WO2011162124A1 - 信号処理装置、信号処理プログラム、および表示装置 - Google Patents

信号処理装置、信号処理プログラム、および表示装置 Download PDF

Info

Publication number
WO2011162124A1
WO2011162124A1 PCT/JP2011/063565 JP2011063565W WO2011162124A1 WO 2011162124 A1 WO2011162124 A1 WO 2011162124A1 JP 2011063565 W JP2011063565 W JP 2011063565W WO 2011162124 A1 WO2011162124 A1 WO 2011162124A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
noise
target
value
Prior art date
Application number
PCT/JP2011/063565
Other languages
English (en)
French (fr)
Inventor
崇志 峰
清一 合志
孝次 沼尾
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011162124A1 publication Critical patent/WO2011162124A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo

Definitions

  • the present invention relates to a signal processing device, a signal processing program, and a display device.
  • noise components such as so-called snow noise, Gaussian noise, and shot noise are mixed in the image signal. If the field intensity of the broadcast wave is weak when receiving an analog television signal broadcast, the received signal becomes a noisy video signal. Also, in digital broadcasting, analog video recorded in the past is often digitized and rebroadcast, resulting in a noisy video signal.
  • Patent Document 1 generates a histogram indicating a level distribution of individual differences by excluding a difference in pixel values corresponding to pixels in which an image change of a certain level or more has occurred among individual pixel value differences between frames.
  • the amount of noise is determined by the average, variance, and standard deviation values of the histogram.
  • the conventional method has a problem that the amount of noise varies greatly depending on how to set a threshold value when creating a histogram. Specifically, when the threshold is too high, the amount of noise increases and motion blur occurs. On the other hand, if the threshold value is too small, the amount of noise is estimated to be small, and noise cannot be removed. In addition, the conventional method requires a frame memory for storing a frame image, which increases the manufacturing cost.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a signal processing device, a signal processing program, and a display device that accurately calculate the amount of noise.
  • the signal processing apparatus has been made in view of the above circumstances, and includes a target signal extraction unit that extracts a plurality of target signals to be subjected to noise removal from a video signal, and the target signal for each target signal.
  • a signal extracting unit that extracts a signal within the same frame as the target signal and separated by a predetermined pixel interval, and for each target signal, a voltage value difference is determined based on the target signal and the separated signal.
  • a voltage value difference calculation unit to be calculated and an appearance frequency for each magnitude of the voltage value difference are calculated, and the voltage value difference when the appearance frequency is maximized or exceeds a predetermined threshold is calculated as a target noise amount. And a noise amount calculation unit.
  • the signal extraction unit is a signal in the same frame as the target signal from the target signal, and a horizontal signal separated in a horizontal direction by a predetermined pixel interval; A signal extraction unit that extracts a vertical signal separated by a predetermined pixel interval in the vertical direction, and the voltage value difference calculation unit, for each target signal, a horizontal voltage value based on the target signal and the horizontal signal A difference is calculated, and for each target signal, a vertical voltage value difference is calculated based on the target signal and the vertical signal, and the noise amount calculation unit calculates an appearance frequency for each magnitude of the horizontal voltage value difference.
  • Calculating the horizontal voltage value difference when the appearance frequency is maximum or exceeding a predetermined threshold as a horizontal noise amount, calculating the appearance frequency for each magnitude of the vertical voltage value difference, When the frequency is maximum or exceeds a predetermined threshold Can be configured, characterized in that calculating the direct voltage value difference as the vertical direction noise amount, it calculates a target amount of noise on the basis of said horizontal noise amount and the vertical direction noise amount.
  • the target A luminance value determination unit that determines whether the signal value of the signal is a maximum value
  • a noise amount addition / subtraction unit that subtracts the target noise amount from each signal value when the luminance value determination unit determines the maximum value. It can be set as the structure characterized by providing.
  • the target A luminance value determination unit that determines whether the signal value of the signal is a minimum value
  • a noise amount addition / subtraction unit that adds the target noise amount to each signal value when the luminance value determination unit determines the minimum value
  • the noise amount addition / subtraction unit is configured such that the difference between a signal value of the target signal and a signal value of a signal separated from the target signal by a predetermined interval. Can be extracted as the target signal when the signal is within a predetermined range compared to the target noise amount.
  • the signal processing apparatus comprising one or more noise reduction units connected in cascade, wherein the noise reduction unit includes a signal selection unit that selects a representative value from the input signal; When the signal value included in the input signal is larger than the representative value, the target noise amount is subtracted from the signal value, and when the signal value included in the input signal is smaller than the representative value, the signal value And a signal output unit for adding the target noise amount.
  • the noise reduction unit includes a signal selection unit that selects a representative value from the input signal; When the signal value included in the input signal is larger than the representative value, the target noise amount is subtracted from the signal value, and when the signal value included in the input signal is smaller than the representative value, the signal value And a signal output unit for adding the target noise amount.
  • the signal output unit is configured such that a difference between a signal value of the target signal and a signal value of a signal separated from the target signal by a predetermined interval is the target noise amount.
  • the input signal is within a predetermined range, the input signal is extracted as a target signal.
  • the noise amount calculation unit calculates the target noise amount at predetermined intervals. be able to.
  • the noise amount calculation unit calculates the target noise amount every time the input signal is received. It can be set as the structure to do.
  • the target signal extraction unit uses the input signal as a target signal when the input signal is equal to or lower than a predetermined voltage value. It can be set as the structure characterized by extracting.
  • the target signal extraction unit uses each signal value included in the input signal as a reference value, and the reference value and the reference The input signal is extracted as a target signal when the reference value is the maximum value or the minimum value among three signal values including two signal values separated from each other by a predetermined pixel interval. It can be set as the structure characterized by doing.
  • a signal processing program includes a target signal extraction unit that extracts a plurality of target signals to be subjected to noise removal from a video signal by a computer as a signal processing device, and the target signal for each target signal.
  • a signal extraction unit that extracts a signal within the same frame as the target signal and separated by a predetermined pixel interval, and calculates a voltage value difference based on the target signal and the separated signal for each target signal
  • a voltage value difference calculating unit that calculates an appearance frequency for each magnitude of the voltage value difference, and calculates the voltage value difference when the appearance frequency is maximized or exceeds a predetermined threshold as a target noise amount It is a program for functioning as a quantity calculation part.
  • a display device includes the signal processing device according to (1).
  • the amount of noise can be accurately calculated without a frame memory.
  • FIG. 1 is a schematic block diagram of a liquid crystal display device according to a first embodiment of the present invention. It is a schematic block diagram of the liquid crystal display part in 1st Embodiment. It is a schematic block diagram of the noise amount estimation part in the 1st Embodiment of this invention. It is a figure for demonstrating the process of a horizontal direction voltage difference calculation part. This is a histogram of the average value of the difference in luminance between the reference pixel and a pixel that is + D n pixels apart in the horizontal direction and the difference in luminance between the reference pixel and a pixel that is -D n pixels away in the horizontal direction. It is a figure for demonstrating the process of a vertical direction voltage difference calculation part.
  • FIG. 20A It is a schematic diagram which shows an example of the waveform of the input signal SiA in which the noise component is mixed, the waveform of the image signal in the input signal, and the waveform of the noise signal mixed in the input signal SiA.
  • FIG. 20A It is a schematic diagram which shows an example with the waveform of a noise signal.
  • Waveform of the input signal S IN is a schematic view showing an example of an image signal waveform and the input signal S IN to the waveform of the noise components are mixed in the input signal S IN.
  • waveform of the signal output from the noise reduction unit 101b is a schematic view showing an example of the waveform of the image signal of the said signal, and the waveform of the noise component mixed in the said signal.
  • FIG. 1 is a schematic block diagram of a liquid crystal display device according to the first embodiment of the present invention.
  • the liquid crystal display device 10 a includes a reception unit 11, a noise reduction unit 12 a, an image adjustment unit 13, a timing control unit 14, and a liquid crystal display unit 20.
  • the liquid crystal display unit 20 includes a source driver unit 15, a gate driver unit 16, and a liquid crystal panel unit 17.
  • Receiving unit 11 receives the high frequency signal S H of a plurality of channels of digital television broadcasting supplied from an antenna not shown. Then, the receiving unit 11 extracts a modulation signal of a desired channel from the received signal, converts the extracted modulation signal into a baseband signal, and converts the converted baseband signal into a digital signal at a predetermined sampling frequency. To do.
  • the receiving unit 11 extracts a digital data MPEG (Moving Picture Experts Group) -2 transport stream (hereinafter referred to as “MPEG-2TS”) signal from the converted digital signal.
  • MPEG-2TS Digital Data MPEG (Moving Picture Experts Group) -2 transport stream
  • the receiving unit 11 extracts a TS (Transport Stream, transport stream) packet from the MPEG-2 TS signal, and decodes data of the video signal and the audio signal. Then, the receiving unit 11, a noise amount estimation unit 21 of the noise reduction unit 12a to the video signal S IN decoded, supplied to a noise removing unit 22a.
  • the video signal SIN includes a luminance signal Y (hereinafter referred to as an input luminance signal) of pixels arranged adjacent to each other in the main scanning direction (horizontal direction and horizontal direction) of the image, a color difference signal Cb, and a color difference signal Cr. It consists of.
  • the noise reduction unit 12a includes a noise amount estimation unit 21 and a noise removal unit 22a.
  • Noise amount estimation unit 21 receives the video signal S IN supplied from the receiving unit 11.
  • the noise amount estimation unit 21 calculates the amount of noise from the video signal S IN by the process described below.
  • the noise amount estimation unit 21 supplies a signal S4 indicating the calculated noise amount to the noise removal unit 22a.
  • Noise removing unit 22a receives a video signal S IN supplied from the receiving unit 11.
  • the noise removing unit 22a receives the signal S4 indicating the amount of noise supplied from the noise amount estimating unit 21.
  • the noise removing unit 22a removes noise from the video signal based on the received signal S4 indicating the amount of noise by a process described later.
  • the noise removing unit 22a supplies the image signal S OUT from which the noise has been removed to the image adjusting unit 13.
  • the video signal S OUT from which noise has been removed is a data string (hereinafter referred to as an output luminance signal) composed of luminance signals Y of pixels arranged adjacent to each other in the main scanning direction (horizontal direction and horizontal direction) of the image. It consists of a color difference signal Cb and a color difference signal Cr.
  • the image adjusting unit 13 receives the video signal S OUT from which the noise is supplied from the noise removing unit 22a. If the video signal from which the noise has been removed is an interlace signal, the image adjustment unit 13 converts it into a progressive signal. Further, the image adjustment unit 13 adjusts (scaling processing) the number of pixels in accordance with the resolution of the display unit with respect to the progressive signal. The image adjustment unit 13 converts the video signal with the adjusted number of pixels into an RGB signal (Red, Green, Blue color video signal). Then, the image adjustment unit 13 supplies the RGB signals to the timing control unit 14 and the source driver unit 15.
  • RGB signal Red, Green, Blue color video signal
  • the timing control unit 14 generates a clock signal for distributing video data supplied to the liquid crystal module to pixels on a plane. Then, the timing control unit 14 supplies the generated clock signal to the source driver unit 15 and the gate driver unit 16.
  • the source driver 15 generates a gradation voltage for liquid crystal driving from the RGB signal supplied from the image adjustment unit 13.
  • the source driver unit 15 holds the gradation voltage for each source line by an internal hold circuit.
  • the source driver unit 15 receives the clock signal supplied from the timing control unit 14.
  • the source driver unit 15 applies the gradation voltage (source signal) to the TFT line (Thin Film Transistor) of the liquid crystal panel unit 17 in synchronization with the clock signal with respect to the vertical arrangement of the screen. To supply.
  • the gate driver unit 16 receives the clock signal supplied from the timing control unit 14.
  • the gate driver unit 16 supplies a predetermined gate signal to one row of the sub-pixels on the screen through the TFT gate line of the display unit 17 in synchronization with the clock signal.
  • the liquid crystal panel unit 17 includes an array substrate, a counter substrate, and a liquid crystal.
  • a pixel electrode connected to the TFT and the drain electrode of the TFT and a counter electrode (consisting of a strip electrode on the counter substrate) are arranged for each intersection of the gate line and the data line on the array substrate.
  • a pixel, particularly a sub-pixel is configured.
  • sealed liquid crystal exists between the pixel electrode and the counter electrode.
  • the liquid crystal panel unit 17 has three sub-pixels corresponding to the three primary colors RGB (Red, Green, Blue) for each pixel.
  • the liquid crystal panel unit 17 includes one TFT for each subpixel.
  • the gate electrode of the TFT receives the gate signal supplied from the gate driver unit 16, and when the gate signal is at a high level, for example, the TFT is selected and turned on. Since the source electrode of the TFT receives the source signal supplied from the source driver 15, the gradation voltage is applied to the pixel electrode connected to the drain electrode of the TFT.
  • the orientation of the liquid crystal changes according to the gradation voltage, thereby changing the light transmittance of the liquid crystal.
  • the gradation voltage is held in the liquid crystal capacitor formed by the liquid crystal portion between the pixel electrode connected to the drain electrode of the TFT and the counter electrode, and the alignment of the liquid crystal is maintained. Since the alignment of the liquid crystal is maintained until the next signal arrives at the source electrode, the light transmittance of the liquid crystal is maintained.
  • the liquid crystal panel unit 17 performs gradation display on the supplied video data.
  • the transmissive liquid crystal panel has been described here, the present invention is not limited to this, and a reflective liquid crystal panel may be used.
  • FIG. 2 is a schematic block diagram of the liquid crystal display unit 20 in the first embodiment.
  • the liquid crystal display unit 20 is an active matrix type liquid crystal display device.
  • the liquid crystal display unit 20 drives the liquid crystal panel unit 17 having the pixels PIX arranged in a matrix, the gate line 18, the source line 19, the gate driver unit 16 that drives the gate line 18, and the source line 19.
  • the three sub-pixels constituting the same pixel PIX of the liquid crystal panel unit 17 are connected to the gate line 18 and the data line 19 through TFTs which are respective switching elements.
  • the gate driver unit 16 is controlled by GSP (gate start pulse signal) and GCK (gate clock signal) input from the timing control unit 14 and supplies a scanning signal to the gate of the TFT through the gate line 18.
  • the source drive circuit 3 is controlled in timing by SSP (source start pulse signal) and SCK (source clock signal) input from the timing control unit 14, and the video signal input from the image adjustment unit 13 is sent to the data line 19 and the TFT. To the pixel PIX.
  • FIG. 3 is a schematic block diagram of the noise amount estimation unit 21 in the first embodiment of the present invention.
  • the noise amount estimation unit 21 includes a target signal extraction unit 31, a signal extraction unit 32, a voltage value difference calculation unit 33, a noise amount calculation unit 34, and a target noise amount calculation unit 35.
  • the signal extraction unit 32 includes a first signal extraction unit 32a and a second signal extraction unit 32b.
  • the voltage value difference calculation unit 33 includes a horizontal voltage value difference calculation unit 33a and a vertical voltage value difference calculation unit 33b.
  • the noise amount calculation unit 34 includes a first noise amount calculation unit 34a and a second noise amount calculation unit 34b.
  • the amount of noise is calculated from the video in the frame without using the frame memory.
  • a method for detecting the amount of noise a method of detecting the noise component of the line portion without the image signal in the vertical blanking period of the input video signal and converting the level to a DC voltage and outputting it can be considered.
  • the amount of noise is calculated from the video signal itself, which will be described below.
  • FIG. 4A is a diagram for explaining processing of the horizontal voltage difference calculation unit.
  • the calculation area 54 is an image area that ranges from 10% to 90% of the height of the image from the entire image of one frame and that ranges from 10% to 90% of the width of the image.
  • FIG. 4B is a histogram of the average difference between the luminance difference between the reference pixel and the pixel separated by + D n pixels in the horizontal direction and the luminance difference between the reference pixel and the pixel separated by ⁇ D n pixels in the horizontal direction. It is. Here, + means the right direction, and-means the left direction.
  • the horizontal axis indicates the amount of noise
  • the vertical axis indicates the frequency. In the histogram, the frequency becomes maximum when the noise amount N4B is 4.
  • the target signal extraction unit 31 receives the video signal S IN supplied from the receiving unit 11. Then, the target signal extraction unit 31 extracts a plurality of target signals (for example, signals in an image of one frame) that are targets of noise removal from the video signal SIN . Then, the target signal extraction unit 31 supplies the extracted plurality of target signals to the first signal extraction unit 32a and the second signal extraction unit 32b.
  • a plurality of target signals for example, signals in an image of one frame
  • the first signal extraction unit 32 a receives a plurality of target signals supplied from the target signal extraction unit 31.
  • the first signal extraction unit 32a includes, for each target signal, a first preceding signal that precedes the first interval in the horizontal direction and an amount corresponding to the first interval in the horizontal direction from the target signal.
  • the delayed first delayed signal is extracted.
  • the first interval in one frame, which corresponds to the distance apart D n pixels in the horizontal direction.
  • the first signal extraction unit 32a supplies the extracted first preceding signal and first delay signal to the horizontal voltage value difference calculation unit 33a.
  • the horizontal voltage value difference calculation unit 33a calculates a first subtraction value obtained by subtracting the voltage value of the target signal from the voltage value of the first preceding signal. Further, the horizontal voltage value difference calculation unit 33a calculates a second subtraction value obtained by subtracting the voltage value of the target signal from the voltage value of the first delay signal.
  • the horizontal voltage value difference calculating unit 33a calculates a horizontal voltage value difference that is an average value of the first subtraction value and the second subtraction value. Then, the horizontal voltage value difference calculation unit 33a supplies the horizontal voltage value difference calculated for each target signal to the first noise amount calculation unit 34a.
  • the horizontal voltage value difference calculation unit 33a calculates the average value of the first subtraction value and the second subtraction value, but is not limited to this, and is the center of the first subtraction value and the second subtraction value. A value may be calculated. Further, the horizontal voltage value difference may be calculated by applying a different weight (weight) to the first subtraction value and the second subtraction value.
  • the horizontal voltage value difference calculation unit 33a calculates the horizontal voltage value difference from the target signal corresponding to the calculation area 54 in FIG. 4A.
  • the smaller the calculation area 54 the smaller the amount of calculation. Therefore, it is better to perform the calculation in a narrow range within one frame as much as possible.
  • the first noise amount calculation unit 34a receives the horizontal voltage value difference supplied from the horizontal voltage value difference calculation unit 33a.
  • the first noise amount calculation unit 34a calculates the appearance frequency for each horizontal voltage value difference.
  • the 1st noise amount calculation part 34a calculates the thing with the highest appearance frequency as a horizontal direction noise amount (for example, noise amount 4). Then, the first noise amount calculation unit 34 a supplies the calculated horizontal noise amount to the target noise amount calculation unit 35.
  • the first noise amount calculation unit 34a may calculate the amount of horizontal voltage value difference that exceeds a predetermined threshold as the horizontal noise amount.
  • FIG. 5A is a diagram for explaining processing of the vertical direction voltage difference calculation unit.
  • the calculation area 64 is an image area that is in the range of 10 to 90% of the image height from the entire image of one frame and in the range of 10 to 90% of the width of the image.
  • FIG. 5B is a histogram of the average difference between the luminance difference between the reference pixel and a pixel separated by + H n pixels in the vertical direction and the luminance difference between the reference pixel and a pixel separated by ⁇ H n pixels in the vertical direction. It is.
  • + means the downward direction
  • the horizontal axis indicates the amount of noise
  • the vertical axis indicates the frequency. In the histogram, the frequency becomes maximum when the noise amount N5B is 2.
  • the second signal extraction unit 32 b receives a plurality of target signals supplied from the target signal extraction unit 31. For each target signal, the second signal extraction unit 32b corresponds to the second preceding signal that precedes the target signal by the amount corresponding to the second interval in the vertical direction, and corresponds to the second interval in the vertical direction from the target signal. And a second delayed signal delayed by a certain amount.
  • the second spacing in one frame, which corresponds to the spacing apart H n pixels in the vertical direction.
  • the second signal extraction unit 32b supplies the extracted second preceding signal and second delay signal to the vertical voltage value difference calculation unit 33b.
  • the vertical voltage value difference calculation unit 33b calculates a third subtraction value obtained by subtracting the voltage value of the target signal from the voltage value of the second preceding signal supplied from the second signal extraction unit 32b.
  • the vertical voltage value difference calculation unit 33b calculates a fourth subtraction value obtained by subtracting the voltage value of the target signal from the voltage value of the second delayed signal supplied from the second signal extraction unit 32b.
  • the vertical voltage value difference calculation unit 33b calculates a vertical voltage value difference that is an average value of the third subtraction value and the fourth subtraction value. Then, the vertical voltage value difference calculation unit 33b supplies the vertical voltage value difference calculated for each target signal to the second noise amount calculation unit 34b.
  • the vertical voltage value difference calculation unit 33b calculates the average value of the third subtraction value and the fourth subtraction value, but is not limited to this, and is the center of the third subtraction value and the fourth subtraction value. A value may be calculated. Alternatively, the vertical voltage value difference may be calculated by applying a different weight (weight) to the third subtraction value and the fourth subtraction value.
  • the vertical voltage value difference calculation unit 33b calculates the second average value from the target signal corresponding to the calculation area 64 in FIG. 5A.
  • the smaller the calculation area 64 the smaller the amount of calculation. Therefore, it is better to perform the calculation in a narrow range within one frame as much as possible.
  • the second noise amount calculation unit 34b calculates the appearance frequency for each vertical voltage value difference supplied from the vertical voltage value difference calculation unit 33b. Then, the second noise amount calculation unit 34b calculates the one having the highest appearance frequency as the vertical noise amount (for example, noise amount 2). Then, the second noise amount calculation unit 34 b supplies the calculated vertical noise amount to the target noise amount calculation unit 35. Note that the second noise amount calculation unit 34b may calculate the amount of vertical voltage value difference that exceeds a predetermined threshold as the vertical noise amount.
  • the target noise amount calculation unit 35 includes a horizontal noise amount (for example, noise amount 4) supplied from the first noise amount calculation unit 34a and a vertical noise amount (for example, noise amount 4) supplied from the second noise amount calculation unit 34b.
  • the average value (for example, average value 3) with the noise amount 2) is calculated.
  • the target noise amount calculation unit 35 estimates this average value as an interframe noise amount. Then, the target noise amount calculation unit 35 supplies any one of the calculated horizontal noise amount, vertical noise amount, and inter-frame noise amount to the noise removal unit 22a as a signal S4 indicating the noise amount.
  • the amount of horizontal noise is the pixel signal of a pixel adjacent in the vertical direction. If the amount is a pixel signal of the same pixel before and after the frame, an inter-frame noise amount is supplied.
  • the target noise amount calculation unit 35 calculates the average value of the horizontal noise amount and the vertical noise amount as the frame direction noise amount, but is not limited to this, and is the center of the horizontal noise amount and the vertical noise amount.
  • the value may be calculated as a frame direction noise amount.
  • the frame direction noise amount may be calculated by multiplying the horizontal direction noise amount and the vertical direction noise amount.
  • the noise removing unit 22a removes noise using two horizontal noise amounts for two target signals corresponding to the pixels in the horizontal direction in the frame. To do.
  • the noise removing unit 22a may remove noise using two horizontal noise amounts for two target signals corresponding to pixels between pixels in the same position in a frame and in different frames. Good.
  • the noise removing unit 22a receives the signal S4 indicating the amount of noise supplied from the noise amount estimating unit 21.
  • the noise removing unit 22a sets the value obtained by subtracting the amount of noise from the maximum value as the value of the output luminance signal.
  • the noise removing unit 22a sets the value obtained by adding the noise amount from the minimum value as the value of the output luminance signal.
  • the noise removing unit 22a uses the median value as it is in the output luminance signal.
  • FIG. 6 is a diagram for explaining the luminance signal input to the noise reduction unit 12a and the luminance signal output from the noise reduction unit 12a.
  • a region R61 in FIG. 6 is a diagram illustrating a time change of the input luminance signal Y in input to the noise reduction unit 12a.
  • the vertical axis represents the voltage of the input luminance signal Y in
  • the horizontal axis represents time.
  • a dotted line represents an image signal
  • a solid line represents an input luminance signal Y in which is an image signal to which a noise signal is added.
  • Each point represented by a circle, square, or triangle on the input luminance signal Y in represents an image signal of a pixel adjacent in the horizontal direction in one frame.
  • the middle coordinate may take the maximum value V61 in the coordinates (t 1 , Y 1 ), (t 2 , Y 2 ), (t 3 , Y 3 ) of three adjacent points. It is shown. Moreover, the case where the middle coordinate takes the minimum value V62 among the coordinates (t 4 , Y 4 ), (t 5 , Y 5 ), (t 6 , Y 6 ) of three adjacent points is shown. Moreover, the case where the middle coordinate takes the median value V63 among the three adjacent points (t 7 , Y 7 ), (t 8 , Y 8 ), (t 9 , Y 9 ) is shown.
  • a region R62 in FIG. 6 is a diagram illustrating a time change of the output luminance signal Yout output from the noise reduction unit 12a.
  • the vertical axis represents the voltage of the output luminance signal Yout
  • the horizontal axis represents time.
  • a dotted line represents an image signal
  • a solid line represents an output luminance signal Yout that is an image signal to which a noise signal is added.
  • Each point represented by a circle, square, or triangle on the output luminance signal YOUT represents an image signal of a pixel adjacent in the horizontal direction in one frame.
  • the output at the luminance signal Y out, the luminance signal Y 2 coordinates having the maximum value among adjacent three points in the input luminance signal Y in (t 2, Y 2 ), the amount of noise It is shown that the value is changed to a value Y ′ 2 subtracted by the amount.
  • the output luminance signal Y out in the process P62 region R62 of Fig. 6, the luminance signal Y 5 coordinates the minimum value among three points adjacent to each other in the input luminance signal Y in (t 5, Y 5 ), noise It has been shown to be changed to the amount amount corresponding added value Y'5.
  • the output luminance signal Y out in the process P63 region R62 of Fig. 6, the luminance signal Y 8 coordinates taking a median value among adjacent three points in the input luminance signal Y in (t 8, Y 8 ), noise the amount is shown to take the raw luminance signal Y 8 without being added or subtracted.
  • FIG. 7 is a schematic block diagram of the noise removing unit 22a according to the first embodiment of the present invention.
  • the noise removal unit 22 a includes a delay unit 41, a signal selection unit 42, a voltage comparison unit 43, and a signal output unit 44.
  • a signal input to the noise removing unit 22a is referred to as an input signal SiA.
  • a signal output from the noise removing unit 22a is denoted as SoA.
  • the delay unit 41 is a processing unit that adds a delay time to the input signal SiA in order to match the timing with the representative signal S3 output from the signal selection unit.
  • the signal selection unit 42 generates the representative signal S3 from the input signal SiA for a predetermined time.
  • the delay unit 41 adds a delay time to the input signal SiA for the predetermined time.
  • the voltage comparison unit 43 can compare the representative signal S3 with the delayed additional signal S2 used to generate the representative signal S3.
  • the delay unit 41 receives the input signal SiA. In synchronization with the timing at which the representative signal S3 output from the signal selection unit 42 is output, the delay unit 41 generates a delay addition signal S2 obtained by delaying the input signal SiA for a predetermined time. The delay unit 41 supplies the delay addition signal S2 to the voltage comparison unit 43 and the signal output unit 44.
  • the signal selection unit 42 is a filter for flattening a change in the input signal SiA as much as possible. However, the signal selection unit 42 has a characteristic of storing the rising or falling edge of the input signal SiA.
  • the signal selector 42 receives the input signal SiA.
  • the signal selection unit 42 sequentially generates the representative signal S3 from the input signal SiA for a predetermined time by a method described later. Then, the signal selection unit 42 supplies the generated representative signal S3 to the voltage comparison unit 43.
  • FIG. 8 is a block diagram illustrating a configuration of the signal selection unit 42 in the first embodiment.
  • the signal selection unit 42 includes a plurality of sample delay circuits 71, i (i is an integer from 1 to n) connected in cascade, and a representative value selection unit 81.
  • sample delay circuit instead of “sample delay circuit”, “D” is simply written. The same applies to other drawings.
  • Each sample delay circuit 71, i outputs a signal obtained by delaying the input signal by unit time (for example, time corresponding to one frame). Specifically, the sample delay circuits 71 and 1 receive the input signal SiA. The sample delay circuits 71 and 1 delay the input signal SiA by unit time. The sample delay circuits 71, 1 supply the delayed signal as the first delay signal to the sample delay circuits 71, 2 and the representative selection unit 81.
  • the sample delay circuits 71 and h receive a delay signal supplied from the sample delay circuit corresponding to the upper stage. Then, the sample delay circuits 71 and h delay the received delay signal for a unit time. Then, the sample delay circuits 71 and h supply the delayed signal delayed by the unit time to the sample delay circuits 71 and h + 1 in the next stage.
  • the sample delay circuit 71, n / 2 receives the delay signal supplied from the sample delay circuit 71, n / 2-1, which is one stage above.
  • the sample delay circuit 71, n / 2 delays the received delay signal for a unit time.
  • the sample delay circuit 71, n / 2 supplies the delayed delay signal to the sample delay circuit 71, n / 2 + 1 and the representative selection unit 81 as the n / 2th delay signal.
  • the sample delay circuits 71 and h ′ receive the delay signals supplied from the sample delay circuit corresponding to the upper stage of each one. Then, each of the sample delay circuits 71 and h ′ delays the received delay signal for a unit time. Then, the sample delay circuits 71 and h ′ respectively supply the delayed signals delayed by unit time to the sample delay circuits 71 and h ′ + 1 of the next stage.
  • the sample delay circuit 71, n receives the (n-1) th delay signal supplied from the sample delay circuit 71, n-1 which is one upper stage.
  • the sample delay circuit 71, n delays the received (n-1) th delay signal by unit time.
  • the sample delay circuits 71 and n supply the delayed (n ⁇ 1) th delay signal to the representative selection unit 81 as the nth delay signal.
  • the representative value selection unit 81 is a processing unit that selects the median value of the received signals as a representative value. Specifically, the representative value selection unit 81 receives the input signal SiA supplied from the reception unit 11. Further, the representative value selection unit 81 receives the n / 2th delay signal supplied from the sample delay circuit 71, n / 2. Further, the representative value selection unit 81 receives the nth delay signal supplied from the sample delay circuits 71 and n.
  • the representative value selection unit 81 calculates a median value from the received voltage values of, for example, three signals. Then, the representative value selection unit 81 supplies a representative signal S3 having the calculated median value as a voltage value to the voltage comparison unit 43.
  • the number of signals from which the representative value selection unit 81 selects a representative value has been described as three, but the number is not limited to three and may be four or more.
  • a signal for which the representative value selection unit 81 selects a representative value is also referred to as a “sample signal”. That is, the input signal SiA supplied from the receiving unit 11, the n / 2th delay signal supplied from the sample delay circuit 71, n / 2, and the nth delay signal supplied from the sample delay circuit 71, n are , A sample signal.
  • the signal selection unit 42 samples “a target signal to be subjected to noise reduction from the input signal and a plurality of signals that are separated from the target signal by a predetermined interval, The representative value is selected from the voltage values of the sampled sampling signal ”.
  • the target signal to be subjected to noise reduction represents a signal supplied from the sample delay circuit 71, n / 2, and a plurality of signals that are separated from the target signal by a predetermined interval are from the receiving unit 11. It represents the supplied input signal SiA and the nth delay signal supplied from the sample delay circuits 71, n.
  • the sample delay circuit 71 may output (1) a signal delayed by unit time in the main scanning direction (horizontal direction, horizontal direction) of the image represented by the input signal.
  • the sample delay circuit 71 may output (2) a signal delayed by unit time in the sub-scanning direction (vertical direction, vertical direction) of the image represented by the input signal.
  • sample delay circuit 71 (3) When the input signal S IN is a signal representing a moving image, a unit time in the time direction of the video image represented by the input signal (e.g., corresponding to one frame A signal delayed by time may be output.
  • the representative value selection unit 81 is configured to calculate a median value as a representative value, but is not limited to this. For example, the structure which calculates an average value as a representative value may be sufficient.
  • the signal selecting unit 42 is a median filter having n taps (so-called n taps).
  • sample delay circuits from the sample delay circuit 71,1 to the sample delay circuit 71, n / 2 provided in the signal selection unit 42 are also expressed as “first tap” of the signal selection unit 42. Further, the number is also expressed as “first tap number” of the signal selection unit 42.
  • sample delay circuits from the sample delay circuit 71, n / 2 + 1 to the sample delay circuit 71, n included in the signal selection unit 42 are also expressed as “second tap” of the signal selection unit 42. The number is also expressed as “second tap number” of the signal selection unit 42.
  • the signal selection unit 31 is also referred to as a symmetric filter.
  • the number of taps is preferably about 10 at most.
  • the signal selection unit 31 is a symmetric filter, it is not limited to this. Assume that an asymmetric filter in which the first tap number and the second tap number are not equal may be used.
  • the voltage comparison unit 43 receives the delay addition signal S ⁇ b> 2 supplied from the delay unit 41 and the representative signal S ⁇ b> 3 supplied from the signal selection unit 42. In addition, a signal S4 indicating the amount of noise supplied from the noise amount estimation unit 21 is received. Then, the voltage comparison unit 43 determines the magnitude relationship between the voltage value of the delay addition signal S2 and the voltage value of the representative signal S3. Specifically, the voltage comparison unit 43 determines whether the voltage value of the delay addition signal S2 is greater than, less than, or equal to the voltage value of the representative signal S3. Then, the voltage comparison unit 43 supplies information indicating the determination result to the signal output unit 44.
  • the signal output unit 44 is a processing unit that adds and subtracts the voltage value of the signal S4 indicating the amount of noise based on the determination result of the voltage comparison unit 43. Specifically, the signal output unit 44 receives information indicating the determination result supplied from the voltage comparison unit 43. Further, the signal output unit 44 receives the signal S4 indicating the noise amount supplied from the noise amount estimating unit 21. As for the amount of noise at this time, since the three signals selected by the signal selection unit 42 are pixels adjacent in the horizontal direction, the amount of noise in the horizontal direction is the amount of noise.
  • the signal output unit 44 uses a signal having a voltage value obtained by subtracting the voltage value of the signal S4 from the voltage value of the delay addition signal S2 as the output signal SoA. Generate.
  • the signal output unit 44 outputs a signal having a voltage value obtained by adding the voltage value of the signal S4 to the voltage value of the delay addition signal S2. Generate as SoA.
  • the signal output unit 44 uses the delay addition signal S2 as it is (maintaining the voltage value) as the output signal SoA. Then, the signal output unit 44 supplies the output signal SoA to the image adjustment unit 13 as the video signal S OUT from which the output signal noise has been removed.
  • the noise removal unit 22a determines the median value between three pixels, that is, a pixel at each point and an adjacent pixel in the horizontal direction within one frame.
  • a median value may be determined between three pixels, that is, a pixel at each point and an adjacent pixel in the vertical direction within one frame, or each point in both the horizontal and vertical directions.
  • the median value may be determined between three pixels, that is, a pixel and a pixel separated by a predetermined pixel.
  • the median value may be determined between three pixels, that is, a pixel at each point and a pixel separated by a predetermined frame.
  • the noise amount is the horizontal noise amount for the horizontal processing, the vertical noise amount for the vertical processing, and the frame direction noise for the frame processing.
  • condition 1 First, condition 1 will be described.
  • the noise amount estimation unit 21 calculates the noise amount for the first frame. Then, the noise amount estimation unit 21 supplies a signal S4 indicating the calculated noise amount to the noise removal unit 22a. Then, the noise removal unit 22a performs noise removal processing on a predetermined number (for example, 900) of frames using the signal S4 indicating the amount of noise. Next, after a predetermined frame has elapsed, the noise amount estimation unit 21 calculates the target noise amount again, and supplies a signal S4 indicating the noise amount to the noise removal unit 22a. Repeat the above process.
  • the amount of target noise to be detected is small even for an image that is intensely moving and has almost no noise, and therefore the processed image is hardly blurred. Further, since the frame memory is not required, there is an effect that the cost is reduced.
  • condition 2 will be described.
  • the noise amount estimation unit 21 calculates a noise amount for each frame for all frames. Then, the noise amount estimation unit 21 supplies the calculated noise amount for each frame to the noise removal unit 22a. And the noise removal part 22a performs a noise removal process using the noise amount for every flame
  • condition 2 the amount of calculation is larger than that in condition 1, but it is possible to cope with a change in the amount of noise due to a scene change, and the amount of noise can be estimated more accurately.
  • condition 3 will be described.
  • noise tends to stand out as the luminance value is lower. Therefore, it is considered that noise is not conspicuous when the reference pixel has a luminance value equal to or higher than a predetermined value. Accordingly, when the luminance value is larger than the predetermined value, the noise amount estimation unit 21 removes the pixel from the noise detection target pixel.
  • FIG. 9 is a diagram for explaining that when the luminance value of a certain pixel is larger than a predetermined threshold, the luminance value difference is not included in the frequency calculation of the luminance value difference when calculating the target noise amount.
  • the video signal received by the noise reduction unit is a 256-gradation signal (8-bit signal) and the predetermined threshold is 128.
  • the luminance value of the pixel 151 is 150, for example, this luminance value exceeds 128, and thus the pixel 151 is removed from the target pixel when the noise amount is calculated.
  • the luminance value of the pixel 152 is, for example, 100, the luminance value is 128 or less, so the pixel 151 is a target pixel when calculating the noise amount.
  • the horizontal voltage value difference calculation unit 33a does not calculate a luminance difference between the pixel and two pixels that are ⁇ D n pixels apart in the horizontal direction.
  • the vertical voltage value difference calculating unit 33b does not calculate a luminance difference between the pixels and two pixels that are separated by ⁇ H n pixels in the vertical direction.
  • condition 4 the target signal extraction unit 31 uses, as the target signal for noise detection, a signal in which the Y signal among the input video signals has a maximum value or a minimum value at three points adjacent on the time axis.
  • FIG. 10 is a diagram for explaining processing for extracting a luminance value including noise from the input luminance signal.
  • the image signal is indicated by a dotted line.
  • an input luminance signal Y in in which a noise signal is added to the image signal is indicated by a solid line.
  • the vertical axis represents voltage
  • the horizontal axis represents time.
  • the case where the middle coordinate takes the maximum value V101 in the coordinates (t 1 , Y 1 ), (t 2 , Y 2 ), (t 3 , Y 3 ) of three adjacent points is shown.
  • the case where the middle coordinate takes the minimum value V102 in the coordinates (t 4 , Y 4 ), (t 5 , Y 5 ), (t 6 , Y 6 ) of three adjacent points is shown.
  • the case where the middle coordinate takes the median value V103 in the three adjacent points (t 7 , Y 7 ), (t 8 , Y 8 ), and (t 9 , Y 9 ) is shown.
  • the target signal extraction unit 31 At each point of the input luminance signal, if the luminance value at that point is the maximum value or the minimum value among the luminance value at that point and the two luminance values adjacent to that point, the target signal extraction unit 31 That point is determined to contain noise. On the other hand, at each point of the input luminance signal, when the luminance value at that point becomes the median value between the luminance value at that point and the two luminance values adjacent to that point, the target signal extraction unit 31 The point is determined not to contain noise. Then, the target signal extraction unit 31 supplies information indicating the determination result to the horizontal voltage value difference calculation unit 33a.
  • the horizontal voltage value difference calculation unit 33 a receives information indicating the determination result supplied from the target signal extraction unit 31. In the case of the determination result that noise is included, the horizontal voltage value difference calculation unit 33a calculates the difference between the luminance value at that point and each luminance value adjacent to that point. For example, at the point (t 2 , Y 2 ) in FIG. 10, the horizontal voltage value difference calculation unit 33a calculates (Y 2 ⁇ Y 1 ) and (Y 2 ⁇ Y 3 ).
  • the horizontal voltage value difference calculation unit 33a calculates the average value of the differences between the two calculated luminance values. For example, at the point (t 2 , Y 2 ) in FIG. 9, the horizontal voltage value difference calculation unit 33a calculates ⁇ (Y 2 ⁇ Y 1 ) + (Y 2 ⁇ Y 3 ) ⁇ / 2. Then, the horizontal voltage value difference calculation unit 33a supplies the calculated average value to the first noise amount calculation unit 34a.
  • the horizontal voltage value difference calculation unit 33a does not calculate the difference between the luminance value at that point and each luminance value adjacent to that point and the average value of the difference. .
  • Condition 4 among the pixels at each point and the adjacent pixels, the pixel at each point made the above determination.
  • the present invention is not limited to this.
  • the above determination may be made.
  • the above determination is made among the pixels at each point and the pixels adjacent in the horizontal direction.
  • the present invention is not limited to this, and a pixel that is a predetermined pixel away from the pixel at each point in the vertical direction. And the above determination may be made.
  • Condition 5 will be described.
  • the luminance value at a certain point of the input luminance signal is the maximum value between the luminance value and the adjacent luminance value.
  • the difference between the brightness value of that point and the brightness value close to that point's brightness value that is, the median value of the three points
  • the value of the point is highly likely to be a true value of the video signal.
  • the difference is too large, there is a high possibility of the outline of an object in the image (hereinafter referred to as an edge). Therefore, conditions are set for the processing in the noise removal unit 22a using the target noise amount calculated by the noise amount estimation unit 21.
  • FIG. 11 is a diagram for explaining conditions imposed on processing in the noise removing unit 22a.
  • Region R111 in FIG. 11 is a diagram for explaining conditions for determining that noise is not included in each point on the input luminance signal 91a.
  • an image signal 91a and an input luminance signal 92a obtained by adding a noise signal to the image signal 91a are shown.
  • the difference x between the reference value 93a and a value 94a close to the reference value among the luminance values adjacent to the reference value 93a is shown.
  • the voltage comparison unit 43 calculates the difference between the signal S2 output from the delay unit and the signal S3 output from the signal selection unit 42. When the difference is smaller than the value obtained by multiplying the target noise amount S4 supplied from the noise amount estimation unit 21 by the predetermined value p, the voltage comparison unit 43 does not include noise in the luminance value at that point. The determination is made and the result is supplied to the signal output unit 44. And the signal output part 44 outputs the delay signal S2 as it is, without performing a noise removal process with respect to the point.
  • the difference x between the reference value 93a and the value 94a close to the reference value among the luminance values adjacent to the reference value 93a is a predetermined value p (for example, , P is smaller than the value multiplied by 0.5), the voltage comparison unit 43 determines that the luminance value at that point does not include noise.
  • the region R112 in FIG. 11 is a diagram for explaining conditions for determining that a point is an edge at each point on the input luminance signal 91b.
  • an image signal 91b and an input luminance signal 92b obtained by adding a noise signal to the image signal 91b are shown.
  • the difference y between the reference value 93b and the value 94b close to the reference value among the luminance values adjacent to the reference value 93b is shown.
  • the voltage comparison unit 43 calculates the difference between the signal S2 output from the delay unit and the signal S3 output from the signal selection unit 42.
  • the voltage comparison unit 43 receives the signal S4 indicating the noise amount supplied from the noise amount estimation unit 21. Then, when the difference between the signal S2 and the signal S3 is larger than the value obtained by multiplying the noise amount by a predetermined value q, the voltage comparison unit 43 determines that the point is an edge and outputs a signal indicating the determination result.
  • the signal is supplied to the signal output unit 44. And the signal output part 44 outputs the delay signal S2 as it is, without performing a noise removal process with respect to the point.
  • the voltage comparison unit 43 determines that the point is an edge.
  • the noise amount addition / subtraction unit 39 extracts the input signal as a target signal when the difference between the reference value and the signal value separated from the reference value by a predetermined interval is within a predetermined range.
  • Condition 5 if the predetermined value p and the predetermined value q are appropriately set, the original signal of the image that is not noise can be maintained as it is. As a result, it is possible to prevent image details from being crushed by noise removal processing.
  • the present invention is not limited to this, and the value far from the reference value among the reference value and the luminance value adjacent to the reference value The difference may be calculated.
  • FIG. 12 is a table for explaining an implementation pattern of the present invention.
  • is indicated for the condition used
  • x is indicated for the condition not used.
  • condition 1 or condition 2 is used.
  • the effect of each implementation pattern is a combination of the effects of each condition.
  • FIG. 13 is a flowchart showing a processing flow of the entire liquid crystal display device.
  • the receiving unit 11 receives radio waves from an antenna. Then, the receiving unit 11 converts the received radio wave into a video signal (step S101). The receiving unit 11 supplies the converted video signal to the noise reducing unit 12a.
  • the noise reduction unit 12a receives the video signal supplied from the reception unit. Then, the noise reduction unit 12a reduces noise in the luminance signal included in the video signal (Step S102). The noise reduction unit 12 a supplies the luminance signal with reduced noise to the image adjustment unit 13.
  • the image adjustment unit 13 receives the luminance signal with reduced noise supplied from the noise reduction unit 12a. Then, the image adjustment unit 13 performs I / P conversion on the luminance signal with reduced noise (step S103). Then, the image adjustment unit 13 adjusts the number of pixels of the I / P converted signal. Then, the image adjustment unit 13 supplies the adjusted signal to the timing control unit 14 and the source drive 15.
  • the timing control unit 14 receives the adjusted signal supplied from the image adjustment unit 13. Then, the timing control unit 14 generates a clock signal for distributing the adjusted signal to the pixels on the plane (step S104). Then, the timing control unit 14 supplies the generated clock signal to the source driver unit 15 and the gate driver unit 16.
  • the source driver unit 15 receives the adjusted signal. Then, the source driver 15 generates a gradation voltage for driving the liquid crystal from the adjusted signal (step S105). The source driver unit 15 holds the gradation voltage for each source line by an internal hold circuit.
  • the gate driver unit 16 receives the clock signal supplied from the timing control unit 14.
  • the gate driver unit 16 supplies a predetermined voltage to the TFT gate line of the display unit 17 (step S106).
  • the source driver unit 15 receives the clock signal supplied from the timing control unit 14.
  • the source driver unit 15 supplies the gradation voltage to the TFT source line of the display unit 17 in synchronization with the clock signal with respect to the vertical arrangement of the screen (step S107).
  • FIG. 14 is a flowchart showing the flow of the noise reduction process in step S102 of FIG.
  • the delay signal unit 41 generates a delay addition signal S2 obtained by adding a delay time to the input signal SiA in order to match the timing with the representative signal S3 output from the signal selection unit 42.
  • Step S201 the signal selection unit 42 calculates the representative signal S3 from the input signal SiA for a predetermined time (step S202).
  • the voltage comparison unit 43 compares the voltage value of the delay addition signal S2 with the voltage value of the representative signal S3 (step S203). Then, the comparison result is supplied to the signal output unit 44. In parallel with the processing from step S201 to step S203, the horizontal voltage value difference calculation unit 33a and the vertical voltage value difference calculation unit 33b perform the following processing (processing from step S204 to step S207).
  • the horizontal voltage value difference calculation unit 33a calculates a luminance difference between the pixel and two pixels that are ⁇ D n pixels apart in the horizontal direction. Then, the horizontal voltage value difference calculating unit 33a calculates the average value of the luminance differences (step S204). The horizontal voltage value difference calculation unit 33a supplies an average value of luminance differences calculated for each pixel in one frame to the first noise amount calculation unit 34a.
  • the first noise amount calculation unit 34a calculates the appearance frequency for each average value of the luminance differences. And the 1st noise amount calculation part 34a calculates the thing with the highest appearance frequency as a horizontal direction noise amount. Then, the first noise amount calculation unit 34a supplies the calculated horizontal noise amount to the target noise amount calculation unit 35 (step S205).
  • the vertical voltage value difference calculation unit 33b calculates a luminance difference between the pixel and two pixels that are separated by ⁇ H n pixels in the vertical direction. Then, the vertical voltage value difference calculation unit 33b calculates the average value of the luminance differences (step S206). The vertical voltage value difference calculation unit 33b supplies an average value of luminance differences calculated for each pixel in one frame to the second noise amount calculation unit 34b.
  • the second noise amount calculation unit 34b calculates the appearance frequency for each average value of the luminance differences. Then, the second noise amount calculation unit 34b calculates the one with the highest appearance frequency as the vertical noise amount (step S207). Then, the second noise amount calculation unit 34 b supplies the calculated vertical noise amount to the target noise amount calculation unit 35.
  • the target noise amount calculation unit 35 calculates the average value of the horizontal noise amount and the vertical noise amount as the frame direction noise amount (step S208). Then, the target noise amount calculation unit 35 supplies the calculated horizontal noise amount, vertical noise amount, and frame direction noise amount to the signal output unit 44 of the noise removal unit 22a.
  • step S210 when the voltage value of the delay addition signal S2 is larger than the voltage value of the representative signal S3 (step S209 YES), the signal output unit 44 subtracts the voltage value of the signal S4 from the voltage value of the delay addition signal S2. Is generated as an output signal SoA (step S210).
  • the signal output unit 44 performs the following processing.
  • the signal output unit 44 has a voltage value obtained by adding the voltage value of the signal S4 to the voltage value of the delay addition signal S2. Is generated as an output signal SoA (step S212).
  • the signal output unit 44 uses the delay addition signal S2 as it is (maintains the voltage value) as the output signal SoA. .
  • FIG. 15 is a schematic block diagram of a liquid crystal display device according to the second embodiment of the present invention. Elements common to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the configuration of the liquid crystal display device 10b in FIG. 15 is the same as the configuration of the liquid crystal display device 10a in FIG. 1, except that the noise removal unit 22a of the noise reduction unit 12a is changed to a noise removal unit 22b in the noise reduction unit 12b. It has become.
  • FIG. 16 is a block diagram illustrating an outline of a configuration of a noise removing unit according to the second embodiment.
  • the noise removal unit 22b includes m noise reduction units 101_k (k is an integer from 1 to m) connected in cascade.
  • the noise reduction unit 101_1 includes a delay unit 41_1, a signal selection unit 42_1, a voltage comparison unit 43_1, and a signal output unit 44_1.
  • Each of the other noise reduction units 101_k also includes a delay unit 41_k, a signal selection unit 42_k, a voltage comparison unit 43_k, and a signal output unit 44_k, which are not illustrated. That is, in the first embodiment, there is one noise reduction unit, but in the second embodiment, a plurality of noise reduction units are connected in cascade.
  • Noise reduction unit 101_1 receives the video signal S IN supplied from the receiving unit.
  • the noise reduction unit 101_1 receives the signal S4 indicating the amount of noise supplied from the noise amount estimation unit 21.
  • Noise reduction unit 101_1 the amount of noise using a reducing noise of the video signal S IN. Then, the noise reduction unit 101_1 supplies the signal SiA_2 after noise reduction to the next noise reduction unit 101_2.
  • the noise reduction unit 101_k ′ (k ′ is an integer from 2 to m ⁇ 1) receives the signal SiA_k ′ supplied from the noise reduction unit 101_k′-1. Then, the noise reduction unit 101_k ′ receives the signal S4 indicating the noise amount supplied from the noise amount estimating unit 21. The noise reduction unit 101_k ′ uses the amount of noise to reduce the noise of the signal SiA_k ′. Then, the noise reduction unit 101_k ′ supplies the signal SiA_ (k ′ + 1) after noise reduction to the next noise reduction unit 101_ (k ′ + 1).
  • the noise reduction unit 101_m receives the signal SiA_m supplied from the noise reduction unit 101_m-1. Then, the noise reduction unit 101_m receives the signal S4 indicating the noise amount supplied from the noise amount estimation unit 21. The noise reduction unit 101_m reduces the noise of the signal SiA_m using the noise amount. Then, the noise reduction unit 101 — m supplies the signal S OUT after noise reduction to the image adjustment unit 13.
  • the noise amount supplied to the noise reduction unit 101_k may be a value obtained by dividing the target noise amount S4 supplied from the noise amount estimation unit 21 by k.
  • FIG. 17 is a block diagram illustrating a configuration of the noise reduction unit 101_k according to the second embodiment.
  • each noise reduction unit 101_k includes a delay unit 41_k, a signal selection unit 42_k, a voltage comparison unit 43_k, and a signal output unit 44_k.
  • a signal input to the noise reduction unit 101_k is referred to as an input signal SiA_k.
  • a signal output from the noise reduction unit 101_k is denoted as SoA_k.
  • the delay unit 41_k is a processing unit that adds a delay time to the input signal SiA_k to match the timing with the representative signal S3 output from the signal selection unit 42_k.
  • the signal selection unit 42_k generates the representative signal S3 from the input signal SiA for a predetermined time.
  • the delay unit 41_k adds a delay time to the input signal SiA for the predetermined time. Accordingly, the voltage comparison unit 43_k can compare the representative signal S3 with the original signal for generating the representative signal S3.
  • the delay unit 41_k receives the input signal SiA_k. In order to output the original signal for generating the representative signal S3 in accordance with the timing at which the representative signal S3 output from the signal selection unit 42_k is output, the delay unit 41_k outputs the input signal SiA_k for a predetermined time. A delay addition signal S2 to which a delay is given is generated. The delay unit 41_k supplies the delay addition signal S2 to the voltage comparison unit 43_k and the signal output unit 44_k.
  • the signal selection unit 42_k is a kind of filter for flattening the change of the input signal SiA_k as much as possible.
  • the signal selection unit 42_k has a characteristic of storing the rising or falling edge of the input signal SiA_k.
  • a signal output from the signal selection unit 42_k is denoted as S3.
  • the signal selection unit 42_k receives the input signal SiA_k.
  • the signal selection unit 42_k sequentially generates the representative signal S3 from the input signal SiA_k for a predetermined time by a method described later. Then, the signal selection unit 42_k supplies the generated representative signal S3 to the voltage comparison unit 43_k.
  • FIG. 18 is a block diagram illustrating a configuration of the signal selection unit 42_k according to the second embodiment.
  • the signal selection unit 42_k includes a plurality of sample delay circuits 71_k, i (i is an integer from 1 to n) connected in cascade, and a representative value selection unit 81_k.
  • sample delay circuit instead of “sample delay circuit”, “D” is simply written. The same applies to other drawings.
  • the number n (hereinafter referred to as the number of taps) of the sample delay circuits 71_k, i provided therein differs for each noise reduction unit 101_k.
  • the upper-stage noise reduction unit 101_k connected in cascade has more sample delay circuits 71_k, i. That is, a configuration in which the number of taps is increased in the upper-stage noise reduction unit 101_k connected in cascade is preferable.
  • Each sample delay circuit 71_k, i outputs a signal obtained by delaying the input signal by unit time (for example, time corresponding to one frame). Specifically, the sample delay circuit 71_k, 1 receives the input signal SiA_k. The sample delay circuit 71_k, 1 delays the input signal SiA_k by unit time. The sample delay circuit 71_k, 1 supplies the delayed signal as the first delay signal to the sample delay circuit 71_k, 2 and the representative selection unit 81_k.
  • the sample delay circuits 71_k, h receive the delay signal supplied from the sample delay circuit corresponding to the upper stage. Then, the sample delay circuit 71_k, h delays the received delay signal for a unit time. Then, the sample delay circuit 71_k, h supplies the delayed signal delayed by the unit time to the sample delay circuit 71_k, h + 1 of the next stage.
  • the sample delay circuit 71_k, n / 2 receives the delay signal supplied from the sample delay circuit 71_k, n / 2-1 corresponding to the upper stage.
  • the sample delay circuit 71_k, n / 2 delays the received delay signal for a unit time.
  • the sample delay circuit 71_k, n / 2 supplies the delayed delay signal to the sample delay circuit 71_k, n / 2 + 1 and the representative selection unit 81_k as the n / 2th delay signal.
  • the sample delay circuits 71_k, h ′ receive the delay signals supplied from the sample delay circuit corresponding to the upper stage of each one. Then, each of the sample delay circuits 71_k and h ′ delays the received delay signal for a unit time. Then, the sample delay circuits 71_k and h ′ supply the delayed signals delayed by unit time to the sample delay circuits 71_k and h ′ + 1 in the next stage.
  • the sample delay circuit 71_k, n receives the (n-1) th delay signal supplied from the sample delay circuit 71_k, n-1 which is one upper stage.
  • the sample delay circuit 71_k, n delays the received (n ⁇ 1) th delay signal by unit time.
  • the sample delay circuit 71_k, n supplies the delayed (n ⁇ 1) th delay signal to the representative selection unit 81_k as the nth delay signal.
  • the representative value selection unit 81_k is a processing unit that selects the median value of the received signals as a representative value. Specifically, the representative value selection unit 81_k receives the input signal SiA_k supplied from the reception unit 11 (only when k is 1) or the previous signal selection unit 42_k-1. In addition, the representative value selection unit 81_k receives the n / 2th delay signal supplied from the sample delay circuit 71_k, n / 2. Further, the representative value selection unit 81_k receives the n-th delay signal supplied from the sample delay circuit 71_k, n.
  • the representative value selection unit 81_k calculates a median value from the voltage values of the received three signals. Then, the representative value selection unit 81_k supplies a representative signal S3 having the calculated median value as a voltage value to the voltage comparison unit 43_k.
  • the number of signals for which the representative value selection unit 81 selects a representative value has been described as three, the number is not limited to three and may be four or more.
  • a signal for which the representative value selection unit 81 selects a representative value is also referred to as a “sample signal”. That is, the input signal SiA_k supplied from the receiving unit 11 (only when k is 1) or the preceding signal selection unit 42_k-1, and the n / 2th delay signal supplied from the sample delay circuits 71_k and n / 2. , And the nth delay signal supplied from the sample delay circuit 71_k, n is a sample signal.
  • the signal selection unit 42_k samples “a target signal to be subjected to noise reduction from the input signal and a plurality of signals that are separated from the target signal by a predetermined interval, The representative value is selected from the voltage values of the sampled sampling signal ”.
  • the target signal to be subjected to noise reduction represents a signal supplied by the sample delay circuit 71_k, n / 2, and the plurality of signals that are separated from the target signal by a predetermined interval are the receiving unit 11 ( (only when k is 1) or the input signal SiA_k supplied from the signal selection unit 42_k-1 in the previous stage and the nth delay signal supplied from the sample delay circuits 71_k, n.
  • the sample delay circuit 71_k may output (1) a signal delayed by unit time in the main scanning direction (horizontal direction, horizontal direction) of the image represented by the input signal.
  • the sample delay circuit 71_k may output (2) a signal delayed by unit time in the sub-scanning direction (vertical direction, vertical direction) of the image represented by the input signal.
  • sample delay circuit 71_k is (3)
  • the input signal S IN is a signal representing a moving image
  • a unit time in the time direction of the video image represented by the input signal e.g., corresponding to one frame A signal delayed by time may be output.
  • the sample delay circuit 71 included in the same noise reduction unit 101_k is unified to any one of the above (1) to (3).
  • the representative value selection unit 81 is configured to calculate a median value as a representative value, but is not limited thereto.
  • the structure which calculates an average value as a representative value may be sufficient.
  • the signal selection unit 42_k is a median filter having n taps (so-called n taps).
  • the sample delay circuits from the sample delay circuit 71_k, 1 to the sample delay circuit 71_k, n / 2 included in the signal selection unit 42_k are also referred to as “first taps” of the signal selection unit 42_k. Further, the number is also referred to as the “first tap number” of the signal selection unit 42_k.
  • the sample delay circuits from the sample delay circuits 71_k, n / 2 + 1 to the sample delay circuits 71_k, n included in the signal selection unit 42_k are also referred to as “second taps” of the signal selection unit 42_k. The number is also expressed as “second tap number” of the signal selection unit 42_k.
  • the signal selection unit 31 is also referred to as a symmetric filter.
  • the number of taps is preferably about 10 at most.
  • the signal selection unit 31 is a symmetric filter, it is not limited to this. Assume that an asymmetric filter in which the first tap number and the second tap number are not equal may be used.
  • each sampling interval is constant for each noise reduction unit 101_k.
  • the set of the first tap number and the second tap number is different for each noise reduction unit 101_k. That is, the set of intervals of the sampling signal excluding the target signal from the target signal is different for each noise reduction unit 101_k.
  • the voltage comparison unit 43_k receives the delay addition signal S2 supplied from the delay unit 41_k and the representative signal S3 supplied from the signal selection unit 42_k. Then, the voltage comparison unit 43_k determines the magnitude relationship between the voltage value of the delay addition signal S2 and the voltage value of the representative signal S3. Specifically, the voltage comparison unit 43_k determines whether the voltage value of the delay addition signal S2 is greater than, less than, or equal to the voltage value of the representative signal S3. Then, the voltage comparison unit 43_k supplies information indicating the determination result to the signal output unit 44_k.
  • the signal output unit 44_k is a processing unit that adds and subtracts the voltage value of the signal S4 indicating the amount of noise based on the determination result of the voltage comparison unit 43_k. Specifically, the signal output unit 44_k receives information indicating the determination result supplied from the voltage comparison unit 43_k. In addition, the signal output unit 44_k receives the signal S4 indicating the noise amount supplied from the noise amount estimating unit 21.
  • the signal output unit 44_k uses a signal having a voltage value obtained by subtracting the voltage value of the signal S4 from the voltage value of the delay addition signal S2 as the output signal SoA_k. Generate.
  • the signal output unit 44_k outputs a signal having a voltage value obtained by adding the voltage value of the signal S4 to the voltage value of the delay addition signal S2. It is generated as SoA_k.
  • the signal output unit 44_k uses the delay addition signal S2 as it is (maintains the voltage value) as the output signal SoA_k.
  • the signal output unit 44_k supplies the output signal SoA_k to the noise reduction unit 101_k + 1 at the next stage. If k is n, the signal output unit 44_k supplies its output signal SoA_k as an output signal S OUT, to the image adjustment unit 13.
  • the output signal SoA_k generated by the noise reduction unit 101_k includes a harmonic component that is not included in the input signal SiA_k.
  • the harmonic components will be described with reference to FIG.
  • FIG. 19 is a schematic diagram showing an example of the waveform w191 of the input signal and an example of the waveform w192 of the output signal obtained as a result of inputting the input signal to the noise reduction unit.
  • the waveform w191 of the input signal in the figure is an example of the waveform of the input signal SiA_k.
  • the vertical direction represents the voltage value of the input signal SiA_k, and the horizontal direction represents time.
  • the voltage value of the input signal SiA_k changes smoothly with time.
  • the waveform w192 of the output signal in the figure is an example of the waveform of the output signal SoA_k obtained as a result of inputting the input signal SiA_k shown in FIG. 17 to the noise reduction unit 101_k.
  • the vertical direction represents the voltage value of the output signal SoA_k, and the horizontal direction represents time.
  • the voltage value of the output signal SoA_k is changed to the voltage value indicated by the arrow in the vicinity where the waveform of the input signal SoA_k takes an extreme value.
  • the waveform of the output signal SoA_k has a substantially concave portion (as shown by the waveform w212 of the output signal in FIG. Hereinafter, this will be referred to as a concave portion).
  • the output signal SoA_k newly includes a harmonic component that is not included in the input signal SiA_k. That is, in the noise reduction unit 101, it can be said that a part of the frequency band of the input signal SiA is increased. As a result, a part of the frequency of the noise component mixed in the input signal SiA is also raised.
  • the noise component having a high frequency band is not easily recognized as a noise component by humans. Therefore, the noise component mixed in the input signal SiA_k is increased in frequency in the output signal SoA_k, and is difficult for humans to recognize. Therefore, the noise component can be reduced by the noise reduction unit 101_k.
  • the concave portion existing in the waveform w212 of the output signal in the figure is an example, and the lateral width of the concave portion is determined in direct proportion to the sampling signal sampling interval, that is, the number of taps.
  • FIG. 20A is a block diagram showing a main configuration of the noise reduction unit 101a.
  • the noise reduction unit 101a includes a signal selection unit 42a.
  • the signal selection unit 42a includes four sample delay circuits (sample delay circuit 71_1 to sample delay circuit 71_4). In this case, the first tap number and the second tap number are 2, respectively. Therefore, the noise reduction unit 101a samples from the signal output from the sample delay circuit 71_2 at sampling intervals of “+ 2 ⁇ unit time” and “ ⁇ 2 ⁇ unit time”.
  • FIG. 20B is a block diagram showing a main configuration of the noise reduction unit 101b.
  • the noise reduction unit 101b includes a signal selection unit 42b.
  • the signal selection unit 42b includes eight sample delay circuits (sample delay circuit 71_1 to sample delay circuit 71_8). In this case, the first tap number and the second tap number are four, respectively. Therefore, the noise reduction unit 101a samples from the signal output from the sample delay circuit 71_4 at sampling intervals of “+ 4 ⁇ unit time” and “ ⁇ 4 ⁇ unit time”.
  • FIG. 21A to 21C are schematic diagrams illustrating examples of the waveform of the input signal and the waveform of the output signal in which noise is reduced by the noise reduction unit.
  • the vertical axis represents the signal level (energy)
  • the horizontal axis represents the frequency.
  • FIG. 21A shows an example of the waveform of the input signal SiA in which a noise component is mixed, the waveform of the image signal S21A in the input signal, and the waveform of the noise signal N21A in the input signal SiA. It is a schematic diagram which shows.
  • the input signal SiA is obtained by adding the image signal S21A and the noise signal N21A.
  • FIG. 21B shows the waveform of the output signal SoA obtained by inputting the input signal SiA to the noise reduction unit 101a shown in FIG. 20A, the waveform of the image signal S21B in the output signal SoA, and the output signal.
  • It is a schematic diagram which shows an example with the waveform of the noise signal N21B mixed in SoA.
  • the output signal SoA is obtained by adding the image signal S21B and the noise signal N21B.
  • both the noise component and the image signal have low levels in the high frequency band. Therefore, the level of the output signal SoA is also small in the high frequency band.
  • the sampling interval is shortened.
  • the lateral width of the concave portion of the output waveform is reduced. Since the width of the concave portion is reduced, the frequency of the concave portion is increased. Therefore, the noise reduction unit 101a reduces the level of the noise component in the high frequency band.
  • FIG. 21C shows the waveform of the output signal SoB obtained by inputting the input signal SiA to the noise reduction unit 101b shown in FIG. 20B, the waveform of the image signal in the output signal SoB, and the output signal SoB.
  • the output signal SoB is obtained by adding the image signal S21C and the noise signal N21C.
  • both the noise component and the image signal are low in the middle frequency band. Therefore, the level of the output signal SoB is also small in the middle frequency band. Since the noise reduction unit 101b has a larger number of taps than the noise reduction unit 101a, the noise reduction unit 101b performs processing on a frequency band lower than the frequency band on which the noise reduction unit 101a performs processing, and reduces the noise component of the part. That is, the noise reduction unit 101_k having more sample delay circuits 71 reduces noise components having a lower frequency band.
  • the level of the image signal is also reduced, but since the noise component is reduced, the impression of the entire image is clearer (clearer) than the original image. )appear.
  • a different noise reduction unit 101_k be used sequentially cascaded, it is possible to highly reduce the noise components of different frequency bands mixed in the input signal S IN.
  • FIG. Figure 22 is a block diagram showing a main part of a specific configuration example of the noise removing unit 22b 2.
  • the noise removing unit 22b2 includes two noise reduction units, a noise reduction unit 101a and a noise reduction unit 101b. That is, the noise removing section 22b 2 has a configuration in which cascade the noise reduction units 101a shown in noise reduction unit 101b and Fig. 20A shown in FIG. 20B.
  • the input signal S IN that is input to the noise removal unit 22b 2 is the noise component is reduced by the first noise reduction unit 101b, subsequently, by the noise reduction unit 101a, the noise component is reduced.
  • the noise reduction unit 101b receives an input signal S IN supplied from the receiving unit 11.
  • Noise reduction unit 101b performs a noise reduction processing described above with respect to the input signal S IN. Then, the noise reduction unit 101b supplies the noise-reduced input signal SIN to the noise reduction unit 101a.
  • Noise reduction unit 101a receives an input signal S IN that is noise reduction.
  • the noise reduction unit 101a to the noise reduced input signal S IN, the further above-mentioned noise reduction processing performed. Then, the noise reduction unit 101a supplies the input signal S IN further reduced in noise to the image adjustment unit 13 as the output signal S OUT .
  • the signal selection unit 42b included in the noise reduction unit 101b and the signal selection unit 42a included in the noise reduction unit 101a are different in the number of sample delay circuits (the number of taps) indicated as “D”.
  • the unit 101b and the noise reduction unit 101a have different sampling intervals. Specifically, the sampling interval in the noise reduction unit 42b is ⁇ 4 ⁇ unit time. On the other hand, the sampling interval in the noise reduction unit 42a is ⁇ 2 ⁇ unit time. Therefore, the two sampling intervals are different.
  • the frequency band of the noise component reduced by the noise reduction unit 101b is different from that of the noise component reduced by the noise reduction unit 101a.
  • the noise reduction unit 101b reduces a noise component having a frequency lower than that of the noise component reduced by the noise reduction unit 101a.
  • the noise reduction unit 101a reduces a noise component having a frequency higher than that proposed by the noise reduction unit 101b.
  • the number of taps may be one tap.
  • the noise reduction unit 101_k outputs the output signal SoA_k in which a part of the frequency band of the input true phase SiA is increased. Therefore, as in the configuration shown in FIG. 22, first, the noise reduction unit 101b having the signal selection unit 42b having a large number of taps performs processing on a signal having a low frequency band. Then, it is preferable that the noise reduction unit 101a having the signal selection unit 42a having a small number of taps performs processing on a signal having a high frequency band.
  • Figure 23C Figures 23A is a schematic diagram showing a state in which a frequency band of the noise component will be high Ikika by the noise removing unit 22b 2 shown in FIG. 22.
  • the vertical axis represents the signal level (energy)
  • the horizontal axis represents the frequency.
  • the 23A is a waveform of the input signal S IN, is a schematic view showing an example of an image signal S23A of the waveform, and the input signal noise component N23A waveforms mixed in S IN of the input signal S IN.
  • the level of the image signal S23A decreases as the frequency increases, whereas the level of the signal of the noise signal N23A is substantially constant regardless of the frequency.
  • the input signal S IN since is obtained by adding a noise signal N23A the image signals S23A, as the frequency becomes higher, the level of the signal is reduced.
  • FIG. 23B is a schematic diagram illustrating an example of the waveform of the signal So23B output from the noise reduction unit 101b, the waveform of the image signal S23B of the signal, and the waveform of the noise component N23B mixed in the signal. .
  • the levels of the image signal and the noise component are higher than the levels of the image signal and the noise component shown in FIG. 23A, respectively.
  • FIG. 23C is a schematic diagram illustrating an example of the waveform of the signal So23C output from the noise reduction unit 101a, the waveform of the image signal S23C of the signal, and the waveform of the noise component N23C mixed in the signal. .
  • the levels of the image signal and the noise component are higher than the levels of the image signal and the noise component in FIG. 23B, respectively.
  • the level of the noise component in the mid-low range is decreasing.
  • the noise removing unit 22b 2 can improve the image quality.
  • the noise removing unit 22b 2 can be highly reduced noise component mixed in the input signal SIN.
  • the representative value selection unit 81_k of the signal selection unit 42_k includes the input signal SiA_k, the signal output from the sample delay circuit 71_k, n / 2, and the signal output from the sample delay circuit 71_k, n.
  • the median value was selected as the representative value from the voltage values of the two signals.
  • the present invention is not limited to this, and the median value may be selected from the voltage values of four or more signals.
  • FIG. 24 is a block diagram illustrating a signal selection unit 42c_k that selects a median value from among the voltage values of five signals.
  • the signal selector 42c_k includes N (N is a positive integer that is a multiple of 4) sample delay circuits (sample delay circuits 71c_k, 1 to sample delay circuits 71c_k, N), and a representative value selector 81c_k. Each sample delay circuit performs a process of delaying an input signal for a unit time.
  • the sample delay circuit 71c_k, 1 receives the signal SiC_k supplied from the preceding noise reduction unit. Then, the sample delay circuit 71c_k, 1 delays the signal SiC_k for a unit time. The sample delay circuit 71c_k, 1 supplies the delayed signal to the sample delay circuit 71c_k, 2 as the first delay signal.
  • Each sample delay circuit 71c_k, h receives the h ⁇ 1th delay signal supplied from the previous sample delay circuit 71c_k, h ⁇ 1.
  • Each sample delay circuit 71c_k, h further delays the received h ⁇ 1th delay signal by a unit time. Then, the sample delay circuit 71c_k, h supplies the further delayed signal to the sample delay circuit 71c_k, h + 1 as the hth delay signal.
  • sample delay circuits 71c_k, N / 4, the sample delay circuits 71c_k, N / 2, and the sample delay circuits 71c_k, 3N / 4 shown in FIG. 24 are representative of signals delayed by unit time in the respective circuits. It supplies also to the value selection part 81c_k.
  • the Nth sample delay circuit 71c_k, N receives the N ⁇ 1th delay signal supplied from the previous sample delay circuit 71c_k, N ⁇ 1.
  • the sample delay circuit 71c_k, N further delays the received N ⁇ 1th delay signal by a unit time. Then, the sample delay circuit 71c_k, N supplies the delayed signal as the Nth delay signal to the representative value selection unit 81c_k.
  • the representative value selection unit 81c_k receives the signal SiC_k supplied from the preceding noise reduction unit. Further, the representative value selection unit 81c_k is supplied from the signal supplied from the sample delay circuits 71c_k, N / 4, the signal supplied from the sample delay circuits 71c_k, N / 2, and the sample delay circuits 71c_k, 3N / 4. And receive a signal. Further, the representative value selection unit 81c_k receives the Nth delay signal supplied from the sample delay circuits 71c_k and N. Then, the representative value selection unit 81c_k calculates a median value from the received five signals. Then, the calculated median value is supplied as a representative value to the voltage comparison unit 43_k.
  • the noise reduction unit 101_k including the signal selection unit 42_k having the same first tap number and the second tap number has been described.
  • the present invention is not limited to this, and the first tap number and the second tap number.
  • the noise reduction unit may include a signal selection unit that is not equal to each other.
  • the noise of the video signal supplied from the receiving unit 11 is reduced by the noise reducing unit 12a or the noise reducing unit 12b.
  • the noise reduction unit 12 a or the noise reduction unit 12 b receives a signal supplied from the image adjustment unit 13. And the noise of the signal which the noise reduction part 12a or the noise reduction part 12b received is reduced. Then, the noise reduction unit 12 a or the noise reduction unit 12 b supplies the signal whose noise is reduced to the timing control unit 14 and the source drive 14.
  • the noise reduction part 12b which has the noise removal part 22b of 2nd Embodiment may also have the 16 implementation patterns shown by the table of FIG.
  • the voltage comparison unit 43_k determines whether the target signal is noise or an edge.
  • each block of the noise reduction unit 12a or the noise reduction unit 12b may be configured as hardware by a logic circuit formed on an integrated circuit (IC chip), or a CPU (Central Processing Unit) as follows. ) May be implemented by software.
  • IC chip integrated circuit
  • CPU Central Processing Unit
  • the noise reduction unit 12a or the noise reduction unit 12b is a CPU that executes an instruction of a signal processing program that realizes each function, the program ROM (Read Only Memory) storing the program, a RAM (Random Access Memory) for expanding the program, and a storage device (storage medium) such as a memory for storing the program and various data.
  • the program ROM Read Only Memory
  • RAM Random Access Memory
  • storage medium such as a memory for storing the program and various data.
  • the recording medium holds the program code (execution format program, intermediate code program, source program, etc.) of the noise reduction unit 12a or the noise reduction unit 12b, which is software that realizes the above-described functions, so that it can be read by a computer. .
  • the object of the present invention can be achieved by the CPU reading and executing the program code held in the recording medium.
  • Examples of the storage medium include tapes such as magnetic tape and cassette tape, magnetic disks such as floppy (registered trademark) disks and hard disks, disks including optical disks such as CD, MO, MD, and DVD, IC cards ( Memory cards) and optical cards, semiconductor memories such as mask ROM, EPROM, EEPROM, and flash memory, and logic circuits such as PLD (Programmable Logic Device).
  • tapes such as magnetic tape and cassette tape
  • magnetic disks such as floppy (registered trademark) disks and hard disks
  • disks including optical disks such as CD, MO, MD, and DVD
  • IC cards Memory cards
  • semiconductor memories such as mask ROM, EPROM, EEPROM, and flash memory
  • logic circuits such as PLD (Programmable Logic Device).
  • the noise reduction unit 12a or the noise reduction unit 12b may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone circuit network, mobile communication network, satellite communication A net or the like is available.
  • the transmission medium configured with the communication network is not particularly limited, and for example, even when priority is given to IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc., infrared light such as IrDA or remote control, Bluetooth ( (Registered trademark), IEEE 802.11 radio, HDR (High Date Rate), NFC (Near Field Communication), DLNA (Digital Living Network Alliance), mobile phone network, satellite line, terrestrial digital network, etc. .
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • means does not necessarily mean physical means, but includes cases where the functions of each means are realized by software.
  • the function of one means may be realized by two or more physical means, or the functions of two or more means may be realized by one physical means.
  • liquid crystal display device not only this but display apparatuses, such as a cathode ray tube (CRT) monitor, a plasma display, and an organic electroluminescent display, may be sufficient.
  • CTR cathode ray tube

Abstract

映像信号から雑音除去の対象となる複数の対象信号を抽出する対象信号抽出部(31)と、対象信号毎に、対象信号から対象信号と同一フレーム内の信号であって所定の画素間隔分離れた信号を抽出する信号抽出部(32)と、対象信号毎に、対象信号と離れた信号とに基づいて電圧値差を算出する電圧値差算出部(33)と、電圧値差の大きさ毎に出現頻度を算出し、該出現頻度が最大となるか所定の閾値を超えるときの電圧値差を対象ノイズ量として算出するノイズ量算出部(34)と、を備える。

Description

信号処理装置、信号処理プログラム、および表示装置
 本発明は、信号処理装置、信号処理プログラム、および表示装置に関する。
 本願は、2010年6月25日に、日本に出願された特願2010-145079号に基づき優先権を主張し、その内容をここに援用する。
 従来から、画像の撮像や伝送を行う際、いわゆるスノーノイズ、ガウスノイズ、ショットノイズなどの雑音成分(ノイズ)が画像信号に混入する。アナログテレビジョン信号の放送を受信する際に放送波の電界強度が弱いと、受信信号はノイズの多い映像信号になる。また、デジタル放送でも過去に録画したアナログ映像をデジタル化し再放送することも多く、ノイズの多い映像信号となる。
 これまで、そのノイズを少なくするため、ノイズを検出する様々な手法が開示されている。例えば、特許文献1ではフレーム間の個々の画素値の差のうち、一定以上の画像変化が生じた画素に対応する画素値の差を除いて、個々の差分のレベル分布を示すヒストグラムを生成し、そのヒストグラムの平均、分散、および標準偏差の値によってノイズ量を決定している。
特開2006-186622号公報
しかしながら、従来の方法では、ヒストグラムを作るときの閾値の取り方によってノイズ量が大きく変わってしまうという問題があった。具体的には、その閾値が高すぎるとノイズ量が大きくなり、動きボケが出る。一方、その閾値が小さすぎるとノイズ量を小さく見積もってしまい、ノイズを除去することができないという問題があった。また、従来の方法では、フレームの画像を記憶するフレームメモリが必要になるため、製造コストが高くなるという問題もあった。
 本発明は上記の点に鑑みてなされたものであり、正確にノイズ量を算出する信号処理装置、信号処理プログラム、および表示装置を提供することを課題とする。
 (1)本発明の信号処理装置は前記事情に鑑みなされたもので、映像信号から雑音除去の対象となる複数の対象信号を抽出する対象信号抽出部と、前記対象信号毎に、前記対象信号から対象信号と同一フレーム内の信号であって所定の画素間隔分離れた信号を抽出する信号抽出部と、前記対象信号毎に、前記対象信号と前記離れた信号とに基づいて電圧値差を算出する電圧値差算出部と、前記電圧値差の大きさ毎に出現頻度を算出し、該出現頻度が最大となるか所定の閾値を超えるときの前記電圧値差を対象ノイズ量として算出するノイズ量算出部と、を備えることを特徴とする。
 (2)(1)に記載の信号処理装置において、前記信号抽出部は、前記対象信号から対象信号と同一フレーム内の信号であって、水平方向に所定の画素間隔分離れた水平信号と、垂直方向に所定の画素間隔分離れた垂直信号と、を抽出する信号抽出部と、前記電圧値差算出部は、前記対象信号毎に、前記対象信号と水平信号とに基づいて、水平電圧値差を算出し、前記対象信号毎に、前記対象信号と垂直信号とに基づいて、垂直電圧値差を算出し、前記ノイズ量算出部は、前記水平電圧値差の大きさ毎に出現頻度を算出し、該出現頻度が最大となるか所定の閾値を超えるときの前記水平電圧値差を水平方向ノイズ量として算出し、前記垂直電圧値差の大きさ毎に出現頻度を算出し、該出現頻度が最大となるか所定の閾値を超えるときの前記垂直電圧値差を垂直方向ノイズ量として算出し、前記水平方向ノイズ量と前記垂直方向ノイズ量とに基づいて対象ノイズ量を算出することを特徴とする構成とすることができる。
(3)(1)または(2)に記載の信号処理装置において、前記対象信号と該対象信号から所定の間隔だけ前後に離れた2つの信号とを含めた3つの信号の中で、前記対象信号の信号値が最大値となるか判定する輝度値判定部と、前記輝度値判定部が最大値と判定した場合、前記各信号値から前記対象ノイズ量を減算するノイズ量加減算部と、を備えることを特徴とする構成とすることができる。
(4)(1)または(2)に記載の信号処理装置において、前記対象信号と該対象信号から所定の間隔だけ前後に離れた2つの信号とを含めた3つの信号の中で、前記対象信号の信号値が最小値となるか判定する輝度値判定部と、前記輝度値判定部が最小値と判定した場合、前記各信号値に前記対象ノイズ量を加算するノイズ量加減算部と、を備えることを特徴とする構成とすることができる。
(5)(3)または(4)に記載の信号処理装置において、前記ノイズ量加減算部は、前記対象信号の信号値と、該対象信号から所定の間隔だけ離れた信号の信号値との差が前記対象ノイズ量と比較して所定の範囲にある場合に、前記入力信号を対象信号として抽出することを特徴とする構成とすることができる。
(6)(1)または(2)に記載の信号処理装置において、縦列接続された1以上の雑音低減ユニットを備え、前記雑音低減ユニットは、前記入力信号から代表値を選択する信号選択部と、前記入力信号に含まれる信号値が前記代表値より大きい場合に、前記信号値から前記対象ノイズ量を減算し、前記入力信号に含まれる信号値が前記代表値より小さい場合に、前記信号値に前記対象ノイズ量を加算する信号出力部と、を備えることを特徴とする構成とすることができる。
(7)(6)に記載の信号処理装置において、前記信号出力部は、前記対象信号の信号値と、該対象信号から所定の間隔だけ離れた信号の信号値との差が前記対象ノイズ量と比較して所定の範囲にある場合に、前記入力信号を対象信号として抽出することを特徴とする構成とすることができる。
(8)(1)から(7)のいずれか1つに記載の信号処理装置において、前記ノイズ量算出部は、所定の間隔毎に前記対象ノイズ量を算出することを特徴とする構成とすることができる。
(9)(1)から(8)のいずれか1つに記載の信号処理装置において、前記ノイズ量算出部は、前記入力信号を受信する毎に、前記対象ノイズ量を算出することを特徴とする構成とすることができる。
(10)(1)から(9)のいずれか1つに記載の信号処理装置において、前記対象信号抽出部は、前記入力信号が所定の電圧値以下の場合に、前記入力信号を対象信号として抽出することを特徴とする構成とすることができる。
(11)(1)から(10)のいずれか1つに記載の信号処理装置において、前記対象信号抽出部は、前記入力信号に含まれる各信号値を基準値として、該基準値と該基準値から所定の画素間隔に相当する分離れた2つの信号値とを含めた3つの信号値の中で、前記基準値が最大値か最小値となる場合に、前記入力信号を対象信号として抽出することを特徴とする構成とすることができる。
(12)本発明の信号処理プログラムは、信号処理装置としてのコンピュータを映像信号から雑音除去の対象となる複数の対象信号を抽出する対象信号抽出部と、前記対象信号毎に、前記対象信号から対象信号と同一フレーム内の信号であって所定の画素間隔分離れた信号を抽出する信号抽出部と、前記対象信号毎に、前記対象信号と前記離れた信号とに基づいて電圧値差を算出する電圧値差算出部と、前記電圧値差の大きさ毎に出現頻度を算出し、該出現頻度が最大となるか所定の閾値を超えるときの前記電圧値差を対象ノイズ量として算出するノイズ量算出部として機能させるためのプログラムである。
(13)本発明の表示装置は、(1)に記載の信号処理装置を備えることを特徴とする。
 本発明によれば、フレームメモリがなくても正確にノイズ量を算出することができる。
本発明の第1の実施形態における液晶表示装置の概略ブロック図である。 第1の実施形態における液晶表示部の概略ブロック図である。 本発明の第1の実施形態におけるノイズ量推定部の概略ブロック図である。 水平方向電圧差算出部の処理を説明するための図である。 基準画素と横方向に+D画素離れた画素との輝度の差と、基準画素と横方向に-D画素離れた画素との輝度の差との平均値をヒストグラム化したものである。 垂直方向電圧差算出部の処理を説明するための図である。 基準画素と縦方向に+H画素離れた画素との輝度の差と、基準画素と縦方向に-H画素離れた画素との輝度の差との平均値をヒストグラム化したものである。 雑音低減部に入力される輝度信号と、雑音低減部から出力される輝度信号を説明するための図である。 第1の実施形態におけるノイズ除去部の概略ブロック図である。 第1の実施形態における信号選択部の構成を示すブロック図である。 ある画素の輝度値が所定の閾値よりも小さい場合に、ノイズ量算出の際にその輝度値差を輝度値差の頻度算出に含めないことを説明するための図である。 入力輝度信号のうち、ノイズを含む輝度値を抽出する処理を説明するための図である。 ノイズ除去部における処理に課される条件を説明するための図である。 本発明の実施パターンについて説明するためのテーブルである。 液晶表示装置全体の処理の流れを示したフローチャートである。 図13のステップS102の雑音低減処理の流れを示したフローチャートである。 本発明の第2の実施形態における液晶表示装置の概略ブロック図である。 第2の実施形態におけるノイズ除去部の構成の概要を示すブロック図である。 第2の実施形態における雑音低減ユニットの構成を示すブロック図である。 第2の実施形態における信号選択部の構成を示すブロック図である。 入力信号の波形w191の1例と、その入力信号を、雑音低減ユニットに入力した結果として得られる出力信号の波形w192の1例を示す模式図である。 雑音低減ユニット101aの要部構成を示すブロック図である。 雑音低減ユニット101bの要部構成を示すブロック図である。 雑音成分が混入している入力信号SiAの波形と、当該入力信号のうちの画像信号の波形と、および当該入力信号SiAに混入している雑音信号の波形との1例を示す模式図である。 図20Aで示された雑音低減ユニット101aに、入力信号SiAを入力して得られる出力信号SoAの波形と、当該出力信号SoAのうちの画像信号の波形と、および当該出力信号SoAに混入している雑音信号の波形との1例を示す模式図である。 図20Bで示された雑音低減ユニット101bに、入力信号SiAを入力して得られる出力信号SoAの波形と、当該出力信号SoAのうちの画像信号の波形と、および当該出力信号SoAに混入している雑音信号の波形との1例を示す模式図である。 ノイズ除去部22bの具体的な構成例の要部を示すブロック図である。 入力信号SINの波形、入力信号SINのうちの画像信号の波形、および入力信号SINに混入している雑音成分の波形の1例を示す模式図である。 雑音低減ユニット101bから出力された信号の波形、当該信号のうちの画像信号の波形、および当該信号に混入している雑音成分の波形の1例を示す模式図である。 雑音低減ユニット101aから出力された信号の波形、当該信号のうちの画像信号の波形、および当該信号に混入している雑音成分の波形の1例を示す模式図である。 5つの信号の電圧値の中から中央値を選択する信号選択部を示すブロック図である。
 <第1の実施形態>
以下、図面を参照して本発明の第1の実施形態を詳細に説明する。図1は、本発明の第1の実施形態における液晶表示装置の概略ブロック図である。液晶表示装置10aは、受信部11と、雑音低減部12aと、画像調整部13と、タイミング制御部14と、液晶表示部20とを備える。液晶表示部20は、ソースドライバ部15と、ゲートドライバ部16と、液晶パネル部17とを備える。
 受信部11は、一例として、不図示のアンテナから供給されたデジタルテレビジョン放送の複数チャネルの高周波信号Sを受け取る。そして、受信部11は、受け取った信号から希望のチャネルの変調信号を抽出し、抽出した変調信号をベースバンドの信号に変換し、変換したベースバンドの信号を所定のサンプリング周波数でデジタル信号へ変換する。
 受信部11は、変換されたデジタル信号からデジタルデータMPEG(Moving Picture Experts Group)-2トランスポートストリーム(以下、「MPEG-2TS」と言う)信号を抽出する。
そして、受信部11は、MPEG-2TS信号からTS(Transport Stream、トランスポートストリーム)パケットを抽出し、映像信号および音声信号のデータを復号する。そして、受信部11は、復号した映像信号SINを雑音低減部12aのノイズ量推定部21と、ノイズ除去部22aとへ供給する。
 ここで、映像信号SINは、画像の主走査方向(横方向、水平方向)に隣接して並ぶ画素の輝度信号Y(以下、入力輝度信号と称する)と、色差信号Cbと、色差信号Crとからなる。
雑音低減部12aは、ノイズ量推定部21と、ノイズ除去部22aとを備える。ノイズ量推定部21は、受信部11から供給された映像信号SINを受け取る。ノイズ量推定部21は、後述する処理によって映像信号SINからノイズ量を算出する。ノイズ量推定部21は、算出したノイズ量を示す信号S4をノイズ除去部22aへ供給する。
 ノイズ除去部22aは、受信部11から供給された映像信号SINを受け取る。また、ノイズ除去部22aは、ノイズ量推定部21から供給されたノイズ量を示す信号S4を受け取る。そして、ノイズ除去部22aは、後述する処理によって、受け取ったノイズ量を示す信号S4に基づき、映像信号からノイズを除去する。そして、ノイズ除去部22aは、ノイズを除去した映像信号SOUTを画像調整部13へ供給する。ここで、ノイズを除去した映像信号SOUTは、画像の主走査方向(横方向、水平方向)に隣接して並ぶ画素の輝度信号Yから成るデータ列(以下、出力輝度信号と称する)と、色差信号Cbと、色差信号Crとからなる。
 画像調整部13は、ノイズ除去部22aから供給されたノイズを除去した映像信号SOUTを受け取る。画像調整部13は、ノイズを除去した映像信号に対し、それがインターレース信号であれば、それをプログレッシブ信号に変換する。また、画像調整部13は、プログレッシブ信号に対し、表示部の解像度に合わせて、画素数を調整(スケーリング処理)する。画像調整部13は、画素数が調整された映像信号をRGB信号(Red、Green、Blueのカラービデオ信号)に変換する。そして、画像調整部13は、RGB信号をタイミング制御部14とソースドライバ部15とへ供給する。
 タイミング制御部14は、液晶モジュールに供給される映像データを平面上の画素に配分するためのクロック信号などを生成する。そして、タイミング制御部14は、ソースドライバ部15と、ゲートドライバ部16へ、生成したクロック信号を供給する。
 ソースドライバ15は、画像調整部13から供給されたRGB信号から液晶駆動用の階調化された電圧を生成する。ソースドライバ部15は、ソース線ごとに、その階調化された電圧を、内部のホールド回路で保持する。
 ソースドライバ部15は、タイミング制御部14から供給されたクロック信号を受け取る。ソースドライバ部15は、画面の縦方向の配列に対して、クロック信号に同期して、階調化された電圧(ソース信号)を液晶パネル部17のTFT(Thin Film Transistor、薄膜トランジスタ)のソース線に供給する。
 ゲートドライバ部16は、タイミング制御部14から供給されたクロック信号を受け取る。ゲートドライバ部16は、表示部17のTFTのゲート線を通じて画面のサブ画素の1行分に対して、クロック信号に同期して、所定のゲート信号を供給する。
 液晶パネル部17は、アレイ基板と対向基板と液晶とを備える。アレイ基板上のゲート線とデータ線との交点ごとに、TFTとTFTのドレイン電極に接続されている画素電極と対向電極(対向基板上のストリップ電極により構成されている)とが1組ずつ配置されて、画素、特にサブ画素を構成している。また、画素電極と対向電極との間には、封入された液晶が存在する。また、液晶パネル部17は、画素ごとに、3原色RGB(Red、Green、Blue)に対応する3つのサブ画素を有する。そして、液晶パネル部17は、そのサブ画素毎に1つずつの前記TFTを有する。
 TFTのゲート電極は、ゲートドライバ部16から供給されたゲート信号を受け取って、ゲート信号が例えばハイレベルの時、そのTFTが選択されてオン状態となる。TFTのソース電極は、ソースドライバ15から供給されたソース信号を受け取るから、これによって、TFTのドレイン電極に接続されている画素電極に階調化された電圧が印加される。
 その階調化された電圧に応じて、液晶の配向が変化し、これによって液晶の光の透過度が変化する。その階調化された電圧がTFTのドレイン電極に接続されている画素電極と対向電極との間の液晶部分により構成される液晶容量に保持されて、液晶の配向が維持される。次の信号がソース電極に到来するまで、液晶の配向が維持されるので、液晶の光の透過度が維持される。
 以上説明したようにして、液晶パネル部17は、供給された映像データを階調表示する。
 なお、ここでは透過型の液晶パネルについて説明したが、これに限らず反射型の液晶パネルでもよい。
 図2は、第1の実施形態における液晶表示部20の概略ブロック図である。液晶表示部20は、アクティブマトリクス型の液晶表示装置である。液晶表示部20は、マトリクス状に配された画素PIXを有する液晶パネル部17と、ゲート線18と、ソース線19と、ゲート線18を駆動するゲートドライバ部16と、ソース線19を駆動するソースドライバ部15と、を備える。
 液晶パネル部17の同一の画素PIXを構成する3つのサブ画素は、それぞれのスイッチング素子であるTFTを介してゲート線18及びデータ線19に接続される。
 ゲートドライバ部16は、タイミング制御部14から入力されるGSP(ゲートスタートパルス信号)およびGCK(ゲートクロック信号)によって制御され、ゲート線18を介してTFTのゲートに走査信号を供給する。ソース駆動回路3は、タイミング制御部14から入力されるSSP(ソーススタートパルス信号)およびSCK(ソースクロック信号)によってタイミング制御され、画像調整部13から入力される映像信号をデータ線19およびTFTを介して画素PIXに供給する。
 図3は、本発明の第1の実施形態におけるノイズ量推定部21の概略ブロック図である。ノイズ量推定部21は、対象信号抽出部31と、信号抽出部32と、電圧値差算出部33と、ノイズ量算出部34と、対象ノイズ量算出部35とを備える。
 信号抽出部32は、第1の信号抽出部32aと、第2の信号抽出部32bとを備える。
電圧値差算出部33は、水平電圧値差算出部33aと垂直電圧値差算出部33bとを備える。ノイズ量算出部34は、第1のノイズ量算出部34aと、第2のノイズ量算出部34bとを備える。
 本発明では、フレームメモリを使うことなく、フレーム内の映像からノイズ量を算出する。その際、ノイズ量検出方法として、入力映像信号の垂直ブランキング期間の画像信号の無いライン部分の雑音成分を検出し、そのレベルを直流電圧に変換して出力する方法が考えられるが、これではブランキング期間が無い映像信号では使うことができないという問題がある。そこで、本発明実施形態では、映像信号自体からノイズ量を算出することとし、以下に説明する。
 まず、水平方向電圧差算出部33aの処理を説明する。図4Aは、水平方向電圧差算出部の処理を説明するための図である。画素51と、画素51から左にD画素離れた画素52と、画素51から右にD画素離れた画素53とが示されている。計算領域54は、1フレームの画像全体から画像の高さの10%から90%の範囲であり、かつ画像の幅の10%から90%の範囲である画像領域である。
 図4Bは、基準画素と横方向に+D画素離れた画素との輝度の差と、基準画素と横方向に-D画素離れた画素との輝度の差との平均値をヒストグラム化したものである。ここで、+は右の方向を意味し、-は左の方向を意味する。図4Bのヒストグラムにおいて、横軸はノイズ量を示し、縦軸は、その頻度を示している。そのヒストグラムにおいて、その頻度が最大となるのは、ノイズ量N4Bが4のときである。
図3に戻って、対象信号抽出部31は、受信部11から供給された映像信号SINを受け取る。そして、対象信号抽出部31は、映像信号SINから雑音除去の対象となる複数の対象信号(例えば、1フレームの画像内の信号)を抽出する。そして、対象信号抽出部31は、抽出した複数の対象信号を第1の信号抽出部32aと、第2の信号抽出部32bとへ供給する。
 第1の信号抽出部32aは、対象信号抽出部31から供給された複数の対象信号を受け取る。第1の信号抽出部32aは、対象信号毎に、水平方向に第1の間隔に相当する分先行する第1の先行信号と、前記対象信号から水平方向に上記第1の間隔に相当する分遅れた第1の遅延信号と、を抽出する。ここで、第1の間隔は、1フレーム内において、横方向にD画素離れた間隔に相当する。
 第1の信号抽出部32aは、抽出した第1の先行信号と第1の遅延信号とを水平電圧値差算出部33aへ供給する。
 そして、水平電圧値差算出部33aは、第1の先行信号の電圧値から対象信号の電圧値を減算した第1の減算値を算出する。また、水平電圧値差算出部33aは、第1の遅延信号の電圧値から対象信号の電圧値を減算した第2の減算値を算出する。
そして、水平電圧値差算出部33aは、第1の減算値と第2の減算値との平均値である水平電圧値差を算出する。そして、水平電圧値差算出部33aは、対象信号毎に算出された水平電圧値差を第1のノイズ量算出部34aへ供給する。
なお、水平電圧値差算出部33aは、第1の減算値と第2の減算値との平均値を算出したが、これに限らず、第1の減算値と第2の減算値との中央値を算出してもよい。また、第1の減算値と第2の減算値とに値の異なる軽重(重み)をかけて、水平電圧値差を算出してもよい。
なお、水平電圧値差算出部33aは、水平電圧値差を図4Aの計算領域54内に相当する対象信号から算出する。ここで、計算領域54は狭い方が、計算量が少なくなるので、なるべく1フレーム内の狭い範囲で計算をしたほうがよい。
第1のノイズ量算出部34aは、水平電圧値差算出部33aから供給された水平電圧値差を受け取る。そして、第1のノイズ量算出部34aは、水平電圧値差毎に、出現頻度を算出する。そして、第1のノイズ量算出部34aは、その出現頻度が最も高いものを水平方向ノイズ量(例えば、ノイズ量4)として算出する。そして、第1のノイズ量算出部34aは、算出した水平方向ノイズ量を対象ノイズ量算出部35へ供給する。
なお、第1のノイズ量算出部34aは、水平電圧値差の出現頻度が所定の閾値を超えるものを水平方向ノイズ量として算出してもよい。
続いて、垂直方向電圧差算出部の処理を説明する。図5Aは、垂直方向電圧差算出部の処理を説明するための図である。画素61と、画素61から上にH画素離れた画素62と、画素61から下にH画素離れた画素63とが示されている。計算領域64は、1フレームの画像全体から画像の高さの10から90%の範囲であり、かつ画像の幅の10から90%の範囲である画像領域である。
図5Bは、基準画素と縦方向に+H画素離れた画素との輝度の差と、基準画素と縦方向に-H画素離れた画素との輝度の差との平均値をヒストグラム化したものである。ここで、+は下の方向を意味し、-は上の方向を意味する。図5Bのヒストグラムにおいて、横軸はノイズ量を示し、縦軸は、その頻度を示している。そのヒストグラムにおいて、その頻度が最大となるのは、ノイズ量N5Bが2のときである。
第2の信号抽出部32bは、対象信号抽出部31から供給された複数の対象信号を受け取る。第2の信号抽出部32bは、対象信号毎に、対象信号から垂直方向に第2の間隔に相当する分先行する第2の先行信号と、対象信号から垂直方向に上記第2の間隔に相当する分遅れた第2の遅延信号とを抽出する。ここで、第2の間隔は、1フレーム内において、縦方向にH画素離れた間隔に相当する。
 第2の信号抽出部32bは、抽出した第2の先行信号と第2の遅延信号とを垂直電圧値差算出部33bへ供給する。
垂直電圧値差算出部33bは、第2の信号抽出部32bから供給された第2の先行信号の電圧値から対象信号の電圧値を減算した第3の減算値を算出する。また、垂直電圧値差算出部33bは、第2の信号抽出部32bから供給された第2の遅延信号の電圧値から対象信号の電圧値を減算した第4の減算値を算出する。
そして、垂直電圧値差算出部33bは、第3の減算値と第4の減算値との平均値である垂直電圧値差を算出する。そして、垂直電圧値差算出部33bは、対象信号毎に算出された垂直電圧値差を第2のノイズ量算出部34bへ供給する。
なお、垂直電圧値差算出部33bは、第3の減算値と第4の減算値との平均値を算出したが、これに限らず、第3の減算値と第4の減算値との中央値を算出してもよい。また、第3の減算値と第4の減算値とに値の異なる軽重(重み)をかけて、垂直電圧値差を算出してもよい。
なお、垂直電圧値差算出部33bは、第2の平均値を図5Aの計算領域64内に相当する対象信号から算出する。ここで、計算領域64は狭いほうが、計算量が少なくなるので、なるべく1フレーム内の狭い範囲で計算をしたほうがよい。
第2のノイズ量算出部34bは、垂直電圧値差算出部33bから供給された垂直電圧値差毎に、出現頻度を算出する。そして、第2のノイズ量算出部34bは、その出現頻度が最も高いものを垂直方向ノイズ量(例えば、ノイズ量2)として算出する。そして、第2のノイズ量算出部34bは、算出した垂直方向ノイズ量を対象ノイズ量算出部35へ供給する。
なお、第2のノイズ量算出部34bは、垂直電圧値差の出現頻度が所定の閾値を超えるものを垂直方向ノイズ量として算出してもよい。
対象ノイズ量算出部35は、第1のノイズ量算出部34aから供給された水平方向ノイズ量(例えば、ノイズ量4)と第2のノイズ量算出部34bから供給された垂直方向ノイズ量(例えば、ノイズ量2)との平均値(例えば、平均値3)を算出する。対象ノイズ量算出部35は、この平均値をフレーム間ノイズ量と推定する。
そして、対象ノイズ量算出部35は、算出した水平方向ノイズ量、垂直方向ノイズ量、フレーム間ノイズ量のいずれか1つを、ノイズ量を示す信号S4としてノイズ除去部22aへ供給する。
例えば、ノイズ除去部22aの信号選択部42で選択する画素信号が水平方向に隣り合う画素の画像信号ならば、水平方向ノイズ量を、垂直方向に隣り合う画素の画素信号ならば、垂直方向ノイズ量を、フレーム前後の同画素の画素信号ならばフレーム間ノイズ量を供給する。
なお、対象ノイズ量算出部35は、水平方向ノイズ量と垂直方向ノイズ量との平均値をフレーム方向ノイズ量として算出したが、これに限らず、水平方向ノイズ量と垂直方向ノイズ量との中央値をフレーム方向ノイズ量として算出してもよい。また、水平方向ノイズ量と垂直方向ノイズ量とに軽重をかけて、フレーム方向ノイズ量を算出してもよい。
なお、水平方向ノイズ量と垂直方向ノイズ量とを算出するとして説明したが、そのどちらか1つだけ算出するようにしてもよい。その場合、例えば、水平ノイズ量のみ算出する場合には、ノイズ除去部22aは、フレーム内の水平方向に対する画素間に相当する2つの対象信号に対して、その水平ノイズ量を用いてノイズを除去する。また、ノイズ除去部22aは、フレーム内で同じ位置にある画素であって異なるフレームに存在する画素間に相当する2つの対象信号に対して、その水平ノイズ量を用いてノイズを除去してもよい。
続いて、ノイズ除去部22aについて説明する。ノイズ除去部22aは、ノイズ量推定部21から供給されたノイズ量を示す信号S4を受け取る。入力輝度信号中の隣り合う3点間の中間点が最大値を取るときは、ノイズ除去部22aは、その最大値からノイズ量を減算した値を出力輝度信号の値とする。
一方、入力輝度信号中の隣り合う3点間の中間点が最小値を取るときは、ノイズ除去部22aは、その最小値からノイズ量を加算した値を出力輝度信号の値とする。なお、入力輝度信号中の隣り合う3点間の中間点が中央値を取るときは、ノイズ除去部22aは、その中央値をそのまま出力輝度信号中の値とする。
図6は、雑音低減部12aに入力される輝度信号と、雑音低減部12aから出力される輝度信号を説明するための図である。図6の領域R61は、雑音低減部12aに入力される入力輝度信号Yinの時間変化を示した図である。ここで、縦軸は入力輝度信号Yinの電圧を表し、横軸は時間を表す。また、点線は、画像信号を表し、実線は、雑音信号が付与された画像信号である入力輝度信号Yinを表す。入力輝度信号Yin上に丸、四角、三角で表された各点は、1フレームにおける水平方向に隣り合う画素の画像信号を表すものとする。
図6の領域R61において、隣り合う3点の座標(t、Y)、(t、Y)、(t、Y)内で、真ん中の座標が最大値V61を取る場合が示されている。また、隣り合う3点の座標(t、Y)、(t、Y)、(t、Y)内で、真ん中の座標が最小値V62を取る場合が示されている。また、隣り合う3点(t、Y)、(t、Y)、(t、Y)内で、真ん中の座標が中央値V63を取る場合が示されている。
図6の領域R62は、雑音低減部12aから出力される出力輝度信号Youtの時間変化を示した図である。ここで、縦軸は出力輝度信号Youtの電圧を表し、横軸は時間を表す。また、点線は、画像信号を表し、実線は、雑音信号が付与された画像信号である出力輝度信号Youtを表す。出力輝度信号Yout上に丸、四角、三角で表された各点は、1フレームにおける水平方向に隣り合う画素の画像信号を表すものとする。
図6の領域R62の処理P61において、出力輝度信号Youtでは、入力輝度信号Yinにおいて隣り合う3点中で最大値をとる座標(t、Y)の輝度信号Yが、ノイズ量分だけ減算された値Y´に変更されることが示されている。
 また、図6の領域R62の処理P62において出力輝度信号Youtでは、入力輝度信号Yinにおいて隣り合う3点中で最小値をとる座標(t、Y)の輝度信号Yが、ノイズ量分だけ加算された値Y´に変更されることが示されている。
また、図6の領域R62の処理P63において出力輝度信号Youtでは、入力輝度信号Yinにおいて隣り合う3点中で中央値をとる座標(t、Y)の輝度信号Yが、ノイズ量が加減算されることなくそのままの輝度信号Yを取ることが示されている。
図7は、本発明の第1の実施形態におけるノイズ除去部22aの概略ブロック図である。ノイズ除去部22aは、遅延部41と、信号選択部42と、電圧比較部43と、信号出力部44とを備える。
ノイズ除去部22aに入力される信号を、入力信号SiAと表記する。また、ノイズ除去部22aから出力される信号をSoAと表記する。
ノイズ除去部22aの構成のうち、まず遅延部41について説明する。遅延部41は信号選択部42から出力される代表信号S3とタイミングを合わせるために、入力信号SiAに遅延時間を付加する処理部である。
 信号選択部42は所定の時間分の入力信号SiAから、代表信号S3を生成する。その所定の時間分の入力信号SiAに対して、遅延部41は遅延時間を付加する。これによって、電圧比較部43は代表信号S3と代表信号S3を生成するために用いた遅延付加信号S2とを比較することができる。
遅延部41は、入力信号SiAを受け取る。信号選択部42から出力される代表信号S3が出力されるタイミングにあわせて、遅延部41は、所定の時間分の入力信号SiAに遅延を与えた遅延付加信号S2を生成する。遅延部41は、遅延付加信号S2を電圧比較部43と、信号出力部44とへ供給する。
続いて、信号選択部42について説明する。信号選択部42は、入力信号SiAの変化をできるだけ平坦化するためのフィルタである。但し、信号選択部42は、入力信号SiAの立ち上がりまたは立下りエッジを保存する特性を有する。
まず、信号選択部42の処理の概要について説明する。信号選択部42は、入力信号SiAを受け取る。信号選択部42は、所定の時間分の入力信号SiAから、後述する方法で、順次、代表信号S3を生成する。そして、信号選択部42は、生成した代表信号S3を電圧比較部43に供給する。
続いて、信号選択部42の処理の詳細について説明する。図8は、第1の実施形態における信号選択部42の構成を示すブロック図である。同図に示すように、信号選択部42は、縦列接続された複数のサンプル遅延回路71,i(iは1からnまでの整数)と、代表値選択部81とを備える。図8では、「サンプル遅延回路」と表記する代わりに、単に「D」と表記している。他の図面でも同様である。
各サンプル遅延回路71,iは、入力された信号を単位時間(例えば、1フレームに相当する時間)ずつ遅延させた信号を出力する。具体的には、サンプル遅延回路71,1は、入力信号SiAを受け取る。そして、サンプル遅延回路71,1は、その入力信号SiAを単位時間遅延させる。サンプル遅延回路71,1は、その遅延させた信号を1番目の遅延信号として、サンプル遅延回路71,2と、代表選択部81とへ供給する。
続いて、サンプル遅延回路71,h(hは2からn/2-1までの整数、nは偶数)は、1つ上段にあたるサンプル遅延回路から供給された遅延信号を受け取る。そして、サンプル遅延回路71,hは、受け取った遅延信号を単位時間遅らせる。そして、サンプル遅延回路71,hは、単位時間遅らせた遅延信号を、次の段のサンプル遅延回路71,h+1へ供給する。
続いて、サンプル遅延回路71,n/2(この場合、nは偶数とする)は、その1つ上段にあたるサンプル遅延回路71,n/2-1から供給された遅延信号を受け取る。サンプル遅延回路71,n/2は、受け取った遅延信号を、単位時間遅延させる。サンプル遅延回路71,n/2は、その遅延させた遅延信号をn/2番目の遅延信号として、サンプル遅延回路71,n/2+1と、代表選択部81とへ供給する。
続いて、サンプル遅延回路71,h´(h´はn/2+1からn-1までの整数で、nは偶数)は、それぞれの1つ上段にあたるサンプル遅延回路から供給された遅延信号を受け取る。そして、サンプル遅延回路71,h´は、それぞれ受け取った遅延信号を単位時間遅らせる。そして、サンプル遅延回路71,h´は、それぞれ単位時間遅らせた遅延信号を、次の段のサンプル遅延回路71,h´+1へ供給する。
サンプル遅延回路71,nは、その1つ上段にあたるサンプル遅延回路71,n-1から供給されたn-1番目の遅延信号を受け取る。サンプル遅延回路71,nは、受け取ったn-1番目の遅延信号を、単位時間遅延させる。サンプル遅延回路71,nは、その遅延させたn-1番目の遅延信号をn番目の遅延信号として、代表選択部81へ供給する。
代表値選択部81は、受け取った複数の信号の中央値を代表値として選択する処理部である。具体的には、代表値選択部81は、受信部11から供給された入力信号SiAを受け取る。また、代表値選択部81は、サンプル遅延回路71,n/2から供給されたn/2番目の遅延信号を受け取る。また、代表値選択部81は、サンプル遅延回路71,nから供給されたn番目の遅延信号を受け取る。
代表値選択部81は、受け取った例えば3つの信号の電圧値の中から、中央値(メディアン)を算出する。そして、代表値選択部81は、算出した中央値を電圧値とする代表信号S3を電圧比較部43に供給する。
なお、代表値選択部81が代表値を選択する対象となる信号の個数を3つとして説明したが、個数は3つに限定されるものではなく、4つ以上であってもよい。
なお、代表値選択部81が代表値を選択する対象となる信号を「サンプル信号」とも表記する。つまり、受信部11から供給された入力信号SiA、サンプル遅延回路71,n/2から供給されたn/2番目の遅延信号、およびサンプル遅延回路71,nから供給されたn番目の遅延信号は、サンプル信号である。
このように表記する場合、信号選択部42は、「入力される信号から、雑音低減の対象となる対象信号、および該対象信号から所定の間隔だけ離間している複数の信号をサンプリングし、該サンプリングしたサンプリング信号の電圧値の中から代表値を選択するものである」と表現することもできる。この場合、雑音低減の対象とする対象信号とは、サンプル遅延回路71,n/2が供給する信号を表し、対象信号から所定の間隔だけ離間している複数の信号とは、受信部11から供給された入力信号SiA、およびサンプル遅延回路71,nから供給されたn番目の遅延信号を表す。
また、サンプル遅延回路71は、(1)入力された信号で表される画像の主走査方向(横方向、水平方向)に単位時間ずつ遅延させた信号を出力するものであってもよい。また、サンプル遅延回路71は、(2)入力された信号で表される画像の副走査方向(縦方向、垂直方向)に単位時間ずつ遅延させた信号を出力するものであってもよい。
また、サンプル遅延回路71は、(3)入力信号SINが動画像を表す信号である場合は、入力された信号で表される動画像の時間方向に単位時間(例えば、1フレームに相当する時間)ずつ遅延させた信号を出力するものであってもよい。
また、代表値選択部81は、代表値として中央値を算出する構成としたが、これに限定されるものではない。例えば、代表値として平均値を算出する構成であってもよい。なお、代表値選択部81が代表値として中央値を選択する場合、信号選択部42はタップ数がn(いわゆるnタップ)のメディアンフィルタである。
ここで、信号選択部42が備えるサンプル遅延回路71,1からサンプル遅延回路71,n/2までのサンプル遅延回路を信号選択部42の「第1タップ」とも表記する。また、その個数を信号選択部42の「第1タップ数」とも表記する。
一方、信号選択部42が備えるサンプル遅延回路71,n/2+1からサンプル遅延回路71,nまでのサンプル遅延回路を信号選択部42の「第2タップ」とも表記する。また、その個数を信号選択部42の「第2タップ数」とも表記する。
このとき、信号選択部42のそれぞれにおいて、第1タップ数と第2タップ数とは等しいので、信号選択部31を対称形フィルタとも称する。なお、各タップ数は、多くても10程度であることが望ましい。
また、信号選択部31は対称形フィルタとしたが、これに限定されるものではない。第1タップ数と第2タップ数が等しくない非対称フィルタでも良いとする。
続いて、図7に戻って電圧比較部43について説明する。図7において、電圧比較部43は、遅延部41から供給された遅延付加信号S2と、信号選択部42から供給された代表信号S3とを受け取る。また、ノイズ量推定部21から供給されるノイズ量を示す信号S4を受け取る。そして、電圧比較部43は、遅延付加信号S2の電圧値を代表信号S3の電圧値との大小関係を判定する。具体的には、電圧比較部43は、遅延付加信号S2の電圧値が、代表信号S3の電圧値より大きいか、小さいか、または等しいかを判定する。そして、電圧比較部43は、その判定結果を示す情報を信号出力部44へ供給する。
続いて、信号出力部44について説明する。信号出力部44は、電圧比較部43の判定結果に基づいて、ノイズ量を示す信号S4の電圧値を加減算する処理部である。具体的には、信号出力部44は、電圧比較部43から供給された判定結果を示す情報を受け取る。また、信号出力部44は、ノイズ量推定部21から供給されたノイズ量を示す信号S4を受け取る。このときのノイズ量であるが、信号選択部42において選択した3つの信号が水平方向に隣り合った画素なので、水平方向ノイズ量がノイズ量となる。
遅延付加信号S2の電圧値が代表信号S3の電圧値より大きい場合、信号出力部44は、遅延付加信号S2の電圧値から信号S4の電圧値を減じた電圧値を有する信号を出力信号SoAとして生成する。
一方、遅延付加信号S2の電圧値が代表信号S3の電圧値より小さい場合、信号出力部44は、遅延付加信号S2の電圧値に信号S4の電圧値を加えた電圧値を有する信号を出力信号SoAとして生成する。
また、遅延付加信号S2の電圧値と代表信号S3の電圧値とが等しい場合、信号出力部44は、遅延付加信号S2をそのまま(電圧値を維持して)、出力信号SoAとする。そして、信号出力部44はその出力信号SoAを、出力信号ノイズを除去した映像信号SOUTとして、画像調整部13へ供給する。
なお、本第1の実施形態では、ノイズ除去部22aは、1フレーム内で、水平方向に各点の画素と隣接する画素との3つの画素間で中央値を判定したが、これに限らない。例えば、1フレーム内において、1フレーム内で、垂直方向に各点の画素と隣接する画素との3つの画素間で、中央値を判定してもよいし、水平、垂直方向共に、各点の画素と所定の画素離れた画素との3つの画素間で中央値を判定してもよい。また、各点の画素と所定のフレーム離れた画素との3つの画素間で中央値を判定してもよい。その際、ノイズ量は水平方向処理なら水平方向ノイズ量、垂直方向処理なら垂直方向ノイズ量、フレーム方向処理ならフレーム方向ノイズ量となる。
<雑音低減部の処理条件>
続いて、雑音低減部12aの処理の際の条件について説明する。雑音低減部12aは以下の5つの条件下で、ノイズ除去処理をする。
<条件1>
まず、条件1について説明する。ノイズ量推定部21は、先頭1フレームに対してノイズ量を算出する。そして、ノイズ量推定部21は、算出したノイズ量を示す信号S4をノイズ除去部22aへ供給する。そして、ノイズ除去部22aは、所定数(例えば、900)のフレームに対して、そのノイズ量を示す信号S4を用いてノイズ除去処理をする。
次に、所定のフレーム経過後、ノイズ量推定部21は、再び対象ノイズ量を算出し、そのノイズ量を示す信号S4をノイズ除去部22aへ供給する。上記処理を繰り返す。
条件1では、動きが激しく、ノイズがほとんどない映像に対してでも、検出する対象ノイズ量が小さくなるため、処理後映像がほとんどボケない。また、フレームメモリが要らなくなるため、コストが安くなるという効果もある。
<条件2>
続いて、条件2について説明する。ノイズ量推定部21は、全フレームに対して、フレーム毎のノイズ量を算出する。そして、ノイズ量推定部21は、算出したフレーム毎のノイズ量をノイズ除去部22aへ供給する。そして、ノイズ除去部22aは、フレーム毎に、そのフレーム毎のノイズ量を用いてノイズ除去処理をする。
条件2の場合、計算量は条件1より増えるが、シーンチェンジによるノイズ量の変化に対応でき、より精度よくノイズ量を見積もることができる。
<条件3>
続いて、条件3について説明する。人の目には輝度値が低いほどノイズが目立つ傾向がある。そのため、基準画素が所定値以上の輝度値になるとノイズが目立たないと考えられる。従って、ノイズ量推定部21は、輝度値が所定値よりも大きい場合、その画素をノイズ検出の対象画素からはずすこととする。
以下、ノイズ量推定部21の処理の内容を具体的に説明する。図9は、ある画素の輝度値が所定の閾値よりも大きい場合に、対象ノイズ量算出の際にその輝度値差を輝度値差の頻度算出に含めないことを説明するための図である。雑音低減部が受け取る映像信号が256階調の信号(8ビット信号)で、所定の閾値を128であるとする。
1フレームの画像150において、画素151の輝度値が例えば150であるとすると、この輝度値は128を超えているので、画素151は、ノイズ量算出の際の対象画素からはずされる。一方、画素152の輝度値が例えば100であるとすると、この輝度値は128以下なので、画素151は、ノイズ量算出の際の対象画素となる。
 具体的には、水平電圧値差算出部33aは、基準画素の輝度値が128より大きい場合、その画素では、横方向に±D画素離れた2画素との間で輝度の差を算出しない。また、垂直電圧値差算出部33bは、基準画素の輝度値が128より大きい場合、その画素では、縦方向に±H画素離れた2画素との間で輝度の差を算出しない。
 これによって、ノイズ検出の計算をする対象画素数が減るため計算量が減らすことができる。また、ノイズが目立たない画素を計算に入れないので、目立つノイズを検出する精度が上げることができ、その結果として、ノイズ除去の効果を上げることができる。
 <条件4>
 続いて、条件4について説明する。条件4において、対象信号抽出部31は、入力される映像信号のうちのY信号が、時間軸上で隣り合う3点で最大値または最小値となる信号を、ノイズ検出の対象信号とするものである。
 図10は、入力輝度信号のうち、ノイズを含む輝度値を抽出する処理を説明するための図である。同図において、画像信号が点線で示されている。また、画像信号に雑音信号が付与された入力輝度信号Yinが実線で示されている。ここで、縦軸は、電圧、横軸は時間を表す。
 隣り合う3点の座標(t、Y)、(t、Y)、(t、Y)内で、真ん中の座標が最大値V101を取る場合が示されている。また、隣り合う3点の座標(t、Y)、(t、Y)、(t、Y)内で、真ん中の座標が最小値V102を取る場合が示されている。
また、隣り合う3点(t、Y)、(t、Y)、(t、Y)内で、真ん中の座標が中央値V103を取る場合が示されている。
 入力輝度信号の各点において、その点の輝度値とその点に隣接する2つの輝度値との中で、その点の輝度値が最大値または最小値となる場合、対象信号抽出部31は、その点は、ノイズを含んでいると判定する。一方、入力輝度信号の各点において、その点の輝度値とその点に隣接する2つの輝度値との中で、その点の輝度値が中央値となる場合、対象信号抽出部31は、その点は、ノイズを含んでいないと判定する。そして、対象信号抽出部31は、その判定結果を示す情報を水平電圧値差算出部33aに供給する。
 水平電圧値差算出部33aは、対象信号抽出部31から供給された判定結果を示す情報を受け取る。ノイズを含んでいるという判定結果の場合、水平電圧値差算出部33aは、その点の輝度値と、その点に隣接するそれぞれの輝度値との差を算出する。
 例えば、図10の点(t、Y)において、水平電圧値差算出部33aは、(Y-Y)と(Y-Y)を算出する。
 そして、水平電圧値差算出部33aは、算出した2つの輝度値の差の平均値を算出する。例えば、図9の点(t、Y)において、水平電圧値差算出部33aは、{(Y-Y)+(Y-Y)}/2を算出する。
 そして、水平電圧値差算出部33aは、算出した平均値を第1のノイズ量算出部34aへ供給する。
 一方、ノイズを含んでいないという判定結果の場合、水平電圧値差算出部33aは、その点の輝度値と、その点に隣接するそれぞれの輝度値との差およびその差の平均値を算出しない。
 これによって、ノイズ量算出の際に計算をする対象画素数が減るため、計算量を減らすことができる。また、ノイズを含む画素のみをノイズ量検出に使用するため、算出されるノイズ量の値の精度が高くすることができる。
 なお、条件4の中で、各点の画素と隣接する画素との中で、各点の画素が上記判定をしたが、これに限らず、各点の画素と所定の画素離れた画素と中で、上記判定をしてもよい。
 また、条件4の中で、各点の画素と水平方向に隣接する画素との中で、上記の判定をしたが、これに限らず、各点の画素と垂直方向に所定の画素離れた画素との中で、上記の判定をしてもよい。
 <条件5>
 続いて、条件5について説明する。条件5において、入力輝度信号のある点の輝度値が、その輝度値と隣接する輝度値との中で最大値となる場合を考える。その場合、その点の輝度値と隣接する輝度値でその点の輝度値に近い輝度値(つまり3つの点の中央値)との差が、小さすぎる場合は、ノイズを含んでいるのではなく、その点の値は映像信号の真の値の可能性が高い。一方、その差が大きすぎる場合は、画像内のオブジェクトの輪郭(以下、エッジと称する)の可能性が高い。
 従って、ノイズ量推定部21で算出された対象ノイズ量を用いて、ノイズ除去部22aにおける処理に関して条件を付けることとする。
 図11は、ノイズ除去部22aにおける処理に課される条件を説明するための図である。図11の領域R111は、入力輝度信号91a上の各点において、その点にノイズが含まれていないと判定する条件を説明するための図である。同図の領域R111において、画像信号91aと、画像信号91aに雑音信号が付与された入力輝度信号92aが示されている。また、基準値93aと基準値93aに隣接する輝度値のうち基準値に近い値94aとの差xが示されている。
 電圧比較部43は、遅延部から出力された信号S2と信号選択部42から出力された信号S3の差を算出する。電圧比較部43は、その差が、ノイズ量推定部21から供給された対象ノイズ量S4に所定の値pを乗じた値よりも小さい場合、その点の輝度値にノイズが含まれていないと判定し、その結果を信号出力部44に供給する。そして、信号出力部44は、その点に対しては、ノイズ除去処理を行わず、遅延信号S2をそのまま出力する。
 具体的には、例えば、図11の領域R111において、基準値93aと基準値93aに隣接する輝度値のうち基準値に近い値94aとの差xが、対象ノイズ量に所定の値p(例えば、pは0.5)を乗じた値よりも小さい場合、電圧比較部43は、その点の輝度値にノイズが含まれていないと判定する。
 図11の領域R112は、入力輝度信号91b上の各点において、その点がエッジであると判定する条件を説明するための図である。同図の領域R112において、画像信号91bと、画像信号91bに雑音信号が付与された入力輝度信号92bが示されている。また、基準値93bと基準値93bに隣接する輝度値のうち基準値に近い値94bとの差yが示されている。
 電圧比較部43は、遅延部から出力された信号S2と信号選択部42から出力された信号S3の差を算出する。電圧比較部43は、ノイズ量推定部21から供給されたノイズ量を示す信号S4を受信する。そして、電圧比較部43は、信号S2と信号S3の差が上記ノイズ量に所定の値qを乗じた値よりも大きい場合、その点がエッジであると判定し、その判定結果を示す信号を信号出力部44に供給する。そして、信号出力部44は、その点に対しては、ノイズ除去処理を行わず、遅延信号S2をそのまま出力する。
 具体的には、例えば、図11の領域R112において、基準値93bと基準値93aに隣接する輝度値のうち基準値に近い値94bとの差xが、対象ノイズ量に所定の値q(例えば、qは10)を乗じた値よりも大きい場合、電圧比較部43は、その点をエッジであると判定する。
 換言すれば、ノイズ量加減算部39は、基準値と、該基準値から所定の間隔だけ離れた信号値との差が所定の範囲にある場合に、入力信号を対象信号として抽出する。
 条件5によれば、所定の値pと所定の値qとを適切に設定すれば、ノイズではない画像本来の信号をそのまま維持することができる。これによって、ノイズ除去処理による画像のディテールのつぶれを防ぐことができる。
 なお、基準値と基準値に隣接する輝度値のうち基準値に近い値との差を算出したが、これに限らず、基準値と基準値に隣接する輝度値のうち基準値に遠い値との差を算出してもよい。
 図12は、本発明の実施パターンについて説明するためのテーブルである。同図において、実施パターンが16種類あること、および各実施パターンにおいて、条件1から条件5のうちのどの条件が使用されるかが示されている。各実施パターンにおいて、使用される条件には○が、使用されない条件には×が示されている。ここで、条件1と条件2は、それぞれいずれかを使用されるものとする。
 本発明においては、実施パターンとして、図12に示された16のパターンが存在する。それぞれの実施パターンの効果は、それぞれの条件の効果を組み合わせたものである。
 図13は、液晶表示装置全体の処理の流れを示したフローチャートである。まず、受信部11は、アンテナから電波を受信する。そして、受信部11は、受信した電波を映像信号に変換する(ステップS101)。受信部11は、変換した映像信号を雑音低減部12aへ供給する。
 次に、雑音低減部12aは、受信部から供給された映像信号を受け取る。そして、雑音低減部12aは、映像信号に含まれる輝度信号のノイズを低減する(ステップS102)。雑音低減部12aは、ノイズを低減した輝度信号を画像調整部13へ供給する。
 次に、画像調整部13は、雑音低減部12aから供給されたノイズを低減した輝度信号を受け取る。そして、画像調整部13は、そのノイズを低減した輝度信号をI/P変換する(ステップS103)。そして、画像調整部13は、I/P変換された信号の画素数を調整する。そして、画像調整部13は、その調整された信号をタイミング制御部14と、ソースドライブ15とへ供給する。
 次に、タイミング制御部14は、画像調整部13から供給された調整された信号を受け取る。そして、タイミング制御部14は、その調整された信号を平面上の画素に配分するためのクロック信号を生成する(ステップS104)。そして、タイミング制御部14は、ソースドライバ部15と、ゲートドライバ部16へ、生成したクロック信号を供給する。
 次に、ソースドライバ部15は、調整された信号を受け取る。そして、ソースドライバ15は、その調整された信号から液晶駆動用の階調化された電圧を生成する(ステップS105)。そして、ソースドライバ部15は、ソース線ごとに、その階調化された電圧を、内部のホールド回路で保持する。
次に、ゲートドライバ部16は、タイミング制御部14から供給されたクロック信号を受け取る。ゲートドライバ部16は、所定の電圧を表示部17のTFTのゲート線に供給する(ステップS106)。
 次に、ソースドライバ部15は、タイミング制御部14から供給されたクロック信号を受け取る。そして、ソースドライバ部15は、画面の縦方向の配列に対して、クロック信号に同期して、階調化された電圧を表示部17のTFTのソース線に供給する(ステップS107)。
 これによって、各ゲート線が選択されている時間内に映像データが、ソース線に順次供給され、必要なデータがTFTを介して画素電極に書き込まれる。これによって、画素電極は、画素電極に掛かる電圧に応じて、対応する液晶の透過率を変更する。これによって、表示部17は、映像信号を表示する(ステップS108)。以上で、本フローチャートは終了する。
。これによって、表示部17は、映像信号を表示する(ステップS108)。以上で、本フローチャートは終了する。
 図14は、図13のステップS102の雑音低減処理の流れを示したフローチャートである。まず、遅延信号部41は、信号選択部42から出力される代表信号S3とタイミングを合わせるために、入力信号SiAに遅延時間を付加した遅延付加信号S2を生成する。(ステップS201)。
 ステップS201と並行して、信号選択部42は、所定の時間分の入力信号SiAから代表信号S3を算出する(ステップS202)。
 次に、電圧比較部43は、遅延付加信号S2の電圧値と代表信号S3の電圧値とを比較する(ステップS203)。そして、比較結果を信号出力部44へ供給する。
 上記ステップS201からステップS203までの処理と並行して、水平電圧値差算出部33aと、垂直電圧値差算出部33bは、以下の処理(ステップS204からステップS207までの処理)を行う。
 まず、水平電圧値差算出部33aは、1フレーム内の画素毎に、その画素と横方向に±D画素離れた2画素との間で輝度の差を算出する。そして、水平電圧値差算出部33aは、その輝度の差の平均値を算出する(ステップS204)。水平電圧値差算出部33aは、1フレーム内の画素毎に算出された輝度の差の平均値を第1のノイズ量算出部34aへ供給する。
 次に、第1のノイズ量算出部34aは、その輝度の差の平均値毎に、出現頻度を算出する。そして、第1のノイズ量算出部34aは、その出現頻度が最も高いものを水平方向ノイズ量として算出する。そして、第1のノイズ量算出部34aは、算出した水平方向ノイズ量を対象ノイズ量算出部35へ供給する(ステップS205)。
 一方、垂直電圧値差算出部33bは、1フレーム内の画素毎に、その画素と縦方向に±H画素離れた2画素との間で輝度の差を算出する。そして、垂直電圧値差算出部33bは、その輝度の差の平均値を算出する(ステップS206)。垂直電圧値差算出部33bは、1フレーム内の画素毎に算出された輝度の差の平均値を第2のノイズ量算出部34bへ供給する。
 次に、第2のノイズ量算出部34bは、その輝度の差の平均値毎に、出現頻度を算出する。そして、第2のノイズ量算出部34bは、その出現頻度が最も高いものを垂直方向ノイズ量として算出する(ステップS207)。そして、第2のノイズ量算出部34bは、算出した垂直方向ノイズ量を対象ノイズ量算出部35へ供給する。
 次に、対象ノイズ量算出部35は、その水平方向ノイズ量とその垂直方向ノイズ量との平均値をフレーム方向ノイズ量として算出する(ステップS208)。そして、対象ノイズ量算出部35は、算出した水平方向ノイズ量、垂直方向ノイズ量、フレーム方向ノイズ量をノイズ除去部22aの信号出力部44へ供給する。
 次に、遅延付加信号S2の電圧値が代表信号S3の電圧値より大きい場合(ステップS209 YES)、信号出力部44は、遅延付加信号S2の電圧値から信号S4の電圧値を減じた電圧値を有する信号を出力信号SoAとして生成する(ステップS210)。
 一方、遅延付加信号S2の電圧値が代表信号S3の電圧値以下の場合(ステップS209 NO)、信号出力部44は、以下の処理を行う。遅延付加信号S2の電圧値が代表信号S3の電圧値より小さい場合(ステップS211 YES)、信号出力部44は、遅延付加信号S2の電圧値に信号S4の電圧値を加えた電圧値を有する信号を出力信号SoAとして生成する(ステップS212)。
 遅延付加信号S2の電圧値と代表信号S3の電圧値とが等しい場合(ステップS211 NO)、信号出力部44は、遅延付加信号S2をそのまま(電圧値を維持して)、出力信号SoAとする。
 最後に出力信号SoAを出力信号Soutとして、画像調整部13へ供給する(ステップS213)。以上で、本フローチャートは終了する。
 <第2の実施形態>
 次に、第2の実施形態として説明する。図15は、本発明の第2の実施形態における液晶表示装置の概略ブロック図である。なお、図1と共通する要素には同一の符号を付し、その具体的な説明を省略する。
 図15の液晶表示装置10bの構成は、図1の液晶表示装置10aの構成に対して、雑音低減部12aのノイズ除去部22aを、雑音低減部12b内のノイズ除去部22bに変更したものとなっている。
 図16は、第2の実施形態におけるノイズ除去部の構成の概要を示すブロック図である。同図に示すように、ノイズ除去部22bは、縦列接続された、m個の雑音低減ユニット101_k(kは1からmまでの整数)を備える。
 同図において、雑音低減ユニット101_1は、遅延部41_1と、信号選択部42_1と、電圧比較部43_1と、信号出力部44_1とを備える。他の各雑音低減ユニット101_kも、遅延部41_kと、信号選択部42_kと、電圧比較部43_kと、信号出力部44_kとを備えるが、図示は省略する。つまり、第1の実施形態では雑音低減ユニットが一つだったが、第2の実施形態は雑音低減ユニットが複数個縦列接続されたものであるとする。
 ノイズ除去部22bの処理の流れについて説明する。雑音低減ユニット101_1は、受信部から供給された映像信号SINを受け取る。そして、雑音低減ユニット101_1は、ノイズ量推定部21から供給されたノイズ量を示す信号S4を受け取る。雑音低減ユニット101_1は、そのノイズ量を用いて映像信号SINのノイズを低減させる。そして、雑音低減ユニット101_1は、ノイズを低減後の信号SiA_2を次の雑音低減ユニット101_2へ供給する。
 雑音低減ユニット101_k´(k´は2からm-1までの整数)は、雑音低減ユニット101_k´-1から供給された信号SiA_k´を受け取る。そして、雑音低減ユニット101_k´は、ノイズ量推定部21から供給されたノイズ量を示す信号S4を受け取る。雑音低減ユニット101_k´は、そのノイズ量を用いて信号SiA_k´のノイズを低減させる。そして、雑音低減ユニット101_k´は、ノイズを低減後の信号SiA_(k´+1)を次の雑音低減ユニット101_(k´+1)へ供給する。
 最後に、雑音低減ユニット101_mは、雑音低減ユニット101_m-1から供給された信号SiA_mを受け取る。そして、雑音低減ユニット101_mは、ノイズ量推定部21から供給されたノイズ量を示す信号S4を受け取る。雑音低減ユニット101_mは、そのノイズ量を用いて信号SiA_mのノイズを低減させる。そして、雑音低減ユニット101_mは、ノイズを低減後の信号SOUTを画像調整部13へ供給する。また、雑音低減ユニット101_kに供給するノイズ量はノイズ量推定部21から供給された対象ノイズ量S4をkで除算した値を用いてもよい。
 続いて、雑音低減ユニット101_kの構成について説明する。図17は、第2の実施形態における雑音低減ユニット101_kの構成を示すブロック図である。上述したように、同図において、各雑音低減ユニット101_kは、遅延部41_kと、信号選択部42_kと、電圧比較部43_kと、信号出力部44_kとを備える。雑音低減ユニット101_kに入力される信号を、入力信号SiA_kと表記する。また、雑音低減ユニット101_kから出力される信号を、SoA_kと表記する。
 雑音低減ユニット101_kの構成のうち、まず遅延部41_kについて説明する。遅延部41_kは、信号選択部42_kから出力される代表信号S3とタイミングを合わせるために、入力信号SiA_kに遅延時間を付加する処理部である。
 信号選択部42_kは、所定の時間分の入力信号SiAから、代表信号S3を生成する。その所定の時間分の入力信号SiAに対して、遅延部41_kは遅延時間を付加する。これによって、電圧比較部43_kは、代表信号S3と代表信号S3を生成するための元信号とを比較することができる。
 遅延部41_kは、入力信号SiA_kを受け取る。信号選択部42_kから出力される代表信号S3が出力されるタイミングにあわせて、代表信号S3を生成するための元信号を出力するために、遅延部41_kは、所定の時間分の入力信号SiA_kに遅延を与えた遅延付加信号S2を生成する。遅延部41_kは、遅延付加信号S2を電圧比較部43_kと、信号出力部44_kとへ供給する。
 続いて、信号選択部42_kについて説明する。信号選択部42_kは、入力信号SiA_kの変化をできるだけ平坦化するための一種のフィルタである。但し、信号選択部42_kは、入力信号SiA_kの立ち上がりまたは立下りエッジを保存する特性を有する。ここで、信号選択部42_kから出力される信号をS3と表記する。
 まず、信号選択部42_kの処理の概要について説明する。
 信号選択部42_kは、入力信号SiA_kを受け取る。信号選択部42_kは、所定の時間分の入力信号SiA_kから、後述する方法で、順次代表信号S3を生成する。そして、信号選択部42_kは、生成した代表信号S3を電圧比較部43_kに供給する。
 続いて、信号選択部42_kの処理の詳細について説明する。図18は、第2の実施形態における信号選択部42_kの構成を示すブロック図である。同図に示すように、信号選択部42_kは、縦列接続された複数のサンプル遅延回路71_k,i(iは1からnまでの整数)と、代表値選択部81_kとを備える。図18では、「サンプル遅延回路」と表記する代わりに、単に「D」と表記している。他の図面でも同様である。
 ここで、雑音低減ユニット101_k毎に、内部に備えるサンプル遅延回路71_k,iの個数n(以下、タップ数と称する)は異なるものとする。さらに、後述するように、縦列接続されている上段側の雑音低減ユニット101_kほど、サンプル遅延回路71_k,iを多く備える構成が好ましい。つまり、縦列接続されている上段側の雑音低減ユニット101_kほど、タップ数を大きくする構成が好ましい。
 各サンプル遅延回路71_k,iは、入力された信号を単位時間(例えば、1フレームに相当する時間)ずつ遅延させた信号を出力する。具体的には、サンプル遅延回路71_k,1は、入力信号SiA_kを受け取る。そして、サンプル遅延回路71_k,1は、その入力信号SiA_kを単位時間遅延させる。サンプル遅延回路71_k,1は、その遅延させた信号を1番目の遅延信号として、サンプル遅延回路71_k,2と、代表選択部81_kとへ供給する。
 続いて、サンプル遅延回路71_k,h(hは2からn/2-1までの整数、nは偶数)は、1つ上段にあたるサンプル遅延回路から供給された遅延信号を受け取る。そして、サンプル遅延回路71_k,hは、受け取った遅延信号を単位時間遅らせる。そして、サンプル遅延回路71_k,hは、単位時間遅らせた遅延信号を、次の段のサンプル遅延回路71_k,h+1へ供給する。
 続いて、サンプル遅延回路71_k,n/2(この場合、nは偶数とする)は、その1つ上段にあたるサンプル遅延回路71_k,n/2-1から供給された遅延信号を受け取る。サンプル遅延回路71_k,n/2は、受け取った遅延信号を、単位時間遅延させる。サンプル遅延回路71_k,n/2は、その遅延させた遅延信号をn/2番目の遅延信号として、サンプル遅延回路71_k,n/2+1と、代表選択部81_kとへ供給する。
 続いて、サンプル遅延回路71_k,h´(h´はn/2+1からn-1までの整数で、nは偶数)は、それぞれの1つ上段にあたるサンプル遅延回路から供給された遅延信号を受け取る。そして、サンプル遅延回路71_k,h´は、それぞれ受け取った遅延信号を単位時間遅らせる。そして、サンプル遅延回路71_k,h´は、それぞれ単位時間遅らせた遅延信号を、次の段のサンプル遅延回路71_k,h´+1へ供給する。
 サンプル遅延回路71_k,nは、その1つ上段にあたるサンプル遅延回路71_k,n-1から供給されたn-1番目の遅延信号を受け取る。サンプル遅延回路71_k,nは、受け取ったn-1番目の遅延信号を、単位時間遅延させる。サンプル遅延回路71_k,nは、その遅延させたn-1番目の遅延信号をn番目の遅延信号として、代表選択部81_kへ供給する。
 代表値選択部81_kは、受け取った複数の信号の中央値を代表値として選択する処理部である。具体的には、代表値選択部81_kは、受信部11(kが1のときに限る)または前段の信号選択部42_k-1から供給された入力信号SiA_kを受け取る。また、代表値選択部81_kは、サンプル遅延回路71_k,n/2から供給されたn/2番目の遅延信号を受け取る。また、代表値選択部81_kは、サンプル遅延回路71_k,nから供給されたn番目の遅延信号を受け取る。
 代表値選択部81_kは、受け取った3つの信号の電圧値の中から、中央値(メディアン)を算出する。そして、代表値選択部81_kは、算出した中央値を電圧値とする代表信号S3を電圧比較部43_kに供給する。
 なお、代表値選択部81が代表値を選択する対象となる信号の個数を3つとして説明したが、個数は3つに限定されるものではなく、4つ以上であってもよい。
 なお、代表値選択部81が代表値を選択する対象となる信号を「サンプル信号」とも表記する。つまり、受信部11(kが1のときに限る)または前段の信号選択部42_k-1から供給された入力信号SiA_k、サンプル遅延回路71_k,n/2から供給されたn/2番目の遅延信号、およびサンプル遅延回路71_k,nから供給されたn番目の遅延信号は、サンプル信号である。
 このように表記する場合、信号選択部42_kは、「入力される信号から、雑音低減の対象となる対象信号、および該対象信号から所定の間隔だけ離間している複数の信号をサンプリングし、該サンプリングしたサンプリング信号の電圧値の中から代表値を選択するものである」と表現することもできる。この場合、雑音低減の対象とする対象信号とは、サンプル遅延回路71_k,n/2が供給する信号を表し、対象信号から所定の間隔だけ離間している複数の信号とは、受信部11(kが1のときに限る)または前段の信号選択部42_k-1から供給された入力信号SiA_k、およびサンプル遅延回路71_k,nから供給されたn番目の遅延信号を表す。
 また、サンプル遅延回路71_kは、(1)入力された信号で表される画像の主走査方向(横方向、水平方向)に単位時間ずつ遅延させた信号を出力するものであってもよい。
 また、サンプル遅延回路71_kは、(2)入力された信号で表される画像の副走査方向(縦方向、垂直方向)に単位時間ずつ遅延させた信号を出力するものであってもよい。
 また、サンプル遅延回路71_kは、(3)入力信号SINが動画像を表す信号である場合は、入力された信号で表される動画像の時間方向に単位時間(例えば、1フレームに相当する時間)ずつ遅延させた信号を出力するものであってもよい。
 但し、同じ雑音低減ユニット101_kに含まれるサンプル遅延回路71は、上記(1)から(3)のいずれかに統一されているものとする。
 また、代表値選択部81は、代表値として中央値を算出する構成としたが、これに限定されるものではない。例えば、代表値として平均値を算出する構成であってもよい。なお、代表値選択部81が代表値として中央値を選択する場合、信号選択部42_kはタップ数がn(いわゆるnタップ)のメディアンフィルタである。
 ここで、信号選択部42_kが備えるサンプル遅延回路71_k,1からサンプル遅延回路71_k,n/2までのサンプル遅延回路を信号選択部42_kの「第1タップ」とも表記する。また、その個数を信号選択部42_kの「第1タップ数」とも表記する。
 一方、信号選択部42_kが備えるサンプル遅延回路71_k,n/2+1からサンプル遅延回路71_k,nまでのサンプル遅延回路を信号選択部42_kの「第2タップ」とも表記する。また、その個数を信号選択部42_kの「第2タップ数」とも表記する。
 このとき、信号選択部42_kのそれぞれにおいて、第1タップ数と第2タップ数とは等しいので、信号選択部31を対称形フィルタとも称する。なお、各タップ数は、多くても10程度であることが望ましい。
 また、信号選択部31は対称形フィルタとしたが、これに限定されるものではない。第1タップ数と第2タップ数が等しくない非対称フィルタでも良いとする。
 なお、サンプリング信号をサンプリングする間隔は、第1タップ数および第2タップ数によって定まるものであるので、サンプリングの各間隔は、雑音低減ユニット101_k毎に一定である。
 但し、第1タップ数および第2タップ数の組は、雑音低減ユニット101_k毎に異なる。つまり、対象信号を除くサンプリング信号の、対象信号からの間隔の組は、雑音低減ユニット101_k毎に異なる。
 続いて、電圧比較部43_kについて説明する。図16において、電圧比較部43_kは、遅延部41_kから供給された遅延付加信号S2と、信号選択部42_kから供給された代表信号S3とを受け取る。そして、電圧比較部43_kは、遅延付加信号S2の電圧値を代表信号S3の電圧値との大小関係を判定する。具体的には、電圧比較部43_kは、遅延付加信号S2の電圧値が、代表信号S3の電圧値より大きいか、小さいか、または等しいかを判定する。そして、電圧比較部43_kは、その判定結果を示す情報を信号出力部44_kへ供給する。
 続いて、信号出力部44_kについて説明する。信号出力部44_kは、電圧比較部43_kの判定結果に基づいて、ノイズ量を示す信号S4の電圧値を加減算する処理部である。具体的には、信号出力部44_kは、電圧比較部43_kから供給された判定結果を示す情報を受け取る。また、信号出力部44_kは、ノイズ量推定部21から供給されたノイズ量を示す信号S4を受け取る。
 遅延付加信号S2の電圧値が代表信号S3の電圧値より大きい場合、信号出力部44_kは、遅延付加信号S2の電圧値から信号S4の電圧値を減じた電圧値を有する信号を出力信号SoA_kとして生成する。
 一方、遅延付加信号S2の電圧値が代表信号S3の電圧値より小さい場合、信号出力部44_kは、遅延付加信号S2の電圧値に信号S4の電圧値を加えた電圧値を有する信号を出力信号SoA_kとして生成する。
 また、遅延付加信号S2の電圧値と代表信号S3の電圧値とが等しい場合、信号出力部44_kは、遅延付加信号S2をそのまま(電圧値を維持して)、出力信号SoA_kとする。
 そして、kが1からn-1までの整数の場合、信号出力部44_kは、その出力信号SoA_kを、次の段の雑音低減ユニット101_k+1へ供給する。kがnの場合、信号出力部44_kは、その出力信号SoA_kを出力信号SOUTとして、画像調整部13へ供給する。
 なお、雑音低減ユニット101_kにより生成される出力信号SoA_kには、入力信号SiA_kには含まれない高調波成分が含まれる。その高調波成分を、図19を参照して説明する。図19は、入力信号の波形w191の1例と、その入力信号を、雑音低減ユニットに入力した結果として得られる出力信号の波形w192の1例を示す模式図である。
同図における入力信号の波形w191は、入力信号SiA_kの波形の1例である。縦方向は、入力信号SiA_kの電圧値、横方向は、時間を表している。入力信号SiA_kの電圧値を、時間と伴に滑らかに変化している。
同図における出力信号の波形w192は、図17に示された入力信号SiA_kを、雑音低減ユニット101_kに入力した結果として得られる出力信号SoA_kの波形の1例である。縦方向は、出力信号SoA_kの電圧値、横方向は、時間を表している。出力信号SoA_kの電圧値が、入力信号SoA_kの波形が極値をとる付近で、矢印で示されている電圧値に変更されている。
上述したように、信号出力部44_kによって遅延付加信号S2の電圧値が増減される結果、同図における出力信号の波形w212に示すように、出力信号SoA_kの波形には、略凹状となる部分(以下、凹部分と称する)が生じる。そのため、出力信号SoA_kには、入力信号SiA_kには含まれない高調波成分が新たに含まれることとなる。つまり、雑音低減ユニット101では、入力信号SiAの周波数帯域の一部が高域化しているといえる。その結果、入力信号SiAに混入していた雑音成分の周波数の一部についても、高域化している。
ここで、人間の視覚特性は、ローパスフィルタまたはバンドパスフィルタと類似する特性を有するため、高調波成分のほとんどは人間の視覚に影響を及ぼさない。つまり、高域化された雑音成分は、人間には雑音成分として認識されにくい。
よって、入力信号SiA_kに混入していた雑音成分は、出力信号SoA_kでは高域化され、人間には認識されにくいものとなる。従って、雑音低減ユニット101_kにより雑音成分を低減することができる。
なお、同図における出力信号の波形w212中に存在する凹部分は1例であり、凹部分の横幅は、サンプリング信号をサンプリングする間隔、つまりタップ数に正比例して決まる。
<雑音低減ユニット単体にて雑音成分を低減する効果>
次に、図20Aから図21Cを参照しながら、1つの雑音低減ユニット101aまたは雑音低減ユニット101bにより雑音低減する効果について説明する。まず、雑音低減ユニットの要部構成について説明する。
 図20Aは、雑音低減ユニット101aの要部構成を示すブロック図である。雑音低減ユニット101aは、信号選択部42aを備える。そして、信号選択部42aは、4つのサンプル遅延回路(サンプル遅延回路71_1からサンプル遅延回路71_4)を備える。この場合、第1タップ数および第2タップ数はそれぞれ2である。よって、当該雑音低減ユニット101aは、サンプル遅延回路71_2が出力する信号から、「+2×単位時間」および「-2×単位時間」のサンプリング間隔でサンプリングを行う。
 図20Bは、雑音低減ユニット101bの要部構成を示すブロック図である。雑音低減ユニット101bは、信号選択部42bを備える。そして、信号選択部42bは、8つのサンプル遅延回路(サンプル遅延回路71_1からサンプル遅延回路71_8)を備える。この場合、第1タップ数および第2タップ数はそれぞれ4である。よって、当該雑音低減ユニット101aは、サンプル遅延回路71_4が出力する信号から、「+4×単位時間」および「-4×単位時間」のサンプリング間隔でサンプリングを行う。
 図21Aから図21Cは、入力信号の波形と、雑音低減ユニットにより雑音が低減された出力信号の波形との例を示す模式図である。ここで、縦軸は信号のレベル(エネルギー)であり、横軸は周波数である。
 図21Aは、雑音成分が混入している入力信号SiAの波形と、当該入力信号のうちの画像信号S21Aの波形と、および当該入力信号SiAに混入している雑音信号N21Aの波形との1例を示す模式図である。ここで、入力信号SiAは、画像信号S21Aと雑音信号N21Aとを加算したものである。
 図21Bは、図20Aで示された雑音低減ユニット101aに、入力信号SiAを入力して得られる出力信号SoAの波形と、当該出力信号SoAのうちの画像信号S21Bの波形と、および当該出力信号SoAに混入している雑音信号N21Bの波形との1例を示す模式図である。ここで、出力信号SoAは、画像信号S21Bと雑音信号N21Bとを加算したものである。
 図21Bに示すように、雑音成分と画像信号はともに、高周波数帯域でレベルが小さくなっている。従って、出力信号SoAも、高周波数帯域でレベルが小さくなっている。ここで、タップ数が少ないので、サンプリング間隔が短くなる。サンプリング間隔が短くなると、出力波形の凹部分の横幅が小さくなる。凹部分の横幅が小さくなるので、凹部分の周波数が高くなる。従って、雑音低減ユニット101aは、高周波数帯域の雑音成分のレベルを小さくする。
 図21Cは、図20Bで示された雑音低減ユニット101bに、入力信号SiAを入力して得られる出力信号SoBの波形と、当該出力信号SoBのうちの画像信号の波形と、および当該出力信号SoBに混入している雑音信号の波形との1例を示す模式図である。ここで、出力信号SoBは、画像信号S21Cと雑音信号N21Cとを加算したものである。
 図21Cに示すように、雑音成分と画像信号はともに、中周波数帯域でレベルが小さくなっている。従って、出力信号SoBも、中周波数帯域でレベルが小さくなっている。
 雑音低減ユニット101bは、雑音低減ユニット101aよりもタップ数が大きいので、雑音低減ユニット101aが処理を施す周波数帯域より低い周波数帯域に対して処理を施し、当該部分の雑音成分を低減する。つまり、サンプル遅延回路71を多く備える雑音低減ユニット101_kほど、周波数帯域の低い雑音成分を低減する。
 なお、図21Bおよび図21Cに示すように、画像信号のレベルも低減されることになるが、雑音成分が低減されているので、画像全体としての印象は、元の画像よりもきれいに(鮮明に)見える。
 従って、異なる複数の雑音低減ユニット101_kを縦列接続して順次用いれば、入力信号SINに混入した異なる周波数帯域の雑音成分を高度に低減することができる。
 <ノイズ除去部の具体的な構成例>
 続いて、図22を参照しながら、ノイズ除去部22の1例であるノイズ除去部22bの具体的な構成例について説明する。図22は、ノイズ除去部22bの具体的な構成例の要部を示すブロック図である。同図に示すように、ノイズ除去部22bは、雑音低減ユニット101aと雑音低減ユニット101bという2つの雑音低減ユニットを備えている。すなわち、ノイズ除去部22bは、図20Bに示した雑音低減ユニット101bと図20Aに示した雑音低減ユニット101aとを縦列接続した構成である。
 なお、ここでは説明の簡略化のために、縦列接続の段数が2段である構成について説明するが、縦列接続の段数は1以上であれば何段でもよい。
 上記構成の場合、ノイズ除去部22bに入力される入力信号SINは、まず雑音低減ユニット101bによって雑音成分が低減され、引き続き、雑音低減ユニット101aによって、雑音成分が低減される。
 具体的には、雑音低減ユニット101bは、受信部11から供給された入力信号SINを受け取る。雑音低減ユニット101bは、入力信号SINに対して上述した雑音低減処理を施す。そして、雑音低減ユニット101bは、雑音低減された入力信号SINを雑音低減ユニット101aへ供給する。
 雑音低減ユニット101aは、雑音低減された入力信号SINを受け取る。そして、雑音低減ユニット101aは、雑音低減された入力信号SINに対して、さらに上述した雑音低減処理を施す。そして、雑音低減ユニット101aは、さらに雑音低減された入力信号SINを出力信号SOUTとして、画像調整部13へ供給する。
 ここで、雑音低減ユニット101bが備える信号選択部42bと、雑音低減ユニット101aが備える信号選択部42aとは、「D」と示されたサンプル遅延回路の個数(タップ数)が異なるので、雑音低減ユニット101bと雑音低減ユニット101aとでは、サンプリング信号をサンプリングする間隔が異なる。具体的には、雑音低減ユニット42bにてサンプリングする間隔は、±4×単位時間である。一方、雑音低減ユニット42aにてサンプリングする間隔は、±2×単位時間である。従って、2つのサンプリングする間隔は異なる。
 これにより、上述したように、雑音低減ユニット101bにて低減される雑音成分と、雑音低減ユニット101aにて低減される雑音成分とは、周波数帯域が異なる。
 具体的には、雑音低減ユニット101bでは、雑音低減ユニット101aにて低減される雑音成分よりも周波数の低い雑音成分を低減する。一方、雑音低減ユニット101aでは雑音低減ユニット101bにて提言する雑音成分よりも周波数の高い雑音成分を低減する。
 なお、最も高い周波数帯域の雑音成分を除去するには、タップ数を1タップとすればよい。
 ここで、上述したように、雑音低減ユニット101_kでは、入力真相SiAの周波数帯域の一部を高域化した出力信号SoA_kを出力する。従って、図22で示す構成のように、まず、タップ数の大きい信号選択部42bを有する雑音低減ユニット101bにて、周波数帯域の低い信号に対して処理を施す。そして、その次に、タップ数の小さい信号選択部42aを有する雑音低減ユニット101aにて周波数帯域の高い信号に対して処理を施す構成が好ましい。
 当該構成によれば、雑音低減ユニット101_kを通過する度に、雑音成分の周波数帯域を徐々に高域化していくことが可能となり、最下段の雑音低減ユニット101aから出力される出力信号では、雑音成分は高い周波数帯域に集まり、低い周波数帯域の雑音成分は低減された状態になる。
 図23Aから図23Cは、図22に示したノイズ除去部22bにより雑音成分の周波数帯域を高域化していく様子を示した模式図である。ここで、縦軸は信号のレベル(エネルギー)であり、横軸は周波数である。
 図23Aは、入力信号SINの波形、入力信号SINのうちの画像信号S23Aの波形、および入力信号SINに混入している雑音成分N23Aの波形の1例を示す模式図である。
 画像信号S23Aは、周波数が高くなるほど、その信号のレベルが減少するのに対し、雑音信号N23Aは、周波数によらず、その信号のレベルがほぼ一定である。従って、入力信号SINは、画像信号S23Aに雑音信号N23Aを加えたものであるから、周波数が高くなるほど、その信号のレベルが減少する。
 図23Bは、雑音低減ユニット101bから出力された信号So23Bの波形、当該信号のうちの画像信号S23Bの波形、および当該信号に混入している雑音成分N23Bの波形の1例を示す模式図である。
 同図に示すように、高周波数帯域において、画像信号および雑音成分のレベルが、それぞれ図23Aで示される画像信号および雑音成分のレベルよりも大きくなっている。
 図23Cは、雑音低減ユニット101aから出力された信号So23Cの波形、当該信号のうちの画像信号S23Cの波形、および当該信号に混入している雑音成分N23Cの波形の1例を示す模式図である。
 同図に示すように、高周波数帯域において、画像信号および雑音成分のレベルが、それぞれ図23Bで画像信号および雑音成分のレベルよりもさらに大きくなっている。一方、中低域の雑音成分のレベルが減少している。
 中低域の雑音成分のレベルが減少しているので、人間の目には画質が改善しているように見える。一方、高域の雑音成分が増えても、人間にはノイズが増えたように見えない。
従って、ノイズ除去部22bは、画質の改善を図ることができる。
 このように、複数の雑音低減ユニットによって、雑音成分の周波数帯域を徐々に高域化していくことにより、最終的に、雑音成分は、人間の視覚には認識されにくい細かいものとなる。つまり、雑音成分を人間にみえないようにすることができるので、雑音成分を高度に低減させることができる。
 従って、ノイズ除去部22bは、入力信号SINに混入した雑音成分を高度に低減することができる。
 <信号選択部の変形例>
 上述では、図18において、信号選択部42_kの代表値選択部81_kは、入力信号SiA_kと、サンプル遅延回路71_k,n/2が出力する信号と、サンプル遅延回路71_k,nが出力する信号の3つの信号の電圧値の中から、代表値として中央値を選択していた。しかし、これに限らず、4つ以上の信号の電圧値の中から中央値を選択する構成であってもよい。
 これにより、より細かな信号の変化を検出することが可能となるので、例えば、芝生や霧のような、信号変化が細かい画像においても、微小な信号の変化を検出することが可能となり、雑音成分を低減することができる。
 当該信号選択部42c_kの構成を、図24を用いて説明する。図24は、5つの信号の電圧値の中から中央値を選択する信号選択部42c_kを示すブロック図である。信号選択部42c_kは、N個(Nは4の倍数である正の整数)のサンプル遅延回路(サンプル遅延回路71c_k,1からサンプル遅延回路71c_k,N)と、代表値選択部81c_kとを備える。
 各サンプル遅延回路は、入力された信号を単位時間遅らせる処理を行う。
 サンプル遅延回路71c_k,1は、前段の雑音低減ユニットから供給された信号SiC_kを受け取る。そして、サンプル遅延回路71c_k,1は、その信号SiC_kを単位時間遅らせる。そして、サンプル遅延回路71c_k,1は、その遅らせた信号を第1の遅延信号として、サンプル遅延回路71c_k,2へ供給する。
 各サンプル遅延回路71c_k,h(hは2からN-1までの整数)は、前のサンプル遅延回路71c_k,h-1から供給された第h-1の遅延信号を受け取る。そして、各サンプル遅延回路71c_k,hは、その受け取った第h-1の遅延信号を更に単位時間だけ遅らせる。そして、サンプル遅延回路71c_k,hは、更に遅らせた信号を第hの遅延信号として、サンプル遅延回路71c_k,h+1へ供給する。
 但し、図24に示されたサンプル遅延回路71c_k,N/4と、サンプル遅延回路71c_k,N/2と、サンプル遅延回路71c_k,3N/4は、それぞれの回路で単位時間だけ遅らせた信号を代表値選択部81c_kへも供給する。
 最後に、N番目のサンプル遅延回路71c_k,Nは、前のサンプル遅延回路71c_k,N-1から供給された第N-1の遅延信号を受け取る。そして、サンプル遅延回路71c_k,Nは、その受け取った第N-1の遅延信号を更に単位時間だけ遅らせる。そして、サンプル遅延回路71c_k,Nは、更に遅らせた信号を第Nの遅延信号として、代表値選択部81c_kへ供給する。
 代表値選択部81c_kは、前段の雑音低減ユニットから供給された信号SiC_kを受け取る。また、代表値選択部81c_kは、サンプル遅延回路71c_k,N/4から供給された信号と、サンプル遅延回路71c_k,N/2から供給された信号と、サンプル遅延回路71c_k,3N/4から供給された信号とを受け取る。さらに、代表値選択部81c_kは、サンプル遅延回路71c_k,Nから供給された第Nの遅延信号を受け取る。
 そして、代表値選択部81c_kは、受け取った5つの信号の中から、中央値を算出する。そして、算出された中央値を代表値として、電圧比較部43_kへ供給する。
 なお、上述した実施形態では、第1タップ数と第2タップ数とが等しい信号選択部42_kを備えた雑音低減ユニット101_kについて説明したが、これに限らず、第1タップ数と第2タップ数とが等しくない信号選択部を備えた雑音低減ユニットであってもよい。
 <変形例>
 なお、本発明の実施形態では、受信部11から供給された映像信号を雑音低減部12aまたは雑音低減部12bで雑音を低減させたが、これに限らず、以下の構成でもよい。雑音低減部12aまたは雑音低減部12bが画像調整部13から供給される信号を受け取る。そして、雑音低減部12aまたは雑音低減部12bが受け取った信号の雑音を低減させる。そして、雑音低減部12aまたは雑音低減部12bがその雑音を低減させた信号をタイミング制御部14と、ソースドライブ14とへ供給する。
 なお、第2の実施形態のノイズ除去部22bを有する雑音低減部12bも、図12のテーブルに示される16個の実施パターンを有してもよい。第2の実施形態において、条件5を実施する場合、電圧比較部43_kが対象信号をノイズであるか、エッジであるか判定する。
 最後に、雑音低減部12aまたは雑音低減部12bの各ブロックは、集積回路(ICチップ)上に形成された論理回路によってハードウェアとして構成されてもよいし、次のようにCPU(Central Processing Unit)を用いてソフトウェアによって実現されてもよい。
 雑音低減部12aまたは雑音低減部12bの各ブロックがソフトウェアによって実現される場合には、雑音低減部12aまたは雑音低減部12bは、各機能を実現する信号処理プログラムの命令を実行するCPU、上記プログラムを格納したROM(Read Only Memory)、上記プログラムを展開するRAM(Random Access Memory)、上記プログラム及び各種データを格納するメモリ等の記憶装置(記憶媒体)などを備える。
 そして、その記録媒体は、上述した機能を実現するソフトウェアである雑音低減部12aまたは雑音低減部12bのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム等)がコンピュータで読み取りできるように保持する。
 そして、本発明の目的は、CPUが、その記録媒体に保持されているプログラムコードを読み出し、実行することによって、達成可能である。
 上記、記憶媒体としては、例えば、磁気テープやカセットテープ等のテープ類、フロッピー(登録商標)ディスクやハードディスク等の磁気ディスク、CD、MO、MD、DVD等の光ディスクを含むディスク類、ICカード(メモリカードを含む)や光カード等のカード類、あるいはマスクROM、EPROM、EEPROM、フラッシュメモリ等の半導体メモリ類、PLD(Programmable Logic Device)等の論理回路類などを用いることができる。
 また、雑音低減部12aまたは雑音低減部12bを通信ネットワークと接続可能に構成し、上記プログラムコードを、通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(Virtual Private Network)、電話回路網、移動体通信網、衛星通信網等が利用可能である。
 また、通信ネットワークと構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB,電力線搬送、ケーブルTV回線、電話線、ADSL回線等の優先でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、IEEE802.11無線、HDR(High Date Rate)、NFC(Near Field Communication)、DLNA(Digital Living Network Alliance)、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。
 なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。
 このように、本明細書において、手段とは必ずしも物理的手段を意味するものではなく、各手段の機能がソフトウェアによって実現される場合も含む。さらに、1つの手段の機能が2つ以上の物理的手段により実現されても、もしくは2つ以上の手段の機能が1つの物理的手段により実現されても良い。
 なお、本発明は、液晶表示装置について説明したが、これに限らず、ブラウン管(CRT)モニター、プラズマディスプレイ、有機ELディスプレイ等の表示装置でもよい。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
10a、10b・・・液晶表示装置
11・・・受信部
12a、12b・・・雑音低減部
13・・・画像調整部
14・・・タイミング制御部
15・・・ソースドライバ部
16・・・ゲートドライバ部
17・・・表示部
21・・・ノイズ量推定部
22a、22b、22b・・・ノイズ除去部
31・・・対象信号抽出部
32・・・信号抽出部
32a・・・第1の信号抽出部
32b・・・第2の信号抽出部
33・・・電圧値差算出部
33a・・・水平電圧値差算出部
33b・・・垂直電圧値差算出部
34・・・ノイズ量算出部
34a・・・第1のノイズ量算出部
34b・・・第2のノイズ量算出部
35・・・対象ノイズ量算出部
41、41_k・・・遅延部
42、42a、42b、42_1、42_k、42c_k・・・信号選択部
43、43_1、43_k・・・電圧比較部
44、44_1、44_k・・・信号出力部
71_k、71c_k・・・サンプル遅延回路
81_a、81_b、81_k 代表値選択部
101a、101b、101_1、101_2、101_k・・・雑音低減ユニット

Claims (13)

  1. 映像信号から雑音除去の対象となる複数の対象信号を抽出する対象信号抽出部と、
     前記対象信号毎に、前記対象信号から対象信号と同一フレーム内の信号であって所定の画素間隔分離れた信号を抽出する信号抽出部と、
     前記対象信号毎に、前記対象信号と前記離れた信号とに基づいて電圧値差を算出する電圧値差算出部と、
     前記電圧値差の大きさ毎に出現頻度を算出し、該出現頻度が最大となるか所定の閾値を超えるときの前記電圧値差を対象ノイズ量として算出するノイズ量算出部と、
     を備えることを特徴とする信号処理装置。
  2.  前記信号抽出部は、前記対象信号から対象信号と同一フレーム内の信号であって、水平方向に所定の画素間隔分離れた水平信号と、垂直方向に所定の画素間隔分離れた垂直信号と、を抽出し、
     前記電圧値差算出部は、前記対象信号毎に、前記対象信号と水平信号とに基づいて、水平電圧値差を算出し、前記対象信号毎に、前記対象信号と垂直信号とに基づいて、垂直電圧値差を算出し、
    前記ノイズ量算出部は、前記水平電圧値差の大きさ毎に出現頻度を算出し、該出現頻度が最大となるか所定の閾値を超えるときの前記水平電圧値差を水平方向ノイズ量として算出し、前記垂直電圧値差の大きさ毎に出現頻度を算出し、該出現頻度が最大となるか所定の閾値を超えるときの前記垂直電圧値差を垂直方向ノイズ量として算出し、前記水平方向ノイズ量と前記垂直方向ノイズ量とに基づいて対象ノイズ量を算出することを特徴とする請求項1に記載の信号処理装置。
  3.  前記対象信号と該対象信号から所定の間隔だけ前後に離れた2つの信号とを含めた3つの信号の中で、前記対象信号の信号値が最大値となるか判定する輝度値判定部と、
     前記輝度値判定部が最大値と判定した場合、前記各信号値から前記対象ノイズ量を減算するノイズ量加減算部と、
     を備えることを特徴とする請求項1または請求項2に記載の信号処理装置。
  4.  前記対象信号と該対象信号から所定の間隔だけ前後に離れた2つの信号とを含めた3つの信号の中で、前記対象信号の信号値が最小値となるか判定する輝度値判定部と、
     前記輝度値判定部が最小値と判定した場合、前記各信号値に前記対象ノイズ量を加算するノイズ量加減算部と、
     を備えることを特徴とする請求項1または請求項2に記載の信号処理装置。
  5.  前記ノイズ量加減算部は、前記対象信号の信号値と、該対象信号から所定の間隔だけ離れた信号の信号値との差が前記対象ノイズ量と比較して所定の範囲にある場合に、前記入力信号を対象信号として抽出することを特徴とする請求項3または請求項4に記載の信号処理装置。
  6.  縦列接続された1以上の雑音低減ユニットを備え、
     前記雑音低減ユニットは、
     前記入力信号から代表値を選択する信号選択部と、
     前記入力信号に含まれる信号値が前記代表値より大きい場合に、前記信号値から前記対象ノイズ量を減算し、前記入力信号に含まれる信号値が前記代表値より小さい場合に、前記信号値に前記対象ノイズ量を加算する信号出力部と、
     を備えることを特徴とする請求項1または請求項2に記載の信号処理装置。
  7.  前記信号出力部は、前記対象信号の信号値と、該対象信号から所定の間隔だけ離れた信号の信号値との差が前記対象ノイズ量と比較して所定の範囲にある場合に、前記入力信号を対象信号として抽出することを特徴とする請求項6に記載の信号処理装置。
  8.  前記ノイズ量算出部は、所定の間隔毎に前記対象ノイズ量を算出することを特徴とする請求項1から請求項7のいずれか1項に記載の信号処理装置。
  9.  前記ノイズ量算出部は、前記入力信号を受信する毎に、前記対象ノイズ量を算出することを特徴とする請求項1から請求項8のいずれか1項に記載の信号処理装置。
  10.  前記対象信号抽出部は、前記入力信号が所定の電圧値以下の場合に、前記入力信号を対象信号として抽出することを特徴とする請求項1から請求項9のいずれか1項に記載の信号処理装置。
  11.  前記対象信号抽出部は、前記入力信号に含まれる各信号値を基準値として、該基準値と該基準値から所定の画素間隔に相当する分離れた2つの信号値とを含めた3つの信号値の中で、前記基準値が最大値か最小値となる場合に、前記入力信号を対象信号として抽出することを特徴とする請求項1から請求項10のいずれか1項に記載の信号処理装置。
  12.  信号処理装置としてのコンピュータを
     映像信号から雑音除去の対象となる複数の対象信号を抽出する対象信号抽出部と、
     前記対象信号毎に、前記対象信号から対象信号と同一フレーム内の信号であって所定の画素間隔分離れた信号を抽出する信号抽出部と、
     前記対象信号毎に、前記対象信号と前記離れた信号とに基づいて電圧値差を算出する電圧値差算出部と、
     前記電圧値差の大きさ毎に出現頻度を算出し、該出現頻度が最大となるか所定の閾値を超えるときの前記電圧値差を対象ノイズ量として算出するノイズ量算出部として機能させるための信号処理プログラム。
  13.  請求項1に記載の信号処理装置を備えることを特徴とする表示装置。
PCT/JP2011/063565 2010-06-25 2011-06-14 信号処理装置、信号処理プログラム、および表示装置 WO2011162124A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010145079 2010-06-25
JP2010-145079 2010-06-25

Publications (1)

Publication Number Publication Date
WO2011162124A1 true WO2011162124A1 (ja) 2011-12-29

Family

ID=45371318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063565 WO2011162124A1 (ja) 2010-06-25 2011-06-14 信号処理装置、信号処理プログラム、および表示装置

Country Status (1)

Country Link
WO (1) WO2011162124A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196754A (zh) * 2018-12-19 2021-07-30 杜比实验室特许公司 使用自适应稀疏滤波的图像去条带

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05300409A (ja) * 1992-04-16 1993-11-12 Sony Corp ノイズ低減装置
JPH07250264A (ja) * 1994-03-10 1995-09-26 Nippon Hoso Kyokai <Nhk> 雑音低減回路
JPH08201464A (ja) * 1995-01-23 1996-08-09 Nippon Hoso Kyokai <Nhk> テレビジョン映像信号のs/n値検出方法
JP2000341559A (ja) * 1999-06-01 2000-12-08 Sony Corp 画像処理装置および画像処理方法、並びにノイズ量推定装置およびノイズ量推定方法
JP2006186622A (ja) * 2004-12-27 2006-07-13 Toshiba Corp 画像処理装置及び画像処理方法
JP2009003599A (ja) * 2007-06-20 2009-01-08 Sony Corp 計測装置および方法、プログラム、並びに記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05300409A (ja) * 1992-04-16 1993-11-12 Sony Corp ノイズ低減装置
JPH07250264A (ja) * 1994-03-10 1995-09-26 Nippon Hoso Kyokai <Nhk> 雑音低減回路
JPH08201464A (ja) * 1995-01-23 1996-08-09 Nippon Hoso Kyokai <Nhk> テレビジョン映像信号のs/n値検出方法
JP2000341559A (ja) * 1999-06-01 2000-12-08 Sony Corp 画像処理装置および画像処理方法、並びにノイズ量推定装置およびノイズ量推定方法
JP2006186622A (ja) * 2004-12-27 2006-07-13 Toshiba Corp 画像処理装置及び画像処理方法
JP2009003599A (ja) * 2007-06-20 2009-01-08 Sony Corp 計測装置および方法、プログラム、並びに記録媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196754A (zh) * 2018-12-19 2021-07-30 杜比实验室特许公司 使用自适应稀疏滤波的图像去条带
CN113196754B (zh) * 2018-12-19 2023-10-03 杜比实验室特许公司 用于减少条带伪影的方法、以及计算机可读存储介质

Similar Documents

Publication Publication Date Title
KR101009999B1 (ko) 윤곽보정방법, 화상처리장치 및 표시장치
JPH09154044A (ja) 画像表示方法及びその装置
US11062435B2 (en) Rendering information into images
WO2013051628A1 (ja) シーンチェンジ検出装置、表示装置、シーンチェンジ検出方法およびシーンチェンジ検出プログラム
JP6087612B2 (ja) 画像処理装置および画像処理方法
CN114202519A (zh) 视频闪烁确定方法、装置、设备及存储介质
KR20140086632A (ko) 영상 처리 장치 및 그것을 포함하는 표시 장치
JP2003058098A (ja) ホールド型画像表示装置
WO2011162124A1 (ja) 信号処理装置、信号処理プログラム、および表示装置
WO2013069650A1 (ja) ノイズ低減装置、表示装置、ノイズ低減方法及びノイズ低減プログラム
TWI390958B (zh) 影像濾波電路及應用其之影像處理電路及影像處理方法
KR20080018690A (ko) 영상의 선명도 개선 장치 및 방법
WO2012017773A1 (ja) 信号処理装置、信号処理方法、信号処理プログラム、および表示装置
JP2008259097A (ja) 映像信号処理回路および映像表示装置
JP5582920B2 (ja) 画像処理装置
JP2014135528A (ja) 画像処理装置、表示装置、画像処理方法および画像処理プログラム
JP5193976B2 (ja) 映像処理装置及び映像表示装置
KR100774201B1 (ko) 히스토그램을 이용한 콘트라스트 개선 장치 및 그 방법
JP2014150296A (ja) 画像処理装置及び画像処理方法
WO2012161208A1 (ja) ノイズ低減装置、表示装置、ノイズ低減方法およびノイズ低減プログラム
WO2012073865A1 (ja) 画像処理装置、画像処理方法、画像処理プログラム、および表示装置
WO2012133354A1 (ja) 雑音低減装置、表示装置、雑音低減方法および雑音低減プログラム
JP2003101814A (ja) 階調変換方法、階調変換装置、及び画像表示装置
US8687124B2 (en) Signal processing device, integrated circuit, control program, and computer readable recording medium
Kim et al. Image contrast enhancement based on segmentation and tone curve control for LCD TV

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP