WO2011162137A1 - Bonded material, and process for production thereof - Google Patents

Bonded material, and process for production thereof Download PDF

Info

Publication number
WO2011162137A1
WO2011162137A1 PCT/JP2011/063643 JP2011063643W WO2011162137A1 WO 2011162137 A1 WO2011162137 A1 WO 2011162137A1 JP 2011063643 W JP2011063643 W JP 2011063643W WO 2011162137 A1 WO2011162137 A1 WO 2011162137A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit member
anisotropic conductive
conductive film
joined body
light
Prior art date
Application number
PCT/JP2011/063643
Other languages
French (fr)
Japanese (ja)
Inventor
朋之 石松
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to KR1020137001548A priority Critical patent/KR20130029804A/en
Priority to CN201180030491.9A priority patent/CN102948265B/en
Publication of WO2011162137A1 publication Critical patent/WO2011162137A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays

Definitions

  • the present invention relates to a joined body and a manufacturing method thereof.
  • a tape-like connecting material for example, anisotropic conductive film (ACF)
  • ACF anisotropic conductive film
  • This anisotropic conductive film is used when, for example, a terminal of an electronic component (IC chip) or a flexible printed circuit board (FPC) is connected to an ITO (Indium Tin Oxide) electrode formed on a glass substrate of an LCD panel. First, it is used when various terminals are bonded and electrically connected to produce a joined body.
  • IC chip electronic component
  • FPC flexible printed circuit board
  • COF mounting for mounting a chip has been attracting attention as liquid crystal displays have become higher definition, thinner and have a narrower frame.
  • heat is applied at a temperature of 150 ° C. to 250 ° C. for 5 seconds to 10 seconds, and the panel is warped due to the thermal expansion / contraction difference between the IC chip and the panel, resulting in uneven screen display. There is a problem that it occurs.
  • connection is made by applying heat for 5 to 10 seconds at a temperature of 150 ° C to 250 ° C, and the alignment is shifted due to thermal expansion and contraction of the IC chip bonded to the flexible tape. Therefore, there is a problem that a connection failure or a short circuit between terminals occurs.
  • an object of the present invention is to provide a joined body that has excellent electrical characteristics, suppresses warpage, and can improve connection reliability and a method for manufacturing the joined body.
  • Means for solving the above problems are as follows. That is, ⁇ 1> In the method for manufacturing a joined body in which the first circuit member and the second circuit member are electrically joined via an anisotropic conductive film containing conductive particles and a photocurable resin, A step of arranging the first circuit member, the anisotropic conductive film and the second circuit member in this order; and the anisotropic conductive film comprising the first circuit member and the second circuit member. A step of applying an ultrasonic wave during pressure welding, and after applying the ultrasonic wave, the first circuit member and the second circuit member are pressure-contacted via the anisotropic conductive film.
  • zygote characterized by including the process of irradiating light to the said anisotropic conductive film.
  • ⁇ 2> The method for producing a bonded body according to ⁇ 1>, wherein the anisotropic conductive film is irradiated with ultrasonic waves from one side and the anisotropic conductive film is irradiated with light from the other side. It is.
  • ⁇ 3> The method for producing a joined body according to any one of ⁇ 1> to ⁇ 2>, wherein the wavelength of the irradiated light is 200 nm to 750 nm.
  • ⁇ 4> The method for producing a bonded body according to any one of ⁇ 1> to ⁇ 3>, wherein the photocurable resin includes at least one of a photocationic curable resin and a photoradical curable resin.
  • ⁇ 5> The method according to any one of ⁇ 1> to ⁇ 4>, wherein the application time of the ultrasonic wave is 0.1 second to 2.0 seconds, and the light irradiation time is 1.0 second to 5.0 seconds. This is a manufacturing method of the joined body.
  • ⁇ 6> A joined body produced by the production method according to any one of ⁇ 1> to ⁇ 5>.
  • FIG. 1 is a schematic explanatory view showing a joined body of the present invention.
  • the joined body of the present invention includes at least a first circuit member, a second circuit member, and an anisotropic conductive film, and further includes other members appropriately selected as necessary. Become.
  • said wiring board there is no restriction
  • the transmittance of light having a wavelength of 200 nm to 750 nm of the wiring board is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50% to 100%, more preferably 70% to 100%.
  • the transmittance When the transmittance is less than 50%, it becomes easy to form a portion with a low curing rate of the binder, which may cause poor connection. On the other hand, when the transmittance is within the particularly preferable range, it is advantageous in that a uniform cured state can be easily obtained as a whole and a good connection state can be maintained. Further, even when there is a portion (non-light-transmitting portion) that does not partially transmit light due to a metal wiring or the like on the glass substrate, it can be suitably used.
  • the ratio of the non-translucent portion in the substrate is preferably 50% or less, and more preferably 30% or less, from the viewpoint of satisfactory binder curing.
  • Examples of the electronic component include an IC chip and a TAB tape on which the IC chip is mounted.
  • the anisotropic conductive film includes at least a conductive layer, and further includes other layers as necessary.
  • the anisotropic conductive film of the present invention preferably contains at least a film-forming resin (thermoplastic resin), a photocurable resin, conductive particles, and a curing agent.
  • the conductive layer includes at least conductive particles and a photocurable resin, and may further include a curing agent, a thermoplastic resin, and other components as necessary.
  • Conductive particles-- There is no restriction
  • the particle size of the conductive particles is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the volume average particle size is preferably 2 ⁇ m to 10 ⁇ m, more preferably 2 ⁇ m to 4 ⁇ m.
  • volume average particle size is less than 2 ⁇ m, classification treatment and acquisition are difficult, and if it exceeds 10 ⁇ m, it becomes difficult to cope with the narrowing of the junction terminals due to the fine pitch of the junction terminals.
  • photocurable resin there is no restriction
  • the photo-radical curable resin is not particularly limited and may be appropriately selected depending on the purpose.
  • the photocationic curable resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, oxetane resin, alicyclic type Examples thereof include epoxy resins and modified epoxy resins thereof. These may be used individually by 1 type and may use 2 or more types together.
  • a photo radical curable resin or a photo cation curable resin may be mixed and used together.
  • the curing agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a curing agent that generates active cationic species or radical species by light having a wavelength range of 200 nm to 750 nm. There is no restriction
  • radical photocuring agent which generate
  • group examples thereof include a polymerization initiator and an oxime ester photopolymerization initiator. These can well cure various acrylates.
  • Examples of the curing agent that generates active cationic species or radical species by light in the wavelength region of 200 nm to 750 nm include, for example, a photo radical curing agent (trade name: Irgacure 651, manufactured by Ciba Specialty Chemicals), a photo cation. Examples thereof include a curing agent (trade name: Irgacure 369, manufactured by Ciba Specialty Chemicals). Moreover, you may use together, such as mixing a radical photocuring agent and a photocationic curing agent.
  • thermoplastic resin film-forming resin
  • thermoplastic resin film-forming resin
  • a phenoxy resin for example, a phenoxy resin, a urethane resin, a polyester resin, a styrene isoprene resin, a nitrile butadiene resin etc. are mentioned.
  • the pigment is not particularly limited and may be appropriately selected depending on the intended purpose.
  • silane coupling agent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silica, alumina, titanium oxide, barium sulfate, talc, calcium carbonate, glass powder, and quartz powder.
  • Organic filler There is no restriction
  • a peeling layer can be mentioned.
  • the shape, structure, size, thickness, material (material), etc. of the release layer are not particularly limited and can be appropriately selected according to the purpose.
  • a transparent release PET (polyethylene terephthalate) sheet coated with a release agent such as silicone is preferable.
  • a PTFE (polytetrafluoroethylene) sheet may be used.
  • the joined body 100 of the present invention includes an LCD panel 10 as a first circuit member, an IC chip 11 as a second circuit member, and an anisotropic conductive film 12.
  • the terminals 11a in the IC chip 11, the conductive particles 12a in the anisotropic conductive film 12, and the terminals (not shown) in the LCD panel 10 are electrically connected, whereby the LCD panel 10 and the IC chip 11 are electrically connected. Connected.
  • the method for producing a joined body of the present invention includes at least an arrangement step, an ultrasonic wave application step, and a light irradiation step, and further includes other steps that are appropriately selected as necessary.
  • the arrangement step is a step of arranging the first circuit member, the anisotropic conductive film, and the second circuit member in this order.
  • the ultrasonic wave applying step is a step of applying ultrasonic waves when the first circuit member and the second circuit member are pressure-contacted via an anisotropic conductive film.
  • the pressure contact means that the first circuit member and the second circuit member can conduct through the anisotropic conductive film, that is, the conductive particles in the anisotropic conductive film are the first and second conductive members. It means that the circuit member is in contact with the connection terminal.
  • the pressure contact is performed by pressing either the first circuit member or the second circuit member using a pressing member (20 in FIG. 1) such as a heat tool, for example.
  • a buffer material such as Teflon (registered trademark) may be interposed between the second circuit member and the second circuit member. By interposing the cushioning material, it is possible to reduce the pressure variation and prevent the heat tool from becoming dirty.
  • the tip shape of the pressing member is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a planar shape and a curved surface shape. In addition, when the said front-end
  • the pressing force at the time of pressing is not particularly limited and varies depending on the type and purpose of the circuit member, and the range of the pressing force can be selected as appropriate.
  • the optimum curing rate varies depending on the type of connection material and circuit member, but is preferably 60% to 100%, and more preferably 70% to 100%. If the curing rate is less than 60%, connection failure may occur.
  • the frequency of the ultrasonic wave is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 kHz to 100 kHz, and more preferably 20 kHz to 60 kHz.
  • the frequency is less than 10 kHz, the force for pushing the circuit member is insufficient, and connection failure may occur.
  • the frequency exceeds 100 kHz the junction terminal of the circuit member may be deformed to cause short circuit or connection failure. .
  • the vibration direction of the ultrasonic wave is not particularly limited and can be appropriately selected according to the purpose.
  • the horizontal vibration or the vertical vibration with respect to the plane of the first circuit member or the second circuit member is possible. Any of these may be used.
  • Horizontal vibration is preferable from the viewpoint of reducing damage to the first circuit member or the second circuit member, and vertical vibration is preferable from the viewpoint of preventing misalignment of fine pitch connection.
  • the ultrasonic wave application time is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 second to 2.0 seconds, and more preferably 0.5 seconds to 1.0 second. If the ultrasonic wave application time is less than 0.1 seconds, the circuit member may be insufficiently pushed. If it exceeds 2.0 seconds, the wiring of the circuit member may be deformed.
  • the metal melts, for example, the bond between gold in the conductive particles and gold in the junction terminals (bumps) of the circuit members, and the gold in the conductive particles and tin in the junction terminals (bumps) of the circuit members.
  • the ultrasonic application means According to the objective, it can select suitably, For example, the press member (20 in FIG. 1) etc. which can incorporate the ultrasonic wave etc. are mentioned. .
  • the light irradiation step is a step of irradiating light to the anisotropic conductive film while applying ultrasonic waves and then pressing the first circuit member and the second circuit member through the anisotropic conductive film. is there.
  • the pressure contact means that the first circuit member and the second circuit member can conduct through the anisotropic conductive film, that is, the conductive particles in the anisotropic conductive film are the first and second conductive members. It means that the circuit member is in contact with the connection terminal. In order to press-contact the first circuit member and the second circuit member through the anisotropic conductive film, for example, at least one of the first circuit member and the second circuit member is pressed.
  • the light is not particularly limited as long as it is light capable of curing the photocurable resin, and can be appropriately selected according to the purpose, but light (ultraviolet light) having a wavelength of 200 nm to 750 nm is preferable.
  • a light source (30 in FIG. 1) which emits the said light, According to the objective, it can select suitably, For example, an LED light source, a UV lamp light source, etc. are mentioned.
  • the first circuit member and the second circuit member are pressed through an anisotropic conductive film by pressing and ultrasonic irradiation, and then light irradiation is performed.
  • the application of ultrasonic waves is stopped during light irradiation. This is because if an ultrasonic wave is applied in a photocured state, a crack may occur in the bonded body, resulting in a decrease in connection reliability.
  • a perpendicular direction may be sufficient with respect to an irradiation object, Moreover, with respect to the said perpendicular direction It may be an inclined direction.
  • the light irradiation may be performed for 0.5 seconds or more. Thereby, it can harden
  • the pressing force at the time of pressing is not particularly limited and varies depending on the type and purpose of the circuit member, and the range of the pressing force can be selected as appropriate.
  • the optimum curing rate varies depending on the type of connection material and circuit member, but is preferably 60% to 100%, and more preferably 70% to 100%. If the curing rate is less than 60%, connection failure may occur.
  • the light irradiation time is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1.0 second to 10.0 seconds, and more preferably 1.0 second to 5.0 seconds. If the light irradiation time is less than 1.0 second, it may not be sufficiently photocured, and if it exceeds 10.0 seconds, the short-time connection becomes impossible and the tact time increases, resulting in an increase in cost. May end up.
  • the application of ultrasonic waves and light irradiation are preferably performed from opposite directions with respect to the anisotropic conductive film.
  • FCP electronic component
  • the other circuit member wiring board
  • the pressing member for pressing one circuit member does not block light, so that the light irradiation efficiency can be improved and photocured while pressing. Can do.
  • an anisotropic conductive film containing an ultraviolet curable resin is disposed on the glass wiring board, and the anisotropic conductive film is ultrasonically applied from the IC chip side. After the IC chip is melted and the IC chip is pushed in, the glass wiring board and the IC chip are connected without heating by irradiating with ultraviolet rays from the side of the glass substrate under pressure and curing. As a result, panel warpage due to thermal shrinkage can be prevented, and the problem of display unevenness can be solved.
  • mounting in which the glass wiring board and the COF are connected, misalignment due to thermal expansion and contraction can be reduced by the same connection method, and a sufficient connection area can be secured and terminal short-circuit can be prevented.
  • mounting may be performed by supplementarily applying heat of 60 ° C. to 100 ° C.
  • Production Example 4 a film-like connecting material D was obtained in the same manner as in Production Example 2 except that the gold-plated conductive particles were not dispersed.
  • Production Example 5 a film-like connection material E was obtained in the same manner as in Production Example 2 except that silver-plated conductive particles were used instead of gold-plated conductive particles.
  • Production Example 6 a film-like connection material F was obtained in the same manner as in Production Example 2 except that copper-plated conductive particles were used instead of gold-plated conductive particles.
  • Production Example 7 a film-like connecting material G was obtained in the same manner as in Production Example 2 except that nickel-plated conductive particles were used instead of gold-plated conductive particles.
  • Production Example 8 In Production Example 2, a film-like connection material H was obtained in the same manner as in Production Example 2 except that palladium-plated conductive particles were used instead of gold-plated conductive particles.
  • Example 1 On the aluminum wiring pattern glass substrate corresponding to the pattern of the IC chip (trade name: 1737F, manufactured by Corning, size: 50 mm ⁇ 30 mm ⁇ 0.5 mm), the film-like connecting material A produced in Production Example 1 is placed, An IC chip (dimensions: 1.8 mm ⁇ 20.0 mm, thickness: 0.5 mm, gold bump size: 30 ⁇ m ⁇ 85 ⁇ m, bump height: 15 ⁇ m, pitch: 50 ⁇ m) is arranged on the film-like connection material A, and the IC When the chip and the aluminum wiring pattern glass substrate are pressed through the film-like connecting material A, an ultrasonic wave is applied for 1.0 second under conditions of vibration 50 Hz, amplitude 2 ⁇ m, and pressing force 60 MPa, and then the pressing force 60 MPa is maintained.
  • an ultrasonic wave is applied for 1.0 second under conditions of vibration 50 Hz, amplitude 2 ⁇ m, and pressing force 60 MPa, and then the pressing force 60 MPa is maintained.
  • UV light is applied from the aluminum wiring pattern glass substrate side using a metal halide lamp (trade name: MLDS250, manufactured by Iwasaki Electric Co., Ltd.). 5.0 seconds, and irradiated light amount 5,000 mJ / cm 2, to produce a bonded structure 1.
  • a metal halide lamp (trade name: MLDS250, manufactured by Iwasaki Electric Co., Ltd.). 5.0 seconds, and irradiated light amount 5,000 mJ / cm 2, to produce a bonded structure 1.
  • Example 2 In Example 1, instead of using the film-like connection material A, a joined body 2 was produced in the same manner as in Example 1 except that the film-like connection material B produced in Production Example 2 was used.
  • Example 3 In Example 1, instead of using the film-like connection material A, a joined body 3 was produced in the same manner as in Example 1 except that the film-like connection material E produced in Production Example 5 was used.
  • Example 4 In Example 1, instead of using the film-like connection material A, a joined body 4 was produced in the same manner as in Example 1 except that the film-like connection material F produced in Production Example 6 was used.
  • Example 5 In Example 1, instead of using the film-like connection material A, a joined body 5 was produced in the same manner as in Example 1 except that the film-like connection material G produced in Production Example 7 was used.
  • Example 6 In Example 1, instead of using the film-like connection material A, a joined body 6 was produced in the same manner as in Example 1 except that the film-like connection material H produced in Production Example 8 was used.
  • Example 2 In Example 1, instead of using the film-like connection material A, a joined body 8 was produced in the same manner as in Example 1 except that the film-like connection material D produced in Production Example 4 was used.
  • Example 3 (Comparative Example 3) In Example 1, after applying ultrasonic waves for 1.0 second and then irradiating ultraviolet rays for 5.0 seconds, ultrasonic wave application and ultraviolet irradiation are simultaneously performed for 1.0 seconds, and only ultraviolet irradiation is performed for 4.0 seconds. A bonded body 9 was produced in the same manner as in Example 1 except for the above.
  • Example 4 (Comparative Example 4) In Example 1, after applying the ultrasonic wave for 1.0 second and then irradiating the ultraviolet ray for 5.0 second, after irradiating the ultraviolet ray for 5.0 second and then applying the ultrasonic wave for 1.0 second, A joined body 10 was produced in the same manner as in Example 1.
  • connection resistance ⁇ Measurement of connection resistance> Using a digital multimeter (trade name: Digital Multimeter 7561, manufactured by Yokogawa Electric Corporation), connection resistance ( ⁇ ) after initial connection resistance ( ⁇ ) and environmental test (85 ° C./85%/500 hr) ) was measured. The results are shown in Table 1.
  • the method for producing a joined body of the present invention can be suitably used for producing, for example, an IC tag, an IC card, a memory card, a flat panel display, and the like.

Abstract

Disclosed is a process for producing a bonded material in which a first circuit member and a second circuit member are electrically bonded to each other through an anisotropic conductive film comprising electrically conductive particles and a photocurable resin. The process comprises the steps of: arranging the first circuit member, the anisotropic conductive film and the second circuit member in this order; pressure-welding the first circuit member to the second circuit member through the anisotropic conductive film while applying an ultrasonic wave; and, subsequent to the application of the ultrasonic wave, irradiating the anisotropic conductive film with light while carrying out the pressure-welding of the first circuit member to the second circuit member through the anisotropic conductive film.

Description

接合体及びその製造方法CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
 本発明は、接合体及びその製造方法に関する。 The present invention relates to a joined body and a manufacturing method thereof.
 従来より、電子部品を接続する手段として、導電性粒子が分散された樹脂を剥離膜に塗布したテープ状の接続材料(例えば、異方性導電フィルム(ACF;Anisotropic Conductive Film))が用いられている。 Conventionally, as a means for connecting electronic components, a tape-like connecting material (for example, anisotropic conductive film (ACF)) in which a resin in which conductive particles are dispersed is applied to a release film has been used. Yes.
 この異方性導電フィルムは、例えば、電子部品(ICチップ)又はフレキシブルプリント基板(FPC)の端子と、LCDパネルのガラス基板上に形成されたITO(Indium Tin Oxide)電極とを接続する場合を始めとして、種々の端子同士を接着すると共に電気的に接続して接合体を作製する場合に用いられている。 This anisotropic conductive film is used when, for example, a terminal of an electronic component (IC chip) or a flexible printed circuit board (FPC) is connected to an ITO (Indium Tin Oxide) electrode formed on a glass substrate of an LCD panel. First, it is used when various terminals are bonded and electrically connected to produce a joined body.
 特に、前記異方性導電フィルムを用いて、LCDパネルなどにICチップを実装するCOG実装、及び、前記異方性導電フィルムを用いて、LCDパネルなどに金属配線を有するフレキシブルテープに接合したICチップを実装するCOF実装が、液晶ディスプレイの高精細化、薄型化及び狭額縁化に伴って、注目されている。
 しかしながら、現状のCOG実装では、温度150℃~250℃で5秒間~10秒間の熱量を加えて接続を行っており、ICチップとパネルの熱伸縮差によってパネルが反ってしまい、画面表示ムラが発生してしまうという問題がある。さらに、現状のCOF実装でも、同様に、温度150℃~250℃で5秒間~10秒間の熱量を加えて接続を行っており、フレキシブルテープに接合したICチップの熱伸縮によりアライメントにずれが生じてしまい、接続不良、端子間ショートが発生してしまうという問題がある。
In particular, COG mounting for mounting an IC chip on an LCD panel or the like using the anisotropic conductive film, and IC bonded to a flexible tape having metal wiring on the LCD panel or the like using the anisotropic conductive film COF mounting for mounting a chip has been attracting attention as liquid crystal displays have become higher definition, thinner and have a narrower frame.
However, in the current COG mounting, heat is applied at a temperature of 150 ° C. to 250 ° C. for 5 seconds to 10 seconds, and the panel is warped due to the thermal expansion / contraction difference between the IC chip and the panel, resulting in uneven screen display. There is a problem that it occurs. Furthermore, even in the current COF mounting, the connection is made by applying heat for 5 to 10 seconds at a temperature of 150 ° C to 250 ° C, and the alignment is shifted due to thermal expansion and contraction of the IC chip bonded to the flexible tape. Therefore, there is a problem that a connection failure or a short circuit between terminals occurs.
 上記問題を解決する手段として、光硬化、超音波印加を利用した異方性導電接続に注目が集まっている。 As a means for solving the above problems, attention has been focused on anisotropic conductive connection using photocuring and ultrasonic application.
 例えば、硬化剤として有機過酸化物を含む異方性導電フィルムに超音波を印加して基板同士の接続を行う技術が提案されている(例えば、特許文献1参照)。
 しかしながら、この技術には、異方性導電フィルムが熱硬化するので、熱伸縮による問題を依然として解決することができないという問題がある。
For example, a technique has been proposed in which ultrasonic waves are applied to an anisotropic conductive film containing an organic peroxide as a curing agent to connect the substrates (see, for example, Patent Document 1).
However, this technique has a problem that the problem due to thermal expansion and contraction still cannot be solved because the anisotropic conductive film is thermally cured.
 また、回路基板間に、紫外線(UV)硬化型樹脂を塗布し、回路基板の端子を超音波で接合し、紫外線(UV)硬化型樹脂を紫外線(UV)で硬化する技術が提案されている(例えば、特許文献2参照)。
 しかしながら、この技術には、十分な接合強度が得られず、接続信頼性が低いという問題がある。
Further, a technique has been proposed in which an ultraviolet (UV) curable resin is applied between circuit boards, terminals of the circuit board are joined with ultrasonic waves, and the ultraviolet (UV) curable resin is cured with ultraviolet (UV). (For example, refer to Patent Document 2).
However, this technique has a problem that sufficient bonding strength cannot be obtained and connection reliability is low.
 さらに、YAGレーザ、キセノンランプ、ハロゲンランプ、などにより発生した光ビームを異方性導電フィルムに照射することにより加熱しながら、超音波印加を行う技術が提案されている(例えば、特許文献3参照)。
 しかしながら、この技術には、光照射により硬化する光硬化性樹脂を含む異方性導電フィルム(例えば、特許文献4参照)を用いると、接合(接着)強度が十分でなく、さらに、電気特性に劣るという問題がある。
Furthermore, a technique for applying ultrasonic waves while heating by irradiating an anisotropic conductive film with a light beam generated by a YAG laser, a xenon lamp, a halogen lamp, or the like has been proposed (for example, see Patent Document 3). ).
However, in this technique, when an anisotropic conductive film containing a photocurable resin that is cured by light irradiation (see, for example, Patent Document 4) is used, the bonding (adhesion) strength is not sufficient, and the electrical characteristics are further improved. There is a problem of being inferior.
特開2010-4067号公報JP 2010-4067 A 特開2005-209704号公報JP 2005-209704 A 特開平8-146451号公報JP-A-8-146451 特開2010-16388号公報JP 2010-16388 A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、電気特性に優れ、反りを抑制して、接続信頼性を向上させることができる接合体及びその製造方法を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, an object of the present invention is to provide a joined body that has excellent electrical characteristics, suppresses warpage, and can improve connection reliability and a method for manufacturing the joined body.
 前記課題を解決する手段としては、以下の通りである。即ち、
 <1> 第1の回路部材と第2の回路部材とが、導電性粒子及び光硬化性樹脂を含む異方性導電フィルムを介して、電気的に接合されてなる接合体の製造方法において、前記第1の回路部材、前記異方性導電フィルム及び前記第2の回路部材をこの順で配置する工程と、前記第1の回路部材と前記第2の回路部材とを前記異方性導電フィルムを介して圧接する際に、超音波を印加する工程と、前記超音波を印加した後に、前記第1の回路部材と前記第2の回路部材とを前記異方性導電フィルムを介して圧接させながら、前記異方性導電フィルムに光を照射する工程と、を含むことを特徴とする接合体の製造方法である。
 <2> 異方性導電フィルムに対して一方の側から超音波を照射し、前記異方性導電フィルムに対して他方の側から光を照射する前記<1>に記載の接合体の製造方法である。
 <3> 照射される光の波長が200nm~750nmである前記<1>から<2>のいずれかに記載の接合体の製造方法である。
 <4> 光硬化性樹脂が光カチオン硬化性樹脂及び光ラジカル硬化性樹脂のいずれかを少なくとも含む前記<1>から<3>のいずれかに記載の接合体の製造方法である。
 <5> 超音波の印加時間が0.1秒間~2.0秒間であり、光の照射時間が1.0秒間~5.0秒間である前記<1>から<4>のいずれかに記載の接合体の製造方法である。
 <6> 前記<1>から<5>のいずれかに記載の製造方法により製造されたことを特徴とする接合体である。
Means for solving the above problems are as follows. That is,
<1> In the method for manufacturing a joined body in which the first circuit member and the second circuit member are electrically joined via an anisotropic conductive film containing conductive particles and a photocurable resin, A step of arranging the first circuit member, the anisotropic conductive film and the second circuit member in this order; and the anisotropic conductive film comprising the first circuit member and the second circuit member. A step of applying an ultrasonic wave during pressure welding, and after applying the ultrasonic wave, the first circuit member and the second circuit member are pressure-contacted via the anisotropic conductive film. However, the manufacturing method of the conjugate | zygote characterized by including the process of irradiating light to the said anisotropic conductive film.
<2> The method for producing a bonded body according to <1>, wherein the anisotropic conductive film is irradiated with ultrasonic waves from one side and the anisotropic conductive film is irradiated with light from the other side. It is.
<3> The method for producing a joined body according to any one of <1> to <2>, wherein the wavelength of the irradiated light is 200 nm to 750 nm.
<4> The method for producing a bonded body according to any one of <1> to <3>, wherein the photocurable resin includes at least one of a photocationic curable resin and a photoradical curable resin.
<5> The method according to any one of <1> to <4>, wherein the application time of the ultrasonic wave is 0.1 second to 2.0 seconds, and the light irradiation time is 1.0 second to 5.0 seconds. This is a manufacturing method of the joined body.
<6> A joined body produced by the production method according to any one of <1> to <5>.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、電気特性に優れ、反りを抑制して、接続信頼性を向上させることができる接合体及びその製造方法を提供することができる。 According to the present invention, it is possible to solve the above-described problems in the related art, achieve the above-described object, and have excellent electrical characteristics, suppress warpage, and improve connection reliability and a method for manufacturing the same. Can be provided.
図1は、本発明の接合体を示す概略説明図である。FIG. 1 is a schematic explanatory view showing a joined body of the present invention.
(接合体)
 本発明の接合体は、少なくとも第1の回路部材と、第2の回路部材と、異方性導電フィルムとを有してなり、更に必要に応じて適宜選択した、その他の部材を有してなる。
(Joint)
The joined body of the present invention includes at least a first circuit member, a second circuit member, and an anisotropic conductive film, and further includes other members appropriately selected as necessary. Become.
<第1及び第2の回路部材>
 前記第1及び第2の回路部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、配線基板、電子部品、フレキシブル配線基板(FPC)、などが挙げられる。
<First and second circuit members>
There is no restriction | limiting in particular as said 1st and 2nd circuit member, According to the objective, it can select suitably, For example, a wiring board, an electronic component, a flexible wiring board (FPC) etc. are mentioned.
 前記配線基板としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、LCD基板、PDP基板、有機EL基板、などが挙げられる。
 前記配線基板の材質としては、特に制限はなく、目的に応じて適宜選択することができるが、光透過性である点で、ガラス、透明プラスチック、などが好ましい。
 前記配線基板の波長200nm~750nmの光の透過率としては、特に制限はなく、目的に応じて適宜選択することができるが、50%~100%が好ましく、70%~100%がより好ましい。
 前記透過率が、50%未満であると、バインダーの硬化率が低い部位ができやすくなり、接続不良を生じる場合がある。一方、前記透過率が前記特に好ましい範囲内であると、全体的に均一な硬化状態が得られ易くなり、良好な接続状態を保持できるようになる点で有利である。
 また、ガラス基板上の金属配線等によって部分的に光を透過しない部位(非透光部位)が存在する場合でも、好適に使用することができる。前記非透光部位の基板における比率としては、良好なバインダーの硬化の観点から、50%以下が好ましく、30%以下がより好ましい。
There is no restriction | limiting in particular as said wiring board, According to the objective, it can select suitably, For example, an LCD board | substrate, a PDP board | substrate, an organic electroluminescent board | substrate etc. are mentioned.
There is no restriction | limiting in particular as a material of the said wiring board, Although it can select suitably according to the objective, Glass, a transparent plastic, etc. are preferable at the point which is a light transmittance.
The transmittance of light having a wavelength of 200 nm to 750 nm of the wiring board is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50% to 100%, more preferably 70% to 100%.
When the transmittance is less than 50%, it becomes easy to form a portion with a low curing rate of the binder, which may cause poor connection. On the other hand, when the transmittance is within the particularly preferable range, it is advantageous in that a uniform cured state can be easily obtained as a whole and a good connection state can be maintained.
Further, even when there is a portion (non-light-transmitting portion) that does not partially transmit light due to a metal wiring or the like on the glass substrate, it can be suitably used. The ratio of the non-translucent portion in the substrate is preferably 50% or less, and more preferably 30% or less, from the viewpoint of satisfactory binder curing.
 前記電子部品としては、例えば、ICチップ、ICチップを搭載したTABテープ、などが挙げられる。 Examples of the electronic component include an IC chip and a TAB tape on which the IC chip is mounted.
<異方性導電フィルム>
 前記異方性導電フィルムは、少なくとも導電層を有してなり、さらに必要に応じて、その他の層を有してなる。
 本発明の前記異方性導電フィルムは、膜形成樹脂(熱可塑性樹脂)、光硬化性樹脂、導電性粒子、及び硬化剤を少なくとも含むことが好ましい。
<Anisotropic conductive film>
The anisotropic conductive film includes at least a conductive layer, and further includes other layers as necessary.
The anisotropic conductive film of the present invention preferably contains at least a film-forming resin (thermoplastic resin), a photocurable resin, conductive particles, and a curing agent.
-導電層-
 前記導電層は、少なくとも導電性粒子及び光硬化性樹脂を含み、さらに必要に応じて、硬化剤、熱可塑性樹脂、その他の成分を含んでいてもよい。
-Conductive layer-
The conductive layer includes at least conductive particles and a photocurable resin, and may further include a curing agent, a thermoplastic resin, and other components as necessary.
--導電性粒子--
 前記導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、半田、ニッケル、金、銀、銅等の金属粒子;金属(ニッケル、金、銀、パラジウム、アルミニウム、銅等)で被覆(メッキ)された樹脂粒子等の有機フィラー;金属(ニッケル、金、銀、パラジウム、アルミニウム、銅等)で被覆(メッキ)された、ガラス粒子、セラミック粒子等の無機フィラー;などが挙げられる。
 前記導電性粒子の粒径としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、体積平均粒径で、2μm~10μmが好ましく、2μm~4μmがより好ましい。
 前記体積平均粒径が、2μm未満であると、分級処理及び入手が困難であり、10μmを超えると、接合端子のファインピッチ化に伴う、該接合端子の狭小化への対応が困難となることがある。
 前記導電性粒子の比重としては、特に制限はなく、目的に応じて適宜選択することができる。
--- Conductive particles--
There is no restriction | limiting in particular as said electroconductive particle, According to the objective, it can select suitably, For example, metal particles, such as solder, nickel, gold | metal | money, silver, copper; Metal (Nickel, gold | metal | money, silver, palladium, aluminum) Organic fillers such as resin particles coated (plated) with copper; inorganic fillers such as glass particles and ceramic particles coated (plated) with metal (nickel, gold, silver, palladium, aluminum, copper, etc.) And so on.
The particle size of the conductive particles is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the volume average particle size is preferably 2 μm to 10 μm, more preferably 2 μm to 4 μm.
If the volume average particle size is less than 2 μm, classification treatment and acquisition are difficult, and if it exceeds 10 μm, it becomes difficult to cope with the narrowing of the junction terminals due to the fine pitch of the junction terminals. There is.
There is no restriction | limiting in particular as specific gravity of the said electroconductive particle, According to the objective, it can select suitably.
--光硬化性樹脂--
 前記光硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、光ラジカル硬化性樹脂、光カチオン硬化性樹脂、などが挙げられる。
 前記光ラジカル硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、(メタ)アクリレートオリゴマーなどが挙げられる。
 また、前記光ラジカル硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 さらに、前記光ラジカル硬化性樹脂としては、前記アクリレートをメタクリレートにしたものが挙げられ、これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記光カチオン硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、オキセタン樹脂、脂環式エポキシ樹脂、それらの変性エポキシ樹脂、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 また、光ラジカル硬化性樹脂、光カチオン硬化性樹脂を混合などして、併用してもよい。
-Photocurable resin-
There is no restriction | limiting in particular as said photocurable resin, According to the objective, it can select suitably, For example, photoradical curable resin, photocationic curable resin, etc. are mentioned.
There is no restriction | limiting in particular as said radical photocurable resin, According to the objective, it can select suitably, For example, epoxy (meth) acrylates, urethane (meth) acrylates, (meth) acrylate oligomer etc. are mentioned. .
The photo-radical curable resin is not particularly limited and may be appropriately selected depending on the purpose. For example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol Diacrylate, trimethylolpropane triacrylate, dimethyloltricyclodecane diacrylate, tetramethylene glycol tetraacrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl ] Propane, 2,2-bis [4- (acryloxyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclodecanyl acrylate, tris (acryloxyethyl) ) Isocyanurate, urethane acrylate, and the like. These may be used individually by 1 type and may use 2 or more types together.
Furthermore, as said radical photocurable resin, what made the said acrylate into the methacrylate is mentioned, These may be used individually by 1 type and may use 2 or more types together.
The photocationic curable resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, oxetane resin, alicyclic type Examples thereof include epoxy resins and modified epoxy resins thereof. These may be used individually by 1 type and may use 2 or more types together.
Further, a photo radical curable resin or a photo cation curable resin may be mixed and used together.
--硬化剤--
 前記硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、波長領域200nm~750nmの光により活性なカチオン種又はラジカル種を発生させる硬化剤、などが挙げられる。
 カチオン種を発生する光カチオン硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スルホニウム塩、オニウム塩、などが挙げられる。これらは、種々のエポキシ樹脂を良好に硬化させることができる。
 ラジカル種を発生する光ラジカル硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤、チタノセン系重合開始剤、オシムエステル系光重合開始剤、などが挙げられる。これらは、種々のアクリレートを良好に硬化させることができる。
 なお、前記波長領域200nm~750nmの光により活性なカチオン種又はラジカル種を発生させる硬化剤としては、例えば、光ラジカル硬化剤(商品名:イルガキュア651、チバスぺシャリティーケミカルズ社製)、光カチオン硬化剤(商品名:イルガキュア369、チバスぺシャリティーケミカルズ社製)、などが挙げられる。
 また、光ラジカル硬化剤、光カチオン硬化剤を混合などして、併用してもよい。
--- Curing agent-
The curing agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a curing agent that generates active cationic species or radical species by light having a wavelength range of 200 nm to 750 nm.
There is no restriction | limiting in particular as a photocationic hardening | curing agent which generate | occur | produces a cationic seed | species, According to the objective, it can select suitably, For example, a sulfonium salt, onium salt, etc. are mentioned. These can well cure various epoxy resins.
There is no restriction | limiting in particular as a radical photocuring agent which generate | occur | produces radical seed | species, According to the objective, it can select suitably, For example, an alkyl phenone type photoinitiator, an acyl phosphine oxide type photoinitiator, a titanocene type | system | group Examples thereof include a polymerization initiator and an oxime ester photopolymerization initiator. These can well cure various acrylates.
Examples of the curing agent that generates active cationic species or radical species by light in the wavelength region of 200 nm to 750 nm include, for example, a photo radical curing agent (trade name: Irgacure 651, manufactured by Ciba Specialty Chemicals), a photo cation. Examples thereof include a curing agent (trade name: Irgacure 369, manufactured by Ciba Specialty Chemicals).
Moreover, you may use together, such as mixing a radical photocuring agent and a photocationic curing agent.
--熱可塑性樹脂(膜形成樹脂)--
 前記熱可塑性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノキシ樹脂、ウレタン樹脂、ポリエステル樹脂、スチレンイソプレン樹脂、ニトリルブタジエン樹脂、などが挙げられる。
--- Thermoplastic resin (film-forming resin) ---
There is no restriction | limiting in particular as said thermoplastic resin, According to the objective, it can select suitably, For example, a phenoxy resin, a urethane resin, a polyester resin, a styrene isoprene resin, a nitrile butadiene resin etc. are mentioned.
--その他の成分--
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、顔料、シランカップリング剤、無機フィラー、有機フィラー、などが挙げられる。
-Other ingredients-
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably, For example, a pigment, a silane coupling agent, an inorganic filler, an organic filler, etc. are mentioned.
---顔料---
 前記顔料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、二酸化チタン、酸化亜鉛、群青、ベンガラ、リトポン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硫酸塩等の無機顔料;アゾ顔料、銅フタロシアニン顔料等の有機顔料;などが挙げられる。
--- Pigment ---
The pigment is not particularly limited and may be appropriately selected depending on the intended purpose. For example, titanium dioxide, zinc oxide, ultramarine, bengara, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochloride, sulfate Inorganic pigments such as azo pigments, organic pigments such as copper phthalocyanine pigments, and the like.
---シランカップリング剤---
 前記シランカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビニルトリス(2-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3-スチリルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、などが挙げられる。
---Silane coupling agent---
The silane coupling agent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, vinyltris (2-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, 3-styryltrimethoxy Silane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N-2- (aminoethyl)- 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropyltri Methoxysilane 3-chloropropyl trimethoxy silane, and the like.
---無機フィラー---
 前記無機フィラーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、アルミナ、酸化チタン、硫酸バリウム、タルク、炭酸カルシウム、ガラス粉、石英粉、などが挙げられる。
---- Inorganic filler ---
The inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silica, alumina, titanium oxide, barium sulfate, talc, calcium carbonate, glass powder, and quartz powder.
---有機フィラー---
 前記有機フィラーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ウレタンパウダー、アクリルパウダー、シリコーンパウダー、などが挙げられる。
--- Organic filler ---
There is no restriction | limiting in particular as said organic filler, According to the objective, it can select suitably, For example, urethane powder, acrylic powder, silicone powder, etc. are mentioned.
-その他の層-
 前記その他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、剥離層を挙げることができる。
 前記剥離層としては、その形状、構造、大きさ、厚み、材料(材質)などについては、特に制限はなく、目的に応じて適宜選択することができるが、剥離性の良好なものや耐熱性が高いものが好ましく、例えば、シリコーン等の剥離剤が塗布された透明な剥離PET(ポリエチレンテレフタレート)シートなどが好適に挙げられる。また、PTFE(ポリテトラフルオロエチレン)シートを用いてもよい。
-Other layers-
There is no restriction | limiting in particular as said other layer, According to the objective, it can select suitably, For example, a peeling layer can be mentioned.
The shape, structure, size, thickness, material (material), etc. of the release layer are not particularly limited and can be appropriately selected according to the purpose. For example, a transparent release PET (polyethylene terephthalate) sheet coated with a release agent such as silicone is preferable. Further, a PTFE (polytetrafluoroethylene) sheet may be used.
 図1に示すように、本発明の接合体100は、第1の回路部材としてのLCDパネル10と、第2の回路部材としてのICチップ11と、異方性導電フィルム12とを有する。ICチップ11における端子11aと、異方性導電フィルム12における導電性粒子12aと、LCDパネル10における端子(不図示)とが導通されることにより、LCDパネル10とICチップ11とが電気的に接続される。 As shown in FIG. 1, the joined body 100 of the present invention includes an LCD panel 10 as a first circuit member, an IC chip 11 as a second circuit member, and an anisotropic conductive film 12. The terminals 11a in the IC chip 11, the conductive particles 12a in the anisotropic conductive film 12, and the terminals (not shown) in the LCD panel 10 are electrically connected, whereby the LCD panel 10 and the IC chip 11 are electrically connected. Connected.
(接合体の製造方法)
 本発明の接合体の製造方法は、少なくとも、配置工程と、超音波印加工程と、光照射工程とを含み、さらに、必要に応じて適宜選択した、その他の工程を含む。
(Method of manufacturing joined body)
The method for producing a joined body of the present invention includes at least an arrangement step, an ultrasonic wave application step, and a light irradiation step, and further includes other steps that are appropriately selected as necessary.
<配置工程>
 前記配置工程は、第1の回路部材、異方性導電フィルム、及び第2の回路部材をこの順で配置する工程である。
<Arrangement process>
The arrangement step is a step of arranging the first circuit member, the anisotropic conductive film, and the second circuit member in this order.
<超音波印加工程>
 前記超音波印加工程は、第1の回路部材と第2の回路部材とを異方性導電フィルムを介して圧接する際に、超音波を印加する工程である。
<Ultrasonic application process>
The ultrasonic wave applying step is a step of applying ultrasonic waves when the first circuit member and the second circuit member are pressure-contacted via an anisotropic conductive film.
 前記圧接とは、第1の回路部材と第2の回路部材とが異方性導電フィルムを介して導通がとれること、即ち、異方性導電フィルムにおける導電性粒子が、第1及び第2の回路部材の接続端子に接する状態であることを意味する。
 前記圧接は、例えば、ヒートツール等の押圧部材(図1における20)を用いて、前記第1の回路部材及び前記第2の回路部材のいずれかを押圧することにより行われ、前記押圧部材と前記第2の回路部材との間にテフロン(登録商標)等による緩衝材を介装してもよい。前記緩衝材を介装することにより、押圧ばらつきを低減できると共に、ヒートツールが汚れるのを防止することができる。
The pressure contact means that the first circuit member and the second circuit member can conduct through the anisotropic conductive film, that is, the conductive particles in the anisotropic conductive film are the first and second conductive members. It means that the circuit member is in contact with the connection terminal.
The pressure contact is performed by pressing either the first circuit member or the second circuit member using a pressing member (20 in FIG. 1) such as a heat tool, for example. A buffer material such as Teflon (registered trademark) may be interposed between the second circuit member and the second circuit member. By interposing the cushioning material, it is possible to reduce the pressure variation and prevent the heat tool from becoming dirty.
 前記押圧部材としては、特に制限はなく、目的に応じて適宜選択することができ、押圧対象よりも大面積である押圧部材を用いて押圧を1回で行ってもよく、また、押圧対象よりも小面積である押圧部材を用いて押圧を数回に分けて行ってもよい。 There is no restriction | limiting in particular as said press member, According to the objective, it can select suitably, You may perform a press once using the press member which is a larger area than a press target, Alternatively, pressing may be performed in several times using a pressing member having a small area.
 前記押圧部材の先端形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平面状、曲面状、などが挙げられる。なお、前記先端形状が曲面状である場合、前記曲面状に沿って押圧してもよい。 The tip shape of the pressing member is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a planar shape and a curved surface shape. In addition, when the said front-end | tip shape is a curved surface shape, you may press along the said curved surface shape.
 前記押圧時における押圧力としては、特に制限はなく、回路部材の種類や、目的に応じて様々であり、押圧力の範囲はその中から適宜選択することができる。 The pressing force at the time of pressing is not particularly limited and varies depending on the type and purpose of the circuit member, and the range of the pressing force can be selected as appropriate.
 最適な硬化率に達するまで押圧を維持することが好ましい。前記最適な硬化率としては、接続材料及び回路部材の種類によっても異なるが、60%~100%が好ましく、70%~100%がより好ましい。
 前記硬化率が60%未満である場合、接続不良が起こる場合がある。
It is preferred to maintain the pressure until an optimum cure rate is reached. The optimum curing rate varies depending on the type of connection material and circuit member, but is preferably 60% to 100%, and more preferably 70% to 100%.
If the curing rate is less than 60%, connection failure may occur.
 前記超音波の周波数としては、特に制限はなく、目的に応じて適宜選択することができるが、10kHz~100kHzが好ましく、20kHz~60kHzがより好ましい。
 前記周波数が、10kHz未満であると、回路部材を押し込む力が足りず、接続不良を生じることがあり、100kHzを超えると、回路部材の接合端子が変形してショートや接続不良を引き起こすことがある。
The frequency of the ultrasonic wave is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 kHz to 100 kHz, and more preferably 20 kHz to 60 kHz.
When the frequency is less than 10 kHz, the force for pushing the circuit member is insufficient, and connection failure may occur. When the frequency exceeds 100 kHz, the junction terminal of the circuit member may be deformed to cause short circuit or connection failure. .
 前記超音波の振動方向としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、第1の回路部材又は第2の回路部材の平面に対して、水平振動でも、垂直振動のいずれであってもよい。第1の回路部材又は第2の回路部材へのダメージ低減の観点からは水平振動が好ましく、ファインピッチ接続のアライメントずれを防止する観点からは、垂直振動が好ましい。 The vibration direction of the ultrasonic wave is not particularly limited and can be appropriately selected according to the purpose. For example, the horizontal vibration or the vertical vibration with respect to the plane of the first circuit member or the second circuit member is possible. Any of these may be used. Horizontal vibration is preferable from the viewpoint of reducing damage to the first circuit member or the second circuit member, and vertical vibration is preferable from the viewpoint of preventing misalignment of fine pitch connection.
 前記超音波印加時間としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1秒間~2.0秒間が好ましく、0.5秒間~1.0秒間がより好ましい。
 前記超音波印加時間が、0.1秒間未満であると、回路部材の押し込み不足が発生することがあり、2.0秒間を超えると、回路部材の配線が変形してしまうことがある。
The ultrasonic wave application time is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 second to 2.0 seconds, and more preferably 0.5 seconds to 1.0 second.
If the ultrasonic wave application time is less than 0.1 seconds, the circuit member may be insufficiently pushed. If it exceeds 2.0 seconds, the wiring of the circuit member may be deformed.
 前記超音波印加により、金属が溶融し、例えば、導電性粒子における金と回路部材の接合端子(バンプ)における金との結合、導電性粒子における金と回路部材の接合端子(バンプ)におけるスズとの結合、を形成できる。
 前記超音波印加手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、振動子などが内蔵された超音波印加可能な押圧部材(図1における20)、など挙げられる。
By the application of ultrasonic waves, the metal melts, for example, the bond between gold in the conductive particles and gold in the junction terminals (bumps) of the circuit members, and the gold in the conductive particles and tin in the junction terminals (bumps) of the circuit members. Can be formed.
There is no restriction | limiting in particular as said ultrasonic application means, According to the objective, it can select suitably, For example, the press member (20 in FIG. 1) etc. which can incorporate the ultrasonic wave etc. are mentioned. .
<光照射工程>
 前記光照射工程は、超音波を印加した後に、第1の回路部材と第2の回路部材とを異方性導電フィルムを介して圧接させながら、異方性導電フィルムに光を照射する工程である。
 前記圧接とは、第1の回路部材と第2の回路部材とが異方性導電フィルムを介して導通がとれること、即ち、異方性導電フィルムにおける導電性粒子が、第1及び第2の回路部材の接続端子に接する状態であることを意味する。
 第1の回路部材と第2の回路部材とを異方性導電フィルムを介して圧接させるために、例えば、第1の回路部材及び第2の回路部材の少なくともいずれかが押圧される。
<Light irradiation process>
The light irradiation step is a step of irradiating light to the anisotropic conductive film while applying ultrasonic waves and then pressing the first circuit member and the second circuit member through the anisotropic conductive film. is there.
The pressure contact means that the first circuit member and the second circuit member can conduct through the anisotropic conductive film, that is, the conductive particles in the anisotropic conductive film are the first and second conductive members. It means that the circuit member is in contact with the connection terminal.
In order to press-contact the first circuit member and the second circuit member through the anisotropic conductive film, for example, at least one of the first circuit member and the second circuit member is pressed.
 前記光としては、光硬化性樹脂を硬化可能な光である限り、特に制限はなく、目的に応じて適宜選択することができるが、波長200nm~750nmの光(紫外線)が好ましい。
 また、前記光を発する光源(図1における30)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、LED光源、UVランプ光源、などが挙げられる。
The light is not particularly limited as long as it is light capable of curing the photocurable resin, and can be appropriately selected according to the purpose, but light (ultraviolet light) having a wavelength of 200 nm to 750 nm is preferable.
Moreover, there is no restriction | limiting in particular as a light source (30 in FIG. 1) which emits the said light, According to the objective, it can select suitably, For example, an LED light source, a UV lamp light source, etc. are mentioned.
 光照射のタイミングとしては、押圧及び超音波照射により、第1の回路部材と第2の回路部材とを異方性導電フィルムを介して圧接させ、その後、光照射される。また、光照射の際には、超音波印加は、停止されている。これは、光硬化がなされた状態で超音波を印加すると、接合体にクラックが生じる場合があり、接続信頼性が低下してしまうからである。 As the timing of light irradiation, the first circuit member and the second circuit member are pressed through an anisotropic conductive film by pressing and ultrasonic irradiation, and then light irradiation is performed. In addition, the application of ultrasonic waves is stopped during light irradiation. This is because if an ultrasonic wave is applied in a photocured state, a crack may occur in the bonded body, resulting in a decrease in connection reliability.
 前記光照射の照射方向としては、特に制限はなく、照射効率などに応じて適宜選択することができ、例えば、照射対象に対して垂線方向であってもよく、また、前記垂線方向に対して傾斜した方向であってもよい。 There is no restriction | limiting in particular as an irradiation direction of the said light irradiation, According to irradiation efficiency etc., it can select suitably, For example, a perpendicular direction may be sufficient with respect to an irradiation object, Moreover, with respect to the said perpendicular direction It may be an inclined direction.
 さらに、第1の回路部材と第2の回路部材とを異方性導電フィルムを介して圧接させながら光を照射した後に、さらに、第2の回路部材を第1の回路部材側に押圧しないで、0.5秒間以上の光照射をおこなってもよい。これにより、押し込む応力が低減した状態で更に硬化を行うことができ、接続信頼性をさらに高めることができる。 Furthermore, after irradiating light while pressing the first circuit member and the second circuit member through the anisotropic conductive film, do not further press the second circuit member toward the first circuit member. The light irradiation may be performed for 0.5 seconds or more. Thereby, it can harden | cure further in the state which the stress to push in reduced, and can improve connection reliability further.
 前記押圧時における押圧力としては、特に制限はなく、回路部材の種類や、目的に応じて様々であり、押圧力の範囲はその中から適宜選択することができる。 The pressing force at the time of pressing is not particularly limited and varies depending on the type and purpose of the circuit member, and the range of the pressing force can be selected as appropriate.
 最適な硬化率に達するまで押圧を維持することが好ましい。前記最適な硬化率としては、接続材料及び回路部材の種類によっても異なるが、60%~100%が好ましく、70%~100%がより好ましい。
 前記硬化率が60%未満である場合、接続不良が起こる場合がある。
It is preferred to maintain the pressure until an optimum cure rate is reached. The optimum curing rate varies depending on the type of connection material and circuit member, but is preferably 60% to 100%, and more preferably 70% to 100%.
If the curing rate is less than 60%, connection failure may occur.
 前記光照射時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1.0秒間~10.0秒間が好ましく、1.0秒間~5.0秒間がより好ましい。
 前記光照射時間が、1.0秒間未満であると、十分に光硬化できないことがあり、10.0秒間を超えると、短時間接続ができなくなりタクトタイムが増加することにより、コスト高となってしまうことがある。
The light irradiation time is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1.0 second to 10.0 seconds, and more preferably 1.0 second to 5.0 seconds.
If the light irradiation time is less than 1.0 second, it may not be sufficiently photocured, and if it exceeds 10.0 seconds, the short-time connection becomes impossible and the tact time increases, resulting in an increase in cost. May end up.
 超音波印加と光照射とは、異方性導電フィルムに対して、相対する方向から行うことが好ましい。例えば、超音波印加を一方の回路部材(電子部品又はFCP)側から行い、光照射を他方の回路部材(配線基板)側から行うことが好ましい。
 光照射を他方の回路部材から行うことにより、一方の回路部材を押圧するための押圧部材が光を遮ることがないので、光照射効率を向上させることができ、もって押圧しながら光硬化させることができる。
The application of ultrasonic waves and light irradiation are preferably performed from opposite directions with respect to the anisotropic conductive film. For example, it is preferable to apply ultrasonic waves from one circuit member (electronic component or FCP) side and to perform light irradiation from the other circuit member (wiring board) side.
By performing light irradiation from the other circuit member, the pressing member for pressing one circuit member does not block light, so that the light irradiation efficiency can be improved and photocured while pressing. Can do.
 例えば、ガラス配線基板とICチップとの接続を行うCOG実装においては、ガラス配線基板上に紫外線硬化性樹脂を含む異方性導電フィルムを配置し、ICチップ側から超音波で異方性導電フィルムを溶融させてICチップを押し込んだ後、圧力を加えた状態でガラス基板側から紫外線照射を行い、硬化させることにより、ガラス配線基板とICチップとの接続を加熱することなく行う。これにより、熱収縮によるパネル反りを防止することができ、もって表示ムラの問題を解決することができる。
 また、ガラス配線基板とCOFとの接続を行うCOF実装においては、同様の接続方法で熱伸縮によるアライメントずれを低減することができ、十分な接続面積の確保と端子ショートの防止が可能となる。
 なお、異方性導電フィルムの溶融を促す目的で、補助的に60℃~100℃の熱をかけて実装を行ってもよい。
For example, in COG mounting in which a glass wiring board and an IC chip are connected, an anisotropic conductive film containing an ultraviolet curable resin is disposed on the glass wiring board, and the anisotropic conductive film is ultrasonically applied from the IC chip side. After the IC chip is melted and the IC chip is pushed in, the glass wiring board and the IC chip are connected without heating by irradiating with ultraviolet rays from the side of the glass substrate under pressure and curing. As a result, panel warpage due to thermal shrinkage can be prevented, and the problem of display unevenness can be solved.
Further, in COF mounting in which the glass wiring board and the COF are connected, misalignment due to thermal expansion and contraction can be reduced by the same connection method, and a sufficient connection area can be secured and terminal short-circuit can be prevented.
For the purpose of promoting the melting of the anisotropic conductive film, mounting may be performed by supplementarily applying heat of 60 ° C. to 100 ° C.
 以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.
(製造例1)
 フェノキシ樹脂(商品名:YP50、東都化成社製)60質量部と、光ラジカル重合性樹脂(商品名:EB-600、ダイセル サイテック社製)35質量部と、シランカップリング剤(商品名:KBM-503、信越化学工業社製)1部と、光ラジカル硬化剤(商品名:イルガキュア651、チバスぺシャリティーケミカルズ社製)2部とを含む接着剤中に、金メッキ導電性粒子(商品名:AUL704、積水化学工業社製)を粒子密度20,000個/mmになるように分散させた厚み20μmのフィルム状接続材料Aを得た。
(Production Example 1)
60 parts by mass of a phenoxy resin (trade name: YP50, manufactured by Tohto Kasei Co., Ltd.), 35 parts by mass of a radical photopolymerizable resin (trade name: EB-600, manufactured by Daicel Cytec Co., Ltd.), and a silane coupling agent (trade name: KBM) -503, manufactured by Shin-Etsu Chemical Co., Ltd.) and an adhesive containing 2 parts of a photo radical curing agent (trade name: Irgacure 651, manufactured by Ciba Specialty Chemicals Co., Ltd.), gold-plated conductive particles (trade name: A film-like connecting material A having a thickness of 20 μm was obtained in which AUL704 (manufactured by Sekisui Chemical Co., Ltd.) was dispersed so as to have a particle density of 20,000 particles / mm 2 .
(製造例2)
 フェノキシ樹脂(商品名:YP50、東都化成社製)60質量部と、光カチオン硬化性樹脂(液状エポキシ樹脂)(商品名:JER-828、ジャパンエポキシレジン社製)35質量部と、シランカップリング剤(商品名:KBM-403、信越化学工業社製)1部と、光カチオン硬化剤(商品名:イルガキュア369、チバスぺシャリティーケミカルズ社製)2部とを含む接着剤中に、金メッキ導電性粒子(商品名:AUL704、積水化学工業社製)を粒子密度20,000個/mmになるように分散させた厚み20μmのフィルム状接続材料Bを得た。
(Production Example 2)
60 parts by mass of phenoxy resin (trade name: YP50, manufactured by Toto Kasei Co., Ltd.), 35 parts by mass of photocation curable resin (liquid epoxy resin) (trade name: JER-828, manufactured by Japan Epoxy Resin Co., Ltd.), and silane coupling In an adhesive containing 1 part of an agent (trade name: KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) and 2 parts of a photocationic curing agent (trade name: Irgacure 369, manufactured by Ciba Specialty Chemicals) A film-like connecting material B having a thickness of 20 μm was obtained in which conductive particles (trade name: AUL704, manufactured by Sekisui Chemical Co., Ltd.) were dispersed to a particle density of 20,000 particles / mm 2 .
(製造例3)
 フェノキシ樹脂(商品名:YP50、東都化成社製)60質量部と、光ラジカル硬化性樹脂(商品名:EB-600、ダイセル サイテック社製)35質量部と、シランカップリング剤(商品名:KBM-503、信越化学工業社製)1部と、熱ラジカル硬化剤(商品名:パーブチルO、日油社製)2部とを含む接着剤中に、金メッキ導電性粒子(商品名:AUL704、積水化学工業社製)を粒子密度20,000個/mmになるように分散させた厚み20μmのフィルム状接続材料Cを得た。
(Production Example 3)
60 parts by mass of a phenoxy resin (trade name: YP50, manufactured by Tohto Kasei Co., Ltd.), 35 parts by mass of a photo radical curable resin (trade name: EB-600, manufactured by Daicel Cytec), and a silane coupling agent (trade name: KBM) -503, manufactured by Shin-Etsu Chemical Co., Ltd.) and an adhesive containing 2 parts of a thermal radical curing agent (trade name: Perbutyl O, manufactured by NOF Corporation), gold-plated conductive particles (trade name: AUL704, Sekisui) A film-like connecting material C having a thickness of 20 μm in which a particle density of 20,000 particles / mm 2 was dispersed was obtained.
(製造例4)
 製造例2において、金メッキ導電性粒子を分散させないこと以外は、製造例2と同様にしてフィルム状接続材料Dを得た。
(Production Example 4)
In Production Example 2, a film-like connecting material D was obtained in the same manner as in Production Example 2 except that the gold-plated conductive particles were not dispersed.
(製造例5)
 製造例2において、金メッキ導電性粒子の代わりに銀メッキ導電性粒子を用いたこと以外は、製造例2と同様にしてフィルム状接続材料Eを得た。
(Production Example 5)
In Production Example 2, a film-like connection material E was obtained in the same manner as in Production Example 2 except that silver-plated conductive particles were used instead of gold-plated conductive particles.
(製造例6)
 製造例2において、金メッキ導電性粒子の代わりに銅メッキ導電性粒子を用いたこと以外は、製造例2と同様にしてフィルム状接続材料Fを得た。
(Production Example 6)
In Production Example 2, a film-like connection material F was obtained in the same manner as in Production Example 2 except that copper-plated conductive particles were used instead of gold-plated conductive particles.
(製造例7)
 製造例2において、金メッキ導電性粒子の代わりにニッケルメッキ導電性粒子を用いたこと以外は、製造例2と同様にしてフィルム状接続材料Gを得た。
(Production Example 7)
In Production Example 2, a film-like connecting material G was obtained in the same manner as in Production Example 2 except that nickel-plated conductive particles were used instead of gold-plated conductive particles.
(製造例8)
 製造例2において、金メッキ導電性粒子の代わりにパラジウムメッキ導電性粒子を用いたこと以外は、製造例2と同様にしてフィルム状接続材料Hを得た。
(Production Example 8)
In Production Example 2, a film-like connection material H was obtained in the same manner as in Production Example 2 except that palladium-plated conductive particles were used instead of gold-plated conductive particles.
(実施例1)
 ICチップのパターンに対応したアルミ配線パターンガラス基板(商品名:1737F、コーニング社製、サイズ:50mm×30mm×0.5mm)上に、製造例1で作製したフィルム状接続材料Aを配置し、フィルム状接続材料A上にICチップ(寸法:1.8mm×20.0mm、厚さ:0.5mm、金バンプサイズ:30μm×85μm、バンプ高さ:15μm、ピッチ:50μm)を配置し、ICチップとアルミ配線パターンガラス基板とをフィルム状接続材料Aを介して圧接する際に、振動50Hz、振幅2μm、押圧力60MPaの条件で超音波を1.0秒間印加した後、押圧力60MPaを保持したまま、アルミ配線パターンガラス基板側からメタルハライドランプ(商品名:MLDS250、岩崎電気(株)製)を用いて紫外線を5.0秒間、光量5,000mJ/cm照射して、接合体1を作製した。
Example 1
On the aluminum wiring pattern glass substrate corresponding to the pattern of the IC chip (trade name: 1737F, manufactured by Corning, size: 50 mm × 30 mm × 0.5 mm), the film-like connecting material A produced in Production Example 1 is placed, An IC chip (dimensions: 1.8 mm × 20.0 mm, thickness: 0.5 mm, gold bump size: 30 μm × 85 μm, bump height: 15 μm, pitch: 50 μm) is arranged on the film-like connection material A, and the IC When the chip and the aluminum wiring pattern glass substrate are pressed through the film-like connecting material A, an ultrasonic wave is applied for 1.0 second under conditions of vibration 50 Hz, amplitude 2 μm, and pressing force 60 MPa, and then the pressing force 60 MPa is maintained. As it is, UV light is applied from the aluminum wiring pattern glass substrate side using a metal halide lamp (trade name: MLDS250, manufactured by Iwasaki Electric Co., Ltd.). 5.0 seconds, and irradiated light amount 5,000 mJ / cm 2, to produce a bonded structure 1.
(実施例2)
 実施例1において、フィルム状接続材料Aを用いる代わりに、製造例2で作製したフィルム状接続材料Bを用いたこと以外は、実施例1と同様にして、接合体2を作製した。
(Example 2)
In Example 1, instead of using the film-like connection material A, a joined body 2 was produced in the same manner as in Example 1 except that the film-like connection material B produced in Production Example 2 was used.
(実施例3)
 実施例1において、フィルム状接続材料Aを用いる代わりに、製造例5で作製したフィルム状接続材料Eを用いたこと以外は、実施例1と同様にして、接合体3を作製した。
(Example 3)
In Example 1, instead of using the film-like connection material A, a joined body 3 was produced in the same manner as in Example 1 except that the film-like connection material E produced in Production Example 5 was used.
(実施例4)
 実施例1において、フィルム状接続材料Aを用いる代わりに、製造例6で作製したフィルム状接続材料Fを用いたこと以外は、実施例1と同様にして、接合体4を作製した。
Example 4
In Example 1, instead of using the film-like connection material A, a joined body 4 was produced in the same manner as in Example 1 except that the film-like connection material F produced in Production Example 6 was used.
(実施例5)
 実施例1において、フィルム状接続材料Aを用いる代わりに、製造例7で作製したフィルム状接続材料Gを用いたこと以外は、実施例1と同様にして、接合体5を作製した。
(Example 5)
In Example 1, instead of using the film-like connection material A, a joined body 5 was produced in the same manner as in Example 1 except that the film-like connection material G produced in Production Example 7 was used.
(実施例6)
 実施例1において、フィルム状接続材料Aを用いる代わりに、製造例8で作製したフィルム状接続材料Hを用いたこと以外は、実施例1と同様にして、接合体6を作製した。
(Example 6)
In Example 1, instead of using the film-like connection material A, a joined body 6 was produced in the same manner as in Example 1 except that the film-like connection material H produced in Production Example 8 was used.
(比較例1)
 製造例3で作製したフィルム状接続材料Cを用いて、ICチップ(寸法:1.8mm×20.0mm、厚さ:0.5mm、金バンプサイズ:30μm×85μm、バンプ高さ:15μm、ピッチ:50μm)と、ICチップのパターンに対応したアルミ配線パターンガラス基板(商品名:1737F、コーニング社製、サイズ:50mm×30mm×0.5mm)とを170℃、80MPa、10.0秒間の接続条件で接合体7を作製した。
(Comparative Example 1)
Using the film-like connection material C produced in Production Example 3, an IC chip (dimensions: 1.8 mm × 20.0 mm, thickness: 0.5 mm, gold bump size: 30 μm × 85 μm, bump height: 15 μm, pitch : 50 μm) and an aluminum wiring pattern glass substrate (product name: 1737F, manufactured by Corning, size: 50 mm × 30 mm × 0.5 mm) corresponding to the IC chip pattern, 170 ° C., 80 MPa, 10.0 seconds connection The joined body 7 was produced under the conditions.
(比較例2)
 実施例1において、フィルム状接続材料Aを用いる代わりに、製造例4で作製したフィルム状接続材料Dを用いたこと以外は、実施例1と同様にして、接合体8を作製した。
(Comparative Example 2)
In Example 1, instead of using the film-like connection material A, a joined body 8 was produced in the same manner as in Example 1 except that the film-like connection material D produced in Production Example 4 was used.
(比較例3)
 実施例1において、超音波を1.0秒間印加した後、紫外線を5.0秒間照射する代わりに、超音波印加と紫外線照射を同時に1.0秒間行い、さらに紫外線照射のみを4.0秒間行ったこと以外は、実施例1と同様にして、接合体9を作製した。
(Comparative Example 3)
In Example 1, after applying ultrasonic waves for 1.0 second and then irradiating ultraviolet rays for 5.0 seconds, ultrasonic wave application and ultraviolet irradiation are simultaneously performed for 1.0 seconds, and only ultraviolet irradiation is performed for 4.0 seconds. A bonded body 9 was produced in the same manner as in Example 1 except for the above.
(比較例4)
 実施例1において、超音波を1.0秒間印加した後、紫外線を5.0秒間照射する代わりに、紫外線を5.0秒間照射した後、超音波を1.0秒間印加したこと以外は、実施例1と同様にして、接合体10を作製した。
(Comparative Example 4)
In Example 1, after applying the ultrasonic wave for 1.0 second and then irradiating the ultraviolet ray for 5.0 second, after irradiating the ultraviolet ray for 5.0 second and then applying the ultrasonic wave for 1.0 second, A joined body 10 was produced in the same manner as in Example 1.
 実施例1~6及び比較例1~4で作製した接合体1~10について、以下の測定を行った。 The following measurements were performed on the joined bodies 1 to 10 produced in Examples 1 to 6 and Comparative Examples 1 to 4.
<反応率(硬化率)の測定>
 アルミ配線パターンガラス基板におけるアルミ配線パターンの裏側に存在するフィルム状接続材料の反応率(硬化率)を、赤外分光光度計(品番FT/IR-4100、日本分光社製)を用いて、実装前と実装後のエポキシ吸収波長の減衰量(%)または、不飽和基の吸収波長の減衰量(%)から算出した。結果を表1に示す。
<Measurement of reaction rate (curing rate)>
Mounting the reaction rate (curing rate) of the film-like connecting material on the back side of the aluminum wiring pattern on the aluminum wiring pattern glass substrate using an infrared spectrophotometer (Part No. FT / IR-4100, manufactured by JASCO Corporation) It was calculated from the attenuation amount (%) of the epoxy absorption wavelength before and after mounting or the attenuation amount (%) of the absorption wavelength of the unsaturated group. The results are shown in Table 1.
<反り量の測定>
 触針式表面粗度計(商品名:SE-3H、小阪研究所社製)を用いて、ガラス基板の下側からスキャンし、ICチップ圧着後のアルミ配線パターンガラス基板面の反り量(μm)を測定した。結果を表1に示す。
<Measurement of warpage>
Using a stylus type surface roughness meter (trade name: SE-3H, manufactured by Kosaka Laboratory Co., Ltd.), scan from the lower side of the glass substrate, and warp amount of the aluminum wiring pattern glass substrate surface after IC chip pressing (μm ) Was measured. The results are shown in Table 1.
<接続抵抗の測定>
 デジタルマルチメーター(商品名:デジタルマルチメーター7561、横河電機(株)社製)を用いて、初期の接続抵抗(Ω)及び環境試験(85℃/85%/500hr)後の接続抵抗(Ω)の測定を行った。結果を表1に示す。
<Measurement of connection resistance>
Using a digital multimeter (trade name: Digital Multimeter 7561, manufactured by Yokogawa Electric Corporation), connection resistance (Ω) after initial connection resistance (Ω) and environmental test (85 ° C./85%/500 hr) ) Was measured. The results are shown in Table 1.
<初期接着強度の測定>
 ダイシェア測定機(商品名:Dage2400、デイジ社製)を用いて、初期接着強度(kg/IC)の測定を行った。結果を表1に示す。
<Measurement of initial adhesive strength>
Initial bond strength (kg / IC) was measured using a die shear measuring machine (trade name: Dage 2400, manufactured by Daisy). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、超音波と紫外線を併用して接合体を作製することで、高温に加熱することなく接続することができ、もって接合体パネルの反りを抑制して表示ムラの問題を解決することができる。また、実装後の接合体の残留応力が小さいため、接続信頼性が高い。 From Table 1, it is possible to connect without heating to a high temperature by using a combination of ultrasonic waves and ultraviolet rays, thereby suppressing the warpage of the bonded panel and solving the problem of display unevenness. Can do. Further, since the residual stress of the joined body after mounting is small, the connection reliability is high.
 本発明の接合体の製造方法は、例えば、ICタグ、ICカード、メモリーカード、フラットパネルディスプレイなどの製造に好適に使用することができる。 The method for producing a joined body of the present invention can be suitably used for producing, for example, an IC tag, an IC card, a memory card, a flat panel display, and the like.
10     LCDパネル(回路部材)
11     ICチップ(回路部材)
11a    端子
12     異方性導電フィルム
12a    導電性粒子
20     押圧部材
30     光源
100    接合体
 
 
 
10 LCD panel (circuit members)
11 IC chip (circuit member)
11a terminal 12 anisotropic conductive film 12a conductive particle 20 pressing member 30 light source 100 joined body

Claims (6)

  1.  第1の回路部材と第2の回路部材とが、導電性粒子及び光硬化性樹脂を含む異方性導電フィルムを介して、電気的に接合されてなる接合体の製造方法において、
     前記第1の回路部材、前記異方性導電フィルム及び前記第2の回路部材をこの順で配置する工程と、
     前記第1の回路部材と前記第2の回路部材とを前記異方性導電フィルムを介して圧接する際に、超音波を印加する工程と、
     前記超音波を印加した後に、前記第1の回路部材と前記第2の回路部材とを前記異方性導電フィルムを介して圧接させながら、前記異方性導電フィルムに光を照射する工程と、を含むことを特徴とする接合体の製造方法。
    In the method for manufacturing a joined body in which the first circuit member and the second circuit member are electrically joined via an anisotropic conductive film containing conductive particles and a photocurable resin,
    Arranging the first circuit member, the anisotropic conductive film and the second circuit member in this order;
    Applying ultrasonic waves when the first circuit member and the second circuit member are pressure-contacted via the anisotropic conductive film;
    After applying the ultrasonic wave, irradiating the anisotropic conductive film with light while pressing the first circuit member and the second circuit member through the anisotropic conductive film; The manufacturing method of the conjugate | zygote characterized by including.
  2.  異方性導電フィルムに対して一方の側から超音波を照射し、前記異方性導電フィルムに対して他方の側から光を照射する請求項1に記載の接合体の製造方法。 The method for producing a joined body according to claim 1, wherein the anisotropic conductive film is irradiated with ultrasonic waves from one side and the anisotropic conductive film is irradiated with light from the other side.
  3.  照射される光の波長が200nm~750nmである請求項1から2のいずれかに記載の接合体の製造方法。 3. The method for producing a joined body according to claim 1, wherein the wavelength of the irradiated light is 200 nm to 750 nm.
  4.  光硬化性樹脂が光カチオン硬化性樹脂及び光ラジカル硬化性樹脂のいずれかを少なくとも含む請求項1から3のいずれかに記載の接合体の製造方法。 The method for producing a joined body according to any one of claims 1 to 3, wherein the photocurable resin includes at least one of a photocationic curable resin and a photoradical curable resin.
  5.  超音波の印加時間が0.1秒間~2.0秒間であり、光の照射時間が1.0秒間~5.0秒間である請求項1から4のいずれかに記載の接合体の製造方法。 The method for producing a joined body according to any one of claims 1 to 4, wherein the ultrasonic wave is applied for 0.1 seconds to 2.0 seconds, and the light irradiation time is 1.0 seconds to 5.0 seconds. .
  6.  請求項1から5のいずれかに記載の製造方法により製造されたことを特徴とする接合体。 A joined body produced by the production method according to any one of claims 1 to 5.
PCT/JP2011/063643 2010-06-22 2011-06-15 Bonded material, and process for production thereof WO2011162137A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137001548A KR20130029804A (en) 2010-06-22 2011-06-15 Bonded material, and process for production thereof
CN201180030491.9A CN102948265B (en) 2010-06-22 2011-06-15 Conjugant and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010142012A JP2010251789A (en) 2010-06-22 2010-06-22 Junction and method of manufacturing the same
JP2010-142012 2010-06-22

Publications (1)

Publication Number Publication Date
WO2011162137A1 true WO2011162137A1 (en) 2011-12-29

Family

ID=43313692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063643 WO2011162137A1 (en) 2010-06-22 2011-06-15 Bonded material, and process for production thereof

Country Status (5)

Country Link
JP (1) JP2010251789A (en)
KR (1) KR20130029804A (en)
CN (1) CN102948265B (en)
TW (1) TWI513583B (en)
WO (1) WO2011162137A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031702A1 (en) * 2011-08-26 2013-03-07 旭化成イーマテリアルズ株式会社 Method for manufacturing solar cell connecting structure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671313B2 (en) * 2010-11-22 2015-02-18 デクセリアルズ株式会社 Anisotropic conductive film and manufacturing method of connection structure using the same
CN203134778U (en) 2011-10-26 2013-08-14 日立化成株式会社 Circuit component
CN102768419B (en) * 2011-12-05 2015-05-20 北京京东方光电科技有限公司 COG (chip on grass) bonding technique
JP2014039016A (en) * 2012-07-06 2014-02-27 Hitachi Chemical Co Ltd Semiconductor device manufacturing method and semiconductor device
JP6291165B2 (en) * 2013-03-15 2018-03-14 デクセリアルズ株式会社 Manufacturing method of connecting body and connecting method of electronic component
JP6231394B2 (en) * 2014-02-03 2017-11-15 デクセリアルズ株式会社 Method for measuring reaction rate of acrylic adhesive and acrylic adhesive
CN113613391B (en) * 2021-07-29 2023-11-24 宁波甬强科技有限公司 Method for reducing warping degree of laminated board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160671A (en) * 1999-12-02 2001-06-12 Hitachi Chem Co Ltd Circuit connecting material
JP2003162221A (en) * 2001-11-28 2003-06-06 Toppan Forms Co Ltd Sheet formed with electric circuit
JP2005339502A (en) * 2004-04-27 2005-12-08 Dainippon Printing Co Ltd Method for manufacturing sheet with ic tag, apparatus for manufacturing sheet with ic tag, sheet with ic tag, method for fixing ic chip, apparatus for fixing ic chip, and ic tag

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438558B2 (en) * 2003-11-12 2010-03-24 株式会社日立製作所 RFID tag manufacturing method
JP2005235530A (en) * 2004-02-18 2005-09-02 Hitachi Chem Co Ltd Circuit connection material
JP4385794B2 (en) * 2004-02-26 2009-12-16 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive connection method
CN100498828C (en) * 2004-04-27 2009-06-10 大日本印刷株式会社 Method for manufacturing sheet provided with IC tag, apparatus for manufacturing sheet provided with IC tag and IC tag
JP4504275B2 (en) * 2005-07-06 2010-07-14 株式会社有沢製作所 Photosensitive thermosetting resin composition, photosensitive coverlay using the composition, and flexible printed wiring board
JP2011506751A (en) * 2007-12-18 2011-03-03 スリーエム イノベイティブ プロパティズ カンパニー Conductive adhesive precursor, method of using the same, and article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160671A (en) * 1999-12-02 2001-06-12 Hitachi Chem Co Ltd Circuit connecting material
JP2003162221A (en) * 2001-11-28 2003-06-06 Toppan Forms Co Ltd Sheet formed with electric circuit
JP2005339502A (en) * 2004-04-27 2005-12-08 Dainippon Printing Co Ltd Method for manufacturing sheet with ic tag, apparatus for manufacturing sheet with ic tag, sheet with ic tag, method for fixing ic chip, apparatus for fixing ic chip, and ic tag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031702A1 (en) * 2011-08-26 2013-03-07 旭化成イーマテリアルズ株式会社 Method for manufacturing solar cell connecting structure

Also Published As

Publication number Publication date
TW201204557A (en) 2012-02-01
CN102948265A (en) 2013-02-27
KR20130029804A (en) 2013-03-25
TWI513583B (en) 2015-12-21
CN102948265B (en) 2016-08-17
JP2010251789A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
WO2011162137A1 (en) Bonded material, and process for production thereof
US8247697B2 (en) Anisotropic conductive film, joined structure and method for producing the joined structure
US9023464B2 (en) Connecting film, and joined structure and method for producing the same
TWI557208B (en) An anisotropic conductive film, an anisotropic conductive film manufacturing method, a method for manufacturing a connecting body, and a connecting method
KR101517323B1 (en) Connection method, connected-body production method and connected body
CN108702845B (en) Method for manufacturing connection structure
CN107078071B (en) Method for manufacturing connected body, method for connecting electronic component, and connected body
JP6425899B2 (en) ANISOTROPIC CONDUCTIVE ADHESIVE, METHOD FOR MANUFACTURING CONNECTION AND METHOD FOR CONNECTING ELECTRONIC COMPONENTS
JP5836830B2 (en) Manufacturing method of connecting body and connecting method
JP6783537B2 (en) Manufacturing method of the connector
JP7234032B2 (en) Method for manufacturing adhesive film, method for manufacturing adhesive film, and connected body
JP2011081257A (en) Method for manufacturing circuit component
WO2015111599A1 (en) Connection body production method and electronic component connection method
KR20180043169A (en) Method for manufacturing connected body
JP2015135859A (en) Method of manufacturing connection structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030491.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798023

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137001548

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11798023

Country of ref document: EP

Kind code of ref document: A1