WO2011160320A1 - 氟塑料层和聚酯层的粘结方法 - Google Patents

氟塑料层和聚酯层的粘结方法 Download PDF

Info

Publication number
WO2011160320A1
WO2011160320A1 PCT/CN2010/075466 CN2010075466W WO2011160320A1 WO 2011160320 A1 WO2011160320 A1 WO 2011160320A1 CN 2010075466 W CN2010075466 W CN 2010075466W WO 2011160320 A1 WO2011160320 A1 WO 2011160320A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fluoroplastic
bonding
polyester
film
Prior art date
Application number
PCT/CN2010/075466
Other languages
English (en)
French (fr)
Inventor
李民
Original Assignee
Li Min
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Min filed Critical Li Min
Publication of WO2011160320A1 publication Critical patent/WO2011160320A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/124Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives using adhesives based on a macromolecular component
    • C08J5/128Adhesives without diluent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of multi-layer plastic production, in particular to the technical field of plastic layer bonding, in particular to a method for bonding a fluoroplastic layer and a polyester layer. Background technique
  • Multi-layer coextrusion is a commonly used method for producing plastic film. It has developed rapidly in recent years and has become one of the important production methods for food packaging and pharmaceutical packaging film.
  • the common food packaging bags are basically multi-layer extrusion, such as a three-layer co-extruded CPP film. It is formed into a film having a multi-layer structure by melting different plastics into the same mold and simultaneously being extruded, and the layers are bonded to each other. Due to the high production speed of the multi-layer extrusion technology and the high bonding strength between the layers of the film, films produced using this technology are increasingly replacing the films originally produced using the composite technology. Cast coating is also a commonly used plastic production technique in which an extruder is used to melt a plastic and then extrude it onto a substrate. The more common substrates are aluminum sheets, non-woven fabrics, fiberglass cloths, and plastic films.
  • Fluoroplastics have good weather resistance due to fluorine content, low surface energy, self-cleaning properties, and very difficult to bond. If fluoroplastics need to be bonded, the surface needs to be treated, such as plasma, corona, chemical corrosion, etc.
  • Common fluorine-containing plastics containing vinylidene fluoride (VDF) groups are PVDF (polyvinylidene fluoride), THV (tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer), vinylidene fluoride and chlorotrifluoroethylene copolymer. , vinylidene fluoride and vinyl fluoride copolymers, etc. PVDF and acrylate plastics have very good compatibility.
  • PVDF can be mixed with PMMA (polymethyl methacrylate) in different proportions to mix the required plastic alloys.
  • PVDF can be mixed with other fluoroplastics under certain conditions.
  • PVDF suppliers include China's San Aifu, Juhua, Dongyue, etc., foreign countries include Arkema, Solvay, Daikin, Wu Yu, etc.
  • the supplier of THV is 3M.
  • Cohesive resins generally refer to copolymers of ethylene and polar polymer monomers, such as copolymers of ethylene with vinyl acetate, ethylene with acrylic acid and its esters, ethylene with maleic acid or maleic acid. And ethylene maleated liver grafts and the like.
  • a cohesive resin refers to a resin having a higher cohesive property, which can bond two layers of plastic films to be bonded together in a molten state. A large amount of it is used in the production of a multilayer co-extruded film as a glue layer for bonding the layers.
  • Commonly used suppliers of cohesive resins are DuPont (Bynel and Surlyn), Dow Chemical (Primacor), Arkema in Europe, Mitsubishi in Japan, and Ube. In addition, some Chinese manufacturers can also produce.
  • Bonding a fluoroplastic film to the surface of a polyester film is an important process for producing a back sheet for a solar cell.
  • the method used in the published patents is to bond different fluoroplastic film and polyester film together by dry compounding method, that is, uniformly coating the glue such as polyurethane glue, acrylate glue or epoxy glue on the polymer.
  • a composite film obtained by pressing a solvent on a polyester or fluoroplastic surface, drying the solvent, and then pressing it together with another film. Usually after dry compounding, it needs to be cooked at 40-80 degrees Celsius. The process can be used, and the time is usually more than 48 hours.
  • the most common backsheet is the combination of DuPont's PVF film (trade name Tedlar) on both sides of a polyethylene terephthalate (PET) film, the backsheet of the TPT structure.
  • PET polyethylene terephthalate
  • Another common backsheet is the TPE structure, which has been patented by Madico Corporation of the United States (see patent application WO2004/091901 A2). It composites PVF onto the PET surface and composites the EVA film on the other side of the PET.
  • 3M patent application see patent application US2006/0280922 A1
  • 3M composites THV to the PET surface.
  • Japan's Toyo Aluminum has composited PVDF films onto PET surfaces to obtain backsheets. Dry compounding technology is used in all production processes.
  • Dry composite technology is a mature technology widely used in the production of flexible circuit boards, printing films, packaging papers, etc., that is, using a dry laminating machine to apply solvent-containing glue on a film, volatilizing the solvent and then another A layer of film is laminated to the layer to form a composite film.
  • the advantage of this technology is that it can be used in a wide range of applications, such as plastic film, aluminum foil, and paper.
  • due to the use of solvents in the production process it has a certain impact on the environment, and the production cycle is long due to the need for the curing process.
  • the object of the present invention is to overcome the above disadvantages of the prior art and to provide a method for bonding a fluoroplastic layer and a polyester layer.
  • the bonding method is unique in concept, ingeniously designed, requires no solvent, and has good bonding effect.
  • the production cycle is shortened, thereby reducing the impact on the environment and improving production efficiency. It is of great significance for the production of solar cell backsheets on this basis, and is suitable for large-scale promotion and application.
  • the bonding method of the fluoroplastic layer and the polyester layer of the present invention adopts the following technical solution: the bonding method of the fluoroplastic layer and the polyester layer, which is characterized in that the fluoroplastic layer and the viscous layer are adhered
  • the fluoroplastic layer, the transition layer and the tie layer are coextruded and cast coated onto the polyester layer to bond the fluoroplastic layer and the polyester layer.
  • the specific method is to melt the fluoroplastic, the bonding resin forming the bonding layer by using an extruder, or to melt the fluoroplastic, the plastic forming the transition layer, and the bonding resin forming the bonding layer, respectively, through the dispenser.
  • a mold a two-layer or three-layer film is extruded from a die port, and one side of the binder resin is cast onto the polyester film, and is bonded to the polyester film in a molten state to reach The purpose of bonding fluoroplastics and polyester together.
  • the speed of cast coating varies with the accuracy of the equipment, from 0 to several hundred meters per minute.
  • the fluoroplastic layer may be any fluoroplastic layer.
  • the fluoroplastic layer is a film formed of a fluoroplastic containing a vinylidene fluoride (VDF) segment or a plastic alloy containing a vinylidene fluoride segment and a pigment, an inorganic filler, and other plastics.
  • VDF vinylidene fluoride
  • the total content of vinylidene fluoride in the fluoroplastic layer may be arbitrary. Preferably, however, the total content of vinylidene fluoride in the fluoroplastic layer is greater than 20%.
  • the thickness of the fluoroplastic layer can be any thickness as needed, as long as the mold can be extruded into a film.
  • fluoroplastics may use polyvinylidene fluoride (PVDF), which may be homopolymerized or copolymerized.
  • PVDF polyvinylidene fluoride
  • the homopolymerized PVDF means that only VDF groups are contained, and the copolymerized PVDF means a small amount of other plastic groups in addition to the VDF group, and a chlorinated group-containing olefin or a branched olefin is common.
  • PVDF can be transparent or colored as needed.
  • PVDF may also contain a small amount of acrylate plastics in a small amount of not more than 30%.
  • the tie layer can be of any suitable material.
  • the bonding layer is a film layer formed of a copolymer of ethylene and a polar resin.
  • a copolymer of ethylene and a polar resin for example, ethylene with vinyl acetate, ethylene with acrylic acid and its esters, copolymer of ethylene with maleic acid or maleic acid, and ethylene maleated liver graft.
  • the tie layer may further comprise a vinylidene fluoride-containing fluoroplastic. That is, a small amount of fluoroplastic containing vinylidene fluoride (VDF) may be mixed in the adhesive layer to improve the adhesion to the fluoroplastic, but the total amount of VDF is not more than 20%.
  • VDF fluoroplastic containing vinylidene fluoride
  • the thickness of the bonding layer can be any thickness as needed, as long as the mold can be extruded into a film.
  • the thickness of the adhesive resin layer is from 1 to 60 ⁇ m.
  • the transition layer is used to further increase the bond strength.
  • the fluoroplastic layer and the adhesive layer are practically integrated and cannot be peeled off.
  • the transition layer can be coated with any suitable plastic.
  • the transition layer is a polyacrylate plastic layer or a mixture layer of a vinylidene fluoride-containing fluoroplastic and a polyacrylate plastic.
  • the vinylidene fluoride-containing fluoroplastic is polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the transition layer is a mixture of polyacrylic plastic and PVDF.
  • the thickness of the transition layer can be any thickness as needed, as long as the mold can be extruded into a film.
  • the thickness of the transition layer is from 1 to 60 ⁇ m.
  • anti-aging agents In order to improve the anti-aging properties and the requirements for different colors, anti-aging agents, pigments and inorganic fillers may be added to the above layers as needed.
  • the polyester layer can be coated with any suitable polyester.
  • the polyester layer is a film layer formed of polyethylene terephthalate (PET), or a film layer formed of polybutylene terephthalate (PBT), or a pair of poly a film layer formed of propylene glycol phthalate (PTT), or a film layer formed of polyethylene naphthalate (PEN), or a film layer formed of a plastic alloy containing one of the above polyesters as a main component .
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PTT propylene glycol phthalate
  • PEN polyethylene naphthalate
  • the polyester layer is a biaxially stretched PET film layer.
  • the thickness of the polyester layer can range from a few microns to a few centimeters, and as long as the surface is polyester, it can be bonded by this means.
  • the surface of the polyester layer may be subjected to surface treatment such as corona, plasma, flame, and primer before casting.
  • the beneficial effects of the present invention are specifically as follows: The present invention is obtained by coextruding and casting a fluoroplastic layer and a bonding layer or a fluoroplastic layer, a transition layer and a bonding layer onto a polyester layer.
  • the fluoroplastic layer and the polyester layer are bonded, the concept is unique, the design is ingenious, the bonding effect is good, the use of the solvent-containing glue is avoided, thereby reducing the environmental impact, and the curing process necessary in the dry process is not required. Thereby shortening the production time and improving the production efficiency, it is very important to produce the solar battery backboard on this basis, and is suitable for large-scale popularization and application.
  • Figure 1 is a schematic view showing the structure of a specific embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of another embodiment of the present invention. detailed description
  • the fluoroplastic layer 1 is a PVDF layer
  • the bonding layer 2 is a bonding resin layer
  • the polyester layer 3 is a PET layer.
  • the structure is produced by the following process: The extruder extrudes a film of a two-layer structure through a die and then casts it onto the surface of the PET layer.
  • the double layer structure is a PVDF layer and a binder resin layer, and a contact resin layer is in contact with the surface of the PET layer.
  • the PVDF layer is white and has a thickness of 20 ⁇ .
  • the binder resin layer was an ethylene maleated liver graft layer having a thickness of 60 ⁇ m.
  • the PET layer is a biaxially stretched PET layer having a thickness of 100 ⁇ m.
  • the bond strength of the adhesive resin layer to the PET layer was 22 N/cm by the pull force test.
  • the fluoroplastic layer 1 is a PVDF layer
  • the transition layer 4 is a mixture layer of PVDF and PMMA
  • the bonding layer 2 is a bonding resin layer
  • the polyester layer 3 is a PET layer.
  • the structure is produced by the following process: The extruder extrudes a film of a three-layer structure through a die and then casts it onto the surface of the PET layer.
  • the three-layer structure is a PVDF layer, a mixture layer of PVDF and PMMA, and a binder resin layer, and a contact resin layer is in contact with the PET layer.
  • the PVDF layer is white and has a thickness of 5 ⁇ m.
  • the transition layer 4 has a PVDF content of 20%, a PMMA content of 80%, and a thickness of 10 ⁇ m.
  • the adhesive resin layer was ⁇ and had a thickness of 10 ⁇ m.
  • the PET layer is a biaxially stretched PET layer having a thickness of 250 ⁇ m. After bonding, the bond strength between the adhesive resin layer and the PET layer was 25 N/cm.
  • the fluoroplastic layer 1 is a PVDF layer
  • the bonding layer 2 is a binder resin layer
  • the polyester layer 3 is a PET layer.
  • the structure passes the following process Manufacture: The extruder extrudes a film of a two-layer structure through a die, and then casts it onto the surface of the PET layer, and the surface of the PET layer is pre-corona treated.
  • the two-layer structure is a PVDF layer and a binder resin layer, and the surface of the PET layer is in contact with a binder resin layer.
  • the PVDF layer is white and has a thickness of 20 ⁇ m.
  • the bonding layer 2 is a mixture of cerium and PVDF having an EMA content of 95%, a PVDF content of 5%, and a thickness of 60 ⁇ m.
  • the PET layer is a biaxially stretched PET layer having a thickness of 100 ⁇ m.
  • the bond strength of the adhesive resin layer to the PET layer was 25 N/cm as measured by the pull-out force.
  • the fluoroplastic layer 1 is a PVDF layer
  • the transition layer 4 is a mixture layer of PVDF and PMMA
  • the bonding layer 2 is a binder resin layer
  • the polyester layer 3 is a PET layer.
  • the structure is produced by the following process: The extruder extrudes a film of a three-layer structure through a die, and then casts it onto the surface of the PET layer, and the surface of the PET layer is previously subjected to plasma treatment.
  • the three-layer structure is a PVDF layer, a mixture layer of PVDF and PMMA, and a binder resin layer, and a contact resin layer is in contact with the PET layer.
  • the PVDF layer is white and has a thickness of 5 ⁇ m.
  • the transition layer 4 has a PVDF content of 20%, a PMMA content of 80%, and a thickness of 10 ⁇ m.
  • the adhesive resin layer was EMA and had a thickness of 10 ⁇ m.
  • the PET layer is a biaxially stretched PET layer having a thickness of 250 ⁇ m. The bonding strength of the adhesive resin layer to the PET layer was 28 N/cm by the pull-out force detection.
  • the bonding effect of the adhesive resin layer and the PET layer is: the bonding strength of the adhesive resin layer and the PET layer is more than 20 N/cm, and the fluoroplastic layer/binder resin layer Or the bonding strength between the layers of the fluoroplastic layer/transition layer/binder resin layer is greater than the breaking strength of the fluoroplastic layer itself, and therefore, the bonding strength between the PVDF layer and the PET layer is greater than 20 N/cm, and the surface of the PET layer
  • the treatment can further improve the bond strength, and the bonding effect is much better than the dry process, because the dry process (with polyurethane glue) is generally 4-10 Newtons/cm. Moreover, no other processes are required after the end of the casting, and no aging is required, and the total production time is greatly shortened.
  • the invention adopts a combination of multi-layer coextrusion and cast coating, coextruding and casting a fluoroplastic layer and a binder resin layer onto a polyester film, or a fluoroplastic layer, a transition layer and a viscous layer.
  • the resin layer is coextruded and cast onto the polyester film to bond the fluoroplastic to the polyester.
  • the bonding effect is good, avoiding the use of glue with solvent, and at the same time greatly shortening the necessary curing process in the dry process, thereby shortening the production time.
  • the method for bonding the fluoroplastic layer and the polyester layer of the present invention has a unique concept, is ingeniously designed, does not require the use of a solvent, has a good bonding effect, and shortens the production cycle, thereby reducing environmental impact and improving production efficiency.
  • This basic production of solar cell backsheets is of great significance and is suitable for large-scale application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

氟塑料层和聚酯层的粘结方法 技术领域
本发明涉及多层塑料生产技术领域, 特别涉及塑料层粘结技术领域, 具体是指一种氟塑 料层和聚酯层的粘结方法。 背景技术
多层共挤是一种常用的塑料薄膜生产方法, 近年来发展迅速, 成为食品包装、 药品包装 薄膜的重要生产方式之一。 目前常见的食品包装袋基本是多层挤出, 如三层共挤的 CPP膜。 其通过将不同的塑料熔化后进入同一个模具并同时被挤出而成为有多层结构的薄膜, 各层间 相互粘连在一起。 由于多层挤出的技术生产速度快, 薄膜各层间粘结强度高, 使用此技术生 产的薄膜正越来越多的替代原来使用复合技术生产的薄膜。 流延涂布也是一种常用的塑料生 产技术, 其用挤出机将塑料熔融后挤出淋涂在基材上。 较常见的基材有铝板、 无纺布、 玻璃 纤维布以及塑料膜。
氟塑料由于含氟, 所以有很好的耐候性, 表面能低, 有自清洁性, 非常不容易粘结。 如 果需要粘结氟塑料, 需要对其表面进行处理, 如等离子、 电暈、 化学腐蚀等。 常见的含偏氟 乙烯(VDF )基团的氟塑料有 PVDF (聚偏氟乙烯)、 THV (四氟乙烯-六氟丙烯 -偏氟乙烯共 聚物)、 偏氟乙烯和三氟氯乙烯共聚物、 偏氟乙烯和氟乙烯共聚物等。 PVDF和丙烯酸酯类的 塑料有非常好好的相容性, 比如 PVDF可以和 PMMA (聚甲基丙烯酸甲酯)可按不同比例混 合成需要的塑料合金。 PVDF可以和其它氟塑料在一定的条件下混合。 PVDF的供应商有中国 的三爱富、 巨化、 东岳等, 国外的有阿科玛、 苏威、 大金、 吴羽等, THV的供应商是 3M。
粘结性树脂通常指乙烯和极性聚合物单体的共聚物, 比如乙烯同醋酸乙烯酯、 乙烯同丙 烯酸及其酯类、 乙烯同顺丁烯二酸或顺丁烯二酸肝的共聚物、 以及乙烯的马来酸肝接枝物等。 粘结性树脂顾名思义, 是指有较高粘结性的树脂, 其在熔融状态下可以将需要粘合的两层塑 料薄膜粘结在一起。 其大量的被使用在多层共挤膜的生产中作为粘结各层的胶层存在。 常用 的粘结性树脂的供应商有美国杜邦( Bynel和 Surlyn )、 陶氏化学(Primacor )、 欧洲的阿科玛、 日本的三菱、 宇部, 另外中国的一些厂家也能生产。
将氟塑料薄膜粘结到聚酯薄膜表面是生产太阳能电池用的背板的重要工序。 在已公开的 专利中使用的方法都是将不同的氟塑料薄膜、 聚酯薄膜通过干式复合的方法粘合在一起, 即 将聚氨酯胶、 丙烯酸酯胶或环氧胶等胶均匀涂布在聚酯或氟塑料表面, 烘干胶中的溶剂, 然 后和另一薄膜压合在一起而得到的复合膜。 通常在干式复合后, 需要经过 40-80摄氏度的熟 化过程才可以使用,时间一般要 48小时以上。最常见的背板的是将杜邦公司的聚氟乙婦( PVF ) 薄膜(商品名 Tedlar ) 复合到聚对苯二甲酸乙二醇酯( PET )薄膜的两侧, 即 TPT结构的背 板。 另一种常见的背板是 TPE 结构, 美国的 Madico 公司已申请专利 (见专利申请 WO2004/091901 A2 )。其将 PVF复合到 PET表面, 而在 PET的另一面复合 EVA薄膜。在 3M 申请的专利 (见专利申请 US2006/0280922 A1 ) 中, 3M将 THV复合到 PET表面。 日本的东 洋铝业则将 PVDF薄膜复合到 PET表面而得到背板。所有的生产过程均釆用了干式复合技术。 干式复合技术是大量使用在柔性线路板、 印刷用薄膜、 包装纸等产品生产的成熟技术, 即使 用干式复合机将含溶剂的胶涂布在一层薄膜上, 挥发掉溶剂后将另一层薄膜压合在此层上而 形成复合膜。 此技术的优点是适用范围广, 可以复合塑料薄膜、 铝箔、 纸张, 但由于生产过 程中使用了溶剂, 所以对环境有一定的影响, 而且由于需要熟化过程, 而导致生产周期长。
因此, 需要提供一种氟塑料层和聚酯层的粘结方法, 其无需使用溶剂, 且粘结效果好, 生产周期缩短, 从而减少对环境的影响, 提高生产效率。 发明内容
本发明的目的是克服了上述现有技术中的缺点, 提供了一种氟塑料层和聚酯层的粘结 方法, 该粘结方法构思独特, 设计巧妙, 无需使用溶剂, 且粘结效果好, 生产周期缩短, 从 而减少对环境的影响,提高生产效率,对以此基础生产太阳能电池背板有非常重要的意义, 适于大规模推广应用。
为了实现上述目的, 本发明的氟塑料层和聚酯层的粘结方法釆用了如下的技术方案: 该氟塑料层和聚酯层的粘结方法, 其特点是, 将氟塑料层和粘结层或者将氟塑料层、 过渡层和粘结层多层共挤出并流延涂布到聚酯层上, 从而使所述氟塑料层和所述聚酯层相粘 结。
具体方法是使用挤出机将氟塑料、 形成粘结层的粘结树脂分别融化, 或者是将氟塑料、 形成过渡层的塑料、 形成粘结层的粘结树脂分别融化, 通过分配器进入同一个模具中, 从模 具口挤出双层或三层的薄膜, 将是粘结树脂的一侧流延到聚酯薄膜上, 而使其在熔融状态下 粘结到聚酯薄膜上而达到将氟塑料和聚酯粘合在一起的目的。 流延涂布的速度随着设备精度 的不同而有不同, 从 0到每分钟几百米都可以。
所述氟塑料层可以是任意的氟塑料层。 较佳地, 所述氟塑料层是含偏氟乙烯(VDF )链 段的氟塑料或者是含偏氟乙烯链段的氟塑料与颜料、 无机填料、 其它塑料混合而成的塑料合 金形成的薄膜层。 所述氟塑料层中偏氟乙烯的总含量可以任意。 但是, 较佳地, 所述氟塑料层中偏氟乙烯 的总含量大于 20%。
氟塑料层的厚度可以按需要是任意厚度, 只要模具可以挤出成膜。
例如, 氟塑料可以使用聚偏氟乙烯(PVDF ), PVDF 可以是均聚的或是共聚的。 均聚的 PVDF是指只含 VDF基团, 共聚的 PVDF指除 VDF基团外还含有少量的其它塑料基团, 常 见的有带氯基团的烯烃或带支链的烯烃。 PVDF 可以按需要是透明的或是有颜色的。 为提高 成膜性, PVDF中也可以少量含有丙烯酸酯类塑料, 含量不超过 30%。
所述粘结层可以釆用任何合适的材料。 较佳地, 所述粘结层是乙烯和极性树脂的共聚物 形成的薄膜层。 如乙烯同醋酸乙烯酯、 乙烯同丙烯酸及其酯类、 乙烯同顺丁烯二酸或顺丁烯 二酸肝的共聚物、 以及乙烯的马来酸肝接枝物等。
更佳地, 所述粘结层还可以包括含偏氟乙烯的氟塑料。 即粘结层中可以混入少量的含 偏氟乙烯(VDF ) 的氟塑料以提高和氟塑料的粘结性, 但 VDF总量不超过 20%。
粘结层的厚度可以按需要是任意厚度, 只要模具可以挤出成膜。 较佳的, 粘结树脂层 的厚度为 1 ~ 60μηι。
过渡层用于进一步提高粘结强度。 使氟塑料层和粘结层成为实际上的一体, 无法剥离。 所述过渡层可以釆用任何合适的塑料。 较佳地, 所述过渡层为聚丙烯酸酯类塑料层或者含偏 氟乙烯的氟塑料和聚丙烯酸酯类塑料的混合物层。
更佳地, 所述的含偏氟乙烯的氟塑料是聚偏氟乙烯(PVDF )。 则过渡层为聚丙烯酸类塑 料和 PVDF的混合物层。
过渡层的厚度可以按需要是任意厚度, 只要模具可以挤出成膜。 较佳的, 过渡层的厚 度为 1 ~ 60μηι。
为提高抗老化性能、 对应不同颜色的需求, 上述各层中都可以按需要加入抗老化剂、 颜 料和无机填料。
所述聚酯层可以釆用任何合适的聚酯。较佳地,所述聚酯层是聚对苯二酸乙二醇酯(PET ) 形成的薄膜层、 或者是聚对苯二甲酸丁二醇酯 (PBT ) 形成的薄膜层、 或者是聚对苯二甲酸 丙二醇酯 (PTT ) 形成的薄膜层、 或者是聚萘二甲酸乙二醇酯 (PEN) 形成的薄膜层、 或 者是以上述聚酯其中之一为主要成分的塑料合金形成的薄膜层。例如, 聚酯层为双向拉伸 的 PET薄膜层。 聚酯层的厚度可以从几个微米到几厘米, 而且只要表面是聚酯, 都可以用这 个办法来粘结。 为提高粘结强度, 所述聚酯层表面可以在流延涂布前进行表面处理, 如电暈、 等离子、 火焰和底涂等。 本发明的有益效果具体如下: 本发明通过将氟塑料层和粘结层或者将氟塑料层、 过渡层 和粘结层多层共挤出并流延涂布到聚酯层上, 从而使所述氟塑料层和所述聚酯层相粘结, 构 思独特, 设计巧妙, 粘结效果好, 避免使用带溶剂的胶, 从而减少对环境的影响, 同时无 需干复工艺中必须的熟化过程, 从而缩短了生产时间, 提高了生产效率, 对以此基础生 产太阳能电池背板有非常重要的意义, 适于大规模推广应用。 附图说明
图 1是本发明的一个具体实施的结构示意图。
图 2是本发明的另一个具体实施的结构示意图。 具体实施方式
为了能够更清楚地理解本发明的技术内容, 特举以下实施例详细说明。 其中相同的部件 釆用相同的附图标记。
实施例 1
请参见图 1所示, 氟塑料层 1为 PVDF层, 粘结层 2为粘结树脂层, 聚酯层 3为 PET层。 该结 构通过以下过程制成: 挤出机通过模具挤出双层结构的薄膜, 然后流延到 PET层表面。 双层 结构为 PVDF层和粘结树脂层, 与 PET层表面接触的是粘结树脂层。 其中 PVDF层为白色, 厚 度为 20μηι。 粘结树脂层为乙烯的马来酸肝接枝物层, 厚度为 60μηι。 PET层为双向拉伸的 PET 层, 厚度为 100μηι。 经拉拔力检测, 粘结树脂层与 PET层的粘结强度为 22牛顿 /厘米。 实施例 2
请参见图 2所示, 氟塑料层 1为 PVDF层, 过渡层 4为 PVDF和 PMMA的混合物层, 粘结层 2 为粘结树脂层, 聚酯层 3为 PET层。 该结构通过以下过程制成: 挤出机通过模具挤出三层结构 的薄膜, 然后流延到 PET层表面。 三层结构为 PVDF层、 PVDF和 PMMA的混合物层、 以及粘 结树脂层,与 PET层接触的是粘结树脂层。其中 PVDF层为白色,厚度为 5μηι。过渡层 4中 PVDF 含量为 20%、 PMMA含量为 80%, 厚度为 10μηι。 粘结树脂层为 ΕΜΑ, 厚度为 10μηι。 PET层为 双向拉伸的 PET层, 厚度为 250μηι。 经拉拔检测, 粘结树脂层与 PET层的粘结强度为 25牛顿 / 厘米。 实施例 3
氟塑料层 1为 PVDF层, 粘结层 2为粘结树脂层, 聚酯层 3为 PET层。 该结构通过以下过程 制成: 挤出机通过模具挤出双层结构的薄膜, 然后流延到 PET层表面, PET层表面预先进行电 暈处理。 双层结构为 PVDF层和粘结树脂层, 与 PET层表面接触的是粘结树脂层。 其中 PVDF 层为白色, 厚度为 20μηι。 粘结层 2为 ΕΜΑ与 PVDF的混合物, 其中 EMA含量为 95%、 PVDF含 量为 5%, 厚度为 60μηι。 PET层为双向拉伸的 PET层, 厚度为 100μηι。 经拉拔力检测, 粘结树 脂层与 PET层的粘结强度为 25牛顿 /厘米。 实施例 4
氟塑料层 1为 PVDF层, 过渡层 4为 PVDF和 PMMA的混合物层, 粘结层 2为粘结树脂层, 聚酯层 3为 PET层。 该结构通过以下过程制成: 挤出机通过模具挤出三层结构的薄膜, 然后流 延到 PET层表面, PET层表面预先进行等离子处理。 三层结构为 PVDF层、 PVDF和 PMMA的 混合物层、以及粘结树脂层,与 PET层接触的是粘结树脂层。其中 PVDF层为白色,厚度为 5μηι。 过渡层 4中 PVDF含量为 20%、 PMMA含量为 80%, 厚度为 10μηι。 粘结树脂层为 EMA, 厚度为 10μηι。 PET层为双向拉伸的 PET层, 厚度为 250μηι。 经拉拔力检测, 粘结树脂层与 PET层的粘 结强度为 28牛顿 /厘米。 从上述实施例 1-4可以看出, 粘结树脂层和 PET层的粘结效果是: 粘结树脂层和 PET层的 粘结强度大于 20牛顿 /厘米, 而氟塑料层 /粘结树脂层或者氟塑料层 /过渡层 /粘结树脂层的各层 间的粘结强度大于氟塑料层自身的断裂强度, 因此, PVDF层和 PET层的粘结强度大于 20牛顿 /厘米, 而 PET层表面进行处理还可以进一步提高粘结强度, 粘结效果大大优于干复工艺, 因 为干复工艺(用聚氨酯胶)一般在 4-10牛顿 /厘米。 而且, 流延结束后不再需要任何其它过程, 也不再需要熟化, 总生产时间大大缩短。
本发明釆用了多层共挤和流延涂布相结合的方法,将氟塑料层和粘结树脂层共挤出 并流延到聚酯薄膜上, 或者将氟塑料层、 过渡层和粘结树脂层共挤出并流延到聚酯薄膜 上, 使氟塑料和聚酯粘结。 粘结效果好, 避免使用带溶剂的胶, 同时大幅度缩短了干复 工艺中必须的熟化过程, 从而缩短了生产时间。
综上, 本发明的氟塑料层和聚酯层的粘结方法构思独特, 设计巧妙, 无需使用溶剂, 且粘结效果好, 生产周期缩短, 从而减少对环境的影响, 提高生产效率, 对以此基础生产太 阳能电池背板有非常重要的意义, 适于大规模推广应用。
在此说明书中, 本发明已参照其特定的实施例作了描述。 但是, 很显然仍可以做出各种 修改和变换而不背离本发明的精神和范围。 因此, 说明书和附图应被认为是说明性的而非限 制性的。

Claims

权利要求
1. 一种氟塑料层和聚酯层的粘结方法,其特征在于,将氟塑料层和粘结层或者将氟塑料层、 过渡层和粘结层多层共挤出并流延涂布到聚酯层上,从而使所述氟塑料层和所述聚酯层相 粘结。
2. 根据权利要求 1所述的氟塑料层和聚酯层的粘结方法, 其特征在于, 所述氟塑料层是含 偏氟乙烯链段的氟塑料或者是含偏氟乙烯链段的氟塑料与颜料、 无机填料、其它塑料混合 而成的塑料合金形成的薄膜层。
3. 根据权利要求 1所述的氟塑料层和聚酯层的粘结方法, 其特征在于, 所述氟塑料层中偏 氟乙烯的总含量大于 20%。
4. 根据权利要求 1所述的氟塑料层和聚酯层的粘结方法, 其特征在于, 所述粘结层是乙烯 和极性树脂的共聚物形成的薄膜层。
5. 根据权利要求 1所述的氟塑料层和聚酯层的粘结方法, 其特征在于, 所述过渡层为聚丙 烯酸酯类塑料层或者含偏氟乙烯的氟塑料和聚丙烯酸酯类塑料的混合物层。
6. 根据权利要求 1所述的氟塑料层和聚酯层的粘结方法, 其特征在于, 所述聚酯层是聚对 苯二酸乙二醇酯形成的薄膜层, 或者是聚对苯二甲酸丁二醇酯形成的薄膜层, 或者是聚 对苯二甲酸丙二醇酯形成的薄膜层,或者是聚萘二甲酸乙二醇酯形成的薄膜层,或者是 其中之一为主要成分的塑料合金形成的薄膜层。
PCT/CN2010/075466 2010-06-22 2010-07-27 氟塑料层和聚酯层的粘结方法 WO2011160320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010207083.3 2010-06-22
CN2010102070833A CN101879808B (zh) 2010-06-22 2010-06-22 氟塑料层和聚酯层的粘结方法

Publications (1)

Publication Number Publication Date
WO2011160320A1 true WO2011160320A1 (zh) 2011-12-29

Family

ID=43052005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075466 WO2011160320A1 (zh) 2010-06-22 2010-07-27 氟塑料层和聚酯层的粘结方法

Country Status (2)

Country Link
CN (1) CN101879808B (zh)
WO (1) WO2011160320A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204384A (zh) * 2016-03-16 2017-09-26 上海海优威新材料股份有限公司 三层一体化结构太阳能电池背板及其制备方法
CN115697854A (zh) * 2020-02-17 2023-02-03 日本制纸株式会社 填充食品用纸容器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179934A (zh) * 2011-02-18 2011-09-14 李民 将氟塑料粘结至聚对苯二甲酸乙二醇酯层表面的加工方法和相关加工设备
CN102649309A (zh) * 2011-02-23 2012-08-29 北京化工大学 多层共挤流延法制备聚偏氟乙烯复合膜
CN102303437B (zh) * 2011-06-27 2014-04-30 杭州信丰新能源科技有限公司 一种太阳能电池封装保护膜及其制备方法
CN102368511B (zh) * 2011-11-15 2013-07-10 乐凯胶片股份有限公司 一种太阳能电池背膜的制备方法
CN103240937A (zh) * 2012-02-03 2013-08-14 颖台科技股份有限公司 多层氟树脂膜、其共压出方法及太阳能模块
CN102653154B (zh) * 2012-03-19 2014-08-13 杭州福膜新材料科技有限公司 自粘性聚偏氟乙烯薄膜及用其制备的太阳能光伏电池背板
CN103013369B (zh) * 2012-11-13 2014-07-23 宁波长阳科技有限公司 一种高粘结性聚酯薄膜,其制备方法及太阳能电池背板
CN102922842B (zh) * 2012-11-26 2015-04-22 山东东岳高分子材料有限公司 一种太阳能电池背板膜及其制备方法
CN103115203B (zh) * 2013-02-04 2016-03-02 安徽中鼎密封件股份有限公司 一种燃油管及其制备方法
CN104057676B (zh) * 2013-03-19 2016-09-14 苏州克莱明新材料有限公司 一种具有散热功能的太阳能背板及其生产工艺
CN103311341A (zh) * 2013-05-21 2013-09-18 常州回天新材料有限公司 新型太阳能电池背板及其制备方法
CN104647813B (zh) * 2014-08-09 2018-01-23 廖张洁 高分子梯度材料
CN105172292A (zh) * 2015-09-15 2015-12-23 蚌埠冠宜型材科技有限公司 一种铸造用薄膜
CN105291499A (zh) * 2015-10-15 2016-02-03 浙江歌瑞新材料有限公司 一种pe或pvc基材装饰膜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216120A (ja) * 1985-07-15 1987-01-24 Tomoegawa Paper Co Ltd 筆記用シ−トの製造法
CN101193748A (zh) * 2005-06-13 2008-06-04 3M创新有限公司 含有含氟聚合物的叠层材料
CN101618620A (zh) * 2009-08-17 2010-01-06 朱裕卫 含氟聚合物层状薄膜及其制备和用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216120A (ja) * 1985-07-15 1987-01-24 Tomoegawa Paper Co Ltd 筆記用シ−トの製造法
CN101193748A (zh) * 2005-06-13 2008-06-04 3M创新有限公司 含有含氟聚合物的叠层材料
CN101618620A (zh) * 2009-08-17 2010-01-06 朱裕卫 含氟聚合物层状薄膜及其制备和用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204384A (zh) * 2016-03-16 2017-09-26 上海海优威新材料股份有限公司 三层一体化结构太阳能电池背板及其制备方法
CN115697854A (zh) * 2020-02-17 2023-02-03 日本制纸株式会社 填充食品用纸容器

Also Published As

Publication number Publication date
CN101879808B (zh) 2012-03-28
CN101879808A (zh) 2010-11-10

Similar Documents

Publication Publication Date Title
WO2011160320A1 (zh) 氟塑料层和聚酯层的粘结方法
CN101823355B (zh) 聚合物叠层膜和使用该叠层膜的太阳能电池板
CN102576763A (zh) 制造多层膜及由其形成的太阳能电池板背板的方法
CN101615635B (zh) 耐热处理的太阳能电池背板
JP2013504205A5 (zh)
CN101916789B (zh) 七层结构的太阳能电池背板
TWI503229B (zh) 太陽能電池單元模組用的背板及其製造方法
WO2012051930A1 (zh) 太阳能电池组件聚合物背板及其制造方法
CN102922843A (zh) 一种高粘结强度的太阳能电池背板膜及其制备方法
US20130092235A1 (en) Back sheet for solar battery and solar battery module
JP2010528454A (ja) 光起電性モジュールのカプセル化材料としてのポリアミドの使用
CN102893413A (zh) 太阳能电池用背面保护片和具备该保护片的太阳能电池组件
CN102983193A (zh) 一种高粘结性太阳能电池背板膜及其制备方法
CN103311342A (zh) 一种太阳能电池背板膜及其制备方法
JP5891805B2 (ja) 電池ケース用包材及び非水電解液二次電池
JPWO2004101256A1 (ja) フッ素系積層フィルム及びその製造方法
CN207818584U (zh) 一种光伏电池用结构背板
CN103155169A (zh) 太阳能电池组件用保护片及太阳能电池组件
JP6366969B2 (ja) 基材レス両面粘着テープおよび当該基材レス両面粘着テープの製造方法
CN102922842B (zh) 一种太阳能电池背板膜及其制备方法
WO2015016147A1 (ja) 多層シート及びその製造方法、太陽電池用バックシート並びに太陽電池モジュール
JP2012023155A (ja) 封止用および/又は接着用樹脂シートおよびそれを用いて得られる太陽電池モジュール
JP2009241388A (ja) 帯電防止性離型フィルム
CN103430320A (zh) 光伏背板层压板、包括光伏背板层压板的光伏模块以及制造光伏背板层压板的方法
TW201331040A (zh) 多層氟樹脂膜、其共押出方法及太陽能模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853460

Country of ref document: EP

Kind code of ref document: A1