WO2011162083A1 - 液晶表示素子の駆動方法、液晶表示素子の駆動装置 - Google Patents
液晶表示素子の駆動方法、液晶表示素子の駆動装置 Download PDFInfo
- Publication number
- WO2011162083A1 WO2011162083A1 PCT/JP2011/062765 JP2011062765W WO2011162083A1 WO 2011162083 A1 WO2011162083 A1 WO 2011162083A1 JP 2011062765 W JP2011062765 W JP 2011062765W WO 2011162083 A1 WO2011162083 A1 WO 2011162083A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- overshoot
- gradation
- liquid crystal
- crystal display
- display element
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0252—Improving the response speed
Definitions
- the present invention relates to a liquid crystal display element driving method and a liquid crystal display element driving apparatus, and more particularly, an overshoot level in a case where a liquid crystal display element is displayed by applying an overshoot signal, and the liquid crystal display element is selected. It relates to the driving technology.
- liquid crystal display devices such as large-screen televisions are becoming popular.
- the liquid crystal display device has advantages such as light weight, low power consumption and low radiation as compared with a conventional cathode ray tube monitor.
- it is necessary to change the alignment of the liquid crystal molecules every time the image is switched, and there is a disadvantage that the response speed is slow, and a technique for improving the response speed is required.
- An overdrive driving method is disclosed as a technique for improving the response speed of a liquid crystal display element (see Patent Document 1).
- a rise response for raising the liquid crystal display element from the gradation A to the gradation B a gradation C higher than the gradation B is input as an image signal for a moment, and then the target level is obtained.
- An overshoot signal for inputting the key B is applied.
- a decay response that lowers the liquid crystal display element from the gradation A to the gradation B a gradation C lower than the gradation B is input as a video signal for a moment, and then the target gradation B Apply an overshoot signal.
- the overdrive driving method by inputting the gradation C, it is possible to change the arrangement of the liquid crystal molecules at a higher speed than in the case where the gradation C is not input, and the response speed can be improved.
- the present invention has been made in view of such a situation, and an object of the present invention is to provide a technique capable of suitably suppressing the tailing of a moving image and the failure of the image.
- the liquid crystal display element driving method of the present invention is a liquid crystal display element driving method in which an overshoot signal is applied to the liquid crystal display element to display the liquid crystal display element, and the gradation is changed.
- the gradation to be reached is A
- the gradation to be reached is B
- the level of the overshoot signal is C
- the overshoot signal in the case where an overshoot signal whose level changes in the order of A ⁇ C ⁇ B is applied.
- An ideal waveform f which is an ideal response waveform is set.
- the overshoot level Dn is selected as the overshoot level C.
- a first error value E1 is calculated by adding a value based on a difference value between the instantaneous values of the response waveform gn and the ideal waveform f over a certain period, and an overshoot level at which the first error value E1 is minimized.
- Select C “minimum” indicates that the error is minimum.
- a value based on the difference value between the instantaneous values of the response waveform gn and the ideal waveform f is averaged and stored.
- one of a plurality of overshoot levels Dn can be selected using a value averaged over a certain period, and problems such as tailing and video breakdown are caused. It can suppress suitably.
- the first error value E1 is preferably a value obtained by adding a value obtained by raising a difference value between instantaneous values of the response waveform gn and the ideal waveform f by an index of 1 or more over a certain period.
- the difference value between the instantaneous values of the response waveform gn and the ideal waveform f is raised to an exponent of 1 or more, the first error value E1 increases when the difference value is large, and when the difference value is small.
- the first error value E1 decreases.
- by utilizing the above it is possible to accurately select one of the plurality of overshoot levels Dn that minimizes the first error value E1.
- the selection step it is preferable to select the overshoot level C from the plurality of overshoot levels Dn using the Newton method. By repeatedly repeating the selection process using the Newton method, one of a plurality of overshoot levels Dn that minimizes the first error value E1 can be accurately selected.
- the index used when calculating the first error value E1 is preferably 1.
- the index is 1, one of the overshoot levels Dn that minimizes the second error value E2 can be selected using the Newton method more quickly than when other indices are used.
- the present invention also discloses the following liquid crystal display element driving method.
- the liquid crystal display element driving method of the present invention is a liquid crystal display element driving method in which an overshoot signal is applied to the liquid crystal display element to display the liquid crystal display element, and the gradation before changing the gradation is A.
- the overshoot level C in the case where an overshoot signal whose level changes in the order of A ⁇ C ⁇ B is applied is a plurality of overshoots.
- An ideal waveform f is set.
- the instantaneous value of the response waveform gn is added over a certain period, and the first function Gn that changes with time by changing the addition start time and the instantaneous value of the ideal waveform f are constant.
- the second error value E2 obtained by adding the values over the period and adding the values based on the difference value of the function value with the second function F that changes with time by changing the addition start time over a certain period is minimum.
- One of the plurality of overshoot levels Dn corresponding to the response waveform gn is selected as the overshoot level C.
- the first function Gn and the second function F obtained by adding the response waveform gn and the ideal waveform f over a certain period are calculated, and the difference value between the function values of the first function Gn and the second function F is calculated.
- the second error value E2 is calculated by adding the values based on the values over a certain period, and the overshoot level C that minimizes the second error value E2 is selected.
- minimum indicates that the error is minimum.
- the response waveform gn and the ideal waveform f are averaged and stored in the first function Gn and the second function F, and the second error value E2 is based on the difference value between the function values of the first function Gn and the second function F. Values are averaged and stored.
- one of a plurality of overshoot levels Dn can be selected using a value averaged over a certain period of time, as in the case of human visual recognition of the liquid crystal display element, and problems such as tailing and video breakdown are preferable. Can be suppressed.
- the second error value E2 is preferably a function obtained by adding a value obtained by raising a difference value between the function values of the first function Gn and the second function F to an exponent of 1 or more over a certain period.
- the difference value between the function values of the first function Gn and the second function F is raised to an exponent of 1 or more, when the difference value is large, the second error value E2 increases and the difference value is small
- the second error value E2 decreases.
- by utilizing the above it is possible to accurately select one of the plurality of overshoot levels Dn that minimizes the second error value E2.
- the selection step it is preferable to select the overshoot level C from the plurality of overshoot levels Dn using the Newton method. By repeatedly repeating the selection process using the Newton method, it is possible to accurately select one of the plurality of overshoot levels Dn that minimizes the second error value E2.
- the coefficient when calculating the second error value E2 is 1.
- the index is 1, it is possible to select one of the overshoot levels Dn that minimizes the first error value E1 using Newton's method more quickly than when other indexes are used.
- the present invention also discloses the following liquid crystal display element driving method.
- the liquid crystal display element driving method of the present invention is a liquid crystal display element driving method in which an overshoot signal is applied to the liquid crystal display element to display the liquid crystal display element, and the gradation before changing the gradation is A.
- the overshoot level C in the case where an overshoot signal whose level changes in the order of A ⁇ C ⁇ B is applied is a plurality of overshoots.
- Conversion table K for converting the function values to the gradation X is determined.
- the present invention further includes a setting step of setting a parameter table P in which one of the plurality of overshoot levels Dn is associated with each combination of the gradation A and the gradation B.
- one of the plurality of overshoot levels Dn is set based on a difference value S between the gradation X and the gradation Y of the response waveform gn after a certain period.
- the overshoot level C is selected based on the parameter table P.
- the overshoot level C when the overshoot level C is selected, the overshoot level C is selected based on the preset parameter table P. Therefore, there is no need to perform an operation when selecting the overshoot level C, and it is quick. Overshoot level C can be selected.
- the parameter table P is set based on the gradation X, and the gradation X is determined using the first function Gn obtained by adding the response waveform gn over a certain period.
- the response waveform gn is averaged and stored in the first function Gn, so that the overshoot level C is selected using a value averaged over a certain period of time as in the case of viewing the liquid crystal display element by a person. Therefore, problems such as tailing and video breakdown can be suitably suppressed.
- the parameter table P is set based on the gradation difference S between the gradation X and the gradation Y.
- the gradation X is set based on the first function Gn in which the response waveform gn is averaged, and schematically shows a gradation visually recognized by a person.
- the gradation Y is a gradation at a predetermined moment of the response waveform gn and indicates a gradation measured by a measuring instrument or the like.
- the liquid crystal display element driving method of the present invention may further include a storing step of applying the overshoot signal to the liquid crystal display element every frame period and storing the overshoot signal in the previous frame period.
- the conversion table K is set based on the response waveform gn when the overshoot signal is applied. Thereby, the display result of the liquid crystal display element in the previous frame period can be fed back via the parameter table, and the parameter table can be set in consideration of the influence of the current environment such as temperature.
- the present invention is also embodied in a driving circuit that realizes the driving method of the display panel.
- the liquid crystal display element driving apparatus according to the present invention is a liquid crystal display element driving apparatus that displays an liquid crystal display element by applying an overshoot signal to the liquid crystal display element, and the gradation before changing the gradation is A.
- the overshoot level C when applying an overshoot signal whose level changes in the order of A ⁇ C ⁇ B is set to a plurality of overshoots.
- a selection unit selected from the level Dn, a response waveform gn corresponding to each of the plurality of overshoot levels Dn, and an ideal waveform f that is an ideal response waveform from the gradation A to the gradation B are stored. And a storage unit.
- the selection unit adds the value based on the difference value between the instantaneous values of the response waveform gn and the ideal waveform f over a certain period to the response waveform gn that minimizes the first error value E1.
- One of the corresponding overshoot levels Dn is selected as the overshoot level C.
- the present invention also discloses the following liquid crystal display element driving device.
- the liquid crystal display element driving apparatus according to the present invention is a liquid crystal display element driving apparatus that displays an liquid crystal display element by applying an overshoot signal to the liquid crystal display element, and the gradation before changing the gradation is A.
- the overshoot level C in the case where an overshoot signal whose level changes in the order of A ⁇ C ⁇ B is applied is a plurality of overshoots.
- a selection unit selected from the level Dn, a response waveform gn corresponding to each of a plurality of overshoot levels Dn, and an ideal waveform f that is an ideal response waveform from the gradation A to the gradation B are stored. And a storage unit.
- the selection unit adds the instantaneous value of the response waveform gn over a certain period, and changes the addition start time to change the first function Gn that changes with time, and the ideal waveform f.
- One of the plurality of overshoot levels Dn corresponding to the response waveform gn that minimizes the value E2 is selected as the overshoot level C.
- the present invention also discloses the following liquid crystal display element driving device.
- the liquid crystal display element driving apparatus according to the present invention is a liquid crystal display element driving apparatus that displays an liquid crystal display element by applying an overshoot signal to the liquid crystal display element, and the gradation before changing the gradation is A.
- the overshoot level C in the case where an overshoot signal whose level changes in the order of A ⁇ C ⁇ B is applied is a plurality of overshoots.
- a selection unit that selects from the level Dn; a response waveform gn corresponding to each of the plurality of overshoot levels Dn; an ideal waveform f that is an ideal response waveform from the gradation A to the gradation B; Conversion table K for adding the instantaneous value of the response waveform gn over a certain period and converting the function value of the first function Gn that changes with time by changing the addition start time into the gradation X
- the setting unit sets one of the plurality of overshoot levels Dn based on the gradation X converted using the conversion table K, and the selection unit selects the parameter table P Based on the above, the overshoot level C is selected.
- the above driving method based on the parameter table P can be realized, and problems such as tailing and video breakdown can be suitably suppressed.
- FIG. 1 is a diagram illustrating a configuration of a liquid crystal display device 10. It is a graph which shows the response waveform gn and the ideal waveform f. It is a flowchart which shows the selection method of the overshoot level C. It is a graph which shows the relationship between the response waveform g1 and the ideal waveform f. It is a flowchart which shows the selection method of the overshoot level C. It is a graph which shows the relationship between the response waveform g11 and the ideal waveform f.
- 2 is a diagram illustrating a configuration of a liquid crystal display device 210.
- FIG. It is a flowchart which shows the setting method of LUT.
- FIG. 10 is a diagram for describing processing for converting a function value of a third function H into a gradation X using a gamma characteristic K.
- the liquid crystal display device 10 includes a liquid crystal drive circuit 12 (an example of a drive circuit), a display unit 14, and a backlight drive circuit 16.
- the display unit 14 includes a liquid crystal panel 40 (an example of a liquid crystal display element) and a backlight unit 50.
- the liquid crystal panel 40 includes a plurality of scan lines 42, a plurality of data lines 44, and a plurality of pixels 46.
- the pixel 46 is a unit display element for driving the liquid crystal panel 40, and includes a switch device 48 and a pixel electrode 49.
- the switch device 48 is provided with a switch electrode 48A and data electrodes 48B and 48C.
- the switch electrode 48A is connected to the corresponding scan line 42, one data electrode 48B is connected to the corresponding data line 44, and the other data electrode 48C is connected to the pixel electrode 49.
- the pixel electrode 49 is disposed opposite to the liquid crystal molecules sealed in the liquid crystal panel 40.
- a scan signal is applied to the switch electrode 48A via the scan line 42.
- the scan signal is higher than the threshold voltage of the switch device 48, which turns the switch device 48 on.
- an overshoot signal is applied to the pixel electrode 49 via the data line 44 and the data electrodes 48B and 48C.
- the increase in the voltage of the pixel electrode 49 changes, and the luminance of the pixel 46 changes as the liquid crystal molecules arranged corresponding to the pixel electrode 49 are deflected.
- the deflection angle of the liquid crystal molecules in the pixel 46 varies depending on the overshoot signal applied to the scan line 42, and can exhibit various luminance values. That is, the pixel 46 can realize various gradations.
- the backlight unit 50 is disposed on the back surface of the liquid crystal panel 40.
- the backlight unit 50 includes an LED 54 (Light Emitting Diode), which is a light source, and a light guide plate 52.
- the LED 54 is disposed to face the side surface of the light guide plate 52.
- the main surface of the light guide plate 52 is disposed to face the liquid crystal panel 40.
- the side surface of the light guide plate 52 functions as a light incident surface 52 ⁇ / b> A that takes in the light emitted from the LEDs 54 into the light guide plate 52.
- the main surface of the light guide plate 52 functions as a light exit surface 52 ⁇ / b> B that irradiates the liquid crystal panel 40 with light guided through the light guide plate 52.
- the backlight unit 50 is of a so-called edge light type (side light type) in which the LEDs 54 are arranged at both ends on the long side and the light guide plate 52 is arranged at the center thereof.
- the backlight drive circuit 16 is connected to the LEDs 54 constituting the backlight unit 50.
- the backlight drive circuit 16 supplies current to each LED 54, and controls the amount of light incident on the light guide plate 52 from each LED 54 by controlling the amount of current supplied.
- the liquid crystal driving circuit 12 supplies a video signal supplied from an external device (not shown) to the liquid crystal panel 40.
- the video signal includes a scan signal and a data signal.
- the liquid crystal drive circuit 12 applies a scan signal supplied from an external device to the scan line 42 of the liquid crystal panel 40.
- the liquid crystal driving circuit 12 converts a video signal data signal supplied from an external device into an overshoot signal and supplies the overshoot signal to the liquid crystal panel 40.
- the video signal is supplied every frame period T determined by the purpose of use of the liquid crystal panel 40, and the liquid crystal driving circuit 12 executes a process of converting the data signal into an overshoot signal every frame period T.
- the liquid crystal drive circuit 12 includes a storage unit 20 and a selection unit 30. As shown in FIG. 2, the storage unit 20 stores a plurality of overshoot levels Dn, and a plurality of response waveforms gn corresponding to each of the plurality of overshoot levels Dn are acquired. Each response waveform gn may be measured and acquired in advance or may be calculated in advance using a simulation or the like.
- the storage unit 20 stores an ideal waveform f, which is an ideal response waveform, in advance.
- the ideal waveform f is set to a function in which the reached gradation after a certain time reaches the target gradation, and is set to a function that does not cause tailing or video breakdown due to human visual recognition.
- the storage unit 20 stores instantaneous values (gn (1), gn (2), gn (3), etc. For each unit time of the response waveform gn, and for each unit time of the ideal waveform f. Instantaneous values (f (1), f (2), f (3), etc Are stored.
- the selection unit 30 selects an overshoot level of the overshoot signal when a data signal is supplied from an external device. As shown in FIG. 2, the gradation reached in the previous frame period T0 of the liquid crystal panel 40 is A, the target gradation in the current frame period T1 is B, and the gradation of the liquid crystal panel 40 is changed from the gradation A to the gradation. When the video signal to be raised to the key B is supplied, the selection unit 30 selects the gradation C (overshoot level C) higher than the gradation B from among the plurality of overshoot levels Dn stored in the storage unit 20. And an overshoot signal whose gradation changes in the order of A ⁇ C ⁇ B is input to the liquid crystal panel 40.
- the gradation C overshoot level C
- the overshoot level C selection processing in the selection unit 30 will be described with reference to FIG.
- the selection unit 30 selects an overshoot level D1 from a plurality of overshoot levels Dn (step S2).
- the selection method of the overshoot level D1 is not particularly limited. For example, if one of a plurality of overshoot levels Dn closest to the target gradation B can be selected as the overshoot level D1, the gradation before the change is selected. Based on A and the target gradation B, the overshoot level D1 may be determined in advance.
- the selection unit 30 determines whether the overshoot level D1 is optimal as the overshoot level C.
- the selection unit 30 evaluates the overshoot level D1
- the selection unit 30 obtains an error of the difference value between the instantaneous values of the response waveform g1 and the ideal waveform f corresponding to the overshoot level D1, and applies the overshoot signal to this.
- the error value E1 (D1) is shown in Equation 1.
- M means the number of divisions when the frame period T is divided by unit time.
- the error value E1 (D1) means the area of the portion indicated by the oblique lines in FIG.
- the error value E1 (D1) is obtained by averaging the difference value between the instantaneous values of the response waveform g1 and the ideal waveform f.
- the selection unit 30 determines that the error value E1 (D1) calculated using the overshoot level D1 is the smallest among the error values E1 (Dn) calculated using each of the plurality of overshoot levels Dn. Judge what will be. At this time, the selection unit 30 makes a determination using the Newton method.
- the selection unit 30 first selects an overshoot level D2 adjacent to the overshoot level D1, and calculates an error value E1 (D2) according to a procedure similar to the error value E1 (D1) (step S8). ).
- the error value E1 (D2) is shown in Equation 2.
- the selection unit 30 calculates a correction value D1 ′ for the overshoot level D1 (step S10).
- the correction value D1 ′ is obtained using the following formula 3. In the equation 3, approximation was performed using the following equations 4 to 6.
- the selection unit 30 compares the overshoot level D1 and the correction value D1 ′ (step S12), and if the difference between the overshoot level D1 and the correction value D1 ′ is “0.5” or more (NO in step S12) For this, the natural number closest to the correction value D1 ′ is substituted into the overshoot level D1 (step S14), and the processing from step S2 to step S10 is performed again. On the other hand, when the difference between the overshoot level D1 and the correction value D1 'is smaller than "0.5", the overshoot level D1 is selected as the overshoot level C.
- the liquid crystal panel 40 is driven using an overshoot signal. Therefore, the deflection speed of liquid crystal molecules in the liquid crystal panel 40 can be increased, and the response speed can be improved even in the liquid crystal panel 40 using polymer liquid crystal.
- the overshoot level C is obtained using the error value E1 (D1) obtained by averaging the error of the difference value between the instantaneous values of the response waveform g1 and the ideal waveform f over the frame period T. Is elected. Therefore, as with human visual recognition, the overshoot level C can be selected using a value averaged over a certain period of time, and tailing of video and video failure can be suitably suppressed.
- the selection unit 30 determines the overshoot level D1 using the Newton method. By using the Newton method, it is possible to quickly select an overshoot level that minimizes the error value E1 without using a complicated expression.
- the liquid crystal display device 110 differs in the method of selecting the overshoot level C performed by the selection unit 130 of the liquid crystal driving circuit 112. In the following description, the description overlapping with the liquid crystal display device 10 is omitted.
- the overshoot level C selection processing in the selection unit 130 will be described with reference to FIG.
- the selection unit 130 selects an overshoot level D11 from a plurality of overshoot levels Dn (step S102).
- the selection unit 130 determines whether the overshoot level D11 is optimal as the overshoot level C.
- the selection unit 130 first calculates the first function G (D11) and the second function F (steps S104 and S106).
- the first function G (D11) is a function obtained by adding the instantaneous values of the response waveform g11 corresponding to the overshoot level D11 over the frame period T.
- the selection unit 130 as shown in FIG. Are shifted by unit time to calculate M (one frame period) first functions G (D11).
- the first function G (D11) is shown in Equation 7. In the first function G (D11), instantaneous values of the response waveform g11 are averaged and acquired.
- the second function F is a function obtained by adding the instantaneous values of the ideal waveform f over the frame period T, and the selection unit 130 calculates the addition start time when calculating the second function F as shown in FIG. Are shifted by unit time to calculate M second functions F.
- the second function F is shown in Equation 8. Similar to the first function G (D11), in the second function F, the instantaneous values of the ideal waveform f are averaged and acquired.
- the selection unit 130 obtains a difference value between the function values of the first function G (D11) and the second function F and calculates an error value E2 (D11) obtained by adding the difference value over the frame period T (step S108). .
- the error value E2 (D11) is shown in Equation 9. In the error value E2 (D11), the difference value between the function values of the first function G (D11) and the second function F is averaged and acquired.
- the selection unit 130 minimizes the error value E2 (D11) calculated using the overshoot level D11 among the error values E2 (Dn) calculated using each of the plurality of overshoot levels Dn. Determine whether. At this time, the selection unit 130 makes a determination using the Newton method.
- the selection unit 130 first selects an overshoot level D12 adjacent to the overshoot level D11, and calculates an error value E2 (D12) according to the same procedure as the error value E2 (D11) (step S112). ).
- the error value E2 (D12) is shown in Equation 10.
- the selection unit 130 calculates a correction value D11 ′ for the overshoot level D11 (step S114).
- the correction value D11 ′ is obtained using the following formula 11. In Equation 11, approximation was performed using the following Equations 12 to 14.
- the selection unit 130 compares the overshoot level D11 and the correction value D11 ′ (step S116), and if the difference between the overshoot level D11 and the correction value D11 ′ is “0.5” or more (NO in step S116). In this case, the natural number closest to the correction value D11 ′ is substituted for the overshoot level D11 (step S118), and the processing from step S102 to step S114 is performed again. On the other hand, when the difference between the overshoot level D11 and the correction value D11 'is smaller than "0.5", the overshoot level D11 is selected as the overshoot level C.
- the first function G (D11) and the second function F obtained by averaging the instantaneous values of the response waveform g11 and the ideal waveform f over the frame period T are obtained.
- the overshoot level C is calculated using the error value E2 (D11) obtained by calculating and averaging the difference value between the function values of the first function G (D11) and the second function F over the frame period T. elect. Therefore, as with human visual recognition, the overshoot level C can be selected using a value averaged over a certain period of time, and tailing of video and video failure can be suitably suppressed.
- Embodiment 3 of the present invention will be described with reference to the drawings.
- the liquid crystal display device 210 is different from the liquid crystal display device 10 of the first embodiment in the configuration of the liquid crystal driving circuit 212. In the following description, the description overlapping with the liquid crystal display device 10 is omitted.
- the liquid crystal drive circuit 212 of the liquid crystal display device 210 includes a storage unit 220, a selection unit 230, and a setting unit 260.
- the storage unit 220 includes a gamma characteristic K (an example of a conversion table K: FIG. 9) that converts a function value of a third function H described later into a gradation X. (See (A)) is stored.
- the storage unit 220 stores an overshoot signal actually applied to the liquid crystal panel 40 in the previous frame period T0.
- the video signal is supplied from the external device to the storage unit 220, and the gradation A0 before the change in the previous frame period T0 and the gradation B0 after the change (this is the gradation A before the change in the current frame period T1). Is approximately the same).
- the storage unit 220 is connected to the setting unit 260, and receives the overshoot level C0 in the previous frame period T0. As a result, the storage unit 220 stores an overshoot signal actually applied to the liquid crystal panel 40 in the previous frame period T0, that is, an overshoot signal whose gradation changes in the order of A0 ⁇ C0 ⁇ B0.
- the selection unit 230 selects the overshoot level C of the overshoot signal when the data signal is supplied from the external device.
- the selection unit 230 is connected to the setting unit 260, selects an overshoot level C based on a look-up table (LUT) (an example of the parameter table P) set in the setting unit 260, and the gradation is A ⁇ C.
- LUT look-up table
- An overshoot signal that changes in the order of B is input to the liquid crystal panel 40.
- the setting unit 260 sets an LUT in which a change in gradation due to a video signal supplied from an external device, that is, each combination of gradation A and gradation B, and one of a plurality of overshoot levels Dn are associated with each other. Yes.
- the setting unit 260 is connected to the selection unit 230 and selects the overshoot level C based on the LUT.
- the setting unit 260 is connected to the storage unit 220, and the overshoot level C selected by the selection unit 230 is also input to the storage unit 220. As a result, the overshoot level C0 in the previous frame period T0 is stored in the selection unit 230.
- the LUT setting processing in the setting unit 260 will be described with reference to FIGS.
- the LUT setting process is performed prior to the input of the video signal from the external device, and is completed while the video signal is input. Therefore, the selection unit 230 selects the overshoot level C using the LUT newly set by the setting unit 260 when the video signal is input.
- the setting unit 260 uses one of the methods according to the first and second embodiments to correspond to the gradation A before the change and the target gradation B from one overshoot level Dn to one overshoot level. D21 is selected, and an LUT in which this overshoot level D21 is associated with a combination of gradation A and gradation B is prepared in advance.
- This setting process includes an adjustment process for optimizing the overshoot level D21 of the prepared LUT based on the environment on which the liquid crystal display device 210 is mounted.
- the setting unit 260 selects the response waveform h of the liquid crystal panel 40 in the previous frame cycle T0 from the overshoot signal of the previous frame cycle T0 stored in the storage unit 220 (step S202). That is, the setting unit 260 selects the corresponding response waveform gn as the response waveform h from the plurality of response waveforms gn based on the gradation change (A0 ⁇ C0 ⁇ B0) in the previous frame period T0.
- the setting unit 260 calculates a third function H (that is, one of the first functions Gn) (step S204).
- the third function H is a function obtained by adding the instantaneous values of the response waveform h over the frame period T.
- the third function H is shown in Equation 15. In the third function H, instantaneous values of the response waveform h are averaged and acquired.
- FIG. 9B shows the response waveform h and the third function H.
- the third function H rises behind the response waveform h. Therefore, even when the response waveform h after one frame period T reaches the target gradation B0 (corresponding to the gradation Y), the response function H does not reach the maximum value to the corresponding value.
- the setting unit 260 calculates the function value H1 of the response function H after one frame period T, and uses the gamma characteristic K shown in FIG. 9A (see arrow 72), and the corresponding gradation DX (see arrow 74). ) Is selected (step S206).
- the setting unit 260 compares the target gradation B0 with the selected gradation X, and calculates a difference value S between the gradations (step S208).
- the difference value S is caused by a difference between the overshoot level D21 set in the LUT and the optimum overshoot level C, and is caused by a change in temperature, humidity, or the like where the liquid crystal display device 210 is disposed.
- the setting unit 260 adjusts the overshoot level D21 based on the difference value S to calculate the overshoot level D21 '(step S210), and changes the LUT overshoot level D21 to the overshoot level D21'.
- the setting unit 260 repeats the above setting for the plurality of pixels 46 included in the liquid crystal panel 40, and completes the setting of the LUT.
- the selection unit 30 selects the overshoot level C using the LUT set by the setting unit 260.
- the selection unit 30 is connected to the setting unit 260 and selects, as an overshoot level C, an overshoot level D21 ′ corresponding to a combination of a video signal, that is, a gradation A before change and a target gradation B, from an external device. .
- the LUT is set using the third function H (one of the first functions Gn) obtained by averaging the instantaneous values of the response waveform h over the frame period T.
- the overshoot level D21 is adjusted based on the LUT. For this reason, as with human visual recognition, it is possible to adjust the overshoot level D21 using a value averaged over a certain period of time, and the tailing of the moving image and the failure of the image are suitably suppressed.
- the LUT is adjusted based on the difference value S between the gradation B0 and the gradation X.
- the gradation X is set based on the third function H in which the response waveform gn is averaged, and schematically shows a gradation visually recognized by a person.
- the gradation B0 is the arrival gradation of the response waveform h and indicates the gradation measured by a measuring instrument or the like.
- the overshoot signal actually applied to the liquid crystal panel 40 in the previous frame period T0 is fed back to select the overshoot signal in the current frame period T1.
- the response waveform in the previous frame period T0 to the LUT it is possible to set the LUT in consideration of the influence of the current environment such as temperature, and it is possible to suitably suppress problems such as tailing and video breakdown. .
- the error value E1 when the error value E1 is calculated, the difference value between the response waveform g1 and the ideal waveform f is added as it is over a certain period, but the type of error value E1 to be calculated is Not limited.
- the error value E1 may be calculated by adding a value obtained by raising the difference value between the response waveform g1 and the ideal waveform f by an exponent of 1 or more over a certain period.
- the difference value between the response waveform g1 and the ideal waveform f is raised to an exponent of 1 or more, the error value E1 increases when the difference value is large, and the error value E1 is calculated when the difference value is small. Decrease.
- SYMBOLS 10 Liquid crystal display device, 12 ... Liquid crystal drive circuit, 14 ... Display part, 16 ... Backlight drive circuit, 20 ... Memory
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
動画映像の尾引きや映像破綻等を好適に抑制することを目的とする。本発明に係る液晶パネル(40)の駆動方法は、液晶パネル(40)にオーバーシュート信号を印加して液晶パネル(40)を表示させる駆動方法であって、オーバーシュートレベル(C)を複数のオーバーシュートレベル(Dn)から選出する選出工程を備えている。選出工程では、応答波形(gn)と理想波形(f)との瞬間値の差分値に基づく値を一定期間に亘って加算した第1誤差値(E1)が最小となる応答波形(gn)に対応した複数のオーバーシュートレベル(Dn)の1つをオーバーシュートレベル(C)として選出する。この駆動方法によれば、人による液晶表示素子の視認と同様に、一定期間に亘って平均化した値を用いて複数のオーバーシュートレベル(Dn)の1つを選出することができ、尾引きや映像破綻等の問題を好適に抑制することができる。
Description
本発明は、液晶表示素子の駆動方法、液晶表示素子の駆動装置に関し、特にオーバーシュート信号を印加して液晶表示素子を表示させる場合のオーバーシュートレベルを好適に選出して、当該液晶表示素子を駆動する技術に関する。
近年、大画面テレビジョンなどの高性能な液晶表示装置が普及しつつある。液晶表示装置は、従来のブラウン管モニターに比べて軽量、低電力消費及び低輻射などの長所を有している。その一方、画像の切換えの度に液晶分子の配列を変更させる必要があり、応答速度が遅いという欠点を有しており、応答速度を向上させる技術が必要とされている。
液晶表示素子の応答速度を向上する技術として、オーバードライブ駆動法が開示されている(特許文献1参照)。この技術では、液晶表示素子を階調Aから階調Bに上昇させるライズ応答である場合には、映像信号として、階調Bよりも高い階調Cを一瞬入力し、その後に目標とする階調Bを入力するオーバーシュート信号を印加する。また、液晶表示素子を階調Aから階調Bに下降させるディケイ応答である場合には、映像信号として、階調Bよりも低い階調Cを一瞬入力し、その後に目標とする階調Bを入力するオーバーシュート信号を印加する。オーバードライブ駆動法では、階調Cを入力することによって、階調Cを入力しない場合に比べて液晶分子の配列を高速に変更させることができ、応答速度を向上させることができるという。
(発明が解決しようとする課題)
特許文献1の技術では、オーバードライブ駆動法の階調Cを選出する際に、階調Cを印加してから所定期間後の到達階調に基づいて階調Cを選出する。しかし、特許文献1の技術を用いた場合でも、動画映像の尾引きや映像破綻を抑制することができない。人の視覚では、一定期間に取得された輝度を平均して、入力された輝度と認識する。つまり、人が液晶表示素子の動画映像を視認する場合、液晶表示素子の応答波形の瞬間値を一定期間に亘って平均した値から換算される平均階調を液晶表示素子の階調として認識する。そのため、階調Cを印加してから所定期間後の到達階調が目標とする階調Bに達していても、換算された平均階調が目標とする階調Bと異なる場合、人は残像を認識したり(尾引き)、正常な映像を認識できない(映像破綻)等の問題が生じてしまう。
特許文献1の技術では、オーバードライブ駆動法の階調Cを選出する際に、階調Cを印加してから所定期間後の到達階調に基づいて階調Cを選出する。しかし、特許文献1の技術を用いた場合でも、動画映像の尾引きや映像破綻を抑制することができない。人の視覚では、一定期間に取得された輝度を平均して、入力された輝度と認識する。つまり、人が液晶表示素子の動画映像を視認する場合、液晶表示素子の応答波形の瞬間値を一定期間に亘って平均した値から換算される平均階調を液晶表示素子の階調として認識する。そのため、階調Cを印加してから所定期間後の到達階調が目標とする階調Bに達していても、換算された平均階調が目標とする階調Bと異なる場合、人は残像を認識したり(尾引き)、正常な映像を認識できない(映像破綻)等の問題が生じてしまう。
本発明は、このような状況に鑑みてなされたものであり、動画映像の尾引きや映像破綻等を好適に抑制することができる技術を提供することを目的とする。
(課題を解決するための手段)
上記課題を解決するために、本発明の液晶表示素子の駆動方法は、液晶表示素子にオーバーシュート信号を印加して液晶表示素子を表示させる液晶表示素子の駆動方法であって、階調を変化させる前の階調をAとし、到達させるべき階調をBとし、オーバーシュート信号のレベルをCとするとき、A→C→Bの順でレベルが変化するオーバーシュート信号を印加する場合のオーバーシュートレベルCを複数のオーバーシュートレベルDnから選出する選出工程を備え、前記複数のオーバーシュートレベルDnの各々に対応した応答波形gnが取得されているとともに、前記階調Aから前記階調Bへの理想的な応答波形である理想波形fが設定されている。前記選出工程では、前記応答波形gnと前記理想波形fとの瞬間値の差分値に基づく値を一定期間に亘って加算した第1誤差値E1が最小となる前記応答波形gnに対応した前記複数のオーバーシュートレベルDnの1つを前記オーバーシュートレベルCとして選出することを特徴とする。
上記課題を解決するために、本発明の液晶表示素子の駆動方法は、液晶表示素子にオーバーシュート信号を印加して液晶表示素子を表示させる液晶表示素子の駆動方法であって、階調を変化させる前の階調をAとし、到達させるべき階調をBとし、オーバーシュート信号のレベルをCとするとき、A→C→Bの順でレベルが変化するオーバーシュート信号を印加する場合のオーバーシュートレベルCを複数のオーバーシュートレベルDnから選出する選出工程を備え、前記複数のオーバーシュートレベルDnの各々に対応した応答波形gnが取得されているとともに、前記階調Aから前記階調Bへの理想的な応答波形である理想波形fが設定されている。前記選出工程では、前記応答波形gnと前記理想波形fとの瞬間値の差分値に基づく値を一定期間に亘って加算した第1誤差値E1が最小となる前記応答波形gnに対応した前記複数のオーバーシュートレベルDnの1つを前記オーバーシュートレベルCとして選出することを特徴とする。
この発明では、応答波形gnと理想波形fの瞬間値の差分値に基づく値を一定期間に亘って加算した第1誤差値E1を算出し、この第1誤差値E1が最小となるオーバーシュートレベルCを選出する。ここでいう「最小」とは、誤差が最小であることを示すものである。第1誤差値E1には、応答波形gnと理想波形fの瞬間値の差分値に基づく値が平均化されて格納されている。そのため、人による液晶表示素子の視認と同様に、一定期間に亘って平均化した値を用いて複数のオーバーシュートレベルDnの1つを選出することができ、尾引きや映像破綻等の問題を好適に抑制することができる。
前記第1誤差値E1は、前記応答波形gnと前記理想波形fの瞬間値の差分値を1以上の指数で冪乗した値を一定期間に亘って加算した値であることが好ましい。応答波形gnと理想波形fの瞬間値の差分値を1以上の指数で冪乗した場合、その差分値が大きい場合には、第1誤差値E1が増大し、その差分値が小さい場合には、第1誤差値E1が減少する。この発明では、上記を利用することで、第1誤差値E1が最小となる複数のオーバーシュートレベルDnの1つを正確に選出することができる。
前記選出工程では、ニュートン法を用いて、前記複数のオーバーシュートレベルDnから前記オーバーシュートレベルCを選出することが好ましい。ニュートン法を用いて反復的に選出工程を繰り返すことで、第1誤差値E1が最小となる複数のオーバーシュートレベルDnの1つを正確に選出することができる。
前記第1誤差値E1を算出する際の前記指数は1であることが好ましい。指数が1であると、ニュートン法を用いて、他の指数を用いた場合に比べて迅速に第2誤差値E2が最小となるオーバーシュートレベルDnの1つを選出することができる。
本発明は、以下の液晶表示素子の駆動方法も開示する。本発明の液晶表示素子の駆動方法は、液晶表示素子にオーバーシュート信号を印加して液晶表示素子を表示させる液晶表示素子の駆動方法であって、階調を変化させる前の階調をAとし、到達させるべき階調をBとし、オーバーシュート信号のレベルをCとするとき、A→C→Bの順でレベルが変化するオーバーシュート信号を印加する場合のオーバーシュートレベルCを複数のオーバーシュートレベルDnから選出する選出工程を備え、前記複数のオーバーシュートレベルDnの各々に対応した応答波形gnが取得されているとともに、前記階調Aから前記階調Bへの理想的な応答波形である理想波形fが設定されている。前記選出工程では、前記応答波形gnの瞬間値を一定期間に亘って加算し、加算開始時間を変化させることで時間に伴って変化する第1関数Gnと、前記理想波形fの瞬間値を一定期間に亘って加算し、加算開始時間を変化させることで時間に伴って変化する第2関数Fとの関数値の差分値に基づく値を一定期間に亘って加算した第2誤差値E2が最小となる前記応答波形gnに対応した前記複数のオーバーシュートレベルDnの1つを前記オーバーシュートレベルCとして選出することを特徴とする。
この発明では、応答波形gnと理想波形fの各々を一定期間に亘って加算した第1関数Gnと第2関数Fを算出し、これら第1関数Gnと第2関数Fの関数値の差分値に基づく値を一定期間に亘って加算して第2誤差値E2を算出し、この第2誤差値E2が最小となるオーバーシュートレベルCを選出する。ここでいう「最小」とは、誤差が最小であることを示すものである。第1関数Gnと第2関数Fには応答波形gnと理想波形fが平均化して格納され、第2誤差値E2には、第1関数Gnと第2関数Fの関数値の差分値に基づく値が平均化されて格納されている。そのため、人による液晶表示素子の視認と同様に、一定期間に亘って平均した値を用いて複数のオーバーシュートレベルDnの1つを選出することができ、尾引きや映像破綻等の問題を好適に抑制することができる。
前記第2誤差値E2は、前記第1関数Gnと前記第2関数Fの関数値の差分値を1以上の指数で冪乗した値を一定期間に亘って加算した関数であることが好ましい。第1関数Gnと第2関数Fの関数値の差分値を1以上の指数で冪乗した場合、その差分値が大きい場合には、第2誤差値E2が増大し、その差分値が小さい場合には、第2誤差値E2が減少する。この発明では、上記を利用することで、第2誤差値E2が最小となる複数のオーバーシュートレベルDnの1つを正確に選出することができる。
前記選出工程では、ニュートン法を用いて、前記複数のオーバーシュートレベルDnから前記オーバーシュートレベルCを選出することが好ましい。ニュートン法を用いて反復的に選出工程を繰り返すことで、第2誤差値E2が最小となる複数のオーバーシュートレベルDnの1つを正確に選出することができる。
前記第2誤差値E2を算出する際の前記係数は1であることが好ましい。指数が1であると、ニュートン法を用いて、他の指数を用いた場合に比べて迅速に第1誤差値E1が最小となるオーバーシュートレベルDnの1つを選出することができる。
本発明は、さらに以下の液晶表示素子の駆動方法も開示する。本発明の液晶表示素子の駆動方法は、液晶表示素子にオーバーシュート信号を印加して液晶表示素子を表示させる液晶表示素子の駆動方法であって、階調を変化させる前の階調をAとし、到達させるべき階調をBとし、オーバーシュート信号のレベルをCとするとき、A→C→Bの順でレベルが変化するオーバーシュート信号を印加する場合のオーバーシュートレベルCを複数のオーバーシュートレベルDnから選出する選出工程を備え、前記複数のオーバーシュートレベルDnの各々に対応した応答波形gnが取得され、前記階調Aから前記階調Bへの理想的な応答波形である理想波形fが設定されているとともに、前記応答波形gnの瞬間値を一定期間に亘って加算し、加算開始時間を変化させることで時間に伴って変化する第1関数Gnの関数値を階調Xに変換する変換表Kが決定されている。この発明では、前記階調Aと前記階調Bの各組み合わせに対して、前記複数のオーバーシュートレベルDnの1つが対応付けられたパラメータ表Pを設定する設定工程をさらに備えており、前記設定工程では、一定期間後における前記階調Xと前記応答波形gnの階調Yとの差分値Sに基づいて前記複数のオーバーシュートレベルDnの1つを設定しており、前記選出工程では、前記パラメータ表Pに基づいて前記オーバーシュートレベルCを選出することを特徴とする。
この発明では、オーバーシュートレベルCを選出する際に、予め設定されたパラメータ表Pに基づいてオーバーシュートレベルCを選出するので、オーバーシュートレベルCを選出する際に演算をする必要がなく、迅速にオーバーシュートレベルCを選出することができる。またこの発明では、パラメータ表Pを階調Xに基づいて設定しており、応答波形gnを一定期間に亘って加算した第1関数Gnを用いてその階調Xを決定している。第1関数Gnには応答波形gnが平均化されて格納されており、これによって、人による液晶表示素子の視認と同様に、一定期間に亘って平均した値を用いてオーバーシュートレベルCを選出することができ、尾引きや映像破綻等の問題を好適に抑制することができる。
さらにこの発明では、パラメータ表Pを階調Xと階調Yの階調差Sに基づいて設定している。階調Xは、応答波形gnが平均化された第1関数Gnに基づいて設定されており、人により視認される階調を模式的に示すものである。これに対して、階調Yは、応答波形gnの所定の瞬間における階調であり、測定器等により測定される階調を示すものである。階調差Sに基づいてパラメータ表Pを設定することで、人により視認される階調と測定器等により測定される階調の差に起因して、尾引きや映像破綻等の問題が発生することを好適に抑制することができる。
本発明の液晶表示素子の駆動方法は、一フレーム周期毎に前記液晶表示素子に前記オーバーシュート信号を印加するとともに、前フレーム周期に前記オーバーシュート信号を記憶する記憶工程をさらに備えていてもよい。この場合、前記変換表Kは、前記オーバーシュート信号を印加した際の前記応答波形gnに基づいて設定されることが好ましい。これにより、パラメータ表を介して、前フレーム周期における液晶表示素子の表示結果をフィードバックさせることができ、温度等の現在の環境の影響を考慮したパラメータ表を設定することができる。
本発明は、上記の表示パネルの駆動方法を実現する駆動回路にも具現化される。本発明の液晶表示素子の駆動装置は、液晶表示素子にオーバーシュート信号を印加して液晶表示素子を表示させる液晶表示素子の駆動装置であって、階調を変化させる前の階調をAとし、到達させるべき階調をBとし、オーバーシュート信号のレベルをCとするとき、A→C→Bの順でレベルが変化するオーバーシュート信号を印加する場合のオーバーシュートレベルCを複数のオーバーシュートレベルDnから選出する選出部と、前記複数のオーバーシュートレベルDnの各々に対応した応答波形gnと、前記階調Aから前記階調Bへの理想的な応答波形である理想波形fとを記憶する記憶部とを備える。この発明では、前記選出部が、前記応答波形gnと前記理想波形fとの瞬間値の差分値に基づく値を一定期間に亘って加算した第1誤差値E1が最小となる前記応答波形gnに対応した前記複数のオーバーシュートレベルDnの1つを前記オーバーシュートレベルCとして選出することを特徴とする。
この駆動装置を用いることで、第1誤差値E1に基づく上記の駆動方法を実現することができ、尾引きや映像破綻等の問題を好適に抑制することができる。
この駆動装置を用いることで、第1誤差値E1に基づく上記の駆動方法を実現することができ、尾引きや映像破綻等の問題を好適に抑制することができる。
本発明は、以下の液晶表示素子の駆動装置も開示する。本発明の液晶表示素子の駆動装置は、液晶表示素子にオーバーシュート信号を印加して液晶表示素子を表示させる液晶表示素子の駆動装置であって、階調を変化させる前の階調をAとし、到達させるべき階調をBとし、オーバーシュート信号のレベルをCとするとき、A→C→Bの順でレベルが変化するオーバーシュート信号を印加する場合のオーバーシュートレベルCを複数のオーバーシュートレベルDnから選出する選出部と、複数複数のオーバーシュートレベルDnの各々に対応した応答波形gnと、前記階調Aから前記階調Bへの理想的な応答波形である理想波形fとを記憶する記憶部とを備える。この発明では、前記選出部は、前記応答波形gnの瞬間値を一定期間に亘って加算し、加算開始時間を変化させることで時間に伴って変化する第1関数Gnと、前記理想波形fの瞬間値を一定期間に亘って加算し、加算開始時間を変化させることで時間に伴って変化する第2関数Fとの関数値の差分値に基づく値を一定期間に亘って加算した第2誤差値E2が最小となる前記応答波形gnに対応した前記複数のオーバーシュートレベルDnの1つを前記オーバーシュートレベルCとして選出することを特徴とする。
この駆動装置を用いることで、第2誤差値E2に基づく上記の駆動方法を実現することができ、尾引きや映像破綻等の問題を好適に抑制することができる。
この駆動装置を用いることで、第2誤差値E2に基づく上記の駆動方法を実現することができ、尾引きや映像破綻等の問題を好適に抑制することができる。
本発明は、以下の液晶表示素子の駆動装置も開示する。本発明の液晶表示素子の駆動装置は、液晶表示素子にオーバーシュート信号を印加して液晶表示素子を表示させる液晶表示素子の駆動装置であって、階調を変化させる前の階調をAとし、到達させるべき階調をBとし、オーバーシュート信号のレベルをCとするとき、A→C→Bの順でレベルが変化するオーバーシュート信号を印加する場合のオーバーシュートレベルCを複数のオーバーシュートレベルDnから選出する選出部と、前記複数のオーバーシュートレベルDnの各々に対応した応答波形gnと、前記階調Aから前記階調Bへの理想的な応答波形である理想波形fと、前記応答波形gnの瞬間値を一定期間に亘って加算し、加算開始時間を変化させることで時間に伴って変化する第1関数Gnの関数値を階調Xに変換する変換表Kとを記憶する記憶部と、前記階調Aと前記階調Bの各組み合わせと、前記複数のオーバーシュートレベルDnの1つが対応付けられたパラメータ表Pを設定する設定部を備える。この発明では、前記設定部は、前記変換表Kを用いて変換された階調Xに基づいて前記複数のオーバーシュートレベルDnの1つを設定しており、前記選出部は、前記パラメータ表Pに基づいて前記オーバーシュートレベルCを選出する。
この駆動装置を用いることで、パラメータ表Pに基づく上記の駆動方法を実現することができ、尾引きや映像破綻等の問題を好適に抑制することができる。
この駆動装置を用いることで、パラメータ表Pに基づく上記の駆動方法を実現することができ、尾引きや映像破綻等の問題を好適に抑制することができる。
(発明の効果)
本発明によれば、液晶表示素子のオーバードライブ駆動法において、動画映像の尾引きや映像破綻等を好適に抑制することができる。
本発明によれば、液晶表示素子のオーバードライブ駆動法において、動画映像の尾引きや映像破綻等を好適に抑制することができる。
<実施形態1>
本発明の実施形態1を、図面を参照して説明する。
1.液晶表示装置の構成
図1に示すように、液晶表示装置10は、液晶駆動回路12(駆動回路の一例)と表示部14とバックライト駆動回路16を含む。表示部14は、液晶パネル40(液晶表示素子の一例)とバックライトユニット50を含んで構成されている。
液晶パネル40には、複数のスキャンライン42と複数のデータライン44と複数のピクセル46を含む。ピクセル46は、液晶パネル40を駆動する際の単位表示素子であり、スイッチ装置48とピクセル電極49を含む。スイッチ装置48には、スイッチ電極48Aとデータ電極48B、48Cが設けられている。スイッチ電極48Aは対応するスキャンライン42に接続されており、一方のデータ電極48Bは対応するデータライン44に接続されており、他方のデータ電極48Cはピクセル電極49に接続されている。ピクセル電極49は、液晶パネル40内に封入された液晶分子に対向配置されている。
本発明の実施形態1を、図面を参照して説明する。
1.液晶表示装置の構成
図1に示すように、液晶表示装置10は、液晶駆動回路12(駆動回路の一例)と表示部14とバックライト駆動回路16を含む。表示部14は、液晶パネル40(液晶表示素子の一例)とバックライトユニット50を含んで構成されている。
液晶パネル40には、複数のスキャンライン42と複数のデータライン44と複数のピクセル46を含む。ピクセル46は、液晶パネル40を駆動する際の単位表示素子であり、スイッチ装置48とピクセル電極49を含む。スイッチ装置48には、スイッチ電極48Aとデータ電極48B、48Cが設けられている。スイッチ電極48Aは対応するスキャンライン42に接続されており、一方のデータ電極48Bは対応するデータライン44に接続されており、他方のデータ電極48Cはピクセル電極49に接続されている。ピクセル電極49は、液晶パネル40内に封入された液晶分子に対向配置されている。
液晶パネル40では、駆動する際に、スキャン信号をスキャンライン42を介してスイッチ電極48Aに印加する。スキャン信号はスイッチ装置48の閾値電圧よりも高く、これによってスイッチ装置48がオンに切り換わる。次に、オーバーシュート信号をデータライン44及びデータ電極48B、48Cを介してピクセル電極49に印加する。これにより、ピクセル電極49の電圧の上昇が変化し、この変化に伴ってピクセル電極49に対応配置された液晶分子が偏向することでピクセル46の輝度が変化する。ピクセル46における液晶分子の偏向角度はスキャンライン42に印加されるオーバーシュート信号によって変化し、種々の輝度値を呈することができる。すなわち、ピクセル46では、種々の階調を実現することができる。
バックライトユニット50は、液晶パネル40の背面に配置されている。バックライトユニット50は、光源であるLED54(Light Emitting Diode:発光ダイオード)と、導光板52を備えている。LED54は、導光板52の側面に対向して配置されている。導光板52は、その主面が液晶パネル40に対向して配置されている。導光板52では、LED54から側面に入射された光を液晶パネル40に対向する主面に導光している。そのため、導光板52の側面は、LED54から照射された光を導光板52内に取り込む入光面52Aとして機能している。また導光板52の主面は、導光板52内を導光した光を液晶パネル40へと照射する出光面52Bとして機能している。このようにバックライトユニット50は、その長辺側の両端部にLED54が配置され、その中央に導光板52を配してなる、いわゆるエッジライト型(サイドライト型)とされている。
バックライト駆動回路16は、バックライトユニット50を構成するLED54に接続されている。バックライト駆動回路16は各LED54に電流を供給しており、供給する電流量を制御することによって、各LED54から導光板52に入光される光量を制御している。
液晶駆動回路12は、外部装置(図示されていない)から供給される映像信号を液晶パネル40に供給する。映像信号には、スキャン信号とデータ信号が含まれる。液晶駆動回路12は、外部装置から供給されるスキャン信号を液晶パネル40のスキャンライン42に印加する。また、液晶駆動回路12は、外部装置から供給される映像信号データ信号をオーバーシュート信号に変換して液晶パネル40に供給する。映像信号は、液晶パネル40の使用目的によって決定されるフレーム周期T毎に供給され、液晶駆動回路12はフレーム周期T毎にデータ信号をオーバーシュート信号に変換する処理を実行する。
液晶駆動回路12は、記憶部20と選出部30を備える。
記憶部20は、図2に示すように、複数のオーバーシュートレベルDnを記憶しており、複数のオーバーシュートレベルDnの各々に対応した応答波形gnの複数個が取得されている。各々の応答波形gnは、予め測定されて取得されていてもよければ、シミュレーション等を用いて予め算出されていてもよい。また、記憶部20には、理想的な応答波形である理想波形fが予め設定されて記憶されている。理想波形fとは、一定時間後の到達階調が目的の階調に達する関数に設定されているとともに、人の視認による尾引きや映像破綻等が発生しない関数に設定されている。記憶部20には、応答波形gnの単位時間毎の瞬間値(gn(1)、gn(2)、gn(3)、・・・)が記憶されており、理想波形fの単位時間毎の瞬間値(f(1)、f(2)、f(3)、・・・)が記憶されている。
記憶部20は、図2に示すように、複数のオーバーシュートレベルDnを記憶しており、複数のオーバーシュートレベルDnの各々に対応した応答波形gnの複数個が取得されている。各々の応答波形gnは、予め測定されて取得されていてもよければ、シミュレーション等を用いて予め算出されていてもよい。また、記憶部20には、理想的な応答波形である理想波形fが予め設定されて記憶されている。理想波形fとは、一定時間後の到達階調が目的の階調に達する関数に設定されているとともに、人の視認による尾引きや映像破綻等が発生しない関数に設定されている。記憶部20には、応答波形gnの単位時間毎の瞬間値(gn(1)、gn(2)、gn(3)、・・・)が記憶されており、理想波形fの単位時間毎の瞬間値(f(1)、f(2)、f(3)、・・・)が記憶されている。
選出部30は、外部装置からデータ信号が供給された場合に、オーバーシュート信号のオーバーシュートレベルを選択する。図2に示すように、液晶パネル40の前フレーム周期T0で到達した階調をAとし、現フレーム周期T1における目標の階調をBとし、液晶パネル40の階調を、階調Aから階調Bに上昇させる映像信号が供給された場合、選出部30は、階調Bよりも高い階調C(オーバーシュートレベルC)を記憶部20に記憶されている複数のオーバーシュートレベルDnの中から選出し、階調がA→C→Bの順で変化するオーバーシュート信号を液晶パネル40に入力する。
2.オーバーシュートレベルCの選出処理
図3を用いて、選出部30におけるオーバーシュートレベルCの選出処理について説明する。
選出部30は、複数のオーバーシュートレベルDnの中から、オーバーシュートレベルD1を選出する(ステップS2)。オーバーシュートレベルD1の選出方法は、特に限定されず、例えば目的の階調Bに最も近い複数のオーバーシュートレベルDnの1つをオーバーシュートレベルD1に選出してもよければ、変化前の階調Aと目的の階調Bに基づいて、オーバーシュートレベルD1が予め決定されていてもよい。
図3を用いて、選出部30におけるオーバーシュートレベルCの選出処理について説明する。
選出部30は、複数のオーバーシュートレベルDnの中から、オーバーシュートレベルD1を選出する(ステップS2)。オーバーシュートレベルD1の選出方法は、特に限定されず、例えば目的の階調Bに最も近い複数のオーバーシュートレベルDnの1つをオーバーシュートレベルD1に選出してもよければ、変化前の階調Aと目的の階調Bに基づいて、オーバーシュートレベルD1が予め決定されていてもよい。
次に選出部30は、オーバーシュートレベルD1がオーバーシュートレベルCとして最適であるかを判断する。選出部30は、オーバーシュートレベルD1を評価する際に、オーバーシュートレベルD1に対応した応答波形g1と理想波形fの瞬間値の差分値の誤差を取得し、これをオーバーシュート信号を印加してからフレーム周期T1にわたって加算した誤差値E1(D1)を算出する(ステップS4)。誤差値E1(D1)を数1に示す。数1において、Mはフレーム周期Tを単位時間で分割したときの分割数を意味している。誤差値E1(D1)は、図4において、斜線で示した部分の面積を意味する。つまり、この面積が少ないほど、誤差値E1(D1)が小さく、応答波形g1と理想波形fが好適に一致する。また誤差値E1(D1)には、応答波形g1と理想波形fの瞬間値の差分値が平均化されて取得されている。
次に、選出部30は、複数のオーバーシュートレベルDnの各々を用いて算出された誤差値E1(Dn)のうち、オーバーシュートレベルD1を用いて算出された誤差値E1(D1)が最小となるかを判断する。選出部30は、この際、ニュートン法を用いて判断を行う。
選出部30は、ニュートン方において、まずオーバーシュートレベルD1と隣り合うレベルのオーバーシュートレベルD2を選出し、誤差値E1(D1)と同様の手順に従って誤差値E1(D2)を算出する(ステップS8)。誤差値E1(D2)を数2に示す。
選出部30は、オーバーシュートレベルD1と補正値D1’を比較し(ステップS12)、オーバーシュートレベルD1と補正値D1’の差が「0.5」以上離れている場合(ステップS12でNO)には、補正値D1’に最も近い自然数をオーバーシュートレベルD1に代入し(ステップS14)、ステップS2ないしステップS10の処理を再び実施する。一方、オーバーシュートレベルD1と補正値D1’の差が「0.5」よりも小さい場合には、オーバーシュートレベルD1をオーバーシュートレベルCとして選出する。
3.本実施形態の効果
(1)本実施形態では、オーバーシュート信号を用いて液晶パネル40を駆動する。そのため、液晶パネル40内における液晶分子の偏向速度を上昇させることができ、高分子の液晶を用いた液晶パネル40でも、その応答速度を向上させることができる。
(1)本実施形態では、オーバーシュート信号を用いて液晶パネル40を駆動する。そのため、液晶パネル40内における液晶分子の偏向速度を上昇させることができ、高分子の液晶を用いた液晶パネル40でも、その応答速度を向上させることができる。
(2)本実施形態では、応答波形g1と理想波形fの瞬間値の差分値の誤差をフレーム周期Tに亘って平均化されて取得された誤差値E1(D1)を用いてオーバーシュートレベルCを選出する。そのため、人による視認と同様に、一定期間に亘って平均化した値を用いてオーバーシュートレベルCを選出することができ、動画映像の尾引きや映像破綻等を好適に抑制することができる。
(3)本実施形態では、選出部30が、ニュートン法を用いてオーバーシュートレベルD1を判断する。ニュートン法を用いることで、複雑な式を用いることなく誤差値E1が最小となるオーバーシュートレベルを迅速に選出することができる。
<実施形態2>
本発明の実施形態2を、図面を参照して説明する。液晶表示装置110は、液晶駆動回路112の選出部130で行われるオーバーシュートレベルCの選出方法が異なる。以下の説明において、液晶表示装置10と重複する部分については、その記載を省略する。
本発明の実施形態2を、図面を参照して説明する。液晶表示装置110は、液晶駆動回路112の選出部130で行われるオーバーシュートレベルCの選出方法が異なる。以下の説明において、液晶表示装置10と重複する部分については、その記載を省略する。
1.オーバーシュートレベルCの選出処理
図5を用いて、選出部130におけるオーバーシュートレベルCの選出処理について説明する。
選出部130は、複数のオーバーシュートレベルDnの中から、オーバーシュートレベルD11を選出する(ステップS102)。次に選出部130は、オーバーシュートレベルD11がオーバーシュートレベルCとして最適であるかを判断する。選出部130は、まず第1関数G(D11)と第2関数Fを算出する(ステップS104、S106)。第1関数G(D11)は、オーバーシュートレベルD11に対応した応答波形g11の瞬間値をフレーム周期Tに亘って加算した関数であり、選出部130は、図6に示すように、加算開始時間を単位時間ずらして、M個(1フレーム周期分)の第1関数G(D11)を算出する。第1関数G(D11)を数7に示す。第1関数G(D11)では、応答波形g11の瞬間値が平均化されて取得される。
図5を用いて、選出部130におけるオーバーシュートレベルCの選出処理について説明する。
選出部130は、複数のオーバーシュートレベルDnの中から、オーバーシュートレベルD11を選出する(ステップS102)。次に選出部130は、オーバーシュートレベルD11がオーバーシュートレベルCとして最適であるかを判断する。選出部130は、まず第1関数G(D11)と第2関数Fを算出する(ステップS104、S106)。第1関数G(D11)は、オーバーシュートレベルD11に対応した応答波形g11の瞬間値をフレーム周期Tに亘って加算した関数であり、選出部130は、図6に示すように、加算開始時間を単位時間ずらして、M個(1フレーム周期分)の第1関数G(D11)を算出する。第1関数G(D11)を数7に示す。第1関数G(D11)では、応答波形g11の瞬間値が平均化されて取得される。
第2関数Fは、理想波形fの瞬間値をフレーム周期Tに亘って加算した関数であり、選出部130は、図6に示すように、第2関数Fを算出する際に、加算開始時間を単位時間ずらしてM個の第2関数Fを算出する。第2関数Fを数8に示す。第1関数G(D11)同様に、第2関数Fでは、理想波形fの瞬間値が平均化されて取得される。
次に選出部130は、第1関数G(D11)と第2関数Fの関数値の差分値を取得し、これをフレーム周期Tにわたって加算した誤差値E2(D11)を算出する(ステップS108)。誤差値E2(D11)を数9に示す。誤差値E2(D11)では、第1関数G(D11)と第2関数Fの関数値の差分値が平均化されて取得される。
次に選出部130は、複数のオーバーシュートレベルDnの各々を用いて算出された誤差値E2(Dn)のうち、オーバーシュートレベルD11を用いて算出された誤差値E2(D11)が最小となるかを判断する。選出部130は、この際、ニュートン法を用いて判断を行う。
選出部130は、ニュートン方において、まずオーバーシュートレベルD11と隣り合うレベルのオーバーシュートレベルD12を選出し、誤差値E2(D11)と同様の手順に従って誤差値E2(D12)を算出する(ステップS112)。誤差値E2(D12)を数10に示す。
次に選出部130は、オーバーシュートレベルD11の補正値D11’を算出する(ステップS114)。補正値D11’は以下の数11を用いて求められる。
なお、数11において、以下の数12ないし数14を用いて近似を行った。
選出部130は、オーバーシュートレベルD11と補正値D11’を比較し(ステップS116)、オーバーシュートレベルD11と補正値D11’の差が「0.5」以上離れている場合(ステップS116でNO)には、補正値D11’に最も近い自然数をオーバーシュートレベルD11に代入して(ステップS118)、ステップS102ないしステップS114の処理を再び実施する。一方、オーバーシュートレベルD11と補正値D11’の差が「0.5」よりも小さい場合には、オーバーシュートレベルD11をオーバーシュートレベルCとして選出する。
2.本実施形態の効果
(1)本実施形態では、応答波形g11と理想波形fの瞬間値をフレーム周期Tに亘って平均化されて取得された第1関数G(D11)と第2関数Fを算出し、これら第1関数G(D11)と第2関数Fの関数値の差分値をフレーム周期Tに亘って平均化されて取得された誤差値E2(D11)を用いてオーバーシュートレベルCを選出する。そのため、人による視認と同様に、一定期間に亘って平均化した値を用いてオーバーシュートレベルCを選出することができ、動画映像の尾引きや映像破綻等を好適に抑制することができる。
(1)本実施形態では、応答波形g11と理想波形fの瞬間値をフレーム周期Tに亘って平均化されて取得された第1関数G(D11)と第2関数Fを算出し、これら第1関数G(D11)と第2関数Fの関数値の差分値をフレーム周期Tに亘って平均化されて取得された誤差値E2(D11)を用いてオーバーシュートレベルCを選出する。そのため、人による視認と同様に、一定期間に亘って平均化した値を用いてオーバーシュートレベルCを選出することができ、動画映像の尾引きや映像破綻等を好適に抑制することができる。
<実施形態3>
本発明の実施形態3を、図面を参照して説明する。液晶表示装置210は、液晶駆動回路212の構成において実施形態1の液晶表示装置10と異なる。以下の説明において、液晶表示装置10と重複する部分については、その記載を省略する。
本発明の実施形態3を、図面を参照して説明する。液晶表示装置210は、液晶駆動回路212の構成において実施形態1の液晶表示装置10と異なる。以下の説明において、液晶表示装置10と重複する部分については、その記載を省略する。
1.液晶駆動回路の構成
図7に示すように、液晶表示装置210の液晶駆動回路212は、記憶部220と選出部230と設定部260を備えている。記憶部220には、実施形態1の記憶部20で記憶されているものの他に、後述する第3関数Hの関数値を階調Xに変換するガンマ特性K(変換表Kの一例:図9(A)参照)が記憶されている。また、記憶部220には、前フレーム周期T0で液晶パネル40に実際に印加されたオーバーシュート信号が記憶されている。記憶部220には、外部装置から映像信号が供給されており、前フレーム周期T0における変化前の階調A0と変化後の階調B0(これは、現フレーム周期T1における変化前の階調Aにほぼ等しい)の組み合わせが入力される。また、記憶部220は設定部260に接続されており、前フレーム周期T0におけるオーバーシュートレベルC0が入力される。これによって、記憶部220では、前フレーム周期T0で液晶パネル40に実際に印加されたオーバーシュート信号、すなわち階調がA0→C0→B0の順で変化するオーバーシュート信号が記憶される。
図7に示すように、液晶表示装置210の液晶駆動回路212は、記憶部220と選出部230と設定部260を備えている。記憶部220には、実施形態1の記憶部20で記憶されているものの他に、後述する第3関数Hの関数値を階調Xに変換するガンマ特性K(変換表Kの一例:図9(A)参照)が記憶されている。また、記憶部220には、前フレーム周期T0で液晶パネル40に実際に印加されたオーバーシュート信号が記憶されている。記憶部220には、外部装置から映像信号が供給されており、前フレーム周期T0における変化前の階調A0と変化後の階調B0(これは、現フレーム周期T1における変化前の階調Aにほぼ等しい)の組み合わせが入力される。また、記憶部220は設定部260に接続されており、前フレーム周期T0におけるオーバーシュートレベルC0が入力される。これによって、記憶部220では、前フレーム周期T0で液晶パネル40に実際に印加されたオーバーシュート信号、すなわち階調がA0→C0→B0の順で変化するオーバーシュート信号が記憶される。
選出部230は、外部装置からデータ信号が供給された場合に、オーバーシュート信号のオーバーシュートレベルCを選択する。選出部230は設定部260に接続されており、設定部260に設定されたルックアップテーブル(LUT)(パラメータ表Pの一例)に基づいてオーバーシュートレベルCを選択し、階調がA→C→Bの順で変化するオーバーシュート信号を液晶パネル40に入力する。
設定部260は、外部装置から供給される映像信号による階調の変化、すなわち階調Aと階調Bの各組み合わせと、複数のオーバーシュートレベルDnの1つが対応付けられたLUTが設定されている。設定部260は選出部230に接続されており、LUTに基づいてオーバーシュートレベルCを選択させる。また、設定部260は記憶部220に接続されており、選出部230が選出したオーバーシュートレベルCが記憶部220にも入力される。これによって、選出部230に前フレーム周期T0におけるオーバーシュートレベルC0が記憶される。
1.LUTの設定処理
図8ないし図9を用いて、設定部260におけるLUTの設定処理について説明する。なお、このLUTの設定処理は、外部装置から映像信号が入力されるに先立って行われ、映像信号が入力される間に完了している。そのため、選出部230は、映像信号が入力された際に、設定部260で新たに設定されたLUTを用いて、オーバーシュートレベルCを選出する。
なお設定部260には、実施形態1、2のいずれかの方法を用いて、変化前の階調Aと目標の階調Bに対応させて、複数のオーバーシュートレベルDnから1つのオーバーシュートレベルD21が選出されており、このオーバーシュートレベルD21が階調Aと階調Bの組み合わせに対応づけらたLUTが予め用意されている。この設定処理では、用意されたLUTのオーバーシュートレベルD21を液晶表示装置210の載置された環境等に基づいて最適化する調整処理を含む。
図8ないし図9を用いて、設定部260におけるLUTの設定処理について説明する。なお、このLUTの設定処理は、外部装置から映像信号が入力されるに先立って行われ、映像信号が入力される間に完了している。そのため、選出部230は、映像信号が入力された際に、設定部260で新たに設定されたLUTを用いて、オーバーシュートレベルCを選出する。
なお設定部260には、実施形態1、2のいずれかの方法を用いて、変化前の階調Aと目標の階調Bに対応させて、複数のオーバーシュートレベルDnから1つのオーバーシュートレベルD21が選出されており、このオーバーシュートレベルD21が階調Aと階調Bの組み合わせに対応づけらたLUTが予め用意されている。この設定処理では、用意されたLUTのオーバーシュートレベルD21を液晶表示装置210の載置された環境等に基づいて最適化する調整処理を含む。
設定部260は、記憶部220に記憶されている前フレーム周期T0のオーバーシュート信号から、前フレーム周期T0における液晶パネル40の応答波形hを選出する(ステップS202)。つまり、設定部260は、前フレーム周期T0の階調の変化(A0→C0→B0)に基づいて、複数の応答波形gnの中から、対応する応答波形gnを応答波形hとして選出する。次に、設定部260は、第3関数H(つまり、第1関数Gnの一つ)を算出する(ステップS204)。第3関数Hは、応答波形hの瞬間値をフレーム周期Tに亘って加算した関数である。第3関数Hを数15に示す。第3関数Hには、応答波形hの瞬間値が平均化されて取得される。
図9(B)に、応答波形hと第3関数Hを示す。液晶パネル40の階調を、階調A0から階調B0に上昇させるライズ応答の場合、応答波形hに遅れて第3関数Hが上昇する。そのため、1フレーム周期T後の応答波形hが目的の階調B0(階調Yに相当)に達している場合でも、応答関数Hは対応する値にまで最大に達していない。設定部260は、1フレーム周期T後の応答関数Hの関数値H1を算出し、図9(A)に示すガンマ特性Kを用いて(矢印72参照)、対応する階調DX(矢印74参照)を選出する(ステップS206)。
設定部260は、目的の階調B0と選出した階調Xを比較し、その階調の差分値Sを算出する(ステップS208)。この差分値Sは、LUTに設定されたオーバーシュートレベルD21と、最適なオーバーシュートレベルCとの差に起因しており、液晶表示装置210の配置される温度や湿度等の変化によって生じる。設定部260は、差分値Sに基づいてオーバーシュートレベルD21を調整してオーバーシュートレベルD21’を算出し(ステップS210)、LUTのオーバーシュートレベルD21をオーバーシュートレベルD21’に変更する。設定部260は、液晶パネル40に含まれる複数のピクセル46について、上記の設定を繰り返し、LUTの設定を完成する。
2.オーバーシュートレベルCの選出方法
選出部30は、設定部260によって設定されたLUTを用いてオーバーシュートレベルCを選出する。選出部30は設定部260に接続されており、外部装置から映像信号、すなわち変化前の階調Aと目的の階調Bの組み合わせに対応したオーバーシュートレベルD21’をオーバーシュートレベルCとして選出する。
選出部30は、設定部260によって設定されたLUTを用いてオーバーシュートレベルCを選出する。選出部30は設定部260に接続されており、外部装置から映像信号、すなわち変化前の階調Aと目的の階調Bの組み合わせに対応したオーバーシュートレベルD21’をオーバーシュートレベルCとして選出する。
3.本実施形態の効果
(1)本実施形態では、オーバーシュートレベルCを選出する際に、予め設定されたLUTに基づいてオーバーシュートレベルCを選出するので、迅速にオーバーシュートレベルCを選出することができる。
(1)本実施形態では、オーバーシュートレベルCを選出する際に、予め設定されたLUTに基づいてオーバーシュートレベルCを選出するので、迅速にオーバーシュートレベルCを選出することができる。
(2)本実施形態では、応答波形hの瞬間値がフレーム周期Tに亘って平均化されて取得された第3関数H(第1関数Gnの一つ)を用いてLUTを設定し、このLUTに基づいてオーバーシュートレベルD21を調整する。そのため、人による視認と同様に、一定期間に亘って平均した値を用いてオーバーシュートレベルD21を調整することができ、動画映像の尾引きや映像破綻等が好適に抑制される。
(3)本実施形態では、LUTを階調B0と階調Xの差分値Sに基づいて調整している。階調Xは、応答波形gnが平均化された第3関数Hに基づいて設定されており、人により視認される階調を模式的に示すものである。これに対して、階調B0は、応答波形hの到達階調であり、測定器等により測定される階調を示すものである。差分値Sに基づいてLUTを設定することで、人により視認される階調と測定器等により測定される階調の差に起因して、尾引きや映像破綻等の問題が発生することを好適に抑制することができる。
(4)本実施形態では、前フレーム周期T0において液晶パネル40に実際に印加されたオーバーシュート信号をフィードバックさせて、現フレーム周期T1におけるオーバーシュート信号を選出する。前フレーム周期T0における応答波形をLUTにフィードバックさせることで、温度等の現在の環境の影響を考慮したLUTを設定することができ、尾引きや映像破綻等の問題を好適に抑制することができる。
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記実施形態では、誤差値E1を算出する際に、応答波形g1と理想波形fの差分値をそのまま一定期間に亘って加算していたが、算出する誤差値E1の種類はこれに限られない。応答波形g1と理想波形fの差分値を1以上の指数で冪乗した値を一定期間に亘って加算して誤差値E1を算出してもよい。応答波形g1と理想波形fの差分値を1以上の指数で冪乗した場合、その差分値が大きい場合には、誤差値E1が増大し、その差分値が小さい場合には、誤差値E1が減少する。上記を利用することで、この場合には、誤差値E1が最小となる複数のオーバーシュートレベルDnの1つを正確に選出することができる利点を得ることができる。なお、第1関数Gnと第2関数Fから算出される誤差値E2についても同様である。
(2)その一方、指数が1であると、ニュートン法を用いて、他の指数を用いた場合に比べて誤差値E1(誤差値E2)が最小となるオーバーシュートレベルDnの1つを迅速に選出することができる利点を得ることができる。
(3)上記実施形態では、誤差値E1が最小となる複数のオーバーシュートレベルDnを算出する際に、ニュートン法を用いて算出を行ったが、これに限られず、収束値を求める様々なアルゴリズムを使用することができる。
(4)上記実施形態では、光源としてLEDを用いたものを例示したが、LED以外の光源を用いたものであってもよい。また、光源の配置としてエッジライト型を用いたものを例示したが、光源が導光板52の背面に配された直下型を用いたものであってもよい。
10…液晶表示装置、12…液晶駆動回路、14…表示部、16…バックライト駆動回路、20…記憶部、30…選出部、40…液晶パネル、42…スキャンライン、44…データライン、46…ピクセル、48…スイッチ装置、49…ピクセル電極、50…バックライトユニット、260…設定部
Claims (13)
- 液晶表示素子にオーバーシュート信号を印加して液晶表示素子を表示させる液晶表示素子の駆動方法であって、
階調を変化させる前の階調をAとし、到達させるべき階調をBとし、オーバーシュート信号のレベルをCとするとき、A→C→Bの順でレベルが変化するオーバーシュート信号を印加する場合のオーバーシュートレベルCを複数のオーバーシュートレベルDnから選出する選出工程を備えており、
前記複数のオーバーシュートレベルDnの各々に対応した応答波形gnが取得されているとともに、前記階調Aから前記階調Bへの理想的な応答波形である理想波形fが設定されており、
前記選出工程では、前記応答波形gnと前記理想波形fとの瞬間値の差分値に基づく値を一定期間に亘って加算した第1誤差値E1が最小となる前記応答波形gnに対応した前記複数のオーバーシュートレベルDnの1つを前記オーバーシュートレベルCとして選出することを特徴とする液晶表示素子の駆動方法。 - 前記第1誤差値E1は、前記応答波形gnと前記理想波形fの瞬間値の差分値を1以上の指数で冪乗した値を一定期間に亘って加算した値であることを特徴とする請求項1に記載の液晶表示素子の駆動方法。
- 前記選出工程では、ニュートン法を用いて、前記複数のオーバーシュートレベルDnから前記オーバーシュートレベルCを選出することを特徴とする請求項1または請求項2に記載の液晶表示素子の駆動方法。
- 前記第1誤差値E1を算出する際の前記指数は1であることを特徴とする請求項3に記載の液晶表示素子の駆動方法。
- 液晶表示素子にオーバーシュート信号を印加して液晶表示素子を表示させる液晶表示素子の駆動方法であって、
階調を変化させる前の階調をAとし、到達させるべき階調をBとし、オーバーシュート信号のレベルをCとするとき、A→C→Bの順でレベルが変化するオーバーシュート信号を印加する場合のオーバーシュートレベルCを複数のオーバーシュートレベルDnから選出する選出工程を備えており、
前記複数のオーバーシュートレベルDnの各々に対応した応答波形gnが取得されているとともに、前記階調Aから前記階調Bへの理想的な応答波形である理想波形fが設定されており、
前記選出工程では、前記応答波形gnの瞬間値を一定期間に亘って加算し、加算開始時間を変化させることで時間に伴って変化する第1関数Gnと、前記理想波形fの瞬間値を一定期間に亘って加算し、加算開始時間を変化させることで時間に伴って変化する第2関数Fとの関数値の差分値に基づく値を一定期間に亘って加算した第2誤差値E2が最小となる前記応答波形gnに対応した前記複数のオーバーシュートレベルDnの1つを前記オーバーシュートレベルCとして選出することを特徴とする液晶表示素子の駆動方法。 - 前記第2誤差値E2は、前記第1関数Gnと前記第2関数Fの関数値の差分値を1以上の指数で冪乗した値を一定期間に亘って加算した関数であることを特徴とする請求項5に記載の液晶表示素子の駆動方法。
- 前記選出工程では、ニュートン法を用いて、前記複数のオーバーシュートレベルDnから前記オーバーシュートレベルCを選出することを特徴とする請求項4または請求項5に記載の液晶表示素子の駆動方法。
- 前記第2誤差値E2を算出する際の前記係数は1であることを特徴とする請求項7に記載の液晶表示素子の駆動方法。
- 液晶表示素子にオーバーシュート信号を印加して液晶表示素子を表示させる液晶表示素子の駆動方法であって、
階調を変化させる前の階調をAとし、到達させるべき階調をBとし、オーバーシュート信号のレベルをCとするとき、A→C→Bの順でレベルが変化するオーバーシュート信号を印加する場合のオーバーシュートレベルCを複数のオーバーシュートレベルDnから選出する選出工程を備えており、
前記複数のオーバーシュートレベルDnの各々に対応した応答波形gnが取得され、前記階調Aから前記階調Bへの理想的な応答波形である理想波形fが設定されているとともに、前記応答波形gnの瞬間値を一定期間に亘って加算し、加算開始時間を変化させることで時間に伴って変化する第1関数Gnの関数値を階調Xに変換する変換表Kが決定されており、
前記階調Aと前記階調Bの各組み合わせに対して、前記複数のオーバーシュートレベルDnの1つが対応付けられたパラメータ表Pを設定する設定工程をさらに備えており、
前記設定工程では、一定期間後における前記階調Xと前記応答波形gnの階調Yとの差分値Sに基づいて前記複数のオーバーシュートレベルDnの1つを設定しており、
前記選出工程では、前記パラメータ表Pに基づいて前記オーバーシュートレベルCを選出することを特徴とする液晶表示素子の駆動方法。 - 一フレーム周期毎に前記液晶表示素子に前記オーバーシュート信号を印加するとともに、前フレーム周期に前記液晶表示素子に印加された前記オーバーシュート信号を記憶する記憶工程をさらに備えており、
前記変換表Kは、前記オーバーシュート信号を印加した際の前記応答波形gnに基づいて設定されることを特徴とする請求項9に記載の液晶表示素子の駆動方法。 - 液晶表示素子にオーバーシュート信号を印加して液晶表示素子を表示させる液晶表示素子の駆動装置であって、
階調を変化させる前の階調をAとし、到達させるべき階調をBとし、オーバーシュート信号のレベルをCとするとき、A→C→Bの順でレベルが変化するオーバーシュート信号を印加する場合のオーバーシュートレベルCを複数のオーバーシュートレベルDnから選出する選出部と、
前記複数のオーバーシュートレベルDnの各々に対応した応答波形gnと、前記階調Aから前記階調Bへの理想的な応答波形である理想波形fとを記憶する記憶部を備えており、
前記選出部は、前記応答波形gnと前記理想波形fとの瞬間値の差分値に基づく値を一定期間に亘って加算した第1誤差値E1が最小となる前記応答波形gnに対応した前記複数のオーバーシュートレベルDnの1つを前記オーバーシュートレベルCとして選出することを特徴とする液晶表示素子の駆動装置。 - 液晶表示素子にオーバーシュート信号を印加して液晶表示素子を表示させる液晶表示素子の駆動装置であって、
階調を変化させる前の階調をAとし、到達させるべき階調をBとし、オーバーシュート信号のレベルをCとするとき、A→C→Bの順でレベルが変化するオーバーシュート信号を印加する場合のオーバーシュートレベルCを複数のオーバーシュートレベルDnから選出する選出部と、
複数複数のオーバーシュートレベルDnの各々に対応した応答波形gnと、前記階調Aから前記階調Bへの理想的な応答波形である理想波形fとを記憶する記憶部を備えており、
前記選出部は、前記応答波形gnの瞬間値を一定期間に亘って加算し、加算開始時間を変化させることで時間に伴って変化する第1関数Gnと、前記理想波形fの瞬間値を一定期間に亘って加算し、加算開始時間を変化させることで時間に伴って変化する第2関数Fとの関数値の差分値に基づく値を一定期間に亘って加算した第2誤差値E2が最小となる前記応答波形gnに対応した前記複数のオーバーシュートレベルDnの1つを前記オーバーシュートレベルCとして選出することを特徴とする液晶表示素子の駆動装置。 - 液晶表示素子にオーバーシュート信号を印加して液晶表示素子を表示させる液晶表示素子の駆動装置であって、
階調を変化させる前の階調をAとし、到達させるべき階調をBとし、オーバーシュート信号のレベルをCとするとき、A→C→Bの順でレベルが変化するオーバーシュート信号を印加する場合のオーバーシュートレベルCを複数のオーバーシュートレベルDnから選出する選出部と、
前記複数のオーバーシュートレベルDnの各々に対応した応答波形gnと、前記階調Aから前記階調Bへの理想的な応答波形である理想波形fと、前記応答波形gnの瞬間値を一定期間に亘って加算し、加算開始時間を変化させることで時間に伴って変化する第1関数Gnの関数値を階調Xに変換する変換表Kとを記憶する記憶部と、
前記階調Aと前記階調Bの各組み合わせに対して、前記複数のオーバーシュートレベルDnの1つが対応付けられたパラメータ表Pを設定する設定部を備えており、
前記設定部は、一定期間後における前記階調Xと前記応答波形gnの階調Yとの差分値Sに基づいて前記複数のオーバーシュートレベルDnの1つを設定しており、
前記選出部は、前記パラメータ表Pに基づいて前記オーバーシュートレベルCを選出することを特徴とする液晶表示素子の駆動装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/702,712 US20130088530A1 (en) | 2010-06-24 | 2011-06-03 | Method of driving liquid crystal display element and liquid crystal display element driving device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010143899 | 2010-06-24 | ||
JP2010-143899 | 2010-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011162083A1 true WO2011162083A1 (ja) | 2011-12-29 |
Family
ID=45371279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/062765 WO2011162083A1 (ja) | 2010-06-24 | 2011-06-03 | 液晶表示素子の駆動方法、液晶表示素子の駆動装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20130088530A1 (ja) |
WO (1) | WO2011162083A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113963670B (zh) * | 2021-10-29 | 2023-08-29 | 武汉京东方光电科技有限公司 | 一种显示面板的驱动方法、显示面板和显示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001264731A (ja) * | 2000-03-16 | 2001-09-26 | Sharp Corp | 液晶表示装置およびその駆動方法 |
JP2001343956A (ja) * | 2000-03-29 | 2001-12-14 | Sharp Corp | 液晶表示装置 |
JP2002351409A (ja) * | 2001-05-23 | 2002-12-06 | Internatl Business Mach Corp <Ibm> | 液晶表示装置、液晶ディスプレイ駆動回路、液晶ディスプレイの駆動方法、およびプログラム |
JP2003172915A (ja) * | 2001-09-26 | 2003-06-20 | Sharp Corp | 液晶表示装置 |
JP2009157623A (ja) * | 2007-12-26 | 2009-07-16 | Nec Electronics Corp | 回路シミュレーションのためのシステムと方法 |
JP2009265183A (ja) * | 2008-04-22 | 2009-11-12 | Tpo Displays Corp | 液晶表示装置のオーバードライブ方法および液晶表示装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8130246B2 (en) * | 2005-03-14 | 2012-03-06 | Sharp Kabushiki Kaisha | Image display apparatus, image display monitor and television receiver |
-
2011
- 2011-06-03 US US13/702,712 patent/US20130088530A1/en not_active Abandoned
- 2011-06-03 WO PCT/JP2011/062765 patent/WO2011162083A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001264731A (ja) * | 2000-03-16 | 2001-09-26 | Sharp Corp | 液晶表示装置およびその駆動方法 |
JP2001343956A (ja) * | 2000-03-29 | 2001-12-14 | Sharp Corp | 液晶表示装置 |
JP2002351409A (ja) * | 2001-05-23 | 2002-12-06 | Internatl Business Mach Corp <Ibm> | 液晶表示装置、液晶ディスプレイ駆動回路、液晶ディスプレイの駆動方法、およびプログラム |
JP2003172915A (ja) * | 2001-09-26 | 2003-06-20 | Sharp Corp | 液晶表示装置 |
JP2009157623A (ja) * | 2007-12-26 | 2009-07-16 | Nec Electronics Corp | 回路シミュレーションのためのシステムと方法 |
JP2009265183A (ja) * | 2008-04-22 | 2009-11-12 | Tpo Displays Corp | 液晶表示装置のオーバードライブ方法および液晶表示装置 |
Also Published As
Publication number | Publication date |
---|---|
US20130088530A1 (en) | 2013-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5214809B2 (ja) | 液晶表示装置 | |
KR102322709B1 (ko) | 영상 처리 방법 및 영상 처리 회로와 그를 이용한 표시 장치 | |
JP5666163B2 (ja) | 光源駆動方法 | |
JP4203090B2 (ja) | 画像表示装置および画像表示方法 | |
JP5460435B2 (ja) | 画像表示装置および画像表示装置の制御方法 | |
KR101295882B1 (ko) | 액정표시장치 및 그의 로컬디밍 제어방법 | |
JP5734580B2 (ja) | 画素データの補正方法及びこれを遂行するための表示装置 | |
US20090002285A1 (en) | Image display apparatus | |
JP2011248215A (ja) | 液晶表示装置 | |
JP2008304907A (ja) | 液晶表示装置及びこれに用いる映像表示方法 | |
US20090278774A1 (en) | Content-adaptive adjustment system and method | |
JP2009069836A (ja) | 低電力映像表示装置および映像表示方法 | |
JP2002055675A (ja) | 画像表示装置 | |
EP3115990A1 (en) | Image display apparatus and control method thereof | |
WO2014192148A1 (ja) | 表示装置、表示システム、映像出力装置、および表示装置の制御方法 | |
KR101682531B1 (ko) | 감마 보정 장치 및 감마 보정 방법, 이를 이용한 디스플레이의 구동 장치 및 구동 방법 | |
WO2012036058A1 (ja) | 駆動回路、駆動方法、表示装置 | |
US10419708B2 (en) | Image processing circuit and image contrast enhancement method thereof | |
JP2013513128A (ja) | 表示パネル画素の輝度制御 | |
WO2011162083A1 (ja) | 液晶表示素子の駆動方法、液晶表示素子の駆動装置 | |
KR20100033731A (ko) | 광원블록들의 구동방법, 이를 수행하기 위한 콘트롤러 보드및 이를 갖는 표시장치 | |
KR101163008B1 (ko) | 액정표시장치 및 이를 이용한 로컬 디밍 제어 방법 | |
JP5111652B2 (ja) | バックライト装置及びバックライト装置の制御方法 | |
JP5330552B2 (ja) | 映像表示装置およびテレビ受信装置 | |
WO2013121707A1 (ja) | 表示装置及び表示方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11797969 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13702712 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11797969 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |