WO2011162288A1 - 液晶装置及び液晶制御方法 - Google Patents

液晶装置及び液晶制御方法 Download PDF

Info

Publication number
WO2011162288A1
WO2011162288A1 PCT/JP2011/064246 JP2011064246W WO2011162288A1 WO 2011162288 A1 WO2011162288 A1 WO 2011162288A1 JP 2011064246 W JP2011064246 W JP 2011064246W WO 2011162288 A1 WO2011162288 A1 WO 2011162288A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
liquid crystal
potential
line
Prior art date
Application number
PCT/JP2011/064246
Other languages
English (en)
French (fr)
Inventor
豪 鎌田
井出 哲也
誠二 大橋
昇平 勝田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011162288A1 publication Critical patent/WO2011162288A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • G09G2300/0447Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations for multi-domain technique to improve the viewing angle in a liquid crystal display, such as multi-vertical alignment [MVA]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors

Definitions

  • the present invention relates to a liquid crystal device and a liquid crystal control method.
  • This application claims priority based on Japanese Patent Application No. 2010-145080 filed in Japan on June 25, 2010, the contents of which are incorporated herein by reference.
  • the liquid crystal device that displays an image three-dimensionally employs, for example, the following method.
  • a vertical stripe barrier called parallax barrier on the liquid crystal device, the right eye can be seen by the right eye and the left eye can be seen by the left eye.
  • parallax barrier a vertical stripe barrier
  • FIG. 14 is a diagram for explaining an outline of a method of viewing using dedicated glasses.
  • the vertical synchronization frequency is 60 Hz (about 16.7 msec). Therefore, as shown in FIG. 14, in order to perform 3D (three-dimensional) display, the liquid crystal device alternately displays the right-eye and left-eye images at 120 Hz (about 8.3 msec), which is twice 60 Hz. It is necessary to display with a short cycle. Then, in synchronization with the image being reproduced by the liquid crystal device, for example, with the glasses using the liquid crystal shutter, the liquid crystal shutter for the right eye and the left eye are switched alternately, and only one image is viewed in synchronization. I am trying to do it. For example, in FIG.
  • the liquid crystal device displays an image for left eye (L sub Frame) 901, during which the glasses 911 with a liquid crystal shutter closes the shutter for the right eye, Is controlled so that the left-eye image can be seen only by the left eye.
  • the liquid crystal device displays a right eye image (R sub frame) 901, and during that time, the glasses 911 with a liquid crystal shutter open the right eye shutter and close the left eye shutter.
  • control is performed so that the right eye image can be seen only by the right eye.
  • FIG. 15 is a diagram for explaining the outline of the operation when switching at 240 Hz.
  • the driving of the backlight of the liquid crystal device is also controlled in accordance with the display. Further, within one frame, the left-eye sub-frame is written twice, and the right-eye sub-frame is written twice.
  • each subframe is written at 4.2 msec, which is a quarter of 16.7 msec. Then, as shown in FIG. 15, an image between time t2 and t3 and an image between time t4 and t5 can be seen through the glasses with liquid crystal shutters.
  • FIG. 16 is a diagram for explaining the outline of the two-line simultaneous selection drive. As shown in FIG. 16, the normal driving scans one line at a time as in the line image 921, while the two-line simultaneous selection driving scans two lines at a time as in the line image 922.
  • a multi-pixel liquid crystal device in which one pixel is divided into a plurality of sub-pixels to improve gradation expression and view angle characteristics.
  • a liquid crystal device in which one pixel is divided into two subpixels when 2D (two-dimensional) one-line driving is performed by the equivalent circuit of FIG. 17, the luminance of each subpixel is bright as shown in FIG. Luminance sub-pixels and dark luminance sub-pixels are alternately arranged in the vertical and horizontal directions.
  • FIG. 17 is a diagram for explaining one-line driving by an equivalent circuit of a liquid crystal device of two subpixels.
  • FIG. 18 is a diagram for explaining the luminance array of sub-pixels in the case of one-line driving. In FIG.
  • the bus lines Cs1 and Cs3 are supplied with a potential that increases the luminance of the “ ⁇ ” sub-pixel, and the bus lines Cs2 and Cs4 have a higher luminance of the “+” sub-pixel.
  • a potential is supplied.
  • “ ⁇ ” indicates that a negative display signal is supplied from the display signal line Sm1 or Sm2
  • “+” indicates that a positive display signal is supplied from the display signal line Sm1 or Sm2.
  • the sub pixel 931 of the R (red) pixel G1 has bright luminance
  • the sub pixel 932 has dark luminance
  • the sub pixel 933 of the R pixel G2 has bright luminance.
  • the sub-pixels are arranged such that the sub-pixel 934 has a dark luminance (see, for example, Patent Document 1).
  • FIG. 19 is a diagram for explaining two-line driving by an equivalent circuit of a liquid crystal device having two sub-pixels, and FIG.
  • FIG. 20 is a diagram for explaining an arrangement of luminance of sub-pixels in the case of two-line driving.
  • the brightness of adjacent sub-pixels is not alternately arranged, and two sub-pixels that are displayed brightly, for example, a sub-pixel 942 and a sub-pixel 943 of the R pixel are consecutive.
  • the sub-pixels become larger and the graininess increases, so that the image appears rough.
  • a liquid crystal device and a liquid crystal control method for improving the arrangement of sub-pixels when two lines are simultaneously selected and driven are provided.
  • the liquid crystal device includes a first pixel having a plurality of first sub-pixels and a plurality of second sub-pixels, and a second pixel adjacent to the first pixel in the column direction.
  • the second subpixel adjacent to the first pixel among the second subpixels is coupled to the first and second auxiliary capacitance lines, respectively.
  • the liquid crystal device further includes a plurality of third subpixels, a third pixel adjacent to the second pixel in the column direction, and third and fourth auxiliary capacitors.
  • control unit when the one-line selection drive is performed, the control unit may be configured to control the first and second storage capacitor lines to have the same polarity. .
  • the control unit when the two-line selection drive is performed, the control unit may be configured to control the polarities of the first and second auxiliary capacitance lines to be different from each other. Good.
  • the first switching element connected to the first subpixel, the second switching element connected to the second subpixel, and the first A first scanning line connected to a first gate electrode of one switching element; a second scanning line connected to a second gate electrode of the second switching element; and the first sub-pixel; An auxiliary capacitor connected to the drain electrode of the first switching element; and a control unit, wherein the auxiliary capacitor is connected to the first auxiliary capacitor line, and the control unit While controlling the first and second scanning lines so that the first and second sub-pixels are turned on at the same time, the first and second auxiliary capacitance lines are controlled, and the first and second sub-pixels are turned on simultaneously.
  • 1st and The second sub-pixel may be connected to the first and second auxiliary capacitance line respectively.
  • the liquid crystal device includes a first pixel having a plurality of first subpixels and a plurality of second subpixels, and the first pixel is arranged in the column direction.
  • a second pixel which is adjacent to the pixel and is configured so that a display signal is written at the same time as the first pixel; and first and second auxiliary capacitance lines between the first pixel and the second pixel.
  • the polarities of the first and second auxiliary capacitance lines are controlled to the same polarity
  • the polarities of the first and second auxiliary capacitance lines Are controlled to have different polarities.
  • a plurality of pixels having a plurality of sub-pixels are arranged in a matrix, and two auxiliary capacitance lines are provided between the pixels adjacent to each other in the row direction in which a display signal is simultaneously written. Therefore, it is possible to improve the arrangement of sub-pixels when two lines are simultaneously selected and driven.
  • FIG. 1 is a perspective view illustrating a schematic configuration of the liquid crystal device according to the present embodiment.
  • the liquid crystal device includes a backlight 1, a first polarizing plate 2, a first glass substrate 3, a TFT (thin film transistor) array 4, a liquid crystal 5, a common electrode (counter electrode) 6, A color filter 7, a second glass substrate 8, and a second polarizing plate 9 are provided.
  • the backlight 1 emits light from below the first glass substrate 3.
  • the first polarizing plate 2 controls light input / output to / from the first glass substrate 3 by polarization.
  • a TFT array 4 in which switching elements, pixel electrodes and the like are formed is disposed on the first glass substrate 3.
  • a liquid crystal 5 is sealed between the pixel electrode of the TFT array 4 and the common electrode 6.
  • a spacer (not shown) is provided between the first glass substrate 3 and the second glass substrate 8 in order to keep a uniform distance between the first glass substrate 3 and the second glass substrate 8 in which the liquid crystal 5 is sealed.
  • the color filter 7 is disposed on the common electrode 6.
  • the color filter 7 filters each of RGB and displays light based on the light reflectance or light transmittance of the liquid crystal corresponding to each controlled pixel on the liquid crystal device as RGB colors.
  • the second glass substrate 8 is disposed on the color filter 7.
  • FIG. 2 is a configuration diagram of an example of a liquid crystal device to which the embodiment of the present invention is applied.
  • the liquid crystal device includes a control unit 21 and a pixel unit 22.
  • the pixel unit 22 includes m display signal lines (data bus lines) 11-1 to 11-m, n scanning lines (gate bus lines) 12-1 to 12-n, and n ⁇ m pixels. (P (1,1) to p (1, m), p (2,1) to p (2, m)... P (n, 1) to p (n, m)).
  • the control unit 21 transmits the pixels p (1,1) to p (1, m), p (2,1) via the display signal lines 11-1 to 11-m and the scanning lines 12-1 to 12-n. To p (2, m)... P (n, 1) to p (n, m). Further, the control unit 21 controls the display signals supplied to the display signal lines 11-1 to 11-m to have opposite polarities between the adjacent display signal lines 11-1 to 11-m.
  • the polarity of the display signal on the display signal line 11-1 is opposite to the polarity of the display signal on the display signal line 11-2.
  • the polarity of the display signal on the display signal line 11-2 is opposite to the polarity of the display signal on the display signal line 11-3.
  • the polarity of the display signal on the display signal line 11-3 is opposite to the polarity of the display signal on the display signal line 11-4.
  • FIG. 3 is a diagram illustrating an example of an equivalent circuit of the pixel unit 22 during 2D display in the present embodiment.
  • the gate electrodes of the switching elements T1-11 and T1-12 are connected to a common scanning line GN.
  • the source electrodes of the switching elements T1-11 and T1-12 are connected to the display signal line Sm-n.
  • the drain electrode of the switching element T1-11 is connected to one end of the liquid crystal element cl1-11 having a capacitive component via the pixel electrode and to one terminal of the auxiliary capacitor C1-11.
  • the other side of the liquid crystal element cl1-11 is grounded (also referred to as “com”) through the counter electrode 6.
  • the other end of the auxiliary capacitor C1-11 is connected to the auxiliary capacitor line CSa-n.
  • the drain electrode of the switching element T1-12 is connected to one end of the liquid crystal element cl1-12 having a capacitive component through the pixel electrode and to one terminal of the auxiliary capacitor C1-12.
  • the other of the liquid crystal elements cl1-12 is grounded through the counter electrode 6.
  • the other end of the auxiliary capacitor C1-12 is connected to the auxiliary capacitor line CSb-n.
  • the liquid crystal elements cl1-11 and cl1-12 are configured by a liquid crystal portion sandwiched between the counter electrode 6 and the pixel electrode.
  • the gate electrodes of the switching elements T1-21 and T1-22 are connected to a common scanning line GN.
  • the source electrodes of the switching elements T1-21 and T1-22 are connected to the display signal line Sm- (n + 1).
  • the drain electrode of the switching element T1-21 is connected to one end of the liquid crystal element cl1-21 having a capacitive component through the pixel electrode and to one terminal of the auxiliary capacitor C1-21.
  • the other of the liquid crystal elements cl1-21 is grounded through the counter electrode 6.
  • the other end of the auxiliary capacitor C1-21 is connected to the auxiliary capacitor line CSa-n.
  • the drain electrode of the switching element T1-22 is connected to one end of the liquid crystal element cl1-22 having a capacitive component through the pixel electrode and to one terminal of the auxiliary capacitor C1-22.
  • the other of the liquid crystal elements cl1-22 is grounded through the counter electrode 6.
  • the other end of the auxiliary capacitor C1-22 is connected to the auxiliary capacitor line CSb-n.
  • the liquid crystal elements cl1-21 and cl1-22 are configured by a liquid crystal portion sandwiched between the counter electrode 6 and the pixel electrode.
  • the gate electrodes of the switching elements T2-11 and T2-12 are connected to a common scanning line G- (n + 1).
  • the source electrodes of the switching elements T2-11 and T2-12 are connected to the display signal line Sm-n.
  • the drain electrode of the switching element T2-11 is connected to one end of the liquid crystal element cl2-11 having a capacitive component through the pixel electrode and to one terminal of the auxiliary capacitor C2-11. The other side of the liquid crystal element cl2-11 is grounded through the counter electrode 6.
  • the other end of the auxiliary capacitor C2-11 is connected to the auxiliary capacitor line CSa- (n + 1).
  • the drain electrode of the switching element T2-12 is connected to one end of the liquid crystal element cl2-12 having a capacitive component through the pixel electrode and to one terminal of the auxiliary capacitor C2-12.
  • the other side of the liquid crystal element cl2-12 is grounded through the counter electrode 6.
  • the other end of the auxiliary capacitor C2-12 is connected to the auxiliary capacitor line CSb- (n + 1).
  • the liquid crystal elements cl2-11 and cl2-12 are configured by a liquid crystal portion sandwiched between the counter electrode 6 and the pixel electrode.
  • the gate electrodes of the switching elements T2-21 and T2-22 are connected to a common scanning line G- (n + 1).
  • the source electrodes of the switching elements T2-21 and T2-22 are connected to the display signal line Sm- (n + 1).
  • the drain electrode of the switching element T2-21 is connected to one end of the liquid crystal element cl2-21 having a capacitive component through the pixel electrode and to one terminal of the auxiliary capacitor C2-21.
  • the other side of the liquid crystal element cl2-21 is grounded through the counter electrode 6.
  • the other end of the auxiliary capacitor C2-21 is connected to the auxiliary capacitor line CSa- (n + 1).
  • the drain electrode of the switching element T2-22 is connected to one end of the liquid crystal element cl2-22 having a capacitive component through the pixel electrode and to one terminal of the auxiliary capacitor C2-22.
  • the other side of the liquid crystal element cl2-22 is grounded through the counter electrode 6.
  • the other end of the auxiliary capacitor C2-22 is connected to the auxiliary capacitor line CSb- (n + 1).
  • the liquid crystal elements cl2-21 and cl2-22 are constituted by a liquid crystal portion sandwiched between the counter electrode 6 and the pixel electrode.
  • the gate electrodes of the switching elements T3-11 and T3-12 are connected to a common scanning line G- (n + 2).
  • the source electrodes of the switching elements T3-11 and T3-12 are connected to the display signal line Sm-n.
  • the drain electrode of the switching element T3-11 is connected to one end of the liquid crystal element cl3-11 having a capacitive component through the pixel electrode and to one terminal of the auxiliary capacitor C3-11.
  • the other of the liquid crystal elements cl3-11 is grounded through the counter electrode 6.
  • the other end of the auxiliary capacitor C3-11 is connected to the auxiliary capacitor line CSa- (n + 2).
  • the drain electrode of the switching element T3-12 is connected to one end of the liquid crystal element cl3-12 having a capacitive component through the pixel electrode and to one terminal of the auxiliary capacitor C3-12.
  • the other end of the liquid crystal element cl3-12 is grounded via the counter electrode 6, and the other end of the auxiliary capacitor C3-12 is connected to the auxiliary capacitor line CSb- (n + 2).
  • the liquid crystal elements cl3-11 and cl3-12 are constituted by a liquid crystal portion sandwiched between the counter electrode 6 and the pixel electrode.
  • the gate electrodes of the switching elements T3-21 and T3-22 are connected to a common scanning line G- (n + 2).
  • the source electrodes of the switching elements T3-21 and T3-22 are connected to the display signal line Sm- (n + 1).
  • the drain electrode of the switching element T3-21 is connected to one end of the liquid crystal element cl3-21 having a capacitive component through the pixel electrode and to one terminal of the auxiliary capacitor C3-21.
  • the other side of the liquid crystal element cl3-21 is grounded via the counter electrode 6.
  • the other end of the auxiliary capacitor C3-21 is connected to the auxiliary capacitor line CSa- (n + 2).
  • the drain electrode of the switching element T3-22 is connected to one end of the liquid crystal element cl3-22 having a capacitive component through the pixel electrode and to one terminal of the auxiliary capacitor C3-22.
  • the other of the liquid crystal elements cl3-22 is grounded through the counter electrode 6.
  • the other end of the auxiliary capacitor C3-22 is connected to the auxiliary capacitor line CSb- (n + 2).
  • the liquid crystal elements cl3-21 and cl3-22 are configured by a liquid crystal portion sandwiched between the counter electrode 6 and the pixel electrode.
  • the auxiliary capacitance line to which the auxiliary capacitance C1-12 of the sub-pixel sp (1,1,2) of the pixel p (1,1) is connected and the pixel p (2,1 ) Of the sub-pixel sp (2,1,1) is configured in common with the auxiliary capacitance line to which the auxiliary capacitance C2-11 is connected.
  • the auxiliary capacitor C1-12 and the auxiliary capacitor C2-11 are connected to different auxiliary capacitor lines.
  • FIG. 4 is a timing chart during 2D operation in the present embodiment.
  • the control unit 21 controls the signal of the display signal line Sm-n to + Vs, so that the sub-pixels sp (1,1,1), sp (1,1,2), sp (2,1,1) and + Vs is supplied from the display signal line Sm-n to the source electrodes of the switching elements T1-11, T1-12, T2-11 and T2-12 of sp (2,1,2) (FIG.
  • control unit 21 controls the signal of the display signal line Sm ⁇ (n + 1) to ⁇ Vs, so that the sub-pixels sp (1,2,1), sp (1,2,2), sp (2, -Vs is supplied from the display signal line Sm- (n + 1) to the source electrodes of the switching elements T1-21, T1-22, T2-21, and T2-22 of 2,1) and sp (2,2,2) (FIG. 4, until time t0a).
  • the control unit 21 supplies the potential + Vcs to the auxiliary capacitance lines CSa-n and CSb- (n + 1).
  • the potential -Vcs is supplied to the storage capacitor lines CSb-n and CSa- (n + 1) (until time t0a in FIG. 4).
  • the control unit 21 controls the signal on the display signal line Sm-n to ⁇ Vs, so that the switching elements T1 ⁇ of the sub-pixels sp (1,1,1) and sp (1,1,2) are controlled. 11, -Vs is supplied from the display signal line Sm-n to the source electrodes of T1-12, T2-11 and T2-12. Further, the control unit 21 controls the signal of the display signal line Sm ⁇ (n + 1) to + Vs, so that the sub-pixels sp (1,2,1) and sp (1,2,2), sp (2,2) are controlled. , 1) and sp (2, 2, 2) are supplied with + Vs from the display signal line Sm- (n + 1) to the source electrodes of the switching elements T1-21, T1-22, T2-21, and T2-22.
  • the control unit 21 controls the scanning line Gn to a period from time t1a to t2a (rewriting period for one pixel), H level (high potential level, sometimes referred to as “Vhigh”).
  • H level high potential level, sometimes referred to as “Vhigh”.
  • the switching elements T1-11, T1-12, T1-21, and T1-22 are turned on (sometimes referred to as “Vgon”).
  • the potential ⁇ Vs is supplied from the display signal line Sm-n to the liquid crystal capacitors cl1-11 and cl1-12.
  • the potential + Vs is supplied from the display signal line Sm ⁇ (n + 1) to the liquid crystal capacitors cl1-21 and cl1-22.
  • a potential difference ⁇ Vs ⁇ Vcs between the potential ⁇ Vs of the display signal line Sm ⁇ n and the potential + Vcs of the auxiliary capacitance line CSa ⁇ n is generated in the auxiliary capacitor C1-11, and the auxiliary capacitor C1-12 includes A potential difference ⁇ Vs + Vcs between the potential ⁇ Vs of the display signal line Sm ⁇ n and the potential ⁇ Vcs of the storage capacitor line CSb ⁇ n is generated.
  • the auxiliary capacitor C1-21 generates a potential difference + Vs ⁇ Vcs between the potential + Vs of the display signal line Sm ⁇ (n + 1) and the potential + Vcs of the auxiliary capacitor line CSa-n, and the auxiliary capacitor C1-22 has a display signal line.
  • a potential difference + Vs + Vcs is generated between the potential + Vs of Sm ⁇ (n + 1) and the potential ⁇ Vcs of the auxiliary capacitance line CSb ⁇ n.
  • the control unit 21 controls the scanning line G- (n + 1) to L level (low potential level, sometimes referred to as “Vlow”).
  • the switching elements T2-11, T2-12, T2-21, and T2-22 are turned off (sometimes referred to as “Vgoff”).
  • the period during which the output of the scanning line Gn is at the H level is set according to the total number of scanning lines used in the liquid crystal device.
  • the signal range of the display signal line Sm-n when the maximum gradation is displayed from the zero gradation is + Vs to -Vs.
  • the potential on the positive polarity side is + 5V to + 1V
  • the potential on the negative polarity side is -5V to -1V. This signal level may be adjusted to the characteristics of the liquid crystal capacitance used.
  • control unit 21 controls the scanning line Gn to the L level to turn off the switching elements T1-11, T1-12, T1-21, and T1-22 (FIG. 4, time t2a). ).
  • control unit 21 switches the potential of the storage capacitor line CSa-n from + Vcs to ⁇ Vcs while controlling the signal of the display signal line Sm ⁇ n to + Vs (FIG. 4, time t3a). Since the potential of the auxiliary capacitance line CSa-n has changed from + Vcs to ⁇ Vcs, the potential held in the liquid crystal capacitor cl1-11 decreases by ⁇ Vpx based on the auxiliary capacitance C1-11 and changes from ⁇ Vs to ⁇ Vs ⁇ Vpx.
  • ⁇ Vpx is a value based on the ratio of the liquid crystal capacitance cl1-11 to the auxiliary capacitance C1-11 for the variation 2 ⁇ Vcs of the signal on the auxiliary capacitance line CSa-n, and the capacitance of the liquid crystal capacitance cl1-11 is Clc.
  • the capacitance of the capacitor C1-11 is C1, it is (C1 / (Clc + C1)) ⁇ 2Vcs.
  • the control unit 21 controls the switching elements T2-11, T2-12, T2 by controlling the scanning line G- (n + 1) to the H level during the period from time t4a to t5a (one pixel rewriting period).
  • ⁇ 21 and T2-22 are turned on, the potential + Vs is supplied from the display signal line Sm-n to the liquid crystal capacitors cl2-11 and cl2-12, and the display signal line Sm ⁇ ( The potential ⁇ Vs is supplied from (n + 1). For this reason, a potential difference + Vs + Vcs between the potential + Vs of the display signal line Sm-n and the potential ⁇ Vcs of the auxiliary capacitance line CSa- (n + 1) is generated in the auxiliary capacitance C2-11.
  • a potential difference + Vs ⁇ Vcs between the potential + Vs of the signal line Sm ⁇ n and the potential + Vcs of the storage capacitor line CSb ⁇ (n + 1) is generated.
  • a potential difference ⁇ Vs + Vcs between the potential ⁇ Vs of the display signal line Sm ⁇ (n + 1) and the potential ⁇ Vcs of the auxiliary capacitance line CSa ⁇ (n + 1) is generated in the auxiliary capacitor C2-21.
  • a potential difference ⁇ Vs ⁇ Vcs between the potential ⁇ Vs of the display signal line Sm ⁇ (n + 1) and the potential + Vcs of the storage capacitor line CSa ⁇ (n + 1) is generated.
  • control unit 21 controls the scanning line G- (n + 1) to the L level, thereby turning off the switching elements T2-11, T2-12, T2-21, and T2-22 (FIG. 4, Time t5a).
  • control unit 21 switches the potential of the auxiliary capacitance line CSb-n from ⁇ Vcs to + Vcs while controlling the signal of the display signal line Sm-n to ⁇ Vs, and the potential of the auxiliary capacitance line CSa ⁇ (n + 1). Is switched from ⁇ Vcs to + Vcs (FIG. 4, time t6a).
  • the potential held in the liquid crystal capacitor cl1-12 increases by ⁇ Vpx based on the storage capacitor C1-12, and changes from ⁇ Vs to ⁇ Vs + ⁇ Vpx,
  • the potential held in the liquid crystal capacitor cl1-22 rises by ⁇ Vpx based on the auxiliary capacitor C1-22 and changes from + Vs to + Vs + ⁇ Vpx.
  • the potential held in the liquid crystal capacitance cl2-11 has increased by ⁇ Vpx based on the auxiliary capacitance C2-11, and has changed from + Vs to + Vs + ⁇ Vpx,
  • the potential held in the liquid crystal capacitor cl2-21 rises by ⁇ Vpx based on the auxiliary capacitor C2-21 and changes from ⁇ Vs to ⁇ Vs + ⁇ Vpx.
  • control unit 21 controls the switching elements T3-11, T3-12, T3 by controlling the scanning line G- (n + 2) to the H level during the period from time t7a to t8a (rewriting period for one pixel).
  • ⁇ 21 and T3-22 are turned on, the potential ⁇ Vs is supplied from the display signal line Sm-n to the liquid crystal capacitors cl3-11 and cl3-12, and the display signal line Sm ⁇ (n + 1) is supplied to cl3-21 and cl3-22. ) To supply a potential + Vs.
  • control unit 21 controls the scanning line G ⁇ (n + 2) to the L level, thereby turning off the switching elements T3-11, T3-12, T3-21, and T3-22 (FIG. 4, FIG. 4). Time t8a). Next, the control unit 21 switches the potential of the storage capacitor line CSb- (n + 1) from + Vcs to ⁇ Vcs while controlling the signal of the display signal line Sm ⁇ n to + Vs (FIG. 4, time t9a).
  • the potential held in the liquid crystal capacitor cl2-12 decreases by ⁇ Vpx based on the storage capacitor C2-12 and changes from + Vs to + Vs ⁇ Vpx.
  • the potential held in the liquid crystal capacitor cl2-22 is lowered by ⁇ Vpx based on the auxiliary capacitor C2-22, and is changed from ⁇ Vs to ⁇ Vs ⁇ Vpx.
  • sub-pixels sp (1, 1, 1), sp (1, 1, 2), sp (1, 2, 1), sp (1, 2, 2), sp (2, 1, 1) , Sp (2,1,2), sp (2,2,1) and sp (2,2,2) liquid crystal capacitances cl1-11, cl1-12, cl1-21, cl1-22, cl2-11 , Cl2-12, cl2-21, and cl2-22 hold the potential at time t9a until the next frame.
  • the potential of the sub-pixel sp (1,1,1) of the pixel p (1,1) is higher in the minus direction than the potential of the sub-pixel sp (1,1,2).
  • the light transmittance of the sub-pixel sp (1, 1, 1) is higher than the light transmittance of the sub-pixel sp (1, 1, 2).
  • the luminance of the sub-pixel sp (1, 1, 1) is displayed higher than the luminance of the sub-pixel sp (1, 1, 2).
  • the luminance of the sub-pixel sp (2, 1, 1) of the pixel p (2, 1) is displayed higher than the luminance of the sub-pixel sp (2, 1, 2).
  • the luminance of the sub-pixel sp (1, 2, 2) of the pixel p (1, 2) is displayed higher than the luminance of the sub-pixel sp (1, 2, 1).
  • the luminance of the sub-pixel sp (2, 2, 2) of the pixel p (2, 2) is displayed higher than the luminance of the sub-pixel sp (2, 2, 1).
  • “ ⁇ ” indicates that the potential of the display signal line supplied from the display signal line Sm ⁇ n or Sm ⁇ (n + 1) is negative in the L frame
  • “+” indicates In the L frame, the potential of the display signal line supplied from the display signal line Sm-n or Sm- (n + 1) is positive.
  • the time chart after time t0b is a timing chart of L + 1 frame.
  • the operation of the L + 1 frame is controlled by the control unit 21 so as to have a polarity opposite to the potential at the L frame, so that the luminance relationship is the same as in the L frame as shown in FIG.
  • the luminance of the sub-pixel of each pixel at the time of 2D display has a relationship as shown in FIG.
  • FIG. 5 is a diagram for explaining the luminance array of sub-pixels. As shown in FIG.
  • the sub pixel sp (1, 1, 1) of the pixel p (1, 1) of 1 row and 1 column has a bright luminance
  • the sub pixel sp ( 1, 1, 2) is dark luminance
  • sub pixel sp (2, 1, 1) of pixel p (2, 1) in 2 rows and 1 column has bright luminance
  • FIG. 6 is a diagram illustrating an example of an equivalent circuit of the pixel unit 22 during 3D display in the present embodiment.
  • FIG. 7 is a timing chart at the time of 3D display in the present embodiment.
  • FIGS. 3 and 6 are the same, and the difference between 2D display and 3D display is that the switching elements of the scanning lines G ⁇ (n + 1), G ⁇ (n + 2), and G ⁇ (n + 3) are turned on. This is the timing of the state, the polarity of the signal applied to the auxiliary capacitance lines CSa-n, CSb-n, CSa- (n + 1) and CSb- (n + 1), and the timing of applying the signal.
  • “ ⁇ ” indicates that the potential applied to the liquid crystal capacitance is negative when the switching element is on in the L frame
  • “+” indicates that the switching element is on in the L frame. In this case, the potential applied to the liquid crystal capacitor is positive.
  • the control unit 21 controls the signal of the display signal line Sm-n to + Vs, so that the sub-pixels sp (1,1,1), sp (1,1,2), sp (2,1,1) and + Vs is supplied from the display signal line Sm-n to the source electrodes of the switching elements T1-11, T1-12, T2-11 and T2-12 of sp (2,1,2) (FIG. 7, until time t0a). ).
  • control unit 21 controls the signal of the display signal line Sm ⁇ (n + 1) to ⁇ Vs, so that the sub-pixels sp (1,2,1), sp (1,2,2), sp (2, -Vs is supplied from the display signal line Sm- (n + 1) to the source electrodes of the switching elements T1-21, T1-22, T2-21, and T2-22 of 2,1) and sp (2,2,2) (FIG. 7, until time t0a). Further, the control unit 21 supplies the potential + Vcs to the auxiliary capacitance lines CSa-n and CSa- (n + 1), and supplies the potential ⁇ Vcs to the auxiliary capacitance lines CSb-n and CSb- (n + 1) (FIG. 7, time).
  • the control unit 21 controls the signal of the display signal line Sm-n to ⁇ Vs, so that the sub-pixels sp (1,1,1), sp (1,1,2), sp (2,1) are controlled. , 1) and sp (2, 1, 2), -Vs is supplied from the display signal line Sm-n to the source electrodes of the switching elements T1-11, T1-12, and T2-11 and T2-12. Further, the control unit 21 controls the signal of the display signal line Sm ⁇ (n + 1) to + Vs, so that the sub-pixels sp (1,2,1), sp (1,2,2), sp (2,2) are controlled. , 1) and + (Vs) are supplied from the display signal line Sm- (n + 1) to the source electrodes of the switching elements T1-21, T1-22, T2-21, and T2-22 of sp (2, 2, 2) ( FIG. 7, time t1a).
  • the control unit 21 controls the switching elements T1-11, T1-12, and T1-21 by controlling the scanning line Gn to the H level during the period from time t1a to t2a (rewriting period for one pixel). And T1-22 are turned on, the potential -Vs is supplied from the display signal line Sm-n to the liquid crystal capacitors cl1-11 and cl1-12, and the display signal line Sm- (n + 1) is supplied to cl1-21 and cl1-22. ) To supply a potential + Vs. Further, the control unit 21 controls the scanning lines G- (n + 1) to the H level during the period of time t1a to t2a, thereby turning on the switching elements T2-11, T2-12, T2-21 and T2-22.
  • the potential ⁇ Vs is supplied from the display signal line Sm-n to the liquid crystal capacitors cl2-11 and cl2-12, and the potential + Vs is supplied from the display signal line Sm ⁇ (n + 1) to cl2-21 and cl2-22. .
  • a potential difference ⁇ Vs ⁇ Vcs between the potential ⁇ Vs of the display signal line Sm ⁇ n and the potential + Vcs of the auxiliary capacitance line CSa ⁇ n is generated in the auxiliary capacitor C1-11, and the auxiliary capacitor C1-12 includes A potential difference ⁇ Vs + Vcs between the potential ⁇ Vs of the display signal line Sm ⁇ n and the potential ⁇ Vcs of the storage capacitor line CSb ⁇ n is generated.
  • the auxiliary capacitor C1-21 generates a potential difference + Vs ⁇ Vcs between the potential + Vs of the display signal line Sm ⁇ (n + 1) and the potential + Vcs of the auxiliary capacitor line CSa-n, and the auxiliary capacitor C1-22 has a display signal line.
  • a potential difference + Vs + Vcs is generated between the potential + Vs of Sm ⁇ (n + 1) and the potential ⁇ Vcs of the auxiliary capacitance line CSb ⁇ n.
  • a potential difference ⁇ Vs ⁇ Vcs between the potential ⁇ Vs of the display signal line Sm ⁇ n and the potential + Vcs of the auxiliary capacitance line CSa ⁇ (n + 1) is generated in the auxiliary capacitor C2-11.
  • a potential difference ⁇ Vs + Vcs between the potential ⁇ Vs of the signal line Sm ⁇ n and the potential ⁇ Vcs of the storage capacitor line CSb ⁇ (n + 1) is generated.
  • the auxiliary capacitor C2-21 generates a potential difference + Vs ⁇ Vcs between the potential + Vs of the display signal line Sm ⁇ (n + 1) and the potential + Vcs of the auxiliary capacitor line CSa ⁇ (n + 1).
  • a potential difference + Vs + Vcs is generated between the potential + Vs of the signal line Sm ⁇ (n + 1) and the potential ⁇ Vcs of the storage capacitor line CSb ⁇ (n + 1).
  • control unit 21 controls the scanning line Gn to the L level to turn off the switching elements T1-11, T1-12, T1-21, and T1-22, and the scanning line G- (n + 1) ) To the L level, the switching elements T2-11, T2-12, T2-21 and T2-22 are turned off (FIG. 7, time t2a).
  • control unit 21 controls the signal of the display signal line Sm-n to + Vs, and controls the signal of the display signal line Sm- (n + 1) to -Vs (FIG. 7, time t3a).
  • control unit 21 controls the switching elements T3-11, T3-12, T3 by controlling the scanning line G- (n + 2) to the H level during the period from time t4a to t5a (rewriting period for one pixel).
  • ⁇ 21 and T3-22 are turned on, the potential + Vs is supplied from the display signal line Sm-n to the liquid crystal capacitors cl3-11 and cl3-12, and the display signal line Sm is supplied to the liquid crystal capacitors cl3-21 and cl3-22.
  • the potential ⁇ Vs is supplied from ⁇ (n + 1).
  • control unit 21 controls the scanning line G- (n + 3) to the H level during the period of time t4a to t5a, thereby turning on the switching elements T4-11 and T4-21, and the liquid crystal capacitance cl4-11. Is supplied with the potential + Vs from the display signal line Sm-n, and is supplied with the potential -Vs from the display signal line Sm- (n + 1) to the liquid crystal capacitor cl4-21.
  • the control unit 21 controls the scanning line G ⁇ (n + 2) to the L level, thereby turning off the switching elements T3-11, T3-12, T3-21, and T3-22, and the scanning line G ⁇ .
  • the switching elements T4-11 and T4-21 are turned off (FIG. 7, time t5a).
  • the control unit 21 switches the potential of the auxiliary capacitance line CSa-n from + Vcs to ⁇ Vcs, switches the potential of the auxiliary capacitance line CSa ⁇ (n + 1) from + Vcs to ⁇ Vcs, and sets the potential of the auxiliary capacitance line CSb-n.
  • -Vcs is switched to + Vcs
  • the potential of the auxiliary capacitance line CSb- (n + 1) is switched from -Vcs to + Vcs (FIG. 7, time t5a).
  • the potential held in the liquid crystal capacitor cl1-11 decreases by ⁇ Vpx based on the auxiliary capacitance C1-11 and changes from ⁇ Vs to ⁇ Vs ⁇ Vpx.
  • the potential held in the liquid crystal capacitor cl1-21 drops by ⁇ Vpx based on the auxiliary capacitor C1-21 and changes from + Vs to + Vs ⁇ Vpx.
  • the potential held in the liquid crystal capacitance cl2-11 decreases by ⁇ Vpx based on the auxiliary capacitance C2-11, and from ⁇ Vs to ⁇ Vs.
  • the potential changed to ⁇ Vpx and held in the liquid crystal capacitance cl2-21 decreases by ⁇ Vpx based on the auxiliary capacitance C2-21 and changes from + Vs to + Vs ⁇ Vpx.
  • the potential held in the liquid crystal capacitor cl1-12 increases by ⁇ Vpx based on the auxiliary capacitor C1-12, and from ⁇ Vs to ⁇ Vs ⁇ Vpx.
  • the potential held in the liquid crystal capacitor cl1-22 decreases by ⁇ Vpx based on the auxiliary capacitor C1-22 and changes from + Vs to + Vs ⁇ Vpx.
  • the potential of the storage capacitor line CSb- (n + 1) has changed from ⁇ Vcs to + Vcs
  • the potential held in the liquid crystal capacitor cl2-12 increases by ⁇ Vpx based on the storage capacitor C2-12, and from ⁇ Vs to ⁇ Vs.
  • the potential changed to ⁇ Vpx and held in the liquid crystal capacitance cl2-22 decreases by ⁇ Vpx based on the auxiliary capacitance C2-22, and changes from + Vs to + Vs ⁇ Vpx.
  • the sub-pixels sp (3, 1, 1) and sp (3, 1, 2) are similarly controlled, and the potential held in the liquid crystal capacitor cl3-11 rises by ⁇ Vpx based on the auxiliary capacitor C3-11.
  • + Vs changes to + Vs + ⁇ Vpx
  • the potential held in the liquid crystal capacitor cl3-12 decreases by ⁇ Vpx based on the auxiliary capacitor C3-12 and changes from + Vs to + Vs ⁇ Vpx (time t8a in FIG. 7).
  • sp (3,2,1) and sp (3,2,2) are similarly controlled, and the potential held in the liquid crystal capacitor cl3-21 rises by ⁇ Vpx based on the auxiliary capacitor C3-21, and from ⁇ Vs.
  • sub-pixels sp (1, 1, 1), sp (1, 1, 2), sp (1, 2, 1), sp (1, 2, 2), sp (2, 1, 1) , Sp (2,1,2), sp (2,2,1) and sp (2,2,2) liquid crystal capacitances cl1-11, cl1-12, cl1-21, cl1-22, cl2-11 , Cl2-12, cl2-21 and cl2-22 hold the potential at time t5a until the next frame.
  • the potential of the sub-pixel sp (1,1,1) of the pixel p (1,1) is higher in the minus direction than the potential of the sub-pixel sp (1,1,2).
  • the light transmittance of the sub-pixel sp (1, 1, 1) is higher than the light transmittance of the sub-pixel sp (1, 1, 2).
  • the luminance of the sub-pixel sp (1, 1, 1) is displayed higher than the luminance of the sub-pixel sp (1, 1, 2).
  • the luminance of the sub-pixel sp (2,1,1) of the pixel p (2,1) is displayed higher than the luminance of the sub-pixel sp (2,1,2)
  • the pixel p (1,2) Of the sub-pixel sp (1,2,2) is displayed higher than the luminance of the sub-pixel sp (1,2,1)
  • the sub-pixel sp (2,2,2) of the pixel p (2,2) is displayed.
  • the operation at the time of the L + 1 frame is a timing chart of the L + 1 frame after time t0b in FIG. Since the operation of the L + 1 frame is controlled by the control unit 21 so as to have a polarity opposite to that of the potential at the L frame, the luminance relationship is the same as that at the L frame as shown in FIG.
  • the control unit 21 supplies signals of the same polarity to adjacent storage capacitor lines CSb-n and CSa- (n + 1). To do.
  • signals having different polarities are supplied to adjacent storage capacitor lines CSb-n and CSa- (n + 1).
  • the luminance of the sub-pixel of each pixel at the time of two-line selection driving for performing 3D display has a relationship as shown in FIG. 5 as in the case of the one-line selection driving for performing 2D display.
  • two auxiliary capacitance lines are provided between the pixels, for example, between the pixel p (1,1) in the first row and the first column and the pixel p (2,1) in the second row and the first column, and adjacent auxiliary lines.
  • FIGS. 8A and 8B are diagrams for explaining an example of the layout on the first glass substrate 3 in the present embodiment, FIG. 8A is a plan view, and FIG. 8B is a cross-sectional view.
  • the drain electrode of the switching element T1-n is connected to the pixel electrode 101, and the gate electrode of the switching element T1-n is connected to the scanning line GN. Further, the drain electrode of the switching element T2-n is connected to the pixel electrode 102, and the gate electrode of the switching element T2-n is connected to the scanning line GN.
  • the auxiliary capacitor line CSa-n and the pixel electrode 101 overlap with each other through an insulating film. Formed in the region.
  • the auxiliary capacitor line CSb-n and the pixel electrode 102 overlap with each other through an insulating film. Formed in the region.
  • FIG. 9 is a diagram illustrating an example of an equivalent circuit of the pixel unit 22 during 2D display in the present embodiment.
  • the sub-pixel sp (2,1,2) of the pixel p (2,1) and the sub-pixel sp (3,1,2) of the pixel p (3,1). 1) two auxiliary capacitance lines Csb- (n + 1) and CSa- (n + 1) are arranged.
  • one auxiliary capacitance line Csc-2 is used.
  • Two auxiliary capacitance lines Csb- (n + 1) and CSa- (n + 2) are shared.
  • the gate electrodes of the switching elements T1-11 and T1-12 are connected to the common scanning line Gn, and the source electrodes of the switching elements T1-11 and T1-12 are connected to the display signal line Sm-n.
  • the drain electrode of the switching element T1-11 is connected to one end of the liquid crystal element cl1-11 having a capacitive component through the pixel electrode and is connected to one terminal of the auxiliary capacitor C1-11, and the other end of the liquid crystal element cl1-11.
  • the drain electrode of the switching element T1-12 is connected to one end of the liquid crystal element cl1-12 having a capacitive component through the pixel electrode and is connected to one terminal of the auxiliary capacitor C1-12, and the other end of the liquid crystal element cl1-12. Is grounded through the counter electrode 6, and the other end of the auxiliary capacitor C1-12 is connected to the auxiliary capacitor line CSd1-1. Further, the liquid crystal elements cl1-11 and cl1-12 are configured by a liquid crystal portion sandwiched between the counter electrode 6 and the pixel electrode.
  • the gate electrodes of the switching elements T1-21 and T1-22 are connected to the common scanning line Gn, and the source electrodes of the switching elements T1-21 and T1-22 are connected to the display signal line Sm- (n + 1). ing.
  • the drain electrode of the switching element T1-21 is connected to one end of the liquid crystal element cl1-21 having a capacitive component through the pixel electrode and is connected to one terminal of the auxiliary capacitor C1-21, and the other end of the liquid crystal element cl1-21.
  • the drain electrode of the switching element T1-22 is connected to one end of the liquid crystal element cl1-22 having a capacitive component through the pixel electrode and is connected to one terminal of the auxiliary capacitor C1-22, and the other end of the liquid crystal element cl1-22 is connected. Is grounded via the counter electrode 6, and the other end of the auxiliary capacitor C1-22 is connected to the auxiliary capacitor line CSd1-1. Further, the liquid crystal elements cl1-21 and cl1-22 are configured by a liquid crystal portion sandwiched between the counter electrode 6 and the pixel electrode.
  • the gate electrodes of the switching elements T2-11 and T2-12 are connected to the common scanning line G- (n + 1), and the source electrodes of the switching elements T2-11 and T2-12 are connected to the display signal line Sm-n. ing.
  • the drain electrode of the switching element T2-11 is connected to one end of the liquid crystal element cl2-11 having a capacitive component through the pixel electrode and is connected to one terminal of the auxiliary capacitor C2-11. Is grounded through the counter electrode 6, and the other end of the auxiliary capacitor C2-11 is connected to the auxiliary capacitor line CSd2-1.
  • the drain electrode of the switching element T2-12 is connected to one end of the liquid crystal element cl2-12 having a capacitive component through the pixel electrode and is connected to one terminal of the auxiliary capacitor C2-12, and the other end of the liquid crystal element cl2-12. Is grounded via the counter electrode 6, and the other end of the auxiliary capacitor C2-12 is connected to the auxiliary capacitor line CSc-2. Further, the liquid crystal elements cl2-11 and cl2-12 are configured by a liquid crystal portion sandwiched between the counter electrode 6 and the pixel electrode.
  • the gate electrodes of the switching elements T2-21 and T2-22 are connected to the common scanning line G- (n + 1), and the source electrodes of the switching elements T2-21 and T2-22 are connected to the display signal line Sm- (n + 1). It is connected.
  • the drain electrode of the switching element T2-21 is connected to one end of the liquid crystal element cl2-21 having a capacitive component through the pixel electrode and to one terminal of the auxiliary capacitor C2-21, and the other end of the liquid crystal element cl2-21.
  • the drain electrode of the switching element T2-22 is connected to one end of the liquid crystal element cl2-22 having a capacitive component through the pixel electrode and is connected to one terminal of the auxiliary capacitor C2-22, and the other end of the liquid crystal element cl2-22 is connected.
  • Is grounded via the counter electrode 6, and the other end of the auxiliary capacitor C2-22 is connected to the auxiliary capacitor line CSc-2.
  • the liquid crystal elements cl2-21 and cl2-22 are constituted by a liquid crystal portion sandwiched between the counter electrode 6 and the pixel electrode.
  • the gate electrodes of the switching elements T3-11 and T3-12 are connected to the common scanning line G- (n + 2), and the source electrodes of the switching elements T3-11 and T3-12 are connected to the display signal line Sm-n. ing.
  • the drain electrode of the switching element T3-11 is connected to one end of the liquid crystal element cl3-11 having a capacitive component through the pixel electrode and is connected to one terminal of the auxiliary capacitor C3-11. Is grounded via the counter electrode 6, and the other end of the auxiliary capacitor C3-11 is connected to the auxiliary capacitor line CSc-2.
  • the drain electrode of the switching element T3-12 is connected to one end of the liquid crystal element cl3-12 having a capacitive component through the pixel electrode and is connected to one terminal of the auxiliary capacitor C3-12. Is grounded via the counter electrode 6, and the other end of the auxiliary capacitor C3-12 is connected to the auxiliary capacitor line CSd1-2. Further, the liquid crystal elements cl3-11 and cl3-12 are constituted by a liquid crystal portion sandwiched between the counter electrode 6 and the pixel electrode.
  • the gate electrodes of the switching elements T3-21 and T3-22 are connected to a common scanning line G- (n + 2), and the source electrodes of the switching elements T3-21 and T3-22 are connected to the display signal line Sm- (n + 1). It is connected.
  • the drain electrode of the switching element T3-21 is connected to one end of the liquid crystal element cl3-21 having a capacitive component through the pixel electrode and to one terminal of the auxiliary capacitor C3-21, and the other end of the liquid crystal element cl3-21.
  • the drain electrode of the switching element T3-22 is connected to one end of the liquid crystal element cl3-22 having a capacitive component through the pixel electrode and is connected to one terminal of the auxiliary capacitor C3-22, and the other end of the liquid crystal element cl3-22. Is grounded via the counter electrode 6, and the other end of the auxiliary capacitor C3-22 is connected to the auxiliary capacitor line CSd1-2. Further, the liquid crystal elements cl3-21 and cl3-22 are configured by a liquid crystal portion sandwiched between the counter electrode 6 and the pixel electrode.
  • FIG. 10 is a timing chart during 2D display in the present embodiment.
  • the control unit 21 controls the signal of the display signal line Sm-n to + Vs, so that the sub-pixels sp (1,1,1) a, sp (1,1,2), sp (2,1,1) And + Vs is supplied from the display signal line Sm-n to the source electrodes of the switching elements T1-11, T1-12, T2-11 and T2-12 of sp (2,1,2) a (FIG. 10, time until t0a).
  • control unit 21 controls the signal of the display signal line Sm ⁇ (n + 1) to ⁇ Vs, so that the subpixels sp (1,2,1) a, sp (1,2,2), sp (2 , 2, 1) and sp (2, 2, 2) a to the source electrodes of the switching elements T1-21, T1-22, T2-21, and T2-22, the display signal line Sm- (n + 1) to -Vs Is supplied (until time t0a in FIG. 10).
  • control unit 21 supplies the potential + Vcs to the auxiliary capacitance lines CSc-1 and CSc-2, and supplies the potential ⁇ Vcs to the auxiliary capacitance lines CSd1-1, CSd2-1, and CSd1-2 (FIG. 10, time). until t0a).
  • control unit 21 controls the signal of the display signal line Sm-n to ⁇ Vs, so that the subpixels sp (1,1,1) a, sp (1,1,2), sp (2, -Vs is supplied from the display signal line Sm-n to the source electrodes of the switching elements T1-11, T1-12, T2-11 and T2-12 of 1,1) and sp (2,1,2) a. .
  • the control unit 21 controls the signal of the display signal line Sm ⁇ (n + 1) to + Vs, so that the sub-pixels sp (1,2,1) a, sp (1,2,2), sp (2, + Vs is supplied from the display signal line Sm- (n + 1) to the source electrodes of the switching elements T1-21, T1-22, T2-21, and T2-22 of 2,1) and sp (2,2,2) a To do.
  • control unit 21 controls the switching elements T1-11, T1-12, T1-12, by controlling the scanning line Gn to the H level (Vhigh) during the period from time t1a to t2a (rewriting period for one pixel).
  • T1-21 and T1-22 are turned on (Vgon), the potential -Vs is supplied from the display signal line Sm-n to the liquid crystal capacitors cl1-11 and cl1-12, and the display signal lines are supplied to cl1-21 and cl1-22.
  • the potential + Vs is supplied from Sm ⁇ (n + 1).
  • a potential difference ⁇ Vs ⁇ Vcs between the potential ⁇ Vs of the display signal line Sm ⁇ n and the potential + Vcs of the auxiliary capacitance line CSc ⁇ 1 is generated in the auxiliary capacitor C1-11.
  • a potential difference ⁇ Vs + Vcs is generated between the potential ⁇ Vs of the display signal line Sm ⁇ n and the potential ⁇ Vcs of the storage capacitor line CSd1-1.
  • the auxiliary capacitor C1-21 generates a potential difference + Vs ⁇ Vcs between the potential + Vs of the display signal line Sm ⁇ (n + 1) and the potential + Vcs of the auxiliary capacitor line CSc-1, and the auxiliary capacitor C1-22 has a display signal line.
  • a potential difference + Vs + Vcs is generated between the potential + Vs of Sm ⁇ (n + 1) and the potential ⁇ Vcs of the auxiliary capacitance line CSd1-1.
  • the control unit 21 controls the scanning line G- (n + 1) to the L level (Vlow), thereby turning off the switching elements T2-11, T2-12, T2-21, and T2-22.
  • the period during which the output of the scanning line Gn is at the H level is set according to the total number of scanning lines used in the liquid crystal device. For example, in a full-HD compatible liquid crystal device, 1 / (60 ⁇ 1080) Equivalent to (seconds).
  • the signal range of the display signal line Sm-n when displaying the maximum gradation from the zero gradation is + Vs to -Vs, for example, a positive potential +5 V to +1 V, and a negative potential -5 V. ⁇ -1V.
  • This signal level may be adjusted to the characteristics of the liquid crystal capacitance used.
  • the control unit 21 controls the scanning line Gn to the L level to turn off the switching elements T1-11, T1-12, T1-21, and T1-22 (FIG. 10, time t2a). ).
  • the control unit 21 switches the potential of the auxiliary capacitance line CSc-1 from + Vcs to ⁇ Vcs while controlling the signal of the display signal line Sm ⁇ n to + Vs (FIG. 10, time t3a). Since the potential of the auxiliary capacitance line CSc-1 has changed from + Vcs to ⁇ Vcs, the potential held in the liquid crystal capacitor cl1-11 has dropped by ⁇ Vpx based on the auxiliary capacitance C1-11 and has changed from ⁇ Vs to ⁇ Vs ⁇ Vpx. The potential held in the liquid crystal capacitor cl1-21 drops by ⁇ Vpx based on the auxiliary capacitor C1-21 and changes from + Vs to + Vs ⁇ Vpx.
  • control unit 21 controls the switching elements T2-11, T2-12, T2 by controlling the scanning line G- (n + 1) to the H level during the period from time t4a to t5a (one pixel rewriting period).
  • ⁇ 21 and T2-22 are turned on, the potential + Vs is supplied from the display signal line Sm-n to the liquid crystal capacitors cl2-11 and cl2-12, and the display signal line Sm ⁇ (n + 1) is supplied to cl2-21 and cl2-22. Is supplied with a potential ⁇ Vs.
  • a potential difference + Vs + Vcs between the potential + Vs of the display signal line Sm-n and the potential ⁇ Vcs of the auxiliary capacitance line CSd2-1 is generated in the auxiliary capacitor C2-11, and the display signal line is generated in the auxiliary capacitor C2-12.
  • a potential difference + Vs ⁇ Vcs is generated between the potential + Vs of Sm ⁇ n and the potential + Vcs of the auxiliary capacitance line CSc ⁇ 2.
  • a potential difference ⁇ Vs + Vcs between the potential ⁇ Vs of the display signal line Sm ⁇ (n + 1) and the potential ⁇ Vcs of the auxiliary capacitance line CSd2-1 is generated in the auxiliary capacitance C2-21.
  • a potential difference ⁇ Vs ⁇ Vcs between the potential ⁇ Vs of the line Sm ⁇ (n + 1) and the potential + Vcs of the storage capacitor line CSd2-1 is generated.
  • control unit 21 controls the scanning line G- (n + 1) to the L level, thereby turning off the switching elements T2-11, T2-12, T2-21, and T2-22 (FIG. 10, Time t5a).
  • control unit 21 switches the potential of the auxiliary capacitance line CSd1-1 from -Vcs to + Vcs while controlling the signal of the display signal line Sm-n to -Vs, and changes the potential of the auxiliary capacitance line CSd2-1 to- Switching from Vcs to + Vcs (FIG. 10, time t6a).
  • the potential held in the liquid crystal capacitor cl1-12 has increased by ⁇ Vpx based on the auxiliary capacitor C1-12, and has changed from ⁇ Vs to ⁇ Vs + ⁇ Vpx,
  • the potential held in the liquid crystal capacitor cl1-22 rises by ⁇ Vpx based on the auxiliary capacitor C1-22 and changes from + Vs to + Vs + ⁇ Vpx.
  • the potential held in the liquid crystal capacitor cl2-11 has increased by ⁇ Vpx based on the auxiliary capacitor C2-11, and has changed from + Vs to + Vs + ⁇ Vpx.
  • the potential held in cl2-21 rises by ⁇ Vpx based on the auxiliary capacitor C2-21 and changes from ⁇ Vs to ⁇ Vs + ⁇ Vpx.
  • control unit 21 controls the switching elements T3-11, T3-12, T3 by controlling the scanning line G- (n + 2) to the H level during the period from time t7a to t8a (rewriting period for one pixel).
  • ⁇ 21 and T3-22 are turned on, the potential ⁇ Vs is supplied from the display signal line Sm-n to the liquid crystal capacitors cl3-11 and cl3-12, and the display signal line Sm ⁇ is supplied to the liquid crystal capacitors cl3-21 and cl3-22.
  • the potential + Vs is supplied from (n + 1).
  • the control unit 21 controls the scanning line G ⁇ (n + 2) to the L level, thereby turning off the switching elements T3-11, T3-12, T3-21, and T3-22 (FIG. 10, FIG. 10). Time t8a).
  • the control unit 21 switches the potential of the auxiliary capacitance line CSc-2 from + Vcs to ⁇ Vcs while controlling the signal of the display signal line Sm ⁇ n to + Vs (FIG. 10, time t9a). Since the potential of the storage capacitor line CSc-2 has changed from + Vcs to ⁇ Vcs, the potential held in the liquid crystal capacitor cl2-12 decreases by ⁇ Vpx based on the storage capacitor C2-12, and changes from + Vs to + Vs ⁇ Vpx. The potential held in the liquid crystal capacitor cl2-22 decreases by ⁇ Vpx based on the auxiliary capacitor C2-22 and changes from ⁇ Vs to ⁇ Vs ⁇ Vpx.
  • a potential difference + Vs of the display signal line Sm-n potential + Vs is generated in the liquid crystal capacitor cl3-11, and a potential difference ⁇ Vs of the potential ⁇ Vs of the display signal line Sm ⁇ (n + 1) is generated in the liquid crystal capacitor cl3-21. Will occur.
  • the control unit 21 switches the potential of the storage capacitor line CSd1-2 from -Vcs to + Vcs while controlling the signal of the display signal line Sm-n to -Vs (FIG. 10, time t12a).
  • the potential of the auxiliary capacitance line CSd1-2 changes from ⁇ Vcs to + Vcs
  • the potential held in the liquid crystal capacitance cl3-12 decreases by ⁇ Vpx based on the auxiliary capacitance C3-12, and from + Vs to + Vs ⁇ Vpx.
  • the potential changed and held in the liquid crystal capacitor cl3-22 rises by ⁇ Vpx based on the auxiliary capacitor C3-22, and changes from ⁇ Vs to ⁇ Vs + ⁇ Vpx.
  • the potential of the subpixel sp (1,1,1) a of the pixel p (1,1) a is more negative than the potential of the subpixel sp (1,1,2). Therefore, the light transmittance of the sub pixel sp (1,1,1) a is higher than the light transmittance of the sub pixel sp (1,1,2). For this reason, the luminance of the sub-pixel sp (1, 1, 1) a is displayed higher than the luminance of the sub-pixel sp (1, 1, 2).
  • the luminance of the sub-pixel sp (2,1,1) of the pixel p (2,1) a is displayed higher than the luminance of the sub-pixel sp (2,1,2) a
  • the pixel p (1,1,2) a is displayed.
  • the luminance of the sub pixel sp (1, 2, 2) of a is displayed higher than the luminance of the sub pixel sp (1, 2, 1) a
  • the sub pixel sp The brightness of 2,2,2) a is displayed higher than the brightness of the sub-pixel sp (2,2,1).
  • the time chart after time t0b is a timing chart of L + 1 frame. Since the operation of the L + 1 frame is controlled by the control unit 21 so as to have a polarity opposite to that of the potential at the L frame, the luminance relationship is the same as that at the L frame as shown in FIG. As a result, the luminance of the sub-pixel of each pixel at the time of 2D display has a relationship as shown in FIG. 5 as in the first embodiment. As shown in FIG.
  • the sub pixel sp (1,1,1) a of the pixel p (1,1) a of 1 row and 1 column has a bright luminance
  • the sub pixel sp (1,1,2) is a dark luminance
  • the sub pixel sp (2,1,1) a of the pixel p (2,1) a in 2 rows and 1 column has a bright luminance
  • the sub pixel sp (2 , 1, 2) is a dark luminance.
  • FIG. 11 is a diagram illustrating an example of an equivalent circuit of the pixel unit 22 at the time of 3D display in the present embodiment.
  • FIG. 12 is a timing chart at the time of 3D display in the present embodiment.
  • FIGS. 11 and 9 are the same, and the difference between 2D display and 3D display is that the switching elements of the scanning lines G ⁇ (n + 1), G ⁇ (n + 2), and G ⁇ (n + 3) are turned on. These are the timing for setting the state, the polarity of the signal applied to the auxiliary capacitance lines CSc-1, CSd1-1, CSd2-1 and CSc-2, and the timing for applying the signal.
  • “ ⁇ ” indicates that the potential applied to the liquid crystal capacitance is negative when the switching element is in the ON state during the L frame
  • “+” indicates that the switching element is in the ON state during the L frame. In this case, the potential applied to the liquid crystal capacitor is positive.
  • the control unit 21 controls the signal of the display signal line Sm-n to + Vs, so that the sub-pixels sp (1,1,1) a, sp (1,1,2), sp (2,1,1) And + Vs is supplied from the display signal line Sm-n to the source electrodes of the switching elements T1-11, T1-12, T2-11 and T2-12 of sp (2,1,2) a (FIG. 12, time until t0a).
  • control unit 21 controls the signal of the display signal line Sm ⁇ (n + 1) to ⁇ Vs, so that the sub-pixels sp (1,2,1) a, sp (1,2,2), sp (2 , 1, 1) and sp (2, 2, 2) a to the source electrodes of the switching elements T1-21, T1-22, T2-21, and T2-22, the display signal line Sm- (n + 1) to -Vs Is supplied (until time t0a in FIG. 12). Further, the control unit 21 supplies the potential + Vcs to the auxiliary capacitance lines CSc-1 and CSd2-1, and supplies the potential ⁇ Vcs to the auxiliary capacitance lines CSd1-1 and CSc-2 (FIG.
  • control unit 21 controls the signal of the display signal line Sm-n to ⁇ Vs, so that the subpixels sp (1,1,1) a, sp (1,1,2), sp (2, -Vs is supplied from the display signal line Sm-n to the source electrodes of the switching elements T1-11, T1-12, T2-11 and T2-12 of 1,1) and sp (2,1,2) a. .
  • control unit 21 controls the signal of the display signal line Sm ⁇ (n + 1) to + Vs, so that the sub-pixels sp (1, 2, 1) a, sp (1, 2, 2), sp (2, + Vs is supplied from the display signal line Sm- (n + 1) to the source electrodes of the switching elements T1-21, T1-22, T2-21, and T2-22 of 1,1) and sp (2,2,2) a (FIG. 12, time t1a).
  • control unit 21 controls the switching elements T1-11, T1-12, and T1-21 by controlling the scanning line Gn to the H level during the period from time t1a to t2a (rewriting period for one pixel).
  • T1-22 are turned on, the potential -Vs is supplied from the display signal line Sm-n to the liquid crystal capacitors cl1-11 and cl1-12, and the display signal line Sm- is supplied to the liquid crystal capacitors cl1-21 and cl1-22.
  • the potential + Vs is supplied from (n + 1).
  • control unit 21 controls the scanning lines G- (n + 1) to the H level during the period of time t1a to t2a, thereby turning on the switching elements T2-11, T2-12, T2-21 and T2-22.
  • the potential ⁇ Vs is supplied from the display signal line Sm-n to the liquid crystal capacitors cl2-11 and cl2-12, and the potential + Vs is supplied from the display signal line Sm ⁇ (n + 1) to the liquid crystal capacitors cl2-21 and cl2-22. Supply.
  • a potential difference ⁇ Vs ⁇ Vcs between the potential ⁇ Vs of the display signal line Sm ⁇ n and the potential + Vcs of the auxiliary capacitance line CSc ⁇ 1 is generated in the auxiliary capacitor C1-11.
  • a potential difference ⁇ Vs + Vcs is generated between the potential ⁇ Vs of the display signal line Sm ⁇ n and the potential ⁇ Vcs of the storage capacitor line CSd1-1.
  • the auxiliary capacitor C1-21 generates a potential difference + Vs ⁇ Vcs between the potential + Vs of the display signal line Sm ⁇ (n + 1) and the potential + Vcs of the auxiliary capacitor line CSc-1, and the auxiliary capacitor C1-22 has a display signal line.
  • a potential difference + Vs + Vcs is generated between the potential + Vs of Sm ⁇ (n + 1) and the potential ⁇ Vcs of the auxiliary capacitance line CSd1-1.
  • the auxiliary capacitor C2-11 generates a potential difference -Vs-Vcs between the potential -Vs of the display signal line Sm-n and the potential + Vcs of the auxiliary capacitor line CSd2-1, and the auxiliary capacitor C2-12 has a display signal line
  • a potential difference ⁇ Vs + Vcs between the potential ⁇ Vs of Sm ⁇ n and the potential ⁇ Vcs of the auxiliary capacitance line CSc-2 is generated.
  • the auxiliary capacitor C2-21 generates a potential difference + Vs ⁇ Vcs between the potential + Vs of the display signal line Sm ⁇ (n + 1) and the potential + Vcs of the auxiliary capacitor line CSd2-1, and the auxiliary capacitor C2-22 has a display signal line.
  • a potential difference + Vs + Vcs is generated between the potential + Vs of Sm ⁇ (n + 1) and the potential ⁇ Vcs of the auxiliary capacitance line CSc ⁇ 2.
  • control unit 21 controls the scanning line Gn to the L level to turn off the switching elements T1-11, T1-12, T1-21, and T1-22, and the scanning line G- (n + 1) ) To the L level, the switching elements T2-11, T2-12, T2-21 and T2-22 are turned off (FIG. 12, time t2a).
  • control unit 21 controls the signal of the display signal line Sm-n to + Vs, and controls the signal of the display signal line Sm- (n + 1) to -Vs (FIG. 12, time t3a).
  • control unit 21 controls the switching elements T3-11, T3-12, T3 by controlling the scanning line G- (n + 2) to the H level during the period from time t4a to t5a (rewriting period for one pixel).
  • ⁇ 21 and T3-22 are turned on, the potential + Vs is supplied from the display signal line Sm-n to the liquid crystal capacitors cl3-11 and cl3-12, and the display signal line Sm is supplied to the liquid crystal capacitors cl3-21 and cl3-22.
  • the potential ⁇ Vs is supplied from ⁇ (n + 1).
  • control unit 21 controls the scanning line G- (n + 3) to the H level during the period of time t4a to t5a, thereby turning on the switching elements T4-11 and T4-21, and the liquid crystal capacitance cl4-11. Is supplied with the potential + Vs from the display signal line Sm-n, and is supplied with the potential -Vs from the display signal line Sm- (n + 1) to the liquid crystal capacitor cl4-21.
  • the control unit 21 controls the scanning line G ⁇ (n + 2) to the L level, thereby turning off the switching elements T3-11, T3-12, T3-21, and T3-22, and the scanning line G ⁇ .
  • the switching elements T4-11 and T4-21 are turned off (FIG. 12, time t5a).
  • the control unit 21 switches the potential of the auxiliary capacitance line CSc-1 from + Vcs to ⁇ Vcs, switches the potential of the auxiliary capacitance line CSd2-1 from + Vcs to ⁇ Vcs, and changes the potential of the auxiliary capacitance line CSd1-1 to ⁇ Vcs. Is switched from + Vcs to + Vcs, and the potential of the auxiliary capacitance line CSc-2 is switched from ⁇ Vcs to + Vcs (FIG. 12, time t5a).
  • the potential held in the liquid crystal capacitor cl1-11 has dropped by ⁇ Vpx based on the auxiliary capacitance C1-11 and has changed from ⁇ Vs to ⁇ Vs ⁇ Vpx.
  • the potential held in the liquid crystal capacitor cl1-21 drops by ⁇ Vpx based on the auxiliary capacitor C1-21 and changes from + Vs to + Vs ⁇ Vpx.
  • the potential held in the liquid crystal capacitance cl2-11 decreases by ⁇ Vpx based on the auxiliary capacitance C2-11, and from ⁇ Vs to ⁇ Vs ⁇ Vpx.
  • the potential held in the liquid crystal capacitor cl2-21 decreases by ⁇ Vpx based on the auxiliary capacitor C2-21 and changes from + Vs to + Vs ⁇ Vpx.
  • the potential held in the liquid crystal capacitance cl1-12 increases by ⁇ Vpx based on the auxiliary capacitance C1-12, and from ⁇ Vs to ⁇ Vs ⁇ Vpx.
  • the potential held in the liquid crystal capacitor cl1-22 decreases by ⁇ Vpx based on the auxiliary capacitor C1-22 and changes from + Vs to + Vs ⁇ Vpx.
  • the potential held in the liquid crystal capacitance cl2-12 increases by ⁇ Vpx based on the auxiliary capacitance C2-12, and from ⁇ Vs to ⁇ Vs ⁇ Vpx.
  • the potential held in the liquid crystal capacitor cl2-22 decreases by ⁇ Vpx based on the auxiliary capacitor C2-22, and changes from + Vs to + Vs ⁇ Vpx.
  • the sub-pixels sp (3, 1, 1) a and sp (3, 1, 2) are similarly controlled, and the potential held in the liquid crystal capacitor cl3-11 is only ⁇ Vpx based on the auxiliary capacitor C3-11.
  • sp (3,2,1) a and sp (3,2,2) are similarly controlled, and the potential held in the liquid crystal capacitor cl3-21 rises by ⁇ Vpx based on the auxiliary capacitor C3-21, and ⁇ Vs From -Vs + ⁇ Vpx and the potential held in the liquid crystal capacitor cl3-22 decreases by ⁇ Vpx based on the auxiliary capacitor C3-22 and changes to -Vs- ⁇ Vpx (FIG. 10, time t8a).
  • sub-pixels sp (1,1,1) a, sp (1,1,2), sp (1,2,1) a, sp (1,2,2), sp (2,1, 1), sp (2,1,2) a, sp (2,2,1) and sp (2,2,2) a liquid crystal capacitances cl1-11, cl1-12, cl1-21, cl1-22 , Cl2-11, cl2-12, cl2-21 and cl2-22 hold the potential at time t5a until the next frame.
  • the potential of the subpixel sp (1,1,1) a of the pixel p (1,1) a is higher in the minus direction than the potential of the subpixel sp (1,1,2). Therefore, the light transmittance of the sub-pixel sp (1, 1, 1) a is higher than the light transmittance of the sub-pixel sp (1, 1, 2). For this reason, the luminance of the sub-pixel sp (1, 1, 1) a is displayed higher than the luminance of the sub-pixel sp (1, 1, 2).
  • the luminance of the subpixel sp (2,1,1) a of the pixel p (2,1) a is displayed higher than the luminance of the subpixel sp (2,1,2), and the pixel p (1,1,2) a is displayed.
  • the luminance of the sub pixel sp (1, 2, 2) of a is displayed higher than the luminance of the sub pixel sp (1, 2, 1) a, and the sub pixel sp ( The brightness of 2,2,2) a is displayed higher than the brightness of the sub-pixel sp (2,2,1).
  • the operation at the time of the L + 1 frame is a timing chart of the L + 1 frame after time t0b in FIG. Since the operation of the L + 1 frame is controlled by the control unit 21 so as to have a polarity opposite to that of the potential at the L frame, the luminance relationship is the same as that at the L frame as shown in FIG.
  • the control unit 21 supplies signals of the same polarity to the adjacent auxiliary capacitance lines CSd1-1 and CSd2-1.
  • signals having different polarities are supplied to adjacent storage capacitor lines CSd1-1 and CSd2-1.
  • the capacitor line CSc-2 is arranged and shared by the subpixel sp (2,1,2) a and the subpixel sp (3,1,1) a.
  • the luminance of the sub-pixel of each pixel at the time of two-line selection driving for performing 3D display has a relationship as shown in FIG. 5 as in the case of the one-line selection driving for performing 2D display.
  • two auxiliary capacitance lines are provided between the pixels, for example, between the pixel p (1,1) a and the pixel p (2,1), and the adjacent auxiliary capacitance lines CSd1-1 and CSd2-1 are provided.
  • each auxiliary capacitance line connected to each auxiliary capacitance is switched to a polarity different from the potential at the time of writing, even in the two-frame selection drive for 3D display, between adjacent sub-pixels Good gradation display can be performed without the same luminance.
  • FIG. 13 is a diagram for explaining an example of the layout on the first glass substrate 3 in the present embodiment.
  • the scanning line GN and the switching elements T1-11, T1-12, T1-21, T1-22, T2-11) , T2-12, T2-21, T2-22), auxiliary capacitance lines (CSc-1, CSd1-1, CSd2-1, CSc-2), pixel electrodes (201 to 208), and auxiliary capacitance (C1).
  • auxiliary capacitance lines CSc-1, CSd1-1, CSd2-1, CSc-2
  • pixel electrodes 201 to 208
  • auxiliary capacitance C1
  • the drain electrode of the switching element T1-11 is connected to the pixel electrode 201, and the gate electrode of the switching element T1-11 is connected to the scanning line GN. Further, the drain electrode of the switching element T1-12 is connected to the pixel electrode 203, and the gate electrode of the switching element T1-12 is connected to the scanning line GN. Further, the drain electrode of the switching element T2-11 is connected to the pixel electrode 205, and the gate electrode of the switching element T2-11 is connected to the scanning line G- (n + 1). Further, the drain electrode of the switching element T2-12 is connected to the pixel electrode 207, and the gate electrode of the switching element T2-12 is connected to the scanning line G- (n + 1).
  • the auxiliary capacitor C1-11 connected to the drain electrode of the switching element T1-11 is formed in a region where the auxiliary capacitor line CSc-1 and the pixel electrode 201 overlap with each other through an insulating film.
  • the auxiliary capacitor C1-12 connected to the drain electrode of the switching element T1-12 is formed in a region where the auxiliary capacitor line CSd1-1 and the pixel electrode 203 overlap with each other through an insulating film.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a network such as the Internet or a communication line such as a telephone line.
  • it also includes those that hold a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or client in that case.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

この液晶装置は、複数の第1のサブ画素(sp(1,1,1),sp(1,1,2))を有する第1の画素(p(1,1))と、複数の第2のサブ画素(sp(2,1,1),sp(2,1,2))を有し、列方向に前記第1の画素と隣接する第2の画素(p(2,1))と、前記第1および第2の画素に同時に表示信号を書き込むよう構成されている制御部とを有し、前記第1のサブ画素のうち第2の画素と隣接する第1のサブ画素(sp(1,1,2))と、前記第2のサブ画素のうち第1の画素と隣接する第2のサブ画素(sp(2,1,1))は、それぞれ第1および第2の補助容量線(CSb-n,CSa-(n+1))と結合する。

Description

液晶装置及び液晶制御方法
 本発明は、液晶装置及び液晶制御方法に関する。
 本願は、2010年6月25日に、日本に出願された特願2010-145080号に基づき優先権を主張し、その内容をここに援用する。
 画像を立体的に表示する液晶装置は、例えば以下の方式を採用している。右眼用と左眼用の映像を交互に再生して、その映像と同期して交互にレンズを開閉する専用のメガネで見る方式が知られている。また、液晶装置に視差バリアと呼ばれる縦縞のバリアを重ねることで、右眼には右眼用の映像、左眼には左眼用の映像を見えるようにして、専用メガネ無しで立体感を感じさせるようにした方式が知られている。
 図14は、専用メガネを用いて見る方式の概略を説明する図である。NTSC(National Television System Committee)方式では、垂直同期周波数は60Hz(約16.7msec)である。したがって、図14のように、3D(3次元;立体視)表示を行うためには、液晶装置が右眼用と左眼用の映像を交互に60Hzの2倍の120Hz(約8.3msec)の短い周期で表示する必要がある。そして、液晶装置が再生している画像に同期して、例えば、液晶シャッターを用いたメガネで、右眼用と左眼用の液晶シャッターを交互に切り替えて、片方の画像のみを同期して見られるようにしている。
 例えば、図14において、時刻t1~t2の間、液晶装置は左眼用の映像(L sub Frame)901を表示し、その間液晶シャッター付きメガネ911は、右眼用のシャッターを閉じ、左眼用のシャッターを開けて、左眼のみに左眼用の映像が見えるように制御している。また、時刻t2~t3の間、液晶装置は右眼用の映像(R sub Frame)901を表示し、その間液晶シャッター付きメガネ911は、右眼用のシャッターを開け、左眼用のシャッターを閉じて、右眼のみに右眼用の映像が見えるように制御している。
 液晶装置においては、液晶の応答速度の影響により、表示される画像信号を画面上部から画面下部にスキャンして各液晶に書き込んでいくときに各画素の液晶が徐々に変化し、時間的な位相差ズレが生じる。このため、図15のように、液晶装置における3D表示を行うためには、右眼用と左眼用の映像を240Hzで切り替えて表示しているものもある。
図15は、240Hzで切り替える場合の動作の概要を説明する図である。図15において、液晶装置のバックライトの駆動も表示に合わせて制御する。さらに1フレーム内で、左眼用のサブフレームを2度書き込み、右眼用のサブフレームを2度書き込む。このため、NTSC方式において、各サブフレームは、16.7msecの4分の1である4.2msecで書き込む。そして、図15のように、液晶シャッター付きメガネを介して、時刻t2~t3の間の画像と時刻t4~t5の間の画像が見られる。
 このように60Hzの4倍の早さの240Hzで表示するためには、液晶装置を高速で駆動する必要がある。擬似的に4倍の速度で駆動する手法として、図16のような2ライン同時選択駆動方式が提案されている。図16は、2ライン同時選択駆動の概略を説明する図である。図16のように、通常の駆動はライン画像921のように、1ラインずつ走査してくが、2ライン同時選択駆動はライン画像922のように2ラインずつ同時に走査していく。
 また、1つの画素を複数のサブ画素に分けて、階調表現の向上と視野角特性を改善するマルチ画素による液晶装置が提案されている。例えば、1画素を2つのサブ画素に分けた液晶装置において、図17の等価回路により、2D(2次元)の1ライン駆動を行った場合、図17のように各サブ画素の輝度は、明るい輝度のサブ画素と暗い輝度のサブ画素が縦方向と横方向に交互に配置される。図17は、2つのサブ画素の液晶装置の等価回路による1ライン駆動を説明する図である。図18は、1ライン駆動の場合のサブ画素の輝度の配列を説明する図である。また、図17において、バスラインCs1とCs3には、「-」のサブ画素の輝度が高くなるような電位を供給し、バスラインCs2とCs4には、「+」のサブ画素の輝度が高くなるような電位を供給する。なお、図17において、「-」は表示信号線Sm1またはSm2から負極性の表示信号が供給されることを表し、「+」は表示信号線Sm1またはSm2から正極性の表示信号が供給されることを表している。すなわち、画素G1のサブ画素sp1とsp2には、表示信号線Sm1から負極性の表示信号線が供給され、画素G2のサブ画素sp3とsp4には、表示信号線Sm1から正極性の表示信号線が供給されている。なお、図17において、「-」は、Lフレーム時、スイッチング素子がオン状態の時に液晶容量に印加される電位が負極性であることを表し、「+」は、Lフレーム時、スイッチング素子がオン状態の時に液晶容量に印加される電位が正極性であることを表している。
 この結果、図18のように、例えば、R(赤)の画素G1のサブ画素931が明るい輝度であり、サブ画素932が暗い輝度であり、Rの画素G2のサブ画素933が明るい輝度であり、サブ画素934が暗い輝度のようにサブ画素が配置される(例えば、特許文献1を参照)。
特開2004-62146号公報
 しかしながら、特許文献1の従来技術による手法で、2ライン同時選択駆動を行った場合、図19のように、バスラインCs1とCs3には、「-」のサブ画素の輝度が高くなるような電位を供給し、バスラインCs2とCs4には、「+」のサブ画素の輝度が高くなるような電位を供給する。そして、画素G1のサブ画素sp1とsp2と画素G2のサブ画素sp3とsp4には、表示信号線Sm1から負極性の表示信号線が供給されている。図19は、2つのサブ画素の液晶装置の等価回路による2ライン駆動を説明する図であり、図20は、2ライン駆動の場合のサブ画素の輝度の配列を説明する図である。
 この結果、図20のように、隣接するサブ画素の輝度が交互に配列されずに、例えばR画素のサブ画素942とサブ画素943のように明るく表示されるサブ画素が2つ連続してしまい、見かけ上、サブ画素が大きくなり粒子感が増し、このため画像がざらついて見えてしまう。
 本発明の一態様において、2ライン同時選択駆動した場合のサブ画素の配列を改善する液晶装置及び液晶制御方法を提供する。
 本発明の一態様における液晶装置は、複数の第1のサブ画素を有する第1の画素と、複数の第2のサブ画素を有し、列方向に前記第1の画素と隣接する第2の画素と、前記第1および第2の画素に同時に表示信号を書き込むよう構成されている制御部とを有し、前記第1のサブ画素のうち第2の画素と隣接する第1のサブ画素と、前記第2のサブ画素のうち第1の画素と隣接する第2のサブ画素は、それぞれ第1および第2の補助容量線と結合する。
 また、本発明の一態様における液晶装置において、さらに複数の第3のサブ画素を有し、前記第2の画素と前記列方向に隣接する第3の画素と、第3および第4の補助容量線とを有し、前記第2のサブ画素のうち第3の画素と隣接する第2のサブ画素と、前記第3のサブ画素のうち第2の画素と隣接する第3のサブ画素は、それぞれ前記第3および第4の補助容量線と結合してもよい。
 また、本発明の一態様における液晶装置において、1ライン選択駆動のときは、前記制御部が前記第1および第2の補助容量線の極性が同極性になるよう制御するよう構成されてもよい。
 また、本発明の一態様における液晶装置において、2ライン選択駆動のときは、前記制御部が前記第1および第2の補助容量線の極性がそれぞれ異なる極性になるよう制御するよう構成されてもよい。
 また、本発明の一態様における液晶装置において、前記第1のサブ画素に接続されている第1のスイッチング素子と、前記第2のサブ画素に接続されている第2のスイッチング素子と、前記第1スイッチング素子の第1ゲート電極に接続されている第1走査線と、前記第2のスイッチング素子の第2のゲート電極に接続されている第2の走査線と、前記第1のサブ画素と前記第1のスイッチング素子のドレイン電極とにそれぞれ接続されている補助容量と、制御部とをさらに備え、前記補助容量は、前記第1の補助容量線に接続され、前記制御部は、前記第1および第2のサブ画素が同時にオンになるように前記第1および第2の走査線を制御しつつ、前記第1および第2の補助容量線を制御し、前記同時にオン状態にされる前記第1および第2サブ画素が、それぞれ第1および第2の前記補助容量線に接続されているようにしてもよい。
 本発明の一態様における液晶装置の制御方法において、液晶装置は、複数の第1のサブ画素を有する第1の画素と、複数の第2のサブ画素を有し、列方向に前記第1の画素と隣接し、前記第1の画素と同時に表示信号が書き込まれるよう構成されている第2の画素と、前記第1の画素と前記第2の画素間に第1および第2の補助容量線を備え、1ライン選択駆動のときは、前記第1および第2の補助容量線の極性を同極性に制御し、2ライン選択駆動のときは、前記第1および第2の補助容量線の極性をそれぞれ異なる極性に制御する。
 本発明の一態様によれば、複数のサブ画素を有する画素が複数マトリクス状に配置され、同時に表示信号が書き込まれる行方向に隣接する前記画素間に2本の補助容量線を備えるようにしたので、2ライン同時選択駆動した場合のサブ画素の配列を改善することが可能になる。
本実施形態に係る液晶装置の概略構成を示す斜視図である。 本発明の実施形態を適用した液晶装置の一例の構成図である。 第1実施形態に係る2D表示時の画素部22の等価回路の一例を説明する図である。 同実施形態に係る2D表示時のタイミングチャートである。 同実施形態に係るサブ画素の輝度の配列を説明する図である。 同実施形態に係る3D表示時の画素部22の等価回路の一例を説明する図である。 同実施形態に係る3D表示時のタイミングチャートである。 同実施形態に係る第1ガラス基板3上のレイアウトの例を説明する図である。 同実施形態に係る第1ガラス基板3上のレイアウトの例を説明する図である。 第2実施形態に係る2D表示時の画素部22の等価回路の一例を説明する図である。 同実施形態に係る2D表示時のタイミングチャートである。 同実施形態に係る3D表示時の画素部22の等価回路の一例を説明する図である。 同実施形態に係る3D表示時のタイミングチャートである。 同実施形態に係る第1ガラス基板3上のレイアウトの例を説明する図である。 従来の実施形態に係る専用メガネを用いて見る方式の概略を説明する図である。 従来の実施形態に係る240Hzで切り替える場合の動作の概要を説明する図である。 従来の実施形態に係る2ライン同時選択駆動の概略を説明する図である。 従来の実施形態に係る2つのサブ画素の液晶装置の等価回路による1ライン駆動を説明する図である。 従来の実施形態に係る1ライン駆動の場合のサブ画素の輝度の配列を説明する図である。 従来の実施形態に係る2つのサブ画素の液晶装置の等価回路による2ライン駆動を説明する図である。 従来の実施形態に係る2ライン駆動の場合のサブ画素の輝度の配列を説明する図である。
 以下、図1~図13を用いて本発明の実施形態について詳細に説明する。なお、本発明は斯かる実施形態に限定されず、その技術思想の範囲内で種々の変更が可能である。
 図1は、本実施形態における液晶装置の概略構成を示す斜視図である。図1のように、液晶装置は、バックライト1と、第1偏光板2と、第1ガラス基板3と、TFT(薄膜トランジスタ)アレイ4と、液晶5と、共通電極(対向電極)6と、カラーフィルタ7と、第2ガラス基板8と、第2偏光板9とを備えている。
 バックライト1は、第1ガラス基板3の下から光を照射する。第1偏光板2は、第1ガラス基板3に入出力される光を偏光によりコントロールする。第1ガラス基板3の上には、スイッチング素子や画素電極等が形成されているTFTアレイ4が配置されている。TFTアレイ4の画素電極と共通電極6との間には、液晶5が封入されている。また、非図示のスペーサは、液晶5が封入されている第1ガラス基板3と第2ガラス基板8との間隔を均一に保つために、第1ガラス基板3と第2ガラス基板8との間に複数設置されている。カラーフィルタ7は、共通電極6の上に配置される。カラーフィルタ7は、RGBについてそれぞれのフィルターをかけて、制御された各画素に相当する液晶の光反射率または光透過率に基づく光をRGB各色として液晶装置上で表示する。第2ガラス基板8は、カラーフィルタ7の上に配置される。第2ガラス基板8の上には、第1偏光板2とクロスニコル(直交ニコル)に配置された第2偏光板9が配置されている。
 図2は、本発明の実施形態を適用した液晶装置の一例の構成図である。図2のように、液晶装置は、制御部21と画素部22とを備えている。さらに、画素部22は、表示信号線(データバスライン)11-1~11-mをm本、走査線(ゲートバスライン)12-1~12-nをn本、画素をn×m個(p(1,1)~p(1,m),p(2,1)~p(2,m)・・・p(n,1)~p(n,m))を備えている。例えば、Full-HDの解像度の液晶装置の場合、データバスラインは、m=1920×3(3はRGB分)=5760本、ゲートバスラインは、n=1080本である。制御部21は、表示信号線11-1~11-mおよび走査線12-1~12-nを介して、画素p(1,1)~p(1,m),p(2,1)~p(2,m)・・・p(n,1)~p(n,m)に接続されている。また、制御部21は、表示信号線11-1~11-mに供給される表示信号を、隣接する表示信号線11-1~11-m間で逆極性に制御する。すなわち、表示信号線11-1の表示信号の極性と表示信号線11-2の表示信号の極性は逆極性である。表示信号線11-2の表示信号の極性と表示信号線11-3の表示信号の極性は逆極性である。表示信号線11-3の表示信号の極性と表示信号線11-4の表示信号の極性は逆極性である。
[第1実施形態]
 第1実施形態について、図3~図8Bを用いて説明する。図3は、本実施形態における2D表示時の画素部22の等価回路の一例を説明する図である。
 まず、画素p(1,1)のサブ画素sp(1,1,1)とサブ画素sp(1,1,2)との構成を説明する。スイッチング素子T1-11とT1-12のゲート電極は、共通の走査線G-nに接続されている。スイッチング素子T1-11とT1-12のソース電極は、表示信号線Sm-nに接続されている。スイッチング素子T1-11のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl1-11の一端に接続され且つ補助容量C1-11の一端の端子に接続されている。液晶素子cl1-11の他方は、対向電極6を介して接地(「com」ともいう)されている。補助容量C1-11の他端は、補助容量線CSa-nに接続されている。スイッチング素子T1-12のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl1-12の一端に接続され且つ補助容量C1-12の一端の端子に接続されている。液晶素子cl1-12の他方は、対向電極6を介して接地されている。補助容量C1-12の他端は、補助容量線CSb-nに接続されている。また、液晶素子cl1-11およびcl1-12は、対向電極6と画素電極との間に挟持されている液晶部分により構成されている。
 次に、画素p(1,2)のサブ画素sp(1,2,1)とサブ画素sp(1,2,2)との構成を説明する。スイッチング素子T1-21とT1-22のゲート電極は、共通の走査線G-nに接続されている。スイッチング素子T1-21とT1-22のソース電極は、表示信号線Sm-(n+1)に接続されている。スイッチング素子T1-21のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl1-21の一端に接続され且つ補助容量C1-21の一端の端子に接続されている。液晶素子cl1-21の他方は、対向電極6を介して接地されている。補助容量C1-21の他端は、補助容量線CSa-nに接続されている。スイッチング素子T1-22のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl1-22の一端に接続され且つ補助容量C1-22の一端の端子に接続されている。液晶素子cl1-22の他方は、対向電極6を介して接地されている。補助容量C1-22の他端は、補助容量線CSb-nに接続されている。また、液晶素子cl1-21およびcl1-22は、対向電極6と画素電極との間に挟持されている液晶部分により構成されている。
 次に、画素p(2,1)のサブ画素sp(2,1,1)とサブ画素sp(2,1,2)との構成を説明する。スイッチング素子T2-11とT2-12のゲート電極は、共通の走査線G-(n+1)に接続されている。スイッチング素子T2-11とT2-12のソース電極は、表示信号線Sm-nに接続されている。スイッチング素子T2-11のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl2-11の一端に接続され且つ補助容量C2-11の一端の端子に接続されている。液晶素子cl2-11の他方は、対向電極6を介して接地されている。補助容量C2-11の他端は、補助容量線CSa-(n+1)に接続されている。スイッチング素子T2-12のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl2-12の一端に接続され且つ補助容量C2-12の一端の端子に接続されている。液晶素子cl2-12の他方は、対向電極6を介して接地されている。補助容量C2-12の他端は、補助容量線CSb-(n+1)に接続されている。また、液晶素子cl2-11およびcl2-12は、対向電極6と画素電極との間に挟持されている液晶部分により構成されている。
 次に、画素p(2,2)のサブ画素sp(2,2,1)とサブ画素sp(2,2,2)との構成を説明する。スイッチング素子T2-21とT2-22のゲート電極は、共通の走査線G-(n+1)に接続されている。スイッチング素子T2-21とT2-22のソース電極は、表示信号線Sm-(n+1)に接続されている。スイッチング素子T2-21のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl2-21の一端に接続され且つ補助容量C2-21の一端の端子に接続されている。液晶素子cl2-21の他方は、対向電極6を介して接地されている。補助容量C2-21の他端は、補助容量線CSa-(n+1)に接続されている。スイッチング素子T2-22のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl2-22の一端に接続され且つ補助容量C2-22の一端の端子に接続されている。液晶素子cl2-22の他方は、対向電極6を介して接地されている。補助容量C2-22の他端は、補助容量線CSb-(n+1)に接続されている。また、液晶素子cl2-21およびcl2-22は、対向電極6と画素電極との間に挟持されている液晶部分により構成されている。
 次に、画素p(3,1)のサブ画素sp(3,1,1)とサブ画素sp(3,1,2)との構成を説明する。スイッチング素子T3-11とT3-12のゲート電極は、共通の走査線G-(n+2)に接続されている。スイッチング素子T3-11とT3-12のソース電極は、表示信号線Sm-nに接続されている。スイッチング素子T3-11のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl3-11の一端に接続され且つ補助容量C3-11の一端の端子に接続されている。液晶素子cl3-11の他方は、対向電極6を介して接地されている。補助容量C3-11の他端は、補助容量線CSa-(n+2)に接続されている。スイッチング素子T3-12のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl3-12の一端に接続され且つ補助容量C3-12の一端の端子に接続されている。液晶素子cl3-12の他方は、対向電極6を介して接地され、補助容量C3-12の他端は、補助容量線CSb-(n+2)に接続されている。また、液晶素子cl3-11およびcl3-12は、対向電極6と画素電極との間に挟持されている液晶部分により構成されている。
 次に、画素p(3,2)のサブ画素sp(3,2,1)とサブ画素sp(3,2,2)との構成を説明する。スイッチング素子T3-21とT3-22のゲート電極は、共通の走査線G-(n+2)に接続されている。スイッチング素子T3-21とT3-22のソース電極は、表示信号線Sm-(n+1)に接続されている。スイッチング素子T3-21のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl3-21の一端に接続され且つ補助容量C3-21の一端の端子に接続されている。液晶素子cl3-21の他方は、対向電極6を介して接地されている。補助容量C3-21の他端は、補助容量線CSa-(n+2)に接続されている。スイッチング素子T3-22のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl3-22の一端に接続され且つ補助容量C3-22の一端の端子に接続されている。液晶素子cl3-22の他方は、対向電極6を介して接地されている。補助容量C3-22の他端は、補助容量線CSb-(n+2)に接続されている。また、液晶素子cl3-21およびcl3-22は、対向電極6と画素電極との間に挟持されている液晶部分により構成されている。
 従来技術の図17の構成においては、画素p(1,1)のサブ画素sp(1,1,2)の補助容量C1-12が接続されている補助容量線と、画素p(2,1)のサブ画素sp(2,1,1)の補助容量C2-11が接続されている補助容量線とを共通に構成していた。しかし、本実施形態の構成では、補助容量C1-12と補助容量C2-11とは別々の補助容量線に接続されている。
[第1実施形態における2D駆動時の動作説明]
 次に、画素p(1,1)、p(1,2)、p(2,1)およびp(2,2)についてLフレーム時の2D動作を、図3と図4を用いて説明する。図4は、本実施形態における2D動作時のタイミングチャートである。
 制御部21は、表示信号線Sm-nの信号を+Vsに制御することで、サブ画素sp(1,1,1)、sp(1,1,2)、sp(2,1,1)およびsp(2,1,2)の各スイッチング素子T1-11、T1-12、T2-11およびT2-12の各ソース電極に表示信号線Sm-nから+Vsを供給する(図4、時刻t0aまで)。また、制御部21は、表示信号線Sm-(n+1)の信号を-Vsに制御することで、サブ画素sp(1,2,1)、sp(1,2,2)、sp(2,2,1)およびsp(2,2,2)の各スイッチング素子T1-21、T1-22、T2-21およびT2-22の各ソース電極に表示信号線Sm-(n+1)から-Vsを供給する(図4、時刻t0aまで)。また、制御部21は、補助容量線CSa-nとCSb-(n+1)に電位+Vcsを供給する。補助容量線CSb-nとCSa-(n+1)に電位-Vcsを供給する(図4、時刻t0aまで)。なお、補助容量線CSa-n、CSa-(n+1)、CSb-n、およびCSb-(n+1)に供給する電位は、例えば+Vcs=+1[V]、-Vcs=-1[V]である。
 次に、制御部21は、表示信号線Sm-nの信号を-Vsに制御することで、サブ画素sp(1,1,1)とsp(1,1,2)の各スイッチング素子T1-11、T1-12、T2-11およびT2-12の各ソース電極に表示信号線Sm-nから-Vsを供給する。また、制御部21は、表示信号線Sm-(n+1)の信号を+Vsに制御することで、サブ画素sp(1,2,1)とsp(1,2,2)、sp(2,2,1)およびsp(2,2,2)の各スイッチング素子T1-21、T1-22、T2-21およびT2-22の各ソース電極に表示信号線Sm-(n+1)から+Vsを供給する。
 次に、制御部21は、走査線G-nを時刻t1a~t2aの期間(1画素分の書き換え期間)、Hレベル(高電位レベル。「Vhigh」と言うことがある。)に制御する。これにより、スイッチング素子T1-11、T1-12、T1-21およびT1-22をオン状態(「Vgon」とも言うことがある)にする。そして液晶容量cl1-11とcl1-12に表示信号線Sm-nから電位-Vsを供給する。また、液晶容量cl1-21およびcl1-22に表示信号線Sm-(n+1)から電位+Vsを供給する。
 このため、補助容量C1-11には、表示信号線Sm-nの電位-Vsと補助容量線CSa-nの電位+Vcsとの電位差-Vs-Vcsが発生し、補助容量C1-12には、表示信号線Sm-nの電位-Vsと補助容量線CSb-nの電位-Vcsとの電位差-Vs+Vcsが発生する。補助容量C1-21には、表示信号線Sm-(n+1)の電位+Vsと補助容量線CSa-nの電位+Vcsとの電位差+Vs-Vcsが発生し、補助容量C1-22には、表示信号線Sm-(n+1)の電位+Vsと補助容量線CSb-nの電位-Vcsとの電位差+Vs+Vcsが発生する。
 時刻t1a~t2aの期間、制御部21は、走査線G-(n+1)をLレベル(低電位レベル。「Vlow」と言うことがある。)に制御する。これにより、スイッチング素子T2-11、T2-12、T2-21およびT2-22をオフ状態(「Vgoff」と言うことがある)にする。
 なお、走査線G-nの出力がHレベルになる期間は、液晶装置で用いる走査線の総数に応じて設定され、例えば、Full-HD対応の液晶装置においては、1/(60×1080)(秒)に相当する。なお、ゼロ階調から最大階調を表示した場合の表示信号線Sm-nの信号レンジは、+Vs~-Vsである。例えば、正極性側の電位+5V~+1V、負極性側の電位-5V~-1Vである。この信号レベルは、用いる液晶容量の特性に合わせるようにしてもよい。
 次に、制御部21は、走査線G-nをLレベルに制御することで、スイッチング素子T1-11、T1-12、T1-21およびT1-22をオフ状態にする(図4、時刻t2a)。
 次に、制御部21は、表示信号線Sm-nの信号を+Vsに制御しつつ、補助容量線CSa-nの電位を+Vcsから-Vcsに切り替える(図4、時刻t3a)。補助容量線CSa-nの電位が+Vcsから-Vcsに変化したため、液晶容量cl1-11に保持されていた電位は、補助容量C1-11に基づきΔVpxだけ下がり、-Vsから-Vs-ΔVpxに変化し、液晶容量cl1-21に保持されていた電位は、補助容量C1-21に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化する。なお、ΔVpxは、補助容量線CSa-nの信号の変動分2×Vcsが液晶容量cl1-11と補助容量C1-11の比に基づく値であり、液晶容量cl1-11の容量をClc、補助容量C1-11の容量をC1とすると、(C1/(Clc+C1))×2Vcsである。
 次に、制御部21は、走査線G-(n+1)を時刻t4a~t5aの期間(1画素分の書き換え期間)、Hレベルに制御することで、スイッチング素子T2-11、T2-12、T2-21およびT2-22をオン状態にし、液晶容量cl2-11とcl2-12に表示信号線Sm-nから電位+Vsを供給し、液晶容量cl2-21およびcl2-22に表示信号線Sm-(n+1)から電位-Vsを供給する。
 このため、補助容量C2-11には、表示信号線Sm-nの電位+Vsと補助容量線CSa-(n+1)の電位-Vcsとの電位差+Vs+Vcsが発生し、補助容量C2-12には、表示信号線Sm-nの電位+Vsと補助容量線CSb-(n+1)の電位+Vcsとの電位差+Vs-Vcsが発生する。補助容量C2-21には、表示信号線Sm-(n+1)の電位-Vsと補助容量線CSa-(n+1)の電位-Vcsとの電位差-Vs+Vcsが発生し、補助容量C2-22には、表示信号線Sm-(n+1)の電位-Vsと補助容量線CSa-(n+1)の電位+Vcsとの電位差-Vs-Vcsが発生する。
 次に、制御部21は、走査線G-(n+1)をLレベルに制御することで、スイッチング素子T2-11、T2-12、T2-21およびT2-22をオフ状態にする(図4、時刻t5a)。
 次に、制御部21は、表示信号線Sm-nの信号を-Vsに制御しつつ、補助容量線CSb-nの電位を-Vcsから+Vcsに切り替え、補助容量線CSa-(n+1)の電位を-Vcsから+Vcsに切り替える(図4、時刻t6a)。
 補助容量線CSb-nの電位が-Vcsから+Vcsに変化したため、液晶容量cl1-12に保持されていた電位は、補助容量C1-12に基づきΔVpxだけ上がり、-Vsから-Vs+ΔVpxに変化し、液晶容量cl1-22に保持されていた電位は、補助容量C1-22に基づきΔVpxだけ上がり、+Vsから+Vs+ΔVpxに変化する。
 補助容量線CSa-(n+1)の電位が-Vcsから+Vcsに変化したため、液晶容量cl2-11に保持されていた電位は、補助容量C2-11に基づきΔVpxだけ上がり、+Vsから+Vs+ΔVpxに変化し、液晶容量cl2-21に保持されていた電位は、補助容量C2-21に基づきΔVpxだけ上がり、-Vsから-Vs+ΔVpxに変化する。
 次に、制御部21は、走査線G-(n+2)を時刻t7a~t8aの期間(1画素分の書き換え期間)、Hレベルに制御することで、スイッチング素子T3-11、T3-12、T3-21およびT3-22をオン状態にし、液晶容量cl3-11とcl3-12に表示信号線Sm-nから電位-Vsを供給し、cl3-21およびcl3-22に表示信号線Sm-(n+1)から電位+Vsを供給する。
 次に、制御部21は、走査線G-(n+2)をLレベルに制御することで、スイッチング素子T3-11、T3-12、T3-21およびT3-22をオフ状態にする(図4、時刻t8a)。
 次に、制御部21は、表示信号線Sm-nの信号を+Vsに制御しつつ、補助容量線CSb-(n+1)の電位を+Vcsから-Vcsに切り替える(図4、時刻t9a)。補助容量線CSb-(n+1)の電位が+Vcsから-Vcsに変化したため、液晶容量cl2-12に保持されていた電位は、補助容量C2-12に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化し、液晶容量cl2-22に保持されていた電位は、補助容量C2-22に基づきΔVpxだけ下がり、-Vsから-Vs-ΔVpxに変化する。
 時刻t9a以降、サブ画素sp(1,1,1)、sp(1,1,2)、sp(1,2,1)、sp(1,2,2)、sp(2,1,1)、sp(2,1,2)、sp(2,2,1)およびsp(2,2,2)の各液晶容量cl1-11、cl1-12、cl1-21、cl1-22、cl2-11、cl2-12、cl2-21およびcl2-22には、時刻t9a時点の電位が次のフレームまで保持される。
 この結果、図4のように画素p(1,1)のサブ画素sp(1,1,1)の電位の方がサブ画素sp(1,1,2)の電位よりマイナス方向に高いため、サブ画素sp(1,1,1)の光透過率の方がサブ画素sp(1,1,2)の光透過率より高くなる。このため、サブ画素sp(1,1,1)の輝度の方がサブ画素sp(1,1,2)の輝度より高く表示される。同様に、画素p(2,1)のサブ画素sp(2,1,1)の輝度の方がサブ画素sp(2,1,2)の輝度より高く表示される。画素p(1,2)のサブ画素sp(1,2,2)の輝度の方がサブ画素sp(1,2,1)の輝度より高く表示される。画素p(2,2)のサブ画素sp(2,2,2)の輝度の方がサブ画素sp(2,2,1)の輝度より高く表示される。なお、図3において、「-」は、Lフレーム時、表示信号線Sm-nまたはSm-(n+1)から供給される表示信号線の電位が負極性であることを表し、「+」は、Lフレーム時、表示信号線Sm-nまたはSm-(n+1)から供給される表示信号線の電位が正極性であることを表している。
 次に、L+1フレームの動作について図3と図4を用いて説明する。図4において、時刻t0b以降が、L+1フレームのタイミングチャートである。L+1フレームの動作は、Lフレーム時の電位と逆の極性になるように制御部21により制御されているので、図4のように輝度の関係は、Lフレームのときと同じである。
 この結果、2D表示時の各画素のサブ画素の輝度は、図5のような関係になる。図5は、サブ画素の輝度の配列を説明する図である。図5のように、例えば、6行6列の画素配列において、1行1列の画素p(1,1)のサブ画素sp(1,1,1)が明るい輝度であり、サブ画素sp(1,1,2)は暗い輝度であり、2行1列の画素p(2,1)のサブ画素sp(2,1,1)が明るい輝度であり、サブ画素sp(2,1,2)は暗い輝度である。
[第1実施形態における3D駆動時の動作説明]
 次に、画素p(1,1)、p(1,2)、p(2,1)およびp(2,2)についてLフレーム時の3D動作を、図6と図7とを用いて説明する。図6は、本実施形態における3D表示時の画素部22の等価回路の一例を説明する図である。図7は、本実施形態における3D表示時のタイミングチャートである。
 図3と図6の回路構成は同じであり、2D表示時と3D表示時で異なるのは、走査線G-(n+1)、G-(n+2)およびG-(n+3)の各スイッチング素子をオン状態にするタイミングと、補助容量線CSa-n、CSb-n、CSa-(n+1)およびCSb-(n+1)に印加する信号の極性と信号を印加するタイミングである。図7において、「-」は、Lフレーム時、スイッチング素子がオン状態の時に液晶容量に印加される電位が負極性であることを表し、「+」は、Lフレーム時、スイッチング素子がオン状態の時に液晶容量に印加される電位が正極性であることを表している。
 制御部21は、表示信号線Sm-nの信号を+Vsに制御することで、サブ画素sp(1,1,1)、sp(1,1,2)、sp(2,1,1)およびsp(2,1,2)の各スイッチング素子T1-11、T1-12、T2-11およびT2-12の各ソース電極に表示信号線Sm-nから+Vsを供給する(図7、時刻t0aまで)。また、制御部21は、表示信号線Sm-(n+1)の信号を-Vsに制御することで、サブ画素sp(1,2,1)、sp(1,2,2)、sp(2,2,1)およびsp(2,2,2)の各スイッチング素子T1-21、T1-22、T2-21およびT2-22の各ソース電極に表示信号線Sm-(n+1)から-Vsを供給する(図7、時刻t0aまで)。また、制御部21は、補助容量線CSa-nとCSa-(n+1)に電位+Vcsを供給し、補助容量線CSb-nとCSb-(n+1)に電位-Vcsを供給する(図7、時刻t0aまで)。なお、補助容量線CSa-n、CSa-(n+1)、CSb-n、およびCSb-(n+1)に供給する電位は、例えば+Vcs=+1[V]、-Vcs=-1[V]である。
 次に、制御部21は、表示信号線Sm-nの信号を-Vsに制御することで、サブ画素sp(1,1,1)、sp(1,1,2)、sp(2,1,1)およびsp(2,1,2)の各スイッチング素子T1-11、T1-12、およびT2-11およびT2-12の各ソース電極に表示信号線Sm-nから-Vsを供給する。また、制御部21は、表示信号線Sm-(n+1)の信号を+Vsに制御することで、サブ画素sp(1,2,1)、sp(1,2,2)、sp(2,2,1)およびsp(2,2,2)の各スイッチング素子T1-21、T1-22、T2-21およびT2-22の各ソース電極に表示信号線Sm-(n+1)から+Vsを供給する(図7、時刻t1a)。
 次に、制御部21は、走査線G-nを時刻t1a~t2aの期間(1画素分の書き換え期間)、Hレベルに制御することで、スイッチング素子T1-11、T1-12、T1-21およびT1-22をオン状態にし、液晶容量cl1-11とcl1-12とに表示信号線Sm-nから電位-Vsを供給し、cl1-21とcl1-22とに表示信号線Sm-(n+1)から電位+Vsを供給する。
 また、制御部21は、走査線G-(n+1)を時刻t1a~t2aの期間、Hレベルに制御することで、スイッチング素子T2-11、T2-12、T2-21およびT2-22をオン状態にし、液晶容量cl2-11とcl2-12とに表示信号線Sm-nから電位-Vsを供給し、cl2-21とcl2-22とに表示信号線Sm-(n+1)から電位+Vsを供給する。
 このため、補助容量C1-11には、表示信号線Sm-nの電位-Vsと補助容量線CSa-nの電位+Vcsとの電位差-Vs-Vcsが発生し、補助容量C1-12には、表示信号線Sm-nの電位-Vsと補助容量線CSb-nの電位-Vcsとの電位差-Vs+Vcsが発生する。
 補助容量C1-21には、表示信号線Sm-(n+1)の電位+Vsと補助容量線CSa-nの電位+Vcsとの電位差+Vs-Vcsが発生し、補助容量C1-22には、表示信号線Sm-(n+1)の電位+Vsと補助容量線CSb-nの電位-Vcsとの電位差+Vs+Vcsが発生する。
 補助容量C2-11には、表示信号線Sm-nの電位-Vsと補助容量線CSa-(n+1)の電位+Vcsとの電位差-Vs-Vcsが発生し、補助容量C2-12には、表示信号線Sm-nの電位-Vsと補助容量線CSb-(n+1)の電位-Vcsとの電位差-Vs+Vcsが発生する。
 補助容量C2-21には、表示信号線Sm-(n+1)の電位+Vsと補助容量線CSa-(n+1)の電位+Vcsとの電位差+Vs-Vcsが発生し、補助容量C2-22には、表示信号線Sm-(n+1)の電位+Vsと補助容量線CSb-(n+1)の電位-Vcsとの電位差+Vs+Vcsが発生する。
 次に、制御部21は、走査線G-nをLレベルに制御することで、スイッチング素子T1-11、T1-12、T1-21およびT1-22をオフ状態にし、走査線G-(n+1)をLレベルに制御することで、スイッチング素子T2-11、T2-12、T2-21およびT2-22をオフ状態にする(図7、時刻t2a)。
 次に、制御部21は、表示信号線Sm-nの信号を+Vsに制御し、表示信号線Sm-(n+1)の信号を-Vsに制御する(図7、時刻t3a)。
 次に、制御部21は、走査線G-(n+2)を時刻t4a~t5aの期間(1画素分の書き換え期間)、Hレベルに制御することで、スイッチング素子T3-11、T3-12、T3-21およびT3-22をオン状態にし、液晶容量cl3-11とcl3-12とに表示信号線Sm-nから電位+Vsを供給し、液晶容量cl3-21とcl3-22とに表示信号線Sm-(n+1)から電位-Vsを供給する。
 また、制御部21は、走査線G-(n+3)を時刻t4a~t5aの期間、Hレベルに制御することで、スイッチング素子T4-11とT4-21とをオン状態にし、液晶容量cl4-11に表示信号線Sm-nから電位+Vsを供給し、液晶容量cl4-21に表示信号線Sm-(n+1)から電位-Vsを供給する。
 次に、制御部21は、走査線G-(n+2)をLレベルに制御することで、スイッチング素子T3-11、T3-12、T3-21およびT3-22をオフ状態にし、走査線G-(n+3)をLレベルに制御することで、スイッチング素子T4-11とT4-21とをオフ状態にする(図7、時刻t5a)。さらに、制御部21は、補助容量線CSa-nの電位を+Vcsから-Vcsに切り替え、補助容量線CSa-(n+1)の電位を+Vcsから-Vcsに切り替え、補助容量線CSb-nの電位を-Vcsから+Vcsに切り替え、補助容量線CSb-(n+1)の電位を-Vcsから+Vcsに切り替える(図7、時刻t5a)。
 補助容量線CSa-nの電位が+Vcsから-Vcsに変化したため、液晶容量cl1-11に保持されていた電位は、補助容量C1-11に基づきΔVpxだけ下がり、-Vsから-Vs-ΔVpxに変化し、液晶容量cl1-21に保持されていた電位は、補助容量C1-21に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化する。
 また、補助容量線CSa-(n+1)の電位が+Vcsから-Vcsに変化したため、液晶容量cl2-11に保持されていた電位は、補助容量C2-11に基づきΔVpxだけ下がり、-Vsから-Vs-ΔVpxに変化し、液晶容量cl2-21に保持されていた電位は、補助容量C2-21に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化する。
 また、補助容量線CSb-nの電位が-Vcsから+Vcsに変化したため、液晶容量cl1-12に保持されていた電位は、補助容量C1-12に基づきΔVpxだけ上がり、-Vsから-Vs-ΔVpxに変化し、液晶容量cl1-22に保持されていた電位は、補助容量C1-22に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化する。
 また、補助容量線CSb-(n+1)の電位が-Vcsから+Vcsに変化したため、液晶容量cl2-12に保持されていた電位は、補助容量C2-12に基づきΔVpxだけ上がり、-Vsから-Vs-ΔVpxに変化し、液晶容量cl2-22に保持されていた電位は、補助容量C2-22に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化する。
 以下、サブ画素sp(3,1,1)とsp(3,1,2)も同様に制御され、液晶容量cl3-11に保持されていた電位は、補助容量C3-11に基づきΔVpxだけ上がり、+Vsから+Vs+ΔVpxに変化し、液晶容量cl3-12に保持されていた電位は、補助容量C3-12に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化する(図7の時刻t8a)。
 sp(3,2,1)とsp(3,2,2)も同様に制御され、液晶容量cl3-21に保持されていた電位は、補助容量C3-21に基づきΔVpxだけ上がり、-Vsから-Vs+ΔVpxに変化し、液晶容量cl3-22に保持されていた電位は、補助容量C3-22に基づきΔVpxだけ下がり、-Vsから-Vs-ΔVpxに変化する(図7の時刻t8a)。
 時刻t5a以降、サブ画素sp(1,1,1)、sp(1,1,2)、sp(1,2,1)、sp(1,2,2)、sp(2,1,1)、sp(2,1,2)、sp(2,2,1)およびsp(2,2,2)の各液晶容量cl1-11、cl1-12、cl1-21、cl1-22、cl2-11、cl2-12、cl2-21およびcl2-22には、時刻t5a時点の電位が次のフレームまで保持される。
 この結果、図7のように画素p(1,1)のサブ画素sp(1,1,1)の電位の方がサブ画素sp(1,1,2)の電位よりマイナス方向に高いため、サブ画素sp(1,1,1)の光透過率の方がサブ画素sp(1,1,2)の光透過率より高くなる。このため、サブ画素sp(1,1,1)の輝度の方がサブ画素sp(1,1,2)の輝度より高く表示される。同様に、画素p(2,1)のサブ画素sp(2,1,1)の輝度の方がサブ画素sp(2,1,2)の輝度より高く表示され、画素p(1,2)のサブ画素sp(1,2,2)の輝度の方がサブ画素sp(1,2,1)の輝度より高く表示され、画素p(2,2)のサブ画素sp(2,2,2)の輝度の方がサブ画素sp(2,2,1)の輝度より高く表示される。
 また、L+1フレーム時の動作は、図7において、時刻t0b以降が、L+1フレームのタイミングチャートである。L+1フレームの動作は、Lフレーム時の電位と逆の極性になるように制御部21により制御されているので、図7のように輝度の関係は、Lフレームのときと同じである。
 本実施形態においては、2D表示を行う1ライン選択駆動の場合、図4のように、制御部21は、隣り合う補助容量線CSb-nとCSa-(n+1)とに同じ極性の信号を供給する。3D表示を行う2ライン選択駆動の場合、図7のように、隣り合う補助容量線CSb-nとCSa-(n+1)とに異なる極性の信号を供給している。
 この結果、3D表示を行う2ライン選択駆動時の各画素のサブ画素の輝度は、2D表示を行う1ライン選択駆動時と同様に図5のような関係になる。このように、画素間、例えば、1行1列の画素p(1,1)と2行1列の画素p(2,1)の間に、2本の補助容量線を備え、隣り合う補助容量線CSb-nとCSa-(n+1)とに異なる極性の信号を供給し、液晶容量に表示信号線から供給された信号の電位を書き込んだ後、次の2ライン選択用のゲート信号によるスイッチング素子をオン状態にするタイミングで、サブ画素の各補助容量に接続されている各補助容量線の電位をそれぞれ書き込んだ時の電位とは異なる極性に切り替えるようにしたので、3D表示用の2フレーム選択駆動においても、隣接するサブ画素間の輝度が同じにならずに良好な階調表示を行うことが可能になる。
 図8Aおよび8Bは、本実施形態における第1ガラス基板3上のレイアウトの例を説明する図であり、図8Aは平面図であり、図8Bは断面図である。図8Aおよび8Bのように、画素p-nについて、第1ガラス基板3上には、走査線G-nと、スイッチング素子T1-n(TFT(A))~T2-n(TFT(B))と、補助容量線CSa-nとCSb-nと、画素電極101~102と、補助容量C1-11(CsA)~C1-12(CsB)とが形成されている。図8Aおよび8Bにおいて、画素電極101には、スイッチング素子T1-nのドレイン電極が接続され、スイッチング素子T1-nのゲート電極は走査線G-nに接続されて形成されている。また、画素電極102には、スイッチング素子T2-nのドレイン電極が接続され、スイッチング素子T2-nのゲート電極は走査線G-nに接続されて形成されている。また、スイッチング素子T1-n(TFT(A))のドレイン電極に接続されている補助容量C1-11(CsA)は、補助容量線CSa-nと画素電極101とが、絶縁膜を介して重なった領域に形成されている。さらに、スイッチング素子T2-n(TFT(B))のドレイン電極に接続されている補助容量C1-12(CsB)は、補助容量線CSb-nと画素電極102とが、絶縁膜を介して重なった領域に形成されている。
 以上のように、本実施形態によれば、1フレーム駆動でも2フレーム選択駆動においても、隣接するサブ画素間の輝度が同じにならずに良好な階調表示を行うことが可能になる。
 [第2実施形態]
 第2実施形態について、図9~図13を用いて説明する。図9は、本実施形態における2D表示時の画素部22の等価回路の一例を説明する図である。第1実施形態では、図3または図6のように、画素p(2,1)のサブ画素sp(2,1,2)と画素p(3,1)のサブ画素sp(3,1,1)の間に2本の補助容量線Csb-(n+1)とCSa-(n+1)とが配置されていたが、本実施形態では図9のように、1本の補助容量線Csc-2で2本の補助容量線Csb-(n+1)とCSa-(n+2)を共用している。
 まず、画素p(1,1)aのサブ画素sp(1,1,1)aとサブ画素sp(1,1,2)との構成を説明する。スイッチング素子T1-11とT1-12のゲート電極は、共通の走査線G-nに接続され、スイッチング素子T1-11とT1-12のソース電極は、表示信号線Sm-nに接続されている。スイッチング素子T1-11のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl1-11の一端に接続され且つ補助容量C1-11の一端の端子に接続され、液晶素子cl1-11の他方は、対向電極6を介して接地され、補助容量C1-11の他端は、補助容量線CSc-1に接続されている。
 スイッチング素子T1-12のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl1-12の一端に接続され且つ補助容量C1-12の一端の端子に接続され、液晶素子cl1-12の他方は、対向電極6を介して接地され、補助容量C1-12の他端は、補助容量線CSd1-1に接続されている。また、液晶素子cl1-11およびcl1-12は、対向電極6と画素電極との間に挟持されている液晶部分により構成されている。
 次に、画素p(1,2)aのサブ画素sp(1,2,1)aとサブ画素sp(1,2,2)との構成を説明する。スイッチング素子T1-21とT1-22のゲート電極は、共通の走査線G-nに接続され、スイッチング素子T1-21とT1-22のソース電極は、表示信号線Sm-(n+1)に接続されている。スイッチング素子T1-21のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl1-21の一端に接続され且つ補助容量C1-21の一端の端子に接続され、液晶素子cl1-21の他方は、対向電極6を介して接地され、補助容量C1-21の他端は、補助容量線CSc-1に接続されている。スイッチング素子T1-22のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl1-22の一端に接続され且つ補助容量C1-22の一端の端子に接続され、液晶素子cl1-22の他方は、対向電極6を介して接地され、補助容量C1-22の他端は、補助容量線CSd1-1に接続されている。また、液晶素子cl1-21およびcl1-22は、対向電極6と画素電極との間に挟持されている液晶部分により構成されている。
 次に、画素p(2,1)aのサブ画素sp(2,1,1)とサブ画素sp(2,1,2)aとの構成を説明する。スイッチング素子T2-11とT2-12のゲート電極は、共通の走査線G-(n+1)に接続され、スイッチング素子T2-11とT2-12のソース電極は、表示信号線Sm-nに接続されている。スイッチング素子T2-11のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl2-11の一端に接続され且つ補助容量C2-11の一端の端子に接続され、液晶素子cl2-11の他方は、対向電極6を介して接地され、補助容量C2-11の他端は、補助容量線CSd2-1に接続されている。スイッチング素子T2-12のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl2-12の一端に接続され且つ補助容量C2-12の一端の端子に接続され、液晶素子cl2-12の他方は、対向電極6を介して接地され、補助容量C2-12の他端は、補助容量線CSc-2に接続されている。また、液晶素子cl2-11およびcl2-12は、対向電極6と画素電極との間に挟持されている液晶部分により構成されている。
 次に、画素p(2,2)aのサブ画素sp(2,2,1)とサブ画素sp(2,2,2)aとの構成を説明する。スイッチング素子T2-21とT2-22のゲート電極は、共通の走査線G-(n+1)に接続され、スイッチング素子T2-21とT2-22のソース電極は、表示信号線Sm-(n+1)に接続されている。スイッチング素子T2-21のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl2-21の一端に接続され且つ補助容量C2-21の一端の端子に接続され、液晶素子cl2-21の他方は、対向電極6を介して接地され、補助容量C2-21の他端は、補助容量線CSd2-1に接続されている。スイッチング素子T2-22のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl2-22の一端に接続され且つ補助容量C2-22の一端の端子に接続され、液晶素子cl2-22の他方は、対向電極6を介して接地され、補助容量C2-22の他端は、補助容量線CSc-2に接続されている。また、液晶素子cl2-21およびcl2-22は、対向電極6と画素電極との間に挟持されている液晶部分により構成されている。
 次に、画素p(3,1)aのサブ画素sp(3,1,1)aとサブ画素sp(3,1,2)との構成を説明する。スイッチング素子T3-11とT3-12のゲート電極は、共通の走査線G-(n+2)に接続され、スイッチング素子T3-11とT3-12のソース電極は、表示信号線Sm-nに接続されている。スイッチング素子T3-11のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl3-11の一端に接続され且つ補助容量C3-11の一端の端子に接続され、液晶素子cl3-11の他方は、対向電極6を介して接地され、補助容量C3-11の他端は、補助容量線CSc-2に接続されている。スイッチング素子T3-12のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl3-12の一端に接続され且つ補助容量C3-12の一端の端子に接続され、液晶素子cl3-12の他方は、対向電極6を介して接地され、補助容量C3-12の他端は、補助容量線CSd1-2に接続されている。また、液晶素子cl3-11およびcl3-12は、対向電極6と画素電極との間に挟持されている液晶部分により構成されている。
 次に、画素p(3,2)aのサブ画素sp(3,2,1)aとサブ画素sp(3,2,2)との構成を説明する。スイッチング素子T3-21とT3-22のゲート電極は、共通の走査線G-(n+2)に接続され、スイッチング素子T3-21とT3-22のソース電極は、表示信号線Sm-(n+1)に接続されている。スイッチング素子T3-21のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl3-21の一端に接続され且つ補助容量C3-21の一端の端子に接続され、液晶素子cl3-21の他方は、対向電極6を介して接地され、補助容量C3-21の他端は、補助容量線CSc-2に接続されている。スイッチング素子T3-22のドレイン電極は、画素電極を介して容量成分を有する液晶素子cl3-22の一端に接続され且つ補助容量C3-22の一端の端子に接続され、液晶素子cl3-22の他方は、対向電極6を介して接地され、補助容量C3-22の他端は、補助容量線CSd1-2に接続されている。また、液晶素子cl3-21およびcl3-22は、対向電極6と画素電極との間に挟持されている液晶部分により構成されている。
[第2実施形態における2D駆動時の動作説明]
 次に、画素p(1,1)a、p(1,2)a、p(2,1)a、p(2,2)a、p(3,1)a、およびp(3,2)aについてLフレーム時の2D動作を、図9と図10を用いて説明する。図10は、本実施形態における2D表示時のタイミングチャートである。
 制御部21は、表示信号線Sm-nの信号を+Vsに制御することで、サブ画素sp(1,1,1)a、sp(1,1,2)、sp(2,1,1)およびsp(2,1,2)aの各スイッチング素子T1-11、T1-12、T2-11およびT2-12の各ソース電極に表示信号線Sm-nから+Vsを供給する(図10、時刻t0aまで)。また、制御部21は、表示信号線Sm-(n+1)の信号を-Vsに制御することで、サブ画素sp(1,2,1)a、sp(1,2,2)、sp(2,2,1)およびsp(2,2,2)aの各スイッチング素子T1-21、T1-22、T2-21およびT2-22の各ソース電極に表示信号線Sm-(n+1)から-Vsを供給する(図10、時刻t0aまで)。また、制御部21は、補助容量線CSc-1とCSc-2に電位+Vcsを供給し、補助容量線CSd1-1とCSd2-1とCSd1-2に電位-Vcsを供給する(図10、時刻t0aまで)。なお、補助容量線CSc-1、CSc-2、CSd1-1、CSd2-1、およびCSd1-2に供給する電位は、例えば+Vcs=+1[V]、-Vcs=-1[V]である。
 次に、制御部21は、表示信号線Sm-nの信号を-Vsに制御することで、サブ画素sp(1,1,1)a、sp(1,1,2)、sp(2,1,1)およびsp(2,1,2)aの各スイッチング素子T1-11、T1-12、T2-11およびT2-12の各ソース電極に表示信号線Sm-nから-Vsを供給する。また、制御部21は、表示信号線Sm-(n+1)の信号を+Vsに制御することで、サブ画素sp(1,2,1)a、sp(1,2,2)、sp(2,2,1)およびsp(2,2,2)aの各スイッチング素子T1-21、T1-22、T2-21およびT2-22の各ソース電極に表示信号線Sm-(n+1)から+Vsを供給する。
 次に、制御部21は、走査線G-nを時刻t1a~t2aの期間(1画素分の書き換え期間)、Hレベル(Vhigh)に制御することで、スイッチング素子T1-11、T1-12、T1-21およびT1-22をオン状態(Vgon)にし、液晶容量cl1-11とcl1-12に表示信号線Sm-nから電位-Vsを供給し、cl1-21およびcl1-22に表示信号線Sm-(n+1)から電位+Vsを供給する。
 このため、補助容量C1-11には、表示信号線Sm-nの電位-Vsと補助容量線CSc-1の電位+Vcsとの電位差-Vs-Vcsが発生し、補助容量C1-12には、表示信号線Sm-nの電位-Vsと補助容量線CSd1-1の電位-Vcsとの電位差-Vs+Vcsが発生する。補助容量C1-21には、表示信号線Sm-(n+1)の電位+Vsと補助容量線CSc-1の電位+Vcsとの電位差+Vs-Vcsが発生し、補助容量C1-22には、表示信号線Sm-(n+1)の電位+Vsと補助容量線CSd1-1の電位-Vcsとの電位差+Vs+Vcsが発生する。
 時刻t1a~t2aの期間、制御部21は、走査線G-(n+1)をLレベル(Vlow)に制御することで、スイッチング素子T2-11、T2-12、T2-21およびT2-22をオフ状態(Vgoff)にする。
 なお、走査線G-nの出力がHレベルになる期間は、液晶装置で用いる走査線の総数に応じて設定され、例えば、Full-HD対応の液晶装置においては、1/(60×1080)(秒)に相当する。なお、ゼロ階調から最大階調を表示した場合の表示信号線Sm-nの信号レンジは、+Vs~-Vsであり、例えば、正極性側の電位+5V~+1V、負極性側の電位-5V~-1Vである。この信号レベルは、用いる液晶容量の特性に合わせるようにしてもよい。
 次に、制御部21は、走査線G-nをLレベルに制御することで、スイッチング素子T1-11、T1-12、T1-21およびT1-22をオフ状態にする(図10、時刻t2a)。
 次に、制御部21は、表示信号線Sm-nの信号を+Vsに制御しつつ、補助容量線CSc-1の電位を+Vcsから-Vcsに切り替える(図10、時刻t3a)。補助容量線CSc-1の電位が+Vcsから-Vcsに変化したため、液晶容量cl1-11に保持されていた電位は、補助容量C1-11に基づきΔVpxだけ下がり、-Vsから-Vs-ΔVpxに変化し、液晶容量cl1-21に保持されていた電位は、補助容量C1-21に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化する。
 次に、制御部21は、走査線G-(n+1)を時刻t4a~t5aの期間(1画素分の書き換え期間)、Hレベルに制御することで、スイッチング素子T2-11、T2-12、T2-21およびT2-22をオン状態にし、液晶容量cl2-11とcl2-12に表示信号線Sm-nから電位+Vsを供給し、cl2-21およびcl2-22に表示信号線Sm-(n+1)から電位-Vsを供給する。
 このため、補助容量C2-11には、表示信号線Sm-nの電位+Vsと補助容量線CSd2-1の電位-Vcsとの電位差+Vs+Vcsが発生し、補助容量C2-12には、表示信号線Sm-nの電位+Vsと補助容量線CSc-2の電位+Vcsとの電位差+Vs-Vcsが発生する。補助容量C2-21には、表示信号線Sm-(n+1)の電位-Vsと補助容量線CSd2-1の電位-Vcsとの電位差-Vs+Vcsが発生し、補助容量C2-22には、表示信号線Sm-(n+1)の電位-Vsと補助容量線CSd2-1の電位+Vcsとの電位差-Vs-Vcsが発生する。
 次に、制御部21は、走査線G-(n+1)をLレベルに制御することで、スイッチング素子T2-11、T2-12、T2-21およびT2-22をオフ状態にする(図10、時刻t5a)。
 次に、制御部21は、表示信号線Sm-nの信号を-Vsに制御しつつ、補助容量線CSd1-1の電位を-Vcsから+Vcsに切り替え、補助容量線CSd2-1の電位を-Vcsから+Vcsに切り替える(図10、時刻t6a)。
 補助容量線CSd1-1の電位が-Vcsから+Vcsに変化したため、液晶容量cl1-12に保持されていた電位は、補助容量C1-12に基づきΔVpxだけ上がり、-Vsから-Vs+ΔVpxに変化し、液晶容量cl1-22に保持されていた電位は、補助容量C1-22に基づきΔVpxだけ上がり、+Vsから+Vs+ΔVpxに変化する。
 補助容量線CSd2-1の電位が-Vcsから+Vcsに変化したため、液晶容量cl2-11に保持されていた電位は、補助容量C2-11に基づきΔVpxだけ上がり、+Vsから+Vs+ΔVpxに変化し、液晶容量cl2-21に保持されていた電位は、補助容量C2-21に基づきΔVpxだけ上がり、-Vsから-Vs+ΔVpxに変化する。
 次に、制御部21は、走査線G-(n+2)を時刻t7a~t8aの期間(1画素分の書き換え期間)、Hレベルに制御することで、スイッチング素子T3-11、T3-12、T3-21およびT3-22をオン状態にし、液晶容量cl3-11とcl3-12に表示信号線Sm-nから電位-Vsを供給し、液晶容量cl3-21およびcl3-22に表示信号線Sm-(n+1)から電位+Vsを供給する。
 次に、制御部21は、走査線G-(n+2)をLレベルに制御することで、スイッチング素子T3-11、T3-12、T3-21およびT3-22をオフ状態にする(図10、時刻t8a)。
 次に、制御部21は、表示信号線Sm-nの信号を+Vsに制御しつつ、補助容量線CSc-2の電位を+Vcsから-Vcsに切り替える(図10、時刻t9a)。補助容量線CSc-2の電位が+Vcsから-Vcsに変化したため、液晶容量cl2-12に保持されていた電位は、補助容量C2-12に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化し、液晶容量cl2-22に保持されていた電位は、補助容量C2-22に基づきΔVpxだけ下がり、-Vsから-Vs-ΔVpxに変化する。
 また、液晶容量cl3-11には、表示信号線Sm-nの電位+Vsの電位差+Vsが発生し、液晶容量cl3-21には、表示信号線Sm-(n+1)の電位-Vsの電位差-Vsが発生する。
 次に、制御部21は、表示信号線Sm-nの信号を-Vsに制御しつつ、補助容量線CSd1-2の電位を-Vcsから+Vcsに切り替える(図10、時刻t12a)。
 このため、補助容量線CSd1-2の電位が-Vcsから+Vcsに変化したため、液晶容量cl3-12に保持されていた電位は、補助容量C3-12に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化し、液晶容量cl3-22に保持されていた電位は、補助容量C3-22に基づきΔVpxだけ上がり、-Vsから-Vs+ΔVpxに変化する。
 この結果、図10のように、画素p(1,1)aのサブ画素sp(1,1,1)aの電位の方がサブ画素sp(1,1,2)の電位よりマイナス方向に高いため、サブ画素sp(1,1,1)aの光透過率の方がサブ画素sp(1,1,2)の光透過率より高くなる。このため、サブ画素sp(1,1,1)aの輝度の方がサブ画素sp(1,1,2)の輝度より高く表示される。同様に、画素p(2,1)aのサブ画素sp(2,1,1)の輝度の方がサブ画素sp(2,1,2)aの輝度より高く表示され、画素p(1,2)aのサブ画素sp(1,2,2)の輝度の方がサブ画素sp(1,2,1)aの輝度より高く表示され、画素p(2,2)aのサブ画素sp(2,2,2)aの輝度の方がサブ画素sp(2,2,1)の輝度より高く表示される。
 なお、図9において、「-」は、Lフレーム時、表示信号線Sm-nまたはSm-(n+1)から供給される表示信号線の電位が負極性であることを表し、「+」は、Lフレーム時、表示信号線Sm-nまたはSm-(n+1)から供給される表示信号線の電位が正極性であることを表している。
 時刻t12a以降、サブ画素sp(1,1,1)a、sp(1,1,2)、sp(1,2,1)a、sp(1,2,2)、sp(2,1,1)、sp(2,1,2)a、sp(2,2,1)、sp(2,2,2)a、sp(3,1,1)a、およびsp(3,2,1)aの各液晶容量cl1-11、cl1-12、cl1-21、cl1-22、cl2-11、cl2-12、cl2-21、cl2-22、cl3-21、およびcl3-21には、時刻t12a時点の電位が次のフレームまで保持される。
 次に、L+1フレームの動作について図9と図10を用いて説明する。図10において、時刻t0b以降が、L+1フレームのタイミングチャートである。L+1フレームの動作は、Lフレーム時の電位と逆の極性になるように制御部21により制御されているので、図10のように輝度の関係は、Lフレームのときと同じである。
 この結果、2D表示時の各画素のサブ画素の輝度は、第1実施形態と同様に、図5のような関係になる。図5のように、例えば、6行6列の画素配置において、1行1列の画素p(1、1)aのサブ画素sp(1,1,1)aが明るい輝度であり、サブ画素sp(1,1,2)は暗い輝度であり、2行1列の画素p(2、1)aのサブ画素sp(2,1,1)aが明るい輝度であり、サブ画素sp(2,1,2)は暗い輝度である。
[第2実施形態における3D駆動時の動作説明]
 次に、画素p(1,1)a、p(1,2)a、p(2,1)a、およびp(2,2)aについてLフレーム時の3D動作を、図11と図12とを用いて説明する。図11は、本実施形態における3D表示時の画素部22の等価回路の一例を説明する図である。図12は、本実施形態における3D表示時のタイミングチャートである。
 図11と図9の回路構成は同じであり、2D表示時と3D表示時で異なるのは、走査線G-(n+1)、G-(n+2)およびG-(n+3)の各スイッチング素子をオン状態にするタイミングと、補助容量線CSc-1、CSd1-1、CSd2-1およびCSc-2に印加する信号の極性と信号を印加するタイミングである。図11において、「-」は、Lフレーム時、スイッチング素子がオン状態の時に液晶容量に印加される電位が負極性であることを表し、「+」は、Lフレーム時、スイッチング素子がオン状態の時に液晶容量に印加される電位が正極性であることを表している。
 制御部21は、表示信号線Sm-nの信号を+Vsに制御することで、サブ画素sp(1,1,1)a、sp(1,1,2)、sp(2,1,1)およびsp(2,1,2)aの各スイッチング素子T1-11、T1-12、T2-11およびT2-12の各ソース電極に表示信号線Sm-nから+Vsを供給する(図12、時刻t0aまで)。また、制御部21は、表示信号線Sm-(n+1)の信号を-Vsに制御することで、サブ画素sp(1、2,1)a、sp(1,2,2)、sp(2,1,1)およびsp(2,2,2)aの各スイッチング素子T1-21、T1-22、T2-21およびT2-22の各ソース電極に表示信号線Sm-(n+1)から-Vsを供給する(図12、時刻t0aまで)。また、制御部21は、補助容量線CSc-1とCSd2-1に電位+Vcsを供給し、補助容量線CSd1-1とCSc-2に電位-Vcsを供給する(図12、時刻t0aまで)。なお、補助容量線CSc-1、CSc-2、CSd1-1、およびCSd2-2に供給する電位は、例えば+Vcs=+1[V]、-Vcs=-1[V]である。
 次に、制御部21は、表示信号線Sm-nの信号を-Vsに制御することで、サブ画素sp(1,1,1)a、sp(1,1,2)、sp(2,1,1)およびsp(2,1,2)aの各スイッチング素子T1-11、T1-12、T2-11およびT2-12の各ソース電極に表示信号線Sm-nから-Vsを供給する。また、制御部21は、表示信号線Sm-(n+1)の信号を+Vsに制御することで、サブ画素sp(1、2,1)a、sp(1,2,2)、sp(2,1,1)およびsp(2,2,2)aの各スイッチング素子T1-21、T1-22、T2-21およびT2-22の各ソース電極に表示信号線Sm-(n+1)から+Vsを供給する(図12、時刻t1a)。
 次に、制御部21は、走査線G-nを時刻t1a~t2aの期間(1画素分の書き換え期間)、Hレベルに制御することで、スイッチング素子T1-11、T1-12、T1-21およびT1-22をオン状態にし、液晶容量cl1-11とcl1-12とに表示信号線Sm-nから電位-Vsを供給し、液晶容量cl1-21とcl1-22とに表示信号線Sm-(n+1)から電位+Vsを供給する。
 また、制御部21は、走査線G-(n+1)を時刻t1a~t2aの期間、Hレベルに制御することで、スイッチング素子T2-11、T2-12、T2-21およびT2-22をオン状態にし、液晶容量cl2-11とcl2-12とに表示信号線Sm-nから電位-Vsを供給し、液晶容量cl2-21とcl2-22とに表示信号線Sm-(n+1)から電位+Vsを供給する。
 このため、補助容量C1-11には、表示信号線Sm-nの電位-Vsと補助容量線CSc-1の電位+Vcsとの電位差-Vs-Vcsが発生し、補助容量C1-12には、表示信号線Sm-nの電位-Vsと補助容量線CSd1-1の電位-Vcsとの電位差-Vs+Vcsが発生する。
 補助容量C1-21には、表示信号線Sm-(n+1)の電位+Vsと補助容量線CSc-1の電位+Vcsとの電位差+Vs-Vcsが発生し、補助容量C1-22には、表示信号線Sm-(n+1)の電位+Vsと補助容量線CSd1-1の電位-Vcsとの電位差+Vs+Vcsが発生する。
 補助容量C2-11には、表示信号線Sm-nの電位-Vsと補助容量線CSd2-1の電位+Vcsとの電位差-Vs-Vcsが発生し、補助容量C2-12には、表示信号線Sm-nの電位-Vsと補助容量線CSc-2の電位-Vcsとの電位差-Vs+Vcsが発生する。
 補助容量C2-21には、表示信号線Sm-(n+1)の電位+Vsと補助容量線CSd2-1の電位+Vcsとの電位差+Vs-Vcsが発生し、補助容量C2-22には、表示信号線Sm-(n+1)の電位+Vsと補助容量線CSc-2の電位-Vcsとの電位差+Vs+Vcsが発生する。
 次に、制御部21は、走査線G-nをLレベルに制御することで、スイッチング素子T1-11、T1-12、T1-21およびT1-22をオフ状態にし、走査線G-(n+1)をLレベルに制御することで、スイッチング素子T2-11、T2-12、T2-21およびT2-22をオフ状態にする(図12、時刻t2a)。
 次に、制御部21は、表示信号線Sm-nの信号を+Vsに制御し、表示信号線Sm-(n+1)の信号を-Vsに制御する(図12、時刻t3a)。
 次に、制御部21は、走査線G-(n+2)を時刻t4a~t5aの期間(1画素分の書き換え期間)、Hレベルに制御することで、スイッチング素子T3-11、T3-12、T3-21およびT3-22をオン状態にし、液晶容量cl3-11とcl3-12とに表示信号線Sm-nから電位+Vsを供給し、液晶容量cl3-21とcl3-22とに表示信号線Sm-(n+1)から電位-Vsを供給する。
 また、制御部21は、走査線G-(n+3)を時刻t4a~t5aの期間、Hレベルに制御することで、スイッチング素子T4-11とT4-21とをオン状態にし、液晶容量cl4-11に表示信号線Sm-nから電位+Vsを供給し、液晶容量cl4-21に表示信号線Sm-(n+1)から電位-Vsを供給する。
 次に、制御部21は、走査線G-(n+2)をLレベルに制御することで、スイッチング素子T3-11、T3-12、T3-21およびT3-22をオフ状態にし、走査線G-(n+3)をLレベルに制御することで、スイッチング素子T4-11とT4-21とをオフ状態にする(図12、時刻t5a)。さらに、制御部21は、補助容量線CSc-1の電位を+Vcsから-Vcsに切り替え、補助容量線CSd2-1の電位を+Vcsから-Vcsに切り替え、補助容量線CSd1-1の電位を-Vcsから+Vcsに切り替え、補助容量線CSc-2の電位を-Vcsから+Vcsに切り替える(図12、時刻t5a)。
 補助容量線CSc-1の電位が+Vcsから-Vcsに変化したため、液晶容量cl1-11に保持されていた電位は、補助容量C1-11に基づきΔVpxだけ下がり、-Vsから-Vs-ΔVpxに変化し、液晶容量cl1-21に保持されていた電位は、補助容量C1-21に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化する。
 また、補助容量線CSd2-1の電位が+Vcsから-Vcsに変化したため、液晶容量cl2-11に保持されていた電位は、補助容量C2-11に基づきΔVpxだけ下がり、-Vsから-Vs-ΔVpxに変化し、液晶容量cl2-21に保持されていた電位は、補助容量C2-21に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化する。
 また、補助容量線CSd1-1の電位が-Vcsから+Vcsに変化したため、液晶容量cl1-12に保持されていた電位は、補助容量C1-12に基づきΔVpxだけ上がり、-Vsから-Vs-ΔVpxに変化し、液晶容量cl1-22に保持されていた電位は、補助容量C1-22に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化する。
 また、補助容量線CSc-2の電位が-Vcsから+Vcsに変化したため、液晶容量cl2-12に保持されていた電位は、補助容量C2-12に基づきΔVpxだけ上がり、-Vsから-Vs-ΔVpxに変化し、液晶容量cl2-22に保持されていた電位は、補助容量C2-22に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化する。
 以下、サブ画素sp(3,1,1)aとsp(3,1,2)も同様に制御され、液晶容量cl3-11に保持されていた電位は、補助容量C3-11に基づきΔVpxだけ上がり、+Vsから+Vs+ΔVpxに変化し、液晶容量cl3-12に保持されていた電位は、補助容量C3-12に基づきΔVpxだけ下がり、+Vsから+Vs-ΔVpxに変化する(図10、時刻t8a)。
 sp(3,2,1)aとsp(3,2,2)も同様に制御され、液晶容量cl3-21に保持されていた電位は、補助容量C3-21に基づきΔVpxだけ上がり、-Vsから-Vs+ΔVpxに変化し、液晶容量cl3-22に保持されていた電位は、補助容量C3-22に基づきΔVpxだけ下がり、-Vs-ΔVpxに変化する(図10,時刻t8a)。
 時刻t5a以降、サブ画素sp(1,1,1)a、sp(1,1,2)、sp(1,2,1)a、sp(1,2,2)、sp(2,1,1)、sp(2,1,2)a、sp(2,2,1)およびsp(2,2,2)aの各液晶容量cl1-11、cl1-12、cl1-21、cl1-22、cl2-11、cl2-12、cl2-21およびcl2-22には、時刻t5a時点の電位が次のフレームまで保持される。
 この結果、図12のように画素p(1,1)aのサブ画素sp(1,1,1)aの電位の方がサブ画素sp(1,1,2)の電位よりマイナス方向に高いため、サブ画素sp(1,1,1)aの光透過率の方がサブ画素sp(1,1,2)の光透過率より高くなる。このため、サブ画素sp(1,1,1)aの輝度の方がサブ画素sp(1,1,2)の輝度より高く表示される。同様に、画素p(2,1)aのサブ画素sp(2,1,1)aの輝度の方がサブ画素sp(2,1,2)の輝度より高く表示され、画素p(1,2)aのサブ画素sp(1,2,2)の輝度の方がサブ画素sp(1,2,1)aの輝度より高く表示され、画素p(2,2)aのサブ画素sp(2,2,2)aの輝度の方がサブ画素sp(2,2,1)の輝度より高く表示される。
 また、L+1フレーム時の動作は、図12において、時刻t0b以降が、L+1フレームのタイミングチャートである。L+1フレームの動作は、Lフレーム時の電位と逆の極性になるように制御部21により制御されているので、図12のように輝度の関係は、Lフレームのときと同じである。
 本実施形態においては、2D表示を行う1ライン選択駆動の場合、図12のように、制御部21は、隣り合う補助容量線CSd1-1とCSd2-1とに同じ極性の信号を供給する。3D表示を行う2ライン選択駆動の場合、図12のように、隣り合う補助容量線CSd1-1とCSd2-1とに異なる極性の信号を供給している。また、画素p(2,1)aのサブ画素sp(2,1,2)aと画素p(3,1)aのサブ画素sp(3,1,1)aとの間に共通の補助容量線CSc-2を配置し、サブ画素sp(2,1,2)aとサブ画素sp(3,1,1)aとで共用している。
 この結果、3D表示を行う2ライン選択駆動時の各画素のサブ画素の輝度は、2D表示を行う1ライン選択駆動時と同様に図5のような関係になる。このように、画素間、例えば、画素p(1,1)aと画素p(2,1)の間に、2本の補助容量線を備え、隣り合う補助容量線CSd1-1とCSd2-1とに異なる極性の信号を供給し、液晶容量に表示信号線から供給された信号の電位を書き込んだ後、次の2ライン選択用のゲート信号によるスイッチング素子をオン状態にするタイミングで、サブ画素の各補助容量に接続されている各補助容量線の電位をそれぞれ書き込んだ時の電位とは異なる極性に切り替えるようにしたので、3D表示用の2フレーム選択駆動においても、隣接するサブ画素間の輝度が同じにならずに良好な階調表示を行うことが可能になる。
 図13は、本実施形態における第1ガラス基板3上のレイアウトの例を説明する図である。図13のように、画素p-nについて、第1ガラス基板3上には、走査線G-nと、スイッチング素子(T1-11、T1-12、T1-21、T1-22、T2-11、T2-12、T2-21、T2-22)と、補助容量線(CSc-1、CSd1-1、CSd2-1、CSc-2)と、画素電極(201~208)と、補助容量(C1-11、C1-12、C1-21、C1-22、C2-11、C2-21、C2-21、C2-22)とが形成されている。例えば、画素電極201には、スイッチング素子T1-11のドレイン電極が接続され、スイッチング素子T1-11のゲート電極は走査線G-nに接続されて形成されている。
 また、画素電極203には、スイッチング素子T1-12のドレイン電極が接続され、スイッチング素子T1-12のゲート電極は走査線G-nに接続されている。
 また、画素電極205には、スイッチング素子T2-11のドレイン電極が接続され、スイッチング素子T2-11のゲート電極は走査線G-(n+1)に接続されて形成されている。
 また、画素電極207には、スイッチング素子T2-12のドレイン電極が接続され、スイッチング素子T2-12のゲート電極は走査線G-(n+1)に接続されている。
 また、例えば、スイッチング素子T1-11のドレイン電極に接続されている補助容量C1-11は、補助容量線CSc-1と画素電極201とが、絶縁膜を介して重なった領域に形成されている。さらに、スイッチング素子T1-12のドレイン電極に接続されている補助容量C1-12は、補助容量線CSd1-1と画素電極203とが、絶縁膜を介して重なった領域に形成されている。
 以上のように、本実施形態によれば、1フレーム駆動でも2フレーム選択駆動においても、隣接するサブ画素間の輝度が同じにならずに良好な階調表示を行うことが可能になる。
 なお、実施形態の図2の制御部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
  また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
  また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリーのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 2ライン同時選択駆動した場合のサブ画素の配列を改善する液晶装置及び液晶制御方法を提供することができる。
1・・・バックライト
2・・・第1偏光板
3・・・第1ガラス基板
4・・・TFT(薄膜トランジスタ)アレイ
5・・・液晶
6・・・共通電極(対向電極)
7・・・カラーフィルタ
8・・・第2ガラス基板
9・・・第2偏光板
11-1~11―m、Sm-n・・・表示信号線
12-1~12-n、G-n、G-(n+1)・・・走査線
21・・・制御部
22・・・画素部
T1-n・・・スイッチング素子
cl1-n・・・液晶容量
C1-n・・・補助容量
Csa-n、Csa-(n+1)、Csb-n、Csb-(n+1)・・・補助容量線

Claims (6)

  1.  複数の第1のサブ画素を有する第1の画素と、
     複数の第2のサブ画素を有し、列方向に前記第1の画素と隣接する第2の画素と、
     前記第1および第2の画素に同時に表示信号を書き込むよう構成されている制御部とを有し、
     前記第1のサブ画素のうち第2の画素と隣接する第1のサブ画素と、前記第2のサブ画素のうち第1の画素と隣接する第2のサブ画素は、それぞれ第1および第2の補助容量線と結合する液晶装置。
  2.  さらに複数の第3のサブ画素を有し、前記第2の画素と前記列方向に隣接する第3の画素と、
     第3および第4の補助容量線とを有し、
     前記第2のサブ画素のうち第3の画素と隣接する第2のサブ画素と、前記第3のサブ画素のうち第2の画素と隣接する第3のサブ画素は、それぞれ前記第3および第4の補助容量線と結合する請求項1に記載の液晶装置。
  3.  1ライン選択駆動のときは、前記制御部が前記第1および第2の補助容量線の極性が同極性になるよう制御するよう構成されている請求項1に記載の液晶装置。
  4.  2ライン選択駆動のときは、前記制御部が前記第1および第2の補助容量線の極性がそれぞれ異なる極性になるよう制御するよう構成されている請求項1に記載の液晶装置。
  5.  前記第1のサブ画素に接続されている第1のスイッチング素子と、
     前記第2のサブ画素に接続されている第2のスイッチング素子と、
     前記第1のスイッチング素子の第1のゲート電極に接続されている第1の走査線と、
     前記第2のスイッチング素子の第2のゲート電極に接続されている第2の走査線と、
     前記第1のサブ画素と前記第1のスイッチング素子のドレイン電極とに接続されている補助容量と、
     をさらに備え、
     前記補助容量は、前記第1の補助容量線に接続され、
     前記制御部は、
     前記第1および第2のサブ画素が同時にオンになるように前記第1および第2の走査線を制御しつつ、前記第1および第2の補助容量線を制御するよう構成され、
     前記同時にオン状態にされる前記第1および第2のサブ画素は、それぞれ第1および第2の補助容量線に接続されている請求項1に記載の液晶装置。
  6.  液晶装置は、複数の第1のサブ画素を有する第1の画素と、
     複数の第2のサブ画素を有し、列方向に前記第1の画素と隣接し、前記第1の画素と同時に表示信号が書き込まれるよう構成されている第2の画素と、
     前記第1の画素と前記第2の画素間に第1および第2の補助容量線を備え、
     1ライン選択駆動のときは、前記第1および第2の補助容量線の極性を同極性に制御し、
     2ライン選択駆動のときは、前記第1および第2の補助容量線の極性をそれぞれ異なる極性に制御する液晶装置の制御方法。
PCT/JP2011/064246 2010-06-25 2011-06-22 液晶装置及び液晶制御方法 WO2011162288A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-145080 2010-06-25
JP2010145080 2010-06-25

Publications (1)

Publication Number Publication Date
WO2011162288A1 true WO2011162288A1 (ja) 2011-12-29

Family

ID=45371465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064246 WO2011162288A1 (ja) 2010-06-25 2011-06-22 液晶装置及び液晶制御方法

Country Status (1)

Country Link
WO (1) WO2011162288A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158286A (ja) * 2006-12-25 2008-07-10 Sharp Corp 液晶表示装置
WO2009084331A1 (ja) * 2007-12-27 2009-07-09 Sharp Kabushiki Kaisha 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機
WO2010061686A1 (ja) * 2008-11-26 2010-06-03 シャープ株式会社 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158286A (ja) * 2006-12-25 2008-07-10 Sharp Corp 液晶表示装置
WO2009084331A1 (ja) * 2007-12-27 2009-07-09 Sharp Kabushiki Kaisha 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機
WO2010061686A1 (ja) * 2008-11-26 2010-06-03 シャープ株式会社 液晶表示装置、液晶表示装置の駆動方法、テレビジョン受像機

Similar Documents

Publication Publication Date Title
JP5059363B2 (ja) 液晶パネルの駆動方法
TWI447687B (zh) 液晶顯示器
JP4790798B2 (ja) アクティブマトリクス型液晶表示装置及びその駆動方法
KR101318367B1 (ko) 표시장치 및 이의 구동방법
US20090102824A1 (en) Active matrix substrate and display device using the same
JP5336581B2 (ja) 表示装置、液晶表示装置、表示装置の駆動方法、テレビジョン受像機
JP2014232332A (ja) 液晶パネル
WO2007091365A1 (ja) 表示装置、アクティブマトリクス基板、液晶表示装置、テレビジョン受像機
KR20080090230A (ko) 디스플레이장치 및 그 제어방법
JP2007286585A (ja) 表示パネルの駆動装置、及びそれを有する表示装置
JP6488651B2 (ja) 電気光学装置、電気光学装置の制御方法および電子機器
JP5425977B2 (ja) 映像表示装置
WO2011048850A1 (ja) 液晶表示装置および液晶表示装置の駆動方法
TWI423242B (zh) 影像顯示系統與方法
JP2009244287A (ja) 液晶表示装置および液晶表示装置の駆動方法
KR101272338B1 (ko) 액정 표시 장치
JP5789354B2 (ja) 電気光学装置及び電子機器
WO2013047099A1 (ja) 表示装置
KR101119906B1 (ko) 표시장치
WO2010125716A1 (ja) 表示装置および表示装置の駆動方法
WO2011162288A1 (ja) 液晶装置及び液晶制御方法
KR101686093B1 (ko) 시야각 제어 액정 표시 장치 및 이의 구동 방법
KR20040042484A (ko) 액정표시장치의 구동방법
JP2009244285A (ja) 液晶表示装置および液晶表示装置の駆動方法
KR101989829B1 (ko) 액정 디스플레이 장치와 이의 구동방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP