WO2012017773A1 - 信号処理装置、信号処理方法、信号処理プログラム、および表示装置 - Google Patents

信号処理装置、信号処理方法、信号処理プログラム、および表示装置 Download PDF

Info

Publication number
WO2012017773A1
WO2012017773A1 PCT/JP2011/065454 JP2011065454W WO2012017773A1 WO 2012017773 A1 WO2012017773 A1 WO 2012017773A1 JP 2011065454 W JP2011065454 W JP 2011065454W WO 2012017773 A1 WO2012017773 A1 WO 2012017773A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
noise
signal
pixel
luminance value
Prior art date
Application number
PCT/JP2011/065454
Other languages
English (en)
French (fr)
Inventor
大治 澤田
合志 清一
沼尾 孝次
崇志 峰
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012017773A1 publication Critical patent/WO2012017773A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/409Edge or detail enhancement; Noise or error suppression
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20004Adaptive image processing
    • G06T2207/20008Globally adaptive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Definitions

  • the present invention relates to a signal processing device, a signal processing method, a signal processing program, and a display device.
  • noise components such as so-called snow noise, white Gaussian noise, and shot noise are mixed in an image signal when an image is captured and transmitted.
  • the broadcast wave of an analog television signal is received and the electric field strength of the broadcast wave is weak, the received signal becomes a video signal with a lot of noise components.
  • analog video recorded in the past is often digitized and rebroadcast, resulting in a video signal with a lot of noise components.
  • a noise reduction circuit detects a noise component of a line portion having no image signal in the vertical blanking period of the video signal, and reduces the noise of the video signal based on the voltage of the noise component.
  • the noise reduction circuit compares the voltage of the image signal with the voltage of the image signal after the median filter is applied to the voltage of the image signal (hereinafter referred to as the filtered voltage).
  • the noise reduction circuit When the voltage of the image signal is larger than the voltage after filtering, the noise reduction circuit outputs a voltage obtained by subtracting the voltage of the noise component from the voltage of the image signal to the outside. On the other hand, when the voltage of the image signal is smaller than the filtered voltage, the noise reduction circuit outputs a voltage obtained by adding the voltage of the noise component to the voltage of the image signal to the outside. When the voltage of the image signal is equal to the filtered voltage, the noise reduction circuit outputs the voltage of the image signal as it is.
  • the noise reduction circuit has a problem that the fineness of the video is lost or the edges are blurred due to the noise reduction processing.
  • the noise reduction circuit performs noise reduction processing to blur edges, but the image quality is greatly improved by eliminating the noise.
  • the noise reduction processing is performed by the noise reduction circuit, thereby blurring the edge and greatly degrading the image quality.
  • the present invention has been made in view of the above problems, and it is an object to provide a signal processing device, a signal processing method, a signal processing program, and a display device that can prevent image quality deterioration due to noise reduction.
  • a signal processing apparatus has been made in view of the above circumstances, and the signal intensity of a target signal extracted from a video signal and used for each pixel is separated from the target signal by a predetermined interval.
  • a determination unit configured to determine whether to reduce noise from the video signal based on a shape of a frequency distribution of values based on a difference from the signal intensity of the comparison signal;
  • the determination unit may determine whether to reduce noise from the target signal based on a frequency ratio in a value based on the predetermined difference in the frequency distribution.
  • the determination unit determines to reduce noise from the target signal when a frequency ratio in a value based on the predetermined difference in the frequency distribution is smaller than a predetermined frequency threshold. However, when the frequency is equal to or greater than the predetermined frequency threshold, it may be determined that noise is not reduced from the target signal.
  • the frequency in the value based on the predetermined difference may be the frequency in the mode value.
  • the determination unit determines whether to reduce noise from the target signal based on a range of signal intensity differences having a frequency higher than a predetermined frequency threshold in the frequency distribution. Also good.
  • the determination unit determines to reduce noise from the target signal when a range of signal intensity having a frequency higher than a predetermined frequency threshold in the frequency distribution is larger than a predetermined threshold. If it is equal to or smaller than a predetermined threshold, it may be determined that noise is not reduced from the target signal.
  • the determination unit may calculate the predetermined frequency threshold based on a frequency of a mode value in the frequency distribution.
  • the comparison unit that determines whether or not the target signal is the maximum value or the minimum value of the target signal and two comparison signals separated by a predetermined interval
  • the comparison A signal intensity difference calculating unit that calculates a value based on a difference between the target signal and the comparison signal and increases a frequency value of the value based on the difference when the unit determines that the value is a maximum value or a minimum value. May be.
  • a signal processing method has been made in view of the above circumstances, and a signal processing method executed by a signal processing device including a determination unit that determines whether or not noise is reduced from a video signal. Because Based on the shape of the frequency distribution of values based on the difference between the signal strength of the target signal extracted from the video signal and used for each pixel and the signal strength of the comparison signal separated from the target signal by a predetermined interval, noise from the video signal A step of determining whether to reduce or not.
  • a signal processing program has been made in view of the above circumstances, and the signal intensity of a target signal extracted from a video signal and used for each pixel in a computer as a signal processing device;
  • a signal processing program for executing a step of determining whether to reduce noise from a video signal based on a shape of a frequency distribution of values based on a difference from a signal intensity of a comparison signal separated from the target signal by a predetermined interval.
  • a display device includes the signal processing device or the signal processing program.
  • an apparatus, a method, a program, and a display apparatus having the above-described apparatus or program for determining whether to perform noise reduction based on a frequency distribution of signal strength between predetermined signals included in a video signal are provided.
  • a first embodiment of the present invention will be described in detail with reference to the drawings.
  • FIG. 1 is a functional block diagram of a display device according to the first embodiment of the present invention.
  • the display device 10a includes a reception unit 11, a noise reduction unit 12a, an image adjustment unit 13, a timing control unit 14, and a liquid crystal display unit 20.
  • the liquid crystal display unit 20 includes a source driver unit 15, a gate driver unit 16, and a liquid crystal panel unit 17.
  • the receiving unit 11 receives high-frequency signals of a plurality of channels of digital television broadcasting supplied from an antenna (not shown).
  • the receiving unit 11 extracts a modulation signal of a desired channel from the received signal, converts the extracted modulation signal into a baseband signal, and converts the converted baseband signal into a digital signal at a predetermined sampling frequency.
  • the receiving unit 11 may receive high-frequency signals of a plurality of channels of analog television broadcast supplied from an antenna (not shown).
  • the receiving unit 11 extracts a digital data MPEG (Moving Picture Experts Group) -2 transport stream (hereinafter referred to as “MPEG-2TS”) signal from the converted digital signal.
  • MPEG-2TS Digital Data MPEG (Moving Picture Experts Group) -2 transport stream
  • the receiving unit 11 extracts a TS (Transport Stream) packet from the MPEG-2 TS signal, and decodes the video signal and audio decoding data.
  • the receiving unit 11 supplies the decoded video signal SIN to the noise reducing unit 12a.
  • the video signal SIN is an interlace signal composed of a luminance signal Y of pixels arranged adjacent to each other in the main scanning direction (horizontal direction and horizontal direction) of the image and color difference signals Cb and Cr.
  • Noise reduction unit 12a receives the supplied video signal S IN from the receiving section 11. Noise reduction unit 12a calculates an image signal S OUT that reduce noise from the video signal S IN by the processing to be described later, and supplies the video signal S OUT to the image adjustment unit 13.
  • the image adjustment unit 13 converts the video signal S OUT supplied from the noise reduction unit 12a into a progressive signal. Further, the image adjustment unit 13 performs a scaling process for adjusting the number of pixels of the converted progressive signal in accordance with the resolution of the display unit. The image adjustment unit 13 converts the video signal after the scaling process into an RGB signal (Red, Green, Blue color video signal). The image adjustment unit 13 supplies RGB signals to the timing control unit 14 and the source driver unit 15 in the liquid crystal display unit 20.
  • RGB signal Red, Green, Blue color video signal
  • the image adjusting unit 13 does not convert the interlace signal to the progressive signal. In that case, the image adjusting unit 13 performs scaling processing to tailor the number of pixels of the video signal S OUT to a display unit of the resolution.
  • the timing control unit 14 generates a clock signal or the like for distributing video data supplied to the liquid crystal panel unit 17 to pixels on a plane.
  • the timing control unit 14 supplies the generated clock signal to the source driver unit 15 and the gate driver unit 16 in the liquid crystal display unit 20.
  • FIG. 2 is a functional block diagram of the liquid crystal display unit 20 in the first embodiment.
  • the liquid crystal display unit 20 is an active matrix display device.
  • the liquid crystal display unit 20 drives the liquid crystal panel unit 17 having the pixels PIX arranged in a matrix, the gate wiring 18, the source line 19, the gate driver unit 16 that drives the gate line 18, and the source line 19.
  • the two sub-pixels for gradation display that constitute the same pixel PIX of the liquid crystal panel unit 17 are connected to the gate wiring 18 and the data wiring 19 through TFTs that are respective switching elements.
  • the source driver 15 generates a gradation voltage for liquid crystal driving from the RGB signal supplied from the image adjustment unit 13.
  • the source driver unit 15 holds the gradation voltage for each source line 19 by an internal hold circuit.
  • the source driver unit 15 When the source driver unit 15 receives the clock signal supplied from the timing control unit 14, the source driver unit 15 supplies the gradation voltage (source signal) to the liquid crystal panel in synchronization with the clock signal with respect to the vertical arrangement of the screen.
  • the pixel 17 is supplied to the pixel PIX via a source line 19 of each TFT (Thin Film Transistor, thin film transistor) of the unit 17 and each TFT.
  • the gate driver unit 16 receives the clock signal supplied from the timing control unit 14.
  • the gate driver unit 16 supplies a predetermined scanning signal to the gates of the respective TFTs in synchronization with the clock signal for one row of the sub-pixels on the screen through the TFT gate lines 18 of the liquid crystal panel unit 17.
  • the liquid crystal panel unit 17 includes an array substrate, a counter substrate, and a liquid crystal.
  • a pixel electrode connected to the TFT and the drain electrode of the TFT and a counter electrode (consisting of a strip electrode on the counter substrate) are arranged for each intersection of the gate line and the data line on the array substrate.
  • a pixel, particularly a sub-pixel is configured.
  • sealed liquid crystal exists between the pixel electrode and the counter electrode.
  • the liquid crystal panel unit 17 has three sub-pixels corresponding to the three primary colors RGB (Red, Green, Blue) for each pixel.
  • the liquid crystal panel unit 17 has one TFT for each sub-pixel.
  • the gate electrode of the TFT receives the gate signal supplied from the gate driver unit 16, and when the gate signal is at a high level, for example, the TFT is selected and turned on.
  • the TFT source electrode receives the source signal supplied from the source driver 15, so that the gradation voltage is applied to the pixel electrode connected to the TFT drain electrode.
  • the orientation of the liquid crystal changes according to the gradation voltage, thereby changing the light transmittance of the liquid crystal.
  • the gradation voltage is held in the liquid crystal capacitor formed by the liquid crystal portion between the pixel electrode connected to the drain electrode of the TFT and the counter electrode, and the alignment of the liquid crystal is maintained. Further, the orientation of the liquid crystal is maintained until the next signal arrives at the source electrode, and as a result, the light transmittance of the liquid crystal is also maintained.
  • the liquid crystal panel unit 17 displays the supplied video data in gradation.
  • the transmissive liquid crystal panel has been described here, the present invention is not limited to this, and a reflective liquid crystal panel may be used.
  • FIG. 3 is a functional block diagram of the noise reduction unit 12a in the first embodiment.
  • the noise reduction unit 12a includes a temporary storage unit 21, a noise amount calculation unit 30a, a comparison pixel extraction unit 40, and a noise reduction unit 50.
  • Temporary storage unit 21 temporarily stores a predetermined number of frames a video signal S IN supplied from the receiving unit 11.
  • the noise amount calculation unit 30a includes a horizontal noise amount detection unit 31a, a vertical noise amount detection unit 32a, and an average noise amount calculation unit 33.
  • the horizontal noise amount detection unit 31a reads the image of the frame immediately before the frame including the target pixel that is the target of noise reduction from the temporary storage unit 21.
  • the horizontal noise amount detection unit 31a calculates a horizontal noise amount representing the amount of a noise component superimposed on pixel signals arranged in the horizontal direction in the frame by a method to be described later, and uses the calculated horizontal noise amount NH as an average noise.
  • the amount is supplied to the amount calculation unit 33 and the horizontal noise reduction unit 52 in the noise reduction unit 50.
  • the vertical noise amount detection unit 32a reads the image of the frame immediately before the frame including the target pixel that is the target of noise reduction from the temporary storage unit 21.
  • Vertical noise amount detector 32a calculates a vertical noise amount representing the amount of noise components superimposed on the pixel signals arranged in the vertical direction in the frame by the method described below, the calculated vertical noise amount N V Average noise This is supplied to the quantity calculation unit 33 and the vertical noise reduction unit 53 in the noise reduction unit 50.
  • the average noise amount calculation section 33 the average value of the horizontal noise amount N H supplied from the horizontal noise amount detector 31a, supplied from the vertical noise amount detector 32a and the vertical noise amount N V (N H + N V ) / 2 is calculated as the inter-frame noise amount N F representing the amount of noise components superimposed on the pixel signal between frames.
  • the average noise amount calculating unit 33 supplies the calculated noise amount N F between the frames to the inter-frame noise reduction unit 51 in the noise reduction unit 50.
  • the comparison pixel extraction unit 40 includes an inter-frame comparison pixel extraction unit 41, a horizontal direction comparison pixel extraction unit 44, and a vertical direction comparison pixel extraction unit 47.
  • the inter-frame comparison pixel extraction unit 41 includes a previous frame pixel extraction unit 42 and a rear frame pixel extraction unit 43.
  • the previous frame pixel extraction unit 42 reads an image of a frame one frame before the frame including the target pixel that is the target of noise reduction from the temporary storage unit 21.
  • the previous frame pixel extraction unit 42 reads the luminance value of the pixel existing at the same position as each target pixel in the frame as the luminance value Y t-1 of the previous frame from the read image of the previous frame.
  • the read luminance value Y t ⁇ 1 is supplied to the inter - frame noise reduction unit 51.
  • the post-frame pixel extraction unit 43 reads an image of a frame one frame after the frame including the target pixel that is the target of noise reduction from the temporary storage unit 21.
  • the post-frame pixel extraction unit 43 calculates the luminance value Y t + 1 (t is a positive value) after one frame from the read image of the frame after one frame, and the luminance value of the pixel existing at the same position as each target pixel in the frame.
  • the read luminance value Y t + 1 is supplied to the inter-frame noise reduction unit 51.
  • the horizontal comparison pixel extraction unit 44 includes a right pixel extraction unit 45 and a left pixel extraction unit 46.
  • the right pixel extraction unit 45 reads an image of a frame including the target pixel that is the target of noise reduction from the temporary storage unit 21.
  • the right pixel extraction unit 45 reads the luminance value of the pixel located right next to each target pixel from the read image as the right luminance value Y i + 1 (i is a positive integer), and reads the read luminance.
  • the value Y i + 1 is supplied to the horizontal noise reduction unit 52.
  • the left pixel extraction unit 46 reads out an image of a frame including the target pixel that is the target of noise reduction from the temporary storage unit 21.
  • the left pixel extraction unit 46 reads out the luminance value of the pixel located on the left side of each target pixel from the read image as the luminance value Y i-1 on the left side, and reads the read luminance value Y i-1. Is supplied to the horizontal noise reduction unit 52.
  • the vertical comparison pixel extraction unit 47 includes an upper pixel extraction unit 48 and a lower pixel extraction unit 49.
  • the upper pixel extraction unit 48 reads out an image of a frame including the target pixel that is the target of noise reduction from the temporary storage unit 21.
  • the upper pixel extraction unit 48 reads, from the read image, the luminance value of a pixel located one pixel above the target pixel toward the image as an upper adjacent luminance value Y j-1 (j is a positive integer),
  • the read luminance value Y j ⁇ 1 is supplied to the vertical noise reduction unit 53.
  • the lower pixel extraction unit 49 reads an image of a frame including the target pixel that is a target for noise reduction from the temporary storage unit 21.
  • the lower pixel extraction unit 49 reads the luminance value of a pixel located one pixel below the target pixel from the read image as a lower adjacent luminance value Y j + 1 , and reads the read luminance value Y j + 1 in the vertical direction It supplies to the noise reduction part 53.
  • the noise reduction unit 50 includes an inter-frame noise reduction unit 51, a horizontal noise reduction unit 52, and a vertical noise reduction unit 53.
  • the inter-frame noise reduction unit 51 reads the image data of the frame including the target pixel that is the target of noise reduction from the temporary storage unit 21.
  • the inter-frame noise reduction unit 51 applies the luminance value Y t of each pixel, the luminance value Y t-1 of the previous frame of each pixel, The luminance value Y t + 1 after one frame of the pixel is compared.
  • the inter-frame noise reduction unit 51 calculates the inter-frame noise from the luminance value of the pixel.
  • the amount of noise NF is subtracted.
  • the inter-frame noise reduction unit 51 sets the luminance value of the pixel to adding the amount of noise N F between frames.
  • the inter-frame noise reduction unit 51 determines the luminance value of the pixel. Do not change. After performing the above processing on all the pixels, the inter-frame noise reduction unit 51 supplies the processed image data to the horizontal noise reduction unit 52.
  • FIG. 4 is a diagram for explaining the processing of the interframe noise reduction unit.
  • the luminance value Y t-1 of the pixel at the upper left corner in the image of the t ⁇ 1 frame the luminance value Y t of the pixel at the upper left corner of the image of the t frame, and the image of the t + 1 frame.
  • FIG. 5 is a diagram for explaining processing of the inter-frame noise reduction unit when the luminance value of the target pixel of the t-th frame is the minimum value.
  • an example of a luminance signal in which noise is superimposed by transmission in the case of Y t ⁇ 1 > Y t ⁇ Y t + 1 (Y t is the minimum value) is shown by a solid line, and before the luminance signal is transmitted
  • the original luminance signal on which no noise is superimposed is indicated by a broken line.
  • signal before the noise is removed from the luminance value Y t is shown on the left side
  • the signal after the noise is removed from the luminance value Y t is shown on the right side.
  • FIG. 6 is a diagram for explaining processing of the inter-frame noise reduction unit when the luminance value of the target pixel in the t-th frame is the maximum value.
  • an example of a luminance signal in which noise is superimposed by transmission in the case of Y t-1 ⁇ Y t > Y t + 1 (Y t is the maximum value) is indicated by a solid line, and the luminance signal is transmitted.
  • the original luminance signal on which no noise is superimposed is indicated by a broken line.
  • signal before the noise is removed from the luminance value Y t is shown on the left side
  • the signal after the noise is removed from the luminance value Y t is shown on the right side.
  • the inter-frame noise reduction unit 51 subtracts the inter-frame noise amount N F from Y t so that the luminance value Y t is indicated by a broken line. It is possible to approximate the luminance value of the original luminance signal on which no noise is superimposed.
  • the horizontal noise reduction unit 52 for all the pixels of the image data supplied from the inter-frame noise reduction unit 51, the luminance value Y i of each pixel and the luminance value Y i + 1 on the right side of each pixel, Then, the luminance value Y i ⁇ 1 on the left side of each pixel is compared.
  • the horizontal noise reduction unit 52 calculates the horizontal noise from the luminance value of the pixel. Reduce the amount NH .
  • the horizontal noise reduction unit 52 determines the luminance value Y of that pixel. The amount of horizontal noise NH is added to i . After performing the above processing on all the pixels, the horizontal noise reduction unit 52 supplies the processed image data to the vertical noise reduction unit 53.
  • FIG. 7 is a diagram for explaining the processing of the horizontal noise reduction unit 52.
  • FIG. 8 is a diagram for explaining the processing of the horizontal noise reduction unit when the luminance value of the target pixel is the minimum value.
  • an example of a luminance signal in which noise is superimposed by transmission when Y i-1 > Y i ⁇ Y i + 1 (Y i is the minimum value) is indicated by a solid line, and before the luminance signal is transmitted.
  • the original luminance signal on which no noise is superimposed is indicated by a broken line.
  • the signal before the noise is removed from the luminance value Y i is shown on the left side
  • the signal after the noise is removed from the luminance value Y i is shown on the right side.
  • the horizontal noise reduction unit 52 adds the horizontal noise amount NH to the luminance value Y i , thereby obtaining the luminance value Y It is possible to bring i closer to the luminance value of the original luminance signal on which the noise indicated by the broken line is not superimposed.
  • FIG. 9 is a diagram for explaining the processing of the horizontal noise reduction unit when the luminance value of the target pixel is the maximum value.
  • an example of a luminance signal in which noise is superimposed by transmission in the case of Y i-1 ⁇ Y i > Y i + 1 (Y i is the maximum value) is shown by a solid line, and before the luminance signal is transmitted
  • the original luminance signal on which no noise is superimposed is indicated by a broken line.
  • the signal before the noise is removed from the luminance value Y i is shown on the left side
  • the signal after the noise is removed from the luminance value Y i is shown on the right side.
  • the noise horizontal noise reduction unit 52 by adding the horizontal noise amount N H to Y i, indicated the luminance value Y i by a broken line Can be brought close to the luminance value of the original luminance signal on which no is superimposed.
  • the vertical noise reduction unit 53 and each pixel's luminance value Y j and the luminance value Y j ⁇ 1 is compared with the luminance value Y j + 1 below the pixel.
  • the vertical noise reduction unit 53 calculates the vertical noise from the luminance value of the pixel. reduce the amount N V.
  • the vertical noise reduction unit 53 determines the luminance value Y of that pixel. adding the horizontal noise amount N V to j.
  • FIG. 10 is a diagram for explaining the processing of the vertical noise reduction unit 53.
  • the pixels in the same row, row brightness value Y j-1 of the j-1 th pixel row and the luminance value Y j of the j-th pixel row Is the luminance value Y j + 1 of the (j + 1) th pixel.
  • FIG. 11 is a diagram for explaining processing of the vertical noise reduction unit when the luminance value of the target pixel is the minimum value.
  • an example of a luminance signal in which noise is superimposed by transmission in the case of Y j ⁇ 1 > Y j ⁇ Y j + 1 (Y j is the minimum value) is shown by a solid line, and before the luminance signal is transmitted The original luminance signal on which no noise is superimposed is indicated by a broken line.
  • the signal before the noise is removed from the luminance value Y j is shown on the left side
  • the signal after the noise is removed from the luminance value Y j is shown on the right side.
  • FIG. 12 is a diagram for explaining the processing of the vertical noise reduction unit when the luminance value of the target pixel is the maximum value.
  • an example of a luminance signal in which noise is superimposed by transmission in the case of Y j ⁇ 1 ⁇ Y j > Y j + 1 (Y j is the maximum value) is shown by a solid line, and before the luminance signal is transmitted The original luminance signal on which no noise is superimposed is indicated by a broken line.
  • the signal before the noise is removed from the luminance value Y j is shown on the left side
  • the signal after the noise is removed from the luminance value Y j is shown on the right side.
  • the luminance value Y j is larger than the luminance value Y j-1 and the luminance values Y j + 1, vertical noise reduction unit 53, by adding the horizontal noise amount N V the luminance values Y j, the luminance value Y j can be made close to the luminance value of the original luminance signal on which the noise indicated by the broken line is not superimposed.
  • FIG. 13 is a functional block diagram of the horizontal noise amount detection unit 31a in the first embodiment.
  • the horizontal noise amount detection unit 31a includes a target luminance reading unit (target signal extraction unit) 60, a horizontal comparison luminance reading unit (comparison signal extraction unit) 61, a comparison unit 62, and a luminance value difference calculation unit (signal intensity difference calculation).
  • Unit) 63 a storage unit 64, a mode value extraction unit 65a, a horizontal noise determination unit (determination unit) 66a, and a horizontal noise amount calculation unit 69a.
  • the target luminance reading unit (target signal extracting unit) 60 reads the image data of one frame before from the image of the frame targeted for noise reduction from the temporary storage unit 21, and calculates the luminance value Y i of each pixel of the read image data. It supplies to the comparison part 62.
  • the horizontal comparison luminance reading unit (comparison signal extraction unit) 61 reads the image data of the previous frame from the image of the frame targeted for noise reduction from the temporary storage unit 21, and the pixel adjacent to the right of each pixel of the read image data. Luminance value Y i + 1 and the luminance value Y i ⁇ 1 of the pixel adjacent to the left of each pixel are supplied to the comparison unit 62.
  • the comparison unit 62 compares the luminance value Y i supplied from the target luminance reading unit (target signal extraction unit) 60 and the right adjacent pixel of each pixel supplied from the horizontal comparison luminance reading unit (comparison signal extraction unit) 61.
  • the luminance value Y i + 1 is compared with the luminance value Y i ⁇ 1 of the pixel adjacent to the left of each pixel.
  • the comparison unit 62 calculates a luminance value difference and the luminance value Yi, the luminance value Y i + 1, and the luminance value Y i ⁇ 1 are supplied to the luminance value difference calculation unit (signal intensity difference calculation unit) 63.
  • FIG. 14 is a diagram for explaining the processing of the horizontal noise amount detection unit.
  • an image of one frame is shown.
  • the target pixel, the pixel adjacent to the left of the target pixel (comparison pixel 1), and the right adjacent to the target pixel are shown.
  • a pixel (comparison pixel 2) is shown.
  • a luminance signal including the luminance value Yi of the target pixel, the luminance value Y i-1 of the comparison pixel 1, and the luminance value Y i + 1 of the comparison pixel 2 is shown by a solid line,
  • the luminance signal when no noise is superimposed is indicated by a broken line.
  • the luminance value Y i of the target pixel is the minimum value among the luminance values Y i + 1 of the luminance values Y i-1 and the comparison pixel 2 of the luminance values Y i and the comparison pixel 1 of the target pixel It has become.
  • the comparison unit 62 generates a luminance value difference calculation unit (signal intensity difference) by instructing the calculation of the luminance value difference, the luminance value Y i , the luminance value Y i + 1, and the luminance value Y i ⁇ 1.
  • (Calculation unit) 63 the luminance value difference calculation unit
  • the comparison unit 62 completes the comparison of the luminance value for one frame when the comparison between the luminance value in the pixel and both pixels adjacent in the horizontal direction of the pixel is completed. A signal to that effect is supplied to the mode value extraction unit 65a.
  • the luminance value difference calculation unit (signal intensity difference calculation unit) 63 When the luminance value difference calculation unit (signal intensity difference calculation unit) 63 receives a signal to calculate the luminance value difference from the comparison unit 62, the luminance value Y i of the target pixel and the luminance of the pixel adjacent to the left of the target pixel
  • the average value ⁇ Y i (bar) of the absolute value of the difference between the value Y i-1 and the absolute value of the difference between the luminance value Y i of the target pixel and the luminance value Y i + 1 of the pixel adjacent to the right of the target pixel (below) Referred to as the average of luminance value differences in the horizontal direction) is calculated by the following equation (1).
  • ⁇ Y i (bar) means the average of ⁇ Y i .
  • FIG. 15 is a diagram illustrating an example of the table T1 in which the average of the horizontal luminance value differences stored in the storage unit 64 is associated with the appearance frequency.
  • the average of the luminance value differences in the horizontal direction is associated with the frequency appearance.
  • the luminance value difference calculating unit (signal intensity difference calculating unit) 63 determines the application frequency of the table T1 in the storage unit 64 corresponding to the calculated average ⁇ Y i (bar) of the luminance value difference in the horizontal direction. Increase the number by one.
  • the most frequent extraction unit 65a When receiving the signal indicating that the comparison for one frame has been completed, the most frequent extraction unit 65a obtains the average of the luminance value differences in the horizontal direction having the highest appearance frequency from the table T1 stored in the storage unit 64 (that is, the most frequent). Value) m H is extracted. For example, in the example of the table T1 illustrated in FIG. 15, the most frequent extraction unit 65a extracts an average 6 of the horizontal luminance value differences having the highest appearance frequency.
  • FIG. 16 is a diagram showing an example of an average frequency distribution of luminance value differences in the horizontal direction.
  • the horizontal axis is the difference in luminance value in the horizontal direction, and the vertical axis is the frequency of appearance.
  • the average (mode value) of luminance value differences in the horizontal direction with the highest appearance frequency is 6.
  • the luminance value difference calculation unit (signal intensity difference calculation unit) 63 extracts 6 as the mode value.
  • the most frequently extractor 65a supplies the extracted mode value m H horizontal noise amount calculation unit 69a. Further, the most frequent extraction unit 65a reads the appearance frequency corresponding to the extracted mode value (hereinafter referred to as the appearance frequency in the mode value) from the table T1 stored in the storage unit 64, and the read mode value. in supplying frequency Fmax H to mode value ratio calculating section 67a of the horizontal noise determination unit (determination unit) in 66a.
  • the horizontal noise determination unit (determination unit) 66a includes a mode value ratio calculation unit 67a and a horizontal coefficient calculation unit 68a.
  • the mode value ratio calculation unit 67a reads the appearance frequency corresponding to the average of the luminance value differences in a predetermined range (for example, the average of the luminance value differences is 1 to 32) in the table T1 stored in the storage unit 64. The sum of the read appearance frequencies is calculated as the total detected pixel number Fall H.
  • the mode value ratio calculation unit 67a averages the luminance value differences in a predetermined range (for example, the average luminance value difference is 1 to 32) in the table T1 stored in the storage unit 64.
  • the mode value calculating unit 67a is not limited to this, and the mode value ratio calculating unit 67a appears corresponding to the average of the luminance value differences in all ranges of the table T1 stored in the storage unit 64.
  • the frequency may be read out.
  • the mode value ratio calculation unit 67a calculates the ratio ⁇ H [%] of the mode frequency appearance frequency Fmax H to the calculated total number of detected pixels Fall H by the following equation (2).
  • ⁇ H (Fmax H / Fall H ) ⁇ 100
  • Mode value ratio calculating unit 67a supplies the percentage alpha H of the appearance frequency of the mode to the total detected number of pixels calculated in the horizontal coefficient calculation section 68a.
  • the horizontal coefficient calculation unit 68a when the ratio alpha H of the appearance frequency of the mode to total all the detection pixels is equal to or less than a predetermined value, it is determined that the removal of noise, whether to remove horizontal noise the the 1 horizontal coefficient k H shown. For example, when 10 / ⁇ H is 0.5 or more, the horizontal coefficient calculation unit 68a determines that noise is removed, and sets the horizontal coefficient k H to 1. That is, the horizontal coefficient calculation section 68a judges that the percentage alpha H of the appearance frequency of the mode to total all detection pixels in the case of 20 [%] or less, to remove noise.
  • the horizontal coefficient computing unit 68a when the ratio alpha H of the appearance frequency of the mode to total all detection pixels exceeds a predetermined value, determines not to remove noise, and 0 horizontal coefficient k H To do. For example, when 10 / ⁇ H is smaller than 0.5, the horizontal coefficient calculating unit 68a determines that the noise is not removed, and sets the horizontal coefficient k H to 0. That is, the horizontal coefficient calculation section 68a judges that when the percentage alpha H of the appearance frequency of the mode to total all detection pixels is more than 20 [%] is not remove noise.
  • Horizontal coefficient calculation unit 68a supplies the calculated horizontal coefficient k H horizontal noise amount calculation unit 69a.
  • the horizontal coefficient calculating unit 68a changes all the appearance frequencies to 0 in order to reset the appearance frequencies of the table T1 stored in the storage unit 64.
  • the process of determining whether or not the horizontal coefficient calculation unit 68a removes noise has been described.
  • the present invention is not limited to this, and the horizontal coefficient calculation unit 68a does not determine whether or not noise is removed.
  • Horizontal noise amount calculating unit 69a includes a m H supplied from the mode value extracting unit 65a, by multiplying the horizontal coefficient k H supplied from the horizontal coefficient calculation section 68a, the following formula horizontal noise amount N H (3 ).
  • N H k H ⁇ m H (3)
  • the horizontal noise amount calculation unit 69 a supplies the calculated horizontal noise amount NH to the average noise amount calculation unit 33 and the horizontal noise reduction unit 52.
  • FIG. 17 is a functional block diagram of the vertical noise amount detection unit 32a in the first embodiment.
  • the vertical noise amount detection unit 32a includes a target luminance reading unit (target signal extraction unit) 70, a vertical comparison luminance reading unit (comparison signal extraction unit) 71, a comparison unit 72, and a luminance value difference calculation unit (signal intensity difference calculation). Section) 73, storage section 74, mode value extraction section 75a, vertical noise determination section (determination section) 76a, and vertical noise amount calculation section 79a.
  • the target luminance reading unit (target signal extracting unit) 70 reads the image data one frame before from the image of the frame that is the target of noise reduction from the temporary storage unit 21, and calculates the luminance value Y j of each pixel of the read image data. It supplies to the comparison part 72.
  • the vertical comparison luminance reading unit (comparison signal extraction unit) 71 reads image data one frame before from the image of the frame that is the target of noise reduction from the temporary storage unit 21, and the adjacent pixel above each pixel of the read image data Luminance value Y j ⁇ 1 and the luminance value Y j + 1 of the pixel adjacent to each pixel are supplied to the comparison unit 72.
  • the comparison unit 72 compares the luminance value Y j supplied from the target luminance reading unit (target signal extraction unit) 70 and the pixel adjacent to each pixel supplied from the vertical comparison luminance reading unit (comparison signal extraction unit) 71.
  • the luminance value Y j ⁇ 1 is compared with the luminance value Y j + 1 of the pixel adjacent to each pixel.
  • the comparison unit 72 instructs the calculation of the luminance value difference, the luminance value Y j, and the luminance value Y j ⁇ 1.
  • the luminance value Y j + 1 are supplied to the luminance value difference calculation unit (signal intensity difference calculation unit) 73.
  • FIG. 18 is a diagram for explaining processing of the vertical noise amount detection unit.
  • an image of one frame is shown.
  • a target pixel, a pixel adjacent to the target pixel (comparison pixel 1), and a pixel adjacent to the target pixel are displayed.
  • a pixel (comparison pixel 2) is shown.
  • a luminance signal including the luminance value Y i of the target pixel, the luminance value Y j ⁇ 1 of the comparison pixel 1 and the luminance value Y j + 1 of the comparison pixel 2 is indicated by a solid line.
  • the luminance signal when noise is not superimposed on the broken line is indicated by a broken line.
  • the luminance value Y j of the target pixel is the minimum value among the luminance values Y j + 1 of the luminance values Y j-1 and the comparison pixel 2 of the luminance values Y j and the comparison pixel 1 of the target pixel It has become.
  • the comparison unit 72 generates a luminance value difference calculation unit (signal intensity difference calculation unit) from the signal indicating that the luminance value difference is calculated, the luminance value Y j , the luminance value Y j ⁇ 1, and the luminance value Y j + 1. ) 73.
  • the comparison unit 72 completes the comparison of the luminance value for one frame when the comparison between the luminance value in the pixel and both pixels adjacent in the horizontal direction of the pixel is completed in all the pixels in one frame. A signal to that effect is supplied to the mode value extraction unit 75a.
  • the luminance value difference calculation unit (signal intensity difference calculation unit) 73 When the luminance value difference calculation unit (signal intensity difference calculation unit) 73 receives a signal to calculate the luminance value difference from the comparison unit 72, the luminance value Yj of the target pixel and the luminance of the pixel adjacent to the target pixel.
  • Average value ⁇ Y j (bar) of the absolute value of the difference between the value Y j ⁇ 1 and the absolute value of the difference between the luminance value Y j of the target pixel and the luminance value Y j + 1 of the pixel adjacent to the target pixel Referred to as the average of luminance value differences in the vertical direction) is calculated by the following equation (4).
  • ⁇ Y j (bar) means the average of ⁇ Y j .
  • FIG. 19 is a diagram illustrating an example of the table T2 in which the average of the luminance value differences in the vertical direction stored in the storage unit 74 and the appearance frequency thereof are associated with each other.
  • the average of the luminance value differences in the vertical direction is associated with the frequency appearance.
  • the luminance value difference calculation unit (signal intensity difference calculation unit) 73 sets the number of application frequencies in the table T2 in the storage unit 74 corresponding to the calculated average ⁇ Y j (bar) of luminance value differences to 1. increase.
  • the most frequent extraction unit 75a When receiving the signal indicating that the comparison for one frame has been completed, the most frequent extraction unit 75a averages the luminance value difference in the vertical direction with the highest appearance frequency from the table T2 stored in the storage unit 74 (that is, the most frequent). to extract the value) m V. For example, in the example of the table T2 illustrated in FIG. 19, the most frequent extraction unit 75a extracts the average 4 of the luminance value differences in the horizontal direction with the highest appearance frequency.
  • FIG. 20 is a diagram illustrating an example of an average frequency distribution of luminance value differences in the vertical direction.
  • the horizontal axis is the difference in luminance value in the vertical direction, and the vertical axis is the frequency of appearance.
  • the average (mode value) of the luminance value differences in the vertical direction with the highest appearance frequency is 4.
  • the luminance value difference calculation unit (signal intensity difference calculation unit) 73 extracts 4 as the mode value.
  • the most frequently extractor 75a supplies the extracted mode value m V to horizontal noise amount calculation unit 79a.
  • the most frequent extraction unit 75a reads out the appearance frequency corresponding to the extracted mode value from the table T2 stored in the storage unit 74, and determines the appearance frequency Fmax V in the read mode value as the vertical noise determination unit (determination). Part) to the mode value ratio calculation unit 77a in 76a.
  • the vertical noise determination unit (determination unit) 76a includes a mode value ratio calculation unit 77a and a vertical coefficient calculation unit 78a.
  • the mode value ratio calculation unit 77a reads the appearance frequency corresponding to the average of the luminance value differences in a predetermined range (for example, the average luminance value difference is 1 to 32) of the table T2 stored in the storage unit 74. Then, the sum of the read appearance frequencies is calculated as the total number of detected pixels Fall V.
  • the mode value ratio calculation unit 77a averages the luminance value differences in a predetermined range (for example, the average luminance value difference is 1 to 32) in the table T2 stored in the storage unit 74.
  • the mode value calculating unit 77a is not limited to this, and the mode value ratio calculating unit 77a generates an appearance corresponding to the average of the luminance value differences of all ranges of the table T2 stored in the storage unit 74.
  • the frequency may be read out.
  • the mode value ratio calculation unit 77a calculates the ratio ⁇ V [%] of the appearance frequency Fmax V of the mode value in the calculated total number of detected pixels Fall V by the following equation (5).
  • ⁇ V (Fmax V / Fall V ) ⁇ 100 (5)
  • Mode value ratio calculating unit 77a supplies the percentage alpha H of the appearance frequency of the mode to the total detected number of pixels calculated in the horizontal coefficient calculation section 68a.
  • the vertical coefficient calculation unit 78a determines to remove noise, to remove vertical noise either one vertical coefficient k V showing the.
  • the vertical coefficient calculation section 78a in the case 10 / alpha V is greater than or equal 0.5 it is determined that the removal of noise, and 1 vertical coefficient k V. That is, the vertical coefficient calculation unit 78a determines that noise is removed when the ratio ⁇ V of the appearance frequency of the mode value in the total number of detected pixels is 20% or less.
  • the vertical coefficient calculation unit 78 a determines that noise is not removed and sets the vertical coefficient k V to 0. To do. For example, the vertical coefficient calculation section 78a, when 10 / alpha V is smaller than 0.5, the vertical coefficient calculation section 78a, and determines not to remove noise, the vertical coefficient k V to 0. That is, the vertical coefficient calculation section 78a judges that when the percentage alpha V of the appearance frequency of the mode to total all detection pixels is more than 20 [%] is not remove noise.
  • Vertical coefficient calculation section 78a supplies the calculated vertical coefficient k V Vertical noise amount calculation unit 79a. Further, the vertical coefficient calculation unit 78a changes all the appearance frequencies to 0 in order to reset the appearance frequencies of the table T2 stored in the storage unit 74.
  • the process of determining whether or not the vertical coefficient calculation unit 78a removes noise has been described.
  • the present invention is not limited to this, and the vertical coefficient calculation unit 78a does not determine whether or not to remove noise.
  • Vertical noise amount calculating section 79a and m H supplied from the mode value extracting unit 75a, by multiplying the vertical coefficient k V supplied from the vertical coefficient calculation section 78a, the following formula horizontal noise amount N V (6 ).
  • N V k V ⁇ m V (6)
  • Vertical noise amount calculating unit 79a supplies the calculated vertical noise amount N V to average the noise amount calculation section 33 and the vertical direction noise reduction unit 53.
  • FIG. 21 is a flowchart showing a processing flow of the entire display device.
  • the receiving unit 11 receives radio waves from an antenna.
  • the receiving unit 11 converts the received radio wave into a video signal (step S101).
  • the receiving unit 11 supplies the converted video signal to the noise reducing unit 12a.
  • the noise reduction unit 12a reduces noise in the luminance signal included in the video signal (step S102).
  • the noise reduction unit 12 a supplies the luminance signal with reduced noise to the image adjustment unit 13.
  • the image adjustment unit 13 receives the luminance signal with reduced noise supplied from the noise reduction unit 12a.
  • the image adjustment unit 13 performs I / P conversion on the luminance signal with reduced noise (step S103).
  • the image adjustment unit 13 adjusts the number of pixels of the I / P converted signal.
  • the image adjustment unit 13 supplies the adjusted signal to the timing control unit 14 and the source drive 15.
  • the timing control unit 14 receives the adjusted signal supplied from the image adjustment unit 13.
  • the timing control unit 14 generates a clock signal for distributing the adjusted signal to the pixels on the plane (step S104).
  • the timing control unit 14 supplies the generated clock signal to the source driver unit 15 and the gate driver unit 16.
  • the source driver 15 generates a gradation voltage for driving the liquid crystal from the adjusted signal (step S105).
  • the source driver unit 15 holds the gradation voltage for each source line by an internal hold circuit.
  • the gate driver unit 16 supplies a predetermined voltage to the TFT gate line of the display unit 17 (step S106).
  • the source driver unit 15 supplies the gradation voltage to the TFT source line of the display unit 17 in synchronization with the clock signal with respect to the vertical arrangement of the screen (step S107).
  • FIG. 22 is a flowchart showing the flow of the noise reduction process in step S102 of FIG.
  • the horizontal noise amount detection unit 31a calculates a horizontal noise amount and supplies it to the average noise amount calculation unit 33 and the horizontal noise reduction unit 52 (step S201).
  • the vertical noise amount detection unit 32a calculates the vertical noise amount, and supplies it to the average noise amount calculation unit 33 and the vertical noise reduction unit 53 (step S202).
  • the average noise amount calculation unit 33 calculates the average of the horizontal noise amount supplied from the horizontal noise amount detection unit 31a and the vertical noise amount supplied from the vertical noise amount detection unit 32a as an interframe noise amount, The calculated inter-frame noise amount is supplied to the inter-frame noise amount reducing unit 51 (step S203).
  • the inter-frame noise reduction unit 51 removes the inter-frame noise by performing the processing from step S204 to step S209 shown below.
  • the inter-frame noise reduction unit 51 reads the luminance value of the target pixel from the temporary storage unit 21, and determines the luminance value of the target pixel, the target pixel supplied from the inter-frame comparison pixel extraction unit 41, and the position in the frame.
  • the luminance values of the frames before and after the frame including the target pixel are the same (step 204).
  • the inter-frame noise reduction unit 51 is supplied from the average noise amount calculation unit 33 to the luminance value of the target pixel. adding the amount of noise N F between frames (step S205).
  • the interframe noise reduction unit 51 proceeds to the process of step S206.
  • the interframe noise reduction unit 51 determines from the average noise amount calculation unit 33 based on the luminance value of the target pixel. subtracting the noise amount N F between the supplied frame (step S207).
  • step S208 the interframe noise reduction unit 51 proceeds to the process of step S208.
  • the inter-frame noise reduction unit 51 for all pixels in one frame, the luminance value of the pixel, and the luminance of the frame before and after the frame including the pixel where the pixel and the position in the frame are the same. It is determined whether the value is compared (step S208).
  • step S208: NO If the luminance values are not compared for all the pixels (step S208: NO), the inter-frame noise reduction unit 51 returns to the process of step S204.
  • step S208: YES the interframe noise reduction unit 51 supplies the horizontal noise reduction unit 52 with the image data of the frame in which the noise between frames is reduced (step S209). .
  • FIG. 23 is a continuation of the flowchart of FIG. Subsequently, the horizontal noise reduction unit 52 performs the processing from step S210 to step S215 described below to remove the horizontal noise superimposed on the image of one frame.
  • the horizontal noise reduction unit 52 reads the luminance value of the target pixel from the temporary storage unit 21, and the pixels located on both sides of the luminance value of the target pixel and the target pixel supplied from the horizontal comparison pixel extraction unit 44. Are compared (step 210).
  • step S210: YES When the luminance value of the target pixel is the smallest among the luminance values of the three pixels (step S210: YES), the horizontal noise reduction unit 52 is supplied from the horizontal noise amount detection unit 31a to the luminance value of the target pixel. The horizontal noise amount NH is added (step S211). On the other hand, when the luminance value of the target pixel is not the minimum among the luminance values of the three pixels (step S210: NO), the horizontal noise reduction unit 52 proceeds to the process of step S212. Next, when the luminance value of the target pixel is the maximum among the luminance values of the three pixels (step S212: YES), the horizontal noise reduction unit 52 determines from the horizontal noise amount detection unit 31a based on the luminance value of the target pixel. The supplied horizontal noise amount NH is subtracted (step S213).
  • step S212 When the luminance value of the target pixel takes the median value among the luminance values of the three pixels (step S212: NO), the horizontal noise reduction unit 52 proceeds to the process of step S214. Next, the horizontal noise reduction unit 52 determines whether or not the luminance value of each pixel in one frame is compared with the luminance values of the pixels located on both sides of the pixel (step S214). ).
  • step S214: NO If the luminance values are not compared for all the pixels (step S214: NO), the horizontal noise reduction unit 52 returns to the process of step S210.
  • step S214: YES the horizontal noise reduction unit 52 supplies the vertical noise reduction unit 53 with the image data of the frame in which the horizontal noise is reduced (step S215). .
  • the vertical noise reduction unit 53 removes the vertical noise superimposed on one frame image by performing the processing from step S216 to step S221 described below.
  • the vertical noise reduction unit 53 reads the luminance value of the target pixel from the temporary storage unit 21 and is positioned next to the luminance value of the target pixel and the target pixel supplied from the vertical comparison pixel extraction unit 47. The luminance value of the pixel is compared (step 216).
  • step S216: YES When the luminance value of the target pixel is the smallest among the luminance values of the three pixels (step S216: YES), the vertical noise reduction unit 53 is supplied from the vertical noise amount detection unit 32a to the luminance value of the target pixel. It adds the vertical noise amount N V (step S217). On the other hand, when the luminance value of the target pixel is not the minimum among the luminance values of the three pixels (step S216: NO), the vertical noise reduction unit 53 proceeds to the process of step S218. Next, when the luminance value of the target pixel is the maximum among the luminance values of the three pixels (step S218: YES), the vertical noise reduction unit 53 determines from the luminance value of the target pixel from the vertical noise amount detection unit 32a. subtracting the supplied vertical noise amount N V (step S219).
  • step S218 When the luminance value of the target pixel takes the median value among the luminance values of the three pixels (step S218: NO), the vertical noise reduction unit 53 proceeds to the process of step S220. Next, the vertical noise reduction unit 53 determines whether or not the luminance value of each pixel in one frame is compared with the luminance value of the pixel located above and below the pixel (step). S220).
  • step S220 When the luminance values are not compared for all the pixels (step S220: NO), the vertical noise reduction unit 53 returns to the process of step S216.
  • Step S220 YES
  • the vertical direction noise reduction unit 53 When comparing the luminance value in all pixels (Step S220: YES), the vertical direction noise reduction unit 53, and supplies the video signal S OUT including image data of a frame with a reduced noise image adjustment unit 13 (step S215 ). Above, the process of this flowchart is complete
  • FIG. 24 is a flowchart showing the flow of horizontal noise amount calculation in step S201 of FIG.
  • the target luminance reading unit (target signal extracting unit) 60 reads the luminance value of the target pixel (step S301).
  • the horizontal comparison luminance reading unit (comparison signal extraction unit) 61 reads the luminance values of pixels adjacent to the target pixel (step S302).
  • the comparison unit 62 determines the luminance value of the target pixel, the luminance value of the pixel on the left side of the target pixel (comparison pixel 1 shown in FIG. 14), and the pixel on the right side of the target pixel (shown in FIG. 14).
  • the luminance value of the comparison pixel 2) is compared (step S303).
  • the comparison unit 62 sends a signal indicating the calculation of the luminance value difference to the luminance value difference calculation unit. (Signal intensity difference calculation unit) 63.
  • the luminance value difference calculation unit (signal intensity difference calculation unit) 63 is an absolute value of the difference between the luminance value of the target pixel and the luminance value of the pixel adjacent to the left of the target pixel, the luminance value of the target pixel, and the pixel adjacent to the right of the target pixel. The average of the absolute values of the luminance value differences (average luminance value difference) is calculated. The luminance value difference calculation unit (signal intensity difference calculation unit) 63 increments the number of appearance frequencies corresponding to the average of the calculated luminance value differences by one in the table T ⁇ b> 1 stored in the storage unit 64. When the luminance value of the target pixel takes the median value among the three luminance values (step S303: NO), the comparison unit 62 proceeds to the process of step S305.
  • the comparison unit 62 determines whether or not the luminance values have been compared for all the pixels in one frame (step S305). When the comparison unit 62 does not compare the luminance values for all the pixels in one frame (step S305: NO), the horizontal noise amount detection unit 31a returns to the process of step S301. On the other hand, when the comparison unit 62 compares the luminance values of all the pixels in one frame (step S305: YES), the comparison unit 62 completes the comparison of the luminance values for one frame to the mode value extraction unit 65a. Supply a signal to that effect.
  • the mode value extraction unit 65a extracts the average (mode value) m H of the luminance value differences having the highest appearance frequency in the table T1 stored in the storage unit 64, and sends it to the horizontal noise amount calculation unit 69a. Supply (step S306). Further, the mode value extraction unit 65a reads the average of the luminance value differences corresponding to the mode value m H (appearance frequency in the mode value) Fmax H from the table T1 stored in the storage unit 64, and the mode The appearance frequency Fmax H in the value is supplied to the mode value ratio calculation unit 67a.
  • the mode value ratio calculation unit 67a appears corresponding to the average of the luminance value differences in a predetermined range (for example, the average of the luminance value differences is 1 to 32) in the table T1 stored in the storage unit 64.
  • the frequency is read, and the sum of the read appearance frequencies is calculated as the total number of detected pixels Fall H.
  • the mode value ratio calculation unit 67a calculates the ratio ⁇ H [%] of the appearance frequency Fmax H of the mode value in the calculated total number of detected pixels Fall H by the above equation (2) (step S307).
  • Mode value ratio calculating unit 67a supplies the percentage alpha H of the appearance frequency of the mode to the total detected number of pixels calculated in the horizontal coefficient calculation section 68a.
  • step S308: YES when the ratio ⁇ H of the mode frequency occupying the total number of detected pixels is 20% or less (step S308: YES), the horizontal coefficient calculation unit 68a determines that noise is to be removed, and the horizontal direction The horizontal coefficient k H indicating whether or not to remove the noise is set to 1 (step S309).
  • step S308: NO when the ratio ⁇ H of the appearance frequency of the mode value occupying the total number of detected pixels exceeds 20 [%] (step S308: NO), the horizontal coefficient calculation unit 68a determines that noise is not removed, and the horizontal direction The horizontal coefficient k H indicating whether or not to remove the noise is set to 0 (step S310).
  • the horizontal coefficient calculation section 68a supplies the calculated horizontal coefficient k H horizontal noise amount calculation unit 69a.
  • the horizontal coefficient calculating unit 68a changes all the appearance frequencies to 0 in order to reset the appearance frequencies of the table T1 stored in the storage unit 64.
  • the horizontal noise amount calculating unit 69a multiplies the mode value m H supplied from the mode value extraction unit 65a, and a horizontal coefficient k H supplied from the horizontal coefficient computing unit 68a, the horizontal noise amount N H is calculated by the above equation (3), and the calculated horizontal noise amount NH is supplied to the average noise amount calculation unit 33 and the horizontal noise reduction unit 52 (step S311).
  • the process of this flowchart is complete
  • FIG. 25 is a flowchart showing the flow of calculating the vertical noise amount in step S202 of FIG.
  • the target luminance reading unit (target signal extracting unit) 70 reads the luminance value of the target pixel (step S401).
  • the vertical comparison luminance reading unit (comparison signal extraction unit) 71 reads the luminance values of the adjacent pixels above and below the target pixel (step S402).
  • the comparison unit 72 displays the luminance value of the target pixel, the luminance value of the pixel above the target pixel (comparison pixel 1 shown in FIG. 18), and the pixel below the target pixel (shown in FIG. 18).
  • the luminance value of the comparison pixel 2) is compared (step S403).
  • the comparison unit 72 sends a signal indicating the calculation of the luminance value difference to the luminance value difference calculation unit. (Signal intensity difference calculation unit) 73.
  • the luminance value difference calculation unit (signal intensity difference calculation unit) 73 is the absolute value of the difference between the luminance value of the target pixel and the luminance value of the adjacent pixel above the target pixel, the luminance value of the target pixel, and the pixel below the target pixel. The average of the absolute values of the luminance value differences (average luminance value difference) is calculated. The luminance value difference calculation unit (signal intensity difference calculation unit) 73 increments the number of appearance frequencies corresponding to the calculated average of luminance value differences by 1 in the table T2 stored in the storage unit 74. When the luminance value of the target pixel takes the median value among the three luminance values (step S403: NO), the comparison unit 72 proceeds to the process of step S405.
  • the comparison unit 72 determines whether or not the luminance values have been compared for all the pixels in one frame (step S405).
  • step S305: NO the vertical noise amount detection unit 32a returns to the process of step S401.
  • step S405: YES the comparison unit 72 completes the comparison of the luminance values for one frame to the mode value extraction unit 75a. Supply a signal to that effect.
  • the mode extracting section 75a extracts averaged (most frequent value) m V of frequency in the table T2 in the storage unit 74 are stored the highest luminance value difference, the vertical noise amount calculation section 79a Supply (step S406). Further, mode extraction unit 75a reads from the table T2 stored the Fmax V (frequency in the mode) Average luminance value difference corresponding to the mode m V in the storage unit 74, the modal The appearance frequency Fmax V in the value is supplied to the mode value ratio calculation unit 77a.
  • the mode value ratio calculation unit 77a appears corresponding to the average of the luminance value difference in a predetermined range (for example, the average of the luminance value difference is 1 to 32) in the table T2 stored in the storage unit 74.
  • the frequency is read out, and the sum of the read out appearance frequencies is calculated as the total number of detected pixels Fall V.
  • the mode value ratio calculation unit 77a calculates the ratio ⁇ V [%] of the appearance frequency Fmax V of the mode value in the calculated total number of detected pixels Fall V by the above equation (5) (step S407).
  • the mode value ratio calculation unit 77a supplies the horizontal coefficient calculation unit 78a with the ratio ⁇ V of the appearance frequency of the mode value in the calculated total number of detected pixels.
  • step S408: YES when the ratio ⁇ V of the appearance frequency of the mode value occupying the total number of detected pixels is 20% or less (step S408: YES), the vertical coefficient calculation unit 78a determines that noise is to be removed, and the vertical direction noise horizontal coefficient k V indicating whether or not the removal of the 1 (step S409).
  • step S408: NO when the ratio ⁇ V of the appearance frequency of the mode value in the total number of detected pixels exceeds 20 [%] (step S408: NO), the vertical coefficient calculation unit 78a determines that noise is not removed, and the vertical direction the vertical coefficient k V indicating whether or not to remove the noise to 0 (step S410).
  • the vertical coefficient computing unit 78a supplies the calculated vertical coefficient k V Vertical noise amount calculation unit 79a. Further, the vertical coefficient calculating unit 78a changes all the appearance frequencies to 0 in order to reset the appearance frequencies of the table T2 stored in the storage unit 64.
  • the vertical noise amount calculating unit 79a multiplies the mode value m V supplied from the mode value extraction unit 75a, and a vertical coefficient k V supplied from the vertical coefficient calculation section 78a, a vertical noise amount N calculated by the above equation (3) V, and supplies the calculated vertical noise amount N V average noise amount calculation section 33 and the vertical noise reduction unit 53 (step S411).
  • the process of this flowchart is complete
  • the noise reduction unit 12a determines whether to reduce noise based on the frequency of the mode value in the frequency distribution of the difference between the luminance value of the target pixel and the luminance value of the predetermined comparison pixel. judge. As a result, the noise reduction unit 12a performs noise reduction processing on an image with a larger amount of noise than a predetermined amount, but does not perform noise reduction processing on an image with less noise than a predetermined amount. In an image with less noise than a predetermined amount, it is possible to prevent the fineness of the image from being lost or the edge from being blurred.
  • the horizontal noise determination unit (determination unit) 66a and the vertical noise determination unit (determination unit) 76a perform noise generation based on the ratio of the appearance frequency of the mode value to all the detected pixels.
  • the present invention is not limited to this, and it may be determined whether or not noise is to be removed based on the ratio of the average appearance frequency of a predetermined luminance value difference among all the detected pixels.
  • the horizontal noise determination unit (determination unit) 66a and the vertical noise determination unit (determination unit) 76a perform noise generation based on the ratio of the appearance frequency of the mode value to all the detected pixels.
  • the horizontal noise determination unit (determination unit) 66a and the vertical noise determination unit (determination unit) 76a determine that noise is removed when the mode value exceeds a predetermined threshold value, and when the mode value is equal to or less than the predetermined threshold value. It may be determined that noise is not removed.
  • FIG. 26 is a diagram illustrating an example of an average frequency distribution of luminance value differences in an image with a large amount of noise.
  • the horizontal axis represents the average of the luminance value differences, and the vertical axis represents the appearance frequency.
  • the mode value is 6.
  • the threshold Thr that the horizontal noise determination unit (determination unit) 66a and the vertical noise determination unit (determination unit) 76a determine to remove noise is 3, the mode 6 is greater than the threshold Thr. Therefore, the horizontal noise determination unit (determination unit) 66a and the vertical noise determination unit (determination unit) 76a determine that noise is to be removed.
  • FIG. 27 is a diagram showing an example of an average frequency distribution of luminance value differences in an image with a small amount of noise.
  • the horizontal axis represents the average of the luminance value differences, and the vertical axis represents the appearance frequency.
  • the mode value is 2.
  • the threshold Thr that the horizontal noise determination unit (determination unit) 66a and the vertical noise determination unit (determination unit) 76a determine to remove noise is 3, the mode 2 is smaller than the threshold Thr. Therefore, the horizontal noise determination unit (determination unit) 66a and the vertical noise determination unit (determination unit) 76a determine that noise is not removed.
  • the horizontal noise determination unit (determination unit) 66a and the vertical noise determination unit (determination unit) 76a determine whether to remove noise based on the comparison between the mode value and the predetermined threshold value. it can.
  • the noise reduction unit 12a performs noise reduction processing on an image with a larger amount of noise than a predetermined amount, but does not perform noise reduction processing on an image with less noise than a predetermined amount. In an image with less noise than a predetermined amount, it is possible to prevent the fineness of the image from being lost or the edge from being blurred.
  • FIG. 28 is a functional block diagram of a display device according to the second embodiment of the present invention. Elements common to those in FIG. 1 are denoted by the same reference numerals, and a specific description thereof is omitted.
  • the configuration of the display device 10b in FIG. 28 is obtained by changing the noise reduction unit 12a to the noise reduction unit 12b with respect to the configuration of the display device 10a in FIG.
  • FIG. 29 is a functional block diagram of a noise reduction unit according to the second embodiment of the present invention.
  • symbol is attached
  • the configuration of the noise reduction unit 12b in FIG. 29 is obtained by changing the noise amount calculation unit 30a to the noise amount calculation unit 30b with respect to the configuration of the noise reduction unit 12a in FIG.
  • the configuration of the noise amount calculation unit 30b in FIG. 29 is different from the configuration of the noise amount calculation unit 30a in FIG. 3 in that the horizontal noise amount detection unit 31a is perpendicular to the horizontal noise amount detection unit 31b.
  • the noise amount detection unit 32a is changed to a vertical noise amount detection unit 32b.
  • FIG. 30 is a functional block diagram of a horizontal noise amount detection unit according to the second embodiment.
  • symbol is attached
  • the horizontal noise amount detection unit 31b in FIG. 30 is different from the horizontal noise amount detection unit 31a in FIG. 13 in that the mode value extraction unit 65a is replaced with the mode value extraction unit 65b, and the horizontal noise determination unit (determination unit). ) 66a is changed to a horizontal noise determination unit (determination unit) 66b, and the horizontal noise amount calculation unit 69a is changed to a horizontal noise amount calculation unit 69b.
  • the mode value extraction unit 65b extracts the average (mode value) m H of the luminance value difference having the highest appearance frequency from the table T1 stored in the storage unit 64, and calculates the horizontal mode of the extracted mode value. To the unit 69b.
  • the horizontal noise determination unit (determination unit) 66b includes a threshold width extraction unit 67b and a horizontal coefficient calculation unit 68b.
  • the threshold value width extraction unit 67b counts the number w H of appearance frequencies exceeding a predetermined threshold value (for example, one quarter of the appearance frequency of the mode value) from the table T1 stored in the storage unit 64, and counts it.
  • the number w H of appearance frequencies is supplied to the horizontal count calculation unit 68b.
  • FIG. 31 is a diagram for explaining processing of the threshold width extraction unit in an average frequency distribution of luminance value differences in an image with a large amount of noise.
  • the horizontal axis is the average of the luminance value differences, and the vertical axis is the appearance frequency.
  • the threshold width extraction unit 67b counts this width as the number of appearance frequencies w H.
  • FIG. 32 is a diagram for explaining processing of the threshold width extraction unit in an average frequency distribution of luminance value differences in an image with a small amount of noise.
  • the horizontal axis is the average of the luminance value differences, and the vertical axis is the appearance frequency.
  • the threshold width extraction unit 67b counts this width as the number of appearance frequencies w H.
  • the horizontal coefficient calculation unit 68b determines that noise is reduced, and sets the horizontal coefficient k H Set to 1.
  • the horizontal coefficient calculation unit 68b determines that noise is not reduced, and sets the horizontal coefficient k H to zero. Returning to FIG. 30, the horizontal coefficient calculation unit 68b supplies the horizontal coefficient k H horizontal noise amount calculation unit 69b.
  • Horizontal noise amount calculation unit 69b may calculate the mode value m H supplied from the mode value extracting unit 65b, and multiplying the horizontal coefficient k H supplied from the horizontal coefficient calculation section 68b, the horizontal noise amount N H To do.
  • the horizontal noise amount calculation unit 69 b supplies the calculated horizontal noise amount NH to the average noise amount calculation unit 33 and the horizontal noise reduction unit 52.
  • FIG. 33 is a functional block diagram of a vertical noise amount detection unit according to the second embodiment.
  • symbol is attached
  • the configuration of the vertical noise amount detection unit 32b in FIG. 33 is different from the configuration of the vertical noise amount detection unit 32a in FIG. 17 in that the mode value extraction unit 75a is replaced with the mode value extraction unit 75b. ) 76a is changed to a vertical noise determination unit (determination unit) 76b, and the vertical noise amount calculation unit 79a is changed to a vertical noise amount calculation unit 79b.
  • Most frequent extraction unit 75b are frequency from the table T2 in the storage unit 74 are stored in the extracted average (mode value) m V of the highest luminance value differences the extracted vertical noise amount calculating unit the mode was 79b.
  • the vertical noise determination unit (determination unit) 76b includes a threshold width extraction unit 77b and a vertical coefficient calculation unit 78b.
  • the threshold width extraction unit 77b counts the number w V of appearance frequencies exceeding a predetermined threshold (for example, one quarter of the appearance frequency of the mode value) from the table T2 stored in the storage unit 74, and counts it. supplying a number w V of the frequency of occurrence to the vertical count calculation unit 78b.
  • FIG. 34 is a diagram for explaining the processing of the threshold width extraction unit of the vertical noise amount detection unit in the average frequency distribution of luminance value differences in an image with a large amount of noise.
  • the horizontal axis is the average of the luminance value differences, and the vertical axis is the appearance frequency.
  • the threshold width extraction unit 67b counts this width as the number of appearance frequencies w H.
  • the vertical coefficient calculation section 78b determines that reduce noise, the vertical coefficient k V 1 And On the other hand, when the number w V of frequency supplied from the threshold range extracting portion 77b is equal to or smaller than a predetermined width threshold value, the vertical coefficient calculation section 78b is determined not to reduce the noise, and 0 horizontal coefficient k H. Vertical coefficient calculation unit 78b supplies the vertical coefficient k V Vertical noise amount calculation unit 79b.
  • Vertical noise amount calculation unit 79b may calculate the mode value m V supplied from the mode value extracting unit 75b, by multiplying the vertical coefficient k V supplied from the vertical coefficient calculation section 78b, a vertical noise amount N V To do. Vertical noise amount calculation unit 79b supplies the calculated vertical noise amount N V to an average noise amount calculation section 33 shown in FIG. 3 vertical noise reduction unit 53.
  • FIG. 35 is a flowchart showing a flow of horizontal noise amount calculation in step S201 of FIG. 22 in the second embodiment. Since the processing from step S501 to step S505 is the same as the processing from step S301 to step S305 described with reference to the flowchart of FIG. 24, the description thereof is omitted.
  • the mode value extraction unit 65b extracts the average (mode value) m H of the luminance value differences with the highest appearance frequency stored in the storage unit 64, and uses the extracted mode value as the horizontal noise amount calculation unit. It supplies to 69b (step S506).
  • the threshold width extraction unit 67b counts the number w H of appearance frequencies exceeding a predetermined threshold value (for example, 1 ⁇ 4 of the appearance frequency of the mode value) from the table T1 stored in the storage unit 64. Then, the counted number of appearance frequencies w H is supplied to the horizontal count calculation unit 68b (step S507).
  • a predetermined threshold value for example, 1 ⁇ 4 of the appearance frequency of the mode value
  • the horizontal count calculation unit 68b determines whether or not the number of appearance frequencies w H supplied from the threshold width extraction unit 67b exceeds a predetermined width (step S508).
  • the horizontal coefficient calculation unit 68b determines that noise is reduced, and sets the horizontal coefficient k H to 1 (step S509).
  • the horizontal coefficient calculation unit 68b determines that noise is not reduced, and sets the horizontal coefficient k H to 0 (step S510).
  • Horizontal coefficient calculation unit 68b supplies the horizontal coefficient k H horizontal noise amount calculation unit 69b.
  • the horizontal noise amount calculation unit 69b multiplies the number of appearance frequencies w H supplied from the mode value extraction unit 65b by the horizontal coefficient k H supplied from the horizontal count calculation unit 68b to obtain a horizontal noise amount N H. Is calculated (step S511). Above, the process of this flowchart is complete
  • FIG. 36 is a flowchart showing the flow of the vertical noise amount calculation in step S202 of FIG. 22 in the second embodiment. Since the processing from step S601 to step S605 is the same as the processing from step S401 to step S405 described in the flowchart of FIG. 25, the description thereof is omitted.
  • the mode extracting section 75b extracts the average (mode value) m V of the highest luminance value difference is stored appearance frequency in the memory unit 64, the extracted vertical noise amount calculating unit the mode was 79b (step S606).
  • the threshold width extraction unit 77b counts the number w V of appearance frequencies exceeding a predetermined threshold value (for example, 1 ⁇ 4 of the appearance frequency of the mode value) from the table T2 stored in the storage unit 74. supplies the number w V of the counted frequency of occurrence to the vertical count calculation unit 78b (step S607).
  • a predetermined threshold value for example, 1 ⁇ 4 of the appearance frequency of the mode value
  • the vertical count calculation unit 78b determines whether the number w V of frequency supplied from the threshold range extracting section 77b exceeds a predetermined width (step S608). If the number w V frequency of occurrence exceeds a predetermined width (step S608: YES), the vertical coefficient calculation section 78b determines that reduces noise, and 1 vertical coefficient k V (step S609). If the number w V of frequency is less than a predetermined width (step S510: NO), the vertical coefficient calculation section 78b is determined not to reduce the noise, and 0 horizontal coefficient k H (step S610). Vertical coefficient calculation unit 78b supplies the vertical coefficient k V Vertical noise amount calculation unit 79b.
  • vertical noise amount calculation unit 79b multiplies the number w V and vertical coefficient k V supplied from the vertical count calculation unit 78b of the frequency supplied from the mode value extracting unit 75b, vertical noise amount N V Is calculated (step S611). Above, the process of this flowchart is complete
  • the noise reduction unit 12a determines whether to reduce noise based on the number of times that the difference between the luminance value of the target pixel and the luminance value of the predetermined comparison pixel exceeds a predetermined threshold. To do. As a result, the noise reduction unit 12a performs noise reduction processing on an image with a larger amount of noise than a predetermined amount, but does not perform noise reduction processing on an image with less noise than a predetermined amount. In an image with less noise than a predetermined amount, it is possible to prevent the fineness of the image from being lost or the edge from being blurred.
  • the noise reduction unit 12a and the noise reduction unit 12b determine whether to reduce the noise superimposed on the luminance value and determine to reduce the noise
  • the present invention is not limited to this, and the noise reduction unit 12a and the noise reduction unit 12b determine whether to reduce the noise superimposed on the color difference information, and reduce the noise. If it is determined to reduce, noise superimposed on the color difference information may be reduced.
  • the noise reduction unit 12a and the noise reduction unit 12b compare the luminance value of the target pixel with the luminance values of the adjacent pixels in the upper, lower, left, and right directions.
  • the luminance value of a pixel that is c is a positive integer) pixel below the target pixel and the luminance value of a pixel that is d (d is a positive integer) pixel above the target pixel.
  • the noise reduction unit 12a and the noise reduction unit 12b have the same luminance value of the target pixel as that of the target pixel in frames before and after the frame including the target pixel.
  • the luminance value of the target pixel is not limited to this, and the luminance value of the target pixel is set to the same position as the target pixel in the frame that is the first predetermined number of frames before the frame including the target pixel.
  • the luminance value of a certain pixel may be compared with the luminance value of a pixel at the same position as the target pixel in a frame after a second predetermined number of frames of the frame including the target pixel.
  • the noise reduction unit 12a or the noise reduction unit 12b of the present invention includes a target signal extraction unit that extracts a plurality of target signals that are noise reduction targets from a video signal, and each of the target signals.
  • Signal processing comprising: a difference calculation unit; and a horizontal noise determination unit (determination unit) that determines whether noise is reduced from the target signal based on a shape of a frequency distribution of the signal intensity difference It can be said that it is a part.
  • the video signal is primarily stored in the noise storage unit 12a or the temporary storage unit 21 in the noise reduction unit 12b.
  • a delay circuit may be used instead of the storage unit, and the delay circuit may supply the luminance signal included in the video signal to the comparison pixel extraction unit 40 and the noise reduction unit 50 with a delay time predetermined for each supply destination. .
  • the luminance value difference calculation unit (signal intensity difference calculation unit) 63 does not perform the processing by the comparison unit 62 or the comparison unit 72, but the average horizontal in all pixels.
  • the frequency of the luminance change amount or the frequency of the average vertical luminance change amount may be calculated.
  • the noise reduction unit 12a or the noise reduction unit 12b reduces the noise of the video signal supplied from the reception unit 11 in FIG. 1 or FIG.
  • the noise reduction unit 12a or the noise reduction unit 12b may reduce the noise of the video signal supplied from the unit 13.
  • the image adjustment unit 13 supplies the video signal to the noise reduction unit 12a or the noise reduction unit 12b, and the noise superimposed on the signal supplied by the noise reduction unit 12a or the noise reduction unit 12b is reduced.
  • the noise reduction unit 12 a or the noise reduction unit 12 b supplies the signal whose noise is reduced to the timing control unit 14 and the source driver unit 15.
  • each block of the noise reduction unit 12a or the noise reduction unit 12b may be configured as hardware called a signal processing device by a logic circuit formed on an integrated circuit (IC chip). It may be realized by software using (Central Processing Unit).
  • the noise reduction unit 12a or the noise reduction unit 12b is a CPU that executes an instruction of a signal processing program that realizes each function, the program ROM (Read Only Memory) storing the program, a RAM (Random Access Memory) for expanding the program, and a storage device (storage medium) such as a memory for storing the program and various data.
  • the program ROM Read Only Memory
  • RAM Random Access Memory
  • storage medium such as a memory for storing the program and various data.
  • the recording medium holds the program code (execution format program, intermediate code program, source program, etc.) of the noise reduction unit 12a or the noise reduction unit 12b, which is software that realizes the above-described functions, so that it can be read by a computer.
  • the object of the present invention can be achieved by the CPU reading and executing the program code held in the recording medium.
  • Examples of the storage medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks and hard disks, disks including optical disks such as CD, MO, MD, and DVD, IC cards ( Memory cards) and optical cards, semiconductor memories such as mask ROM, EPROM, EEPROM, and flash memory, and logic circuits such as PLD (Programmable Logic Device).
  • tapes such as magnetic tapes and cassette tapes
  • magnetic disks such as floppy (registered trademark) disks and hard disks
  • disks including optical disks such as CD, MO, MD, and DVD disks including optical disks such as CD, MO, MD, and DVD
  • IC cards Memory cards
  • semiconductor memories such as mask ROM, EPROM, EEPROM, and flash memory
  • logic circuits such as PLD (Programmable Logic Device).
  • the noise reduction unit 12a or the noise reduction unit 12b may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone circuit network, mobile communication network, satellite communication A net or the like is available.
  • the transmission medium configured with the communication network is not particularly limited, and for example, even when priority is given to IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc., infrared light such as IrDA or remote control, Bluetooth ( (Registered trademark), IEEE 802.11 radio, HDR (High Date Rate), NFC (Near Field Communication), DLNA (Digital Living Network Alliance), mobile phone network, satellite line, terrestrial digital network, etc. .
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • means does not necessarily mean physical means, but includes cases where the functions of each means are realized by software.
  • the function of one means may be realized by two or more physical means, or the functions of two or more means may be realized by one physical means.
  • the display device has been described assuming a liquid crystal display device.
  • the display device is not limited to this and may be a display device such as a cathode ray tube (CRT) monitor, a plasma display, or an organic EL display.
  • CTR cathode ray tube
  • plasma display a plasma display
  • organic EL display a display device such as a plasma display, or an organic EL display.
  • the present invention can be applied to a noise reduction circuit for reducing a noise component superimposed on a television video signal or an audio signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Picture Signal Circuits (AREA)

Abstract

 映像信号から抽出され各画素に用いられる対象信号の信号強度と、該対象信号から所定の間隔離れた比較信号の信号強度との差の頻度分布の形状に基づいて、映像信号から雑音を低減するか否か判定する水平ノイズ判定部を備える。

Description

信号処理装置、信号処理方法、信号処理プログラム、および表示装置
 本発明は、信号処理装置、信号処理方法、信号処理プログラム、および表示装置に関する。
 本願は、2010年8月4日に、日本に出願された特願2010-175522号に基づき優先権を主張し、その内容をここに援用する。
 従来から、画像の撮像や伝送を行う際、いわゆるスノーノイズ、ホワイトガウスノイズ、ショットノイズなどの雑音成分が画像信号に混入することが知られている。例えば、アナログテレビジョン信号の放送を受信する際に放送波の電界強度が弱いと、受信信号は雑音成分の多い映像信号になる。また、デジタル放送でも過去に録画したアナログ映像をデジタル化し再放送することも多く、雑音成分の多い映像信号となる。
 特許文献1では、雑音低減回路が映像信号の垂直ブランキング期間の画像信号の無いライン部分の雑音成分を検出して、その雑音成分の電圧を基にして映像信号の雑音を低減することが示されている。具体的には、雑音低減回路は、画像信号の電圧とその画像信号の電圧にメディアンフィルタを掛けた後の画像信号の電圧(以下、フィルタ後の電圧と称する)とを比較する。
 画像信号の電圧がフィルタ後の電圧よりも大きい場合、雑音低減回路は、画像信号の電圧から上記雑音成分の電圧を減算した電圧を外部へ出力する。一方、画像信号の電圧がフィルタ後の電圧よりも小さい場合、雑音低減回路は、画像信号の電圧に上記雑音成分の電圧を加算した電圧を外部へ出力する。また、画像信号の電圧とフィルタ後の電圧が等しい場合、雑音低減回路は、画像信号の電圧をそのまま外部へ出力する。
特開平7-250264号公報
 しかし、上記雑音低減回路では、雑音低減処理によって映像の精細感が失われたり、エッジがぼやけたりするという問題がある。雑音成分の多い映像では、上記雑音低減回路が雑音低減処理することによりエッジがぼやけるが、雑音が消えることによって画質が大幅に改善される。一方、雑音成分の少ない映像では、上記雑音低減回路が雑音低減処理することによりエッジがぼやけ、画質が大幅に劣化してしまう。
 そこで本発明は、上記問題に鑑みてなされたものであり、雑音低減による画質劣化を防止することを可能とする信号処理装置、信号処理方法、信号処理プログラム、および表示装置を提供することを課題とする。
(1)本発明の一実施形態に係る信号処理装置は前記事情に鑑みなされたもので、映像信号から抽出され各画素に用いられる対象信号の信号強度と、該対象信号から所定の間隔離れた比較信号の信号強度との差に基づく値の頻度分布の形状に基づいて、映像信号から雑音を低減するか否か判定する判定部を備える。
 (2)前記信号処理装置において、前記判定部は、前記頻度分布に占める所定の前記差に基づく値における頻度の割合に基づいて、前記対象信号から雑音を低減するか否か判定してもよい。
 (3)前記信号処理装置において、前記判定部は、前記頻度分布に占める所定の前記差に基づく値における頻度の割合が、所定の頻度閾値よりも小さい場合、前記対象信号から雑音を低減すると判定し、前記所定の頻度閾値以上の場合、前記対象信号から雑音を低減しないと判定してもよい。
 (4)前記信号処理装置において、所定の前記差に基づく値における頻度は、最頻値における頻度でもよい。
 (5)前記信号処理装置において、前記判定部は、前記頻度分布において所定の頻度閾値よりも頻度が高い信号強度差の範囲に基づいて、前記対象信号から雑音を低減するか否か判定してもよい。
 (6)前記信号処理装置において、前記判定部は、前記頻度分布において所定の頻度閾値よりも頻度が高い信号強度の範囲が所定の閾値よりも大きい場合、前記対象信号から雑音を低減すると判定し、所定の閾値以下の場合、前記対象信号から雑音を低減しないと判定してもよい。
 (7)前記信号処理装置において、前記判定部は、前記頻度分布における最頻値の頻度に基づいて、前記所定の頻度閾値を算出してもよい。
 (8)前記信号処理装置において、前記対象信号が該対象信号と所定の間隔前後に離れた2つの比較信号との中で最大値または最小値であるか否か判定する比較部と、前記比較部が最大値または最小値と判定したときに、前記対象信号と前記比較信号との差に基づく値を算出し前記差に基づく値の頻度の値を増加させる信号強度差算出部と、を備えてもよい。
 (9)本発明の他の実施形態に係る信号処理方法は前記事情に鑑みなされたもので、映像信号から雑音を低減するか否か判定する判定部を備える信号処理装置が実行する信号処理方法であって、
 映像信号から抽出され各画素に用いられる対象信号の信号強度と、該対象信号から所定の間隔離れた比較信号の信号強度との差に基づく値の頻度分布の形状に基づいて、映像信号から雑音を低減するか否か判定する工程を有する。
 (10)本発明の他の実施形態に係る信号処理プログラムは前記事情に鑑みなされたもので、信号処理装置としてのコンピュータに、映像信号から抽出され各画素に用いられる対象信号の信号強度と、該対象信号から所定の間隔離れた比較信号の信号強度との差に基づく値の頻度分布の形状に基づいて、映像信号から雑音を低減するか否か判定するステップを実行させる信号処理プログラムである。
 (11)本発明の他の実施形態に係る表示装置は、前記信号処理装置または前記信号処理プログラムを備える。
 本発明によれば、雑音低減による画質劣化を防止することができる。
本発明の第1の実施形態における表示装置の機能ブロック図である。 第1の実施形態における液晶表示部の機能ブロック図である。 第1の実施形態における雑音低減部の機能ブロック図である。 フレーム間ノイズ低減部の処理を説明するための図である。 t番目のフレームの対象画素の輝度値が最小値の場合におけるフレーム間ノイズ低減部の処理を説明するための図である。 t番目のフレームの対象画素の輝度値が最大値の場合におけるフレーム間ノイズ低減部の処理を説明するための図である。 水平ノイズ低減部の処理を説明するための図である。 対象画素の輝度値が最小値の場合における水平ノイズ低減部の処理を説明するための図である。 対象画素の輝度値が最大値の場合における水平ノイズ低減部の処理を説明するための図である。 垂直ノイズ低減部の処理を説明するための図である。 対象画素の輝度値が最小値の場合における垂直ノイズ低減部の処理を説明するための図である。 対象画素の輝度値が最大値の場合における垂直ノイズ低減部の処理を説明するための図である。 第1の実施形態における水平ノイズ量検出部の機能ブロック図である。 水平ノイズ量検出部の処理について説明するための図である。 記憶部に記憶されている輝度値差の平均とその出現頻度とが関連付けられたテーブルの1例を示した図である。 水平方向の輝度値差の平均の頻度分布の1例を示した図である。 第1の実施形態における垂直ノイズ量検出部の機能ブロック図である。 垂直ノイズ量検出部の処理について説明するための図である。 記憶部に記憶されている輝度値差の平均とその出現頻度とが関連付けられたテーブルの1例を示した図である。 垂直方向の輝度値差の平均の頻度分布の1例を示した図である。 表示装置全体の処理の流れを示したフローチャートである。 図21のステップS102の雑音低減処理の流れを示したフローチャートである。 図22のフローチャートの続きである。 図22のステップS201の水平ノイズ量算出の流れを示したフローチャートである。 図22のステップS202の垂直ノイズ量算出の流れを示したフローチャートである。 ノイズ量が多い画像における輝度値差の平均の頻度分布の1例を示した図である。 ノイズ量が少ない画像における輝度値差の平均の頻度分布の1例を示した図である。 本発明の第2の実施形態における表示装置の機能ブロック図である。 本発明の第2の実施形態における雑音低減部の機能ブロック図である。 第2の実施形態における水平ノイズ量検出部の機能ブロック図である。 ノイズ量が多い画像における輝度値差の平均の頻度分布において、水平ノイズ量検出部内の閾値幅抽出部の処理を説明するための図である。 ノイズ量が少ない画像における輝度値差の平均の頻度分布において、水平ノイズ量検出部内の閾値幅抽出部の処理を説明するための図である。 第2の実施形態における垂直ノイズ量検出部の機能ブロック図である。 ノイズ量が多い画像における輝度値差の平均の頻度分布において、垂直ノイズ量検出部内の閾値幅抽出部の処理を説明するための図である。 第2の実施形態における図22のステップS201の水平ノイズ量算出の流れを示したフローチャートである。 第2の実施形態における図22のステップS202の垂直ノイズ量算出の流れを示したフローチャートである。
 本発明の実施形態では、映像信号に含まれる所定の信号間の信号強度の頻度分布に基づいて、雑音低減を実行するかどうか判定する装置、方法、プログラムおよび上記装置またはプログラムを有する表示装置を説明する。
 <第1の実施形態>
 以下、本発明の第1の実施形態について、図面を参照して詳細に説明する。
 図1は、本発明の第1の実施形態における表示装置の機能ブロック図である。表示装置10aは、受信部11と、雑音低減部12aと、画像調整部13と、タイミング制御部14と、液晶表示部20とを備える。液晶表示部20は、ソースドライバ部15と、ゲートドライバ部16と、液晶パネル部17とを備える。
 受信部11は、一例として、不図示のアンテナから供給されたデジタルテレビジョン放送の複数チャネルの高周波信号を受け取る。受信部11は、受け取った信号から希望のチャネルの変調信号を抽出し、抽出した変調信号をベースバンドの信号に変換し、変換したベースバンドの信号を所定のサンプリング周波数でデジタル信号へ変換する。
 なお、受信部11は、不図示のアンテナから供給されたアナログテレビジョン放送の複数チャネルの高周波信号を受け取ってもよい。
 受信部11は、変換されたデジタル信号からデジタルデータMPEG(Moving Picture Experts Group)-2トランスポートストリーム(以下、「MPEG-2TS」と言う)信号を抽出する。
 受信部11は、MPEG-2TS信号からTS(Transport Stream、トランスポートストリーム)パケットを抽出し、映像信号および音声復号のデータを復号する。受信部11は、復号した映像信号SINを雑音低減部12aへ供給する。
 ここで、映像信号SINは、画像の主走査方向(横方向、水平方向)に隣接して並ぶ画素の輝度信号Yと、色差信号Cb、Crとからなるインターレース信号である。
 雑音低減部12aは、受信部11から供給された映像信号SINを受け取る。雑音低減部12aは、後述する処理によって映像信号SINから雑音を低減した映像信号SOUTを算出し、その映像信号SOUTを画像調整部13へ供給する。
 画像調整部13は、雑音低減部12aから供給された映像信号SOUTをプログレッシブ信号に変換する。また、画像調整部13は、変換後のプログレッシブ信号の画素数を、表示部の解像度に合わせて調整するスケーリング処理を行う。画像調整部13は、スケーリング処理後の映像信号をRGB信号(Red、Green、Blueのカラービデオ信号)に変換する。画像調整部13は、RGB信号をタイミング制御部14と液晶表示部20内のソースドライバ部15とへ供給する。
 なお、画像調整部13は、映像信号SOUTがプログレッシブ信号であれば、インターレース信号からプログレッシブ信号への変換をしない。その場合、画像調整部13は、映像信号SOUTの画素数を表示部の解像度に合わせて調整するスケーリング処理を行う。
 タイミング制御部14は、液晶パネル部17に供給される映像データを平面上の画素に配分するためのクロック信号などを生成する。タイミング制御部14は、液晶表示部20内のソースドライバ部15と、ゲートドライバ部16へ、生成したクロック信号を供給する。
 図2は、第1の実施形態における液晶表示部20の機能ブロック図である。液晶表示部20は、アクティブマトリクス型の表示装置である。液晶表示部20は、マトリクス状に配された画素PIXを有する液晶パネル部17と、ゲート配線18と、ソース線19と、ゲート線18を駆動するゲートドライバ部16と、ソース線19を駆動するソースドライバ部15と、を備える。
 液晶パネル部17の同一の画素PIXを構成する階調表示用の2つのサブ画素は、それぞれのスイッチング素子であるTFTを介してゲート配線18及びデータ配線19に接続される。
 ソースドライバ15は、画像調整部13から供給されたRGB信号から液晶駆動用の階調化された電圧を生成する。ソースドライバ部15は、ソース線19ごとに、その階調化された電圧を、内部のホールド回路で保持する。
 ソースドライバ部15は、タイミング制御部14から供給されたクロック信号を受け取ると、画面の縦方向の配列に対して、クロック信号に同期して、階調化された電圧(ソース信号)を液晶パネル部17のTFT(Thin Film Transistor、薄膜トランジスタ)のソース線19および各TFTを介して画素PIXに供給する。
 ゲートドライバ部16は、タイミング制御部14から供給されたクロック信号を受け取る。ゲートドライバ部16は、液晶パネル部17のTFTのゲート線18を通じて画面のサブ画素の1行分に対して、クロック信号に同期して、所定の走査信号を各TFTのゲートに供給する。
 液晶パネル部17は、アレイ基板と対向基板と液晶とを備える。アレイ基板上のゲート線とデータ線との交点ごとに、TFTとTFTのドレイン電極に接続されている画素電極と対向電極(対向基板上のストリップ電極により構成されている)とが1組ずつ配置されて、画素、特にサブ画素を構成している。また、画素電極と対向電極との間には、封入された液晶が存在する。また、液晶パネル部17は、画素ごとに、3原色RGB(Red、Green、Blue)に対応する3つのサブ画素を有する。液晶パネル部17は、そのサブ画素毎に1つずつTFTを有する。
 TFTのゲート電極は、ゲートドライバ部16から供給されたゲート信号を受け取って、ゲート信号が例えばハイレベルの時、そのTFTが選択されてオン状態となる。TFTのソース電極は、ソースドライバ15から供給されたソース信号を受け取ることにより、TFTのドレイン電極に接続されている画素電極に階調化された電圧が印加される。
 その階調化された電圧に応じて、液晶の配向が変化し、これによって液晶の光の透過度が変化する。その階調化された電圧がTFTのドレイン電極に接続されている画素電極と対向電極との間の液晶部分により構成される液晶容量に保持されて、液晶の配向が維持される。また、次の信号がソース電極に到来するまで液晶の配向が維持され、その結果、液晶の光の透過度も維持される。
 以上説明したようにして、液晶パネル部17は、供給された映像データを階調表示する。なお、ここでは透過型の液晶パネルについて説明したが、これに限らず反射型の液晶パネルでもよい。
 図3は、第1の実施形態における雑音低減部12aの機能ブロック図である。雑音低減部12aは、一時記憶部21と、ノイズ量算出部30aと、比較画素抽出部40と、ノイズ低減部50と、を備える。
 一時記憶部21は、受信部11から供給された映像信号SINを一時的に所定のフレーム数分記憶する。
 ノイズ量算出部30aは、水平ノイズ量検出部31aと、垂直ノイズ量検出部32aと、平均ノイズ量算出部33とを備える。
 水平ノイズ量検出部31aは、一時記憶部21から雑音低減の対象となる対象画素を含むフレームの1つ前のフレームの画像を読み出す。水平ノイズ量検出部31aは、後述する方法によりフレーム内の水平方向に並んだ画素信号に重畳している雑音成分の量を表す水平ノイズ量を算出し、算出した水平ノイズ量Nを平均ノイズ量算出部33とノイズ低減部50内の水平方向ノイズ低減部52とへ供給する。
 垂直ノイズ量検出部32aは、一時記憶部21から雑音低減の対象となる対象画素を含むフレームの1つ前のフレームの画像を読み出す。垂直ノイズ量検出部32aは、後述する方法によりフレーム内の垂直方向に並んだ画素信号に重畳している雑音成分の量を表す垂直ノイズ量を算出し、算出した垂直ノイズ量Nを平均ノイズ量算出部33とノイズ低減部50内の垂直方向ノイズ低減部53とへ供給する。
 平均ノイズ量算出部33は、水平ノイズ量検出部31aから供給された水平ノイズ量Nと、垂直ノイズ量検出部32aから供給された垂直ノイズ量Nとの平均値(N+N)/2をフレーム間の画素信号に重畳している雑音成分の量を表すフレーム間ノイズ量Nとして算出する。平均ノイズ量算出部33は、算出したフレーム間ノイズ量Nをノイズ低減部50内のフレーム間ノイズ低減部51へ供給する。
 続いて、比較画素抽出部40について説明する。比較画素抽出部40は、フレーム間用比較画素抽出部41と、水平方向用比較画素抽出部44と、垂直方向用比較画素抽出部47とを備える。また、フレーム間用比較画素抽出部41は、前フレーム画素抽出部42と、後フレーム画素抽出部43とを備える。
 前フレーム画素抽出部42は、一時記憶部21から雑音低減の対象となる対象画素を含むフレームより1フレーム前のフレームの画像を読み出す。前フレーム画素抽出部42は、読み出した1フレーム前のフレームの画像から、フレーム内における各対象画素の位置と同じ位置に存在する画素の輝度値を1フレーム前の輝度値Yt-1として読出し、読み出した輝度値Yt-1をフレーム間ノイズ低減部51へ供給する。
 同様に、後フレーム画素抽出部43は、一時記憶部21から雑音低減の対象となる対象画素を含むフレームより1フレーム後のフレームの画像を読み出す。後フレーム画素抽出部43は、読み出した1フレーム後のフレームの画像から、フレーム内における各対象画素の位置と同じ位置に存在する画素の輝度値を1フレーム後の輝度値Yt+1(tは正の整数)として読み出し、読み出した輝度値Yt+1をフレーム間ノイズ低減部51へ供給する。
 水平方向用比較画素抽出部44は、右画素抽出部45と、左画素抽出部46とを備える。
 右画素抽出部45は、一時記憶部21から雑音低減の対象となる対象画素を含むフレームの画像を読み出す。右画素抽出部45は、読み出した画像から、画像に向かって各対象画素の右隣に位置する画素の輝度値を右隣の輝度値Yi+1(iは正の整数)として読み出し、読み出した輝度値Yi+1を水平方向ノイズ低減部52へ供給する。
 同様に、左画素抽出部46は、一時記憶部21から雑音低減の対象となる対象画素を含むフレームの画像を読み出す。左画素抽出部46は、読み出した画像から、画像に向かって各対象画素の左隣に位置する画素の輝度値を左隣の輝度値Yi―1として読出し、読み出した輝度値Yi-1を水平方向ノイズ低減部52へ供給する。
 垂直方向用比較画素抽出部47は、上画素抽出部48と、下画素抽出部49とを備える。
 上画素抽出部48は、一時記憶部21から雑音低減の対象となる対象画素を含むフレームの画像を読み出す。上画素抽出部48は、読み出した画像から、画像に向かって各対象画素の1つ上に位置する画素の輝度値を上隣の輝度値Yj-1(jは正の整数)として読出し、読み出した輝度値Yj-1を垂直方向ノイズ低減部53へ供給する。
 同様に、下画素抽出部49は、一時記憶部21から雑音低減の対象となる対象画素を含むフレームの画像を読み出す。下画素抽出部49は、読み出した画像から、画像に向かって各対象画素の1つ下に位置する画素の輝度値を下隣の輝度値Yj+1として読出し、読み出した輝度値Yj+1を垂直方向ノイズ低減部53へ供給する。
 続いて、ノイズ低減部50について説明する。ノイズ低減部50は、フレーム間ノイズ低減部51と、水平方向ノイズ低減部52と、垂直方向ノイズ低減部53とを備える。
 フレーム間ノイズ低減部51は、一時記憶部21から雑音低減の対象となる対象画素を含むフレームの画像データを読み出す。フレーム間ノイズ低減部51は、読み出した1フレームの画像の全ての画素に対して、それぞれ各画素の輝度値Yと、その各画素の1フレーム前の輝度値Yt-1と、その各画素の1フレーム後の輝度値Yt+1とを比較する。
 各画素の輝度値Yが上記3つの輝度値(Y、Yt-1、Yt+1)の中で最大となるときは、フレーム間ノイズ低減部51は、その画素の輝度値からフレーム間ノイズ量Nを減算する。一方、各画素の輝度値Yが上記3つの輝度値(Y、Yt-1、Yt+1)の中で最小となるときは、フレーム間ノイズ低減部51は、その画素の輝度値にフレーム間ノイズ量Nを加算する。また、各画素の輝度値Yが上記3つの輝度値(Y、Yt-1、Yt+1)の中で中央値となるときは、フレーム間ノイズ低減部51は、その画素の輝度値を変化させない。全ての画素で上記の処理をした後に、フレーム間ノイズ低減部51は、処理後の画像データを水平方向ノイズ低減部52へ供給する。
 フレーム間ノイズ低減部51の上記の処理について詳しく説明する。図4は、フレーム間ノイズ低減部の処理を説明するための図である。同図において、t-1番目のフレームの画像における左上隅の画素の輝度値Yt-1と、t番目のフレームの画像における左上隅の画素の輝度値Yと、t+1番目のフレームの画像における左上隅の画素の輝度値Yt+1とが示されている。
 図5は、t番目のフレームの対象画素の輝度値が最小値の場合におけるフレーム間ノイズ低減部の処理を説明するための図である。同図において、Yt-1>Y<Yt+1(Yが最小値)の場合における伝送によりノイズが重畳した輝度信号の1例が実線で示され、その輝度信号が伝送される前のノイズが重畳していない元輝度信号が破線で示されている。同図において、輝度値Yからノイズが除去される前の信号が左側に示されており、輝度値Yからノイズが除去された後の信号が右側に示されている。
 同図において、YがYt-1およびYt+1より小さいので、フレーム間ノイズ低減部51は、Yにフレーム間ノイズ量Nを加算することにより、輝度値Yを破線で示されたノイズが重畳していない元輝度信号の輝度値に近づけることができる。
 図6は、t番目のフレームの対象画素の輝度値が最大値の場合におけるフレーム間ノイズ低減部の処理を説明するための図である。同様に、同図において、Yt-1<Y>Yt+1(Yが最大値)の場合における伝送によりノイズが重畳した輝度信号の1例が実線で示され、その輝度信号が伝送される前のノイズが重畳していない元輝度信号が破線で示されている。同図において、輝度値Yからノイズが除去される前の信号が左側に示されており、輝度値Yからノイズが除去された後の信号が右側に示されている。
 同図において、YがYt-1およびYt+1より大きいので、フレーム間ノイズ低減部51は、Yからフレーム間ノイズ量Nを減算することにより、輝度値Yを破線で示されたノイズが重畳していない元輝度信号の輝度値に近づけることができる。
 続いて、水平方向ノイズ低減部52は、フレーム間ノイズ低減部51から供給された画像データの全ての画素において、各画素の輝度値Yと、その各画素の右隣の輝度値Yi+1と、その各画素の左隣の輝度値Yi-1とを比較する。
 各画素の輝度値Yが上記3つの輝度値(Y、Yi-1、Yi+1)の中で最大となるときは、水平方向ノイズ低減部52は、その画素の輝度値から水平ノイズ量Nを減じる。一方、各画素の輝度値Yが上記3つの輝度値(Y、Yi-1、Yi+1)の中で最小となるときは、水平方向ノイズ低減部52は、その画素の輝度値Yに水平ノイズ量Nを加算する。
 全ての画素で上記の処理をした後に、水平方向ノイズ低減部52は、処理後の画像データを垂直方向ノイズ低減部53へ供給する。
 水平ノイズ低減部52の上記の処理について詳しく説明する。図7は、水平ノイズ低減部52の処理を説明するための図である。同図の左側には、1フレームの画像において、同じ行の画素において、列がi-1番目の画素の輝度値Yi-1と、列がi番目の画素の輝度値Yと、列がi+1番目の画素の輝度値Yi+1と、が示されている。
 図8は、対象画素の輝度値が最小値の場合における水平ノイズ低減部の処理を説明するための図である。同図において、Yi-1>Y<Yi+1(Yが最小値)の場合における伝送によりノイズが重畳した輝度信号の1例が実線で示され、その輝度信号が伝送される前のノイズが重畳していない元輝度信号が破線で示されている。同図において、輝度値Yからノイズが除去される前の信号が左側に示されており、輝度値Yからノイズが除去された後の信号が右側に示されている。
 同図において、輝度値Yが輝度値Yi-1および輝度値Yi+1より小さいので、水平ノイズ低減部52は、輝度値Yに水平ノイズ量Nを加算することにより、輝度値Yを破線で示されたノイズが重畳していない元輝度信号の輝度値に近づけることができる。
 図9は、対象画素の輝度値が最大値の場合における水平ノイズ低減部の処理を説明するための図である。同図において、Yi-1<Y>Yi+1(Yが最大値)の場合における伝送によりノイズが重畳した輝度信号の1例が実線で示され、その輝度信号が伝送される前のノイズが重畳していない元輝度信号が破線で示されている。同図において、輝度値Yからノイズが除去される前の信号が左側に示されており、輝度値Yからノイズが除去された後の信号が右側に示されている。
 同図において、YがYi-1およびYi+1より大きいので、水平ノイズ低減部52は、Yに水平ノイズ量Nを加算することにより、輝度値Yを破線で示されたノイズが重畳していない元輝度信号の輝度値に近づけることができる。
 続いて、垂直方向ノイズ低減部53は、水平方向ノイズ低減部52から供給された画像データの全ての画素において、各画素の輝度値Yと、その各画素の上隣の輝度値Yj―1と、その各画素の下隣の輝度値Yj+1とを比較する。
 各画素の輝度値Yが上記3つの輝度値(Y、Yj-1、Yj+1)の中で最大となるときは、垂直方向ノイズ低減部53は、その画素の輝度値から垂直ノイズ量Nを減じる。一方、各画素の輝度値Yが上記3つの輝度値(Y、Yj-1、Yj+1)の中で最小となるときは、垂直方向ノイズ低減部53は、その画素の輝度値Yに水平ノイズ量Nを加算する。
 全ての画素で上記の処理をした後に、垂直方向ノイズ低減部53は、処理後の画像データを順次映像信号SOUTの一部として、画像調整部13へ供給する。
 垂直ノイズ低減部53の上記の処理について詳しく説明する。図10は、垂直ノイズ低減部53の処理を説明するための図である。同図の左側には、1フレームの画像において、同じ列の画素において、行がj-1番目の画素の輝度値Yj-1と、行がj番目の画素の輝度値Yと、行がj+1番目の画素の輝度値Yj+1と、が示されている。
 図11は、対象画素の輝度値が最小値の場合における垂直ノイズ低減部の処理を説明するための図である。同図において、Yj-1>Y<Yj+1(Yが最小値)の場合における伝送によりノイズが重畳した輝度信号の1例が実線で示され、その輝度信号が伝送される前のノイズが重畳していない元輝度信号が破線で示されている。同図において、輝度値Yからノイズが除去される前の信号が左側に示されており、輝度値Yからノイズが除去された後の信号が右側に示されている。
 同図において、YがYj-1およびYj+1より小さいので、垂直ノイズ低減部53は、Yに垂直ノイズ量Nを加算することにより、輝度値Yを破線で示されたノイズが重畳していない元輝度信号の輝度値に近づけることができる。
 図12は、対象画素の輝度値が最大値の場合における垂直ノイズ低減部の処理を説明するための図である。同図において、Yj-1<Y>Yj+1(Yが最大値)の場合における伝送によりノイズが重畳した輝度信号の1例が実線で示され、その輝度信号が伝送される前のノイズが重畳していない元輝度信号が破線で示されている。同図において、輝度値Yからノイズが除去される前の信号が左側に示されており、輝度値Yからノイズが除去された後の信号が右側に示されている。
 同図において、輝度値Yが輝度値Yj-1および輝度値Yj+1より大きいので、垂直ノイズ低減部53は、輝度値Yに水平ノイズ量Nを加算することにより、輝度値Yを破線で示されたノイズが重畳していない元輝度信号の輝度値に近づけることができる。
 図13は、第1の実施形態における水平ノイズ量検出部31aの機能ブロック図である。水平ノイズ量検出部31aは、対象輝度読出部(対象信号抽出部)60と、水平比較輝度読出部(比較信号抽出部)61と、比較部62と、輝度値差算出部(信号強度差算出部)63と、記憶部64と、最頻値抽出部65aと、水平ノイズ判定部(判定部)66aと、水平ノイズ量算出部69aとを備える。
 対象輝度読出部(対象信号抽出部)60は、雑音低減の対象となるフレームの画像から1フレーム前の画像データを一時記憶部21から読み出し、読み出した画像データの各画素の輝度値Yを比較部62へ供給する。
 水平比較輝度読出部(比較信号抽出部)61は、雑音低減の対象となるフレームの画像から1フレーム前の画像データを一時記憶部21から読み出し、読み出した画像データの各画素の右隣の画素の輝度値Yi+1と、各画素の左隣の画素の輝度値Yi-1と、を比較部62へ供給する。
 比較部62は、対象輝度読出部(対象信号抽出部)60から供給された輝度値Yと、水平比較輝度読出部(比較信号抽出部)61から供給された各画素の右隣の画素の輝度値Yi+1と、各画素の左隣の画素の輝度値Yi-1とを比較する。輝度値Yが、上記3つの輝度値(Y、Yi-1、Yi+1)の中で最大または最小の場合、比較部62は、輝度値差を算出する旨の信号と、輝度値Yiと、輝度値Yi+1と、輝度値Yi-1とを輝度値差算出部(信号強度差算出部)63へ供給する。
 上記処理について、具体例を挙げて説明する。図14は、水平ノイズ量検出部の処理について説明するための図である。同図の上図には、1フレームの画像が示されており、その1フレームの画像内に、対象画素とその対象画素の左隣の画素(比較画素1)とその対象画素の右隣の画素(比較画素2)とが示されている。
 同図の下図には、当該対象画素の輝度値Yiと当該比較画素1の輝度値Yi-1と当該比較画素2の輝度値Yi+1とを含む輝度信号が実線で示されており、破線でノイズが重畳していない場合の輝度信号が破線で示されている。
 同図の下図において、対象画素の輝度値Yが、対象画素の輝度値Yと当該比較画素1の輝度値Yi-1と当該比較画素2の輝度値Yi+1との中で最小値となっている。この場合、比較部62は、輝度値差の算出を指示する旨の信号と、輝度値Yと、輝度値Yi+1と、輝度値Yi-1とを輝度値差算出部(信号強度差算出部)63へ供給する。また、比較部62は、1フレームにおける全ての画素において、その画素における輝度値とその画素の水平方向に隣の両画素との比較が終了した場合、1フレーム分の輝度値の比較が終了した旨の信号を最頻値抽出部65aへ供給する。
 続いて、図13に戻って、輝度値差算出部(信号強度差算出部)63について説明する。輝度値差算出部(信号強度差算出部)63は、比較部62から輝度値差を算出する旨の信号を受け取った場合、対象画素の輝度値Yと対象画素の左隣の画素の輝度値Yi-1との差の絶対値と、対象画素の輝度値Yと対象画素の右隣の画素の輝度値Yi+1との差の絶対値との平均値ΔY(バー)(以下、水平方向の輝度値差の平均と称する)を下記式(1)により、算出する。ここで、ΔY(バー)は、ΔYの平均を意味する。
Figure JPOXMLDOC01-appb-M000001
 図15は、記憶部64に記憶されている水平方向の輝度値差の平均とその出現頻度が関連付けられたテーブルT1の1例を示した図である。同図において、水平方向の輝度値差の平均とその頻度出現とが関連付けられている。
 図13に戻って、輝度値差算出部(信号強度差算出部)63は、算出した水平方向の輝度値差の平均ΔY(バー)に対応する記憶部64内のテーブルT1の出願頻度の数を1増やす。
 続いて、最頻度抽出部65aについて説明する。最頻度抽出部65aは、1フレーム分の比較が終了した旨の信号を受信すると、記憶部64に記憶されているテーブルT1から出現頻度の最も高い水平方向の輝度値差の平均(すなわち最頻値)mを抽出する。例えば、図15に記載のテーブルT1の例では、最頻度抽出部65aは、出現頻度が最も高い水平方向の輝度値差の平均6を抽出する。
 輝度値差算出部(信号強度差算出部)63の上記の処理について詳細に説明する。図16は、水平方向の輝度値差の平均の頻度分布の1例を示した図である。横軸が水平方向の輝度値の差であり、縦軸がその出現頻度である。同図において、出現頻度が最も多い水平方向の輝度値差の平均(最頻値)が6である。この例の場合、輝度値差算出部(信号強度差算出部)63は、最頻値として6を抽出する。
 図13に戻って、最頻度抽出部65aは、抽出した最頻値mを水平ノイズ量算出部69aへ供給する。また、最頻度抽出部65aは、抽出した最頻値に対応する出現頻度(以下、最頻値における出現頻度と称する)を記憶部64に記憶されているテーブルT1から読出し、読み出した最頻値における出現頻度Fmaxを水平ノイズ判定部(判定部)66a内の最頻値割合算出部67aへ供給する。
 続いて、水平ノイズ判定部(判定部)66aについて説明する。水平ノイズ判定部(判定部)66aは、最頻値割合算出部67aと、水平係数算出部68aとを備える。
 最頻値割合算出部67aは、記憶部64に記憶されているテーブルT1の所定の範囲(例えば、輝度値差の平均が1から32まで)の輝度値差の平均に対応する出現頻度を読み出し、読み出した出現頻度の和を全検出画素数Fallとして算出する。
 なお、本実施形態では、最頻値割合算出部67aは、記憶部64に記憶されているテーブルT1の所定の範囲(例えば、輝度値差の平均が1から32まで)の輝度値差の平均に対応する出現頻度を読み出すこととしたが、これに限らず、最頻値割合算出部67aは、記憶部64に記憶されているテーブルT1の全ての範囲の輝度値差の平均に対応する出現頻度を読み出してもよい。
 最頻値割合算出部67aは、算出した全検出画素数Fallに占める最頻値の出現頻度Fmaxの割合α[%]を以下の式(2)により算出する。
 α=(Fmax/Fall)×100 ・・・(2)
 最頻値割合算出部67aは、算出した全検出画素数に占める最頻値の出現頻度の割合αを水平係数算出部68aへ供給する。
 続いて、水平係数算出部68aについて説明する。水平係数算出部68aは、全検出画素数に占める最頻値の出現頻度の割合αが所定の値以下の場合には、ノイズを除去すると判定し、水平方向のノイズを除去するか否かを示す水平係数kを1とする。
 例えば、水平係数算出部68aは、10/αが0.5以上の場合、ノイズを除去すると判定し、水平係数kを1とする。すなわち、水平係数算出部68aは、全検出画素数に占める最頻値の出現頻度の割合αが20[%]以下の場合には、ノイズを除去すると判定する。
 一方、水平係数算出部68aは、全検出画素数に占める最頻値の出現頻度の割合αが所定の値を超える場合には、ノイズを除去しないと判定し、水平係数kを0とする。
 例えば、水平係数算出部68aは、10/αが0.5より小さい場合、水平係数算出部68aは、ノイズを除去しないと判定し、水平係数kを0とする。すなわち、水平係数算出部68aは、全検出画素数に占める最頻値の出現頻度の割合αが20[%]を超える場合には、ノイズを除去しないと判定する。
 水平係数算出部68aは、算出した水平係数kを水平ノイズ量算出部69aへ供給する。また、水平係数算出部68aは、記憶部64に記憶されているテーブルT1の出現頻度をリセットするために、出現頻度を全て0に変更する。
 なお、本実施形態では、水平係数算出部68aがノイズを除去するか否か判定する処理について説明したが、これに限らず、水平係数算出部68aが、ノイズを除去するか否か判定せずに、水平係数k=10/αとして水平係数kを算出し、算出した水平係数kを水平ノイズ量算出部69aへ供給してもよい。
 水平ノイズ量算出部69aは、最頻値抽出部65aから供給されたmと、水平係数算出部68aから供給された水平係数kとを乗じて、水平ノイズ量Nを下記式(3)により算出する。
 N=k×m ・・・(3)
 水平ノイズ量算出部69aは、算出した水平ノイズ量Nを平均ノイズ量算出部33と水平方向ノイズ低減部52とへ供給する。
 続いて、垂直ノイズ量検出部32aについて説明する。図17は、第1の実施形態における垂直ノイズ量検出部32aの機能ブロック図である。垂直ノイズ量検出部32aは、対象輝度読出部(対象信号抽出部)70と、垂直比較輝度読出部(比較信号抽出部)71と、比較部72と、輝度値差算出部(信号強度差算出部)73と、記憶部74と、最頻値抽出部75aと、垂直ノイズ判定部(判定部)76aと、垂直ノイズ量算出部79aとを備える。
 対象輝度読出部(対象信号抽出部)70は、雑音低減の対象となるフレームの画像から1フレーム前の画像データを一時記憶部21から読み出し、読み出した画像データの各画素の輝度値Yを比較部72へ供給する。
 垂直比較輝度読出部(比較信号抽出部)71は、雑音低減の対象となるフレームの画像から1フレーム前の画像データを一時記憶部21から読み出し、読み出した画像データの各画素の上隣の画素の輝度値Yj―1と、各画素の下隣の画素の輝度値Yj+1と、を比較部72へ供給する。
 比較部72は、対象輝度読出部(対象信号抽出部)70から供給された輝度値Yと、垂直比較輝度読出部(比較信号抽出部)71から供給された各画素の上隣の画素の輝度値Yj―1と、各画素の下隣の画素の輝度値Yj+1とを比較する。輝度値Yが、上記3つの輝度値の中で最大または最小の場合、比較部72は、輝度値差の算出を指示する旨の信号と、輝度値Yと、輝度値Yj-1と、輝度値Yj+1とを輝度値差算出部(信号強度差算出部)73へ供給する。
 上記処理について、具体例を挙げて説明する。図18は、垂直ノイズ量検出部の処理について説明するための図である。同図の上図には、1フレームの画像が示されており、その1フレームの画像内に、対象画素とその対象画素の上隣の画素(比較画素1)とその対象画素の下隣の画素(比較画素2)とが示されている。
 同図の下図には、当該対象画素の輝度値Yと当該比較画素1の輝度値Yj-1と当該比較画素2の輝度値Yj+1とを含む輝度信号が実線で示されており、破線でノイズが重畳していない場合の輝度信号が破線で示されている。
 同図の下図において、対象画素の輝度値Yが、対象画素の輝度値Yと当該比較画素1の輝度値Yj-1と当該比較画素2の輝度値Yj+1との中で最小値となっている。この場合、比較部72は、輝度値差を算出する旨の信号と、輝度値Yと、輝度値Yj-1と、輝度値Yj+1とを輝度値差算出部(信号強度差算出部)73へ供給する。また、比較部72は、1フレームにおける全ての画素において、その画素における輝度値とその画素の水平方向に隣の両画素との比較が終了した場合、1フレーム分の輝度値の比較が終了した旨の信号を最頻値抽出部75aへ供給する。
 続いて、図17に戻って、輝度値差算出部(信号強度差算出部)73について説明する。輝度値差算出部(信号強度差算出部)73は、比較部72から輝度値差を算出する旨の信号を受け取った場合、対象画素の輝度値Yと対象画素の上隣の画素の輝度値Yj-1との差の絶対値と、対象画素の輝度値Yと対象画素の下隣の画素の輝度値Yj+1との差の絶対値との平均値ΔY(バー)(以下、垂直方向の輝度値差の平均と称する)を、下記式(4)により算出する。ここで、ΔY(バー)は、ΔYの平均を意味する。
Figure JPOXMLDOC01-appb-M000002
 図19は、記憶部74に記憶されている垂直方向の輝度値差の平均とその出現頻度が関連付けられたテーブルT2の1例を示した図である。同図において、垂直方向の輝度値差の平均とその頻度出現とが関連付けられている。
 図17に戻って、輝度値差算出部(信号強度差算出部)73は、算出した輝度値差の平均ΔY(バー)に対応する記憶部74内のテーブルT2の出願頻度の数を1増やす。
 続いて、最頻度抽出部75aについて説明する。最頻度抽出部75aは、1フレーム分の比較が終了した旨の信号を受信すると、記憶部74に記憶されているテーブルT2から出現頻度の最も高い垂直方向の輝度値差の平均(すなわち最頻値)mを抽出する。例えば、図19に記載のテーブルT2の例では、最頻度抽出部75aは、出現頻度が最も高い水平方向の輝度値差の平均4を抽出する。
 輝度値差算出部(信号強度差算出部)73の上記の処理について詳細に説明する。図20は、垂直方向の輝度値差の平均の頻度分布の1例を示した図である。横軸が垂直方向の輝度値の差であり、縦軸がその出現頻度である。同図において、出現頻度が最も多い垂直方向の輝度値差の平均(最頻値)が4である。この例の場合、輝度値差算出部(信号強度差算出部)73は、最頻値として4を抽出する。
 図17に戻って、最頻度抽出部75aは、抽出した最頻値mを水平ノイズ量算出部79aへ供給する。また、最頻度抽出部75aは、抽出した最頻値に対応する出現頻度を記憶部74に記憶されているテーブルT2から読出し、読み出した最頻値における出現頻度Fmaxを垂直ノイズ判定部(判定部)76a内の最頻値割合算出部77aへ供給する。
 続いて、垂直ノイズ判定部(判定部)76aについて説明する。垂直ノイズ判定部(判定部)76aは、最頻値割合算出部77aと、垂直用係数算出部78aとを備える。
 最頻値割合算出部77aは、記憶部74に記憶されているテーブルT2の所定の範囲(例えば、輝度値差の平均が1から32まで)の輝度値差の平均に対応する出現頻度を読み出し、読み出した出現頻度の和を全検出画素数Fallとして算出する。
 なお、本実施形態では、最頻値割合算出部77aは、記憶部74に記憶されているテーブルT2の所定の範囲(例えば、輝度値差の平均が1から32まで)の輝度値差の平均に対応する出現頻度を読み出すこととしたが、これに限らず、最頻値割合算出部77aは、記憶部74に記憶されているテーブルT2の全ての範囲の輝度値差の平均に対応する出現頻度を読み出してもよい。
 最頻値割合算出部77aは、算出した全検出画素数Fallに占める最頻値の出現頻度Fmaxの割合α[%]を以下の式(5)により算出する。
 α=(Fmax/Fall)×100 ・・・(5)
 最頻値割合算出部77aは、算出した全検出画素数に占める最頻値の出現頻度の割合αを水平係数算出部68aへ供給する。
 続いて、垂直用係数算出部78aについて説明する。垂直用係数算出部78aは、全検出画素数に占める最頻値の出現頻度の割合αが所定の値以下の場合には、ノイズを除去すると判定し、垂直方向のノイズを除去するか否かを示す垂直係数kを1とする。
 例えば、垂直用係数算出部78aは、10/αが0.5以上の場合、ノイズを除去すると判定し、垂直係数kを1とする。すなわち、垂直係数算出部78aは、全検出画素数に占める最頻値の出現頻度の割合αが20[%]以下の場合には、ノイズを除去すると判定する。
 一方、垂直係数算出部78aは、全検出画素数に占める最頻値の出現頻度の割合αが所定の値を超える場合には、ノイズを除去しないと判定し、垂直係数kを0とする。
 例えば、垂直係数算出部78aは、10/αが0.5より小さい場合、垂直係数算出部78aは、ノイズを除去しないと判定し、垂直係数kを0とする。すなわち、垂直係数算出部78aは、全検出画素数に占める最頻値の出現頻度の割合αが20[%]を超える場合には、ノイズを除去しないと判定する。
 垂直係数算出部78aは、算出した垂直係数kを垂直ノイズ量算出部79aへ供給する。また、垂直係数算出部78aは、記憶部74に記憶されているテーブルT2の出現頻度をリセットするために、出現頻度を全て0に変更する。
 なお、本実施形態では、垂直係数算出部78aがノイズを除去するか否か判定する処理について説明したが、これに限らず、垂直係数算出部78aが、ノイズを除去するか否か判定せずに、垂直係数k=10/αとして垂直係数kを算出し、算出した垂直係数kを垂直ノイズ量算出部79aへ供給してもよい。
 垂直ノイズ量算出部79aは、最頻値抽出部75aから供給されたmと、垂直係数算出部78aから供給された垂直係数kとを乗じて、水平ノイズ量Nを下記式(6)により算出する。
 N=k×m ・・・(6)
 垂直ノイズ量算出部79aは、算出した垂直ノイズ量Nを平均ノイズ量算出部33と垂直方向ノイズ低減部53とへ供給する。
 図21は、表示装置全体の処理の流れを示したフローチャートである。まず、受信部11は、アンテナから電波を受信する。受信部11は、受信した電波を映像信号に変換する(ステップS101)。受信部11は、変換した映像信号を雑音低減部12aへ供給する。
 次に、雑音低減部12aは、映像信号に含まれる輝度信号のノイズを低減する(ステップS102)。雑音低減部12aは、ノイズを低減した輝度信号を画像調整部13へ供給する。
 次に、画像調整部13は、雑音低減部12aから供給されたノイズを低減した輝度信号を受け取る。画像調整部13は、そのノイズを低減した輝度信号をI/P変換する(ステップS103)。画像調整部13は、I/P変換された信号の画素数を調整する。画像調整部13は、その調整された信号をタイミング制御部14と、ソースドライブ15とへ供給する。
 次に、タイミング制御部14は、画像調整部13から供給された調整された信号を受け取る。タイミング制御部14は、その調整された信号を平面上の画素に配分するためのクロック信号を生成する(ステップS104)。タイミング制御部14は、ソースドライバ部15と、ゲートドライバ部16へ、生成したクロック信号を供給する。
 次に、ソースドライバ15は、その調整された信号から液晶駆動用の階調化された電圧を生成する(ステップS105)。ソースドライバ部15は、ソース線ごとに、その階調化された電圧を、内部のホールド回路で保持する。
 次に、ゲートドライバ部16は、所定の電圧を表示部17のTFTのゲート線に供給する(ステップS106)。
 次に、ソースドライバ部15は、画面の縦方向の配列に対して、クロック信号に同期して、階調化された電圧を表示部17のTFTのソース線に供給する(ステップS107)。
 これにより、各ゲート線が選択されている時間内に映像データが、ソース線に順次供給され、必要なデータがTFTを介して画素電極に書き込まれる。これによって、画素電極は、画素電極に掛かる電圧に応じて、対応する液晶の透過率を変更する。これによって、表示部17は、映像信号を表示する(ステップS108)。以上で、本フローチャートの処理を終了する。
 図22は、図21のステップS102の雑音低減処理の流れを示したフローチャートである。まず、水平ノイズ量検出部31aは、水平ノイズ量を算出し、平均ノイズ量算出部33と水平方向ノイズ低減部52とへ供給する(ステップS201)。
 次に、垂直ノイズ量検出部32aは、垂直ノイズ量を算出し、平均ノイズ量算出部33と垂直方向ノイズ低減部53とへ供給する(ステップS202)。
 次に、平均ノイズ量算出部33は、水平ノイズ量検出部31aから供給された水平ノイズ量と垂直ノイズ量検出部32aから供給された垂直ノイズ量との平均をフレーム間ノイズ量として算出し、算出したフレーム間ノイズ量をフレーム間ノイズ量低減部51へ供給する(ステップS203)。
 続いて、フレーム間ノイズ低減部51は、下記に示すステップS204からステップS209までの処理を行うことによって、フレーム間のノイズを除去する。まず、フレーム間ノイズ低減部51は、一時記憶部21から対象画素の輝度値を読み出し、その対象画素の輝度値とフレーム間用比較画素抽出部41から供給された対象画素とフレーム内の位置が同じであって、対象画素を含むフレームの前後のフレームの輝度値とを比較する(ステップ204)。
 対象画素の輝度値が上記3つの画素の輝度値の中で最小の場合(ステップS204:YES)、フレーム間ノイズ低減部51は、対象画素の輝度値に平均ノイズ量算出部33から供給されたフレーム間ノイズ量Nを加算する(ステップS205)。一方、対象画素の輝度値が上記3つの画素の輝度値の中で最小でない場合(ステップS204:NO)、フレーム間ノイズ低減部51は、ステップS206の処理に進む。
 次に、対象画素の輝度値が上記3つの画素の輝度値の中で最大の場合(ステップS206:YES)、フレーム間ノイズ低減部51は、対象画素の輝度値から平均ノイズ量算出部33から供給されたフレーム間ノイズ量Nを減算する(ステップS207)。
 対象画素の輝度値が上記3つの画素の輝度値の中で中央値を取る場合(ステップS206:NO)、フレーム間ノイズ低減部51は、ステップS208の処理に進む。
 次に、フレーム間ノイズ低減部51は、1フレーム内の全ての画素で、その画素の輝度値と、当該画素とフレーム内の位置が同じであって当該画素を含むフレームの前後のフレームの輝度値とを比較したか否か判定する(ステップS208)。
 全ての画素で輝度値を比較していない場合(ステップS208:NO)、フレーム間ノイズ低減部51は、ステップS204の処理に戻る。全ての画素で輝度値を比較した場合(ステップS208:YES)、フレーム間ノイズ低減部51は、水平方向ノイズ低減部52にフレーム間のノイズを低減したフレームの画像データを供給する(ステップS209)。
 図23は、図22のフローチャートの続きである。続いて、水平方向ノイズ低減部52は、下記に示すステップS210からステップS215までの処理を行うことによって、1フレームの画像中に重畳している水平方向のノイズを除去する。まず、水平方向ノイズ低減部52は、一時記憶部21から対象画素の輝度値を読み出し、その対象画素の輝度値と水平方向用比較画素抽出部44から供給された対象画素の両隣に位置する画素の輝度値とを比較する(ステップ210)。
 対象画素の輝度値が上記3つの画素の輝度値の中で最小の場合(ステップS210:YES)、水平方向ノイズ低減部52は、対象画素の輝度値に水平ノイズ量検出部31aから供給された水平ノイズ量Nを加算する(ステップS211)。一方、対象画素の輝度値が上記3つの画素の輝度値の中で最小でない場合(ステップS210:NO)、水平方向ノイズ低減部52は、ステップS212の処理に進む。
 次に、対象画素の輝度値が上記3つの画素の輝度値の中で最大の場合(ステップS212:YES)、水平方向ノイズ低減部52は、対象画素の輝度値から水平ノイズ量検出部31aから供給された水平ノイズ量Nを減算する(ステップS213)。
 対象画素の輝度値が上記3つの画素の輝度値の中で中央値を取る場合(ステップS212:NO)、水平方向ノイズ低減部52は、ステップS214の処理に進む。
 次に、水平方向ノイズ低減部52は、1フレーム内の全ての画素で、その画素の輝度値と、当該画素の両隣に位置する画素の輝度値とを比較したか否か判定する(ステップS214)。
 全ての画素で輝度値を比較していない場合(ステップS214:NO)、水平方向ノイズ低減部52は、ステップS210の処理に戻る。全ての画素で輝度値を比較した場合(ステップS214:YES)、水平方向ノイズ低減部52は、垂直方向ノイズ低減部53に水平方向のノイズを低減したフレームの画像データを供給する(ステップS215)。
 続いて、垂直方向ノイズ低減部53は、下記に示すステップS216からステップS221までの処理を行うことによって、1フレームの画像中に重畳している垂直方向のノイズを除去する。まず、垂直方向ノイズ低減部53は、一時記憶部21から対象画素の輝度値を読み出し、その対象画素の輝度値と垂直方向用比較画素抽出部47から供給された対象画素の上下隣に位置する画素の輝度値とを比較する(ステップ216)。
 対象画素の輝度値が上記3つの画素の輝度値の中で最小の場合(ステップS216:YES)、垂直方向ノイズ低減部53は、対象画素の輝度値に垂直ノイズ量検出部32aから供給された垂直ノイズ量Nを加算する(ステップS217)。一方、対象画素の輝度値が上記3つの画素の輝度値の中で最小でない場合(ステップS216:NO)、垂直方向ノイズ低減部53は、ステップS218の処理に進む。
 次に、対象画素の輝度値が上記3つの画素の輝度値の中で最大の場合(ステップS218:YES)、垂直方向ノイズ低減部53は、対象画素の輝度値から垂直ノイズ量検出部32aから供給された垂直ノイズ量Nを減算する(ステップS219)。
 対象画素の輝度値が上記3つの画素の輝度値の中で中央値を取る場合(ステップS218:NO)、垂直方向ノイズ低減部53は、ステップS220の処理に進む。
 次に、垂直方向ノイズ低減部53は、1フレーム内の全ての画素で、その画素の輝度値と、当該画素の上下隣に位置する画素の輝度値とを比較したか否か判定する(ステップS220)。
 全ての画素で輝度値を比較していない場合(ステップS220:NO)、垂直方向ノイズ低減部53は、ステップS216の処理に戻る。全ての画素で輝度値を比較した場合(ステップS220:YES)、垂直方向ノイズ低減部53は、画像調整部13にノイズを低減したフレームの画像データを含む映像信号SOUTを供給する(ステップS215)。以上で、本フローチャートの処理を終了する。
 図24は、図22のステップS201の水平ノイズ量算出の流れを示したフローチャートである。まず、対象輝度読出部(対象信号抽出部)60は、対象画素の輝度値を読み出す(ステップS301)。次に、水平比較輝度読出部(比較信号抽出部)61は、対象画素の両隣の画素の輝度値を読み出す(ステップS302)。
 次に、比較部62は、対象画素の輝度値と、対象画素の左隣の画素(図14で示された比較画素1)の輝度値、対象画素の右隣の画素(図14で示された比較画素2)の輝度値とを比較する(ステップS303)。上記3つの輝度値の中で、対象画素の輝度値が最大または最小となる場合(ステップS303:YES)、比較部62は、輝度値差の算出を指示する旨の信号を輝度値差算出部(信号強度差算出部)63へ供給する。
 輝度値差算出部(信号強度差算出部)63は、対象画素の輝度値と対象画素の左隣の画素の輝度値の差の絶対値と対象画素の輝度値と対象画素の右隣の画素の輝度値の差の絶対値の平均(輝度値差の平均)を算出する。輝度値差算出部(信号強度差算出部)63は、記憶部64に記憶されているテーブルT1において、算出した輝度値差の平均に対応する出現頻度の数を1増やす。
 上記3つの輝度値の中で、対象画素の輝度値が中央値を取る場合(ステップS303:NO)、比較部62は、ステップS305の処理に進む。
 次に、比較部62は、1フレーム内の全ての画素で輝度値を比較したか否か判定する(ステップS305)。比較部62が1フレーム内の全ての画素で輝度値を比較していない場合(ステップS305:NO)、水平ノイズ量検出部31aはステップS301の処理に戻る。
 一方、比較部62が1フレーム内の全ての画素で輝度値を比較した場合(ステップS305:YES)、比較部62は、最頻値抽出部65aへ1フレーム分の輝度値の比較が終了した旨の信号を供給する。
 次に、最頻値抽出部65aは、記憶部64に記憶されているテーブルT1の出現頻度が最も高い輝度値差の平均(最頻値)mを抽出し、水平ノイズ量算出部69aへ供給する(ステップS306)。また、最頻値抽出部65aは、最頻値mに対応する輝度値差の平均(最頻値における出現頻度)Fmaxを記憶部64に記憶されているテーブルT1から読み出し、その最頻値における出現頻度Fmaxを最頻値割合算出部67aへ供給する。
 次に、最頻値割合算出部67aは、記憶部64に記憶されているテーブルT1の所定の範囲(例えば、輝度値差の平均が1から32まで)の輝度値差の平均に対応する出現頻度を読み出し、読み出した出現頻度の和を全検出画素数Fallとして算出する。最頻値割合算出部67aは、算出した全検出画素数Fallに占める最頻値の出現頻度Fmaxの割合α[%]を上式(2)により算出する(ステップS307)。最頻値割合算出部67aは、算出した全検出画素数に占める最頻値の出現頻度の割合αを水平係数算出部68aへ供給する。
 次に、全検出画素数に占める最頻値の出現頻度の割合αが20[%]以下の場合(ステップS308:YES)、水平係数算出部68aは、ノイズを除去すると判定し、水平方向のノイズを除去するか否かを示す水平係数kを1とする(ステップS309)。
 一方、全検出画素数に占める最頻値の出現頻度の割合αが20[%]を超える場合(ステップS308:NO)、水平係数算出部68aは、ノイズを除去しないと判定し、水平方向のノイズを除去するか否かを示す水平係数kを0とする(ステップS310)。
 また、水平係数算出部68aは、算出した水平係数kを水平ノイズ量算出部69aへ供給する。また、水平係数算出部68aは、記憶部64に記憶されているテーブルT1の出現頻度をリセットするために、出現頻度を全て0に変更する。
 次に、水平ノイズ量算出部69aは、最頻値抽出部65aから供給された最頻値mと、水平係数算出部68aから供給された水平係数kとを乗じて、水平ノイズ量Nを上式(3)により算出し、算出した水平ノイズ量Nを平均ノイズ量算出部33と水平ノイズ低減部52とへ供給する(ステップS311)。以上で、本フローチャートの処理を終了する。
 図25は、図22のステップS202の垂直ノイズ量算出の流れを示したフローチャートである。まず、対象輝度読出部(対象信号抽出部)70は、対象画素の輝度値を読み出す(ステップS401)。次に、垂直比較輝度読出部(比較信号抽出部)71は、対象画素の上下隣の画素の輝度値を読み出す(ステップS402)。
 次に、比較部72は、対象画素の輝度値と、対象画素の上隣の画素(図18で示された比較画素1)の輝度値、対象画素の下隣の画素(図18で示された比較画素2)の輝度値とを比較する(ステップS403)。上記3つの輝度値の中で、対象画素の輝度値が最大または最小となる場合(ステップS403:YES)、比較部72は、輝度値差の算出を指示する旨の信号を輝度値差算出部(信号強度差算出部)73へ供給する。
 輝度値差算出部(信号強度差算出部)73は、対象画素の輝度値と対象画素の上隣の画素の輝度値の差の絶対値と対象画素の輝度値と対象画素の下隣の画素の輝度値の差の絶対値の平均(輝度値差の平均)を算出する。輝度値差算出部(信号強度差算出部)73は、記憶部74に記憶されているテーブルT2において、算出した輝度値差の平均に対応する出現頻度の数を1増やす。
 上記3つの輝度値の中で、対象画素の輝度値が中央値を取る場合(ステップS403:NO)、比較部72は、ステップS405の処理に進む。
 次に、比較部72は、1フレーム内の全ての画素で輝度値を比較したか否か判定する(ステップS405)。比較部72が1フレーム内の全ての画素で輝度値を比較していない場合(ステップS305:NO)、垂直ノイズ量検出部32aはステップS401の処理に戻る。
 一方、比較部72が1フレーム内の全ての画素で輝度値を比較した場合(ステップS405:YES)、比較部72は、最頻値抽出部75aへ1フレーム分の輝度値の比較が終了した旨の信号を供給する。
 次に、最頻値抽出部75aは、記憶部74に記憶されているテーブルT2の出現頻度が最も高い輝度値差の平均(最頻値)mを抽出し、垂直ノイズ量算出部79aへ供給する(ステップS406)。また、最頻値抽出部75aは、最頻値mに対応する輝度値差の平均(最頻値における出現頻度)Fmaxを記憶部74に記憶されているテーブルT2から読み出し、その最頻値における出現頻度Fmaxを最頻値割合算出部77aへ供給する。
 次に、最頻値割合算出部77aは、記憶部74に記憶されているテーブルT2の所定の範囲(例えば、輝度値差の平均が1から32まで)の輝度値差の平均に対応する出現頻度を読み出し、読み出した出現頻度の和を全検出画素数Fallとして算出する。最頻値割合算出部77aは、算出した全検出画素数Fallに占める最頻値の出現頻度Fmaxの割合α[%]を上式(5)により算出する(ステップS407)。最頻値割合算出部77aは、算出した全検出画素数に占める最頻値の出現頻度の割合αを水平係数算出部78aへ供給する。
 次に、全検出画素数に占める最頻値の出現頻度の割合αが20[%]以下の場合(ステップS408:YES)、垂直係数算出部78aは、ノイズを除去すると判定し、垂直方向のノイズを除去するか否かを示す水平係数kを1とする(ステップS409)。
 一方、全検出画素数に占める最頻値の出現頻度の割合αが20[%]を超える場合(ステップS408:NO)、垂直係数算出部78aは、ノイズを除去しないと判定し、垂直方向のノイズを除去するか否かを示す垂直係数kを0とする(ステップS410)。
 また、垂直係数算出部78aは、算出した垂直係数kを垂直ノイズ量算出部79aへ供給する。また、垂直係数算出部78aは、記憶部64に記憶されているテーブルT2の出現頻度をリセットするために、出現頻度を全て0に変更する。
 次に、垂直ノイズ量算出部79aは、最頻値抽出部75aから供給された最頻値mと、垂直係数算出部78aから供給された垂直係数kとを乗じて、垂直ノイズ量Nを上式(3)により算出し、算出した垂直ノイズ量Nを平均ノイズ量算出部33と垂直ノイズ低減部53とへ供給する(ステップS411)。以上で、本フローチャートの処理を終了する。
 以上に示したように、雑音低減部12aは、対象画素の輝度値と所定の比較画素の輝度値との差の頻度分布に占める最頻値の頻度に基づいて、雑音低減するか否かを判定する。これにより、雑音低減部12aは、ノイズが所定の量よりも多い画像に対してはノイズの低減処理をするが、ノイズが所定の量よりも少ない画像に対してはノイズの低減処理をしないので、ノイズが所定の量よりも少ない画像において、その画像の精細感が失われたり、エッジがぼやけたりすることを防ぐことができる。
 なお、本発明の第1の実施形態では、水平ノイズ判定部(判定部)66aおよび垂直ノイズ判定部(判定部)76aは全検出画素に占める最頻値の出現頻度の割合に基づいて、ノイズを除去するか否か判定したが、これに限らず、全検出画素に占める所定の輝度値差の平均の出現頻度の割合に基づいて、ノイズを除去するか否か判定してもよい。
 <第1の実施形態の変形例>
 なお、本発明の第1の実施形態では、水平ノイズ判定部(判定部)66aおよび垂直ノイズ判定部(判定部)76aは全検出画素に占める最頻値の出現頻度の割合に基づいて、ノイズを除去するか否か判定したが、これに限定されるものではない。水平ノイズ判定部(判定部)66aおよび垂直ノイズ判定部(判定部)76aは、最頻値が所定の閾値を超える場合にノイズを除去すると判定し、最頻値が所定の閾値以下の場合にノイズを除去しないと判定してもよい。
 具体的に、上記の処理について説明する。図26は、ノイズ量が多い画像における輝度値差の平均の頻度分布の1例を示した図である。横軸は、輝度値差の平均、縦軸はその出現頻度を示している。同図において、最頻値は6である。ここで、例えば、水平ノイズ判定部(判定部)66aおよび垂直ノイズ判定部(判定部)76aがノイズを除去すると判定する閾値Thrを3とすると、当該最頻値6は上記閾値Thrよりも大きいので、水平ノイズ判定部(判定部)66aおよび垂直ノイズ判定部(判定部)76aはノイズを除去すると判定する。
 図27は、ノイズ量が少ない画像における輝度値差の平均の頻度分布の1例を示した図である。横軸は、輝度値差の平均、縦軸はその出現頻度を示している。同図において、最頻値は2である。ここで、例えば、水平ノイズ判定部(判定部)66aおよび垂直ノイズ判定部(判定部)76aがノイズを除去すると判定する閾値Thrを3とすると、当該最頻値2は上記閾値Thrよりも小さいので、水平ノイズ判定部(判定部)66aおよび垂直ノイズ判定部(判定部)76aはノイズを除去しないと判定する。
 これにより、水平ノイズ判定部(判定部)66aおよび垂直ノイズ判定部(判定部)76aは、最頻値と所定の閾値との比較に基づいて、ノイズを除去するか否かを判定することができる。これにより、雑音低減部12aは、ノイズが所定の量よりも多い画像に対してはノイズの低減処理をするが、ノイズが所定の量よりも少ない画像に対してはノイズの低減処理をしないので、ノイズが所定の量よりも少ない画像において、その画像の精細感が失われたり、エッジがぼやけたりすることを防ぐことができる。
 <第2の実施形態>
 次に、本発明の第2の実施形態について説明する。図28は、本発明の第2の実施形態における表示装置の機能ブロック図である。なお、図1と共通する要素には同一の符号を付し、その具体的な説明を省略する。
 図28の表示装置10bの構成は、図1の表示装置10aの構成に対して、雑音低減部12aを、雑音低減部12bに変更したものとなっている。
 図29は、本発明の第2の実施形態における雑音低減部の機能ブロック図である。なお、図3と共通する要素には同一の符号を付し、その具体的な説明を省略する。
 図29の雑音低減部12bの構成は、図3の雑音低減部12aの構成に対して、ノイズ量算出部30aをノイズ量算出部30bに変更したものである。
 その変更の詳細について説明すると、図29のノイズ量算出部30bの構成は、図3のノイズ量算出部30aの構成に対して、水平ノイズ量検出部31aを水平ノイズ量検出部31bに、垂直ノイズ量検出部32aを垂直ノイズ量検出部32bに、変更したものとなっている。
 図30は、第2の実施形態における水平ノイズ量検出部の機能ブロック図である。なお、図13と共通する要素には同一の符号を付し、その具体的な説明を省略する。
 図30の水平ノイズ量検出部31bの構成は、図13の水平ノイズ量検出部31aの構成に対して、最頻値抽出部65aを最頻値抽出部65bに、水平ノイズ判定部(判定部)66aを水平ノイズ判定部(判定部)66bに、水平ノイズ量算出部69aを水平ノイズ量算出部69bに変更したものである。
 最頻値抽出部65bは、記憶部64に記憶されているテーブルT1から出現頻度が最も高い輝度値差の平均(最頻値)mを抽出し、抽出した最頻値を水平ノイズ量算出部69bへ供給する。
 水平ノイズ判定部(判定部)66bは、閾値幅抽出部67bと水平係数算出部68bとを備える。閾値幅抽出部67bは、記憶部64に記憶されているテーブルT1から所定の閾値(例えば、最頻値の出現頻度の4分の1)を超える出現頻度の数wを計数し、計数した出現頻度の数wを水平計数算出部68bへ供給する。
 上記の閾値幅抽出部67bの処理について、具体的に説明する。図31は、ノイズ量が多い画像における輝度値差の平均の頻度分布において、閾値幅抽出部の処理を説明するための図である。横軸は輝度値差の平均、縦軸はその出現頻度である。同図において、閾値Th1を最頻値の出現頻度の4分の1にすると、その閾値Th1よりも出現頻度が高い輝度値差の平均は、2から17までであり、その幅は16である。閾値幅抽出部67bは、この幅を上記出現頻度の数wとして計数する。
 図32は、ノイズ量が少ない画像における輝度値差の平均の頻度分布において、閾値幅抽出部の処理を説明するための図である。横軸は輝度値差の平均、縦軸はその出現頻度である。同図において、閾値Th2を最頻値の出現頻度の4分の1にすると、その閾値Th2よりも出現頻度が高い輝度値差の平均は、1から3までであり、その幅は3である。閾値幅抽出部67bは、この幅を上記出現頻度の数wとして計数する。
 図31の出現頻度の数w=10と図32の出現頻度の数w=3とを比べると、ノイズの多い画像の方が、出現頻度の数wが大きくなっている。
 この点に着目して、閾値幅抽出部67bから供給された出現頻度の数wが所定の幅閾値を超える場合、水平係数算出部68bはノイズを低減させると判定し、水平係数kを1とする。
 一方、閾値幅抽出部67bから供給された出現頻度の数wが所定の幅閾値以下の場合、水平係数算出部68bはノイズを低減させないと判定し、水平係数kを0とする。
 図30に戻って、水平係数算出部68bは、その水平係数kを水平ノイズ量算出部69bへ供給する。
 水平ノイズ量算出部69bは、最頻値抽出部65bから供給された最頻値mと、水平係数算出部68bから供給された水平係数kとを乗じて、水平ノイズ量Nを算出する。水平ノイズ量算出部69bは、算出した水平ノイズ量Nを平均ノイズ量算出部33と水平方向ノイズ低減部52とへ供給する。
 図33は、第2の実施形態における垂直ノイズ量検出部の機能ブロック図である。なお、図17と共通する要素には同一の符号を付し、その具体的な説明を省略する。
 図33の垂直ノイズ量検出部32bの構成は、図17の垂直ノイズ量検出部32aの構成に対して、最頻値抽出部75aを最頻値抽出部75bに、垂直ノイズ判定部(判定部)76aを垂直ノイズ判定部(判定部)76bに、垂直ノイズ量算出部79aを垂直ノイズ量算出部79bに変更したものである。
 最頻度抽出部75bは、記憶部74に記憶されているテーブルT2から出現頻度が最も高い輝度値差の平均(最頻値)mを抽出し、抽出した最頻値を垂直ノイズ量算出部79bへ供給する。
 垂直ノイズ判定部(判定部)76bは、閾値幅抽出部77bと垂直係数算出部78bとを備える。閾値幅抽出部77bは、記憶部74に記憶されているテーブルT2から所定の閾値(例えば、最頻値の出現頻度の4分の1)を超える出現頻度の数wを計数し、計数した出現頻度の数wを垂直計数算出部78bへ供給する。
 上記の閾値幅抽出部77bの処理について、具体的に説明する。図34は、ノイズ量が多い画像における輝度値差の平均の頻度分布において、垂直ノイズ量検出部の閾値幅抽出部の処理を説明するための図である。横軸は輝度値差の平均、縦軸はその出現頻度である。同図において、閾値Th3を最頻値の出現頻度の4分の1にすると、その閾値Th3よりも出現頻度が高い輝度値差の平均は、2から11までであり、その幅は10である。閾値幅抽出部67bは、この幅を上記出現頻度の数wとして計数する。
 図33に戻って、閾値幅抽出部77bから供給された出現頻度の数wが所定の幅閾値を超える場合、垂直係数算出部78bはノイズを低減させると判定し、垂直係数kを1とする。一方、閾値幅抽出部77bから供給された出現頻度の数wが所定の幅閾値以下の場合、垂直係数算出部78bはノイズを低減させないと判定し、水平係数kを0とする。
 垂直係数算出部78bは、その垂直係数kを垂直ノイズ量算出部79bへ供給する。
 垂直ノイズ量算出部79bは、最頻値抽出部75bから供給された最頻値mと、垂直係数算出部78bから供給された垂直係数kとを乗じて、垂直ノイズ量Nを算出する。垂直ノイズ量算出部79bは、算出した垂直ノイズ量Nを図3に示す平均ノイズ量算出部33と垂直方向ノイズ低減部53とへ供給する。
 続いて、第2の実施形態における表示装置10bの処理の流れについて説明する。表示装置全体の処理は、図21のフローチャートで示された処理と同一であるから、その説明を省略する。
 また、表示装置10b内の雑音低減部12bによる全体の処理は、図21で示されたフローチャートと同一であるので、その説明を省略する。
 続いて、図35は、第2の実施形態における図22のステップS201の水平ノイズ量算出の流れを示したフローチャートである。ステップS501からステップS505までの処理は、図24のフローチャートで説明したステップS301からステップS305までの処理と同一であるので、その説明を省略する。
 次に、最頻値抽出部65bは、記憶部64に記憶された出現頻度が最も高い輝度値差の平均(最頻値)mを抽出し、抽出した最頻値を水平ノイズ量算出部69bへ供給する(ステップS506)。
 次に、閾値幅抽出部67bは、記憶部64に記憶されているテーブルT1から所定の閾値(例えば、最頻値の出現頻度の4分の1)を超える出現頻度の数wを計数し、計数した出現頻度の数wを水平計数算出部68bへ供給する(ステップS507)。
 次に、水平計数算出部68bは、閾値幅抽出部67bから供給された出現頻度の数wが所定の幅を超えたか否か判定する(ステップS508)。出現頻度の数wが所定の幅を超えた場合(ステップS508:YES)、水平係数算出部68bはノイズを低減させると判定し、水平係数kを1とする(ステップS509)。出現頻度の数wが所定の幅以下の場合(ステップS510:NO)、水平係数算出部68bはノイズを低減させないと判定し、水平係数kを0とする(ステップS510)。水平係数算出部68bは、水平係数kを水平ノイズ量算出部69bへ供給する。
 次に、水平ノイズ量算出部69bは、最頻値抽出部65bから供給された出現頻度の数wと水平計数算出部68bから供給された水平係数kを乗じて、水平ノイズ量Nを算出する(ステップS511)。以上で、本フローチャートの処理を終了する。
 続いて、図36は、第2の実施形態における図22のステップS202の垂直ノイズ量算出の流れを示したフローチャートである。ステップS601からステップS605までの処理は、図25のフローチャートで説明したステップS401からステップS405までの処理と同一であるので、その説明を省略する。
 次に、最頻値抽出部75bは、記憶部64に記憶された出現頻度が最も高い輝度値差の平均(最頻値)mを抽出し、抽出した最頻値を垂直ノイズ量算出部79bへ供給する(ステップS606)。
 次に、閾値幅抽出部77bは、記憶部74に記憶されているテーブルT2から所定の閾値(例えば、最頻値の出現頻度の4分の1)を超える出現頻度の数wを計数し、計数した出現頻度の数wを垂直計数算出部78bへ供給する(ステップS607)。
 次に、垂直計数算出部78bは、閾値幅抽出部77bから供給された出現頻度の数wが所定の幅を超えたか否か判定する(ステップS608)。出現頻度の数wが所定の幅を超えた場合(ステップS608:YES)、垂直係数算出部78bはノイズを低減させると判定し、垂直係数kを1とする(ステップS609)。出現頻度の数wが所定の幅以下の場合(ステップS510:NO)、垂直係数算出部78bはノイズを低減させないと判定し、水平係数kを0とする(ステップS610)。垂直係数算出部78bは、垂直係数kを垂直ノイズ量算出部79bへ供給する。
 次に、垂直ノイズ量算出部79bは、最頻値抽出部75bから供給された出現頻度の数wと垂直計数算出部78bから供給された垂直係数kを乗じて、垂直ノイズ量Nを算出する(ステップS611)。以上で、本フローチャートの処理を終了する。
 以上に示したように、雑音低減部12aは、対象画素の輝度値と所定の比較画素の輝度値との差の頻度が所定の閾値を越える数に基づいて、雑音低減するか否かを判定する。これにより、雑音低減部12aは、ノイズが所定の量よりも多い画像に対してはノイズの低減処理をするが、ノイズが所定の量よりも少ない画像に対してはノイズの低減処理をしないので、ノイズが所定の量よりも少ない画像において、その画像の精細感が失われたり、エッジがぼやけたりすることを防ぐことができる。
 なお、第1の実施形態および第2の実施形態において、雑音低減部12aおよび雑音低減部12bは、輝度値に重畳されているノイズを低減するか否か判定し、ノイズを低減すると判定した場合には、輝度値に重畳されているノイズを低減したがこれに限らず、雑音低減部12aおよび雑音低減部12bは、色差情報に重畳されているノイズを低減するか否か判定し、ノイズを低減すると判定した場合には、色差情報に重畳されているノイズを低減してもよい。
 また、第1の実施形態および第2の実施形態において、雑音低減部12aおよび雑音低減部12bは、対象画素の輝度値を上下左右の隣の画素の輝度値と比較したが、これに限らず、対象画素の輝度値を、対象画素から右にa(aは正の整数)画素離れた画素の輝度値と、対象画素から左にb(bは正の整数)画素離れた画素の輝度値と、対象画素から下にc(cは正の整数)画素離れた画素の輝度値と、対象画素から上にd(dは正の整数)画素離れた画素の輝度値と、比較してもよい。
 同様に、第1の実施形態および第2の実施形態において、雑音低減部12aおよび雑音低減部12bは、対象画素の輝度値を、対象画素を含むフレームの前後のフレーム内で対象画素と同一の位置にある画素の輝度値と比較したが、これに限らず、対象画素の輝度値を、対象画素を含むフレームの第1の所定のフレーム数分前のフレーム内で対象画素と同一の位置にある画素の輝度値と、対象画素を含むフレームの第2の所定のフレーム数分後のフレーム内で対象画素と同一の位置にある画素の輝度値と、比較してもよい。
 以上の点を考慮すると、本発明の雑音低減部12aまたは雑音低減部12bは、映像信号から雑音低減の対象となる複数の対象信号を抽出する対象信号抽出部と、前記対象信号毎に、前記対象信号から所定の間隔離れた比較信号を抽出する比較信号抽出部と、前記対象信号毎に、前記対象信号と前記所定の間隔離れた比較信号とに基づいて、信号強度差を算出する信号強度差算出部と、前記信号強度差の頻度分布の形状に基づいて、前記対象信号から雑音を低減するか否か判定する水平ノイズ判定部(判定部)と、を備えることを特徴とする信号処理部であるということができる。
 また、本発明の第1の実施形態および第2の実施形態において、雑音低減部12aまたは雑音低減部12b内の一時記憶部21に、映像信号が一次記憶されたが、これに限らず、一時記憶部の代わりに遅延回路を用いて、遅延回路が比較画素抽出部40およびノイズ低減部50に、供給先毎に予め決められた遅延時間で映像信号に含まれる輝度信号を供給してもよい。
 また、第1の実施形態および第2の実施形態において、比較部62または比較部72による処理に行わずに、輝度値差算出部(信号強度差算出部)63が、すべての画素で平均水平輝度変化量の頻度または平均垂直輝度変化量の頻度を算出してもよい。
 <変形例>
 なお、本発明の実施形態では、図1または図28において、受信部11から供給された映像信号を雑音低減部12aまたは雑音低減部12bが雑音を低減させたが、これに限らず、画像調整部13から供給された映像信号を雑音低減部12aまたは雑音低減部12bが雑音を低減させてもよい。
 その場合には、画像調整部13が、映像信号を雑音低減部12aまたは雑音低減部12bへ供給し、雑音低減部12aまたは雑音低減部12bが供給された信号に重畳した雑音を低減させる。雑音低減部12aまたは雑音低減部12bがその雑音を低減させた信号をタイミング制御部14と、ソースドライバ部15とへ供給する。
 最後に、雑音低減部12aまたは雑音低減部12bの各ブロックは、集積回路(ICチップ)上に形成された論理回路によって信号処理装置というハードウェアとして構成されてもよいし、次のようにCPU(Central Processing Unit)を用いてソフトウェアによって実現されてもよい。
 雑音低減部12aまたは雑音低減部12bの各ブロックがソフトウェアによって実現される場合には、雑音低減部12aまたは雑音低減部12bは、各機能を実現する信号処理プログラムの命令を実行するCPU、上記プログラムを格納したROM(Read Only Memory)、上記プログラムを展開するRAM(Random Access Memory)、上記プログラム及び各種データを格納するメモリ等の記憶装置(記憶媒体)などを備える。
 その記録媒体は、上述した機能を実現するソフトウェアである雑音低減部12aまたは雑音低減部12bのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム等)がコンピュータで読み取りできるように保持する。
 本発明の目的は、CPUが、その記録媒体に保持されているプログラムコードを読み出し、実行することによって、達成可能である。
 上記、記憶媒体としては、例えば、磁気テープやカセットテープ等のテープ類、フロッピー(登録商標)ディスクやハードディスク等の磁気ディスク、CD、MO、MD、DVD等の光ディスクを含むディスク類、ICカード(メモリカードを含む)や光カード等のカード類、あるいはマスクROM、EPROM、EEPROM、フラッシュメモリ等の半導体メモリ類、PLD(Programmable Logic Device)等の論理回路類などを用いることができる。
 また、雑音低減部12aまたは雑音低減部12bを通信ネットワークと接続可能に構成し、上記プログラムコードを、通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(Virtual Private Network)、電話回路網、移動体通信網、衛星通信網等が利用可能である。
 また、通信ネットワークと構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB,電力線搬送、ケーブルTV回線、電話線、ADSL回線等の優先でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、IEEE802.11無線、HDR(High Date Rate)、NFC(Near Field Communication)、DLNA(Digital Living Network Alliance)、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。
 なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。
 このように、本明細書において、手段とは必ずしも物理的手段を意味するものではなく、各手段の機能がソフトウェアによって実現される場合も含む。さらに、1つの手段の機能が2つ以上の物理的手段により実現されても、もしくは2つ以上の手段の機能が1つの物理的手段により実現されても良い。
 なお、本発明の実施形態において、表示装置は液晶表示装置を想定して説明したが、これに限らず、ブラウン管(CRT)モニター、プラズマディスプレイ、有機ELディスプレイ等の表示装置でもよい。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本発明は、テレビジョン映像信号あるいは音声信号などに重畳されている雑音成分を低減させる雑音低減回路などに適用できる。
 10a、10b  表示装置
 11  受信部
 12a、12b  雑音低減部
 13  画像調整部
 14  タイミング制御部
 15  ソースドライバ部
 16  ゲートドライバ部
 17  液晶パネル部
 20  液晶表示部
 21  一時記憶部
 30a、30b  ノイズ量算出部
 31a、31b  水平ノイズ量検出部
 32a、32b 垂直ノイズ量検出部
 33  平均ノイズ量算出部
 40  比較画素抽出部
 41  フレーム間用比較画素抽出部
 42  前フレーム画素抽出部
 43  後フレーム画素抽出部
 44  水平方向用比較画素抽出部
 45  右画素抽出部
 46  左画素抽出部
 47  垂直方向用比較画素抽出部
 48  上画素抽出部
 49  下画素抽出部
 50  ノイズ低減部
 51  フレーム間ノイズ低減部
 52  水平方向ノイズ低減部
 53  垂直方向ノイズ低減部
 60  対象輝度読出部(対象信号抽出部)
 61  水平比較輝度読出部(比較信号抽出部)
 62  比較部
 63  輝度値差算出部(信号強度差算出部)
 64  記憶部
 65a、65b  最頻値抽出部
 66a、66b  水平ノイズ判定部(判定部)
 67a、67b  最頻値割合算出部
 68a、68b  水平係数算出部
 69a、69b  水平ノイズ量算出部
 70  対象輝度抽出部(対象信号抽出部)
 71  垂直比較輝度読出部(比較信号抽出部)
 72  比較部
 73  輝度値差算出部(信号強度差算出部)
 74  記憶部
 75a、75b  最頻値抽出部
 76a、76b  垂直ノイズ判定部(判定部)
 77a、77b  最頻値割合算出部
 78a、78b  垂直用係数算出部
 79  垂直ノイズ量算出部

Claims (11)

  1.  映像信号から抽出され各画素に用いられる対象信号の信号強度と、該対象信号から所定の間隔離れた比較信号の信号強度との差に基づく値の頻度分布の形状に基づいて、映像信号から雑音を低減するか否か判定する判定部を備える信号処理装置。
  2.  前記判定部は、前記頻度分布に占める所定の前記差に基づく値における頻度の割合に基づいて、前記対象信号から雑音を低減するか否か判定する請求項1に記載の信号処理装置。
  3.  前記判定部は、前記頻度分布に占める所定の前記差に基づく値における頻度の割合が、所定の頻度閾値よりも小さい場合、前記対象信号から雑音を低減すると判定し、前記所定の頻度閾値以上の場合、前記対象信号から雑音を低減しないと判定する請求項2に記載の信号処理装置。
  4.  所定の前記差に基づく値における頻度は、最頻値における頻度である請求項2または請求項3に記載の信号処理装置。
  5.  前記判定部は、前記頻度分布において所定の頻度閾値よりも頻度が高い信号強度差の範囲に基づいて、前記対象信号から雑音を低減するか否か判定する請求項1に記載の信号処理装置。
  6.  前記判定部は、前記頻度分布において所定の頻度閾値よりも頻度が高い信号強度の範囲が所定の閾値よりも大きい場合、前記対象信号から雑音を低減すると判定し、所定の閾値以下の場合、前記対象信号から雑音を低減しないと判定する請求項5に記載の信号処理装置。
  7.  前記判定部は、前記頻度分布における最頻値の頻度に基づいて、前記所定の頻度閾値を算出する請求項5または請求項6に記載の信号処理装置。
  8.  前記対象信号が該対象信号と所定の間隔前後に離れた2つの比較信号との中で最大値または最小値であるか否か判定する比較部と、
     前記比較部が最大値または最小値と判定したときに、前記差に基づく値を算出し前記差に基づく値の頻度を増加させる信号強度差算出部と、
     を備える請求項1から請求項7のいずれか1項に記載の信号処理装置。
  9.  映像信号から雑音を低減するか否か判定する判定部を備える信号処理装置が実行する信号処理方法であって、
     映像信号から抽出され各画素に用いられる対象信号の信号強度と、該対象信号から所定の間隔離れた比較信号の信号強度との差に基づく値の頻度分布の形状に基づいて、映像信号から雑音を低減するか否か判定する工程を有する信号処理方法。
  10.  信号処理装置としてのコンピュータに、
     映像信号から抽出され各画素に用いられる対象信号の信号強度と、該対象信号から所定の間隔離れた比較信号の信号強度との差に基づく値の頻度分布の形状に基づいて、映像信号から雑音を低減するか否か判定するステップを実行させる信号処理プログラム。
  11.  請求項1から請求項8のいずれか1項に記載の信号処理装置または請求項10に記載の信号処理プログラムを備える表示装置。
PCT/JP2011/065454 2010-08-04 2011-07-06 信号処理装置、信号処理方法、信号処理プログラム、および表示装置 WO2012017773A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-175522 2010-08-04
JP2010175522 2010-08-04

Publications (1)

Publication Number Publication Date
WO2012017773A1 true WO2012017773A1 (ja) 2012-02-09

Family

ID=45559283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065454 WO2012017773A1 (ja) 2010-08-04 2011-07-06 信号処理装置、信号処理方法、信号処理プログラム、および表示装置

Country Status (1)

Country Link
WO (1) WO2012017773A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832557A (zh) * 2017-08-02 2020-02-21 欧姆龙株式会社 传感器装置、背景噪声数据发送方法和背景噪声数据发送程序

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201464A (ja) * 1995-01-23 1996-08-09 Nippon Hoso Kyokai <Nhk> テレビジョン映像信号のs/n値検出方法
JP2000341559A (ja) * 1999-06-01 2000-12-08 Sony Corp 画像処理装置および画像処理方法、並びにノイズ量推定装置およびノイズ量推定方法
JP2006121274A (ja) * 2004-10-20 2006-05-11 Victor Co Of Japan Ltd シーンチェンジ検出装置
JP2006186622A (ja) * 2004-12-27 2006-07-13 Toshiba Corp 画像処理装置及び画像処理方法
JP2009003599A (ja) * 2007-06-20 2009-01-08 Sony Corp 計測装置および方法、プログラム、並びに記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201464A (ja) * 1995-01-23 1996-08-09 Nippon Hoso Kyokai <Nhk> テレビジョン映像信号のs/n値検出方法
JP2000341559A (ja) * 1999-06-01 2000-12-08 Sony Corp 画像処理装置および画像処理方法、並びにノイズ量推定装置およびノイズ量推定方法
JP2006121274A (ja) * 2004-10-20 2006-05-11 Victor Co Of Japan Ltd シーンチェンジ検出装置
JP2006186622A (ja) * 2004-12-27 2006-07-13 Toshiba Corp 画像処理装置及び画像処理方法
JP2009003599A (ja) * 2007-06-20 2009-01-08 Sony Corp 計測装置および方法、プログラム、並びに記録媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832557A (zh) * 2017-08-02 2020-02-21 欧姆龙株式会社 传感器装置、背景噪声数据发送方法和背景噪声数据发送程序
CN110832557B (zh) * 2017-08-02 2022-04-19 欧姆龙株式会社 传感器装置、背景噪声数据发送方法和存储介质

Similar Documents

Publication Publication Date Title
US8639050B2 (en) Dynamic adjustment of noise filter strengths for use with dynamic range enhancement of images
US7881550B2 (en) Visual processing apparatus, visual processing method, program, recording medium, display device, and integrated circuit
JP4221434B2 (ja) 輪郭補正方法、画像処理装置及び表示装置
US8077219B2 (en) Integrated circuit having a circuit for and method of providing intensity correction for a video
US20110025890A1 (en) Visual processing device, display device, and integrated circuit
US10070019B2 (en) Method of reducing color moire and image processing apparatus using the method
DE112017000500T5 (de) Bewegungsadaptive Flussverarbeitung zur zeitlichen Rauschunterdrückung
US20100183238A1 (en) Method and Apparatus for Spectrum Estimation
JP2013041565A (ja) 画像処理装置、画像表示装置、画像処理方法、コンピュータプログラム及び記憶媒体
JP2014119997A (ja) 画像処理装置およびその制御方法
US7983454B2 (en) Image processing apparatus and image processing method for processing a flesh-colored area
WO2012017773A1 (ja) 信号処理装置、信号処理方法、信号処理プログラム、および表示装置
US20150055018A1 (en) Image processing device, image display device, image processing method, and storage medium
KR20060021665A (ko) 이동단말기에서의 화면 선명도 조절 장치 및 방법
US8072516B2 (en) Dynamic range enhancement method and apparatus
JP2008219289A (ja) 映像補正装置、映像表示装置、撮像装置および映像補正プログラム
JP2011166638A (ja) 映像処理装置及び映像表示装置
US20140307169A1 (en) Noise reduction apparatus, display apparatus, noise reduction method, and noise reduction program
WO2011162124A1 (ja) 信号処理装置、信号処理プログラム、および表示装置
TWI392334B (zh) 影像處理裝置以及影像處理方法
US20130141641A1 (en) Image processing method and associated image processing apparatus
JP5193976B2 (ja) 映像処理装置及び映像表示装置
WO2012161213A1 (ja) 画像処理装置及び画像処理方法
WO2012133354A1 (ja) 雑音低減装置、表示装置、雑音低減方法および雑音低減プログラム
JP2013143619A (ja) ノイズ低減装置、表示装置、ノイズ低減方法及びノイズ低減プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP