terminal, and converts thermal energy into electrical energy by using a temperature difference generated by an environment or internal operation of the device, and conveniently provides a reliable power source for a small power device such as a mobile terminal, thereby realizing self-power supply. .
  • a mobile terminal of the present invention which includes a rechargeable battery 70, a power management module 200, and a thermal power supply device 100.
  • the power management module 200 is connected to the rechargeable battery 70, configured to detect a charging mode of the mobile terminal and control a charging process;
  • the thermal power supply device 100 is connected to the power management module 200 for providing a DC stabilized voltage to the rechargeable battery 70.
  • the thermal power supply device 100 includes: a thermoelectric conversion module 10 for absorbing thermal energy and converting it into an electrical energy output; And connected to the output end of the thermoelectric conversion module 10 for storing the electric energy output by the thermoelectric conversion module 10 to output the required charging voltage of the rechargeable battery 70; the filter voltage stabilizing module 30 is connected to the output end of the charge pump module 20 for charging the charge pump The voltage outputted by the module 20 is filtered, and the regulated DC output voltage is stabilized.
  • the charge pump module 20 is a switching regulator booster pump circuit.
  • the structure and function of the thermoelectric conversion module 10 are the same as those of the thermoelectric conversion module 10 of the embodiment shown in FIG.
  • the mobile terminal further includes a charging display module 80 connected to the power management module 200 for displaying the charging state of the rechargeable battery 70, which is charging or charging.
  • the power management module 200 includes an external power detector 40, a charging controller 50, and a current monitor 60.
  • the external power detector 40 is configured to detect a charging mode of the rechargeable battery 70, and determine whether it is a USB data line charging mode, a charger charging mode, or a thermal charging mode; a current monitor 60 for detecting a charging current amount; charging control The device 50 is connected to the external power source detector 50 and the current monitor 60 to control the start or end of charging of the rechargeable battery 70;
  • thermal energy sources there are two kinds of thermal energy sources that can be used by mobile phones.
  • One is that the mobile phone generates heat when it is in use.
  • the surface temperature of the mobile phone RF amplifier chip can reach 76.97 ° C under the ambient temperature of 0-30 degrees and long-time talking conditions.
  • Baseband chip temperature can reach 72.8 °C
  • mobile phone power management chip, mobile phone screen and lithium battery will heat up to varying degrees, so the temperature inside the mobile phone case is generally higher than the outside of the case 5 ° C -10 ° C, will be used as a hot node
  • the heat absorbing material is attached to the inner surface of the casing, the back of the mobile phone screen, and the lithium battery
  • the surface of the pool, the RF module cover and the baseband module cover can absorb a large amount of heat energy, and the other heat energy comes from the outside of the mobile phone, and the heat-sensitive electronic component as a hot node is placed at the opening of the mesh screen where the sound-emitting device of the mobile phone is located, and the mesh opening is opened.
  • the hot object Close to the hot object, it can absorb a lot of heat energy, and the regular breathing of the human body during the call can also accumulate the temperature of the heat-sensitive electronic components placed at the opening of the mesh screen up to 70 °C.
  • the temperature In the mobile phone headset, the temperature is close to the external temperature of the mobile phone, and it belongs to the normal temperature, and a thermal sensing electronic component can be placed as a cold node. When the temperature difference between the hot and cold nodes exceeds 5 ° C, the electric energy generated by the thermoelectric conversion module 10 can supply power to the mobile terminal.
  • the thermoelectric conversion module 10 includes a thermoelectric material including two different materials of metal or two different materials of semiconductors connected at both ends, preferably, a P-type semiconductor and an N-type semiconductor having relatively high heat conversion efficiency.
  • the two connection points of the two metals or the two semiconductors are a hot node and a cold node, respectively.
  • the thermoelectric material further comprises at least two heat-sensing components respectively connected to the hot and cold nodes.
  • the heat-sensitive components at the hot node of the mobile phone are placed in the heat-generating parts of the mobile phone casing and the mobile phone that can better absorb the external heat energy
  • the heat-sensitive component at the cold node is located at the earphone in contact with the environment, and the heat-sensitive component at the hot and cold node can use a temperature-sensitive and cumulative temperature-increasing heat-sensitive electronic component, heat absorbing material or The combination of the two, when the mobile phone works, the heat-sensing component at the hot node absorbs the heat inside the mobile phone, and the heat generated by the human body during regular breathing during the conversation and the heat of the externally accessible heat source are transmitted through the mesh opening.
  • thermoelectric conversion module 10 converts the absorbed thermal energy into electrical energy output.
  • the thermoelectric conversion module 10 uses two kinds of resistance adjustment methods, such as coarse adjustment and fine adjustment, so that the load resistance changes according to the temperature difference.
  • the thermal sensing component itself quickly matches the impedance and optimizes the output voltage value.
  • the voltage outputted by the thermoelectric conversion module 10 is a relatively small voltage, which is not enough to charge the rechargeable battery 70.
  • the charge pump module 20 uses a switching regulator booster pump circuit to store energy through a capacitor and control the capacitor through an internal FET switch array. Charging and discharging, so that the voltage output from the thermoelectric conversion module 10 is multiplied by a multiple of 4 to 10 times to reach the required charge of the rechargeable battery 70. Electric voltage.
  • the voltage outputted by the charge pump module 20 has a certain ripple and glitch, and the charging battery 70 needs a stable working voltage and current.
  • the filter voltage regulator module 30 DC filters the voltage output from the charge pump module 20 to remove the AC component.
  • the voltage regulation is further provided to provide the required stable DC voltage to the rechargeable battery 70.
  • the filter voltage regulator module 30 also overvoltage protects the voltage output from the charge pump module 20 to prevent damage to the rechargeable battery 70 due to excessive transient voltage.
  • the charging process of the rechargeable battery 70 by the thermal power supply device 100 is controlled by the power management module 200, which normally supplies power using a charger or a USB data line, and the external power detector 40 charges the charger mode and the USB data line charging mode.
  • the three modes of the thermal charging mode are detected, which can be determined by the level of the relevant charging interface.
  • the feedback information is sent to the charging controller 50, and the charging controller 50 enables the thermal power supply.
  • the device 100 and the rechargeable battery 70 are in an on state, and the thermal power supply device 100 starts charging the rechargeable battery 70.
  • the charging controller 50 controls the above process: usually, the charging current is charged for 2 hours, for example, the 500MAH battery uses 200MA current.
  • Charging can be achieved in about 2 hours, and when the average pulse current reaches 1% of the fast charging current or the time exceeds the preset time parameter, the charging is stopped.
  • the current monitor 60 monitors the charging current, and when it is detected that the average pulse current reaches 1% of the fast charging current, the charging controller 50 is triggered to stop charging of the rechargeable battery 70.
  • the charge controller 50 also controls the charge pump module 20. When the mobile phone is in a standby state for a long time without power supply, the charge controller 50 issues a control signal to turn off the charge pump module 20 enable terminal.
  • the above mobile phone further includes a charging display module 80, which displays the charging state to the mobile phone user through the light emitting diode.
  • the charging display module 80 can be composed of a general light emitting diode or a red and green two-color diode. The light is turned off or the red light is green to indicate whether the rechargeable battery 70 has reached a certain threshold.
  • the rechargeable battery 70 is still small enough to supply power to the mobile phone.
  • the output enable pin of the power management module 200 is valid, and the rechargeable battery 70 starts to supply power to the mobile phone.
  • Self-powered The above embodiments are not only used for mobile terminals, but also can be applied to other small power devices. It is convenient and quick to convert thermal energy into electrical energy by using thermal energy generated by internal work of small power devices and externally accessible heat sources to realize self-power supply. Power supply method.

Description

热感供电装置和自供电设备 技术领域
本发明涉及到移动通信领域, 特别涉及到一种热感供电装置和自供电 设备。 背景技术
随着科学技术的发展, 手机等移动终端已经成为人们日常生活中必不 可少的通信工具, 随着移动终端的功能日益多样化, 移动终端的充电问题 也日益突出, 目前的移动终端通常釆用外接充电电源的方式, 这种充电方 式必须在有电源的地方才可完成, 而人们在户外或长途旅途中, 有时无法 保证电源的供应, 使移动终端在关键时刻关机, 给用户带来了极大不便。
目前的移动终端太阳能供电装置, 可在无外部电源的情况下实现自供 电, 但其必须在有光源的地方方可工作, 受外部条件制约, 无法实现自供 电。 发明内容
有鉴于此, 本发明的主要为提供一种热感供电装置和自供电设备, 利 用热电转换技术为设备自身供电, 无须依靠外接电源。
一种热感供电装置, 用于小功率设备的供电, 包括:
热电转换模块, 用于吸收热能并转换为电能输出;
电荷泵模块, 与所述热电转换模块输出端连接, 用于贮存所述热电转 换模块输出的电能, 以输出所述设备所需供电电压;
滤波稳压模块, 与所述电荷泵模块输出端连接, 用于将所述电荷泵模 块的输出电压滤波、 稳压后输出直流稳定电压。 所述热电转换模块包括串联的可调电阻和热电材料, 所述热电材料包 括两端连接的两种不同金属或两种不同半导体, 所述两种金属或两种半导 体的连接点设置至少一热感应部件。
所述热感应部件包括高温度灵敏性且可累积升温的热感应电子元件、 或热吸收材料、 或所述热感应电子元件和热吸收材料的组合。
所述电荷泵模块为开关式调整器升压泵电路。
一种自供电设备, 包括充电电池, 还包括:
电源管理模块, 连接所述充电电池, 用于控制充电过程;
热感供电装置, 与所述电源管理模块连接, 用于为所述充电电池提供 直流稳定电压, 所述热感供电装置包括:
热电转换模块, 用于吸收热能并转换为电能输出;
电荷泵模块, 与所述热电转换模块输出端连接, 用于贮存所述热电转 换模块输出的电能以输出所述充电电池所需充电电压;
滤波稳压模块, 与所述电荷泵模块输出端连接, 用于将所述电荷泵模 块输出的电压滤波、 稳压后输出直流稳定电压。
所述热电转换模块包括串联的可调电阻和热电材料, 所述热电材料包 括两端连接的两种不同金属或两种不同半导体, 所述两种金属或两种半导 体的连接点设置至少一热感应部件。
所述热感应部件包括高温度灵敏性且可累积升温的热感应电子元件、 或热吸收材料、 或所述热感应电子元件和热吸收材料的组合。
所述电荷泵模块为开关式调整器升压泵电路。
所述设备还包括充电显示模块, 与所述电源管理模块连接, 显示充电 是否正在进行。
所述电源管理模块包括: 外部电源检测器, 用于检测所述充电电池的 充电模式; 电流监控器, 用于检测充电电流大小; 充电控制器, 连接外部 电源检测器和电流监控器, 用于控制充电的开始或结束。
本发明提出的热感供电装置和自供电设备, 利用热电转换技术, 将设 备内外部热量转换为可供设备自身供电的电源, 使设备可随时随地自供电, 无须依靠外部电源。 根据本发明方案, 提供一种方便快捷的供电方式, 极 大地方便了用户对小功率设备的使用, 无需再为找不到外接电源而烦恼, 具有很高的实用性。 附图说明
图 1为热电技术原理图;
图 2为本发明实施例热感供电装置的结构示意图;
图 3为本发明实施例热感供电装置的热电转换模块的电路结构示意图; 图 4为本发明实施例移动终端的结构示意图;
图 5为本发明实施例移动终端的电源管理模块结构示意图。 具体实施方式
本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一 步说明。
本发明的热感供电装置和移动终端利用热感供电技术, 将移动终端内 外部热量转换为可供移动终端供电的电能, 使移动终端可随时自供电。
图 1所示为热电技术的原理图, 当两种不同材料的金属 A和金属 B两 端接合成回路,金属 A和金属 B的两个节点为 TH和 TC, 分别为热节点和 冷节点, 当 TH和 TC存在温度差时, 例如 TH的温度高于 TC的温度, 在 回路中就会产生电动势 VOUT, 这种现象为热电效应。 利用热电效应可将 热能转化成电能进行发电, 根据热电效应, 只要有 5 °C的温差, 就可以利用 该温差转化为移动终端所需电压, 而金属 A和金属 B可替换为可感应温差 硅片或其它半导体材料, 上述金属或半导体构成的具有热电效应的材料统 称为热电材料。
参照图 2,提出本发明的热感供电装置 100—实施例, 其可用于移动终 端, 包括:
热电转换模块 10, 用于吸收热能并转换为电能输出;
电荷泵模块 20, 与热电转换模块 10输出端连接, 用于贮存热电转换模 块 10输出的电能以输出移动终端所需供电电压;
滤波稳压模块 30, 与电荷泵模块 20输出端连接, 用于将电荷泵模块 20输出的电压滤波、 稳压后输出直流稳定电压。
参照图 3 , 热电转换模块 10包括可调电阻 Rl、 R2和热电材料 101 , 热 电转换模块 10可以包括一个或多个串联的可调电阻, 较佳地, 热电转换模 块 10包括一个粗调电阻和一个微调电阻。 热电材料 101包括两端连接的两 种不同金属或两种不同半导体, 上述两种金属或两种半导体的连接点设置 至少一热感应部件。
热感应部件为高温度灵敏性且可累积升温的热感应电子元件、 热吸收 材料、 或者两者的组合。 所述热吸收材料可以为热吸收膜、 硅片、 半导体 等。
其中, 电荷泵模块 20为开关式调整器升压泵电路。
热电转换模块 10吸收移动终端内外部热能, 转化为电能后发送给电荷 泵模块 20, 热电转换模块 10输出的电压非常小, 还不足以提供移动终端所 需的电压, 电荷泵模块 20将热电转换模块 10输出的小电压累积成移动终 端所需的电压, 即电荷泵模块 20贮存电能后以受控方式输出直流电压至滤 波稳压模块 30,滤波稳压模块 30对电荷泵模块 20输出的电压做直流滤波、 稳压后输出至移动终端, 完成供电。
下面详细说明上述热感供电装置 100的工作原理:
根据热电效应原理, 热电材料 101 包括两端连接的两种不同材料的金 属或两种不同材料的半导体, 较佳地, 使用热转换效率比较高的 P型半导 体和 N型半导体, 两种金属或两种半导体的两个连接点分别为热节点和冷 节点。 热电材料 101 还包括至少两个热感应部件, 分别连接至冷节点及热 节点, 热节点处的热感应部件吸收热能, 冷节点处的热感应部件放置在低 于热节点温度的常温处, 热感应部件可使用对温度敏感且可累积升温的热 感应电子元件、 热吸收材料、 或两者的组合。 较佳地, 热感应部件为面积 较大的热吸收材料以更好地吸收热能, 提高热转换效率。 热电转换模块 10 中可调电阻 Rl、 R2可以分别是粗调电阻和微调电阻,釆用粗调和微调两种 电阻调整方式, 能够使负载电阻因温差变化随热感应部件本身阻抗快速完 成匹配, 优化输出电压值。
热电转换模块 10输出的电压是比较小的电压, 还不足以给移动终端供 电,电荷泵模块 20釆用开关式调整器升压泵电路,通过电容器来贮存能量, 通过内部低电压场效应管(FET )开关阵列控制电容器的充放电, 使从热电 转换模块 10输出的电压以一定倍数如 4到 10倍的倍数倍增, 达到移动终 端所需电压。
电荷泵模块 20输出的电压具有一定的紋波和毛刺, 而给移动终端供电 需要稳定的工作电压和电流。 滤波稳压模块 30将电荷泵模块 20输出的电 压进行直流滤波, 去除交流成份, 再进行稳压为移动终端提供所需稳定直 流电压, 此外, 滤波稳压模块 30还对电荷泵模块 20输出的电压进行过电 压保护, 防止因瞬间电压过大损坏移动终端。
上述热感供电装置 100可用于移动终端等小功率设备的供电, 利用环 境或设备内部运行产生的温差, 将热能转换成电能, 非常方便地为移动终 端等小功率设备提供可靠电源, 实现自供电。
参照图 4, 提出本发明的移动终端一实施例, 其包括充电电池 70、 电 源管理模块 200和热感供电装置 100。 其中, 电源管理模块 200连接充电电池 70, 用于检测移动终端的充电 模式和控制充电过程;
热感供电装置 100, 与电源管理模块 200连接, 用于为充电电池 70提 供直流稳定电压, 热感供电装置 100包括: 热电转换模块 10, 用于吸收热 能并转换为电能输出; 电荷泵模块 20, 与热电转换模块 10输出端连接, 用 于贮存热电转换模块 10输出的电能以输出充电电池 70所需充电电压; 滤 波稳压模块 30, 与电荷泵模块 20输出端连接, 用于将电荷泵模块 20输出 的电压滤波、 稳压后输出直流稳定电压。 其中, 电荷泵模块 20为开关式调 整器升压泵电路, 热电转换模块 10结构和功能同图 3所示实施例的热电转 换模块 10, 不再赘述。
进一步的,上述移动终端还包括充电显示模块 80,与电源管理模块 200 连接, 用于显示充电电池 70的充电状态, 该充电状态为正在充电或充电结 束。
参阅图 5所示为电源管理模块 200的具体结构示意图, 电源管理模块 200包括外部电源检测器 40、 充电控制器 50和电流监控器 60。
其中, 外部电源检测器 40, 用于检测充电电池 70的充电模式, 判断是 USB数据线充电模式、 充电器充电模式或热感充电模式; 电流监控器 60, 用于检测充电电流大小; 充电控制器 50, 连接外部电源检测器 50和电流监 控器 60, 控制充电电池 70的充电开始或结束;
下面以手机为例说明上述移动终端的工作原理:
手机可利用的热能来源有两种, 一是手机在使用过程中, 自身会产生 热能, 在环境温度 0-30度及长时间通话条件下手机射频功放芯片表面温度 可达 76.97°C , 射频和基带芯片温度可达 72.8°C , 手机电源管理芯片、 手机 屏和锂电池等都会不同程度地发热, 因此手机机壳内温度普遍高于机壳外 5°C-10°C , 将作为热节点的热吸收材料贴在机壳内表面、 手机屏背面、锂电 池、 射频模块罩和基带模块罩表面, 可吸收大量热能, 另一热能源来自手 机外部, 将作为热节点的热感应电子元件放置在手机发声器件所在的网筛 开口处, 将该网筛开口靠近发热物体, 可吸收大量热能, 且通话过程中人 体有规律地呼吸也能使放置在网筛开口处的热感应电子元件累积温度最高 达 70°C。 而在手机耳机处, 温度与手机外部环境温度接近, 属于常温处, 可放置一热感应电子元件, 作为冷节点。 冷热节点温差超过 5°C时, 热电转 换模块 10产生的电能可为移动终端供电。
根据热电效应原理, 热电转换模块 10包括的热电材料包括两端连接的 两种不同材料的金属或两种不同材料的半导体, 较佳地, 使用热转换效率 比较高的 P型半导体和 N型半导体, 两种金属或两种半导体的两个连接点 分别为热节点和冷节点。 热电材料还包括至少两个热感应部件, 分别连接 冷热节点, 如之前所述, 手机的热节点处的热感应部件放置在手机机壳内 各发热部位及可以较好吸收外部热能的手机发声器件所在的网筛开口处, 冷节点处的热感应部件位于与环境接触的耳机处, 冷热节点处的热感应部 件可使用对温度敏感且可累积升温的热感应电子元件、 热吸收材料或两者 的组合, 当手机工作时, 热节点处的热感应部件吸收手机内部热量, 同时 人体在通话过程中有规律地呼吸时产生的热量以及外部可接触到的热源热 量通过网筛开口处传送给热感应部件, 此时冷热节点之间产生温差, 热电 转换模块 10将吸收的热能转化为电能输出, 热电转换模块 10釆用粗调和 微调两种电阻调整方式, 使负载电阻因温差变化随热感应部件本身阻抗快 速完成匹配, 优化输出电压值。
热电转换模块 10输出的电压是比较小的电压,还不足以给充电电池 70 充电, 电荷泵模块 20釆用开关式调整器升压泵电路, 通过电容器来贮存能 量, 通过内部 FET开关阵列控制电容器的充放电, 使从热电转换模块 10 输出的电压以一定倍数如 4到 10倍的倍数倍增, 达到充电电池 70所需充 电电压。
电荷泵模块 20输出的电压具有一定的紋波和毛刺, 而给充电电池 70 充电需要稳定的工作电压和电流, 滤波稳压模块 30将电荷泵模块 20输出 的电压进行直流滤波, 去除交流成份, 再进行稳压为充电电池 70提供所需 稳定直流电压, 滤波稳压模块 30还对电荷泵模块 20输出的电压进行过电 压保护, 防止因瞬间电压过大损坏充电电池 70。
热感供电装置 100对充电电池 70的充电过程由电源管理模块 200控制 , 手机在通常情况下使用充电器或 USB数据线进行供电,外部电源检测器 40 对充电器充电模式、 USB数据线充电模式、 热感充电模式三种模式进行检 测, 具体可通过相关充电接口的电平来确定, 当检测到手机处于热感供电 状态时,反馈信息给充电控制器 50, 充电控制器 50使热感供电装置 100与 充电电池 70处于导通状态, 热感供电装置 100开始对充电电池 70充电, 充电控制器 50对上述过程进行控制: 通常充电电流釆用 2小时充电率, 例 如 500MAH电池釆用 200MA电流充电约 2小时即可达到 4.3V, 当平均脉 冲电流达到快充电流的 1%或时间超出预置的时间参数时, 停止充电。 电流 监控器 60对充电电流进行监控,当检测到平均脉冲电流达到快充电流的 1% 时, 触发充电控制器 50停止充电电池 70的充电。 充电控制器 50同时还对 电荷泵模块 20进行控制, 手机长时间处于待机状态不需要供电时, 充电控 制器 50发出控制信号, 关闭电荷泵模块 20使能端。
上述手机还包括充电显示模块 80, 通过发光二极管向手机用户显示充 电状态。充电显示模块 80可以是一般的发光二极管或红绿双色二极管组成 , 用灯亮灯灭或红灯绿灯显示充电电池 70电量是否已经达到一定阔值。
热感充电初期, 充电电池 70的电量还很小, 不足以给手机供电, 当电 池电量达到一定的值时, 电源管理模块 200 的输出使能脚有效, 充电电池 70开始为手机供电, 实现手机自供电。 上述实施例不仅仅用于移动终端, 还可以应用于其它小功率设备, 利 用小功率设备内部工作产生的热能和外部可接触的热源, 将热能转换成电 能, 实现自供电, 是一种方便快捷的供电方式。
以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直 接或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保护范 围内。

Claims

权利要求书
1、 一种热感供电装置, 其特征在于, 用于小功率设备的供电, 包括: 热电转换模块, 用于吸收热能并转换为电能输出;
电荷泵模块, 与所述热电转换模块输出端连接, 用于贮存所述热电转 换模块输出的电能, 以输出所述设备所需供电电压;
滤波稳压模块, 与所述电荷泵模块输出端连接, 用于将所述电荷泵模 块的输出电压滤波、 稳压后输出直流稳定电压。
2、 如权利要求 1所述的热感供电装置, 其特征在于, 所述热电转换模 块包括串联的可调电阻和热电材料, 所述热电材料包括两端连接的两种不 同金属或两种不同半导体, 所述两种金属或两种半导体的连接点设置至少 一热感应部件。
3、 如权利要求 2所述的热感供电装置, 其特征在于, 所述热感应部件 包括高温度灵敏性且可累积升温的热感应电子元件、 或热吸收材料、 或所 述热感应电子元件和热吸收材料的组合。
4、 如权利要求 1至 3任意一项所述的热感供电装置, 其特征在于, 所 述电荷泵模块为开关式调整器升压泵电路。
5、 一种自供电设备, 包括充电电池, 其特征在于, 还包括: 电源管理模块, 连接所述充电电池, 用于控制充电过程;
热感供电装置, 与所述电源管理模块连接, 用于为所述充电电池提供 直流稳定电压, 所述热感供电装置包括:
热电转换模块, 用于吸收热能并转换为电能输出;
电荷泵模块, 与所述热电转换模块输出端连接, 用于贮存所述热电转 换模块输出的电能以输出所述充电电池所需充电电压;
滤波稳压模块, 与所述电荷泵模块输出端连接, 用于将所述电荷泵模 块输出的电压滤波、 稳压后输出直流稳定电压。
6、 如权利要求 5所述的设备, 其特征在于, 所述热电转换模块包括串 联的可调电阻和热电材料, 所述热电材料包括两端连接的两种不同金属或 两种不同半导体, 所述两种金属或两种半导体的连接点设置至少一热感应 部件。
7、 如权利要求 6所述的设备, 其特征在于, 所述热感应部件包括高温 度灵敏性且可累积升温的热感应电子元件、 或热吸收材料、 或所述热感应 电子元件和热吸收材料的组合。
8、 如权利要求 5至 7任意一项所述的设备, 其特征在于, 所述电荷泵 模块为开关式调整器升压泵电路。
9、 如权利要求 5至 7任意一项所述的设备, 其特征在于, 所述设备还 包括充电显示模块, 与所述电源管理模块连接, 显示充电是否正在进行。
10、 如权利要求 5至 7任意一项所述的设备, 其特征在于, 所述电源 管理模块包括:
外部电源检测器, 用于检测所述充电电池的充电模式;
电流监控器, 用于检测充电电流大小;
充电控制器, 连接外部电源检测器和电流监控器, 用于控制充电的开 始或结束。
PCT/CN2010/077101 2010-06-29 2010-09-19 热感供电装置和自供电设备 WO2012000238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010214069.6 2010-06-29
CN201010214069.6A CN101873082B (zh) 2010-06-29 2010-06-29 热感供电装置和移动终端

Publications (1)

Publication Number Publication Date
WO2012000238A1 true WO2012000238A1 (zh) 2012-01-05

Family

ID=42997786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077101 WO2012000238A1 (zh) 2010-06-29 2010-09-19 热感供电装置和自供电设备

Country Status (2)

Country Link
CN (1) CN101873082B (zh)
WO (1) WO2012000238A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI475372B (zh) * 2012-05-15 2015-03-01 Acer Inc 電源管理裝置與電源管理方法
CN109962155A (zh) * 2017-12-25 2019-07-02 北京万应科技有限公司 热电转换系统、封装方法、供电控制方法及装置
CN109962155B (zh) * 2017-12-25 2024-05-14 成都万应微电子有限公司 热电转换系统、封装方法、供电控制方法及装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931347B (zh) 2010-07-23 2014-07-30 惠州Tcl移动通信有限公司 提升能耗效率的方法及其移动终端和热电转换模块的用途
CN102738842A (zh) * 2011-04-13 2012-10-17 鸿富锦精密工业(深圳)有限公司 具有自行供电功能的货柜
CN102984336A (zh) * 2011-09-06 2013-03-20 中兴通讯股份有限公司 一种移动终端及其实现温度智能控制的方法
CN202918218U (zh) 2012-08-16 2013-05-01 中兴通讯股份有限公司 一种通信系统设备的节能环保装置
CN104467538B (zh) * 2013-09-24 2019-01-29 中兴通讯股份有限公司 一种能量转换方法、装置及移动终端
CN104749820A (zh) * 2015-04-14 2015-07-01 蓝思科技(长沙)有限公司 一种智能自发电液晶面板led背光片
CN106998098A (zh) 2016-01-25 2017-08-01 华为技术有限公司 一种终端设备
CN107612424B (zh) * 2017-09-30 2020-04-21 广东美的厨房电器制造有限公司 发电系统以及电器
CN111403445B (zh) * 2020-03-23 2023-04-18 京东方科技集团股份有限公司 一种显示面板及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707935A (zh) * 2004-06-11 2005-12-14 珍通科技股份有限公司 便携式电子设备的电能自给方法及系统
CN101604939A (zh) * 2008-06-11 2009-12-16 浪潮乐金数字移动通信有限公司 热能转换为电能的终端及其实现热能转换为电能的方法
CN101656492A (zh) * 2009-09-09 2010-02-24 中国科学院电工研究所 电气设备状态监测无线传感系统杂散能供电方法和装置
CN101667738A (zh) * 2008-09-01 2010-03-10 深圳富泰宏精密工业有限公司 充电装置及充电方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107880A (ja) * 1996-10-01 1998-04-24 Nippon Serinto Kk 通話装置
CN101534330B (zh) * 2008-10-15 2011-08-24 闻泰集团有限公司 移动终端摄像头的上电电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707935A (zh) * 2004-06-11 2005-12-14 珍通科技股份有限公司 便携式电子设备的电能自给方法及系统
CN101604939A (zh) * 2008-06-11 2009-12-16 浪潮乐金数字移动通信有限公司 热能转换为电能的终端及其实现热能转换为电能的方法
CN101667738A (zh) * 2008-09-01 2010-03-10 深圳富泰宏精密工业有限公司 充电装置及充电方法
CN101656492A (zh) * 2009-09-09 2010-02-24 中国科学院电工研究所 电气设备状态监测无线传感系统杂散能供电方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI475372B (zh) * 2012-05-15 2015-03-01 Acer Inc 電源管理裝置與電源管理方法
CN109962155A (zh) * 2017-12-25 2019-07-02 北京万应科技有限公司 热电转换系统、封装方法、供电控制方法及装置
CN109962155B (zh) * 2017-12-25 2024-05-14 成都万应微电子有限公司 热电转换系统、封装方法、供电控制方法及装置

Also Published As

Publication number Publication date
CN101873082B (zh) 2014-08-13
CN101873082A (zh) 2010-10-27

Similar Documents

Publication Publication Date Title
WO2012000238A1 (zh) 热感供电装置和自供电设备
KR101672254B1 (ko) 에너지 수확과 관련된 에너지 저장 장치를 위한 수동적인 과전압/부족전압 제어 및 보호
WO2018035963A1 (zh) 移动电源
US20120187897A1 (en) Battery charger for use with low voltage energy harvesting device
US20100207571A1 (en) Solar chargeable battery for portable devices
CN103607009B (zh) 一种带自动保护功能的充放电电路
WO2013178123A1 (zh) 一种用于提高终端续航能力的装置及其终端
JP5057928B2 (ja) 電源システム
TW201308828A (zh) 充電控制方法、裝置以及充電系統和可擕式設備
CN102647011A (zh) 升降压一体化宽范围输出自动侦测负载的移动电源电路
US8552680B2 (en) Power management circuit and electronic device using the same
CN204992701U (zh) 一种移动电源快速充电装置
CN206630058U (zh) 一种多功能太阳帽
TW201037943A (en) Fuel cell system and power management method thereof
CN211655760U (zh) 一种基于硬件控制的锂电池动态充放电管理电路
TW201212481A (en) Electronic device and method for providing power to electronic device
CN219576670U (zh) 一种移动电源
TWI221692B (en) Charging system having current regulation and temperature regulation
TWI586069B (zh) 無線充電手持裝置及其控制方法
CN210809450U (zh) 太阳帽
TWI440274B (zh) 具過流保護升壓轉換器
TW201342768A (zh) 快充式充電裝置
WO2019056249A1 (zh) Pdvd 5v电源管理系统
US20210218261A1 (en) System and method for solar charging of portable electronic devices
CN214100920U (zh) 一种带自适应温度控制的移动电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853941

Country of ref document: EP

Kind code of ref document: A1