WO2011158934A1 - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
WO2011158934A1
WO2011158934A1 PCT/JP2011/063911 JP2011063911W WO2011158934A1 WO 2011158934 A1 WO2011158934 A1 WO 2011158934A1 JP 2011063911 W JP2011063911 W JP 2011063911W WO 2011158934 A1 WO2011158934 A1 WO 2011158934A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
inn
semiconductor
film thickness
thickness
Prior art date
Application number
PCT/JP2011/063911
Other languages
English (en)
French (fr)
Inventor
吉川 明彦
一秀 草部
善博 石谷
Original Assignee
国立大学法人千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学 filed Critical 国立大学法人千葉大学
Priority to US13/394,029 priority Critical patent/US9444000B2/en
Priority to JP2012520506A priority patent/JP5935217B2/ja
Publication of WO2011158934A1 publication Critical patent/WO2011158934A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion device corresponding to a wide wavelength region from ultraviolet rays to infrared rays, and more particularly to a photoelectric conversion device for improving characteristic deterioration due to crystal defects.
  • the present invention relates to a photoelectric conversion device corresponding to a wide wavelength region from ultraviolet to infrared, and more particularly to a solar cell for improving characteristic deterioration due to crystal defects.
  • FIG. 27 is a block diagram showing a configuration of a conventional semiconductor pn junction solar cell 100 as an example, and includes an n-type semiconductor layer 102, a p-type semiconductor layer 104 formed on the n-type semiconductor layer 102, and These are formed as a solar cell (single cell) by a known semiconductor manufacturing technique or the like.
  • solar cells can only use sunlight in a wavelength range corresponding to the forbidden bandwidth (band gap energy) of the constituent materials. For this reason, a solar cell composed of a single cell cannot be adapted to a wide sunlight spectrum, and its photoelectric conversion efficiency is limited.
  • tandem solar cell a structure of a tandem solar cell has been proposed for the purpose of extending the wavelength range suitable for the sunlight spectrum and improving the photoelectric conversion efficiency.
  • a plurality of single cells similar to the solar cell 100 shown in FIG. 27 are electrically and optically connected in series, and each single cell has a different forbidden bandwidth.
  • the layers are stacked in order from the light receiving surface along the light entering direction so that the forbidden band width is wider from the narrower.
  • the tandem structure is a structure in which a plurality of cells similar to the solar battery 100 shown in FIG. 27 are formed, each cell has a different forbidden band width, and extends along the light entering direction from the light receiving surface. They are laminated so that the forbidden bandwidth is in order from the wider to the narrower.
  • tandem solar cell described in Patent Document 1 corresponds to a forbidden band of 3.4 eV to 0.7 eV, it can be matched to a sunlight spectrum in a wide wavelength range.
  • the tandem solar cell described in Patent Document 1 is composed of indium gallium nitride (InGaN) cells having different composition ratios.
  • InGaN is a mixed crystal system of indium nitride (InN) and gallium nitride (GaN), but its immiscibility is strong, and crystal quality sufficient to operate as a solar cell can be obtained as the In composition increases. It becomes difficult.
  • indium nitride (InN) and high In composition indium gallium nitride (InGaN) mixed crystals have unique problems related to conductivity control.
  • indium nitride (InN) and high In composition indium gallium nitride (InGaN) mixed crystals have a high density of residual donors inside the crystal.
  • high density electrons exist near the crystal surface / interface and in the vicinity of the defect.
  • indium nitride (InN) and high In composition indium gallium nitride (InGaN) mixed crystals the difficulty of p-type conductivity control becomes high, and accurate electrical property evaluation of crystals and devices becomes difficult.
  • the present invention has been made in view of such circumstances, and suppresses the generation of lattice defects in an InGaN tandem solar cell, and further uses indium nitride (InN) or a high In composition indium gallium nitride (InGaN) mixed crystal. It aims at providing the solar cell which has high photoelectric conversion efficiency, avoiding the problem of p-type conductivity control.
  • Another object of the present invention is to provide a solar cell that facilitates mixed crystal composition control in each cell in a tandem solar cell, reduces leakage current due to lattice defects, and has high photoelectric conversion efficiency.
  • the photoelectric conversion device includes a first conductive layer of a first conductivity type, a sensitizing layer formed on the first conductive layer, and formed on the sensitizing layer.
  • the first film thickness is the x1 molecular layer thickness of the first semiconductor
  • the second film thickness is the x2 molecular layer thickness of the second semiconductor.
  • the ratio x1 / x2 between the x1 and x2 may be approximately 1/2, 2/3, 1, and 4.
  • the first film thickness is the x11 molecular layer thickness of the first semiconductor
  • the second film thickness is the second semiconductor.
  • the first film thickness is the x21 molecular layer thickness of the first semiconductor
  • the second film thickness is the x22 molecular layer thickness of the second semiconductor.
  • the first conductive layer, the second conductive layer, and the sensitizing layer has a third film thickness.
  • the first semiconductor layer further includes an x11 molecular layer thickness of the first semiconductor, and the second film thickness is the second semiconductor.
  • X12 molecular layer thickness, the third film thickness is the x13 molecular layer thickness of the first semiconductor, and the fourth film thickness is the x14 molecular layer thickness of the second semiconductor.
  • the first film thickness is the x21 molecular layer thickness of the first semiconductor
  • the second film thickness is the x22 molecular layer thickness of the second semiconductor
  • the third film thickness is the x23 molecular layer thickness of the first semiconductor.
  • the fourth film thickness is the x24 molecular layer thickness of the second semiconductor, and in the sensitizing layer,
  • the first film thickness is the x31 molecular layer thickness of the first semiconductor
  • the second film thickness is the x32 molecular layer thickness of the second semiconductor
  • the third film thickness is the x33 molecular layer thickness of the first semiconductor.
  • the fourth film thickness is the x34 molecular layer thickness of the second semiconductor
  • (x11, x12) a (x13, x14)
  • (x21, x22) a (x23, x24)
  • the first semiconductor and the second semiconductor may be alternately stacked in lattice matching.
  • At least one of the first conductive layer and the second conductive layer is about 2.13 eV, about 1.94 eV, about 1.63 eV, about 1.
  • the band gap energy may be any of 37 eV, about 1.25 eV, and about 0.94 eV, and the sensitizing layer may photoelectrically convert energy of about 0.94 eV or less.
  • the band gap energy of the first semiconductor may be about 3.4 eV
  • the band gap energy of the second semiconductor may be about 0.63 eV.
  • the first semiconductor may be gallium nitride and the second semiconductor may be indium nitride.
  • At least one of the first conductive layer, the second conductive layer, and the sensitizing layer is formed of the first semiconductor and the second semiconductor. You may have the natural superlattice structure comprised.
  • the charge carrier generated in the sensitizing layer is movable to at least one of the first conductive layer and the second conductive layer.
  • the first conductive layer may have a first band gap energy
  • the second conductive layer may have a second band gap energy
  • the sensitizing layer may have a third band gap energy
  • at least one of the first band gap energy and the second band gap energy is about 2.13 eV, about 1.94 eV, about 1.63 eV, about 1.63 eV, It may correspond to any of 1.37 eV, about 1.25 eV, and about 0.94 eV
  • the third band gap energy may be smaller than the first and second band gap energies.
  • the first film thickness may be a monomolecular layer thickness of the first semiconductor, or the second film thickness may be a monomolecular layer thickness of the second semiconductor. Good.
  • the solar cell according to the second aspect of the present invention includes a first conductive layer having a first band gap energy, an InN sensitizing layer formed on the first conductive layer and having a third band gap energy, and the InN.
  • a solar cell comprising: a second conductive layer formed on the sensitizing layer and having a second band gap energy, wherein either the first conductive layer or the second conductive layer has a first film thickness.
  • InN or GaN having a second film thickness wherein the InN sensitizing layer has a film thickness of two or less molecular layers, and the first band gap energy and the second band gap energy are about 2.13 eV, It corresponds to any of about 1.94 eV, about 1.63 eV, about 1.37 eV, about 1.25 eV, and about 0.94 eV, and the third band gap energy is the first and the The energy is smaller than 2 band gap energy, the difference is 500 meV or less, and the charge carrier generated in the InN sensitized layer makes an in-band transition to at least one of the first conductive layer and the second conductive layer. .
  • the first film thickness may be a monomolecular layer thickness of InN, or the second film thickness may be a monomolecular layer thickness of GaN. .
  • the first film thickness is the x1 molecular layer thickness of GaN and the second film thickness is the x2 molecular layer thickness of the second semiconductor
  • the ratio x1 / x2 between x1 and x2 may be any of about 1/2, 2/3, 1, 3/2, 2, and 4.
  • the in-band transition may be induced by light absorption with energy lower than 0.94 eV.
  • the in-band transition may be induced by thermal energy at room temperature or higher.
  • the solar cell according to the third aspect of the present invention is a tandem solar cell including a plurality of cells, and at least one of the plurality of cells includes a first conductive layer having a first band gap energy, and the first cell.
  • An InN sensitized layer formed on a conductive layer and having a third band gap energy; and a second conductive layer formed on the InN sensitized layer and having a second band gap energy.
  • Either the first conductive layer or the second conductive layer comprises InN that is the first film thickness or GaN that is the second film thickness, and the InN sensitized layer has a thickness of two or less molecular layers,
  • the 3-band gap energy is smaller than the first and second band gap energies, and the difference between them is 500 meV or less, and the charge carrier generated in the InN sensitizing layer is the first conductive layer. Preliminary transitions in the band to at least one of the second conductive layer or the sensitized layer.
  • the first film thickness is an x1 molecular layer thickness of GaN
  • the second film thickness is the second semiconductor.
  • X2 molecular layer thickness, and the ratio x1 / x2 of x1 and x2 may be approximately 1 or 4.
  • the first film thickness is an x1 molecular layer thickness of GaN
  • the second film thickness is the second semiconductor.
  • the ratio x1 / x2 of x1 and x2 may be approximately 2/3, 3/2, or 4.
  • the first film thickness is an x1 molecular layer thickness of GaN
  • the second film thickness is the second semiconductor.
  • X2 molecular layer thickness, and the ratio x1 / x2 of x1 and x2 may be approximately 1/2, 1, 2, or 4.
  • the first band gap energy and the second band gap energy are about 2.13 eV, about 1.94 eV, about 1.63 eV, about 1.37 eV, and about 1.25 eV. , And about 0.94 eV.
  • a solar cell having high photoelectric conversion efficiency can be provided while avoiding the problem of p-type conductivity control in mixed crystals.
  • the composition control of the mixed crystal in the nitride-based semiconductor tandem solar cell is facilitated, the leakage current due to lattice defects is reduced, and the p-type in the indium nitride or high In composition indium gallium nitride mixed crystal.
  • a solar cell having high photoelectric conversion efficiency can be provided while avoiding the problem of conductivity control.
  • FIG. 1 is a block diagram illustrating a configuration example of the solar cell 110 according to the present embodiment.
  • a solar cell 110 is formed on an n-type indium gallium nitride pseudo mixed crystal (hereinafter, n- (InN) x1 / (GaN) x2 ) layer 112 and an n type indium gallium nitride pseudo mixed crystal layer 112.
  • n- (InN) x1 / (GaN) x2 n- (InN) x1 / (GaN) x2
  • Sensitizing layer 113 p-type indium gallium nitride pseudo-mixed crystal (hereinafter referred to as p- (InN) x 1 / (GaN) x 2 ) layer 114 formed on sensitizing layer 113, and n-type indium gallium nitride pseudo-mixed
  • p- (InN) x 1 / (GaN) x 2 p-type indium gallium nitride pseudo-mixed
  • the n-type electrode (not shown) electrically connected to the crystal layer 112 and the p-type electrode (not shown) electrically connected to the p-type indium gallium nitride pseudo mixed crystal layer 114 are configured.
  • the n- (InN) x1 / (GaN) x2 layer 112 is used to separate electron-hole pairs generated by photoelectric conversion and transport electrons to the n-type electrode.
  • the p- (InN) x1 / (GaN) x2 layer 114 is used to separate electron-hole pairs generated by photoelectric conversion and transport holes to the p-type electrode. Therefore, the resistivity and the layer thickness of the n-type indium gallium nitride pseudo mixed crystal layer 112 and the p type indium gallium nitride pseudo mixed crystal layer 114 are each suitably adjusted in terms of carrier transport and yield.
  • the sensitizing layer 113 has not only the sunlight corresponding to the forbidden bandwidth (bandgap energy) of the indium gallium nitride pseudo mixed crystal ((InN) x1 / (GaN) x2 ) forming the pn junction, but also a longer wavelength. Used for light and thermal sensitization to make light available for photoelectric conversion. As will be described later, the voltage generated from the solar cell 110 can be improved by the action of the sensitizing layer 113, and a solar cell with high conversion efficiency can be configured. An n-type electrode and a p-type electrode (not shown) are used for taking out generated electric power to the outside.
  • FIG. 2 is a block diagram showing a configuration example of the n-type indium gallium nitride pseudo mixed crystal (n- (InN) x1 / (GaN) x2 ) layer 112.
  • the pseudo-mixed crystal refers to, for example, an alternately laminated structure of ultra-thin GaN and ultra-thin InN, and has the same physical properties as an InGaN ternary mixed crystal having a mixed crystal composition ratio equivalent to the layer thickness ratio (volume ratio). Show.
  • FIG. 1 n-type indium gallium nitride pseudo mixed crystal
  • an n- (InN) x1 / (GaN) x2 layer 112 is a short-period superlattice composed of InN having a layer thickness x1 molecular layer (x1 ML) and GaN having a layer thickness x2 molecular layer (x2 ML).
  • FIG. 3 is a block diagram showing a configuration example of the p-type indium gallium nitride pseudo mixed crystal (p- (InN) x1 / (GaN) x2 ) layer 114.
  • a p- (InN) x1 / (GaN) x2 layer 114 is a short-period superlattice made of InN having a layer thickness x1 molecular layer (x1 ML) and GaN having a layer thickness x2 molecular layer (x2 ML).
  • InN and GaN have a lattice mismatch degree of about 11%, so that usually high-density lattice defects are introduced. This lattice defect significantly deteriorates the device characteristics of the solar cell.
  • InN and GaN are immiscible, it is difficult to obtain a uniform mixed crystal composition of InGaN, which is a mixed crystal thereof.
  • the growth of the short-period superlattices 115 and 117 described above need not be mixed uniformly. That is, the inventors have found that an InN / GaN short period superlattice with extremely excellent structural integrity can be formed by effectively utilizing the above-described immiscibility.
  • the above-described immiscibility functions effectively, so that a self-ordered and self-stopping growth process different from the normal crystal growth can be used, and ultra-thin film structure control in the molecular layer order of InN and GaN can be achieved. It becomes easy.
  • the growth temperature of InN was limited to about 600 ° C. or less in the molecular beam epitaxy (MBE) method, for example, but the inventors also found that growth of 600 ° C. or more is possible in the molecular layer order ultra-thin film InN. It was. This high temperature growth dramatically improves the crystallinity of the InN / GaN short period superlattice.
  • MBE molecular beam epitaxy
  • the n-type indium gallium nitride pseudo-mixed crystal layer 112 and the p-type indium gallium nitride pseudo-mixed crystal layer 114 have a pseudo-lattice matching system using short-period superlattices 115 and 117 to suppress lattice defects, and crystallinity due to high-temperature growth.
  • the effect of the improvement enables high conversion efficiency without deteriorating the element characteristics of the solar cell.
  • FIG. 4 is a conceptual diagram showing an effective band lineup of the n-type indium gallium nitride pseudo mixed crystal layer 112, the sensitizing layer 113, and the p type indium gallium nitride pseudo mixed crystal layer 114.
  • FIG. 4 as in FIG. 4, as in FIG. 4, as in FIG. 4,
  • the sensitizing layer 113 is sandwiched between the n- (InN) x1 / (GaN) x2 layer 112 and the p- (InN) x1 / (GaN) x2 layer 114, and the CBM And VBM indicate the conduction band bottom and the valence band top, respectively, and are arranged such that the energy increases from left to right in the figure.
  • the forbidden band widths (band gap energy) of InN and GaN are about 0.63 eV and about 3.4 eV, respectively, at room temperature.
  • the effective band gap energy of the n- (InN) x1 / (GaN) x2 layer 112 and the p- (InN) x1 / (GaN) x2 layer 114 can be obtained by changing the layer thicknesses x1 and x2 of the constituting InN and GaN. It is arbitrarily controlled between about 0.63 eV and about 3.4 eV.
  • the band gap energy of the sensitizing layer 113 is set to be smaller than the effective band gap energy of the n- (InN) x1 / (GaN) x2 layer 112 and the p- (InN) x1 / (GaN) x2 layer 114.
  • the difference between the band gap energy of the sensitizing layer 113 and the effective band gap energy of the n- (InN) x1 / (GaN) x2 layer 112 and the p- (InN) x1 / (GaN) x2 layer 114 is 500 meV. Preferably it is smaller. The energy difference is more preferably smaller than 200 meV.
  • the sensitizing layer 113 is composed of, for example, InGaN or InN / GaN short-period superlattice or the like.
  • the sensitizing layer 113 can be changed to the n- (InN) x1 / (GaN) x2 layer 112 and p.
  • the carrier movement to the-(InN) x1 / (GaN) x2 layer 114 is promoted.
  • this spectral region below about 0.63 eV can never be overlooked, with about 4% illumination power density and about 9% photon density.
  • the sensitizing layer 113 is located in the interface region of the n- (InN) x1 / (GaN) x2 layer 112 and the p- (InN) x1 / (GaN) x2 layer 114, that is, in the vicinity of the pn junction, Is applied. Carriers generated by interband absorption in the sensitizing layer 113 are quickly and spatially separated by this inherent electric field, so that the recombination probability is negligibly small.
  • This light / heat sensitizing action improves the operating characteristics of the solar cell. For example, when the energy difference is 200 meV, a voltage increase equivalent to 200 meV is obtained by the light / thermal sensitization action, and the open-circuit voltage of the solar cell 110 increases. That is, compared to an InGaN ternary mixed crystal pn junction having the same fundamental absorption edge, the number of photons that can be absorbed is the same, and the short-circuit current density is also the same. However, the open-end voltage is increased by the light / thermal sensitization action, which contributes to improving the conversion efficiency of the solar cell.
  • the configuration of the InN / GaN short-period superlattice has been described.
  • the configuration is not limited to this.
  • indium gallium aluminum nitride hereinafter, In x Ga y Al 1-xy N, The range of x and y is 0 ⁇ x, y ⁇ 1), and a structure of a pn junction and a sensitizing layer by In x Ga y Al 1-xy N pseudo mixed crystal is also possible.
  • the forbidden band width of In x Ga y Al 1-xy N can be arbitrarily changed by changing the mixed crystal ratios x and y.
  • the configuration of the pn junction of the indium gallium nitride pseudo mixed crystal has been described.
  • the n-type indium gallium nitride pseudo mixed crystal layer 112 and the p type indium gallium nitride pseudo mixed crystal layer 114 are formed.
  • the formations 116 and 118 may also be constituted by short-period superlattices.
  • the n-type indium gallium nitride pseudo mixed crystal layer 112 and the p type indium gallium nitride pseudo mixed crystal layer 114 are formed of InN / It can be composed of only a GaN short-period superlattice, and the suppression of lattice defects, which is a feature of the coherent structure, is further remarkable.
  • the InN / GaN short period superlattice described in the first embodiment, the n-type indium gallium nitride pseudo-mixed crystal layer 112, and the p-type indium gallium nitride pseudo-mixed crystal layer 114 are made of artificially formed ultra-thin InN and ultra-thin GaN. It may be a metastable nanostructure (natural superlattice) that appears spontaneously by a treatment such as heat treatment, laser irradiation, or electron beam irradiation, as well as those alternately laminated. According to this configuration, as with the short-period superlattice, it is possible to suppress lattice defects that are characteristic of the coherent structure.
  • the configuration of only one sensitizing layer 113 has been described.
  • a configuration having a multilayer structure in which a plurality of sensitizing layers 113 are inserted Is also possible.
  • the amount of light to be absorbed increases as the number of layers of the sensitized layers 113 inserted increases, so that the light / thermal sensitization effect can be further enhanced.
  • a multi-layer structure of the sensitizing layer 113 that protrudes from the depletion region of the pn junction interface may be used.
  • the sensitizing layer 113 may be a modulation dope that appropriately changes the carrier density in the region near the sensitizing layer 113 in both the single layer and the multilayer. With this configuration, the depletion region at the pn junction interface can be suitably controlled.
  • the final stage cell (longest wavelength compatible cell) having a tandem structure absorbs light up to about 0.63 eV as photon energy.
  • a configuration of an InN cell is disclosed.
  • FIG. 5 is a graph showing the AM1.5 sunlight spectrum, showing the radiation power with respect to wavelength (gray, corresponding to the left vertical axis) and the photon number density (black, corresponding to the right vertical axis).
  • the data source is “ASTM G173-03 Reference Spectra Derived from SMARTS v. 2.9.2” standard spectrum.
  • spectral defect wavelengths due to atmospheric / water absorption are scattered in the infrared wavelength range of sunlight.
  • this spectral defect is prominent in the wavelength region of 1350 nm to 2000 nm including the band gap energy of InN of about 0.63 eV. That is, even if this wavelength region is not covered by the tandem cell, there is no significant loss in conversion efficiency.
  • the wavelength range covered by the InGaN ternary mixed crystal or InGaN pseudo mixed crystal constituting the tandem cell be as short as possible. That is, by reducing the effective In composition as much as possible, it is possible to avoid the above-described problem of conductivity control existing in InN and high In composition InGaN.
  • the photon number density is 3.5 ⁇ 10 21 m. -2 s -1 nm -1 but when it is up to about 0.92 eV (wavelength 1352 nm) (hereinafter referred to as 0.92-cutoff), it is 3.0 ⁇ 10 21 m -2 s -1 Reduced to nm- 1 .
  • the power generation contribution from the last stage cell corresponding to the long wavelength is not so large, it will be shown later that the conversion efficiency as a tandem solar cell is almost equal between 0.63-cutoff and 0.92-cutoff. .
  • tandem solar cell a current conservation law that makes a generated current constant in each of a plurality of cells must be satisfied.
  • 2 to 4 junction type (2 to 4 tandem type) solar cells were designed.
  • FIG. 6 is a conceptual diagram showing a configuration example of a tandem solar cell (two tandems) composed of two cells.
  • Each cell includes a pn-InGaN junction that satisfies the current conservation law, and an sensitizing layer sandwiched between the pn-InGaN junctions. It is comprised by.
  • the characteristics of the sensitizing layer are as described above with reference to FIG. 4.
  • the magnitude of the potential barrier (band gap energy difference) between the pn-InGaN and the sensitizing layer is “200 ⁇ (InGaN Effective Ga composition) meV "and Vegard's law linear approximation.
  • the energy difference is 200 meV when the sensitizing layer is embedded in the pn-GaN junction, and 100 meV when it is embedded in the pn-In 0.5 Ga 0.5 N junction.
  • the band gap energy of the pn-InGaN junction is 1 .63 eV and 0.94 eV.
  • the difference between the band gap of InGaN in the second (final) cell and 0.92 eV with respect to the solar spectrum up to 0.92 eV is due to the light / thermal sensitization action, and the potential barrier in this case Corresponds to 20 meV.
  • the In compositions of InGaN mixed crystals corresponding to 1.63 eV and 0.94 eV are 0.51 and 0.81, respectively, but these can be expressed in simple fractions, and the mixed crystal composition ratio is As shown in the center of FIG. 6, they are approximated as In 1/2 Ga 1/2 N and In 4/5 Ga 1/5 N, respectively.
  • the mixed crystal composition ratio is an analog value between 0 and 1, but according to the design policy of the tandem solar cell, it is replaced with a simple fraction, that is, a discrete mixed crystal composition ratio. It was shown that it can be done.
  • This discrete fractional mixed crystal composition ratio means that a tandem solar cell can be formed by using the corresponding mixed crystal composition as an InN / GaN short period superlattice, that is, a pseudo mixed crystal (digital mixed crystal). This is shown on the right side of FIG.
  • FIG. 7 is a conceptual diagram showing a configuration example of a tandem solar cell (3 tandems) composed of 3 cells, each cell having a pn-InGaN junction satisfying the current conservation law, an sensitizing layer sandwiched between the pn-InGaN junctions, Consists of.
  • the band gap energy of the pn-InGaN junction is 1 each as shown in the left side of FIG. .94 eV, 1.37 eV, and 0.94 eV.
  • the difference between the band gap of InGaN in the third (final) cell and 0.92 eV with respect to the solar spectrum up to 0.92 eV is due to the photo-thermal sensitization action, and the potential barrier in this case Corresponds to 20 meV.
  • the In compositions of InGaN mixed crystals corresponding to 1.94 eV, 1.37 eV and 0.94 eV are 0.40, 0.61 and 0.81, respectively, which are expressed in simple fractions.
  • the mixed crystal composition ratios are In 2/5 Ga 3/5 N, In 3/5 Ga 2/5 N, and In 4/5 Ga 1/5 N, respectively. Is approximated by Normally, the mixed crystal composition ratio is an analog value between 0 and 1, but according to the design policy of the tandem solar cell, it is replaced with a simple fraction, that is, a discrete mixed crystal composition ratio. It was shown that it can be done.
  • This discrete fractional mixed crystal composition ratio means that a tandem solar cell can be formed by using the corresponding mixed crystal composition as an InN / GaN short period superlattice, that is, a pseudo mixed crystal (digital mixed crystal).
  • a tandem solar cell can be formed by using the corresponding mixed crystal composition as an InN / GaN short period superlattice, that is, a pseudo mixed crystal (digital mixed crystal).
  • In 2/5 Ga 3/5 N is a bilayer InN (2ML-InN) / 3-layer GaN (1ML-GaN) short-period superlattice (hereinafter referred to as (InN) 2 / (GaN) 3 ).
  • In 3/5 Ga 2/5 N is a trilayer InN (3ML-InN) / 2 layer GaN (2ML-GaN) short-period superlattice (hereinafter referred to as (InN) 3 / (GaN) 2
  • In 4/5 Ga 1/5 N is a four-layer InN (4ML-InN) / 1-layer GaN (1ML-GaN) short-period superlattice (hereinafter referred to as (InN) 4 / (GaN) 1 Yes).
  • FIG. 8 is a conceptual diagram showing a configuration example of a tandem solar cell (4 tandem) composed of four cells, and each cell is composed of a pn-InGaN junction and a sensitizing layer sandwiched between the pn-InGaN junctions.
  • the band gap energy of the pn-InGaN junction is 2 respectively, as shown on the left side of FIG. .13 eV, 1.63 eV, 1.25 eV, and 0.94 eV.
  • the difference between the band gap of InGaN in the fourth (final) cell and 0.92 eV for the solar spectrum up to 0.92 eV is due to the light / thermal sensitization action, and the potential barrier in this case Corresponds to 20 meV.
  • the In compositions of the InGaN mixed crystals corresponding to 2.13 eV, 1.63 eV, 1.25 eV, and 0.94 eV are 0.34, 0.51, 0.66, and 0.81, respectively. These can be expressed in simple fractions, and the mixed crystal composition ratios are In 1/3 Ga 2/3 N, In 1/2 Ga 1/2 N, In, respectively, as shown in the center of FIG. 2/3 Ga 1/3 N and In 4/5 Ga 1/5 N are approximated.
  • the mixed crystal composition ratio is an analog value between 0 and 1, but according to the design policy of the tandem solar cell, it is replaced with a simple fraction, that is, a discrete mixed crystal composition ratio. It was shown that it can be done.
  • This discrete fractional mixed crystal composition ratio means that a tandem solar cell can be formed by using the corresponding mixed crystal composition as an InN / GaN short period superlattice, that is, a pseudo mixed crystal (digital mixed crystal).
  • a tandem solar cell can be formed by using the corresponding mixed crystal composition as an InN / GaN short period superlattice, that is, a pseudo mixed crystal (digital mixed crystal).
  • This is shown on the right side of FIG.
  • In 1/3 Ga 2/3 N is a single molecular layer InN (1ML-InN) / 2 molecular layer GaN (2ML-GaN) short-period superlattice (hereinafter referred to as (InN) 1 / (GaN) 2 ).
  • Ga 1/2 N is a single molecular layer InN (1ML-InN) / 1 molecular layer GaN (1ML-GaN) short period superlattice (hereinafter referred to as (InN) 1 / (GaN) 1 In 2/3 Ga 1/3 N is a bimolecular layer InN (2ML-InN) / 1 molecular layer GaN (1ML-GaN) short-period superlattice (hereinafter referred to as (InN) 2 / (GaN) 1 In 4/5 Ga 1/5 N is a 4 molecular layer InN (4ML-InN) / 1 molecular layer GaN (1ML-GaN) short period superlattice (hereinafter referred to as (InN) 4 / (GaN) 1 ).
  • InN and GaN are lattice mismatched and highly immiscible, a device grade high-quality crystal of InGaN mixed crystal having an In composition exceeding 30%, which is required for tandem solar cells, is obtained. Is extremely difficult. However, in the growth of InN / GaN pseudo-mixed crystals in which InN and GaN are not mixed intentionally, the above-mentioned immiscibility works on the contrary, and a cell with high structural integrity can be constructed.
  • InN and GaN which are ultrathin films, to maintain elastic deformation and form a pseudo lattice matching system. That is, introduction of lattice defects can be suppressed.
  • the influence of the In composition fluctuation is greatly suppressed, the design value of the wavelength division in the tandem structure is faithfully reproduced.
  • strained superlattice buffer effect which is also known in other compound semiconductors, can be expected, propagation of threading dislocations formed at the growth layer / growth substrate interface is suppressed, and the difference in thermal expansion between the growth layer / growth substrate And cracks due to residual stress are suppressed.
  • the Mg acceptor activation energy reduction effect known for GaN / AlGaN-based superlattices can also be expected, and conductivity control, particularly p-type conductivity control is facilitated.
  • FIG. 9 is a conceptual diagram showing a band lineup example of the sensitizing layer constituting the solar cell according to the third embodiment.
  • Lattice hereinafter referred to as (InN) 1 / (GaN) 1
  • bilayer InN (2ML-InN) / 2 layer GaN (2ML-GaN) short period superlattice hereinafter referred to as (InN) 2 / ( GaN) 2 ).
  • CBM and VBM indicate the conduction band bottom and the valence band top of the sensitizing layer, respectively, and are arranged so that the energy increases from the bottom to the top in the figure.
  • a wide forbidden band width corresponds to GaN
  • a narrow forbidden band width corresponds to InN.
  • E C (1,1) represents the bottom of the effective conduction band of (InN) 1 / (GaN) 1
  • E C (2,2) represents the effective conduction band of (InN) 2 / (GaN) 2.
  • EV (1,1) points to the effective valence band top of (InN) 1 / (GaN) 1 and EV (2,2) equals (InN) 2 / (GaN) 2
  • the effective valence band top of each is inserted.
  • the first characteristic of the sensitizing layer shown in FIG. 9 is that the layer thickness ratio between the ultrathin film InN and the ultrathin film GaN is constant, so that the average lattice constant is maintained constant. That is, since a pseudo lattice matching system can be formed, introduction of lattice defects can be suppressed.
  • the second characteristic of the sensitizing layer is that the size of the potential barrier (band gap energy difference) between the sensitizing layer and the pn layer region is about several hundreds meV based on theoretical calculation.
  • the band gap energy difference (Ec (1,1) ⁇ Ev (1,1) and Ec ( 2,1 ) between (InN) 1 / (GaN) 1 and (InN) 2 / (GaN) 2 shown in FIG. 2) -Ev (2, 2) is about 110 meV. This value is suitable for the above-described light / heat sensitizing action.
  • the solar cell 120 having a sensitizing layer by an InN / GaN short period superlattice (pseudo mixed crystal) will be described.
  • the solar cell 120 is formed on an n-type indium gallium nitride pseudo mixed crystal (hereinafter, n- (InN) x11 / (GaN) x12 ) layer 122 and an n type indium gallium nitride pseudo mixed crystal layer 122.
  • n- (InN) x11 / (GaN) x12 n- (InN) x11 / (GaN) x12
  • Indium gallium nitride pseudo mixed crystal hereinafter referred to as (InN) x31 / (GaN) x32 ) sensitizing layer 123 and p-type indium gallium nitride pseudo mixed crystal formed on indium gallium nitride pseudo mixed crystal sensitizing layer 123 ( Hereinafter, a p- (InN) x21 / (GaN) x22 ) layer 124, an n-type electrode (not shown) electrically connected to the n-type indium gallium nitride pseudo mixed crystal layer 122, and a p-type indium gallium nitride pseudo mixed crystal And a p-type electrode (not shown) electrically connected to the layer 124.
  • InN Indium gallium nitride pseudo mixed crystal
  • the n- (InN) x11 / (GaN) x12 layer 122 is used for separating electron-hole pairs generated by photoelectric conversion and transporting electrons to the n-type electrode.
  • the p- (InN) x21 / (GaN) x22 layer 124 is used to separate electron / hole pairs generated by photoelectric conversion and transport holes to the p-type electrode. Therefore, the resistivity and the layer thickness of the n-type indium gallium nitride pseudo mixed crystal layer 122 and the p type indium gallium nitride pseudo mixed crystal layer 124 are each suitably adjusted in terms of carrier transport and yield.
  • (InN) x31 / (GaN) x32 sensitizing layer 123 is not only the sunlight corresponding to the forbidden band width (bandgap energy) of the indium gallium nitride pseudo mixed crystal (short-period superlattice) forming the pn junction, It is used for the light and thermal sensitization effect that makes longer wavelength light available for photoelectric conversion. As will be described later, the voltage generated from the solar cell 120 can be improved by the action of the indium gallium nitride pseudo mixed crystal sensitizing layer 123, and a solar cell with high conversion efficiency can be configured.
  • An n-type electrode and a p-type electrode are used for taking out generated electric power to the outside.
  • FIG. 11 is a block diagram illustrating a configuration example of the n-type indium gallium nitride pseudo-mixed crystal ((InN) x11 / (GaN) x12 ) layer 122.
  • the pseudo-mixed crystal refers to, for example, an alternately laminated structure of ultra-thin GaN and ultra-thin InN, and has the same physical properties as an InGaN ternary mixed crystal having a mixed crystal composition ratio equivalent to the layer thickness ratio (volume ratio). Show.
  • FIG. 11 is a block diagram illustrating a configuration example of the n-type indium gallium nitride pseudo-mixed crystal ((InN) x11 / (GaN) x12 ) layer 122.
  • the pseudo-mixed crystal refers to, for example, an alternately laminated structure of ultra-thin GaN and ultra-thin InN, and has the same physical properties as an InGaN ternary mixed crystal having a mixed crystal composition ratio
  • an (InN) x11 / (GaN) x12 layer 122 includes a short-period superlattice 125 made of InN having a layer thickness x11 molecular layer (x11 ML) and GaN having a layer thickness x12 molecular layer (x12 ML). , And an underlayer 126 formed under the short-period superlattice 125.
  • FIG. 12 is a block diagram illustrating a configuration example of the p-type indium gallium nitride pseudo mixed crystal ((InN) x21 / (GaN) x22 ) layer 124.
  • a p- (InN) x21 / (GaN) x22 layer 124 is a short-period superlattice composed of InN having a layer thickness x21 molecular layer (x21 ML) and GaN having a layer thickness x22 molecular layer (x22 ML).
  • x21 ML layer thickness x21 molecular layer
  • x22 ML GaN having a layer thickness x22 molecular layer
  • FIG. 13 is a block diagram illustrating a configuration example of the indium gallium nitride pseudo mixed crystal ((InN) x31 / (GaN) x322 ) sensitizing layer 123.
  • the (InN) x31 / (GaN) x32 layer 123 is constituted by a short-period superlattice composed of InN which is a layer thickness x31 molecular layer (x31 ML) and GaN which is a layer thickness x32 molecular layer (x32 ML). Is done.
  • InN and GaN have a lattice mismatch degree of about 11%, so that usually high-density lattice defects are introduced. This lattice defect significantly deteriorates the device characteristics of the solar cell.
  • n-type indium gallium nitride pseudo mixed crystal layer 122, the p type indium gallium nitride pseudo mixed crystal layer 124, and the indium gallium nitride pseudo mixed crystal sensitized layer 123 are composed of the InN / GaN short films constituting them.
  • the coherent structure forming the pseudo lattice matching system suppresses lattice defects.
  • the above-described immiscibility functions effectively, so that a self-ordered and self-stopping growth process different from the normal crystal growth can be used, and ultra-thin film structure control in the molecular layer order of InN and GaN can be achieved. It becomes easy.
  • the growth temperature of InN was limited to about 600 ° C. or less in the molecular beam epitaxy (MBE) method, for example, but the inventors also found that growth of 600 ° C. or more is possible in the molecular layer order ultra-thin film InN. It was. This high temperature growth dramatically improves the crystallinity of the InN / GaN short period superlattice.
  • MBE molecular beam epitaxy
  • the n-type indium gallium nitride pseudo mixed crystal layer 122, the p type indium gallium nitride pseudo mixed crystal layer 124, and the indium gallium nitride pseudo mixed crystal sensitized layer 123 are more preferable.
  • the pseudo-lattice matching structure by the InN / GaN short-period superlattice suppresses lattice defects, and the effect of improving crystallinity by high-temperature growth Therefore, high conversion efficiency is possible without deteriorating the element characteristics of the solar cell.
  • FIG. 14 is a conceptual diagram showing an example of a band lineup of a carrier traveling layer constituting the solar cell according to the third embodiment.
  • Lattice hereinafter referred to as (InN) 1 / (GaN) 1
  • bilayer InN (2ML-InN) / 2 layer GaN (2ML-GaN) short period superlattice hereinafter referred to as (InN) 2 / ( GaN) 2
  • trimolecular layer InN (3ML-InN) / 3 molecular layer GaN (3ML-GaN) short period superlattice hereinafter referred to as (InN) 3 / (GaN) 3
  • CBM and VBM indicate the conduction band bottom and the valence band top of the sensitizing layer, respectively, and are arranged so that the energy increases from the bottom to the top in the figure.
  • a wide forbidden band width corresponds to GaN
  • a narrow forbidden band width corresponds to InN
  • E C (1,1) represents the bottom of the effective conduction band of (InN) 1 / (GaN) 1
  • E C (2,2) represents the effective conduction band of (InN) 2 / (GaN) 2.
  • E C (3,3) is the bottom of the effective conduction band of (InN) 3 / (GaN) 3
  • EV (1,1) is (InN) 1 / (GaN) 1
  • the effective valence band top is indicated
  • EV (2, 2) is the effective valence band top of (InN) 2 / (GaN) 2
  • EV (3, 3) is (InN) 3 / ( The effective valence band top of GaN) 3 is inserted.
  • the first characteristic of the carrier traveling layer shown in FIG. 14 is that the layer thickness ratio between the ultrathin film InN and the ultrathin film GaN is constant, so that the average lattice constant is maintained constant. That is, since a pseudo lattice matching system can be formed, introduction of lattice defects can be suppressed.
  • the second characteristic of the carrier traveling layer is that the band gap energy changes continuously or stepwise by changing the layer thickness of the short-period superlattice in the carrier traveling layer. From theoretical calculation, for example, the band gap energy difference (Ec (1,1) ⁇ Ev (1,1) ) between (InN) 1 / (GaN) 1 and (InN) 2 / (GaN) 2 shown in FIG. Ec (2,2) ⁇ Ev (2,2) ) is about 110 meV, and the band gap energy difference (Ec) between (InN) 2 / (GaN) 2 and (InN) 3 / (GaN) 3 ( Difference between (2,2) -Ev (2,2) and Ec (3,3) -Ev (3,3) ) is about 140 meV.
  • This potential energy difference contributes to an improvement in carrier transport efficiency in the n-type indium gallium nitride pseudo mixed crystal layer 122 and the p type indium gallium nitride pseudo mixed crystal layer 124. In particular, it is suitable for improving the carrier yield of holes having a short carrier diffusion length.
  • FIG. 15 is a block diagram showing a configuration example of the n-type indium gallium nitride pseudo mixed crystal layer 122 constituting the solar cell according to the third embodiment.
  • the n-type indium gallium nitride pseudo-mixed crystal layer 122 includes a base layer 126 composed of a short-period superlattice 136. This corresponds to the carrier transit layer described above with reference to FIG. 14, and by transporting electrons while maintaining the suppression of lattice defects, which is a feature of the coherent structure, by setting the layer thickness of an appropriate short-period superlattice. Efficiency can be improved.
  • FIG. 16 is a block diagram showing a configuration example of the p-type indium gallium nitride pseudo mixed crystal layer 124 constituting the solar cell according to the third embodiment.
  • the p-type indium gallium nitride pseudo-mixed crystal layer 124 is configured such that the base layer 128 is composed of a short-period superlattice 138. This corresponds to the carrier traveling layer described above with reference to FIG. 14, and by setting the layer thickness of an appropriate short-period superlattice, while maintaining the suppression of lattice defects, which is a feature of the coherent structure, Transport efficiency can be improved.
  • FIG. 17 is a block diagram showing a configuration example of the indium gallium nitride pseudo mixed crystal sensitizing layer 123 constituting the solar cell according to the third embodiment.
  • the indium gallium nitride pseudo mixed crystal sensitizing layer 123 is composed of short-period superlattices 139 and 140. This corresponds to the characteristics of the carrier transit layer described above with reference to FIG. 14, and by increasing the layer thickness of the appropriate short-period superlattice, it is possible to increase while maintaining the suppression of lattice defects that are the characteristics of the coherent structure. The effect of improving carrier transport efficiency can be imparted to the sensitive layer.
  • the n-type indium gallium nitride pseudo mixed crystal layer 122, the p type indium gallium nitride pseudo mixed crystal layer 124, and the indium gallium nitride pseudo mixed crystal sensitized layer 123 are more preferable.
  • the pseudo-lattice matching structure by the InN / GaN short-period superlattice suppresses lattice defects, thereby improving the element characteristics of the solar cell. Enables high conversion efficiency without degradation.
  • the n-type indium gallium nitride pseudo mixed crystal layer 122, the indium gallium nitride pseudo mixed crystal sensitizing layer 123, and the p type indium gallium nitride pseudo mixed crystal layer 124 are: Not only artificially laminated ultra-thin InN and ultra-thin GaN, but also metastable nanostructures (natural superlattices) that appear spontaneously by heat treatment, laser irradiation, or electron beam irradiation. Good. According to this configuration, as with the short-period superlattice, it is possible to suppress lattice defects that are characteristic of the coherent structure.
  • the configuration of only one indium gallium nitride pseudo mixed crystal sensitizing layer 123 has been described. Further, a modulation dope may be employed in which the carrier density in the region near the indium gallium nitride pseudo mixed crystal sensitizing layer 123 is appropriately changed. In this case, the indium gallium nitride pseudo mixed crystal sensitizing layer 123 that protrudes from the depletion region of the pn junction interface may be used.
  • the configuration of the InN / GaN short-period superlattice has been described.
  • the present invention is not limited to this.
  • indium gallium aluminum nitride hereinafter, In x Ga y Al 1-xy N, The range of x and y is 0 ⁇ x, y ⁇ 1), and a structure of a pn junction and a sensitizing layer by In x Ga y Al 1-xy N pseudo mixed crystal is also possible.
  • the forbidden band width of In x Ga y Al 1-xy N can be arbitrarily changed by changing the mixed crystal ratios x and y.
  • FIG. 18 is a graph showing the theoretical maximum conversion efficiency with respect to the number of cells in the tandem solar cell according to the present invention.
  • Incident sunlight is the AM1.5 spectrum shown in FIG. 5 and is the “ASTM G173-03 Reference Spectra Derived from SMARTS v. 2.9.2” standard spectrum.
  • white circles ( ⁇ ) and rhombuses ( ⁇ ) are theoretical maximum conversion efficiencies in the tandem solar cell according to the present invention, but white circles ( ⁇ ) transition between bands up to about 0.63 eV (wavelength 1968 nm). In this case, the rhombus ( ⁇ ) absorbs at an interband transition up to about 0.92 eV (wavelength 1352 nm) (0.92-cutoff).
  • black circles ( ⁇ ) are theoretical maximum conversion efficiencies in the tandem solar cell described in Patent Document 1, and are described as reference data in order to clarify the superiority of the present invention over the prior art.
  • the theoretical maximum conversion efficiency of the conventional technique is 45.9%
  • the theoretical maximum conversion efficiency of the present invention is 0.63-cutoff (white circle (white circle ( ⁇ )) was 51.6%
  • 0.92-cutoff (diamond ( ⁇ )) was 50.8%.
  • the photoelectric conversion efficiency in the tandem solar cell according to the present invention exceeds the photoelectric conversion efficiency of the prior art, but the light / thermal sensitizing action allows light of a longer wavelength component to be reduced without lowering the generated voltage. This is because it can be used.
  • tandem structure described in the second embodiment that is, 0.92-cutoff is not inferior in conversion efficiency compared to 0.63-cutoff. From this, it is possible to suppress the generation of lattice defects in tandem solar cells by combining photo / thermal sensitization and magic number-like mixed crystal composition ratio, and in addition, indium nitride or high In composition indium gallium nitride mixed crystals. It is shown that a solar cell having high photoelectric conversion efficiency is provided while avoiding the problem of p-type conductivity control, and the remarkable superiority of the present invention that could not be expected from the prior art is shown.
  • tandem solar cell of the present invention is suitable for operation in a condensing environment. This is because the oblique incidence of sunlight by condensing the lens allows in-band light absorption transition, which is a basic process of light and thermal sensitization, and heating by condensing promotes carrier thermal excitation. It is.
  • the embodiment described above suppresses the generation of lattice defects in the tandem solar cell, further avoids the problem of p-type conductivity control in indium nitride or a high In composition indium gallium nitride mixed crystal, and is high. It is possible to provide a solar cell having photoelectric conversion efficiency.
  • FIG. 19 is a block diagram illustrating a configuration example of the solar cell 210 according to the fourth embodiment.
  • a solar cell 210 includes an n-type gallium nitride (hereinafter referred to as n-GaN) layer 212, an indium nitride (InN) photosensitizing layer 213 formed on the n-GaN layer 212, and an InN photosensitization.
  • n-GaN n-type gallium nitride
  • InN indium nitride
  • p-GaN gallium nitride
  • the n-GaN layer 212 is used for separating electron-hole pairs generated by photoelectric conversion and transporting electrons to the n-type electrode.
  • the p-GaN layer 214 is used to separate electron / hole pairs generated by photoelectric conversion and transport holes to the p-type electrode. Therefore, the resistivity and the layer thickness of the n-GaN layer 212 and the p-GaN layer 214 are each suitably adjusted in order to efficiently transport carriers.
  • the InN photosensitizing layer 213 has not only light corresponding to the forbidden band width (band gap energy) of GaN forming a pn junction, but also a photosensitizing effect that makes it possible to use longer wavelength light for photoelectric conversion. Used for. As will be described later, by the action of the InN photosensitizing layer 213, the photovoltaic voltage from the solar cell can be improved, and a solar cell with high conversion efficiency can be configured. An n-type electrode and a p-type electrode (not shown) are used for taking out the generated photovoltaic power.
  • InN is generally formed on GaN by a known semiconductor manufacturing technique or the like.
  • InN and GaN have a lattice mismatch of about 11%, so that high-density lattice defects are introduced during crystal growth. This lattice defect significantly deteriorates the photoelectric conversion efficiency.
  • the inventors have found that the upper limit of the film thickness that allows InN to retain elastic deformation without introducing lattice defects and coherently grow with respect to GaN, that is, the critical film thickness, is a bimolecular layer (2ML). .
  • InN and GaN are immiscible, it is difficult to obtain a uniform mixed crystal composition of InGaN, which is a mixed crystal thereof, and the crystallinity deteriorates as the In composition increases.
  • the inventors have found that in the above-described ultrathin film InN having a bimolecular layer (2ML) or less, immiscibility with GaN functions effectively and crystal growth with extremely excellent structural integrity is realized. .
  • a self-ordered and self-stopping process becomes possible, and a steep InN / GaN interface is formed on the atomic layer order.
  • the InN / GaN binary ultrathin film forms a pseudo-mixed crystal, thereby forming a photoelectric conversion device that essentially avoids the problem of non-uniform composition.
  • the growth temperature of InN is limited to about 600 ° C. or less in the molecular beam epitaxy (MBE) method, but the inventors can also grow over 600 ° C. in an ultra-thin InN film having two or less molecular layers. Found.
  • MBE molecular beam epitaxy
  • the crystallinity of the ultra-thin film InN is dramatically improved.
  • ultrathin film InN exhibits specific physical properties, and as a result, high photoelectric conversion efficiency (internal quantum efficiency) is achieved.
  • FIG. 20 is a conceptual diagram showing a band lineup of GaN and InN. 20, similarly to FIG. 19, the InN photosensitizing layer 213 is sandwiched between the n-GaN layer 212 and the p-GaN layer 214, and the CBM and VBM are composed of the bottom of the conduction band of GaN and InN and the valence electrons. Each band top is shown, and the energy increases from left to right in the figure.
  • the band gap energies of InN and GaN are about 0.63 eV and 3.4 eV at room temperature, the conduction band offset is about 2 eV, and the valence band offset is about 0.75 eV. Since these large potential barriers almost completely confine the photoexcited carriers in the InN layer, the carriers cannot be taken out into the GaN layer as they are.
  • the effective band gap energy of InN (difference between Ec1 and Ev1) is shifted from 0.63 eV.
  • the effective bandgap energy of bimolecular layer (2ML) InN is about 500 meV lower than the bandgap energy 3.4 eV of GaN
  • the effective bandgap energy of monomolecular layer (1ML) InN is the bandgap energy 3 of GaN. The inventors have found that it is about 200 meV lower than 4 eV.
  • the potential barrier felt by carriers in the InN well layer is about 500 meV for the bimolecular layer InN and about 200 meV for the 1 molecular layer InN, respectively.
  • the InN photosensitizing layer 213 is transferred to the n-GaN layer 212 and the p-GaN layer 214. Carrier movement is further promoted.
  • this spectral region below 0.63 eV can never be overlooked, with an illumination power density of about 4% and a photon density of about 9%.
  • the thickness of the InN photosensitizing layer 213 can be set to or less than two molecular layers, carriers generated by interband absorption in the InN photosensitizing layer 213 can be thermally excited or light of, for example, less than 0.63 eV. Intraband transition that absorbs the light causes a photosensitization effect of moving carriers to the n-GaN layer 12 and the p-GaN layer 214.
  • This photosensitization action improves the operating characteristics of the solar cell. For example, compared to an InGaN-pn junction equivalent to the absorption edge energy (3.2 eV) of a single molecular layer InN / GaN quantum well, the number of photons that can be absorbed is the same, and the short-circuit current is also the same. However, since the photosensitization action can use carriers that have overcome a potential barrier equivalent to about 200 meV, the open circuit voltage increases. This contributes to increasing the conversion efficiency of the solar cell.
  • the solar cell 210 can absorb light corresponding to the effective band gap energy of the InN photosensitizing layer 213 and increase the photovoltaic voltage by the photosensitizing action. At this time, light having a photon energy of less than 0.63 eV, which has been a transmission loss, can be used, and a high-output solar cell can be obtained.
  • the configuration of the GaN pn junction has been described.
  • the present invention is not limited to this.
  • indium gallium aluminum nitride hereinafter, In x Ga y Al 1-xy N, x and y
  • the range may be a pn junction with 0 ⁇ x, y ⁇ 1).
  • the forbidden band width of In x Ga y Al 1-xy N can be arbitrarily changed by changing the mixed crystal ratios x and y.
  • the effective band gap energy of an ultra-thin film InN having a layer thickness of two molecular layers or less is smaller by several hundred meV than the band gap energy of In x Ga y Al 1-xy N, so that it has a photosensitizing effect. It can contribute to the efficiency improvement of the solar cell.
  • the GaN pn junction configuration has been described.
  • the InN and GaN short-period superlattices described below that is, an InN / GaN pseudo mixed crystal pn junction configuration, are also possible.
  • the effective band gap of the InN / GaN pseudo-mixed crystal can be changed by controlling the layer thickness of InN and GaN.
  • the configuration of only one InN photosensitizing layer 213 has been described.
  • a multilayer in which a plurality of InN photosensitizing layers 213 are inserted is used.
  • a structure with a structure is also possible.
  • the amount of light to be absorbed increases as the number of InN photosensitizing layers 213 inserted therein increases, so that the photosensitizing effect can be further enhanced.
  • a multi-layer structure of the InN photosensitizing layer 213 that protrudes from the depletion region of the pn junction interface may be used.
  • the InN photosensitizing layer 213 may be configured to be sandwiched or capped with a non-doped GaN (hereinafter, i-GaN) layer in both a single layer and a multilayer.
  • i-GaN non-doped GaN
  • the fourth embodiment a solar cell having a configuration in which an ultrathin film InN is inserted into a pn junction made of GaN has been described.
  • the forbidden band width is set to a range of 6.2 eV to 0.63 eV by replacing with a pn junction of In x Ga y Al 1-xy N, which is a modification of the fourth embodiment.
  • the solar cells have different forbidden band widths, and the cells are stacked so that the forbidden band widths are increased in order from the light receiving surface along the light entering direction.
  • a solar cell in which an ultra-thin film InN is inserted into a pn junction made of InGaN will be described with reference to FIGS. 21 to 22 as a configuration example of the cell.
  • FIG. 21 is a block diagram illustrating a configuration example of a solar cell (cell) 220 that configures the tandem solar cell according to the fifth embodiment.
  • a cell 220 is formed on an n-type indium gallium nitride (hereinafter, n-InGaN) layer 222, a gallium nitride (GaN) layer 225 formed on the n-InGaN layer 222, and a GaN layer 225.
  • n-InGaN n-InGaN
  • GaN gallium nitride
  • InN indium nitride
  • p-InGaN p-InGaN
  • the n-InGaN layer 222 is used for separating electron-hole pairs generated by photoelectric conversion and transporting electrons.
  • the p-InGaN layer 224 is used to separate electron / hole pairs generated by photoelectric conversion and transport holes. Therefore, the resistivity and the layer thickness of the n-InGaN layer 222 and the p-InGaN layer 224 are each suitably adjusted in order to efficiently transport carriers.
  • the forbidden band width (band gap energy) of the n-InGaN layer 222 and the p-InGaN layer 224 satisfies consistency with the sunlight spectrum and current storage conditions in which each cell in the tandem structure generates the same current.
  • the mixed crystal composition ratio is suitably controlled.
  • the InN photosensitizing layer 223 is used not only for light corresponding to the band gap energy of InGaN forming a pn junction, but also for a sensitizing effect that enables use of longer wavelength light for photoelectric conversion. As will be described later, by the action of the InN photosensitizing layer 223, the photovoltaic voltage from the solar cell can be improved and a solar cell (cell) with high conversion efficiency can be obtained.
  • the GaN layer 225 constituting the cell 220 according to the fifth embodiment will be described.
  • the formation of the InN photosensitizing layer 223 uses a self-ordered and self-stopping process based on immiscibility with the underlying GaN layer as described in the fourth embodiment.
  • immiscibility does not sufficiently develop when a pn junction is formed of InGaN, that is, in a combination of InN and underlying InGaN.
  • formation of an ultrathin film InN by a self-ordered and self-stopping process was not confirmed on InGaN having an In composition of about 20% (absorption edge wavelength corresponding to about 500 nm).
  • the In composition ratio of the n-InGaN layer 222 and the p-InGaN layer 224 needs to be increased. This corresponds to increasing the In composition ratio x in the same manner even when the pn junction is composed of In x Ga y Al 1-xy N. Therefore, when an attempt is made to form the InN photosensitizing layer 223 directly on the n-InGaN layer 222, it is difficult to ensure the structural integrity because the immiscibility is suppressed.
  • FIG. 22 is a conceptual diagram showing the band lineup of GaN, InGaN, and InN.
  • an InN photosensitizing layer 223 and a GaN layer 225 are sandwiched between an n-InGaN layer 222 and a p-InGaN layer 224, and CBM and VBM are GaN, InGaN, The bottom of the conduction band and the top of the valence band of InN are shown, and the energy increases from left to right in the figure.
  • the effective band gap energy of the InN photosensitizing layer 223 corresponds to the difference between the electron and hole quantum levels Ec2 and Ev2.
  • the InN photosensitizing layer 223 in order for the InN photosensitizing layer 223 to exhibit a photosensitizing action, carrier thermal excitation at room temperature, and further, for example, absorbing light having a photon energy of less than 0.63 eV that could not be absorbed even by InN. Due to the in-band transition, carrier movement from the InN photosensitizing layer 223 to the n-InGaN layer 222 and the p-InGaN layer 224 becomes necessary.
  • the potential barrier between the n-InGaN layer 222 and the p-InGaN layer 224 is about several hundred meV, which is the case of the fourth embodiment. Is less than or equal to That is, the thickness of the InN photosensitizing layer 223 is 200 meV or less for a monomolecular layer and 500 meV or less for a bimolecular layer, and these potential barriers are the n-InGaN layer 222 and the p-InGaN layer. It becomes smaller as the In composition of 224 increases.
  • the GaN layer 225 can be a potential barrier that prevents electron transfer.
  • the thickness of the GaN layer 225 is such that electrons can be quantum mechanically tunneled. Ultra-thin film thickness is achieved.
  • the thickness of the GaN layer 225 is 10 nm or less, more preferably 4 molecular layers or less.
  • the layer thickness of the InN photosensitizing layer 223 is formed to be two molecular layers or less and configuring the GaN layer 225 as an ultrathin film, carriers generated by interband absorption in the InN photosensitizing layer 223 can be obtained.
  • the photosensitization effect of moving carriers to the n-InGaN layer 222 and the p-InGaN layer 224 is exhibited by thermal excitation or intraband transition that absorbs light of, for example, less than 0.63 eV.
  • This photosensitization action improves the operating characteristics of the solar cell. Compared to an InGaN-pn junction having the same fundamental absorption edge, the number of photons that can be absorbed is the same, and the short-circuit current is also the same. However, since the photosensitization action can use carriers that have overcome a potential barrier corresponding to several hundred meV, the open circuit voltage increases. This contributes to increasing the conversion efficiency of the solar cell.
  • the cell 220 constituting the tandem solar cell according to the fifth embodiment absorbs light corresponding to the effective band gap energy of the InN photosensitizing layer 223 and generates a photovoltage by the photosensitizing action. Can be increased. At this time, light having a photon energy of less than 0.63 eV, which has been a transmission loss, can be used, and a high-output solar cell can be obtained.
  • the structure of the InGaN pn junction has been described.
  • the present invention is not limited to this.
  • indium gallium aluminum nitride hereinafter referred to as In x Ga y Al 1-xy N, x and y
  • the range may be a pn junction with 0 ⁇ x, y ⁇ 1).
  • the forbidden band width of In x Ga y Al 1-xy N can be arbitrarily changed by changing the mixed crystal ratios x and y.
  • the effective band gap energy of an ultra-thin film InN having a layer thickness of two molecular layers or less is smaller by several hundred meV than the band gap energy of In x Ga y Al 1-xy N, so that it has a photosensitizing effect. It can contribute to the efficiency improvement of the solar cell.
  • the configuration of the InGaN pn junction has been described.
  • the following configuration of InN and GaN short-period superlattices that is, an InN / GaN pseudo-mixed pn junction is also possible.
  • the effective band gap of the InN / GaN pseudo-mixed crystal can be changed by controlling the layer thickness of InN and GaN.
  • the structure of only one InN photosensitizing layer 223 has been described.
  • a multilayer in which a plurality of InN photosensitizing layers 223 are inserted is used.
  • a structure with a structure is also possible.
  • a multilayer structure of the InN photosensitizing layer 223 that protrudes from the depletion region of the pn junction interface may be used.
  • the InN photosensitizing layer 223 may be configured to be sandwiched or capped with a non-doped InGaN (hereinafter, i-InGaN) layer in both a single layer and a multilayer.
  • i-InGaN non-doped InGaN
  • Patent Document 1 discloses a configuration in which the final stage cell having a tandem structure is an InN cell that absorbs light having the longest wavelength in order to adapt the solar spectrum as widely as possible.
  • the inventors have found that it is extremely difficult to control the conductivity of InN, that is, to form an InN-pn junction, which is inappropriate for the construction of a high-efficiency solar cell.
  • FIG. 5 is a graph showing the sunlight spectrum, showing the radiation power density (gray) and photon density (black) with respect to wavelength.
  • the source of the data is a standard AM1.5 spectrum of “ASTM G173-03 Reference Spectra Derived from SMARTS v. 2.9.2”.
  • tandem solar cell when the solar spectrum up to 0.92 eV is used for interband transition (0.92-cutoff) will be described.
  • the tandem solar cell it is necessary to satisfy the current conservation law that matches the sunlight spectrum and makes the generated current in each of the plurality of cells constant.
  • FIG. 23 is a diagram showing a configuration of a tandem solar cell including two cells, and each cell includes an InGaN-pn junction and an InN photosensitizing layer sandwiched between them.
  • the InN photosensitizer is composed of an ultrathin film InN and GaN.
  • the size of the potential barrier with the InGaN-pn junction is “200 ⁇ (Ga content of InGaN) meV” by a Vegard-law linear approximation. decided.
  • the potential barrier is 200 meV, and when sandwiched between In 0.5 Ga 0.5 N-pn junctions, it is 100 meV.
  • the band gap energy of the InGaN-pn junction is They are 1.63 eV and 0.94 eV, respectively.
  • the difference in band gap of InGaN in the second (final) cell from 0.92 eV with respect to the solar spectrum up to 0.92 eV is due to the photosensitization action, and the potential barrier in this case is 0. Because it is 0.02 eV.
  • the In compositions of InGaN mixed crystals corresponding to 1.63 eV and 0.94 eV are 0.51 and 0.81, respectively, but these can be expressed in simple fractions, and the mixed crystal composition ratio is As shown in the center of FIG. 23, they are approximated as In 1/2 Ga 1/2 N and In 4/5 Ga 1/5 N, respectively.
  • the mixed crystal composition ratio is an analog value between 0 and 1, according to the design policy of the above tandem solar cell, it is expressed in a simple fraction, that is, a discrete mixed crystal composition ratio.
  • a simple fraction that is, a discrete mixed crystal composition ratio.
  • This discrete fractional mixed crystal composition ratio means that a tandem solar cell can be constituted by a short-period binary superlattice, that is, a pseudo mixed crystal (digital mixed crystal), corresponding to the mixed crystal composition.
  • a tandem solar cell can be constituted by a short-period binary superlattice, that is, a pseudo mixed crystal (digital mixed crystal), corresponding to the mixed crystal composition.
  • a pseudo mixed crystal digital mixed crystal
  • In 4/5 Ga 1/5 N is a four molecular layer InN (4ML-InN) / 1 molecular layer GaN (1ML-GaN) binary superlattice (hereinafter referred to as (InN) 4 / (GaN) 1 ).
  • FIG. 26 is a block diagram showing an example of mixed crystal composition ratio control by pseudo mixed crystals.
  • the pseudo-mixed crystal is a layer structure in which, for example, binary compounds GaN and InN are alternately stacked, and the physical properties are approximately given by the volume ratio of the layer structure. That is, in the example shown on the left side of FIG. 26, since it is (InN) 1 / (GaN) 1 , it corresponds to In 0.5 Ga 0.5 N.
  • an example in which an island nanostructure of InN is embedded using GaN as a host material, that is, a fractional superlattice is shown.
  • the physical properties are also given approximately by the volume ratio of the constituent materials. That is, in the example shown on the right side of FIG. 26, since the volume ratio is x: y, this corresponds to In x / (x + y) Gay / (x + y) N.
  • FIG. 24 is a diagram showing the configuration of a tandem solar cell consisting of three cells, and each cell is composed of an InGaN-pn junction and an InN photosensitizing layer sandwiched between them.
  • the band gap energy of the InGaN-pn junction is These are 1.94 eV, 1.37 eV, and 0.94 eV, respectively.
  • the In compositions of InGaN mixed crystals corresponding to 1.94 eV, 1.37 eV and 0.94 eV are 0.40, 0.61 and 0.81, respectively, which are expressed in simple fractions.
  • the mixed crystal composition ratios are In 2/5 Ga 3/5 N, In 3/5 Ga 2/5 N, and In 4/5 Ga 1/5 N, respectively. Is approximated by Normally, though the mixed crystal composition ratio is an analog value between 0 and 1, according to the design policy of the above tandem solar cell, it is expressed in a simple fraction, that is, a discrete mixed crystal composition ratio. Can be shown.
  • This discrete fractional mixed crystal composition ratio means that a tandem solar cell can be constituted by a short-period binary superlattice, that is, a pseudo mixed crystal (digital mixed crystal), corresponding to the mixed crystal composition.
  • a tandem solar cell can be constituted by a short-period binary superlattice, that is, a pseudo mixed crystal (digital mixed crystal), corresponding to the mixed crystal composition.
  • a pseudo mixed crystal digital mixed crystal
  • In 3/5 Ga 2/5 N is a trilayer InN (3ML-InN) / 2 layer GaN (2ML-GaN) binary superlattice (hereinafter referred to as (InN) 3 / (GaN) 2
  • In 4/5 Ga 1/5 N is a four-layer InN (4ML-InN) / 1-layer GaN (1ML-GaN) binary superlattice (hereinafter referred to as (InN) 4 / (GaN) 1 Equivalent).
  • FIG. 25 is a diagram showing the configuration of a tandem solar cell consisting of four cells, and each cell is composed of an InGaN-pn junction and an InN photosensitizing layer sandwiched between them.
  • the band gap energy of the InGaN-pn junction is These are 2.13 eV, 1.63 eV, 1.25 eV, and 0.94 eV, respectively.
  • the In compositions of the InGaN mixed crystals corresponding to 2.13 eV, 1.63 eV, 1.25 eV, and 0.94 eV are 0.34, 0.51, 0.66, and 0.81, respectively. These can be expressed in simple fractions, and the mixed crystal composition ratios are In 1/3 Ga 2/3 N, In 1/2 Ga 1/2 N, In, respectively, as shown in the center of FIG. 2/3 Ga 1/3 N and In 4/5 Ga 1/5 N are approximated.
  • the mixed crystal composition ratio is an analog value between 0 and 1, according to the design policy of the above tandem solar cell, it is expressed in a simple fraction, that is, a discrete mixed crystal composition ratio.
  • a simple fraction that is, a discrete mixed crystal composition ratio.
  • This discrete fractional mixed crystal composition ratio means that a tandem solar cell can be constituted by a short-period binary superlattice, that is, a pseudo mixed crystal (digital mixed crystal), corresponding to the mixed crystal composition.
  • a tandem solar cell can be constituted by a short-period binary superlattice, that is, a pseudo mixed crystal (digital mixed crystal), corresponding to the mixed crystal composition.
  • a pseudo mixed crystal digital mixed crystal
  • Ga 1/2 N is a single molecular layer InN (1ML-InN) / 1 molecular layer GaN (1ML-GaN) binary superlattice (hereinafter referred to as (InN) 1 / (GaN) 1 In 2/3 Ga 1/3 N is a bilayer InN (2ML-InN) / 1 molecular layer GaN (1ML-GaN) binary superlattice (hereinafter referred to as (InN) 2 / (GaN) 1 In 4/5 Ga 1/5 N is a four molecular layer InN (4ML-InN) / 1 molecular layer GaN (1ML-GaN) binary superlattice (hereinafter referred to as (InN) 4 / (GaN) 1 ).
  • each structure is as if it is a magic number discrete. It was found that the mixed crystal composition ratio was a fraction. As is apparent from the cases of the 2 and 4 tandem structures, even when the number of tandem stages is a multiple of 2 to 4, the mixed crystal composition ratio of the discrete fraction like the magic number appears. As described above, these mixed crystal composition ratios are suitable for being composed of an InN / GaN pseudo-mixed crystal. There is a working effect.
  • InN and GaN are strongly immiscible, and crystal growth and composition control in an intermediate In composition region and a high In composition region, which are required for a tandem solar cell, are extremely difficult.
  • the above-mentioned immiscibility works more favorably, and it becomes easy to control the effective band gap or the effective mixed crystal composition. That is, the influence of the In composition fluctuation is greatly suppressed, so that the wavelength division design value in the tandem structure is faithfully reproduced.
  • it is a high lattice mismatch system, it compensates for the lattice distortion by mutual compensation, suppresses the generation of lattice defects, and reduces the leakage current of the solar cell.
  • the so-called “strained superlattice buffer effect”, which is often seen in other compound semiconductors, can be expected, and the generation of lattice defects due to inter-cell lattice mismatch accompanying the tunnel junction formation between cells. Suppress and reduce the leakage current of the solar cell.
  • the energy difference between the band edge position and the donor or acceptor level is reduced, that is, the Mg acceptor activation energy is reduced, and conductivity control, particularly p-type conduction. Sex control becomes easy.
  • FIG. 18 is a graph showing the theoretical maximum conversion efficiency with respect to the number of cells in the tandem solar cell according to the present invention.
  • Incident sunlight is an AM1.5 spectrum shown in FIG. 5 and is a standard spectrum of “ASTM G173-03 Reference Spectra Derived from SMARTS v. 2.9.2”.
  • white circles ( ⁇ ) and rhombuses ( ⁇ ) are theoretical maximum conversion efficiencies in the tandem solar cell according to the present invention, but white circles ( ⁇ ) are between bands up to 0.63 eV (wavelength 1.97 ⁇ m). This is the case where absorption is caused by the transition (0.63-cutoff), and the case where the rhombus ( ⁇ ) is absorbed by the interband transition up to 0.92 eV (wavelength: 1.35 ⁇ m) (0.92-cutoff).
  • the black circle ( ⁇ ) is the theoretical maximum conversion efficiency in the tandem solar cell described in Patent Document 1, and is described as reference data in order to clarify the superiority of the present invention over the prior art.
  • the theoretical maximum conversion efficiency of the conventional technique is 45.9%
  • the theoretical maximum conversion efficiency of the present invention is 0.63-cutoff (white circle (white circle ( ⁇ )) was 51.6%
  • 0.92-cutoff (diamond ( ⁇ )) was 50.8%.
  • the photoelectric conversion efficiency in the tandem solar cell according to the present invention exceeds the photoelectric conversion efficiency of the prior art, but the longer wavelength component without lowering the photovoltaic voltage due to the photosensitizing action of the InN ultrathin film This is because the light can be used.
  • tandem structure described in the sixth embodiment that is, 0.92-cutoff is not inferior in conversion efficiency compared to 0.63-cutoff.
  • the combination of photosensitization and magic number-like mixed crystal composition ratio suppresses the generation of lattice defects in tandem solar cells, reduces leakage current, and further mixes indium nitride or high In composition indium gallium nitride. It is clear that solar cells having high photoelectric conversion efficiency are provided while avoiding the problem of p-type conductivity control in crystals, and the remarkable advantages of the present invention that could not be expected from the prior art are clear It was shown in
  • the fourth to sixth embodiments facilitate the control of the absorption edge wavelength of each cell in the tandem solar cell, suppress the occurrence of lattice defects in the tandem solar cell, and reduce the leakage current. Furthermore, it is possible to provide a solar cell that avoids the problem of p-type conductivity control in indium nitride or a high In composition indium gallium nitride mixed crystal and has high photoelectric conversion efficiency.
  • the photoelectric conversion device according to the present invention can be used as a terrestrial concentrating solar cell or a solar cell-mounted solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 この太陽電池は、第1伝導型からなる第1伝導層と、前記第1伝導層上に形成される増感層と、前記光増感層上に形成され、第2伝導型からなる第2伝導層と、を備える太陽電池であって、前記第1伝導層および前記第2伝導層および前記増感層の少なくともいずれかが、第1の膜厚である第1半導体と第2の膜厚である第2半導体とを有する。

Description

光電変換装置
 本発明は、紫外線から赤外線までの広い波長領域に対応する光電変換装置、特に結晶欠陥による特性劣化を改善する光電変換装置に関する。
 本願は、2010年6月18日に出願された特願2010-139801号および2011年2月28日に出願された特願2011-43379号に対して優先権を主張し、その内容をここに援用する。
 本発明は、紫外線から赤外線までの広い波長領域に対応する光電変換装置、特に結晶欠陥による特性劣化を改善する太陽電池に関する。
 近年、温室効果ガス(二酸化炭素)による地球温暖化に対する懸念から、今後も持続可能な発展的社会構造の維持には、低炭素化および省エネルギー化への取り組みが重要となっている。
 特に、化石燃料への依存体質からの脱却は急務である。このような状況下において、太陽光エネルギーの光電変換による発電、すなわち太陽電池、は上記問題解決のキーポイントである。
 現在、ほとんどの太陽電池はシリコン(Si)を原料としている。一方で、人工衛星搭載などの高い光電変換効率が要求される用途では、太陽光スペクトルとの整合性から化合物半導体である砒化ガリウム(GaAs)を用いた太陽電池が実用化されている。
 次に、このような太陽電池の構成について図27を参照して説明する。図27は一例として、従来の半導体pn接合型の太陽電池100の構成を示すブロック図であり、n型半導体層102と、前記n型半導体層102上に形成されるp型半導体層104と、の周知の構成からなり、これらが周知の半導体製造技術などによって太陽電池(単一セル)として形成されている。
 しかし、太陽電池は構成材料が有する禁制帯幅(バンドギャップエネルギー)に対応した波長範囲の太陽光しか利用できない。そのため、単一セルからなる太陽電池では、広い太陽光スペクトルに適合できず、その光電変換効率には限界がある。
 そこで、太陽光スペクトルへの適合波長範囲を広げ、光電変換効率を向上させることを目的としたタンデム型太陽電池の構造が提案されている。このタンデム型太陽電池とは、図27に示した太陽電池100と同様の単一セルが、電気的・光学的に複数直列接続されており、それぞれの単一セルが異なる禁制帯幅を有し、光の進入方向に沿って受光面から順に、禁制帯幅が広い方から狭い方になるよう積層されるものである。
 すなわち、このタンデム構造とは、図27に示した太陽電池100と同様のセルが複数から成る構造であり、それぞれのセルが異なる禁制帯幅を有し、受光面から光の進入方向に沿って、禁制帯幅が広い方から狭い方に順になるよう積層されるものである。
 例えば、特許文献1に記載のタンデム型太陽電池は、禁制帯幅が3.4eV~0.7eVに対応するため、広い波長範囲の太陽光スペクトルに整合可能となっている。
米国特許 7,217,882号公報
 特許文献1に記載されるタンデム型太陽電池を構成するのは、組成比の異なる窒化インジウムガリウム(InGaN)セルである。InGaNは、窒化インジウム(InN)と窒化ガリウム(GaN)との混晶系であるが、その非混和性が強く、In組成が高くなるに従い太陽電池として動作するのに足りる結晶品質を得ることが困難になる。
 また、太陽電池を構成する際には、成長基板とInGaNセルとの間、およびセル内部でのヘテロ構造における格子不整合が問題となり、接合領域で格子欠陥が高密度に生成される。これらの結果、太陽電池における接合漏れ電流を増大させ、光電変換効率を著しく損なうといった問題がある。
 この問題は、In組成が30%を越える混晶組成領域で顕著となる。例えば、4タンデムInGaN太陽電池における第1セルでIn組成を約41%として、適応波長域を長波長側へ拡大することを目指しても、設計通りの変換効率を得ることは極めて困難であることを発明者らは見出した。
 一方で、窒化インジウム(InN)および高In組成窒化インジウムガリウム(InGaN)混晶には、伝導性制御に関する特異な問題がある。
 すなわち、窒化インジウム(InN)および高In組成窒化インジウムガリウム(InGaN)混晶には、結晶内部に残留ドナーが高密度に存在する。また結晶表面・界面および欠陥近傍に高密度電子が存在する。これらによって窒化インジウム(InN)および高In組成窒化インジウムガリウム(InGaN)混晶では、p型伝導性制御の困難性が高くなり、結晶および素子の正確な電気特性評価も困難となる。
 この伝導性制御に関する問題は、In組成の増大につれてより顕著となる。すなわち、特許文献1に記載されるタンデム型太陽電池は、上述した問題点に阻まれ、期待される変換効率を実現することは極めて困難であることを発明者らは見出した。
 本発明は、このような事情に鑑みてなされたもので、InGaNタンデム型太陽電池における格子欠陥の発生を抑制し、さらに窒化インジウム(InN)または高In組成窒化インジウムガリウム(InGaN)混晶でのp型伝導性制御の問題を回避しつつ、高い光電変換効率を有する太陽電池を提供することを目的とする。
 さらに、本発明は、タンデム型太陽電池における各セルでの混晶組成制御を容易にし、格子欠陥による漏れ電流を低減させ、高い光電変換効率を有する太陽電池を提供することを目的とする。
 本発明の第1態様に係る光電変換装置は、第1伝導型からなる第1伝導層と、前記第1伝導層上に形成される増感層と、前記増感層上に形成され、第2伝導型からなる第2伝導層と、を備える光電変換装置であって、前記第1伝導層および前記第2伝導層および前記増感層の少なくともいずれかが、第1の膜厚である第1半導体と第2の膜厚である第2半導体とを有する。
 本発明の第1態様に係る光電変換装置では、前記第1の膜厚が前記第1半導体のx1分子層厚であり、前記第2の膜厚が前記第2半導体のx2分子層厚であるとき、前記x1とx2との比x1/x2が、およそ1/2、2/3、1、および4の少なくともいずれかであってもよい。
 また、本発明の第1態様に係る光電変換装置では、前記第1伝導層では、前記第1の膜厚が前記第1半導体のx11分子層厚、前記第2の膜厚が前記第2半導体のx12分子層厚であり、前記第2伝導層では、前記第1の膜厚が前記第1半導体のx21分子層厚、前記第2の膜厚が前記第2半導体のx22分子層厚であり、前記増感層では、前記第1の膜厚が前記第1半導体のx31分子層厚、前記第2の膜厚が前記第2半導体のx32分子層厚であるとき、(x11,x12)=a(x31,x32)、および(x21,x22)=a(x31,x32)の少なくともいずれかであってもよい。
 また、本発明の第1態様に係る光電変換装置では、前記第1伝導層および前記第2伝導層および前記増感層の少なくともいずれかが、第3の膜厚である前記第1半導体および第4の膜厚である前記第2半導体をさらに有し、前記第1伝導層では、前記第1の膜厚が前記第1半導体のx11分子層厚、前記第2の膜厚が前記第2半導体のx12分子層厚、前記第3の膜厚が前記第1半導体のx13分子層厚、および前記第4の膜厚が前記第2半導体のx14分子層厚であり、前記第2伝導層では、前記第1の膜厚が前記第1半導体のx21分子層厚、前記第2の膜厚が前記第2半導体のx22分子層厚、前記第3の膜厚が前記第1半導体のx23分子層厚、および前記第4の膜厚が前記第2半導体のx24分子層厚であり、前記増感層では、前記第1の膜厚が前記第1半導体のx31分子層厚、前記第2の膜厚が前記第2半導体のx32分子層厚、前記第3の膜厚が前記第1半導体のx33分子層厚、および前記第4の膜厚が前記第2半導体のx34分子層厚であるとき、(x11,x12)=a(x13,x14)、(x21,x22)=a(x23,x24)、および(x31,x32)=a(x33,x34)の少なくともいずれかであってもよい。
 また、本発明の第1態様に係る光電変換装置では、前記第1半導体および前記第2半導体は、格子整合して交互に積層されてもよい。
 また、本発明の第1態様に係る光電変換装置では、前記第1伝導層および前記第2伝導層の少なくともいずれかは、約2.13eV、約1.94eV、約1.63eV、約1.37eV、約1.25eV、および約0.94eVのいずれかのバンドギャップエネルギーを有してもよく、前記増感層は、約0.94eV以下のエネルギーを光電変換してもよい。
 また、本発明の第1態様に係る光電変換装置では、前記第1半導体のバンドギャップエネルギーが約3.4eVでもよく、前記第2半導体のバンドギャップエネルギーが約0.63eVでもよい。
 また、本発明の第1態様に係る光電変換装置では、前記第1半導体が窒化ガリウムでもよく、前記第2半導体が窒化インジウムでもよい。
 また、本発明の第1態様に係る光電変換装置では、前記第1伝導層および前記第2伝導層および前記増感層の少なくともいずれかが、前記第1の半導体と前記第2の半導体とで構成される自然超格子構造を有してもよい。
 また、本発明の第1態様に係る光電変換装置では、前記第1の膜厚であるx1分子層厚と、前記第2の膜厚であるx2分子層厚とが、(x1,x2)=(1,2)、(2,3)、(1,1)、(3,2)、(2,1)、および(4,1)分子層厚のいずれかに該当してもよい。
 本発明の第1態様である光電変換装置において、前記増感層に生成された電荷坦体が、前記第1伝導層および前記第2伝導層の少なくともいずれかへ移動自在であることが好ましい。
 本発明の第1態様である光電変換装置では、前記第1伝導層は第1バンドギャップエネルギーを有してもよく、前記第2伝導層は第2バンドギャップエネルギーを有してもよく、前記増感層は第3バンドギャップエネルギーを有してもよく、前記第1バンドギャップエネルギーおよび第2バンドギャップエネルギーの少なくともいずれかは、約2.13eV、約1.94eV、約1.63eV、約1.37eV、約1.25eV、および約0.94eVのいずれかに相当してもよく、前記第3バンドギャップエネルギーは、前記第1および前記第2バンドギャップエネルギーよりも小さくてもよい。
 本発明の第1態様である光電変換装置では、前記第1の膜厚が前記第1半導体の1分子層厚でもよく、または前記第2の膜厚が前記第2半導体の1分子層厚でもよい。
 本発明の第2態様である太陽電池は、第1バンドギャップエネルギーを有する第1伝導層と、前記第1伝導層上に形成され、第3バンドギャップエネルギーを有するInN増感層と、前記InN増感層上に形成され、第2バンドギャップエネルギーを有する第2伝導層と、を備える太陽電池であって、前記第1伝導層または前記第2伝導層のいずれかが、第1の膜厚であるInNまたは第2の膜厚であるGaNを備え、前記InN増感層の膜厚が2分子層以下であり、前記第1バンドギャップエネルギーおよび第2バンドギャップエネルギーは、約2.13eV、約1.94eV、約1.63eV、約1.37eV、約1.25eV、および約0.94eVのいずれかに相当し、前記第3バンドギャップエネルギーは、前記第1および前記第2バンドギャップエネルギーよりも小さく、その差が500meV以下であり、前記InN増感層に生成された電荷坦体が、前記第1伝導層および前記第2伝導層の少なくともいずれかへバンド内遷移する。
 本発明の第2態様である太陽電池では、前記第1の膜厚がInNの1分子層厚であってもよく、または前記第2の膜厚がGaNの1分子層厚であってもよい。
 本発明の第2態様である太陽電池では、前記第1の膜厚がGaNのx1分子層厚であり、かつ前記第2の膜厚が前記第2半導体のx2分子層厚であるとき、前記x1およびx2の比x1/x2が、およそ1/2、2/3、1、3/2、2、および4のいずれかでもよい。
 本発明の第2態様である太陽電池では、前記x1およびx2が自然数であり、(x1,x2)=(1,2)、(2,3)、(1,1)、(3,2)、(2,1)、および(4,1)のいずれかでもよい。
 本発明の第2態様である太陽電池では、前記バンド内遷移が、0.94eVより低エネルギーの光吸収によって誘起されてもよい。
 本発明の第2態様である太陽電池では、前記バンド内遷移が、室温以上の熱エネルギーによって誘起されてもよい。
 本発明の第3態様である太陽電池は、複数セルからなるタンデム型太陽電池であって、前記複数セルのうち少なくとも1つは、第1バンドギャップエネルギーを有する第1伝導層と、前記第1伝導層上に形成され、第3バンドギャップエネルギーを有するInN増感層と、前記InN増感層上に形成され、第2バンドギャップエネルギーを有する第2伝導層と、を備え、前記第1伝導層または前記第2伝導層のいずれかが、第1の膜厚であるInNまたは第2の膜厚であるGaNを備え、前記InN増感層の膜厚が2分子層以下であり、前記第3バンドギャップエネルギーは、前記第1および前記第2バンドギャップエネルギーよりも小さく、その差が500meV以下であり、前記InN増感層に生成された電荷坦体が、前記第1伝導層および前記第2伝導層または前記増感層の少なくともいずれかへバンド内遷移する。
 本発明の第3態様である太陽電池では、前記複数セルの段数が2の場合、前記第1の膜厚がGaNのx1分子層厚であり、かつ前記第2の膜厚が前記第2半導体のx2分子層厚であり、前記x1およびx2の比x1/x2が、およそ1または4のいずれかでもよい。
 本発明の第3態様である太陽電池では、前記x1およびx2が自然数であり、(x1,x2)=(1,1)または(4,1)のいずれかでもよい。
 本発明の第3態様である太陽電池では、前記複数セルの段数が3の場合、前記第1の膜厚がGaNのx1分子層厚であり、かつ前記第2の膜厚が前記第2半導体のx2分子層厚であり、前記x1およびx2の比x1/x2が、およそ2/3、3/2、または4のいずれかでもよい。
 本発明の第3態様である太陽電池では、前記x1およびx2が自然数であり、(x1,x2)=(2,3)、(3,2)または(4,1)のいずれかでもよい。
 本発明の第3態様である太陽電池では、前記複数セルの段数が4の場合、前記第1の膜厚がGaNのx1分子層厚であり、かつ前記第2の膜厚が前記第2半導体のx2分子層厚であり、前記x1およびx2の比x1/x2が、およそ1/2、1、2、または4のいずれかでもよい。
 本発明の第3態様である太陽電池では、前記x1およびx2が自然数であり、(x1,x2)=(1,2)、(1,1)、(2,1)または(4,1)のいずれかでもよい。
 本発明の第3態様である太陽電池では、前記第1バンドギャップエネルギーおよび第2バンドギャップエネルギーは、約2.13eV、約1.94eV、約1.63eV、約1.37eV、約1.25eV、および約0.94eVのいずれかでもよい。
 以上説明したように、本発明によれば、窒化物半導体タンデム型太陽電池における格子欠陥の発生を抑制し、漏れ電流成分を低減させ、さらに窒化インジウム(InN)または高In組成窒化インジウムガリウム(InGaN)混晶でのp型伝導性制御の問題を回避しつつ、高い光電変換効率を有する太陽電池を提供することができる。
 また、本発明によれば、窒化物系半導体タンデム型太陽電池における混晶組成制御を容易にし、格子欠陥による漏れ電流を低減させ、さらに窒化インジウムまたは高In組成窒化インジウムガリウム混晶でのp型伝導性制御の問題を回避しつつも、高い光電変換効率を有する太陽電池を提供することができる。
本発明の第1実施形態における太陽電池の構成例を示すブロック図である。 第1実施形態におけるn型窒化インジウムガリウム疑似混晶層の構成例を示すブロック図である。 第1実施形態におけるp型窒化インジウムガリウム疑似混晶層の構成例を示すブロック図である。 第1実施形態におけるn型窒化インジウムガリウム疑似混晶層、増感層、およびp型窒化インジウムガリウム疑似混晶層のバンドラインナップを示した概念図である。 太陽光AM1.5スペクトルを表すグラフである。 本発明の第2実施形態におけるタンデム型太陽電池の構成例を示す概念図である。 第2実施形態におけるタンデム型太陽電池の構成例を示す概念図である。 第2実施形態におけるタンデム型太陽電池の構成例を示す概念図である。 本発明の第3実施形態における増感層のバンドラインナップ例を示した概念図である。 第3実施形態における太陽電池の構成例を示すブロック図である。 第3実施形態におけるn型窒化インジウムガリウム疑似混晶層の構成例を示すブロック図である。 第3実施形態におけるp型窒化インジウムガリウム疑似混晶層の構成例を示すブロック図である。 第3実施形態における増感層の構成例を示すブロック図である。 第3実施形態の変形例におけるn型窒化インジウムガリウム疑似混晶層およびp型窒化インジウムガリウム疑似混晶層のバンドラインナップ例を示した概念図である。 第3実施形態の変形例におけるn型窒化インジウムガリウム疑似混晶層の構成例を示すブロック図である。 第3実施形態の変形例におけるp型窒化インジウムガリウム疑似混晶層の構成例を示すブロック図である。 第3実施形態の変形例における増感層の構成例を示すブロック図である。 本発明のタンデム型太陽電池における、セル数に対する理論最大変換効率を示すグラフである 本発明の第4実施形態による太陽電池における構成例を示すブロック図である。 GaNとInNのバンドラインナップを示した概念図である。 本発明の第5実施形態によるタンデム型太陽電池を構成するセルの構成例を示すブロック図である。 GaN、InGaN、およびInNのバンドラインナップを示した概念図である。 本発明の第6実施形態によるタンデム型太陽電池の構成例を示すブロック図である。 本発明の第6実施形態によるタンデム型太陽電池の構成例を示すブロック図である。 本発明の第6実施形態によるタンデム型太陽電池の構成例を示すブロック図である。 疑似混晶による混晶組成比制御の例を示すブロック図である。 従来例による太陽電池の構成を示すブロック図である。
 以下、本発明の実施形態につき、図面を参照して説明する。但し、この実施例の記載は、本発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
[第1実施形態]
 本願発明の太陽電池の構成について、図1~図4を参照しながら説明する。
図1は、本実施形態に係る太陽電池110の構成例を示すブロック図である。図1において、太陽電池110は、n型窒化インジウムガリウム疑似混晶(以下、n-(InN)x1/(GaN)x2)層112と、n型窒化インジウムガリウム疑似混晶層112上に形成される増感層113と、増感層113上に形成されるp型窒化インジウムガリウム疑似混晶(以下、p-(InN)x1/(GaN)x2)層114と、n型窒化インジウムガリウム疑似混晶層112に電気的に接続される図示しないn型電極と、p型窒化インジウムガリウム疑似混晶層114に電気的に接続される図示しないp型電極と、によって構成される。
 n-(InN)x1/(GaN)x2層112は、光電変換によって生成された電子・正孔対を分離し、電子をn型電極に輸送するために用いられる。p-(InN)x1/(GaN)x2層114は、光電変換によって生成された電子・正孔対を分離し、正孔をp型電極に輸送するために用いられる。従って、n型窒化インジウムガリウム疑似混晶層112およびp型窒化インジウムガリウム疑似混晶層114の抵抗率および層厚は、キャリア輸送および収率の観点でそれぞれが好適に調整される。
 増感層113は、pn接合を形成する窒化インジウムガリウム疑似混晶((InN)x1/(GaN)x2)の禁制帯幅(バンドギャップエネルギー)に対応した太陽光のみならず、より長波長の光をも光電変換に利用可能にする光・熱増感作用のために用いられる。後で述べるように、増感層113の作用によって、太陽電池110からの発生電圧を向上させ、高い変換効率の太陽電池を構成することができる。図示しないn型電極およびp型電極は、発生した電力を外部に取り出すために用いられる。
 図2は、n型窒化インジウムガリウム疑似混晶(n-(InN)x1/(GaN)x2)層112の構成例を示すブロック図である。疑似混晶とは、例えば、超薄膜GaNと超薄膜InNの交互積層構造のことを差し、その層厚比(体積比)と等価な混晶組成比であるInGaN三元混晶と同じ物性を示す。図2において、n-(InN)x1/(GaN)x2層112は、層厚x1分子層(x1 ML)であるInNと層厚x2分子層(x2 ML)であるGaNからなる短周期超格子115と、短周期超格子層115下に形成される下地層116と、によって構成される。
 図3は、p型窒化インジウムガリウム疑似混晶(p-(InN)x1/(GaN)x2)層114の構成例を示すブロック図である。図3において、p-(InN)x1/(GaN)x2層114は、層厚x1分子層(x1 ML)であるInNと層厚x2分子層(x2 ML)であるGaNからなる短周期超格子117と、短周期超格子層117下に形成される下地層118と、によって構成される。
 図1に示す太陽電池110は周知の半導体製造技術などで結晶成長される。結晶成長がc面成長する場合では、InNとGaNでは約11%の格子不整合度を有しているため、通常では高密度の格子欠陥が導入されてしまう。この格子欠陥は、太陽電池の素子特性を著しく劣化させる。
 ところが、InNとGaNのような格子不整合系においても、層厚が十分薄くなると互いが弾性変形を保持し、疑似格子整合系を形成することが可能となる。すなわち、格子欠陥の導入を抑制することが可能となる。短周期超格子115および117は、これに該当するコヒーレント構造を提供する。
 InNとGaNは非混和系であるために、それらの混晶であるInGaNは均一な混晶組成が得られにくい。ところが、上述した短周期超格子115および117の成長は、均一に混ぜる必要はない。すなわち、上記非混和性を有効に利用することで、極めて構造完全性に優れたInN/GaN短周期超格子が形成されることを発明者らは見出した。
 さらに、上記非混和性が有効に機能することによって、通常の結晶成長とは異なる自己秩序的かつ自己停止的な成長プロセスが利用可能となり、InNおよびGaNの分子層オーダでの超薄膜構造制御が容易になる。
 InNの成長温度は、例えば分子線エピタキシー(MBE)法では約600℃以下に限られていたが、分子層オーダ超薄膜InNでは、600℃以上の成長が可能となることも発明者らは見出した。この高温成長によって、InN/GaN短周期超格子の結晶性は飛躍的に向上する。
 すなわち、n型窒化インジウムガリウム疑似混晶層112およびp型窒化インジウムガリウム疑似混晶層114は、短周期超格子115および117による疑似格子整合系が格子欠陥を抑制し、さらに高温成長による結晶性向上による作用効果によって、太陽電池の素子特性を劣化させることなく高い変換効率を可能とする。
 続いて、太陽電池110の主要な構成要素である増感層113について説明する。図4は、n型窒化インジウムガリウム疑似混晶層112、増感層113、およびp型窒化インジウムガリウム疑似混晶層114の実効バンドラインナップを示した概念図である。図4において、図1と同様に、増感層113がn-(InN)x1/(GaN)x2層112とp-(InN)x1/(GaN)x2層114とによって挟まれており、CBMとVBMは、の伝導帯底部と価電子帯頂部をそれぞれ示し、図中左から右に向かってエネルギーが高くなる配置となっている。
 InNとGaNの禁制帯幅(バンドギャップエネルギー)は室温でそれぞれ約0.63eVと約3.4eVである。n-(InN)x1/(GaN)x2層112およびp-(InN)x1/(GaN)x2層114の実効バンドギャップエネルギーは、構成するInNおよびGaNの各層厚x1およびx2を変えることにより、上記約0.63eVと約3.4eVとの間で任意に制御される。また、増感層113のバンドギャップエネルギーは、前記n-(InN)x1/(GaN)x2層112およびp-(InN)x1/(GaN)x2層114の実効バンドギャップエネルギーよりも小さく設定される。
 この増感層113のバンドギャップエネルギーと、前記n-(InN)x1/(GaN)x2層112およびp-(InN)x1/(GaN)x2層114の実効バンドギャップエネルギーとの差は、500meVより小さいことが好ましい。また、前記エネルギー差は200meVより小さいとさらに好ましい。
 これらエネルギー差の値であれば、室温における熱励起過程でも、増感層113からn-GaN層112およびp-GaN層114へのキャリア移動が一部可能となる。この条件を満たすように、増感層113は、例えば、InGaNまたはInN/GaN短周期超格子、もしくはそれらによって構成される。
 さらに、例えば、InNでも吸収しない光子エネルギー約0.63eV未満の光を吸収するバンド内遷移過程を利用することで、増感層113からn-(InN)x1/(GaN)x2層112およびp-(InN)x1/(GaN)x2層114へのキャリア移動が促進される。太陽光スペクトルで、例えば、AM1.5スペクトルにおいて、この約0.63eV未満のスペクトル領域は決して見過ごすことはできなく、照射パワー密度で約4%、光子密度で約9%も存在する。
 増感層113は、n-(InN)x1/(GaN)x2層112およびp-(InN)x1/(GaN)x2層114の界面領域、すなわち、pn接合近傍に位置することから、内在電界が印加されている。増感層113でバンド間吸収により生成されたキャリアは、この内在電界により速やかに空間的に分離されるため、再結合確率は無視できるほど小さくなる。このため、増感層113に生成された電子および正孔は、それぞれが上述した熱励起または赤外光吸収バンド内遷移によって、n-(InN)x1/(GaN)x2層112およびp-(InN)x1/(GaN)x2層114へのキャリア移動させる光・熱増感作用が発現する。
 この光・熱増感作用は、太陽電池の動作特性を向上させる。例えば、上記エネルギー差が200meVである場合、光・熱増感作用によって、200meV相当の電圧増大を獲得し、太陽電池110の開放端電圧は増大する。すなわち、基礎吸収端が同一であるInGaN三元混晶pn接合と比較すれば、吸収可能な光子数は同一であるため、短絡電流密度も同一である。しかし、光・熱増感作用によって、開放端電圧が増大し、太陽電池の変換効率を向上することに寄与する。
 なお、第1実施形態では、InN/GaNの短周期超格子による構成について述べてきたが、これだけに限定されず、例えば窒化インジウムガリウムアルミニウム(以下、InGaAl1-x-yN、xおよびyの範囲は0≦x,y≦1)による短周期超格子、ならびにInGaAl1-x-yN疑似混晶によるpn接合と増感層との構成も可能である。この構成によれば、混晶比xおよびyを変化させることで、InGaAl1-x-yNの禁制帯幅を任意に変化させることができる。
 また、第1実施形態では、窒化インジウムガリウム疑似混晶のpn接合による構成について述べてきたが、n型窒化インジウムガリウム疑似混晶層112およびp型窒化インジウムガリウム疑似混晶層114を構成する下地層116および118も、同様に短周期超格子によって構成されてもよい。この構成の一例として、下地層116および118が短周期超格子115および117で構成された場合、n型窒化インジウムガリウム疑似混晶層112およびp型窒化インジウムガリウム疑似混晶層114が、InN/GaN短周期超格子のみで構成することができ、コヒーレント構造の特徴である格子欠陥の抑制がさらに顕著となる。
 第1実施形態で述べたInN/GaN短周期超格子、およびn型窒化インジウムガリウム疑似混晶層112およびp型窒化インジウムガリウム疑似混晶層114は、超薄膜InNおよび超薄膜GaNを人為的に交互積層したもののみならず、熱処理、レーザー照射、または電子線照射などの処理によって、自発的に現れる準安定ナノ構造(自然超格子)であってもよい。この構成によれば、短周期超格子と同様に、コヒーレント構造の特徴である格子欠陥の抑制が可能となる。
 さらに、第1実施形態では、図1および図4に示したように、増感層113は1層のみの構成について述べたが、例えば、増感層113が複数挿入された多層構造とする構成も可能である。この構成によれば、複数挿入された増感層113の層数が増加するに従って、吸収する光量は増加するので、光・熱増感作用をより増強することができる。この場合、pn接合界面の空乏領域からはみ出す増感層113の多層構造であっても構わない。
 さらに、増感層113が単層および多層の双方において、増感層113近傍領域のキャリア密度を適当に変化させる変調ドープとする構成も可能である。この構成によって、pn接合界面の空乏領域を好適に制御することができる。
[第2実施形態]
 第1実施形態では、光・熱増感効果を有する太陽電池(単一セル)の構成について説明した。第2実施形態では、第1実施形態で述べたセルが複数からなるタンデム型太陽電池について。図5~図8を参照しながら述べる。
 特許文献1にある先行技術では、太陽光スペクトルのできるだけ広範囲をカバーさせるために、タンデム構造の最終段セル(最長波長対応セル)が、光子エネルギーとして約0.63eVまでの光を吸収するpn-InNセルとする構成が開示されている。
 しかし、窒化インジウム(InN)および高In組成窒化インジウムガリウム(InGaN)の伝導性制御には大きな問題があり、pn-InN接合を形成することは極めて困難である。さらに、InNの禁制帯幅(バンドギャップエネルギー)は約0.63eVと小さく、pn-InNセルからの発生電圧は小さい。すなわち、pn-InNセルをタンデム構造の構成要件に組み込んだとしても、作製上の困難性が高まるだけで、変換効率の向上にほとんど寄与しないことを発明者らは見出した。
 そこで、太陽光スペクトルのできるだけ広範囲を利用するという方針を敢えて取りやめ、すなわち、タンデム構成からpn-InNを排除するといった発想の転換に至り、太陽電池の変換効率を損なうことのない太陽光スペクトルの有効利用に関して検討を行った。
 図5は、AM1.5太陽光スペクトル示すグラフであり、波長に対する放射パワー(灰色、左縦軸に対応)と光子数密度(黒色、右縦軸に対応)を示している。データの出典は、“ASTM G173-03 Reference Spectra Derivied from SMARTS v.2.9.2”標準スペクトルである。
 図5に示されるように、太陽光の赤外線波長域には、大気/水分の吸収などによるスペクトル欠損波長域が散見される。特に、InNのバンドギャップエネルギー約0.63eVを含む波長域1350nm-2000nm帯で、このスペクトル欠損が顕著である。すなわち、この波長域をタンデムセルがカバーしなくとも、変換効率に大きな損失をもたらすことはない。
 また、タンデムセルを構成するInGaN三元混晶、もしくはInGaN疑似混晶は、カバーする波長域をできるだけ短波長とする方が好ましい。すなわち、実効的In組成をできるだけ少なくすることで、上述したInNおよび高In組成InGaNに存在する伝導性制御の問題を回避することが可能となる。
 上記検討の結果、約0.92eV(波長1352nm)までの太陽光スペクトル成分は、タンデム構造の各セルがバンド間遷移により吸収し、すなわち、電流成分として利用する。一方、それより長波長領域の太陽光スペクトル成分は、光・熱増感作用におけるバンド内励起ソースとして活用する方針を発明者らは得た。
 約0.63eV(波長1968nm)までの太陽光スペクトルを、バンド間遷移としてタンデムセルがカバーした場合(以下、0.63-cutoffとする)では、光子数密度としては3.5×1021-2-1nm-1であったが、約0.92eV(波長1352nm)までとした場合(以下、0.92-cutoffとする)では、3.0×1021-2-1nm-1と低減する。しかし、長波長対応の最終段セルからの発電寄与はあまり大きくないため、タンデム型太陽電池としての変換効率は、0.63-cutoffと0.92-cutoffとではほぼ同等であることを後に示す。
 続いて、約0.92eVまでの太陽光スペクトル成分をバンド間遷移に利用する場合(0.92-cutoff)の、タンデム構造について説明する。タンデム型太陽電池では、複数からなる各セルでの発生電流を一定とする電流保存則を満足させなければならない。前記電流保存則に従い、2~4接合型(2~4タンデム型)太陽電池の設計を行った。
 図6は、2セルからなるタンデム型太陽電池(2タンデム)の構成例を示す概念図であり、各セルは、前記電流保存則を満足するpn-InGaN接合と、それに挟まれる増感層と、によって構成される。
 増感層の特徴は、図4を参照しながら上述した通りであるが、pn-InGaNと増感層との間のポテンシャル障壁の大きさ(バンドギャップエネルギー差)は、“200×(InGaNの実効的Ga組成)meV”とベガード則的な線形近似によって決めた。例えば、前記エネルギー差は、pn-GaN接合に増感層が埋め込まれている場合では200meVであり、pn-In0.5Ga0.5N接合に埋め込まれている場合では100meVである。
 0.92eV(波長1352nm)までの太陽光スペクトルに対して、2セルで電流保存則を満足させるためには、図6左側に示されるように、pn-InGaN接合のバンドギャップエネルギーは、それぞれ1.63eVおよび0.94eVとなる。0.92eVまでの太陽光スペクトルに対して、第2(最終)セルにおけるInGaNのバンドギャップが0.92eVと差異があるのは、光・熱増感作用によるもので、この場合の上記ポテンシャル障壁が20meVであることに対応する。
 このとき、1.63eVおよび0.94eVに相当するInGaN混晶のIn組成は、それぞれ0.51および0.81であるが、これらは簡単な分数で表記することができ、混晶組成比は、図6中央に示されるように、それぞれIn1/2Ga1/2NおよびIn4/5Ga1/5Nと近似される。通常、混晶組成比はアナログ的な0~1の間の数値であるにも関わらず、上記タンデム型太陽電池の設計方針に従うと、簡単な分数で、すなわち離散的な混晶組成比で置き換えできることが示された。
 この離散的な分数混晶組成比は、相当する混晶組成をInN/GaN短周期超格子、すなわち疑似混晶(デジタル混晶)、によってタンデム型太陽電池が構成できることを意味している。この様子を図6右側に示す。In1/2Ga1/2Nは、InNとGaNの層厚比InN:GaN=1:1に対応し、例えば、1分子層InN(1ML-InN)/1分子層GaN(1ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)であり、In4/5Ga1/5Nは4分子層InN(4ML-InN)/1分子層GaN(1ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)が該当する。
 図7は、3セルからなるタンデム型太陽電池(3タンデム)の構成例を示す概念図であり、各セルは前記電流保存則を満足するpn-InGaN接合と、それに挟まれる増感層と、によって構成される。
 0.92eV(波長1352nm)までの太陽光スペクトルに対して、3セルで電流保存則を満足させるためには、図7左側に示されるように、pn-InGaN接合のバンドギャップエネルギーは、それぞれ1.94eV、1.37eV、および0.94eVとなる。0.92eVまでの太陽光スペクトルに対して、第3(最終)セルにおけるInGaNのバンドギャップが0.92eVと差異があるのは、光・熱増感作用によるもので、この場合の上記ポテンシャル障壁が20meVであることに対応する。
 このとき、1.94eV、1.37eVおよび0.94eVに相当するInGaN混晶のIn組成は、それぞれ0.40、0.61、および0.81であるが、これらは簡単な分数で表記することができ、混晶組成比は、図7中央に示されるように、それぞれIn2/5Ga3/5N、In3/5Ga2/5N、およびIn4/5Ga1/5Nと近似される。通常、混晶組成比はアナログ的な0~1の間の数値であるにも関わらず、上記タンデム型太陽電池の設計方針に従うと、簡単な分数で、すなわち離散的な混晶組成比で置き換えできることが示された。
 この、離散的な分数混晶組成比は、相当する混晶組成をInN/GaN短周期超格子、すなわち疑似混晶(デジタル混晶)、によってタンデム型太陽電池が構成できることを意味している。この様子を図7右側に示す。例えば、In2/5Ga3/5Nは2分子層InN(2ML-InN)/3分子層GaN(1ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)であり、In3/5Ga2/5Nは3分子層InN(3ML-InN)/2分子層GaN(2ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)であり、In4/5Ga1/5Nは4分子層InN(4ML-InN)/1分子層GaN(1ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)が該当する。
 図8は、4セルからなるタンデム型太陽電池(4タンデム)の構成例を示す概念図であり、各セルはpn-InGaN接合と、それに挟まれる増感層と、によって構成される。
 0.92eV(波長1352nm)までの太陽光スペクトルに対して、4セルで電流保存則を満足させるためには、図8左側に示されるように、pn-InGaN接合のバンドギャップエネルギーは、それぞれ2.13eV、1.63eV、1.25eV、および0.94eVとなる。0.92eVまでの太陽光スペクトルに対して、第4(最終)セルにおけるInGaNのバンドギャップが0.92eVと差異があるのは、光・熱増感作用によるもので、この場合の上記ポテンシャル障壁が20meVであることに対応する。
 このとき、2.13eV、1.63eV、1.25eV、および0.94eVに相当するInGaN混晶のIn組成は、それぞれ0.34、0.51、0.66、および0.81であるが、これらは簡単な分数で表記することができ、混晶組成比は、図8中央に示されるように、それぞれIn1/3Ga2/3N、In1/2Ga1/2N、In2/3Ga1/3N、およびIn4/5Ga1/5Nと近似される。通常、混晶組成比はアナログ的な0~1の間の数値であるにも関わらず、上記タンデム型太陽電池の設計方針に従うと、簡単な分数で、すなわち離散的な混晶組成比で置き換えできることが示された。
この、離散的な分数混晶組成比は、相当する混晶組成をInN/GaN短周期超格子、すなわち疑似混晶(デジタル混晶)、によってタンデム型太陽電池が構成できることを意味している。この様子を図8右側に示す。例えば、In1/3Ga2/3Nは1分子層InN(1ML-InN)/2分子層GaN(2ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)であり、In1/2Ga1/2Nは1分子層InN(1ML-InN)/1分子層GaN(1ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)であり、In2/3Ga1/3Nは2分子層InN(2ML-InN)/1分子層GaN(1ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)であり、In4/5Ga1/5Nは4分子層InN(4ML-InN)/1分子層GaN(1ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)が該当する。
 以上述べたように、0.92eV(波長1352nm)までの太陽光スペクトルに対して、2~4タンデム構造での電流保存則を満足させると、いずれのタンデム構造も、あたかもマジックナンバー的な離散的分数の混晶組成比と成ることが分かった。2および4タンデム構造の場合を見れば明らかであるが、タンデム数が2~4の倍数においても、前記マジックナンバー的な離散的分数の混晶組成比は現れてくる。これらの混晶組成比は、単なるInN/GaN短周期超格子(疑似混晶)での置き換えができるだけではなく、3元InGaN混晶より優位な作用効果がある。
 InNとGaNは、格子不整合系であり、かつ非混和性が強いために、タンデム型太陽電池で必要とされる、In組成30%超を有するInGaN混晶のデバイスグレード高品質結晶を得ることが極めて困難である。しかし、InNとGaNを敢えて混ぜないInN/GaN疑似混晶の成長では、上記非混和性はかえって有利に働き、構造完全性の高いセルが構成できる。
 さらに、超薄膜であるInNとGaNの互いが弾性変形を保持し、疑似格子整合系を形成することが可能となる。すなわち、格子欠陥の導入を抑制することが可能となる。また、In組成揺らぎの影響が大幅に抑制されるので、タンデム構造における波長分割の設計値が忠実に再現される。
 また、他の化合物半導体でも知られる、いわゆる歪超格子バッファー効果を期待することができ、成長層/成長基板界面で形成される貫通転位の伝搬が抑止され、成長層/成長基板の熱膨張差および残留応力によるクラックが抑制される。
 さらに、GaN/AlGaN系超格子で知られている、Mgアクセプター活性化エネルギー低減効果も期待することができ、伝導性制御、特にp型伝導性制御が容易になる。
[第3実施形態]
 第3実施形態では、InN/GaN短周期超格子構成よる増感層および傾斜バンド型キャリア走行層について、図9~図17を参照しながら述べる。
 図9は、第3実施形態に係る太陽電池を構成する増感層のバンドラインナップ例を示した概念図である。図9において、増感層は一例として、InNとGaNの層厚比InN:GaN=1:1を維持する1分子層InN(1ML-InN)/1分子層GaN(1ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)と、2分子層InN(2ML-InN)/2分子層GaN(2ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)と、で構成される。CBMとVBMは、増感層の伝導帯底部と価電子帯頂部をそれぞれ示し、図中下から上に向かってエネルギーが高くなる配置となっている。
 図中において、広い禁制帯幅(バンドギャップ)がGaNに該当し、狭い禁制帯幅(バンドギャップ)がInNに該当する。また、EC(1,1)は(InN)/(GaN)の実効的伝導帯底部を差し、EC(2,2)は(InN)/(GaN)の実効的伝導帯底部を差し、一方、EV(1,1)は(InN)/(GaN)の実効的価電子帯頂部を差し、EV(2,2)は(InN)/(GaN)の実効的価電子帯頂部をそれぞれ差す。
 図9に示される増感層の第1の特徴は、超薄膜InNと超薄膜GaNの層厚比が一定であるため、平均格子定数が一定で維持される。すなわち、疑似格子整合系を形成できるため、格子欠陥の導入を抑制することが可能となる。
 増感層の第2の特徴は、増感層とpn層領域との間のポテンシャル障壁の大きさ(バンドギャップエネルギー差)が、理論計算より数100meV程度となることである。例えば、図9に示す(InN)/(GaN)と(InN)/(GaN)とのバンドギャップエネルギー差(Ec(1,1)-Ev(1,1)とEc(2,2)-Ev(2,2)との差)は、約110meVである。この値は、上述した光・熱増感作用に好適である。
 続いて、InN/GaN短周期超格子(疑似混晶)による増感層を有する太陽電池120の構成について述べる。図10において、太陽電池120は、n型窒化インジウムガリウム疑似混晶(以下、n-(InN)x11/(GaN)x12)層122と、n型窒化インジウムガリウム疑似混晶層122上に形成される窒化インジウムガリウム疑似混晶(以下、(InN)x31/(GaN)x32)増感層123と、窒化インジウムガリウム疑似混晶増感層123上に形成されるp型窒化インジウムガリウム疑似混晶(以下、p-(InN)x21/(GaN)x22)層124と、n型窒化インジウムガリウム疑似混晶層122に電気的に接続される図示しないn型電極と、p型窒化インジウムガリウム疑似混晶層124に電気的に接続される図示しないp型電極と、によって構成される。
 n-(InN)x11/(GaN)x12層122は、光電変換によって生成された電子・正孔対を分離し、電子をn型電極に輸送するために用いられる。p-(InN)x21/(GaN)x22層124は、光電変換によって生成された電子・正孔対を分離し、正孔をp型電極に輸送するために用いられる。従って、n型窒化インジウムガリウム疑似混晶層122およびp型窒化インジウムガリウム疑似混晶層124の抵抗率および層厚は、キャリア輸送および収率の観点でそれぞれが好適に調整される。
 (InN)x31/(GaN)x32増感層123は、pn接合を形成する窒化インジウムガリウム疑似混晶(短周期超格子)の禁制帯幅(バンドギャップエネルギー)に対応した太陽光のみならず、より長波長の光をも光電変換に利用可能にする光・熱増感作用のために用いられる。後で述べるように、窒化インジウムガリウム疑似混晶増感層123の作用によって、太陽電池120からの発生電圧を向上させ、高い変換効率の太陽電池を構成することができる。図示しないn型電極およびp型電極は、発生した電力を外部に取り出すために用いられる。
 図11は、n型窒化インジウムガリウム疑似混晶((InN)x11/(GaN)x12)層122の構成例を示すブロック図である。疑似混晶とは、例えば、超薄膜GaNと超薄膜InNの交互積層構造のことを差し、その層厚比(体積比)と等価な混晶組成比であるInGaN三元混晶と同じ物性を示す。図11において、(InN)x11/(GaN)x12層122は、層厚x11分子層(x11 ML)であるInNと層厚x12分子層(x12 ML)であるGaNからなる短周期超格子125と、短周期超格子125下に形成される下地層126と、によって構成される。
 図12は、p型窒化インジウムガリウム疑似混晶((InN)x21/(GaN)x22)層124の構成例を示すブロック図である。図12において、p-(InN)x21/(GaN)x22層124は、層厚x21分子層(x21 ML)であるInNと層厚x22分子層(x22 ML)であるGaNからなる短周期超格子127と、短周期超格子127下に形成される下地層128と、によって構成される。
 図13は、窒化インジウムガリウム疑似混晶((InN)x31/(GaN)x322)増感層123の構成例を示すブロック図である。図13において、(InN)x31/(GaN)x32層123は、層厚x31分子層(x31 ML)であるInNと層厚x32分子層(x32 ML)であるGaNからなる短周期超格子によって構成される。
 図10に示す太陽電池120は周知の半導体製造技術などで結晶成長される。結晶成長がc面成長する場合では、InNとGaNでは約11%の格子不整合度を有しているため、通常では高密度の格子欠陥が導入されてしまう。この格子欠陥は、太陽電池の素子特性を著しく劣化させる。
 ところが、InNとGaNのような格子不整合系においても、層厚が十分薄くなると互いが弾性変形を保持し、疑似格子整合系を形成することが可能となる。すなわち、格子欠陥の導入を抑制することが可能となる。
 特に、n型窒化インジウムガリウム疑似混晶層122、p型窒化インジウムガリウム疑似混晶層124および窒化インジウムガリウム疑似混晶増感層123のすべて、もしくは一部が、それらを構成するInN/GaN短周期超格子におけるInNとGaNとの層厚比を一定に保つことで、疑似格子整合系を形成するコヒーレント構造が、格子欠陥を抑制する。
 InNとGaNは非混和系であるために、それらの混晶であるInGaNは均一な混晶組成が得られにくい。ところが、上述した短周期超格子125および127、ならびに窒化インジウムガリウム疑似混晶増感層123を構成する短周期超格子の成長では、均一に混ぜる必要はない。すなわち、上記非混和性を有効に利用することで、極めて構造完全性に優れたInN/GaN短周期超格子が形成されることを発明者らは見出した。
 さらに、上記非混和性が有効に機能することによって、通常の結晶成長とは異なる自己秩序的かつ自己停止的な成長プロセスが利用可能となり、InNおよびGaNの分子層オーダでの超薄膜構造制御が容易になる。
 InNの成長温度は、例えば分子線エピタキシー(MBE)法では約600℃以下に限られていたが、分子層オーダ超薄膜InNでは、600℃以上の成長が可能となることも発明者らは見出した。この高温成長によって、InN/GaN短周期超格子の結晶性は飛躍的に向上する。
 すなわち、n型窒化インジウムガリウム疑似混晶層122、p型窒化インジウムガリウム疑似混晶層124および窒化インジウムガリウム疑似混晶増感層123は、少なくとも一部が、それらすべてがより好ましいが、InN/GaN短周期超格子におけるInNとGaNとの層厚比を一定に保つことで、InN/GaN短周期超格子による疑似格子整合構造が格子欠陥を抑制し、さらに高温成長による結晶性向上による作用効果によって、太陽電池の素子特性を劣化させることなく高い変換効率を可能とする。
 次に、太陽電池120の特徴である傾斜バンド型キャリア走行層について説明する。図14は、第3実施形態に係る太陽電池を構成するキャリア走行層のバンドラインナップ例を示した概念図である。図14において、キャリア走行層は一例として、InNとGaNの層厚比InN:GaN=1:1を維持する1分子層InN(1ML-InN)/1分子層GaN(1ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)と、2分子層InN(2ML-InN)/2分子層GaN(2ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)と、3分子層InN(3ML-InN)/3分子層GaN(3ML-GaN)短周期超格子(以下、(InN)/(GaN)とする)と、で構成される。CBMとVBMは、増感層の伝導帯底部と価電子帯頂部をそれぞれ示し、図中下から上に向かってエネルギーが高くなる配置となっている。
 図中において、広い禁制帯幅(バンドギャップ)がGaNに該当し、狭い禁制帯幅(バンドギャップ)がInNに該当する。また、EC(1,1)は(InN)/(GaN)の実効的伝導帯底部を差し、EC(2,2)は(InN)/(GaN)の実効的伝導帯底部を差し、EC(3,3)は(InN)/(GaN)の実効的伝導帯底部を差し、一方、EV(1,1)は(InN)/(GaN)の実効的価電子帯頂部を差し、EV(2,2)は(InN)/(GaN)の実効的価電子帯頂部を差し、EV(3,3)は(InN)/(GaN)の実効的価電子帯頂部をそれぞれ差す。
 図14に示されるキャリア走行層の第1の特徴は、超薄膜InNと超薄膜GaNの層厚比が一定であるため、平均格子定数が一定で維持される。すなわち、疑似格子整合系を形成できるため、格子欠陥の導入を抑制することが可能となる。
 キャリア走行層の第2の特徴は、キャリア走行層内で短周期超格子の層厚を変化させることで、バンドギャップエネルギーが連続的、または階段的に変化することである。理論計算より、例えば、図14に示す(InN)/(GaN)と(InN)/(GaN)とのバンドギャップエネルギー差(Ec(1,1)-Ev(1,1)とEc(2,2)-Ev(2,2)との差)は約110meVであり、(InN)/(GaN)と(InN)/(GaN)とのバンドギャップエネルギー差(Ec(2,2)-Ev(2,2)とEc(3,3)-Ev(3,3)との差)は約140meVである。
 このポテンシャルエネルギー差は、n型窒化インジウムガリウム疑似混晶層122、p型窒化インジウムガリウム疑似混晶層124におけるキャリア輸送効率の向上に寄与する。特に、キャリア拡散長の短い正孔のキャリア収率の向上に好適である。
 図15は、第3実施形態に係る太陽電池を構成するn型窒化インジウムガリウム疑似混晶層122の構成例を示したブロック図である。図15において、n型窒化インジウムガリウム疑似混晶層122は、下地層126が短周期超格子136によって構成される。これは、図14を参照して上述したキャリア走行層に該当し、適切な短周期超格子の層厚とすることで、コヒーレント構造の特徴である格子欠陥の抑制を維持しながら、電子の輸送効率を向上できる。
 図16は、第3実施形態に係る太陽電池を構成するp型窒化インジウムガリウム疑似混晶層124の構成例を示したブロック図である。図16において、p型窒化インジウムガリウム疑似混晶層124は、下地層128が短周期超格子138によって構成される。これは、図14を参照して上述したキャリア走行層に該当し、適切な短周期超格子の層厚とすることで、コヒーレント構造の特徴である格子欠陥の抑制を維持しながら、正孔の輸送効率を向上できる。
 図17は、第3実施形態に係る太陽電池を構成する窒化インジウムガリウム疑似混晶増感層123の構成例を示したブロック図である。図17において、窒化インジウムガリウム疑似混晶増感層123は、短周期超格子139および140によって構成される。これは、図14を参照して上述したキャリア走行層の特徴に該当し、適切な短周期超格子の層厚とすることで、コヒーレント構造の特徴である格子欠陥の抑制を維持しながら、増感層にキャリア輸送効率を向上といった作用効果を付与できる。
 以上述べたように、n型窒化インジウムガリウム疑似混晶層122、p型窒化インジウムガリウム疑似混晶層124および窒化インジウムガリウム疑似混晶増感層123は、少なくとも一部が、それらすべてがより好ましいが、InN/GaN短周期超格子におけるInNとGaNとの層厚比を一定に保つことで、InN/GaN短周期超格子による疑似格子整合構造が格子欠陥を抑制し、太陽電池の素子特性を劣化させることなく高い変換効率を可能とする。
 第3実施形態で述べたInN/GaN短周期超格子、およびn型窒化インジウムガリウム疑似混晶層122、窒化インジウムガリウム疑似混晶増感層123、p型窒化インジウムガリウム疑似混晶層124は、超薄膜InNおよび超薄膜GaNを人為的に交互積層したもののみならず、熱処理、レーザー照射、または電子線照射などの処理によって、自発的に現れる準安定ナノ構造(自然超格子)であってもよい。この構成によれば、短周期超格子と同様に、コヒーレント構造の特徴である格子欠陥の抑制が可能となる。
 さらに、第3実施形態では、窒化インジウムガリウム疑似混晶増感層123は1層のみの構成について述べたが、複数挿入された多層構造とする構成としてもよい。また、窒化インジウムガリウム疑似混晶増感層123近傍領域のキャリア密度を適当に変化させる変調ドープとする構成としてもよい。この場合、pn接合界面の空乏領域からはみ出す窒化インジウムガリウム疑似混晶増感層123であっても構わない。
 なお、第3実施形態では、InN/GaNの短周期超格子による構成について述べてきたが、これだけに限定されず、例えば窒化インジウムガリウムアルミニウム(以下、InGaAl1-x-yN、xおよびyの範囲は0≦x,y≦1)による短周期超格子、ならびにInGaAl1-x-yN疑似混晶によるpn接合と増感層との構成も可能である。この構成によれば、混晶比xおよびyを変化させることで、InGaAl1-x-yNの禁制帯幅を任意に変化させることができる。
 次に、本発明によるタンデム型太陽電池の変換効率について、図18を参照しながら説明する。図18は、本願発明に係るタンデム型太陽電池における、セル数に対する理論最大変換効率を示すグラフである。入射太陽光は、図5に示すAM1.5スペクトルであり、“ASTM G173-03 Reference Spectra Derivied from SMARTS v.2.9.2”標準スペクトルである。
 図18において、白丸(○)および菱形(◆)は、本願発明に係るタンデム型太陽電池での理論最大変換効率であるが、白丸(○)が約0.63eV(波長1968nm)までバンド間遷移で吸収するとした場合(0.63-cutoff)であり、菱形(◆)が約0.92eV(波長1352nm)までバンド間遷移で吸収するとした場合(0.92-cutoff)である。一方、黒丸(●)は、特許文献1に記載のタンデム型太陽電池における理論最大変換効率であり、本願発明の従来技術に対する優位性を明らかにするため、参照データとして記載している。
 例えば、セル数4段において、従来技術(黒丸(●))の理論最大変換効率は45.9%であるのに対して、本願発明の理論最大変換効率は、0.63-cutoff(白丸(○))では51.6%であり、0.92-cutoff(菱形(◆))では50.8%であった。本願発明に係るタンデム型太陽電池での光電変換効率は、従来技術の光電変換効率を上回っているが、光・熱増感作用によって、発生電圧を低下させることなく、より長波長成分の光を利用できるためである。
 さらに、第2実施形態で述べたタンデム構造、すなわち0.92-cutoffは、0.63-cutoffと比べても変換効率に遜色はない。これより、光・熱増感作用と、マジックナンバー的混晶組成比との複合により、タンデム型太陽電池における格子欠陥の発生を抑制し、さらに窒化インジウムまたは高In組成窒化インジウムガリウム混晶でのp型伝導性制御の問題を回避しつつも、高い光電変換効率を有する太陽電池が提供されることが示され、従来技術からは予想し得なかった本願発明の顕著な優位性が示される。
 また、0.92-cutoffは、0.63-cutoffと比べて、上記バンド内遷移に利用される光子数は増大しているため、光・熱増感作用はより促進される。
 さらに、本願発明のタンデム型太陽電池は、集光環境化での動作に好適である。これは、レンズ集光による太陽光斜め入射が、光・熱増感作用の素過程であるバンド内光吸収遷移を許容とするためであり、さらに集光による加熱がキャリア熱励起を促進するためである。
 以上述べた通り、上記実施形態により、タンデム型太陽電池における格子欠陥の発生を抑制し、さらに窒化インジウムまたは高In組成窒化インジウムガリウム混晶でのp型伝導性制御の問題を回避し、かつ高い光電変換効率を有する太陽電池を提供することが可能である。
[第4実施形態]
 次に、本願発明の第4実施形態における光増感層について、図19~図20を参照しながら説明する。
 図19は、第4実施形態に係る太陽電池210の構成例を示すブロック図である。図19において、太陽電池210は、n型窒化ガリウム(以下、n-GaN)層212と、n-GaN層212上に形成される窒化インジウム(InN)光増感層213と、InN光増感層213上に形成されるp型窒化ガリウム(以下、p-GaN)層214と、n-GaN層212に電気的に接続される図示しないn型電極と、p-GaN層214に電気的に接続される図示しないp型電極と、によって構成される。
 n-GaN層212は、光電変換によって生成された電子・正孔対を分離し、電子をn型電極に輸送するために用いられる。p-GaN層214は、光電変換によって生成された電子・正孔対を分離し、正孔をp型電極に輸送するために用いられる。従って、n-GaN層212およびp-GaN層214の抵抗率および層厚はキャリア輸送を効率よく行うために、それぞれが好適に調整される。
 InN光増感層213は、pn接合を形成するGaNの禁制帯幅(バンドギャップエネルギー)に対応した光のみならず、より長波長の光をも光電変換に利用可能にする光増感効果のために用いられる。後で述べるように、InN光増感層213の作用によって、太陽電池からの光起電圧を向上させ、高い変換効率の太陽電池を構成することができる。図示しないn型電極およびp型電極は、発生した光起電力を取り出すために用いられる。
 図19に示す第4実施形態のInN光増感層213もそうであるが、一般にInNはGaN上に周知の半導体製造技術などで製膜される。例えば、c面成長する場合では、InNとGaNでは約11%の格子不整合度を有しているため、結晶成長中に高密度の格子欠陥が導入されてしまう。この格子欠陥は、光電変換効率を著しく劣化させる。InNが格子欠陥を導入せずに弾性変形を保持し、GaNに対してコヒーレント成長可能な膜厚の上限、すなわち臨界膜厚、が2分子層(2ML)であることを発明者らは見出した。
 InNとGaNは非混和系であるために、それらの混晶であるInGaNは均一な混晶組成が得られにくく、また、In組成の増大に伴い結晶性は劣化する。ところが、上述した2分子層(2ML)以下の超薄膜InNでは、GaNとの非混和性が有効に機能し、極めて構造完全性に優れた結晶成長が実現されることを発明者らは見出した。これによって、自己秩序的かつ自己停止的なプロセスが可能となり、原子層オーダで急峻なInN/GaN界面が形成される。さらに、InN/GaN2元系超薄膜が疑似混晶を構成することで、組成不均一の問題を本質的に回避した光電変換装置が構成される。
 InNの成長温度は、例えば分子線エピタキシー(MBE)法では約600℃以下に限られていたが、2分子層以下の超薄膜InNでは、600℃以上の成長が可能となることも発明者らは見出した。この高温成長によって、超薄膜InNの結晶性は飛躍的に向上する。このように、通常のInNとは異なり、超薄膜InNは特有の物性を示し、この結果、高い光電変換効率(内部量子効率)を実現する。
 図20は、GaNとInNのバンドラインナップを示した概念図である。図20において、図19と同様に、InN光増感層213がn-GaN層212とp-GaN層214とによって挟まれており、CBMとVBMは、GaNおよびInNの伝導帯底部と価電子帯頂部をそれぞれ示し、図中左から右に向かってエネルギーが高くなる配置となっている。
 InNとGaNのバンドギャップエネルギーは、室温でそれぞれ約0.63eVと3.4eVであり、伝導帯バンドオフセットが約2eV、価電子帯バンドオフセットが約0.75eVである。これら大きなポテンシャル障壁は、InN層内に光励起されたキャリアをほぼ完全に閉じ込めるため、このままではキャリアをGaN層に取り出すことができない。
 一方、InN層の層厚をナノメートルオーダまで薄くしていくと、量子力学的効果によって、電子および正孔の量子準位Ec1およびEv1が図中点線のエネルギー位置に形成される。この、いわゆる量子サイズ効果により、InNの実効バンドギャップエネルギー(Ec1とEv1との差)は0.63eVからシフトする。例えば、2分子層(2ML)InNの実効バンドギャップエネルギーは、GaNのバンドギャップエネルギー3.4eVより約500meV低くなり、1分子層(1ML)InNの実効バンドギャップエネルギーは、GaNのバンドギャップエネルギー3.4eVより約200meV低くなることを発明者らは見出した。
 1~2分子層InN/GaN量子井戸構造では、InN井戸層内のキャリアが感じるポテンシャル障壁は、上述した通り、それぞれ2分子層InNでは約500meV、1分子層InNでは約200meVとなる。これらの値は、通常のInNとGaNのバンドオフセットと比べて大幅に低減されており、室温における熱励起過程でもInN光増感層213からn-GaN層12およびp-GaN層14へのキャリア移動が一部可能となる。
 さらに、例えば、InNでも吸収しきれない光子エネルギー0.63eV未満の光を吸収するバンド内遷移過程を利用することで、InN光増感層213からn-GaN層212およびp-GaN層214へのキャリア移動がさらに促進される。太陽光スペクトルで、例えばAM1.5スペクトルにおいて、この0.63eV未満のスペクトル領域は決して見過ごすことはできなく、照射パワー密度で約4%、光子密度で約9%も存在する。
 すなわち、InN光増感層213の膜厚を2分子層以下の構成とすることで、InN光増感層213でバンド間吸収により生成されたキャリアを、熱励起もしくは例えば0.63eV未満の光を吸収するバンド内遷移によって、n-GaN層12およびp-GaN層214へのキャリア移動させる光増感作用が発現する。
 この光増感作用は太陽電池の動作特性を向上させる。例えば、1分子層InN/GaN量子井戸の吸収端エネルギー(3.2eV)と同等のInGaN-pn接合と比較すれば、吸収可能な光子数は同一であるため、短絡電流も同一である。しかし、上記光増感作用によって、約200meV相当のポテンシャル障壁を乗り越えたキャリアを利用できるので、開放電圧は増大する。これは、太陽電池の変換効率を増大させることに寄与する。
 以上のことから、第4実施形態に係る太陽電池210は、InN光増感層213の実効バンドギャップエネルギーに対応した光を吸収し、光増感作用により光起電圧を増大させることができる。このとき、透過損失となっていた0.63eV未満の光子エネルギーである光をも利用することができ、高出力の太陽電池を得ることができる。
 なお、第4実施形態では、GaNのpn接合による構成について述べてきたが、これだけに限定されず、例えば窒化インジウムガリウムアルミニウム(以下、InGaAl1-x-yN、xおよびyの範囲は0≦x,y≦1)のpn接合による構成も可能である。この構成によれば、混晶比xおよびyを変化させることで、InGaAl1-x-yNの禁制帯幅を任意に変化させることができる。2分子層以下の層厚を有する超薄膜InNの実効バンドギャップエネルギーも、InGaAl1-x-yNのバンドギャップエネルギーより数100meV程度小さくなるので、光増感効果を有しながら、太陽電池の効率向上に寄与することができる。
 また、第4実施形態では、GaNのpn接合による構成について述べてきたが、以下に述べる、InNおよびGaN短周期超格子、すなわちInN/GaN疑似混晶のpn接合による構成も可能である。この構成によれば、InNおよびGaNの層厚制御によって、InN/GaN疑似混晶の実効バンドギャップを変化させることができる。
 さらに、第4実施形態では、図19および図20に示したように、InN光増感層213は1層のみの構成について述べたが、例えば、InN光増感層213が複数挿入された多層構造とする構成も可能である。この構成によれば、複数挿入されたInN光増感層213の層数が増加するに従って、吸収する光量は増加するので、光増感効果をより増強することができる。この場合、pn接合界面の空乏領域からはみ出すInN光増感層213の多層構造であっても構わない。
 さらに、InN光増感層213が単層および多層の双方において、InN層をノンドープGaN(以下、i-GaN)層で挟む、またはキャップする構成も可能である。この構成によって、pn接合界面の空乏領域を好適に制御することができる。
[第5実施形態]
 第4実施形態では、GaNによるpn接合に超薄膜InNが挿入された構成の太陽電池について述べた。高効率太陽電池を作製するには、広い太陽光スペクトルに適合するタンデム構造が有効である。そのためには、第4実施形態の変形例であるInGaAl1-x-yNによるpn接合に置き換えることによって、禁制帯幅を6.2eV~0.63eVの範囲に対して設定する必要がある。そして、各太陽電池(セル)が異なる禁制帯幅を有し、受光面から光の進入方向に沿って、禁制帯幅が広い方から狭い方に順になるよう前記セルを積層する。
 第5実施形態では、前記セルの構成例として、InGaNによるpn接合に超薄膜InNが挿入された太陽電池について、図21~図22を参照しながら述べる。
 図21は、第5実施形態に係るタンデム型太陽電池を構成する太陽電池(セル)220の構成例を示すブロック図である。図21において、セル220は、n型窒化インジウムガリウム(以下、n-InGaN)層222と、n-InGaN層222上に形成される窒化ガリウム(GaN)層225と、GaN層225上に形成される窒化インジウム(InN)光増感層223と、InN光増感層223上に形成されるp型窒化インジウムガリウム(以下、p-InGaN)層224と、によって構成される。
 n-InGaN層222は、光電変換によって生成された電子・正孔対を分離し、電子を輸送するために用いられる。p-InGaN層224は、光電変換によって生成された電子・正孔対を分離し、正孔を輸送するために用いられる。従って、n-InGaN層222およびp-InGaN層224の抵抗率および層厚はキャリア輸送を効率よく行うために、それぞれが好適に調整される。また、n-InGaN層222およびp-InGaN層224の禁制帯幅(バンドギャップエネルギー)は、太陽光スペクトルとの整合性、さらにタンデム構造における各セルが同じ電流を発生する電流保存条件を満足するように、その混晶組成比が好適に制御される。
 InN光増感層223は、pn接合を形成するInGaNのバンドギャップエネルギーに対応した光のみならず、より長波長の光をも光電変換に利用可能にする増感効果のために用いられる。後に述べるように、InN光増感層223の作用によって、太陽電池からの光起電圧を向上させ、高い変換効率の太陽電池(セル)を得ることができる。
 次に、第5実施形態に係るセル220を構成するGaN層225について説明する。InN光増感層223の形成は、第4実施形態でも述べたように、下地GaN層との非混和性に基づく自己秩序的かつ自己停止的プロセスを利用している。ところが、InGaNでpn接合を形成する場合、すなわちInNと下地InGaNの組み合わせでは、非混和性が十分に発現しないことを発明者らは見出した。具体例を挙げれば、In組成20%程度(吸収端波長は約500nmに対応)のInGaN上には、自己秩序的かつ自己停止的プロセスによる超薄膜InNの形成は確認されなかった。
 しかし、セル220をタンデム構造に適合させるために、n-InGaN層222およびp-InGaN層224のIn組成比を増加させる必要がある。これは、pn接合をInGaAl1-x-yNで構成した場合でも同様に、In組成比xを増加することに対応する。そのため、n-InGaN層222上に直接InN光増感層223の形成を試みると、上記非混和性が抑制されているために、構造完全性の確保が困難になる。
 上記問題を解消することを目的として、InNの非混和性を利用するために、n-InGaN層222とInN光増感層223の間に、GaN層225を挿入する構成とすることが、第5実施形態のキーポイントである。この構成によって、InN光増感層223とGaN層225との間に非混和性が発現するので、自己秩序的かつ自己停止的プロセスによる超薄膜InNの形成が可能となり、構造完全性の高い超薄膜InNが得られる。
 図22は、GaN、InGaN、およびInNのバンドラインナップを示した概念図である。図22において、図21と同様に、InN光増感層223とGaN層225とが、n-InGaN層222とp-InGaN層224とによって挟まれており、CBMとVBMは、GaN、InGaN、およびInNの伝導帯底部と価電子帯頂部をそれぞれ示し、図中左から右に向かってエネルギーが高くなる配置となっている。InN光増感層223の実効バンドギャップエネルギーは、電子および正孔の量子準位Ec2およびEv2の差に対応している。
 第5実施形態において、InN光増感層223が光増感作用を発現するためには、室温におけるキャリア熱励起、さらに、例えばInNでも吸収しきれなかった光子エネルギー0.63eV未満の光を吸収するバンド内遷移によって、InN光増感層223からn-InGaN層222およびp-InGaN層224へのキャリア移動が必要となる。
 InN光増感層223の膜厚を2分子層以下の構成とすることで、n-InGaN層222およびp-InGaN層224とのポテンシャル障壁は、数100meV程度であり、第4実施形態の場合と同等か、それ以下になる。すなわち、InN光増感層223の膜厚が、1分子層であれば200meV以下であり、2分子層であれば500meV以下であり、これらポテンシャル障壁は、n-InGaN層222およびp-InGaN層224のIn組成が増加するにつれて小さくなる。このエネルギー的考察から、InN光増感層223からn-InGaN層222およびp-InGaN層224へのキャリア移動は可能であり、InN光増感層223は光増感作用を発現すると判断される。
 このように、InN光増感層223からp-InGaN層224への正孔移動は問題ないが、n-InGaN層222への電子移動の観点で検討すれば、図22に示されるように、GaN層225は電子移動を妨げるポテンシャル障壁に成り得る。
 この問題を解消するために、すなわち、InN光増感層223とn-InGaN層222との電気的接続を可能にするために、GaN層225の層厚は、電子が量子力学的トンネル可能な薄さまで超薄膜化する。例えば、GaN層225の層厚は10nm以下であり、より好ましくは4分子層以下である。
 このように、InN光増感層223の層厚を2分子層以下とし、かつGaN層225を超薄膜として構成することで、InN光増感層223でバンド間吸収により生成されたキャリアを、熱励起もしくは例えば0.63eV未満の光を吸収するバンド内遷移によって、n-InGaN層222およびp-InGaN層224へのキャリア移動させる光増感作用が発現する。
 この光増感作用は太陽電池の動作特性を向上させる。基礎吸収端が同一であるInGaN-pn接合と比較すれば、吸収可能な光子数は同一であるため、短絡電流も同一である。しかし、上記光増感作用によって、数100meV相当のポテンシャル障壁を乗り越えたキャリアを利用できるので、開放電圧は増大する。これは、太陽電池の変換効率を増大させることに寄与する。
 以上のことから、第5実施形態に係るタンデム型太陽電池を構成するセル220は、InN光増感層223の実効バンドギャップエネルギーに対応した光を吸収し、光増感作用により光起電圧を増大させることができる。このとき、透過損失となっていた0.63eV未満の光子エネルギーである光をも利用することができ、高出力の太陽電池を得ることができる。
 なお、第5実施形態では、InGaNのpn接合による構成について述べてきたが、これだけに限定されず、例えば窒化インジウムガリウムアルミニウム(以下、InGaAl1-x-yN、xおよびyの範囲は0≦x,y≦1)のpn接合による構成も可能である。この構成によれば、混晶比xおよびyを変化させることで、InGaAl1-x-yNの禁制帯幅を任意に変化させることができる。2分子層以下の層厚を有する超薄膜InNの実効バンドギャップエネルギーも、InGaAl1-x-yNのバンドギャップエネルギーより数100meV程度小さくなるので、光増感効果を有しながら、太陽電池の効率向上に寄与することができる。
 また、第5実施形態では、InGaNのpn接合による構成について述べてきたが、以下に述べる、InNおよびGaN短周期超格子、すなわちInN/GaN疑似混晶のpn接合による構成も可能である。この構成によれば、InNおよびGaNの層厚制御によって、InN/GaN疑似混晶の実効バンドギャップを変化させることができる。
 さらに、第5実施形態では、図21および図22に示したように、InN光増感層223は1層のみの構成について述べたが、例えば、InN光増感層223が複数挿入された多層構造とする構成も可能である。この構成によれば、複数挿入されたInN光増感層223の層数が増加するに従って、吸収する光量は増加するので、光増感効果をより増強することができる。この場合、pn接合界面の空乏領域からはみ出すInN光増感層223の多層構造であっても構わない。
 さらに、InN光増感層223が単層および多層の双方において、InN層をノンドープInGaN(以下、i-InGaN)層で挟む、またはキャップする構成も可能である。この構成によって、pn接合界面の空乏領域を好適に制御することができる。
[第6実施形態]
 第4および第5実施形態では、光増感効果を有する太陽電池(セル)の構成について説明した。第6実施形態では、上記セルによって構成されたタンデム型太陽電池について。図5、図18および図23~図26を参照しながら述べる。
 特許文献1にある先行技術では、太陽光スペクトルのできるだけ広範囲に適合させようと、タンデム構造の最終段セルは、最も長波長の光を吸収するInNセルとする構成が開示されている。しかし、InNの伝導性制御、すなわちInN-pn接合を形成することは極めて困難であり、高効率太陽電池の構成するのには不適当であることを発明者らは見出した。
 そこで、太陽光スペクトルのできるだけ広範囲を利用するという方針を敢えて取りやめ、太陽電池の変換効率を損なうことのない太陽光スペクトルの有効利用に関して検討を行った。
 図5は、太陽光スペクトル示すグラフであり、波長に対する放射パワー密度(灰色)と光子密度(黒色)を示している。データの出典は、“ASTM G173-03 Reference Spectra Derived from SMARTS v.2.9.2”の標準AM1.5スペクトルである。
 図5に示されるように、太陽光は赤外線波長域では、水分の吸収などで欠損波長域が散見される。このスペクトル不連続域を考慮し、変換効率を極力損なわず、できるだけ短波長までのバンド間吸収、すなわちInGaN-pn接合のIn組成をできるだけ低減させ、吸収しきれなかったそれより長波長成分の光は、上述した光増感作用のバンド内遷移ソースとして活用する方針とした。
 上記検討の結果、0.92eV(波長1.35μm)までの太陽光スペクトル成分は、バンド間遷移により吸収し、すなわち電流成分として利用し、それより長波長領域のスペクトル成分を、光増感のバンド内励起光源として活用する結論に至った。これは、0.63eV(波長1.97μm)までの太陽光スペクトルをバンド間遷移に利用していた場合(以下、0.63-cutoffとする)では、光子数密度としては3.5×1021-2-1nm-1であったが、0.92eV(波長1.35μm)までとした場合(以下、0.92-cutoffとする)では、3.0×1021-2-1nm-1と低減したものの、タンデム型太陽電池では、長波長対応の最終段セルからの発電寄与はあまり大きくないため、全体の変換効率はさほど損なわれていないことを後に示す。
 続いて、0.92eVまでの太陽光スペクトルをバンド間遷移に利用する場合(0.92-cutoff)の、タンデム構造について説明する。タンデム型太陽電池では、太陽光スペクトルに整合させ、複数からなる各セルでの発生電流を一定とする電流保存則を満足させなければならない。
 図23は、2セルからなるタンデム型太陽電池の構成を示す図であり、各セルはInGaN-pn接合と、それに挟まれるInN光増感層によって構成される。InN光増感部は、第5実施形態で述べたように、超薄膜InNとGaNで構成される。
 InN光増感層の作用効果は、既に述べた通りであるが、InGaN-pn接合とのポテンシャル障壁の大きさは、“200×(InGaNのGa組成)meV”とベガード則的な線形近似によって決めた。例えば、GaN-pn接合に挟まれている場合では、ポテンシャル障壁は200meVであり、In0.5Ga0.5N-pn接合に挟まれている場合では、100meVである。
 0.92eV(波長1.35μm)までの太陽光スペクトルに対して、2セルで電流保存則を満足させるためには、図23左側に示されるように、InGaN-pn接合のバンドギャップエネルギーは、それぞれ1.63eVおよび0.94eVとなる。0.92eVまでの太陽光スペクトルに対して、第2(最終)セルにおけるInGaNのバンドギャップが0.92eVと差異があるのは、光増感作用によるもので、この場合の上記ポテンシャル障壁が0.02eVであることに由来する。
 このとき、1.63eVおよび0.94eVに相当するInGaN混晶のIn組成は、それぞれ0.51および0.81であるが、これらは簡単な分数で表記することができ、混晶組成比は、図23中央に示されるように、それぞれIn1/2Ga1/2NおよびIn4/5Ga1/5Nと近似される。通常、混晶組成比はアナログ的な0~1の間の数値であるにも関わらず、上記タンデム型太陽電池の設計方針に従うと、簡単な分数で、すなわち離散的な混晶組成比で表記されることが示すことができた。
 この、離散的な分数混晶組成比は、相当する混晶組成を短周期2元超格子、すなわち疑似混晶(デジタル混晶)、によってタンデム型太陽電池が構成できることを意味している。この様子を図23右側に示す。例えば、In1/2Ga1/2Nは1分子層InN(1ML-InN)/1分子層GaN(1ML-GaN)2元超格子(以下、(InN)/(GaN)とする)であり、In4/5Ga1/5Nは4分子層InN(4ML-InN)/1分子層GaN(1ML-GaN)2元超格子(以下、(InN)/(GaN)とする)に相当する。
 ここで、疑似混晶について説明する。図26は疑似混晶による混晶組成比制御の例を示すブロック図である。疑似混晶とは、図26左側に示すように、例えば2元化合物であるGaNおよびInNが、交互に積層されなる層構造であり、その物性は層構造の体積比で近似的に与えられる。すなわち、図26左側に示す例では、(InN)/(GaN)であることから、In0.5Ga0.5Nに相当することになる。
 一方で、図26右側には、GaNをホスト材料としてInNのアイランドナノ構造が埋め込まれた例、すなわち分数超格子、を示してあるが、アイランドサイズおよびアイランド間距離を適切に制御することで、その物性は、同様に、その構成材料の体積比で近似的に与えられる。すなわち、図26右側に示す例では、体積比がx:yであることから、Inx/(x+y)Gay/(x+y)Nに相当することになる。一方で、離散的な混晶組成比を、このInN/GaN分数超格子疑似混晶で連続的に補完することも可能である。これは、上記離散的混晶組成比だけでは適合するのが難しい場合でも、この分数超格子によって、任意の混晶組成比を構成することにつながる。
 図24は、3セルからなるタンデム型太陽電池の構成を示す図であり、各セルはInGaN-pn接合と、それに挟まれるInN光増感層によって構成される。
 0.92eV(波長1.35μm)までの太陽光スペクトルに対して、3セルで電流保存則を満足させるためには、図24左側に示されるように、InGaN-pn接合のバンドギャップエネルギーは、それぞれ1.94eV、1.37eV、および0.94eVとなる。
 このとき、1.94eV、1.37eVおよび0.94eVに相当するInGaN混晶のIn組成は、それぞれ0.40、0.61、および0.81であるが、これらは簡単な分数で表記することができ、混晶組成比は、図24中央に示されるように、それぞれIn2/5Ga3/5N、In3/5Ga2/5N、およびIn4/5Ga1/5Nと近似される。通常、混晶組成比はアナログ的な0~1の間の数値であるにも関わらず、上記タンデム型太陽電池の設計方針に従うと、簡単な分数で、すなわち離散的な混晶組成比で表記されることが示すことができた。
 この、離散的な分数混晶組成比は、相当する混晶組成を短周期2元超格子、すなわち疑似混晶(デジタル混晶)、によってタンデム型太陽電池が構成できることを意味している。この様子を図7右側に示す。例えば、In2/5Ga3/5Nは2分子層InN(2ML-InN)/3分子層GaN(1ML-GaN)2元超格子(以下、(InN)/(GaN)とする)であり、In3/5Ga2/5Nは3分子層InN(3ML-InN)/2分子層GaN(2ML-GaN)2元超格子(以下、(InN)/(GaN)とする)であり、In4/5Ga1/5Nは4分子層InN(4ML-InN)/1分子層GaN(1ML-GaN)2元超格子(以下、(InN)/(GaN)とする)に相当する。
 図25は、4セルからなるタンデム型太陽電池の構成を示す図であり、各セルはInGaN-pn接合と、それに挟まれるInN光増感層によって構成される。
 0.92eV(波長1.35μm)までの太陽光スペクトルに対して、4セルで電流保存則を満足させるためには、図25左側に示されるように、InGaN-pn接合のバンドギャップエネルギーは、それぞれ2.13eV、1.63eV、1.25eV、および0.94eVとなる。
 このとき、2.13eV、1.63eV、1.25eV、および0.94eVに相当するInGaN混晶のIn組成は、それぞれ0.34、0.51、0.66、および0.81であるが、これらは簡単な分数で表記することができ、混晶組成比は、図25中央に示されるように、それぞれIn1/3Ga2/3N、In1/2Ga1/2N、In2/3Ga1/3N、およびIn4/5Ga1/5Nと近似される。通常、混晶組成比はアナログ的な0~1の間の数値であるにも関わらず、上記タンデム型太陽電池の設計方針に従うと、簡単な分数で、すなわち離散的な混晶組成比で表記されることが示すことができた。
 この、離散的な分数混晶組成比は、相当する混晶組成を短周期2元超格子、すなわち疑似混晶(デジタル混晶)、によってタンデム型太陽電池が構成できることを意味している。この様子を図8右側に示す。例えば、In1/3Ga2/3Nは1分子層InN(1ML-InN)/2分子層GaN(2ML-GaN)2元超格子(以下、(InN)/(GaN)とする)であり、In1/2Ga1/2Nは1分子層InN(1ML-InN)/1分子層GaN(1ML-GaN)2元超格子(以下、(InN)/(GaN)とする)であり、In2/3Ga1/3Nは2分子層InN(2ML-InN)/1分子層GaN(1ML-GaN)2元超格子(以下、(InN)/(GaN)とする)であり、In4/5Ga1/5Nは4分子層InN(4ML-InN)/1分子層GaN(1ML-GaN)2元超格子(以下、(InN)/(GaN)とする)に相当する。
 上述したように、0.92eV(波長1.35μm)までの太陽光スペクトルに対して、2~4タンデム構造での電流保存則を満足させると、いずれの構造も、あたかもマジックナンバー的な離散的分数の混晶組成比と成ることが分かった。2および4タンデム構造の場合を見れば明らかであるが、タンデム段数が2~4の倍数においても、前記マジックナンバー的な離散的分数の混晶組成比は現れてくる。これらの混晶組成比は、InN/GaN疑似混晶で構成するのに適していることを先に述べたが、3元InGaN混晶よりもInN/GaN疑似混晶には、次のような作用効果がある。
 InNとGaNは、非混和性が強く、タンデム型太陽電池で必要とされる、中間In組成および高In組成域での結晶成長および組成制御が極めて困難である。しかし、敢えて混ぜない設計の2元InN/GaN疑似混晶の成長では、上記非混和性はかえって有利に働き、実効的バンドギャップまたは実効的混晶組成の制御は容易となる。すなわち、In組成揺らぎの影響が大幅に抑制されるので、タンデム構造における波長分割の設計値が忠実に再現される。また、高格子不整合系であるが、互いに格子歪みを補償しあうことで、格子不整合に対して寛容となり、格子欠陥の生成を抑制し、太陽電池の漏れ電流を低減させる。
 さらに、他の化合物半導体でよく見られるような、いわば“歪み超格子バッファー効果”を期待することができ、各セル同士のトンネル接合形成に伴うセル間格子不整合に起因する格子欠陥の生成を抑制し、太陽電池の漏れ電流を低減させる。
 また、窒化物系半導体のc面成長で現れる分極効果によって、バンド端位置とドナーまたはアクセプター準位のエネルギー差が低減され、すなわちMgアクセプター活性化エネルギーが低減され、伝導性制御、特にp型伝導性制御が容易になる。
 次に、本第6実施形態によるタンデム型太陽電池の変換効率について、図18を参照しながら説明する。図18は、本願発明に係るタンデム型太陽電池における、セル数に対する理論最大変換効率を示すグラフである。入射太陽光は、図5に示すAM1.5スペクトルであり、“ASTM G173-03 Reference Spectra Derived from SMARTS v.2.9.2”の標準スペクトルである。
 図18において、白丸(○)および菱形(◆)は、本願発明に係るタンデム型太陽電池での理論最大変換効率であるが、白丸(○)が0.63eV(波長1.97μm)までバンド間遷移で吸収するとした場合(0.63-cutoff)であり、菱形(◆)が0.92eV(波長1.35μm)までバンド間遷移で吸収するとした場合(0.92-cutoff)である。
 一方、黒丸(●)は、特許文献1に記載のタンデム型太陽電池における理論最大変換効率であり、本願発明の従来技術に対する優位性を明らかにするため、参照データとして記載している。
 例えば、セル数4段において、従来技術(黒丸(●))の理論最大変換効率は45.9%であるのに対して、本願発明の理論最大変換効率は、0.63-cutoff(白丸(○))では51.6%であり、0.92-cutoff(菱形(◆))では50.8%であった。本願発明に係るタンデム型太陽電池での光電変換効率は、従来技術の光電変換効率を上回っているが、InN超薄膜の光増感作用によって、光起電圧を低下させることなく、より長波長成分の光を利用できるためである。
 さらに、第6実施形態で述べたタンデム構造、すなわち0.92-cutoffは、0.63-cutoffと比べても変換効率に遜色はない。これより、光増感作用と、マジックナンバー的混晶組成比の複合により、タンデム型太陽電池における格子欠陥の発生を抑制し、漏れ電流を低減させ、さらに窒化インジウムまたは高In組成窒化インジウムガリウム混晶でのp型伝導性制御の問題を回避しつつも、高い光電変換効率を有する太陽電池が提供されることが分かり、従来技術からは予想し得なかった本願発明の顕著な優位性が明確に示された。
 また、0.92-cutoffは、0.63-cutoffと比べて、上記バンド内遷移に利用される光子数は増大しているため、光増感作用はより促進される。
 以上述べた通り、上記第4~第6実施形態により、タンデム型太陽電池における各セルの吸収端波長の制御を容易とし、タンデム型太陽電池における格子欠陥の発生を抑制し、漏れ電流を低減させ、さらに窒化インジウムまたは高In組成窒化インジウムガリウム混晶でのp型伝導性制御の問題を回避し、かつ高い光電変換効率を有する太陽電池を提供することが可能である。
 また、本願発明は、上記第1~第6実施形態によって限定されるものではなく、発明の意図から逸脱しない範囲での、変形、置換、省略がなされてもよいものとする。
 本発明に係る光電変換装置は、地上用集光型の太陽電池、もしくは人工衛星搭載向け太陽電池として利用が可能である。
 110  太陽電池
 112  n型窒化インジウムガリウム疑似混晶層
 113  増感層
 114  p型窒化インジウムガリウム疑似混晶層
 115  短周期超格子
 117  短周期超格子
 118  下地層
 120  太陽電池
 122  n型窒化インジウムガリウム疑似混晶層
 123  増感層
 124  p型窒化インジウムガリウム疑似混晶層
 125  短周期超格子
 126  下地層
 127  短周期超格子
 128  下地層
 136  短周期超格子
 138  短周期超格子
 139  短周期超格子
 140  短周期超格子
 100  太陽電池
 102  n型半導体層
 104  p型半導体層
 210  太陽電池
 212  n型GaN層
 213  InN光増感層
 214  p型GaN層
 220  太陽電池
 222  n型InGaN層
 223  InN光増感層
 224  p型InGaN層
 225  GaN層

Claims (27)

  1.  第1伝導型からなる第1伝導層と、
     前記第1伝導層上に形成される増感層と、
     前記増感層上に形成され、第2伝導型からなる第2伝導層と、を備える光電変換装置であって、
     前記第1伝導層および前記第2伝導層および前記増感層の少なくともいずれかが、第1の膜厚である第1半導体と第2の膜厚である第2半導体とを有する光電変換装置。
  2.  前記第1の膜厚が前記第1半導体のx1分子層厚であり、前記第2の膜厚が前記第2半導体のx2分子層厚であるとき、
     前記x1とx2との比x1/x2が、およそ1/2、2/3、1、および4の少なくともいずれかである請求項1に記載の光電変換装置。
  3.  前記第1伝導層では、前記第1の膜厚が前記第1半導体のx11分子層厚、前記第2の膜厚が前記第2半導体のx12分子層厚であり、
     前記第2伝導層では、前記第1の膜厚が前記第1半導体のx21分子層厚、前記第2の膜厚が前記第2半導体のx22分子層厚であり、
     前記増感層では、前記第1の膜厚が前記第1半導体のx31分子層厚、前記第2の膜厚が前記第2半導体のx32分子層厚であるとき、
    (x11,x12)=a(x31,x32)、および、
    (x21,x22)=a(x31,x32)の少なくともいずれかである請求項1に記載の光電変換装置。
  4.  前記第1伝導層および前記第2伝導層および前記増感層の少なくともいずれかが、第3の膜厚である前記第1半導体および第4の膜厚である前記第2半導体をさらに有し、
     前記第1伝導層では、前記第1の膜厚が前記第1半導体のx11分子層厚、前記第2の膜厚が前記第2半導体のx12分子層厚、前記第3の膜厚が前記第1半導体のx13分子層厚、および前記第4の膜厚が前記第2半導体のx14分子層厚であり、
     前記第2伝導層では、前記第1の膜厚が前記第1半導体のx21分子層厚、前記第2の膜厚が前記第2半導体のx22分子層厚、前記第3の膜厚が前記第1半導体のx23分子層厚、および前記第4の膜厚が前記第2半導体のx24分子層厚であり、
     前記増感層では、前記第1の膜厚が前記第1半導体のx31分子層厚、前記第2の膜厚が前記第2半導体のx32分子層厚、前記第3の膜厚が前記第1半導体のx33分子層厚、および前記第4の膜厚が前記第2半導体のx34分子層厚であるとき、
    (x11,x12)=a(x13,x14)、
    (x21,x22)=a(x23,x24)、および、
    (x31,x32)=a(x33,x34)の少なくともいずれかである請求項1に記載の光電変換装置。
  5.  前記第1半導体および前記第2半導体は、格子整合して交互に積層される請求項1に記載の光電変換装置。
  6.  前記第1伝導層および前記第2伝導層の少なくともいずれかは、約2.13eV、約1.94eV、約1.63eV、約1.37eV、約1.25eV、および約0.94eVのいずれかのバンドギャップエネルギーを有し、
     前記増感層は、約0.94eV以下のエネルギーを光電変換する請求項1に記載の光電変換装置。
  7.  前記第1半導体のバンドギャップエネルギーが約3.4eVであり、
     前記第2半導体のバンドギャップエネルギーが約0.63eVである請求項1に記載の光電変換装置。
  8.  前記第1半導体が窒化ガリウムであり、
     前記第2半導体が窒化インジウムである請求項1に記載の光電変換装置。
  9.  前記第1伝導層および前記第2伝導層および前記増感層の少なくともいずれかが、前記第1の半導体と前記第2の半導体とで構成される自然超格子構造を有する請求項1に記載の光電変換装置。
  10.  前記第1の膜厚であるx1分子層厚と、前記第2の膜厚であるx2分子層厚とが、
    (x1,x2)=(1,2)、(2,3)、(1,1)、(3,2)、(2,1)、および(4,1)分子層厚のいずれかに該当する請求項2に記載の光電変換装置。
  11.  前記増感層に生成された電荷坦体が、前記第1伝導層および前記第2伝導層の少なくともいずれかへ移動自在である請求項1に記載の光電変換装置。
  12.  前記第1伝導層は第1バンドギャップエネルギーを有し、
     前記第2伝導層は第2バンドギャップエネルギーを有し、
     前記増感層は第3バンドギャップエネルギーを有し、
     前記第1バンドギャップエネルギーおよび第2バンドギャップエネルギーの少なくともいずれかは、約2.13eV、約1.94eV、約1.63eV、約1.37eV、約1.25eV、および約0.94eVのいずれかに相当し、
     前記第3バンドギャップエネルギーは、前記第1および前記第2バンドギャップエネルギーよりも小さい請求項1に記載の光電変換装置。
  13.  前記第1の膜厚が前記第1半導体の1分子層厚であるか、または前記第2の膜厚が前記第2半導体の1分子層厚である請求項1に記載の光電変換装置。
  14.  第1バンドギャップエネルギーを有する第1伝導層と、
     前記第1伝導層上に形成され、第3バンドギャップエネルギーを有するInN増感層と、
     前記InN増感層上に形成され、第2バンドギャップエネルギーを有する第2伝導層と、を備える太陽電池であって、
     前記第1伝導層または前記第2伝導層のいずれかが、第1の膜厚であるInNまたは第2の膜厚であるGaNを備え、
     前記InN増感層の膜厚が2分子層以下であり、
     前記第1バンドギャップエネルギーおよび第2バンドギャップエネルギーは、約2.13eV、約1.94eV、約1.63eV、約1.37eV、約1.25eV、および約0.94eVのいずれかに相当し、
     前記第3バンドギャップエネルギーは、前記第1および前記第2バンドギャップエネルギーよりも小さく、その差が500meV以下であり、
     前記InN増感層に生成された電荷坦体が、前記第1伝導層および前記第2伝導層の少なくともいずれかへバンド内遷移する太陽電池。
  15.  前記第1の膜厚がInNの1分子層厚であるか、または前記第2の膜厚がGaNの1分子層厚である請求項14に記載の太陽電池。
  16.  前記第1の膜厚がGaNのx1分子層厚であり、かつ前記第2の膜厚が前記第2半導体のx2分子層厚であり、
     前記x1およびx2の比x1/x2が、およそ1/2、2/3、1、3/2、2、および4のいずれかである請求項14に記載の太陽電池。
  17.  前記x1およびx2が自然数であり、(x1,x2)=(1,2)、(2,3)、(1,1)、(3,2)、(2,1)、および(4,1)のいずれかである請求項16に記載の太陽電池。
  18.  前記バンド内遷移が、0.94eVより低エネルギーの光吸収によって誘起される請求項14に記載の太陽電池。
  19.  前記バンド内遷移が、室温以上の熱エネルギーによって誘起される
    請求項14に記載の太陽電池。
  20.  複数セルからなるタンデム型太陽電池であって、
     前記複数セルのうち少なくとも1つは、第1バンドギャップエネルギーを有する第1伝導層と、前記第1伝導層上に形成され、第3バンドギャップエネルギーを有する増感層と、前記増感層上に形成され、第2バンドギャップエネルギーを有する第2伝導層と、を備え、
     前記第1伝導層または前記第2伝導層または前記増感層のいずれかが、第1の膜厚であるInNまたは第2の膜厚であるGaNを備え、
     前記第3バンドギャップエネルギーは、前記第1および前記第2バンドギャップエネルギーよりも小さい、タンデム型太陽電池。
  21.  前記複数セルの段数が2の場合、
     前記第1の膜厚がGaNのx1分子層厚であり、かつ前記第2の膜厚が前記第2半導体のx2分子層厚であり、
     前記x1およびx2の比x1/x2が、およそ1または4のいずれかである請求項20に記載のタンデム型太陽電池。
  22.  前記x1およびx2が自然数であり、(x1,x2)=(1,1)または(4,1)のいずれかである請求項21に記載のタンデム型太陽電池。
  23.  前記複数セルの段数が3の場合、
     前記第1の膜厚がGaNのx1分子層厚であり、かつ前記第2の膜厚が前記第2半導体のx2分子層厚であり、
     前記x1およびx2の比x1/x2が、およそ2/3、3/2、または4のいずれかである請求項20に記載のタンデム型太陽電池。
  24.  前記x1およびx2が自然数であり、(x1,x2)=(2,3)、(3,2)または(4,1)のいずれかである請求項23に記載のタンデム型太陽電池。
  25.  前記複数セルの段数が4の場合、
     前記第1の膜厚がGaNのx1分子層厚であり、かつ前記第2の膜厚が前記第2半導体のx2分子層厚であり、
     前記x1およびx2の比x1/x2が、およそ1/2、1、2、または4のいずれかである請求項20に記載のタンデム型太陽電池。
  26.  前記x1およびx2が自然数であり、(x1,x2)=(1,2)、(1,1)、(2,1)または(4,1)のいずれかである請求項25に記載のタンデム型太陽電池。
  27.  前記第1バンドギャップエネルギーおよび第2バンドギャップエネルギーは、約2.13eV、約1.94eV、約1.63eV、約1.37eV、約1.25eV、および約0.94eVのいずれかである請求項20に記載のタンデム型太陽電池。
PCT/JP2011/063911 2010-06-18 2011-06-17 光電変換装置 WO2011158934A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/394,029 US9444000B2 (en) 2010-06-18 2011-06-17 Photoelectric conversion device
JP2012520506A JP5935217B2 (ja) 2010-06-18 2011-06-17 光電変換装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010139801 2010-06-18
JP2010-139801 2010-06-18
JP2011043379 2011-02-28
JP2011-043379 2011-02-28

Publications (1)

Publication Number Publication Date
WO2011158934A1 true WO2011158934A1 (ja) 2011-12-22

Family

ID=45348326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063911 WO2011158934A1 (ja) 2010-06-18 2011-06-17 光電変換装置

Country Status (3)

Country Link
US (1) US9444000B2 (ja)
JP (1) JP5935217B2 (ja)
WO (1) WO2011158934A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229487A (ja) * 2012-04-26 2013-11-07 Kyocera Corp 光電変換装置の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631721B (zh) * 2013-08-06 2018-08-01 新南革新股份有限公司 高效率堆疊太陽電池
CN104835887B (zh) * 2015-03-30 2018-03-06 华灿光电(苏州)有限公司 一种发光二极管外延片及该外延片的生长方法
EP3546970A1 (en) 2018-03-29 2019-10-02 Koninklijke Philips N.V. A radio frequency (rf) antenna element with an optical back-end

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016537A1 (ja) * 2009-08-06 2011-02-10 国立大学法人千葉大学 光電変換装置
WO2011018984A1 (ja) * 2009-08-10 2011-02-17 国立大学法人千葉大学 光電変換装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4688068A (en) * 1983-07-08 1987-08-18 The United States Of America As Represented By The Department Of Energy Quantum well multijunction photovoltaic cell
US7217882B2 (en) 2002-05-24 2007-05-15 Cornell Research Foundation, Inc. Broad spectrum solar cell
JP2004140339A (ja) * 2002-09-25 2004-05-13 Univ Chiba 窒化物系ヘテロ構造を有するデバイス及びその製造方法
US7750425B2 (en) * 2005-12-16 2010-07-06 The Trustees Of Princeton University Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier
US7928471B2 (en) * 2006-12-04 2011-04-19 The United States Of America As Represented By The Secretary Of The Navy Group III-nitride growth on silicon or silicon germanium substrates and method and devices therefor
US20100006143A1 (en) * 2007-04-26 2010-01-14 Welser Roger E Solar Cell Devices
KR20090022701A (ko) * 2007-08-31 2009-03-04 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
US20090321781A1 (en) * 2008-06-27 2009-12-31 Victoria Broadley Quantum dot device and method of making the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016537A1 (ja) * 2009-08-06 2011-02-10 国立大学法人千葉大学 光電変換装置
WO2011018984A1 (ja) * 2009-08-10 2011-02-17 国立大学法人千葉大学 光電変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUHIDE KUSABE: "Proposal of ultrathin InN- based asymmetric structure III-N QWs for novel photonic devices : Development from emitters into solar cells", IEICE TECHNICAL REPORT, CPM2009-119, 2009 NEN 11 GATSU, pages 79 - 82 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229487A (ja) * 2012-04-26 2013-11-07 Kyocera Corp 光電変換装置の製造方法

Also Published As

Publication number Publication date
JP5935217B2 (ja) 2016-06-15
US9444000B2 (en) 2016-09-13
JPWO2011158934A1 (ja) 2013-08-19
US20130174894A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
Toprasertpong et al. Absorption threshold extended to 1.15 eV using InGaAs/GaAsP quantum wells for over‐50%‐efficient lattice‐matched quad‐junction solar cells
KR101322646B1 (ko) 용액으로부터 형성된 나노결정 태양 전지
Ramiro et al. Intermediate band solar cells: Present and future
Redaelli et al. Effect of the quantum well thickness on the performance of InGaN photovoltaic cells
Lam et al. Submonolayer InGaAs/GaAs quantum dot solar cells
JP5935217B2 (ja) 光電変換装置
US20140026937A1 (en) Semiconductor Heterostructure and Photovoltaic Cell Including Such A Heterostructure
TWI506802B (zh) 多層量子井型太陽能電池及多層量子井型太陽能電池之製造方法
JP2010267934A (ja) 太陽電池およびその製造方法
CN106298990A (zh) 一种利用自发极化电场的非极性太阳能电池
JP5742069B2 (ja) 太陽電池及びその製造方法
EP2758996B1 (en) Varying bandgap solar cell
Cai et al. Study of InGaN/GaN multiple quantum well solar cells with different barrier thicknesses
JP5326812B2 (ja) 太陽電池
Tan et al. Numerical simulation of homojunction pin In0. 4Ga0. 6N solar cell with different absorber layer configurations
Cai et al. Favourable photovoltaic effects in InGaN pin homojunction solar cell
JP2010206074A (ja) 半導体光素子と半導体太陽電池
Wang et al. InGaAs/GaAsP strain-compensated superlattice solar cell for enhanced spectral response
JP2013172072A (ja) 2接合太陽電池
JP2014187235A (ja) 太陽電池
Salama Quantum Dot Solar cells
US9660126B2 (en) Photovoltaic device with three dimensional charge separation and collection
Hou et al. Dual-junction gallium nitride solar cells with hybrid tunnel junction layers
JP2004103692A (ja) 太陽電池
El-Huni et al. Optimization of semibulk InGaN-based solar cell using realistic modeling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520506

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13394029

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11795836

Country of ref document: EP

Kind code of ref document: A1