JP6291165B2 - Manufacturing method of connecting body and connecting method of electronic component - Google Patents

Manufacturing method of connecting body and connecting method of electronic component Download PDF

Info

Publication number
JP6291165B2
JP6291165B2 JP2013053013A JP2013053013A JP6291165B2 JP 6291165 B2 JP6291165 B2 JP 6291165B2 JP 2013053013 A JP2013053013 A JP 2013053013A JP 2013053013 A JP2013053013 A JP 2013053013A JP 6291165 B2 JP6291165 B2 JP 6291165B2
Authority
JP
Japan
Prior art keywords
connection
region
substrate
electronic component
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013053013A
Other languages
Japanese (ja)
Other versions
JP2014179498A (en
Inventor
圭亮 稲瀬
圭亮 稲瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2013053013A priority Critical patent/JP6291165B2/en
Priority to TW103105616A priority patent/TWI603136B/en
Priority to KR1020140028859A priority patent/KR102212012B1/en
Priority to CN201410093396.9A priority patent/CN104051926B/en
Publication of JP2014179498A publication Critical patent/JP2014179498A/en
Application granted granted Critical
Publication of JP6291165B2 publication Critical patent/JP6291165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Wire Bonding (AREA)
  • Combinations Of Printed Boards (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、光硬化型の接着剤を用いて電子部品等が接続された接続体の製造方法、及び光硬化型の接着剤を用いて電子部品等を接続する接続方法に関する。   The present invention relates to a method for manufacturing a connection body in which electronic components and the like are connected using a photocurable adhesive, and a connection method for connecting electronic components and the like using a photocurable adhesive.

従来から、テレビやPCモニタ、携帯電話、携帯型ゲーム機、タブレットPCあるいは車載用モニタ等の各種表示手段として、液晶表示装置が多く用いられている。近年、このような液晶表示装置においては、ファインピッチ化、軽量薄型化等の観点から、液晶駆動用ICを直接液晶表示パネルの基板上に実装するいわゆるCOG(chip on glass)や、液晶駆動回路が形成されたフレキシブル基板を直接液晶表示パネルの基板上に実装するいわゆるFOG(film on glass)が採用されている。   Conventionally, a liquid crystal display device has been widely used as various display means such as a television, a PC monitor, a mobile phone, a portable game machine, a tablet PC, or an in-vehicle monitor. In recent years, in such liquid crystal display devices, so-called COG (chip on glass) in which a liquid crystal driving IC is directly mounted on a substrate of a liquid crystal display panel, or a liquid crystal driving circuit, from the viewpoint of fine pitch, light weight and thinning A so-called FOG (film on glass) that directly mounts the flexible substrate on which the substrate is formed on the substrate of the liquid crystal display panel is employed.

例えばCOG実装方式が採用された液晶表示装置100は、図8に示すように、液晶表示のための主機能を果たす液晶表示パネル104を有しており、この液晶表示パネル104は、ガラス基板等からなる互いに対向する二枚の透明基板102,103を有している。そして、液晶表示パネル104は、これら両透明基板102,103が枠状のシール105によって互いに貼り合わされるとともに、両透明基板102,103及びシール105によって囲繞された空間内に液晶106が封入されたパネル表示部107が設けられている。   For example, as shown in FIG. 8, a liquid crystal display device 100 employing a COG mounting system has a liquid crystal display panel 104 that performs a main function for liquid crystal display. The liquid crystal display panel 104 includes a glass substrate or the like. And two transparent substrates 102 and 103 facing each other. In the liquid crystal display panel 104, the transparent substrates 102 and 103 are bonded to each other by a frame-shaped seal 105, and the liquid crystal 106 is sealed in a space surrounded by the transparent substrates 102 and 103 and the seal 105. A panel display unit 107 is provided.

透明基板102,103は、互いに対向する両内側表面に、ITO(酸化インジウムスズ)等からなる縞状の一対の透明電極108,109が、互いに交差するように形成されている。そして、両透明基板102,103は、これら両透明電極108,109の当該交差部位によって液晶表示の最小単位としての画素が構成される。   The transparent substrates 102 and 103 have a pair of striped transparent electrodes 108 and 109 made of ITO (indium tin oxide) or the like on both inner surfaces facing each other so as to intersect each other. In the transparent substrates 102 and 103, a pixel as a minimum unit for liquid crystal display is configured by the intersection of the transparent electrodes 108 and 109.

両透明基板102,103のうち、一方の透明基板103は、他方の透明基板102よりも平面寸法が大きく形成されており、この大きく形成された透明基板103の縁部103aには、透明電極109の端子部109aが形成されている。また、両透明電極108,109上には、所定のラビング処理が施された配向膜111,112が形成されており、この配向膜111,112によって液晶分子の初期配向が規制される。さらに、両透明電極108,109の外側には、一対の偏光板118,119が配設されており、これら両偏光板118,119によってバックライト等の光源120からの透過光の振動方向が規制される。   Of the two transparent substrates 102 and 103, one transparent substrate 103 is formed to have a larger planar dimension than the other transparent substrate 102, and the transparent electrode 109 is formed on the edge 103a of the transparent substrate 103 formed to be large. Terminal portion 109a is formed. In addition, alignment films 111 and 112 subjected to a predetermined rubbing process are formed on both transparent electrodes 108 and 109, and the initial alignment of liquid crystal molecules is regulated by the alignment films 111 and 112. Further, a pair of polarizing plates 118 and 119 are disposed outside the transparent electrodes 108 and 109, and the vibration direction of transmitted light from the light source 120 such as a backlight is regulated by the polarizing plates 118 and 119. Is done.

端子部109a上には、異方性導電フィルム114を介して液晶駆動用IC115が熱圧着されている。異方性導電フィルム114は、熱硬化型のバインダー樹脂に導電性粒子を混ぜ込んでフィルム状としたもので、2つの導体間で加熱圧着されることにより導電粒子で導体間の電気的導通がとられ、バインダー樹脂にて導体間の機械的接続が保持される。液晶駆動用IC115は、画素に対して液晶駆動電圧を選択的に印加することにより、液晶の配向を部分的に変化させて所定の液晶表示を行うことができる。なお、異方性導電フィルム114を構成する接着剤としては、通常、最も信頼性の高い熱硬化性の接着剤を用いている。   On the terminal portion 109a, a liquid crystal driving IC 115 is thermocompression bonded via an anisotropic conductive film 114. The anisotropic conductive film 114 is a film formed by mixing conductive particles in a thermosetting binder resin, and heat conduction is performed between the two conductors so that the electrical conduction between the conductors is achieved by the conductive particles. And the mechanical connection between the conductors is maintained by the binder resin. The liquid crystal driving IC 115 can perform predetermined liquid crystal display by selectively applying a liquid crystal driving voltage to the pixels to partially change the alignment of the liquid crystal. Note that as the adhesive constituting the anisotropic conductive film 114, the most reliable thermosetting adhesive is usually used.

このような異方性導電フィルム114を介して液晶駆動用IC115を端子部109aへ接続する場合は、先ず、透明電極109の端子部109a上に異方性導電フィルム114を図示しない仮圧着手段によって仮圧着する。続いて、異方性導電フィルム114上に液晶駆動用IC115を載置した後、図9に示すように熱圧着ヘッド等の熱圧着手段121によって液晶駆動用IC115を異方性導電フィルム114とともに端子部109a側へ押圧しつつ熱圧着手段121を発熱させる。この熱圧着手段121による発熱によって、異方性導電フィルム114は熱硬化反応を起こし、これにより、異方性導電フィルム114を介して液晶駆動用IC115が端子部109a上に接着される。   When the liquid crystal driving IC 115 is connected to the terminal portion 109a through such an anisotropic conductive film 114, first, the anisotropic conductive film 114 is attached to the terminal portion 109a of the transparent electrode 109 by a temporary crimping means (not shown). Temporarily crimp. Subsequently, after the liquid crystal driving IC 115 is mounted on the anisotropic conductive film 114, the liquid crystal driving IC 115 is connected to the terminal together with the anisotropic conductive film 114 by thermocompression bonding means 121 such as a thermocompression bonding head as shown in FIG. The thermocompression bonding means 121 is caused to generate heat while being pressed toward the portion 109a. Due to the heat generated by the thermocompression bonding means 121, the anisotropic conductive film 114 undergoes a thermosetting reaction, whereby the liquid crystal driving IC 115 is bonded onto the terminal portion 109a via the anisotropic conductive film 114.

しかし、このような異方性導電フィルムを用いた接続方法においては、熱加圧温度が高く、液晶駆動用IC115等の電子部品や透明基板103に対する熱衝撃が大きくなる。   However, in such a connection method using an anisotropic conductive film, the heat pressing temperature is high, and the thermal shock to the electronic components such as the liquid crystal driving IC 115 and the transparent substrate 103 is increased.

そこで、このような熱硬化型の接着剤を用いた異方性導電フィルム114に代えて、紫外線硬化型の接着剤を用いた接続方法も提案されている。紫外線硬化型の接着剤を用いる接続方法においては、接着剤が熱によって軟化流動し、透明電極109の端子部109aと液晶駆動用IC115の電極間で導電性粒子を挟持するのに十分な温度まで加熱するに止め、紫外線照射によって接着剤を硬化させる。   Therefore, a connection method using an ultraviolet curable adhesive instead of the anisotropic conductive film 114 using such a thermosetting adhesive has been proposed. In the connection method using the ultraviolet curable adhesive, the adhesive softens and flows due to heat, and the temperature is high enough to sandwich the conductive particles between the terminal portion 109a of the transparent electrode 109 and the electrode of the liquid crystal driving IC 115. Stop heating and cure the adhesive by UV irradiation.

しかし、かかる紫外線硬化型の接着剤を用いる接続方法においても、紫外線照射による硬化に伴って接着剤の収縮が起きる。そのため、当該収縮に起因して、液晶106を挟持する透明基板103のIC接続部に反りが生じ、そのため、パネル表示部107における透明基板102,103間のギャップの面均一性が失われるとともに、液晶の配向が乱れ、表示ムラ等の不具合を引き起こすおそれがある。また、透明基板103のIC接続部に生じた反りにより液晶駆動用IC115の接続不良を引き起こすおそれもある。   However, even in such a connection method using an ultraviolet curable adhesive, the adhesive shrinks as it is cured by ultraviolet irradiation. Therefore, due to the shrinkage, the IC connection portion of the transparent substrate 103 that sandwiches the liquid crystal 106 is warped, so that the surface uniformity of the gap between the transparent substrates 102 and 103 in the panel display portion 107 is lost. The orientation of the liquid crystal is disturbed, and there is a risk of causing problems such as display unevenness. Further, there is a risk of causing a connection failure of the liquid crystal driving IC 115 due to the warp generated in the IC connection portion of the transparent substrate 103.

WO00/46315号公報WO00 / 46315 publication

そこで、本発明は、上述した課題を解決するものであり、紫外線硬化型の接着剤を用いることで、低温で電子部品の接続を行うと共に、接着剤の硬化収縮による歪みを抑え、電子部品の接続不良を改善する接続体の製造方法、及び電子部品の接続方法を提供することを目的とする。   Therefore, the present invention solves the above-described problems, and by using an ultraviolet curable adhesive, the electronic component is connected at a low temperature, and distortion caused by curing shrinkage of the adhesive is suppressed. It is an object of the present invention to provide a method for manufacturing a connection body that improves poor connection and a method for connecting an electronic component.

上述した課題を解決するために、本発明に係る、基板上に電子部品が接続された接続体の製造方法は、光硬化型の接着剤を介して、基板上に電子部品を配置する工程と、上記接着剤に光を照射して硬化させる工程とを有する。そして、上記基板と上記電子部品とが接続される領域が複数の接続領域に分割され、上記接続領域ごとに、上記接続領域に対応して上記光を照射させる照射部が隣接する照射部と一部照射範囲が重複し、上記光の照射強度を変えて硬化させる。 In order to solve the above-described problems, a method for manufacturing a connection body in which an electronic component is connected on a substrate according to the present invention includes a step of arranging the electronic component on the substrate via a photo-curing adhesive. And a step of irradiating the adhesive with light to cure. An area where the substrate and the electronic component are connected is divided into a plurality of connection areas. For each connection area, an irradiation section that irradiates the light corresponding to the connection area is equal to an adjacent irradiation section. The partial irradiation ranges overlap, and the light irradiation intensity is changed and cured.

また、本発明に係る、基板上に電子部品を接続する電子部品の接続方法は、光硬化型の接着剤を介して、基板上に電子部品を配置する工程と、上記接着剤に光を照射して硬化させる工程とを有する。そして、上記基板と上記電子部品とが接続される領域が複数の接続領域に分割され、上記接続領域ごとに、上記接続領域に対応して上記光を照射させる照射部が隣接する照射部と一部照射範囲が重複し、上記光の照射強度を変えて硬化させる、上記基板上に上記電子部品を接続する。
According to the present invention, an electronic component connecting method for connecting an electronic component on a substrate includes a step of placing the electronic component on the substrate via a photo-curing adhesive, and irradiating the adhesive with light. And curing. An area where the substrate and the electronic component are connected is divided into a plurality of connection areas. For each connection area, an irradiation section that irradiates the light corresponding to the connection area is equal to an adjacent irradiation section. The electronic components are connected on the substrate , where the partial irradiation ranges overlap and are cured by changing the light irradiation intensity.

本発明によれば、照射強度を変えることで、接続領域ごとに硬化のタイミングを異ならせ、順次、各接続領域における硬化収縮による歪みを吸収しながら電子部品と基板との接続を図ることができる。   According to the present invention, by changing the irradiation intensity, the timing of curing can be made different for each connection region, and the connection between the electronic component and the substrate can be achieved while sequentially absorbing the distortion caused by the curing shrinkage in each connection region. .

本発明が適用された実装工程を示す断面図である。It is sectional drawing which shows the mounting process to which this invention was applied. 異方性導電フィルムを示す断面図である。It is sectional drawing which shows an anisotropic conductive film. 電子部品及びガラス基板が接続されることにより形成される接続領域を示す斜視図である。It is a perspective view which shows the connection area | region formed by connecting an electronic component and a glass substrate. 第1〜第5の接続領域の紫外線照射強度を示す平面図である。It is a top view which shows the ultraviolet irradiation intensity | strength of the 1st-5th connection area | region. 実施例及び比較例に係るガラス基板の反りの測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the curvature of the glass substrate which concerns on an Example and a comparative example. 実施例及び比較例に係る導通抵抗の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the conduction resistance which concerns on an Example and a comparative example. 各紫外線照射強度の紫外線照射時間と反応率との関係を示す図である。It is a figure which shows the relationship between the ultraviolet irradiation time of each ultraviolet irradiation intensity | strength, and the reaction rate. 従来の液晶表示パネルを示す断面図である。It is sectional drawing which shows the conventional liquid crystal display panel. 従来の液晶表示パネルのCOG実装工程を示す断面図である。It is sectional drawing which shows the COG mounting process of the conventional liquid crystal display panel.

以下、本発明が適用された接続体の製造方法及び接続方法について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Hereinafter, a manufacturing method and a connecting method of a connection body to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

以下では、接続対象物及び被接続対象物として、基板に電子部品を接続する場合を例に説明するが、本技術は、基板と電子部品との接続以外にも適用することができる。例えば、液晶表示パネルのガラス基板に液晶駆動用のICチップを実装するいわゆるCOG(chip on glass)実装を行う。この液晶表示パネル10は、図1に示すように、ガラス基板等からなる二枚の透明基板11,12が対向配置され、これら透明基板11,12が枠状のシール13によって互いに貼り合わされている。そして、液晶表示パネル10は、透明基板11,12によって囲繞された空間内に液晶14が封入されることによりパネル表示部15が形成されている。   In the following, a case where an electronic component is connected to a substrate as an object to be connected and an object to be connected will be described as an example. However, the present technology can be applied to other than the connection between the substrate and the electronic component. For example, so-called COG (chip on glass) mounting is performed in which an IC chip for driving a liquid crystal is mounted on a glass substrate of a liquid crystal display panel. As shown in FIG. 1, the liquid crystal display panel 10 includes two transparent substrates 11 and 12 made of a glass substrate and the like, and the transparent substrates 11 and 12 are bonded to each other by a frame-shaped seal 13. . In the liquid crystal display panel 10, the liquid crystal 14 is sealed in a space surrounded by the transparent substrates 11 and 12 to form a panel display unit 15.

透明基板11,12は、互いに対向する両内側表面に、ITO(酸化インジウムスズ)等からなる縞状の一対の透明電極16,17が、互いに交差するように形成されている。そして、両透明電極16,17は、これら両透明電極16,17の当該交差部位によって液晶表示の最小単位としての画素が構成される。   The transparent substrates 11 and 12 have a pair of striped transparent electrodes 16 and 17 made of ITO (indium tin oxide) or the like on both inner surfaces facing each other so as to intersect each other. The transparent electrodes 16 and 17 constitute a pixel as a minimum unit for liquid crystal display by the intersection of the transparent electrodes 16 and 17.

両透明基板11,12のうち、一方の透明基板12は、他方の透明基板11よりも平面寸法が大きく形成されており、この大きく形成された透明基板12の縁部12aには、液晶駆動用IC等の電子部品18が実装されるCOG実装部20が設けられ、またCOG実装部20の外側近傍には、液晶駆動回路が形成されたフレキシブル基板21が実装されるFOG実装部22が設けられている。   Of the transparent substrates 11 and 12, one transparent substrate 12 is formed to have a larger planar dimension than the other transparent substrate 11, and a liquid crystal driving edge is formed on the edge 12a of the formed transparent substrate 12. A COG mounting unit 20 on which an electronic component 18 such as an IC is mounted is provided, and an FOG mounting unit 22 on which a flexible substrate 21 on which a liquid crystal driving circuit is formed is mounted near the outside of the COG mounting unit 20. ing.

なお、液晶駆動用ICや液晶駆動回路は、画素に対して液晶駆動電圧を選択的に印加することにより、液晶の配向を部分的に変化させて所定の液晶表示を行う。   Note that the liquid crystal driving IC and the liquid crystal driving circuit perform predetermined liquid crystal display by partially changing the alignment of the liquid crystal by selectively applying a liquid crystal driving voltage to the pixels.

各実装部20,22には、透明電極17の端子部17aが形成されている。端子部17a上には、導電性の接着剤として異方性導電フィルム1を用いて液晶駆動用IC等の電子部品18やフレキシブル基板21が接続される。異方性導電フィルム1は、導電性粒子4を含有しており、電子部品18やフレキシブル基板21の電極と透明基板12の縁部12aに形成された透明電極17の端子部17aとを、導電性粒子4を介して電気的に接続する。この異方性導電フィルム1は、紫外線硬化型の接着剤であり、後述する加熱押圧ヘッド30により熱圧着されることにより流動化して導電性粒子4が端子部17aと電子部品18やフレキシブル基板21の各電極との間で押し潰され、紫外線照射器31により紫外線が照射されることにより、導電性粒子4が押し潰された状態で硬化する。これにより、異方性導電フィルム1は、透明基板12と電子部品18やフレキシブル基板21とを電気的、機械的に接続する。   In each of the mounting portions 20 and 22, a terminal portion 17a of the transparent electrode 17 is formed. On the terminal portion 17a, an electronic component 18 such as a liquid crystal driving IC and a flexible substrate 21 are connected using the anisotropic conductive film 1 as a conductive adhesive. The anisotropic conductive film 1 contains the conductive particles 4, and conducts the electrode of the electronic component 18 or the flexible substrate 21 and the terminal portion 17 a of the transparent electrode 17 formed on the edge portion 12 a of the transparent substrate 12. Electrical connection is made through the conductive particles 4. The anisotropic conductive film 1 is an ultraviolet curable adhesive and is fluidized by being thermocompression-bonded by a heating and pressing head 30 described later, whereby the conductive particles 4 are converted into the terminal portions 17a, the electronic component 18, and the flexible substrate 21. By being crushed between each of the electrodes and being irradiated with ultraviolet rays by the ultraviolet irradiator 31, the conductive particles 4 are cured in a crushed state. Thereby, the anisotropic conductive film 1 electrically and mechanically connects the transparent substrate 12 to the electronic component 18 and the flexible substrate 21.

また、両透明電極16,17上には、所定のラビング処理が施された配向膜24が形成されており、この配向膜24によって液晶分子の初期配向が規制される。さらに、両透明基板11,12の外側には、一対の偏光板25,26が配設されており、これら両偏光板25,26によってバックライト等の光源(図示せず)からの透過光の振動方向が規制される。   In addition, an alignment film 24 subjected to a predetermined rubbing process is formed on both the transparent electrodes 16 and 17, and the initial alignment of liquid crystal molecules is regulated by the alignment film 24. In addition, a pair of polarizing plates 25 and 26 are disposed outside the transparent substrates 11 and 12, and these polarizing plates 25 and 26 allow transmitted light from a light source (not shown) such as a backlight to be transmitted. The vibration direction is regulated.

[異方性導電フィルム]
異方性導電フィルム(ACF:Anisotropic Conductive Film)1は、図2に示すように、通常、基材となる剥離フィルム2上に導電性粒子含有層3が形成されている。異方性導電フィルム1は、図1に示すように、液晶表示パネル10の透明基板12に形成された透明電極17と電子部品18やフレキシブル基板21との間に導電性粒子含有層3を介在させることで、液晶表示パネル10と電子部品18あるいはフレキシブル基板21とを接続し、導通させるために用いられる。
[Anisotropic conductive film]
As shown in FIG. 2, an anisotropic conductive film (ACF) 1 generally has a conductive particle-containing layer 3 formed on a release film 2 serving as a base material. As shown in FIG. 1, the anisotropic conductive film 1 has a conductive particle-containing layer 3 interposed between a transparent electrode 17 formed on a transparent substrate 12 of the liquid crystal display panel 10 and an electronic component 18 or a flexible substrate 21. By doing so, the liquid crystal display panel 10 and the electronic component 18 or the flexible substrate 21 are connected and used for electrical connection.

剥離フィルム2としては、異方性導電フィルムにおいて一般に用いられている例えばポリエチレンテレフタレートフィルム等の基材を使用することができる。   As the release film 2, a base material such as a polyethylene terephthalate film generally used in anisotropic conductive films can be used.

導電性粒子含有層3は、バインダー中に導電性粒子4を分散してなるものである。バインダーは、膜形成樹脂、硬化性樹脂、硬化剤、シランカップリング剤等を含有するものであり、通常の異方性導電フィルムに用いられるバインダーと同様である。   The conductive particle-containing layer 3 is formed by dispersing conductive particles 4 in a binder. The binder contains a film-forming resin, a curable resin, a curing agent, a silane coupling agent, and the like, and is the same as the binder used for a normal anisotropic conductive film.

膜形成樹脂としては、平均分子量が10000〜80000程度の樹脂が好ましい。膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、変形エポキシ樹脂、ウレタン樹脂、等の各種の樹脂が挙げられる。中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂が特に好ましい。   As the film-forming resin, a resin having an average molecular weight of about 10,000 to 80,000 is preferable. Examples of the film forming resin include various resins such as a phenoxy resin, an epoxy resin, a modified epoxy resin, and a urethane resin. Among these, phenoxy resin is particularly preferable from the viewpoint of film formation state, connection reliability, and the like.

硬化性樹脂としては、特に限定されず、エポキシ樹脂、アクリル樹脂等が挙げられる。   It does not specifically limit as curable resin, An epoxy resin, an acrylic resin, etc. are mentioned.

エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。具体例として、例えば、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。これらは単独でも、2種以上の組合せであってもよい。   There is no restriction | limiting in particular as an epoxy resin, According to the objective, it can select suitably. As specific examples, for example, naphthalene type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin, naphthol type epoxy resin, A dicyclopentadiene type epoxy resin, a triphenylmethane type epoxy resin, etc. are mentioned. These may be used alone or in combination of two or more.

アクリル樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、具体例として、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス[4−(アクリロキシメトキシ)フェニル]プロパン、2,2−ビス[4−(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート、エポキシアクリレート等が挙げられる。これらは単独でも、2種以上の組合せであってもよい。   There is no restriction | limiting in particular as an acrylic resin, According to the objective, it can select suitably, For example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, for example , Trimethylolpropane triacrylate, dimethyloltricyclodecane diacrylate, tetramethylene glycol tetraacrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane 2,2-bis [4- (acryloxyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclodecanyl acrylate, tris (acryloxyethyl) ) Isocyanurate, urethane acrylate, epoxy acrylate. These may be used alone or in combination of two or more.

硬化剤としては、光硬化型であれば特に制限はなく、目的に応じて適宜選択することができるが、硬化性樹脂がエポキシ樹脂の場合はカチオン系硬化剤が好ましく、硬化性樹脂がアクリル樹脂の場合はラジカル系硬化剤が好ましい。   The curing agent is not particularly limited as long as it is a photo-curing type, and can be appropriately selected according to the purpose. However, when the curable resin is an epoxy resin, a cationic curing agent is preferable, and the curable resin is an acrylic resin. In this case, a radical curing agent is preferable.

カチオン系硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スルホニウム塩、オニウム塩等を挙げることができ、これらの中でも、芳香族スルホニウム塩が好ましい。ラジカル系硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機過酸化物を挙げることができる。   There is no restriction | limiting in particular as a cationic hardening | curing agent, According to the objective, it can select suitably, For example, a sulfonium salt, onium salt, etc. can be mentioned, Among these, an aromatic sulfonium salt is preferable. There is no restriction | limiting in particular as a radical type hardening | curing agent, According to the objective, it can select suitably, For example, an organic peroxide can be mentioned.

シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。シランカップリング剤を添加することにより、有機材料と無機材料との界面における接着性が向上される。   Examples of the silane coupling agent include epoxy-based, amino-based, mercapto-sulfide-based, and ureido-based agents. By adding the silane coupling agent, the adhesion at the interface between the organic material and the inorganic material is improved.

導電性粒子4としては、異方性導電フィルムにおいて使用されている公知のいずれの導電性粒子を挙げることができる。導電性粒子4としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、あるいは、これらの粒子の表面に更に絶縁薄膜をコートしたもの等が挙げられる。樹脂粒子の表面に金属をコートしたものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を挙げることができる。   As the electroconductive particle 4, any well-known electroconductive particle currently used in the anisotropic conductive film can be mentioned. Examples of the conductive particles 4 include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, gold, metal oxide, carbon, graphite, glass, ceramic, Examples thereof include those in which the surface of particles such as plastic is coated with metal, or those in which the surface of these particles is further coated with an insulating thin film. In the case where the surface of the resin particle is coated with metal, examples of the resin particle include an epoxy resin, a phenol resin, an acrylic resin, an acrylonitrile / styrene (AS) resin, a benzoguanamine resin, a divinylbenzene resin, a styrene resin, and the like. Can be mentioned.

[製造方法]
次いで、異方性導電フィルム1を介して電子部品18やフレキシブル基板21が透明基板12の透明電極17上に接続された接続体の製造工程について説明する。先ず、異方性導電フィルム1を透明電極17上に仮圧着する。異方性導電フィルム1を仮圧着する方法は、液晶表示パネル10の透明基板12の透明電極17上に、導電性粒子含有層3が透明電極17側となるように、異方性導電フィルム1を配置する。
[Production method]
Next, a manufacturing process of a connection body in which the electronic component 18 and the flexible substrate 21 are connected to the transparent electrode 17 of the transparent substrate 12 through the anisotropic conductive film 1 will be described. First, the anisotropic conductive film 1 is temporarily pressure-bonded onto the transparent electrode 17. The method for temporarily press-bonding the anisotropic conductive film 1 is such that the conductive particle-containing layer 3 is on the transparent electrode 17 side on the transparent electrode 17 of the transparent substrate 12 of the liquid crystal display panel 10. Place.

そして、導電性粒子含有層3を透明電極17上に配置した後、剥離フィルム2側から導電性粒子含有層3を例えば加熱押圧ヘッド30で加熱及び加圧し、加熱押圧ヘッド30を剥離フィルム2から離し、剥離フィルム2を透明電極17上の導電性粒子含有層3から剥離することによって、導電性粒子含有層3のみが透明電極17上に仮圧着される。加熱押圧ヘッド30による仮圧着は、剥離フィルム2の上面を僅かな圧力(例えば0.1MPa〜2MPa程度)で透明電極17側に押圧しながら加熱する。ただし、加熱温度は、異方性導電フィルム1中のエポキシ樹脂やアクリル樹脂等の熱硬化性樹脂が硬化しない程度の温度(例えば70〜100℃程度)とする。   And after arrange | positioning the electroconductive particle content layer 3 on the transparent electrode 17, the electroconductive particle content layer 3 is heated and pressurized by the heating press head 30, for example from the peeling film 2 side, and the heating press head 30 is peeled from the peeling film 2. Release the release film 2 from the conductive particle-containing layer 3 on the transparent electrode 17, so that only the conductive particle-containing layer 3 is temporarily pressure-bonded onto the transparent electrode 17. Temporary pressure bonding by the heating and pressing head 30 heats the upper surface of the release film 2 while pressing it against the transparent electrode 17 side with a slight pressure (for example, about 0.1 MPa to 2 MPa). However, the heating temperature is set to such a temperature that the thermosetting resin such as epoxy resin or acrylic resin in the anisotropic conductive film 1 is not cured (for example, about 70 to 100 ° C.).

次に、透明基板12の透明電極17と電子部品18の電極端子とが導電性粒子含有層3を介して対向するように、電子部品18を配置する。   Next, the electronic component 18 is disposed so that the transparent electrode 17 of the transparent substrate 12 and the electrode terminal of the electronic component 18 face each other with the conductive particle-containing layer 3 interposed therebetween.

次いで、透明基板12の下部に配された紫外線照射器31によって紫外線を照射し、導電性粒子含有層3を硬化させ、透明基板12に電子部品18を接続する。このとき、本接続工程では、透明電極17の端子部17aと電子部品18とが接続される領域を、図3に示すように、複数の接続領域に分割し、接続領域ごとに、紫外線の照射強度を異ならせて硬化のタイミングをずらすようにする。   Next, ultraviolet rays are irradiated by the ultraviolet irradiator 31 disposed below the transparent substrate 12, the conductive particle-containing layer 3 is cured, and the electronic component 18 is connected to the transparent substrate 12. At this time, in this connection process, as shown in FIG. 3, the area | region where the terminal part 17a of the transparent electrode 17 and the electronic component 18 are connected is divided | segmented into a some connection area, and ultraviolet irradiation is carried out for every connection area | region. Stiffen the timing with different strengths.

電子部品18の電極端子と透明電極17の端子部17aとが接続される領域は、適宜複数の接続領域に分割され、例えば電子部品18の電極端子と透明電極17とが接続されることで多チャンネルを形成する場合に、チャンネルごとに分割される。あるいは、電子部品18の電極端子と透明電極17の端子部17aとが接続される領域は、全領域を均等な面積で複数領域に分割してもよい。図3では、一例として、電子部品18及び透明電極17の端子部17aには、接続されることによりチャンネルを構成する第1〜第5の接続領域CH1〜CH5の5つが設けられている場合を示す。第1〜第5の接続領域CH1〜CH5は、異方性導電フィルム1を介して電子部品18の端子部と透明電極17の端子部17aとが接続される領域の全幅に亘って略均等に配置されている。   A region where the electrode terminal of the electronic component 18 and the terminal portion 17a of the transparent electrode 17 are connected is appropriately divided into a plurality of connection regions. For example, the electrode terminal of the electronic component 18 and the transparent electrode 17 are connected to each other. When forming a channel, it is divided for each channel. Or the area | region where the electrode terminal of the electronic component 18 and the terminal part 17a of the transparent electrode 17 are connected may divide | segment the whole area | region into a several area | region by an equal area. In FIG. 3, as an example, the electronic component 18 and the terminal portion 17a of the transparent electrode 17 are provided with five first to fifth connection regions CH1 to CH5 that are connected to form a channel. Show. 1st-5th connection area | region CH1-CH5 is substantially equal over the full width of the area | region where the terminal part of the electronic component 18 and the terminal part 17a of the transparent electrode 17 are connected via the anisotropic conductive film 1. FIG. Has been placed.

また、紫外線照射器31は、例えば第1〜第5の接続領域CH1〜CH5に対応して、第1〜第5の紫外線照射部31a〜31eが設けられている。紫外線照射器31は、各紫外線照射部31a〜31eを個別に照射制御が可能とされ、これにより、本接続工程では、接続領域ごとに、紫外線照射強度を変えて硬化のタイミングをずらすことができる。なお、各紫外線照射部31a〜31eは、隣接する紫外線照射部と一部照射範囲が重複し、紫外線が照射されない部分がないようにされている。   The ultraviolet irradiator 31 is provided with first to fifth ultraviolet irradiators 31a to 31e corresponding to, for example, the first to fifth connection regions CH1 to CH5. The ultraviolet irradiator 31 can individually control the irradiation of the ultraviolet irradiators 31a to 31e, and in this connection step, it is possible to change the curing timing by changing the ultraviolet irradiation intensity for each connection region. . In addition, each ultraviolet irradiation part 31a-31e overlaps with an adjacent ultraviolet irradiation part, and an irradiation range overlaps, and it is made not to have the part which is not irradiated with an ultraviolet-ray.

このように、紫外線照射強度を変えて硬化のタイミングをずらすことで、順次、各接続領域における硬化収縮による歪みを吸収しながら電子部品18と透明基板12との接続を図ることができる。これは、高い強度の紫外線が照射された接続領域でバインダーが硬化し始め、バインダーの硬化収縮が起こったときに、これより低い強度の紫外線が照射された隣接する接続領域が未だ高い流動性を有することから、ここで硬化収縮による歪みを吸収することができるからである。   In this way, by changing the ultraviolet irradiation intensity and shifting the timing of curing, it is possible to sequentially connect the electronic component 18 and the transparent substrate 12 while absorbing distortion due to curing shrinkage in each connection region. This is because the binder begins to cure in the connection area irradiated with high-intensity ultraviolet rays, and when the binder shrinkage occurs, the adjacent connection area irradiated with lower-intensity ultraviolet rays still has high fluidity. This is because the strain due to curing shrinkage can be absorbed here.

具体的に、図3に示す第1〜第5の接続領域CH1〜CH5では、図4に示すように、第3の紫外線照射部31cで紫外線照射強度を大きくし、第2及び第4の紫外線照射部31b,31dの紫外線照射強度を次に大きくし、第1及び第5の紫外線照射部31a,31eの紫外線照射強度を最も低くする。これにより、第3の接続領域CH3→第2及び第4の接続領域CH2,CH4→第1及び第5の接続領域CH1,CH5の順で、導電性粒子含有層3を硬化させる。このように、本接続工程によれば、第1〜第5の接続領域CH1〜CH5に対する紫外線照射の強度を異ならせることで、中央部に位置する第3の接続領域CH3の硬化時における歪みを隣接する第2、第4の接続領域CH2、CH4の未硬化のバインダーで吸収し、第2、第4の接続領域CH2、CH4の硬化時における歪みを隣接する第1、第5の接続領域CH1、CH5の未硬化のバインダーで吸収していく。   Specifically, in the first to fifth connection regions CH1 to CH5 shown in FIG. 3, as shown in FIG. 4, the third ultraviolet irradiation unit 31c increases the ultraviolet irradiation intensity, and the second and fourth ultraviolet rays. The ultraviolet irradiation intensity of the irradiation units 31b and 31d is next increased, and the ultraviolet irradiation intensity of the first and fifth ultraviolet irradiation units 31a and 31e is minimized. Accordingly, the conductive particle-containing layer 3 is cured in the order of the third connection region CH3 → the second and fourth connection regions CH2, CH4 → the first and fifth connection regions CH1, CH5. Thus, according to this connection process, the distortion at the time of hardening of 3rd connection area | region CH3 located in a center part by changing the intensity | strength of ultraviolet irradiation with respect to 1st-5th connection area | region CH1-CH5. The first and fifth connection regions CH1 adjacent to each other are absorbed by the uncured binder in the second and fourth connection regions CH2 and CH4 adjacent to each other, and distortion at the time of curing the second and fourth connection regions CH2 and CH4 is adjacent to each other. , Absorbed with an uncured binder of CH5.

これに対し、第1〜第5の接続領域CH1〜CH5に対して同時に紫外線を照射する場合、各接続領域CH1〜CH5が同時に硬化を開始するため、隣接する接続領域の歪みを吸収することができない。したがって、本接続工程によれば、透明基板12の歪みを抑制するとともに、電子部品18の接続不良を防止することができる。   In contrast, when the first to fifth connection regions CH1 to CH5 are irradiated with ultraviolet rays at the same time, the connection regions CH1 to CH5 start to cure at the same time, so that the distortion of the adjacent connection regions can be absorbed. Can not. Therefore, according to this connection process, it is possible to suppress the distortion of the transparent substrate 12 and to prevent the connection failure of the electronic component 18.

なお、本接続工程では、少なくとも紫外線照射強度を変えて硬化のタイミングをずらせばよく、更に、硬化のタイミングを微調整するために、第1〜第5の接続領域CH1〜CH5の紫外線照射開始のタイミングをずらすようにしてもよい。また、紫外線照射の終期は、揃っていてもずれていてもよい。   In this connection step, it is only necessary to shift the timing of curing by changing at least the intensity of ultraviolet irradiation. Furthermore, in order to finely adjust the timing of curing, the ultraviolet irradiation start of the first to fifth connection regions CH1 to CH5 is started. The timing may be shifted. Further, the end of the ultraviolet irradiation may be aligned or shifted.

電子部品18を透明基板12の透明電極17上に接続した後、同様にしてフレキシブル基板21が透明基板12の透明電極17上に実装するいわゆるFOG(film on glass)実装が行われる。これにより、異方性導電フィルム1を介して透明基板12と電子部品18やフレキシブル基板21とが接続された接続体を製造することができる。なお、これらCOG実装とFOG実装は、同時に行ってもよい。   After the electronic component 18 is connected to the transparent electrode 17 of the transparent substrate 12, so-called FOG (film on glass) mounting is performed in which the flexible substrate 21 is mounted on the transparent electrode 17 of the transparent substrate 12 in the same manner. Thereby, the connection body by which the transparent substrate 12, the electronic component 18, and the flexible substrate 21 were connected via the anisotropic conductive film 1 can be manufactured. Note that these COG mounting and FOG mounting may be performed simultaneously.

以上、液晶駆動用ICを直接液晶表示パネルのガラス基板上に実装するCOG実装、及びフレキシブル基板を直接液晶表示パネルの基板上に実装するFOG実装を例に説明したが、本技術は、COG実装、FOG実装以外のその他の各種接続に用いることができる。   As described above, the COG mounting in which the liquid crystal driving IC is directly mounted on the glass substrate of the liquid crystal display panel and the FOG mounting in which the flexible substrate is directly mounted on the substrate of the liquid crystal display panel have been described as examples. It can be used for other various connections other than the FOG mounting.

なお、以上の例では、紫外線硬化型のバインダーを用いたが、本発明は、照射によりバインダーを硬化させることができれば、紫外線以外の光を用いてもよい。また、以上の例では、導電性の接着剤としてフィルム形状を有する異方性導電フィルム1について説明したが、ペースト状であっても問題は無い。本願では、導電性粒子4を含有する異方性導電フィルム1等のフィルム状の導電性接着フィルム又はペースト状の導電性接着ペーストを「接着剤」と定義する。   In the above example, an ultraviolet curable binder is used. However, the present invention may use light other than ultraviolet light as long as the binder can be cured by irradiation. Moreover, although the above example demonstrated the anisotropic conductive film 1 which has a film shape as a conductive adhesive, even if it is a paste form, there is no problem. In the present application, a film-like conductive adhesive film such as the anisotropic conductive film 1 containing the conductive particles 4 or a paste-like conductive adhesive paste is defined as an “adhesive”.

次いで、本発明の実施例について説明する。本実施例では、ガラス基板に設けた透明電極とICチップに設けた電極端子とが接続されることによって5つのチャンネルを構成する第1〜第5の接続領域CH1〜CH5が設けられた接続体サンプルを形成し(図3参照)、各接続体サンプルについて、ICチップと基板との接続状態を導通抵抗値(Ω)によって評価し、表示ムラを基板の反り量(μm)を測定することで代替評価した。   Next, examples of the present invention will be described. In the present embodiment, a connection body provided with first to fifth connection regions CH1 to CH5 constituting five channels by connecting a transparent electrode provided on a glass substrate and an electrode terminal provided on an IC chip. By forming a sample (see FIG. 3), for each connected body sample, the connection state between the IC chip and the substrate is evaluated by the conduction resistance value (Ω), and the display unevenness is measured by the amount of warpage (μm) of the substrate. Substitute evaluation.

接続に用いる紫外線硬化性付与異方性導電フィルムは、厚さ18μmの導電性粒子含有層(ACF層)からなる接着剤層からなる。ACF層は、
フェノキシ樹脂(YP−70:新日鐵化学株式会社製);20質量部
液状エポキシ樹脂(EP−828:三菱化学株式会社製);30質量部
固形エポキシ樹脂(YD014:)新日鐵化学株式会社製);20質量部
導電性粒子;(AUL704:積水化学工業株式会社製);30質量部
カチオン系硬化剤(LW−S1:サンアプロ株式会社製);5質量部
を溶媒に溶融させて混合溶液を作成し、この混合溶液をPETフィルム上に塗布し、オーブンにて乾燥し、フィルム状に成形した。
The ultraviolet-curing imparted anisotropic conductive film used for connection is composed of an adhesive layer composed of a conductive particle-containing layer (ACF layer) having a thickness of 18 μm. The ACF layer is
Phenoxy resin (YP-70: manufactured by Nippon Steel Chemical Co., Ltd.); 20 parts by mass liquid epoxy resin (EP-828: manufactured by Mitsubishi Chemical Corporation); 30 parts by mass solid epoxy resin (YD014 :) Nippon Steel Chemical Co., Ltd. 20 parts by mass of conductive particles; (AUL 704: manufactured by Sekisui Chemical Co., Ltd.); 30 parts by mass of cationic curing agent (LW-S1: manufactured by San Apro Co., Ltd.); The mixed solution was applied onto a PET film, dried in an oven, and formed into a film.

このACFを、厚さ18μmとなるように調整して積層ラミネートすることにより、異方性導電フィルムを得た。実施例及び比較例に用いる異方性導電フィルムは、幅4.0mm×長さ40.0mmである。   This ACF was adjusted to have a thickness of 18 μm and laminated and laminated to obtain an anisotropic conductive film. The anisotropic conductive film used for an Example and a comparative example is width 4.0mm x length 40.0mm.

評価素子として、
外形;1.8mm×34.0mm
厚さ;0.5mm
で、導通測定用配線を形成した評価用ICを用いた。
As an evaluation element,
External shape: 1.8mm x 34.0mm
Thickness: 0.5mm
Thus, an evaluation IC in which a continuity measurement wiring was formed was used.

評価用ICが接続される評価基材として、ガラス厚0.5mmで、導通測定用配線が形成されたガラス基板を用いた。   As an evaluation base material to which the evaluation IC is connected, a glass substrate having a glass thickness of 0.5 mm and having a continuity measurement wiring formed thereon was used.

このガラス基板に上記異方性導電フィルムを介して評価用ICを配置し、加熱押圧ヘッドによる熱加圧及び紫外線照射によって接続することにより、接続体サンプルを形成した。加熱押圧ヘッドの熱加圧面は、10.0mm×40.0mmであり、加熱押圧ヘッドの熱加圧面には緩衝材として厚さ0.05mmのフッ素樹脂加工が施されている。加熱押圧ヘッドの温度条件はいずれも110℃、押圧条件はいずれも70MPa、5秒である。   An evaluation IC was placed on the glass substrate through the anisotropic conductive film, and connected by thermal pressing with a heating press head and ultraviolet irradiation to form a connected body sample. The heat-pressing surface of the heating and pressing head is 10.0 mm × 40.0 mm, and the heat-pressing surface of the heating and pressing head is processed with a fluororesin having a thickness of 0.05 mm as a buffer material. The temperature conditions of the heating and pressing head are all 110 ° C., and the pressing conditions are 70 MPa and 5 seconds.

紫外線照射を行うUV照射機(オムロン製)は、強度MAX(100%)→500mW/cmのものを用いた。紫外線照射は、所定温度に設定された加熱押圧ヘッドによる評価用ICの熱加圧を5秒間加圧した後、5秒間行った。実施例及び比較例にかかる各接続領域CH1〜CH5における紫外線照射強度は、表1の通りである。 A UV irradiator (manufactured by OMRON) that irradiates ultraviolet rays was used having an intensity MAX (100%) → 500 mW / cm 2 . The ultraviolet irradiation was performed for 5 seconds after applying pressure to the IC for evaluation with a heating and pressing head set at a predetermined temperature for 5 seconds. Table 1 shows the ultraviolet irradiation intensity in each of the connection regions CH1 to CH5 according to the example and the comparative example.

実施例1では、第3の接続領域CH3の紫外線照射強度を90%とし、第1、第2、第4及び第5の接続領域CH1、CH2、CH4、CH5の紫外線照射強度を70%とした。すなわち、実施例1では、第1〜第5の接続領域CH1〜CH5のうち、中央の第3の接続領域CH3に照射する紫外線照射強度よりも、その周辺の第1、第2、第4及び第5の接続領域CH1、CH2、CH4、CH5の紫外線照射強度を小さくし、かつ、揃えた例である。なお、照射強度の比は、70/90=78%である。   In Example 1, the ultraviolet irradiation intensity of the third connection region CH3 was 90%, and the ultraviolet irradiation intensity of the first, second, fourth, and fifth connection regions CH1, CH2, CH4, and CH5 was 70%. . That is, in the first embodiment, among the first to fifth connection regions CH1 to CH5, the surrounding first, second, fourth, and fourth regions are stronger than the ultraviolet irradiation intensity irradiating the central third connection region CH3. This is an example in which the ultraviolet irradiation intensity of the fifth connection regions CH1, CH2, CH4, and CH5 is reduced and aligned. The ratio of irradiation intensity is 70/90 = 78%.

実施例2では、第3〜第5の接続領域CH3〜CH5の紫外線照射強度を70%とし、第1の接続領域CH1の紫外線照射強度を30%とし、第2の接続領域CH2の紫外線照射強度を50%とした。すなわち、実施例2では、一端部となる第1の接続領域CH1から、他端部の方に向かって段階的に紫外線照射強度が大きくなり、第3〜第5の接続領域CH3〜CH5の紫外線照射強度を揃えた例である。なお、照射強度の比は、30/70=43%である。   In Example 2, the ultraviolet irradiation intensity of the third to fifth connection regions CH3 to CH5 is set to 70%, the ultraviolet irradiation intensity of the first connection region CH1 is set to 30%, and the ultraviolet irradiation intensity of the second connection region CH2 is set. Was 50%. That is, in Example 2, the ultraviolet irradiation intensity gradually increases from the first connection region CH1 serving as one end toward the other end, and the ultraviolet rays of the third to fifth connection regions CH3 to CH5 are increased. This is an example in which the irradiation intensity is aligned. The ratio of irradiation intensity is 30/70 = 43%.

実施例3では、第3の接続領域CH3の紫外線照射強度を70%とし、第2及び第4の接続領域CH2,CH4の紫外線照射強度を50%とし、第1及び第5の接続領域CH1,CH5の紫外線照射強度を40%とした。すなわち、実施例3では、中央の第3の接続領域CH3から両端部の第1及び第5の接続領域CH1,CH5へ向かって段階的に紫外線照射強度を小さくする例である。なお、照射強度の比は、40/70=57%である。   In the third embodiment, the ultraviolet irradiation intensity of the third connection region CH3 is 70%, the ultraviolet irradiation intensity of the second and fourth connection regions CH2 and CH4 is 50%, and the first and fifth connection regions CH1, The UV irradiation intensity of CH5 was 40%. That is, the third embodiment is an example in which the ultraviolet irradiation intensity is gradually reduced from the central third connection region CH3 toward the first and fifth connection regions CH1 and CH5 at both ends. The ratio of irradiation intensity is 40/70 = 57%.

実施例4では、第3の接続領域CH3の紫外線照射強度を10%とし、第2及び第4の接続領域CH2,CH4の紫外線照射強度を30%とし、第1及び第5の接続領域CH1,CH5の紫外線照射強度を70%とした。すなわち、実施例4では、両端部となる第1及び第5の接続領域CH1,CH5から、中央の第3の接続領域CH3へ向かって段階的に紫外線照射強度を小さくする例である。なお、照射強度の比は、10/70=14%である。   In the fourth embodiment, the ultraviolet irradiation intensity of the third connection region CH3 is 10%, the ultraviolet irradiation intensity of the second and fourth connection regions CH2 and CH4 is 30%, and the first and fifth connection regions CH1, The UV irradiation intensity of CH5 was set to 70%. In other words, the fourth embodiment is an example in which the ultraviolet irradiation intensity is gradually reduced from the first and fifth connection regions CH1 and CH5 at both ends toward the third connection region CH3 at the center. The ratio of irradiation intensity is 10/70 = 14%.

比較例1では、第1〜第5の接続領域CH1〜CH5の紫外線照射強度を100%とし、一律に揃えた。   In Comparative Example 1, the ultraviolet irradiation intensity of the first to fifth connection regions CH1 to CH5 was set to 100%, and they were uniform.

比較例2では、第1〜第5の接続領域CH1〜CH5の紫外線照射強度を10%とし、一律に揃えた。   In Comparative Example 2, the ultraviolet irradiation intensity of the first to fifth connection regions CH1 to CH5 was set to 10%, and they were uniform.

比較例3では、第1〜第5の接続領域CH1〜CH5の紫外線照射強度を50%とし、一律に揃えた。   In Comparative Example 3, the ultraviolet irradiation intensity of the first to fifth connection regions CH1 to CH5 was set to 50%, which was uniform.

以上の条件で加熱押圧及び紫外線照射を行って、評価用ICがガラス基板に接続された接続体サンプルを形成し、各サンプルについて、反り(μm)の大きさ、及び導通抵抗値(Ω)を測定した。   Under the above conditions, heat pressing and ultraviolet irradiation are performed to form a connected body sample in which the IC for evaluation is connected to the glass substrate. For each sample, the size of the warp (μm) and the conduction resistance value (Ω) are set. It was measured.

反りの測定方法は、触針式表面粗度計(SE−3H:株式会社小阪研究所製)を用いて、図5に示すように、接合体サンプルのガラス基板40下面から触針41をスキャンし、評価用ICの接続後のガラス基板面の反り量(μm)を測定した。   As shown in FIG. 5, the warp measurement method is performed by scanning the stylus 41 from the lower surface of the glass substrate 40 of the joined body sample using a stylus type surface roughness meter (SE-3H: manufactured by Kosaka Laboratory Ltd.). Then, the warpage amount (μm) of the glass substrate surface after connection of the evaluation IC was measured.

導通抵抗値の測定は、接続体サンプルを85℃、85%RHの環境下に500時間放置する高温高湿試験を実施した後、図6に示すように、評価用ICの導電パターン44のバンプ42と接続されたガラス基板40の金属配線43に電流計A、電圧計Vを接続し、デジタルマルチメータを用いていわゆる4端子法にて電流1mAを流したときの導通抵抗値を測定した。結果を表2に示す。   The conductive resistance value is measured by performing a high temperature and high humidity test in which the connected body sample is left in an environment of 85 ° C. and 85% RH for 500 hours, and then, as shown in FIG. An ammeter A and a voltmeter V were connected to the metal wiring 43 of the glass substrate 40 connected to 42, and a conduction resistance value was measured when a current of 1 mA was passed by a so-called four-terminal method using a digital multimeter. The results are shown in Table 2.

先ず、紫外線照射強度別にサンプルに紫外線を照射し、照射時間ごとの反応率を調べた。この結果を図7に示す。図7から、照射強度を変えて紫外線を照射することで、硬化時間に差が出ることを確認することができる。これにより、紫外線照射強度を変えることで、硬化タイミングに差が出ることが分かる。すなわち、紫外線照射強度が高いほど、短時間で高反応率を実現することができる。   First, the sample was irradiated with ultraviolet rays according to the ultraviolet irradiation intensity, and the reaction rate for each irradiation time was examined. The result is shown in FIG. From FIG. 7, it can be confirmed that there is a difference in curing time by changing the irradiation intensity and irradiating ultraviolet rays. Thereby, it turns out that a difference comes out in hardening timing by changing ultraviolet irradiation intensity. That is, the higher the ultraviolet irradiation intensity, the higher the reaction rate can be realized in a short time.

また、紫外線照射強度と、実施例及び比較例に係る異方性導電フィルムの硬化収縮率との関係について、表2に示す。硬化収縮率とは、紫外線硬化に伴って異方性導電フィルムが収縮する割合をいい、
硬化収縮率=(ACFの硬化物比重−ACFの樹脂液比重)/ACFの硬化物比重×100
で求めることができる。
In addition, Table 2 shows the relationship between the ultraviolet irradiation intensity and the curing shrinkage rate of the anisotropic conductive films according to Examples and Comparative Examples. Curing shrinkage refers to the rate at which the anisotropic conductive film shrinks with ultraviolet curing,
Curing shrinkage = (ACF cured product specific gravity−ACF resin liquid specific gravity) / ACF cured product specific gravity × 100
Can be obtained.

表2に示すように、各実施例では、第1〜第5の接続領域CH1〜CH5にかけて紫外線照射強度をずらして硬化のタイミングをずらしているため、紫外線照射強度の大きい接続領域の硬化時における歪みを隣接する接続領域の未硬化のバインダーで吸収していく。したがって、各実施例によれば、反り量も最大で12.7μmに収まり、また接続抵抗も最大で11.6Ωに収めることができる。したがって、本接続工程によれば、ガラス基板の歪みを抑制するとともに、評価用ICの接続不良を防止することができることがわかる。   As shown in Table 2, in each example, the curing timing is shifted by shifting the ultraviolet irradiation intensity over the first to fifth connection regions CH1 to CH5, so that the connection region having a high ultraviolet irradiation intensity is cured. The strain is absorbed by the uncured binder in the adjacent connection area. Therefore, according to each embodiment, the amount of warping can be kept to 12.7 μm at the maximum, and the connection resistance can be kept to 11.6Ω at the maximum. Therefore, according to this connection process, it turns out that the distortion of a glass substrate can be suppressed and the connection failure of evaluation IC can be prevented.

各実施例をみると、中央の第3の接続領域CH3に最も大きい紫外線照射強度で紫外線を照射し、順次段階的に端部へ向かって小さい紫外線照射強度の紫外線を照射していく実施例3や、端部の接続領域CH1、CH5に最も大きい紫外線照射強度で紫外線を照射し、順次段階的に中央部へ向かって小さい紫外線照射強度の紫外線を照射していく実施例4において反り量及び接続抵抗が比較的良好であった。これは、紫外線が照射される接続領域に必ず紫外線が未照射の接続領域が設けられていることから、多くの接続領域において、硬化時における歪みを隣接する接続領域の未硬化のバインダーで吸収していくことができたためと考えられる。特に、ガラスは中央部から外側に向かって変形する傾向があるため、端部の接続領域CH1、CH5に最も大きい紫外線照射強度で紫外線を照射する実施例4において、最も反り量を小さくすることができる。   In each example, the third connection region CH3 in the center is irradiated with ultraviolet rays with the highest ultraviolet irradiation intensity, and the ultraviolet rays with the lower ultraviolet irradiation intensity are sequentially irradiated to the end portion in a stepwise manner. In addition, the amount of warpage and the connection in Example 4 in which the connection regions CH1 and CH5 at the end portions are irradiated with ultraviolet rays with the highest ultraviolet irradiation intensity, and the ultraviolet rays with the lower ultraviolet irradiation intensity are sequentially emitted toward the center portion. Resistance was relatively good. This is because a connection region that is not irradiated with ultraviolet rays is always provided in the connection region that is irradiated with ultraviolet rays, and in many connection regions, distortion during curing is absorbed by the uncured binder in the adjacent connection region. It is thought that it was possible to continue. In particular, since glass tends to be deformed outward from the central portion, the amount of warpage can be minimized in Example 4 in which ultraviolet rays are irradiated to the connection regions CH1 and CH5 at the end portions with the highest ultraviolet irradiation intensity. it can.

また、各実施例の中では、硬化収縮率が大きいほど、反り量が大きくなる傾向にあり、結果、表示品質や表示村等を発生させやすくなる。このため、実施例の中でも硬化収縮率が小さく制御する方が好ましいことが分かる。   Further, in each example, the warping amount tends to increase as the curing shrinkage rate increases, and as a result, display quality, display village, and the like are easily generated. For this reason, it turns out that it is more preferable to control a cure shrinkage rate small also in an Example.

これに対し、第1〜第5の接続領域CH1〜CH5に対して、100%の同じ紫外線照射強度で照射している比較例1では、各接続領域CH1〜CH5が同時に硬化が開始し、また、硬化収縮率も4.1%と大きいため、隣接する接続領域の歪みを吸収することができず、反り量18.1μmと最も大きく、また接続抵抗も19.8Ωと大きくなった。また、比較例3でも、紫外線照射強度を50%にして、紫外線照射強度を小さくしているが、各接続領域CH1〜CH5が同時に硬化が開始するため、隣接する接続領域の歪みを吸収することができず、反り量13.5μmと大きく、また接続抵抗も13.3Ωと大きくなった。   On the other hand, in the first comparative example in which the first to fifth connection regions CH1 to CH5 are irradiated with the same ultraviolet irradiation intensity of 100%, the connection regions CH1 to CH5 start to cure simultaneously, Further, since the cure shrinkage ratio was as large as 4.1%, it was not possible to absorb the distortion of the adjacent connection region, the largest amount of warpage was 18.1 μm, and the connection resistance was as large as 19.8Ω. Also in Comparative Example 3, the ultraviolet irradiation intensity is reduced to 50% and the ultraviolet irradiation intensity is reduced. However, since the connection regions CH1 to CH5 start to cure at the same time, the distortion of the adjacent connection regions is absorbed. The warpage amount was as large as 13.5 μm, and the connection resistance was as large as 13.3Ω.

また、第1〜第5の接続領域CH1〜CH5に対して紫外線照射強度を10%で揃えた比較例2では、硬化収縮率が1.0%と小さいため反りが4.8μmに抑えられたが、硬化が不十分となり、高温高湿試験後の接続抵抗は110.8Ωと極めて大きくなった。   Further, in Comparative Example 2 in which the ultraviolet irradiation intensity was uniformed at 10% with respect to the first to fifth connection regions CH1 to CH5, the warpage was suppressed to 4.8 μm because the curing shrinkage rate was as small as 1.0%. However, the curing was insufficient and the connection resistance after the high-temperature and high-humidity test was as extremely high as 110.8Ω.

なお、積算光量を見たとき、実施例3と比較例3とは同じである。しかしながら、反り量は、実施例3の方が比較例3より小さい。これによって、圧着部全体が受ける光量が同じであっても、紫外線の照射強度の制御を異ならせることによって反り量を変化させることが確認でき、更に、接続領域ごとに、紫外線の照射強度を変えることで、硬化のタイミングをずらすことができ、反りを小さくすることを確認できる。   Note that Example 3 and Comparative Example 3 are the same when viewing the integrated light quantity. However, the amount of warpage is smaller in Example 3 than in Comparative Example 3. This makes it possible to confirm that the amount of warpage is changed by varying the control of the irradiation intensity of the ultraviolet rays even when the amount of light received by the entire crimping part is the same, and further, the irradiation intensity of the ultraviolet rays is changed for each connection region. Thus, it can be confirmed that the curing timing can be shifted and the warpage can be reduced.

また、照射強度の比を見たとき、実施例1〜4は、概ね10%〜80%である。これに対して、比較例3は、照射強度の比が100%であり、反り量が極めて大きくなり、また、比較例2は、照射強度が全て10%で接続不良となる。すなわち、実施例1〜4では、照射強度の比を概ね10%〜80%とすることで、良好な電気的な接続を実現しながら硬化速度の違いによる反り低減効果を得ることができる。   Moreover, when the ratio of irradiation intensity | strength is seen, Examples 1-4 are 10 to 80% in general. On the other hand, the ratio of the irradiation intensity in Comparative Example 3 is 100%, and the amount of warpage is extremely large. In Comparative Example 2, all the irradiation intensity is 10%, resulting in poor connection. That is, in Examples 1 to 4, by setting the ratio of irradiation intensity to approximately 10% to 80%, it is possible to obtain a warp reduction effect due to a difference in curing speed while realizing a good electrical connection.

1 異方性導電フィルム、2 剥離フィルム、3 導電性粒子含有層、4 導電性粒子、10 液晶表示パネル、11 透明基板、12 透明基板、13 シール、14 液晶、15 パネル表示部、16 透明電極、17 透明電極、17a 端子部、18 電子部品、20 COG実装部、21 フレキシブル基板、22 FOG実装部、24 配向膜、25 偏光板、26 偏光板、30 加熱押圧ヘッド、31 紫外線照射器 DESCRIPTION OF SYMBOLS 1 Anisotropic conductive film, 2 Release film, 3 Conductive particle content layer, 4 Conductive particle, 10 Liquid crystal display panel, 11 Transparent substrate, 12 Transparent substrate, 13 Seal, 14 Liquid crystal, 15 Panel display part, 16 Transparent electrode , 17 Transparent electrode, 17a terminal part, 18 electronic component, 20 COG mounting part, 21 flexible substrate, 22 FOG mounting part, 24 alignment film, 25 polarizing plate, 26 polarizing plate, 30 heating press head, 31 UV irradiator

Claims (7)

光硬化型の接着剤を介して、基板上に電子部品を配置する工程と、
上記接着剤に光を照射して硬化させる工程とを有し、
上記基板と上記電子部品とが接続される領域が複数の接続領域に分割され、上記接続領域ごとに、上記接続領域に対応して上記光を照射させる照射部が隣接する照射部と一部照射範囲が重複し、上記光の照射強度を変えて硬化させる、上記基板上に上記電子部品が接続された接続体の製造方法。
A step of placing electronic components on the substrate via a photo-curing adhesive;
Irradiating the adhesive with light and curing it,
A region where the substrate and the electronic component are connected is divided into a plurality of connection regions, and for each connection region, an irradiation unit that irradiates the light corresponding to the connection region is adjacent to the irradiation unit and partially irradiated The manufacturing method of the connection body with which the said electronic component was connected on the said board | substrate where the range overlaps and it changes and cures the said irradiation intensity of the light.
複数に分割された上記接続領域のうち、上記基板と上記電子部品とが接続される領域の中央の接続領域に照射する上記光の照射強度よりも、上記中央の接続領域以外の接続領域に照射する上記光の強度を小さくして硬化させる請求項1記載の接続体の製造方法。   Irradiate the connection region other than the central connection region than the irradiation intensity of the light that irradiates the central connection region of the region where the substrate and the electronic component are connected among the connection regions divided into a plurality of regions. The method for manufacturing a connection body according to claim 1, wherein the light intensity is reduced and cured. 上記中央の接続領域から上記基板と上記電子部品とが接続される領域の端部の上記接続領域へ向かって段階的に上記光の強度を小さくして硬化させる請求項2記載の接続体の製造方法。   The manufacturing of a connection body according to claim 2, wherein the light intensity is gradually reduced and cured from the central connection region toward the connection region at an end of a region where the substrate and the electronic component are connected. Method. 上記基板と上記電子部品とが接続される領域の一又は複数の端部の上記接続領域に照射する上記光の照射強度よりも、上記一又は複数の端部の接続領域以外の接続領域に照射する上記光の強度を小さくして硬化させる請求項1記載の接続体の製造方法。   Irradiate the connection region other than the connection region of the one or more end portions, rather than the irradiation intensity of the light that irradiates the connection region of the one or more end portions of the region where the substrate and the electronic component are connected. The method for manufacturing a connection body according to claim 1, wherein the light intensity is reduced and cured. 上記基板と上記電子部品とが接続される領域の一の端部の上記接続領域から、上記基板と上記電子部品とが接続される領域の他の端部の上記接続領域へ向かって段階的に上記光の照射強度を変えて硬化させる請求項4記載の接続体の製造方法。   Step by step from the connection region at one end of the region where the substrate and the electronic component are connected toward the connection region at the other end of the region where the substrate and the electronic component are connected. The manufacturing method of the connection body of Claim 4 which hardens | cures by changing the irradiation intensity of the said light. 上記基板と上記電子部品とが接続される領域の複数の端部の上記接続領域から、上記基板と上記電子部品とが接続される領域の中央の上記接続領域へ向かって段階的に上記光の照射強度を小さくして硬化させる請求項2記載の接続体の製造方法。   The light is stepwise from the connection region at a plurality of ends of the region where the substrate and the electronic component are connected toward the connection region at the center of the region where the substrate and the electronic component are connected. The manufacturing method of the connection body of Claim 2 made to harden by making irradiation intensity small. 光硬化型の接着剤を介して、基板上に電子部品を配置する工程と、
上記接着剤に光を照射して硬化させる工程とを有し、
上記基板と上記電子部品とが接続される領域が複数の接続領域に分割され、上記接続領域ごとに、上記接続領域に対応して上記光を照射させる照射部が隣接する照射部と一部照射範囲が重複し、上記光の照射強度を変えて硬化させる、上記基板上に上記電子部品を接続する電子部品の接続方法。
A step of placing electronic components on the substrate via a photo-curing adhesive;
Irradiating the adhesive with light and curing it,
A region where the substrate and the electronic component are connected is divided into a plurality of connection regions, and for each connection region, an irradiation unit that irradiates the light corresponding to the connection region is adjacent to the irradiation unit and partially irradiated An electronic component connecting method for connecting the electronic components on the substrate , wherein the ranges overlap and are cured by changing the irradiation intensity of the light.
JP2013053013A 2013-03-15 2013-03-15 Manufacturing method of connecting body and connecting method of electronic component Active JP6291165B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013053013A JP6291165B2 (en) 2013-03-15 2013-03-15 Manufacturing method of connecting body and connecting method of electronic component
TW103105616A TWI603136B (en) 2013-03-15 2014-02-20 Method of manufacturing connection body and connection method of electronic component
KR1020140028859A KR102212012B1 (en) 2013-03-15 2014-03-12 Producing method of connected body, and connecting method of electronic component
CN201410093396.9A CN104051926B (en) 2013-03-15 2014-03-14 The manufacture method of connector and the connection method of electronic unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013053013A JP6291165B2 (en) 2013-03-15 2013-03-15 Manufacturing method of connecting body and connecting method of electronic component

Publications (2)

Publication Number Publication Date
JP2014179498A JP2014179498A (en) 2014-09-25
JP6291165B2 true JP6291165B2 (en) 2018-03-14

Family

ID=51504467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013053013A Active JP6291165B2 (en) 2013-03-15 2013-03-15 Manufacturing method of connecting body and connecting method of electronic component

Country Status (4)

Country Link
JP (1) JP6291165B2 (en)
KR (1) KR102212012B1 (en)
CN (1) CN104051926B (en)
TW (1) TWI603136B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6490999B2 (en) * 2015-03-16 2019-03-27 デクセリアルズ株式会社 Connection structure and method for manufacturing connection structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152449B2 (en) * 1991-05-23 2001-04-03 松下電器産業株式会社 Lead bonding apparatus and method for IC parts
JP3801666B2 (en) * 1995-05-22 2006-07-26 日立化成工業株式会社 Electrode connection method and connection member used therefor
AU2327400A (en) * 1999-02-08 2000-08-25 Hitachi Chemical Co. Ltd. Adhesive, electrode-connecting structure, and method of connecting electrodes
JP2001042340A (en) * 1999-08-03 2001-02-16 Minolta Co Ltd Production of liquid crystal display device
WO2006112383A1 (en) * 2005-04-14 2006-10-26 Matsushita Electric Industrial Co., Ltd. Electronic circuit device and method for manufacturing same
JP2007298608A (en) * 2006-04-28 2007-11-15 Victor Co Of Japan Ltd Method for manufacturing optical component
JP4957438B2 (en) * 2007-07-31 2012-06-20 パナソニック株式会社 Conductive bump, manufacturing method thereof, and electronic component mounting structure
JP2009224394A (en) * 2008-03-13 2009-10-01 Omron Corp Jointing apparatus and jointing method
JP2009224395A (en) * 2008-03-13 2009-10-01 Omron Corp Jointing method and jointing apparatus
JP2010251789A (en) * 2010-06-22 2010-11-04 Sony Chemical & Information Device Corp Junction and method of manufacturing the same
JP5745944B2 (en) * 2011-06-06 2015-07-08 デクセリアルズ株式会社 Connection method, connection body manufacturing method, connection body
JP5926590B2 (en) * 2012-03-23 2016-05-25 デクセリアルズ株式会社 Manufacturing method of connecting body and connecting method of electronic component

Also Published As

Publication number Publication date
KR102212012B1 (en) 2021-02-05
TW201504735A (en) 2015-02-01
JP2014179498A (en) 2014-09-25
CN104051926A (en) 2014-09-17
CN104051926B (en) 2018-02-16
KR20140113416A (en) 2014-09-24
TWI603136B (en) 2017-10-21

Similar Documents

Publication Publication Date Title
JP5972844B2 (en) Anisotropic conductive film, method for manufacturing anisotropic conductive film, method for manufacturing connected body, and connection method
KR101517323B1 (en) Connection method, connected-body production method and connected body
WO2013129437A1 (en) Method for manufacturing connection element, and anisotropic electroconductive adhesive
JP6679320B2 (en) Connection body manufacturing method, electronic component connection method
JP6882224B2 (en) Manufacturing method of connecting body and connecting method of electronic parts
JP5836830B2 (en) Manufacturing method of connecting body and connecting method
JP5926590B2 (en) Manufacturing method of connecting body and connecting method of electronic component
JP6291165B2 (en) Manufacturing method of connecting body and connecting method of electronic component
CN107230646B (en) Method for manufacturing connector
WO2015111599A1 (en) Connection body production method and electronic component connection method
WO2016117613A1 (en) Method for producing connected body, method for connecting electronic component, and connected body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180209

R150 Certificate of patent or registration of utility model

Ref document number: 6291165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250