WO2011158850A1 - マスタシリンダ装置 - Google Patents

マスタシリンダ装置 Download PDF

Info

Publication number
WO2011158850A1
WO2011158850A1 PCT/JP2011/063642 JP2011063642W WO2011158850A1 WO 2011158850 A1 WO2011158850 A1 WO 2011158850A1 JP 2011063642 W JP2011063642 W JP 2011063642W WO 2011158850 A1 WO2011158850 A1 WO 2011158850A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
piston
pressure
master cylinder
cylinder device
Prior art date
Application number
PCT/JP2011/063642
Other languages
English (en)
French (fr)
Inventor
磯野 宏
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112011102033.3T priority Critical patent/DE112011102033B4/de
Priority to CN201180011323.5A priority patent/CN102939227B/zh
Priority to US13/582,827 priority patent/US9038380B2/en
Publication of WO2011158850A1 publication Critical patent/WO2011158850A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/143Master cylinder mechanically coupled with booster
    • B60T13/144Pilot valve provided inside booster piston
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4077Systems in which the booster is used as an auxiliary pressure source

Definitions

  • the present invention relates to a master cylinder device for pressurizing and supplying hydraulic fluid to a brake device provided on a wheel.
  • hydraulic brake systems for vehicles typically pressurize hydraulic fluid depending solely on the pressure of hydraulic fluid that is high pressure introduced from a high pressure source, as described in the following patent document, for example.
  • a master cylinder device that operates as described above is employed.
  • Such a master cylinder device generally includes a stroke simulator.
  • the stroke simulator generates an operation reaction force with respect to the operation force while allowing the operation member to move in accordance with an operation force applied to the operation member by the driver. Therefore, even when the hydraulic fluid is not pressurized depending on the operation force, the driver can feel the operation reaction force while moving the operation member by his own brake operation.
  • the stroke simulator can improve the operational feeling in the brake operation even when the master cylinder device operates so as to pressurize the hydraulic fluid solely depending on the pressure of the hydraulic fluid that has been increased by the high pressure source. Can do. However, if the high pressure source cannot operate normally due to electrical failure or the like, the master cylinder device should operate so as to pressurize the hydraulic fluid solely depending on the hydraulic fluid that has been made high by the external high pressure source. Will not be able to. For this reason, the master cylinder device is also provided with a function for operating so as to pressurize the hydraulic fluid solely depending on the operating force of the driver.
  • the master cylinder device of the present invention includes (A) a main body part in which a pressurizing chamber for pressurizing the hydraulic fluid is partitioned forward, and a flange part formed on the outer periphery of the main body part.
  • a pressure piston in which an input chamber into which hydraulic fluid is introduced from a high-pressure source behind the collar is filled with the hydraulic fluid in front of the collar and is opposed to the input chamber;
  • An inter-piston chamber is defined in front of itself by a pressurized piston, and an input piston that can be contracted by operation of an operating member; and
  • C a reaction that generates an elastic reaction force against contraction of the input piston.
  • a force generation mechanism and further, a counter-low pressure source communicator for communicating the opposing chamber and the inter-piston chamber to a low pressure source and prohibiting the contraction of the input piston to allow the input piston to contact the pressurizing piston.
  • a counter-low pressure source communicator for communicating the opposing chamber and the inter-piston chamber to a low pressure source and prohibiting the contraction of the input piston to allow the input piston to contact the pressurizing piston.
  • the master cylinder device of the present invention if the input piston is allowed to contact the pressurizing piston by the anti-low pressure source communication device, the operating force applied to the operating member is transmitted to the pressurizing piston. Furthermore, if the input piston contraction prohibition mechanism prohibits the input piston contraction, the operation force is transmitted to the pressure piston in a state where the movement of the operation member by the stroke simulator is prohibited in a state where the stroke simulator does not function, Depending on the operating force, the hydraulic fluid in the pressurizing chamber can be pressurized. Therefore, it is possible to pressurize the hydraulic fluid in the pressurizing chamber with a relatively small operation amount, and the operational feeling is good. As a result, the practicality of the master cylinder device can be improved.
  • a master cylinder device for supplying pressurized hydraulic fluid to a brake device that is provided on a wheel and operates by the pressure of the hydraulic fluid A housing closed at the front; It has a bottomed hole that opens at the rear end, and has a main body and a flange formed on the outer periphery of the main body, and pressurizes the hydraulic fluid supplied to the brake device in front of the main body.
  • a pressurizing chamber is defined, and an annular input chamber into which hydraulic fluid is introduced from a high-pressure source is filled in the front of the flange with the hydraulic fluid behind the flange.
  • the inter-piston chamber filled with the hydraulic fluid is partitioned in front of itself by the pressurizing piston, is fitted into the bottomed hole of the pressurizing piston, is connected to the operating member at the rear end, and
  • An input piston that can be contracted by operating the operating member;
  • a reaction force generation mechanism that generates an elastic reaction force against the contraction of the input piston;
  • the pressurization piston moves in the pressurization chamber depending on the pressure of the hydraulic fluid introduced from the high pressure source. Configured to pressurize the hydraulic fluid, In a situation where the pressure of the hydraulic fluid introduced from the high pressure source is insufficient, the pressure piston is allowed to transmit the operation force from the input piston to the pressure piston and depends on the operation force.
  • An operation force-dependent pressurization realizing mechanism that realizes pressurization of the hydraulic fluid in the pressurizing chamber according to The operating force dependent pressurization mechanism is An anti-low pressure source communicator for communicating the opposed chamber and the inter-piston chamber to a low pressure source in order to allow the input piston to contact the pressure piston; An input piston contraction prohibiting mechanism that prohibits contraction of the input piston.
  • the pressure of the hydraulic fluid in the inter-piston chamber and the opposing chamber communicated by the inter-chamber communication passage has the same magnitude. Therefore, for example, when the pressure receiving area of the flange portion of the pressurizing piston to which the pressure of the working fluid in the opposing chamber acts is substantially equal to the pressure receiving area of the input piston to which the pressure of the working fluid in the inter-piston chamber acts.
  • the force acting to advance the pressurizing piston by the pressure of the hydraulic fluid in the inter-piston chamber and the opposing chamber is almost equal to the force acting to retreat. Therefore, the pressurizing piston hardly moves even if the pressure of the hydraulic fluid in the inter-piston chamber and the opposing chamber changes.
  • the pressurizing piston hardly moves. That is, such a master cylinder device is normally not capable of pressurizing the hydraulic fluid in the pressurizing chamber depending on the operating force. In other words, the operating force applied to the operating member is not transmitted to the pressurizing piston.
  • the master cylinder device normally operates so as to pressurize the working fluid in the pressurizing chamber depending on the high pressure source pressure that is the pressure of the working fluid introduced from the high pressure source. A certain high pressure source pressure dependent pressurization state is realized. Further, during the brake operation, the input piston is applied with a forward force at the rear end portion by the operation force in a state where the front end partitioning the inter-piston chamber cannot move. Therefore, the input piston is contracted by the operating force, and the reaction force generation mechanism generates an elastic reaction force against the contraction.
  • a stroke simulator is configured including such a reaction force generation mechanism, and the driver can feel the elastic reaction force as an operation reaction force with respect to his own brake operation. At that time, the operation amount of the operation member becomes a size corresponding to the contraction amount of the input piston.
  • the master cylinder device includes the above-described low-pressure source communication device, and the opposing chamber and the inter-piston chamber can be communicated with the low-pressure source so that the inter-piston chamber and the opposing chamber are not sealed.
  • the input piston can move forward while causing the hydraulic fluid in the inter-piston chamber and the opposing chamber to flow out to the low pressure source, and comes into contact with the pressurizing piston.
  • the input piston contraction prohibiting mechanism prohibits the input piston from contracting, the operating force is transmitted to the pressurizing piston in a state where the input piston cannot contract, and the pressurizing piston is advanced.
  • the hydraulic fluid in the pressurizing chamber can be pressurized depending on the operating force.
  • the operation amount of the operation member since the operation amount of the operation member is prohibited from contracting the input piston, the operation amount becomes a size corresponding to the movement amount of the pressure piston, and the operation amount can be made relatively small. Therefore, the operation amount does not increase more than necessary, and the operational feeling in the brake operation can be improved.
  • This master cylinder device is allowed to transmit operating force from the input piston to the pressurizing piston when the high pressure source pressure is insufficient.
  • a situation in which the high pressure source pressure is insufficient may be a situation in which the high pressure source cannot supply the hydraulic fluid at a high pressure due to, for example, an electrical failure.
  • the anti-low pressure source communicator be operated so that the opposing chamber and the inter-piston chamber communicate with the low pressure source in the event of an electrical failure, and the input piston contraction prohibiting mechanism operates to contract the input piston. It is desirable to operate to prohibit If the anti-low pressure source communicator and the input piston contraction prohibiting mechanism operate in such a manner, the driver can perform a brake operation with a good feeling of operation even when there is an electrical failure.
  • the master cylinder device when the high pressure source pressure becomes insufficient, the master cylinder device can operate so as to pressurize the hydraulic fluid in the pressurizing chamber depending solely on the operating force. A certain operating force dependent pressurization state is realized.
  • the reaction force generation mechanism of the master cylinder device constitutes a part of a so-called stroke simulator, and the structure thereof is particularly limited as long as it generates an elastic reaction force against the contraction of the input piston. It is not a thing.
  • a reaction force generation mechanism that directly applies an elastic reaction force to the input piston may be used, or by applying a hydraulic fluid filled in the input piston, the elastic reaction force is applied to the input piston.
  • a reaction force generating mechanism that is indirectly applied may be used.
  • the input piston is configured to include two members fitted to each other so that an internal chamber filled with the working fluid is formed inside the input piston, and relative movement of the two members is allowed. It can be shrunk, The master cylinder device according to (1), wherein the input piston contraction prohibiting mechanism is configured to prohibit contraction of the input piston by sealing the inner chamber.
  • the input piston contracts when the two members move relative to each other. Due to the contraction, the volume of the internal chamber decreases, and the hydraulic fluid in the internal chamber flows out of the internal chamber. Therefore, the input piston contraction prohibiting mechanism prohibits the hydraulic fluid from flowing out of the internal chamber by sealing the internal chamber. The contraction of the input piston can be prohibited.
  • the input piston can be contracted by the internal chamber communicating with a low pressure source
  • the input piston contraction prohibiting mechanism is The master cylinder device according to item (2), including an internal chamber communication circuit breaker that blocks communication of the internal chamber with a low-pressure source so as to seal the internal chamber.
  • the pressure of the working fluid in the inner chamber acts in a direction that prevents contraction of the input piston, that is, in a direction that separates the two members of the input piston.
  • the pressure of the working fluid in the internal chamber is normally the pressure of the low pressure source, so that the force that prevents the contraction of the input piston can be made relatively small. Therefore, the input piston can contract relatively smoothly.
  • the working fluid in the internal chamber cannot flow into the low pressure source or flow into the low pressure source. Volume change, that is, contraction of the input piston can be prohibited.
  • the internal chamber communication breaker is It is disposed in a communication passage connecting the internal chamber and the low pressure source, and is opened when the pressure of the working fluid in the counter chamber and the inter-piston chamber is introduced as a pilot pressure, and the pilot pressure is equal to or higher than a set pressure.
  • the master cylinder device according to (3) including a mechanical on-off valve that closes when the pilot pressure falls below the set pressure.
  • the contraction of the input piston is prohibited or permitted depending on the pressure of the hydraulic fluid in the facing chamber and the inter-piston chamber.
  • the mechanical open / close valve which is the internal chamber communication circuit breaker of this master cylinder device, uses the increase in the pressure of the hydraulic fluid to open and close itself, and opens when the pressure exceeds the set pressure.
  • the chamber communicates with a low pressure source. In that state, the prohibition of contraction of the input piston is released.
  • the pressure of the hydraulic fluid in the opposing chamber and the inter-piston chamber does not exceed the set pressure, and the mechanical on-off valve is in the closed state. Will be maintained.
  • this mechanical on-off valve is a mechanism that communicates the internal chamber with a low-pressure source in response to a brake operation in a state where the facing chamber and the inter-piston chamber are sealed.
  • the internal chamber communication breaker is configured by a relatively simple mechanism.
  • the mode of this section is a mode in which the internal chamber communication circuit breaker is an electromagnetic on-off valve, and it is possible to switch between allowing and prohibiting the contraction of the input piston by opening and closing it.
  • this solenoid on-off valve is normally closed, that is, closed in the non-excited state, so that the input piston contraction is prohibited and an operating force dependent pressurization state is realized in the event of electrical failure. It is desirable that the on-off valve is in the open state.
  • the reaction force generation mechanism is The master according to any one of (3) to (5), wherein the master is arranged in the inner chamber and includes a spring that biases the two members in a direction in which the input piston extends. Cylinder device.
  • a compression coil spring can be employed for the reaction force generation mechanism. If each end of the compression coil spring is connected to each of the two members of the input piston, the compression coil spring is opposite to the relative movement of the two members relative to the contraction of the input piston. An elastic reaction force in the direction of is generated. The elastic force acts on each of the two members as a force in the direction of extending the input piston.
  • the reaction force generation mechanism is Each functions as the spring, one end is supported by one of the two members, and the other end is supported in series by the other of the two members.
  • Two springs with different spring constants The two springs are sandwiched between one other end and the other other end, and are floatingly supported by the two springs.
  • the elastic reaction force of the two springs is applied to the two members.
  • the master cylinder device according to item (6) including a floating seat for connecting the two springs to act.
  • the master cylinder device is designed so that the spring having the smaller spring constant is mainly deformed in the range where the operation amount is relatively small, and only the spring having the larger spring constant is deformed in the range where the operation amount is relatively large.
  • the operation reaction force gradient indicating the change in the operation reaction force with respect to the operation amount of the operation member can be reduced in a range where the operation amount is relatively small, and can be increased in a range where the operation amount is relatively large.
  • the input piston contraction prohibiting mechanism is The master cylinder device according to item (2), including an internal chamber communication circuit breaker that blocks communication of the internal chamber with the liquid chamber in order to seal the internal chamber.
  • the reaction force generation mechanism configured as described above constitutes a so-called accumulator type stroke simulator, and the pressure of the hydraulic fluid in the liquid chamber pressurized by the pressurizing mechanism is transmitted to the hydraulic fluid in the internal chamber, It acts on the input piston as an elastic reaction force against the contraction of the input piston, that is, an operation reaction force against the operation of the operation member. Further, according to the above configuration, if the communication with the liquid chamber in the internal chamber is blocked by the internal chamber communication breaker, the working fluid in the internal chamber cannot flow into or out of the liquid chamber. Volume change, that is, contraction of the input piston can be prohibited.
  • the anti-low pressure source communication device The master cylinder according to any one of (1) to (8), wherein the master cylinder includes an electromagnetic on-off valve disposed in a communication path that connects the opposing chamber and the inter-piston chamber and a low pressure source. apparatus.
  • This master cylinder device is a mode in which the anti-low pressure source communicator is an electromagnetic on-off valve, and the opening and closing of the master cylinder device can switch between allowing and prohibiting communication between the opposing chamber and the piston chamber to the low pressure source.
  • this electromagnetic on-off valve is normally open, that is, in a non-excited state so as to allow the input piston to contact the pressurizing piston in the event of an electrical failure and realize an operating force dependent pressurization state. It is desirable that the on-off valve is in an open state and in a closed state when excited.
  • the master cylinder device is Any one of (1) to (9), wherein the front end of the input piston and the bottom of the bottomed hole of the pressurizing piston are separated in a state where the operation member is not operated.
  • the master cylinder device is The distance between the front end of the input piston and the bottom of the bottomed hole of the pressure piston in a state where the operating member is not operated is set to one fifth or less of the inner diameter of the bottomed hole (10) The master cylinder device according to the item.
  • the master cylinder device of the above aspect even if the operating member is operated in the aforementioned operating force dependent pressurizing state, the operating fluid in the pressurizing chamber can be pressurized by the operating force until the input piston contacts the pressurizing piston. Can not.
  • the master cylinder device is provided with a free running distance at the start of operation of the operating member, and is provided with a state where the brake device cannot be operated by operating force even if the operating member is operated. That is, this idle running distance is regarded as “play” in the brake operation.
  • the distance between the input piston and the pressurization piston be relatively short when the operation member is not operated. In particular, it is more desirable to set it to 1/10 or less, and in the extreme, the distance may be almost zero.
  • the hydraulic fluid in the pressurization chamber is pressurized while the input piston is in contact with the pressurization piston. Therefore, if the distance between the input piston and the pressurizing piston is relatively short, the input piston comes into contact with the pressurization piston immediately after the start of the brake operation, and the hydraulic fluid can be pressurized to operate the brake device. Therefore, since the brake device starts to generate a braking force with only a slight brake operation, the operational feeling of the brake operation can be improved.
  • the master cylinder device is The pressure receiving area of the flange portion on which the pressure of the hydraulic fluid in the opposing chamber acts and the pressure receiving area of the input piston on which the pressure of the hydraulic fluid in the inter-piston chamber acts are equal to each other (1) to (11) A master cylinder device given in any 1 paragraph.
  • the brake operation is performed in the above-described high pressure source pressure dependent pressurization state.
  • the front end that defines the inter-piston chamber of the input piston does not move relative to the housing. Therefore, the position of the operation member in the brake operation depends on the operation force and the elastic reaction force of the reaction force generation mechanism. That is, in the brake operation, the operation member stops at a position where the operation force and the elastic reaction force are balanced. Therefore, since the operating member does not move according to the position of the pressurizing piston, the driver can perform the brake operation without feeling uncomfortable due to the movement.
  • FIG. 1 schematically shows a drive system and a braking system for a hybrid vehicle equipped with the master cylinder device of the first embodiment.
  • an engine 10 and an electric motor 12 are mounted as power sources, and a generator 14 that generates electric power by the output of the engine 10 is also mounted.
  • These engine 10, electric motor 12, and generator 14 are connected to each other by a power split mechanism 16.
  • the output of the engine 10 is divided into an output for operating the generator 14 and an output for rotating one of the four wheels 18 as a driving wheel,
  • the output of the electric motor 12 can be transmitted to the drive wheels. That is, the power split mechanism 16 functions as a transmission related to the driving force transmitted to the drive wheels via the speed reducer 20 and the drive shaft 22.
  • wheel 18 is used as a general term, but when indicating that they correspond to any of the four wheels, the left front wheel, the right front wheel, the left rear wheel, The subscripts “FL”, “FR”, “RL”, and “RR” are assigned to the right rear wheel, respectively. According to this notation, the driving wheels in the vehicle are the wheel 18RL and the wheel 18RR.
  • the electric motor 12 is an AC synchronous motor and is driven by AC power.
  • the vehicle is provided with an inverter 24, and the inverter 24 can convert electric power from direct current to alternating current or from alternating current to direct current. Therefore, by controlling the inverter 24, the AC power output from the generator 14 is converted into the DC power for storing in the battery 26, or the DC power stored in the battery 26 is converted into the electric motor. 12 can be converted into AC power for driving the motor 12.
  • the generator 14 has a configuration as an AC synchronous motor. That is, in the vehicle of the present embodiment, it can be considered that two AC synchronous motors are mounted, and one is used mainly as an electric motor 12 for outputting driving force, and the other is a generator. 14 is mainly used for power generation by the output of the engine 10.
  • the electric motor 12 can also generate power (regenerative power generation) by using the rotation of the wheels 18RL and 18RR accompanying the traveling of the vehicle.
  • the electric motor 12 connected to the wheels 18RL and 18RR electric power is generated and a resistance force for stopping the rotation of the electric motor 12 is generated. Therefore, the resistance force can be used as a braking force for braking the vehicle. That is, the electric motor 12 is used as a regenerative brake means for braking the vehicle while generating electric power. Therefore, the vehicle is braked by controlling the regenerative brake together with the engine brake and a hydraulic brake described later.
  • the generator 14 generates power mainly by the output of the engine 10, but also functions as an electric motor when power is supplied from the battery 26 via the inverter 24.
  • the above-described brake control and various other vehicle-related controls are performed by a plurality of electronic control units (ECUs).
  • the main ECU 40 has a function of supervising these controls.
  • the hybrid vehicle can run by driving the engine 10 and the electric motor 12.
  • the driving of the engine 10 and the driving of the electric motor 12 are comprehensively controlled by the main ECU 40.
  • the distribution of the output of the engine 10 and the output of the electric motor 12 is determined by the main ECU 40, and the engine ECU 42 that controls the engine 10, the electric motor 12, and the motor that controls the generator 14 based on the distribution. Commands for each control are output to the ECU 44.
  • a battery ECU 46 that controls the battery 26 is also connected to the main ECU 40.
  • the battery ECU 46 monitors the state of charge of the battery 26, and outputs a charge request command to the main ECU 40 when the amount of charge is insufficient.
  • the main ECU 40 that has received the charge request command outputs a power generation command from the generator 14 to the motor ECU 44 in order to charge the battery 26.
  • the main ECU 40 is also connected to a brake ECU 48 that controls the brake.
  • the vehicle is provided with a brake operation member (hereinafter sometimes simply referred to as an “operation member”) that is operated by the driver, and the brake ECU 48 has a brake operation amount (hereinafter referred to as an operation amount of the operation member). May be simply referred to as an “operation amount”) and a brake control force that is a driver's force applied to the operation member (hereinafter, also referred to simply as “operation force”).
  • operation force a brake control force that is a driver's force applied to the operation member
  • the main ECU 40 outputs this target braking force to the motor ECU 44, and the motor ECU 44 controls the regenerative braking based on the target braking force, and the execution value thereof, that is, the generated regenerative braking force is supplied to the main ECU 40. Output to.
  • the regenerative braking force is subtracted from the target braking force, and the target hydraulic braking force to be generated in the hydraulic brake system 100 mounted on the vehicle is determined by the subtracted value.
  • the main ECU 40 outputs the target hydraulic braking force to the brake ECU 48, and the brake ECU 48 performs control so that the hydraulic braking force generated by the hydraulic brake system 100 becomes the target hydraulic braking force.
  • FIG. 2 schematically shows a hydraulic brake system 100 provided in the vehicle.
  • the hydraulic brake system 100 has a master cylinder device 110 for pressurizing hydraulic fluid.
  • the driver of the vehicle can operate the master cylinder device 110 by operating the operation device 112 connected to the master cylinder device 110, and the master cylinder device 110 pressurizes the hydraulic fluid by its own operation.
  • the pressurized hydraulic fluid is supplied to a brake device 116 provided on each wheel via an antilock device 114 connected to the master cylinder device 110.
  • the brake device 116 generates a force for stopping the rotation of the wheel 18, that is, a hydraulic braking force, based on the pressure of the pressurized hydraulic fluid (hereinafter referred to as “output pressure”), so-called master pressure.
  • output pressure the pressure of the pressurized hydraulic fluid
  • the hydraulic brake system 100 has a high pressure source device 118 for increasing the pressure of the hydraulic fluid as a high pressure source.
  • the high-pressure source device 118 is connected to the master cylinder device 110 via the pressure increasing / decreasing device 120.
  • the pressure increasing / decreasing device 120 is a device that controls the pressure of the hydraulic fluid that has been increased in pressure by the high pressure source device 118, and increases the pressure of the hydraulic fluid that is input to the master cylinder device 110 (hereinafter referred to as “input pressure”). And decrease.
  • the master cylinder device 110 is configured to be operable by increasing or decreasing the input pressure.
  • the hydraulic brake system 100 has a reservoir 122 that stores hydraulic fluid under atmospheric pressure as a low pressure source. The reservoir 122 is connected to each of the master cylinder device 110, the pressure increasing / decreasing device 120, and the high pressure source device 118.
  • the operating device 112 includes a brake pedal 150 as an operating member and an operation rod 152 connected to the brake pedal 150.
  • the brake pedal 150 is rotatably held on the vehicle body.
  • the operation rod 152 is connected to the brake pedal 150 at the rear end, and is connected to the master cylinder device 110 at the front end.
  • the operation device 112 includes an operation amount sensor [SP] 156 for detecting the operation amount of the brake pedal 150 and an operation force sensor [FP] 158 for detecting the operation force.
  • the operation amount sensor 156 and the operation force sensor 158 are connected to the brake ECU 48, and the brake ECU 48 determines a target braking force based on detection values of these sensors.
  • the brake device 116 is connected to the master cylinder device 110 via the liquid passages 200 and 202.
  • the fluid passages 200 and 202 are fluid passages for supplying hydraulic fluid pressurized to the output pressure by the master cylinder device 110 to the brake device 116.
  • the liquid passage 202 is provided with an output pressure sensor [Po] 204 (so-called master pressure sensor).
  • Po output pressure sensor
  • each brake device 116 includes a brake caliper, a wheel cylinder (brake cylinder) and a brake pad attached to the brake caliper, and a brake disk that rotates with each wheel. .
  • the fluid passages 200 and 202 are connected to the brake cylinder of each brake device 116 via the antilock device 114.
  • the fluid passage 200 is connected to the brake devices 116FL and 116FR on the front wheel side, and the fluid passage 202 is connected to the brake devices 116RL and 116RR on the rear wheel side.
  • the brake cylinder presses the brake pad against the brake disc based on the output pressure of the hydraulic fluid pressurized by the master cylinder device 110. Due to the friction generated by the pressing, each brake device 116 generates a hydraulic braking force that stops the rotation of the wheel, and the vehicle is braked.
  • the anti-lock device 114 is a general device, and simply has four pairs of on-off valves corresponding to each wheel.
  • One of the pair of on-off valves is a pressure-increasing on-off valve.
  • the valve When the wheel is not locked, the valve is in an open state, and the other is a pressure-reducing on-off valve. When not locked, the valve is closed.
  • the pressure increasing on / off valve blocks the flow of hydraulic fluid from the master cylinder device 110 to the brake device 116, and the pressure reducing on / off valve reduces the flow of hydraulic fluid from the brake device 116 to the reservoir. It is configured to allow and unlock the wheels.
  • the high-pressure source device 118 includes a hydraulic pump 220 that sucks the hydraulic fluid from the reservoir 122 and increases the hydraulic pressure of the hydraulic fluid, and an accumulator 222 that stores the increased hydraulic fluid.
  • the hydraulic pump 220 is driven by an electric motor 224.
  • the high-pressure source device 118 includes a high-pressure source pressure sensor [Ph] 226 for detecting the pressure of the hydraulic fluid that is set to a high pressure.
  • the brake ECU 48 monitors the detection value of the high-pressure source pressure sensor 226, and the hydraulic pump 220 is controlled and driven based on the detection value. By this control drive, the high-pressure source device 118 always supplies hydraulic fluid having a set pressure or higher to the pressure increasing / decreasing device 120.
  • the pressure increasing / decreasing device 120 includes an electromagnetic pressure increasing linear valve 240 that increases the input pressure and an electromagnetic pressure decreasing linear valve 242 that decreases the input pressure.
  • the pressure-increasing linear valve 240 is provided in the middle of the liquid passage from the high-pressure source device 118 to the master cylinder device 110.
  • the pressure-reducing linear valve 242 is provided in the middle of the liquid passage from the reservoir 122 to the master cylinder device 110.
  • a liquid passage from each of the pressure-increasing linear valve 240 and the pressure-decreasing linear valve 242 to the master cylinder device 110 is a single fluid passage and is connected to the master cylinder device 110.
  • the liquid passage is provided with an input pressure sensor [Pc] 246 for detecting the input pressure.
  • the brake ECU 48 controls the pressure increasing / decreasing device 120 based on the detection value of the input pressure sensor 246.
  • the pressure-increasing linear valve 240 is closed in a state where no current is supplied, that is, in a non-excited state, and by supplying a current thereto, that is, in an excited state, The valve opens at the valve opening pressure corresponding to the supplied current.
  • the valve opening pressure increases as the supplied current increases.
  • the pressure-reducing linear valve 242 is opened when no current is supplied, and the maximum current in the set range is supplied during normal operation, that is, when power can be supplied to the system.
  • the valve is closed and the supplied current is reduced, the valve is opened at the valve opening pressure corresponding to the current.
  • the valve opening pressure is configured to decrease as the current decreases.
  • the master cylinder device 110 includes a housing 302 that is a casing of the master cylinder device 110, a first pressurizing piston 304 and a second pressurizing piston 306 that pressurize the hydraulic fluid supplied to the brake device 116, and a driver's operation.
  • An input piston 308 that is input through the operating device 112 is included.
  • FIG. 2 shows a state where the master cylinder device 110 is not operating, that is, a state where the brake operation is not performed.
  • the housing 302 is mainly composed of two members, specifically, a first housing member 310 and a second housing member 312.
  • the first housing member 310 has a generally cylindrical shape with the front end closed, and a flange 320 is formed on the outer periphery of the rear end, and is fixed to the vehicle body at the flange 320.
  • the first housing member 310 is divided into two parts having different inner diameters, specifically, a front small-diameter part 322 having a small inner diameter located on the front side and a rear large-diameter part 324 having a large inner diameter located on the rear side. Has been.
  • the second housing member 312 has a cylindrical shape having a front large diameter portion 330 having a large inner diameter located on the front side and a rear small diameter portion 332 having a small inner diameter located on the rear side. A step surface is formed between the front large-diameter portion 330 and the rear small-diameter portion 332 due to the different inner diameters.
  • the second housing member 312 is fitted into the rear large diameter portion 324 such that the front end of the front large diameter portion 330 is in contact with the step surface between the front small diameter portion 322 and the rear large diameter portion 324 of the first housing member 310. ing.
  • the first housing member 310 and the second housing member 312 are fastened to each other by a lock ring 334 fitted on the inner peripheral surface of the rear end portion of the first housing member 310.
  • the second pressurizing piston 306 has a bottomed cylindrical shape whose rear end is closed, and is slidably fitted to the front small-diameter portion 322 of the first housing member 310.
  • the first pressurizing piston 304 has a cylindrical main body 350 and a flange 352 provided at the rear end of the main body 350.
  • the first pressurizing piston 304 is disposed behind the second pressurizing piston 306, and the front portion of the main body 350 is disposed on the rear side of the inner peripheral surface of the front small diameter portion 322 of the first housing member 310. 352 is slidably fitted on the inner peripheral surface of the front large-diameter portion 330 of the second housing member 312.
  • the inside of the main body 350 of the first pressure piston 304 is divided into two parts by a partition wall 354 provided at an intermediate position in the front-rear direction. That is, the first pressurizing piston 304 has a shape having two bottomed holes that open to the front end and the rear end, respectively.
  • a first pressurizing chamber R1 is defined, and in front of the second pressurizing piston 306, a second pressurizing hydraulic fluid supplied to the brake devices 116FL and FR provided on the two front wheels is provided.
  • a pressurizing chamber R2 is partitioned.
  • the first pressurizing piston 304 and the second pressurizing piston 306 include a headed pin 360 screwed up on the partition wall portion 354 of the first pressurizing piston 304 and a rear of the second pressurizing piston 306.
  • compression coil springs (hereinafter sometimes referred to as “return springs”) 364 and 366 are disposed in the first pressurizing chamber R1 and the second pressurizing chamber R2, respectively.
  • the first pressurizing piston 304 and the second pressurizing piston 306 are biased toward the rear while being biased in the direction in which they are separated from each other.
  • the hydraulic fluid from the high pressure source device 118 is located behind the first pressurizing piston 304, specifically, behind the flange 352 of the first pressurizing piston 304 and between the step surface of the second housing member 312.
  • a liquid chamber to which pressure is supplied that is, a liquid chamber (hereinafter also referred to as “input chamber”) R3 into which pressure from the high-pressure source device 118 is input is partitioned.
  • input chamber a liquid chamber
  • the space is partitioned by the front end surface of the flange portion 352 of the first pressurizing piston 304 and the step surface between the front small-diameter portion 322 and the rear large-diameter portion 324 of the first housing member 310, thereby A chamber is formed.
  • the liquid chamber is an opposing chamber R4 that faces the input chamber R3 with the flange 352 of the first pressure piston 304 interposed therebetween.
  • the input piston 308 is located at the rear and has a cylindrical rear side member 370 whose front end is opened and its rear end is blocked, and the front end of the input piston 308 is blocked at the front of the rear side member 370. And a front side member 372 whose rear end portion is open.
  • the front member 372 is fitted to the rear member 370 so as to be in sliding contact with the inner peripheral portion of the rear member 370, and the front member 372 and the rear member 370 are relatively movable. That is, the input piston 608 can be expanded and contracted. Note that, by this relative movement, the front end portion of the front side member 372 can advance and retreat with respect to the front end of the rear side member 370.
  • a liquid chamber (hereinafter also referred to as “internal chamber”) R5 is defined by a rear side member 370 and a front side member 372 within the input piston 308 thus configured.
  • the input piston 308 is inserted into the rear small-diameter portion 332 of the second housing member 312 from the rear end side of the housing 302 and is fitted into a bottomed hole that opens to the rear of the first pressure piston 304.
  • a liquid chamber hereinafter also referred to as “inter-piston chamber” R6 is defined between the first piston 308 and the first pressurizing piston 304.
  • a liquid passage 374 having a certain flow passage area is formed between the input piston 308 and the first pressurizing piston 304, and a certain amount is also provided between the input piston 308 and the second housing member 312.
  • a liquid passage 376 having a flow passage area is formed.
  • the inner chamber R5 has a first reaction force spring 380 that supports the front side member 372 and a second reaction force that is arranged in series behind the first reaction force spring 380 and supports the rear side member 370.
  • a spring 382 and a rod-shaped floating seat 384 that is supported by floating between the reaction force springs are arranged.
  • the first reaction force spring 380 and the second reaction force spring 382 are both compression coil springs, and the direction in which the front side member 372 protrudes from the rear side member 370 of the input piston 308, that is, the input piston 608 extends.
  • the front side member 372 is elastically supported.
  • the front side member 372 has a locked portion provided on the outer peripheral portion of the rear end of the front side member 372, and is locked by a locking portion provided on the inner peripheral portion of the front end of the main body portion 370. Projecting forward from the side member 370 to some extent is restricted. Further, a buffer rubber 386 is fitted into the front end portion of the floating seat 384, and the front rubber 386 comes into contact with the rear end surface of the front member 372 so that the front member 372 and the floating seat 384 are close to each other. Limited to range.
  • a buffer rubber 388 is also fitted into the rear end portion of the rear side member 370, and the rear side member 370 and the floating seat 384 are also approached by the buffer rubber 388 coming into contact with the rear end surface of the floating seat 384. Limited to a certain range. That is, the expansion / contraction of the input piston 608 is limited to some extent.
  • the rear end member 370 of the input piston 308 has a front end of the operation rod 152 to transmit the operation force of the brake pedal 150 to the input piston 308 and to advance and retract the input piston 308 according to the operation amount of the brake pedal 150.
  • the parts are connected. Incidentally, the rear end portion of the input piston 308 is locked by the rear end portion of the rear small diameter portion 332 of the second housing member 312, so that the backward movement is limited.
  • the operation rod 152 is provided with a disk-shaped spring seat 390, and a compression coil spring (hereinafter referred to as “return spring”) may be provided between the spring seat 390 and the second housing member 312. ) 392 is provided, and the operation rod 152 is urged rearward by the return spring 392.
  • a boot 394 is passed between the spring seat 390 and the housing 302 to prevent dust at the rear part of the master cylinder device 110.
  • the first pressurizing chamber R1 communicates with a liquid passage 202 connected to the antilock device 114 via a communication hole 400 whose opening serves as an output port, and a communication hole 402 provided in the first pressurizing piston 304 and It is possible to communicate with the reservoir 122 through a communication hole 404 whose opening serves as a drain port.
  • the second pressurizing chamber R2 communicates with the liquid passage 200 connected to the antilock device 114 via a communication hole 406 whose opening serves as an output port, and a communication hole provided in the second pressurizing piston 306. 408 and a communication hole 410 whose opening serves as a drain port can communicate with the reservoir 122.
  • the main body 350 of the first pressure piston 304 has an outer diameter that is somewhat smaller than the inner diameter of the front small-diameter portion 322 of the first housing member 310, and a liquid passage 412 having a certain flow passage area between them. Is formed.
  • the liquid passage 412 communicates with the reservoir 122 through a communication hole 414 whose opening is a drain port, and communicates with the outside through a communication hole 416 whose opening is a connection port.
  • a part of the front large-diameter portion 330 of the second housing member 312 has an outer diameter that is somewhat smaller than the inner diameter of the first housing member 310, and has a certain flow path area between the housing members 310 and 312.
  • a liquid passage 418 is formed.
  • the input chamber R3 is connected to the pressure increasing / decreasing device 120 through the liquid passage 418, a communication hole 420 provided in the second housing member 312 and a communication hole 422 whose opening serves as an input port.
  • the first pressurizing piston 304 is provided with a communication hole 424 as an inter-chamber communication path for communicating the facing chamber R4 and the inter-piston chamber R6.
  • the counter chamber R4 and the inter-piston chamber R6 are defined as one liquid chamber (hereinafter also referred to as “reaction force chamber”) R7 by the communication hole 424 and the liquid passage 374.
  • reaction force chamber liquid chamber
  • the pressure receiving area of the flange 352 where the pressure of the hydraulic fluid in the facing chamber R4 acts is equal to the pressure receiving area of the input piston 308 where the pressure of the hydraulic fluid in the inter-piston chamber R6 acts.
  • reaction force chamber R7 communicates with the outside through a communication hole 426 provided in the second housing member 312 and a communication hole 428 whose opening serves as a connection port.
  • the communication hole 428 is connected to an external communication path 430 that communicates with the reservoir 122 via a communication hole 416, a liquid path 412, and a communication hole 414.
  • An electromagnetic on-off valve 432 is provided in the middle of the external communication path 430.
  • the on-off valve 432 is a normally open valve that is opened when not excited, and the reaction force chamber R7 communicates with the reservoir 122 in the opened state.
  • the internal chamber R5 of the input piston 308 is provided in the first housing member 310, the communication hole 434 provided in the rear member 370 of the input piston 308, the liquid passage 376, the communication hole 436 provided in the second housing member 312.
  • the opening communicates with the outside through a communication hole 438 serving as a connection port.
  • the communication hole 438 is connected to the other end of the external communication path 440 whose one end is connected to the external communication path 430.
  • An electromagnetic on-off valve 442 is provided in the middle of the external communication path 440.
  • the on-off valve 442 is a normally closed valve that is in a closed state in a non-excited state. In the closed state, communication between the internal chamber R5 and the reservoir 122 is blocked. *
  • the front end of the front side member 372 of the input piston 308 and the bottom of the bottomed hole of the first pressurizing piston 304 are spaced apart when the brake pedal 150 is not operated. is doing. Further, the spaced distance is 1/5 or less of the diameter of the bottomed hole, specifically 1/10 or less.
  • the pressure receiving area of the flange portion 352 and the pressure receiving area of the input piston 308 are equal to each other, and therefore the force for moving the first pressurizing piston 304 forward by the pressure of the working fluid in the reaction force chamber R7. And the force to retreat is equal. Therefore, even if the pressure of the hydraulic fluid in the reaction force chamber R7 increases due to the operating force, the first pressurizing piston 304 is not moved only by that. That is, the master cylinder device 110 is normally unable to pressurize the hydraulic fluid in the pressurizing chamber depending on the operating force. In other words, the operating force applied to the brake pedal 150 is not transmitted to the first pressurizing piston 304.
  • the hydraulic fluid in the first pressurizing chamber R1 and the second pressurizing chamber R2 is pressurized by the first pressurizing piston 304 and the second pressurizing piston 306 in order to generate a hydraulic braking force during the braking operation.
  • the pressure generated by the high pressure source device 118 may be input to the input chamber R3.
  • the pressure controlled by the pressure increasing / decreasing device 120 may be input to the input chamber R3 so that the hydraulic braking force exceeding the regenerative braking force can be obtained.
  • the first pressurizing piston 304 moves forward depending on the pressure of the working fluid in the input chamber R3, and the working fluid in the first pressurizing chamber R1 is pressurized.
  • the second pressurizing piston 306 moves forward, and the hydraulic fluid in the second pressurizing chamber R2 is pressurized. Further, as the first pressurizing piston 304 advances, the hydraulic fluid in the facing chamber R4 flows into the inter-piston chamber R6. As described above, since the pressure receiving area of the flange 352 and the pressure receiving area of the input piston 308 are equal, the moving distance of the first pressurizing piston 304 with respect to the housing 302 in the volume change of the facing chamber R4, and the inter-piston chamber The movement distance of the first pressurizing piston 304 relative to the input piston 308 in the volume change of R6 is equal to each other.
  • the input piston 308 is not moved by the advancement of the first pressurizing piston 304 at normal times.
  • the master cylinder device 110 in a normal state, the master cylinder device 110 operates so as to pressurize the hydraulic fluid in the pressurizing chambers R1 and R2 depending on the high pressure source pressure, that is, depends on the high pressure source pressure. A pressurized state is realized.
  • the input piston 308 is in a state where the front side member 372 that partitions the inter-piston chamber R6 cannot move, and the rear side member 370 receives a forward force due to the operation force. It has been added. Therefore, the input piston 308 contracts as the front side member 372 and the rear side member 370 move relative to each other by the operating force. In response to the contraction, the first reaction force spring 380 and the second reaction force spring 382 generate an elastic reaction force, and the elastic reaction force causes the front side member 372 and the rear side member 370 to extend the input piston 308. Act on.
  • the first reaction force spring 380 and the second reaction force spring 382 and the floating seat 384 connecting them function as a reaction force generation mechanism that generates an elastic reaction force against the contraction of the input piston 308.
  • a stroke simulator is configured including such a reaction force generation mechanism, and the driver can feel the elastic reaction force as an operation reaction force with respect to his own brake operation.
  • the operation position of the brake pedal 150 in the brake operation is the operation force and the reaction force. It depends on the elastic reaction force of the generating mechanism. That is, in the brake operation, the operation amount of the brake pedal 150 becomes a magnitude corresponding to the contraction amount of the input piston 308, and the brake pedal 150 stops at a position where the operation force and the operation reaction force are balanced. Therefore, since the brake pedal 150 does not move according to the position of the first pressure piston 304, the driver can perform a brake operation without feeling uncomfortable due to the movement.
  • FIG. 3 is a graph showing a change in the operation reaction force with respect to the forward movement amount of the rear side member 370 of the input piston 308, that is, the operation amount of the brake pedal 150 (hereinafter, sometimes referred to as “operation reaction force gradient”). .
  • operation reaction force gradient a change in the operation reaction force with respect to the forward movement amount of the rear side member 370 of the input piston 308, that is, the operation amount of the brake pedal 150 (hereinafter, sometimes referred to as “operation reaction force gradient”).
  • the operation reaction force characteristics of the cylinder device 110 are graphs.
  • reaction force gradient change operation amount when the operation amount of the brake pedal 150 increases, the operation reaction force increases accordingly.
  • reaction force gradient change operation amount hereinafter sometimes referred to as “reaction force gradient change operation amount”
  • the change in the operation reaction force with respect to the change in the operation amount increases. That is, the increase gradient of the operation reaction force is increased.
  • the spring constant of the first reaction force spring 380 is considerably smaller than the spring constant of the second reaction force spring 382. Therefore, the amount of compressive deformation of the first reaction force spring 380 in the brake operation becomes considerably larger than the amount of compressive deformation of the second reaction force spring 382. Accordingly, when the operation amount increases, the front side member 372 contacts the buffer rubber 386 of the floating seat 384, and the first reaction force spring 380 cannot be deformed. When the operation amount further increases, the first reaction force spring 380 becomes elastic. In a state where it cannot be deformed, the second reaction force spring 382 is elastically deformed.
  • the operation amount when the first reaction force spring 380 cannot be deformed in this way is the reaction force gradient change operation amount. Therefore, in the master cylinder device 110, the operation reaction force gradient is small in the range where the operation amount is relatively small, and is large in the range where the operation amount is relatively large. Due to such operational reaction force characteristics, the operational feeling of the brake pedal 150 is good.
  • the hydraulic brake system 100 may generate the hydraulic braking force by the amount exceeding the regenerative braking force of the target braking force. In extreme terms, as long as the target braking force can be covered by the regenerative braking force, the hydraulic braking force by the hydraulic brake system 100 is not required. If the maximum regenerative braking force obtained by regenerative braking in this vehicle is defined as the maximum regenerative braking force that can be used, it is assumed that the hydraulic braking force is generated when the target braking force exceeds the maximum usable regenerative braking force. In this case, the operation amount of the brake pedal at the time when generation of the hydraulic braking force is started is generally the maximum regeneration hydraulic braking start operation amount in FIG.
  • the maximum regenerative hydraulic braking start operation amount is set to be slightly larger than the reaction force gradient change operation amount described above. Incidentally, even if the target braking force does not exceed the maximum available regenerative braking force due to the amount of charge of the battery 26, etc., the hydraulic braking force may be required.
  • the pressure from the high pressure source device 118 may be input to the input chamber R3 at a stage that does not reach the hydraulic fluid braking start operation amount.
  • the first pressurizing piston 304 and the second pressurizing piston 306 are initialized by the return springs 364 and 366, respectively.
  • the position is returned to the position (the position shown in FIG. 2 where the rear end of the first pressure piston 304 is in contact with the stepped surface of the second housing member 312).
  • the input piston 308 and the operation rod 152 together with the return spring 392 are in an initial position (the position shown in FIG. 2, and the rear end of the rear side member 370 is locked by the rear end portion of the second housing member 312. (Returned position).
  • the on-off valve 432 functions as an anti-low pressure source communicator that allows the input piston 308 to contact the first pressurizing piston 304 and communicates the facing chamber R4 and the inter-piston chamber R6 with the reservoir 122.
  • the operating force is transmitted to the first pressurizing piston 304 via the input piston 308, so that the on-off valve 432 depends on the operating force and the hydraulic fluid in the pressurizing chambers R1 and R2
  • An operation force-dependent pressurization realizing mechanism that realizes pressurization is used.
  • the on-off valve 442 is closed because it is not energized. Therefore, the on-off valve 442 serving as an internal chamber communication breaker blocks communication of the internal chamber R5 to the reservoir 122, and the internal chamber R5 is sealed. Therefore, the rear side member 370 and the front side member 372 of the input piston 308 cannot move relative to each other, and the input piston 308 is in a state in which contraction is prohibited. That is, the on-off valve 442 functions as an input piston contraction prohibiting mechanism that prohibits contraction of the input piston 308.
  • the operation amount of the brake pedal 150 becomes a magnitude corresponding to the movement amount of the first pressurizing piston 304, and the operation amount can be made relatively small.
  • the operation amount is not increased more than necessary, and the operational feeling in the brake operation can be improved.
  • the cylinder device 110 when the high pressure source device 118 cannot supply the high-pressure working fluid, the cylinder device 110 depends solely on the operating fluid in the pressurizing chambers R1 and R2. Thus, a state that can be operated so as to pressurize, that is, an operation force-dependent pressurization state is realized.
  • the front end of the front side member 372 of the input piston 308 and the bottom of the bottomed hole of the first pressurizing piston 304 are spaced apart when the brake pedal 150 is not operated. Therefore, when the master cylinder device 110 operates in an operation force-dependent pressurization state, the master cylinder device 110 is provided with an idle travel distance, that is, “play” in the brake operation at the start of the brake operation. The state where the brake device cannot be operated is set. However, in the master cylinder device 110, the idling distance is relatively shorter than 1/5 of the diameter of the bottomed hole of the first pressurizing piston 304, more specifically, 1/10 or less. The input piston 308 can come into contact with the first pressure piston 304 at an early stage. Therefore, in the master cylinder device 110, the hydraulic braking force starts to be generated only by slightly operating the brake pedal 150 in the operation force-dependent pressurization state, so that the brake operation feeling is good.
  • FIG. 4 shows a hydraulic brake system 100 that employs a modified master cylinder device 500 in place of the master cylinder device 110 of the first embodiment.
  • the master cylinder device 500 employs a mechanical on-off valve 502 instead of the electromagnetic on-off valve 442 provided in the external communication path 440 of the master cylinder device 110 of the first embodiment. Except for this, it has the same structure as the master cylinder device 110 of the first embodiment. In the following description, only the configuration and operation different from the master cylinder device 110 of the first embodiment will be described with the on-off valve 502 as the center.
  • the on-off valve 502 is provided in the middle of the external communication path 440.
  • FIG. 5 is a cross-sectional view of the on-off valve 502.
  • the on-off valve 502 includes a housing 510 that is a housing, and a valve member 512 and a plunger 514 disposed inside the housing 510.
  • the housing 510 has a cylindrical shape with both ends closed.
  • a large inner diameter portion 520 having a large inner diameter and a small inner diameter portion 522 having a small inner diameter are formed inside the housing 510, and a step surface 524 is formed at the boundary between the inner diameter portions.
  • a partition member 525 having a generally cylindrical shape is fixedly fitted into the large inner diameter portion 520 in contact with the step surface 524.
  • a communication hole 526 is provided at the center of the partition member 525. Further, the outer diameter of the outer periphery of the partition member 525 near the step surface 524 is reduced, and a gap 528 is formed between the large inner diameter portion 520 of the first housing member 320 and the partition member 525. Yes.
  • a liquid chamber R11 is defined by a partition member 525 in the large inner diameter portion 520 of the housing 510.
  • a spherical valve element 512 and a compression coil spring 530 are arranged in the liquid chamber R11.
  • the valve element 512 is pressed against the communication hole 526 by the elastic reaction force of the spring 530. It has been.
  • the diameter of the valve member 512 is larger than the diameter of the communication hole 526. That is, the partition member 525 functions as a valve seat, and the communication hole 526 can be closed by the valve member 512 being seated. In this state, the on-off valve 502 is closed.
  • a plunger 514 having a generally cylindrical shape is disposed in the small inner diameter portion 522 of the housing 510.
  • One end of the plunger 514 is a tip portion 532 whose outer diameter is smaller than the diameter of the communication hole 526, and the other end is a base portion 534 whose outer diameter is slightly smaller than the inner diameter of the small inner diameter portion 522. . Therefore, the plunger 514 is fitted in the housing 510 with the base portion 534 slidable on the small inner diameter portion 522.
  • a liquid chamber R12 is defined in front of the plunger 514 by a small inner diameter portion 522, a partition member 525, and a plunger 514, and at the rear is a pilot pressure described later by the small inner diameter portion 522 and the plunger 514.
  • a pilot pressure chamber R13 into which hydraulic fluid is introduced is defined. The pilot pressure chamber R13 is shown in a substantially collapsed state in FIG. Also, the liquid chamber R12 can be communicated with the liquid chamber R11 through the communication hole 526 described above.
  • the large inner diameter portion 520 of the housing 510 is provided with a communication hole 536 having one end opened to the liquid chamber R11 and the other end serving as a connection port. Further, a communication hole 538 having one end opened to the gap 528 and the other end serving as a connection port is provided near the step surface 524 of the large inner diameter portion 520.
  • the partition member 525 is provided with a communication hole 540 that allows the gap 528 to communicate with the liquid chamber R12. Further, the small inner diameter portion 522 of the housing 510 is provided with a communication hole 542 having one end opened to the pilot pressure chamber R13 and the other end serving as a connection port.
  • the on-off valve 502 configured as described above is connected to the external communication path 440 at each connection port of the communication holes 536 and 538. That is, it can be said that the communication hole 536, the liquid chambers R11 and R12, the communication hole 540, the gap 528, and the communication hole 538 constitute a part of the external communication path 440, and the external communication path 440 serves as a master.
  • the communication hole 438 of the cylinder device 500 can communicate with the reservoir 122.
  • the connection port of the communication hole 542 is connected to a communication path branched from the external communication path 430, and hydraulic fluid having the same pressure as the hydraulic fluid in the reaction force chamber R7 is supplied to the communication hole 542. .
  • the plunger 514 can be operated such that its tip 532 is inserted through the communication hole 526 and presses the valve member 512 according to the pressure of the hydraulic fluid in the reaction force chamber R7.
  • the plunger 514 can separate the valve member 512 from the communication hole 526. In this state, the on-off valve 502 is opened.
  • the operation of the cylinder device 500 will be described below. Since the on-off valve 432 is normally energized and closed, the reaction force chamber R7 is sealed. When the brake operation is performed in this state, the pressure of the hydraulic fluid in the reaction force chamber R7 increases. Therefore, in the on-off valve 502, the valve member 512 is separated from the communication hole 526, the on-off valve 502 is opened, and the liquid chambers R11 and R12 are in communication with each other, that is, the internal chamber R5 is connected to the reservoir 122. It will be in a state of communication. Therefore, the master cylinder device 500 can operate in a high pressure source pressure dependent pressurizing state at normal times.
  • the pressure receiving area of the base portion 534 of the plunger 514 on which the pressure of the hydraulic fluid in the pilot pressure chamber R13 acts is relatively large. Therefore, the opening / closing valve 502 can be opened when the pressure of the hydraulic fluid in the reaction force chamber R7 slightly increases. Therefore, in the master cylinder device 500, the internal chamber R5 communicates with the reservoir 122 by the on-off valve 502 immediately after the brake operation, that is, the pressure of the hydraulic fluid in the reaction force chamber R7 is slightly increased by the operating force. Can do.
  • the on-off valve 432 is opened. Therefore, the pressure of the hydraulic fluid in the reaction force chamber R7 and the external communication passage 430 is atmospheric pressure, and the pressure of the hydraulic fluid in the pilot pressure chamber R13 is also atmospheric pressure. Therefore, the valve member 512 is not separated from the communication hole 526 when there is an electrical failure. That is, the on-off valve 502 is maintained in a closed state, and communication between the internal chamber R5 and the reservoir 122 is blocked. Therefore, the cylinder device 500 can operate in an operation force dependent pressurizing state.
  • the on-off valve 302 is opened by the pressure. It is configured not to. More specifically, the area of the portion in which the hydraulic fluid in the liquid chamber R12 acts on the valve element 512 is considerably reduced, and the force that pushes up the valve element 512 from the partition member 525 by the pressure of the hydraulic fluid
  • the on-off valve 302 is configured so that the force of pressing the valve element 512 against the partition member 525 by 530 is not increased. Therefore, in the operating force dependent pressurizing state, the on-off valve 302 is maintained in the closed state.
  • the on-off valve 502 is introduced when the pressure of the hydraulic fluid in the reaction force chamber R7 is introduced as a pilot pressure and the pilot pressure is equal to or higher than a set pressure set based on the elastic reaction force of the compression spring 530. It functions as an internal chamber communication circuit breaker that operates so as to close when the pressure falls below the set pressure.
  • the internal chamber communication breaker is configured by a relatively simple mechanism.
  • FIG. 6 shows a hydraulic brake system 100 that employs a master cylinder device 600 of the second embodiment instead of the master cylinder device 110 of the first embodiment.
  • the master cylinder device 600 has roughly the same structure as the master cylinder device 110 of the first embodiment. In the following description, only the configuration and operation different from the master cylinder device 110 of the first embodiment will be described in consideration of the simplification of the description.
  • the input piston 602 of the master cylinder device 600 has a shape obtained by removing the spring and the like provided in the input piston 308 of the master cylinder device 110 of the first embodiment.
  • an electromagnetic on-off valve 606 that is normally closed and an electromagnetic on-off valve 608 that is normally open are provided in the external communication passage 440. That is, the master cylinder device 600 is provided with an external stroke simulator 610 sandwiched between these on-off valves.
  • FIG. 7 is a cross-sectional view of the stroke simulator 610.
  • the stroke simulator 610 includes a housing 612 that is a housing, and a pressure piston 614 and a compression coil spring 616 disposed inside the housing 612.
  • the housing 612 has a cylindrical shape with both ends closed.
  • the pressurizing piston 614 has a disc shape and is slidably disposed on the inner peripheral surface of the housing 612.
  • One end of the spring 616 is supported on the inner bottom surface of the housing 612, and the other end is supported on one end surface of the pressure piston 614. Accordingly, the pressure piston 614 is elastically supported on the housing 612 by the spring 616.
  • a liquid chamber R ⁇ b> 21 is defined in the housing 612 by the other end surface of the pressure piston 614 and the housing 612.
  • the housing 612 is provided with a communication hole 618 having one end opened to the liquid chamber R21 and the other end serving as a connection port.
  • a communication path branched from the external communication path 440 is connected to the connection port of the communication hole 618. Therefore, the liquid chamber R21 can communicate with the internal chamber R5.
  • the hydraulic fluid in the liquid chamber R21 is elastically pressurized by the spring 616 via the pressure piston 614. Further, when the input piston 602 contracts while the liquid chamber R21 is in communication with the internal chamber R5, the working fluid in the internal chamber R5 can flow into the liquid chamber R21 via the external communication path 440. When the volume of the liquid chamber R21 increases due to the inflow of the hydraulic fluid, the pressure piston 614 compresses the spring 616, and the elastic reaction force acting on the hydraulic fluid from the spring 616 increases.
  • the stroke simulator 610 is configured to include the liquid chamber R21 in which the change in volume is allowed and the spring 616 that pressurizes the working fluid as the pressurizing mechanism, and the elastic reaction force against the contraction of the input piston 602. It is a reaction force generating mechanism that generates
  • the on-off valve 606 and the on-off valve 608 are normally energized to open and close, respectively. Accordingly, the internal chamber R5 communicates with the stroke simulator 610 via the on-off valve 606, and the communication between the internal chamber R5 and the stroke simulator 610 with the reservoir 122 is blocked by the on-off valve 608. Therefore, when the brake pedal 150 is operated by the driver and the input piston 602 contracts, in the stroke simulator 610, the elastic reaction force of the spring 616 increases. Therefore, normally, the driver can feel the elastic reaction force that changes according to his / her brake operation as the operation reaction force, and the master cylinder device 600 can operate in the high pressure source pressure dependent pressurization state. Note that, since the stroke simulator 610 is configured by one spring, the change in the operation reaction force with respect to the operation amount does not change as shown in the graph of FIG. It changes with. That is, the operation reaction force gradient has a substantially constant magnitude.
  • the open / close valve 606 and the open / close valve 608 are not energized and are closed and opened, respectively, in a situation where power is not supplied to the hydraulic brake system 100. Therefore, the internal chamber R5 is blocked from communicating with the stroke simulator 610 by the on-off valve 606, and the internal chamber R5 is sealed. That is, the on-off valve 606 functions as an internal chamber communication circuit breaker that blocks communication of the internal chamber R5 to the liquid chamber R21, and the input piston 602 can be prevented from contracting by sealing the internal chamber R5. It functions as a piston contraction inhibition mechanism. Therefore, at the time of electrical failure, the master cylinder device 600 can operate in an operating force dependent pressurizing state.
  • the stroke simulator 610 communicates with the reservoir 122 by opening the on-off valve 608 when electrical failure occurs. Also, when the ignition is turned off, the on-off valve 608 is de-energized and opens, and the stroke simulator 610 communicates with the reservoir 122.
  • a residual pressure may be generated in the working fluid in the liquid chamber R21 due to, for example, leakage of working fluid inside the brake operation during normal operation. Such residual pressure prevents proper operation of the stroke simulator 610.
  • the master cylinder device 600 can eliminate such residual pressure by periodically communicating the liquid chamber R21 with the reservoir 122.
  • the stroke simulator employed in the master cylinder device 600 may be a so-called diaphragm type stroke simulator. That is, it is also possible to employ a stroke simulator in which the liquid chamber R21 is partitioned by a diaphragm instead of the pressurizing piston 614, and the hydraulic fluid is pressurized by the pressurizing mechanism via the diaphragm.
  • the mechanical on-off valve 602 employed in the master cylinder device 600 of the modified example of the first embodiment described above is used as an internal communication circuit breaker. It is also possible to adopt.
  • the on-off valve 602 is employed, the on-off valve 602 is disposed between the connection port of the communication hole 438 in the external communication path 440 and the stroke simulator 610, and operates in the reaction force chamber R7 from the external communication path 430.
  • the liquid pressure may be introduced as a pilot pressure.
  • the on-off valve 602 arranged in such a manner can be operated so as to be in a valve open state in a normal state and to be in a valve closed state in the event of an electrical failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Of Braking Force In Braking Systems (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)

Abstract

 マスタシリンダ装置110は、作動液を加圧するための第1加圧室R1が区画される本体部650と、本体部の外周に鍔部652とを有し、鍔部の前方に作動液で満たされた対向室R4が区画される第1加圧ピストン604と、ピストン間室R6が第1加圧ピストンとによって自身の前方に区画され、ブレーキペダル150の操作によって収縮可能とされた入力ピストン608とを備え、さらに、入力ピストンの加圧ピストンへの当接を許容すべく、対向室およびピストン間室をリザーバ122に連通させる電磁式の開閉弁732と、入力ピストンの収縮を禁止する電磁式の開閉弁742とを備える。このようにマスタシリンダ装置を構成することで、入力ピストンの収縮を禁止した状態で操作力に依存して加圧室内の作動液を加圧することができる。

Description

マスタシリンダ装置
 本発明は、車輪に設けられたブレーキ装置に、作動液を加圧して供給するためのマスタシリンダ装置に関する。
 近年、車両の液圧ブレーキシステムには、例えば、下記特許文献に記載されているように、通常、高圧源から導入される高圧とされた作動液の圧力に専ら依存して作動液を加圧するように作動するマスタシリンダ装置が採用されている。このようなマスタシリンダ装置は、一般的に、ストロークシミュレータを備えている。ストロークシミュレータは、運転者が操作部材に加える操作力に応じて、操作部材の移動を許容しつつ、操作力に対する操作反力を発生する。そのため、操作力に依存して作動液が加圧されない場合でも、運転者は自身のブレーキ操作によって操作部材を動かしつつ操作反力を実感することができる。したがって、ストロークシミュレータは、マスタシリンダ装置が高圧源によって高圧とされた作動液の圧力に専ら依存して作動液を加圧するように作動する場合でも、ブレーキ操作における操作感を良好なものとさせることができる。しかしながら、電気的失陥等によって高圧源が正常に作動することができない場合、マスタシリンダ装置は、外部高圧源により高圧とされた作動液に専ら依存して作動液を加圧するように作動することができなくなってしまう。そのため、マスタシリンダ装置には、運転者の操作力に専ら依存して作動液を加圧するように作動するための機能も備えられている。
特開平2-279450号公報
 上記のようなマスタシリンダ装置が操作力に専ら依存して作動液を加圧するように作動する場合であっても、ストロークシミュレータが機能できる状態にされている。そのため、ストロークシミュレータによる操作部材の移動が許容され、ブレーキ操作におけるブレーキ操作部材の操作量が比較的大きくなり、ブレーキ操作の操作感が低下してしまう。このような操作感の低下は、ストロークシミュレータを備えたマスタシリンダ装置の有する問題の一例であって、マスタシリンダ装置は他にも種々の問題を有しており、種々の改善を施すことによって、それの実用性を向上させることが可能である。本発明は、このような実情に鑑みてなされたものであり、実用性の高いマスタシリンダ装置を提供することを課題とする。
 上記課題を解決するため、本発明のマスタシリンダ装置は、(A)前方に作動液を加圧するための加圧室が区画される本体部と、本体部の外周に形成された鍔部とを有し、鍔部の後方に高圧源から作動液が導入される入力室が、鍔部の前方に作動液で満たされて入力室と対向する対向室が、それぞれ区画される加圧ピストンと、(B)ピストン間室が加圧ピストンとによって自身の前方に区画され、操作部材の操作によって収縮可能とされた入力ピストンと、(C)入力ピストンの収縮に対して弾性反力を発生させる反力発生機構とを備え、さらに、入力ピストンの加圧ピストンへの当接を許容すべく、対向室およびピストン間室を低圧源に連通させる対低圧源連通器と、入力ピストンの収縮を禁止する入力ピストン収縮禁止機構とを備えたことを特徴とする。
 本発明のマスタシリンダ装置によれば、対低圧源連通器によって入力ピストンの加圧ピストンへの当接を許容すれば、操作部材に加えられる操作力が加圧ピストンへと伝達される。さらに、入力ピストン収縮禁止機構によって入力ピストンの収縮を禁止すれば、ストロークシミュレータが機能しない状態で、ストロークシミュレータによる操作部材の移動が禁止された状態で、操作力が加圧ピストンへと伝達され、操作力に依存して加圧室内の作動液を加圧することができる。そのため、比較的小さな操作量で加圧室内の作動液を加圧することができ、操作感は良好となる。そのことによって、マスタシリンダ装置の実用性を向上させることができるのである。
発明の態様
 以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、それらの発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から何某かの構成要素を削除した態様も、請求可能発明の一態様となり得るのである。
 なお、以下の各項において、(1)項から(12)項が請求項1から請求項12にそれぞれ相当する。
 (1)車輪に設けられて作動液の圧力によって作動するブレーキ装置に、加圧された作動液を供給するためのマスタシリンダ装置であって、
 前方が閉塞されたハウジングと、
 後端に開口する有底穴を有するとともに、本体部とその本体部の外周に形成された鍔部とを有し、前記本体部の前方に、前記ブレーキ装置に供給される作動液を加圧するための加圧室が区画されるとともに、前記鍔部の後方に、高圧源から作動液が導入される環状の入力室が、前記鍔部の前方に、作動液で満たされて前記鍔部を挟んで前記入力室と対向する環状の対向室が、それぞれ区画されるようにして、前記ハウジング内に配設された加圧ピストンと、
 作動液で満たされるピストン間室が前記加圧ピストンとによって自身の前方に区画されるようにして、前記加圧ピストンの有底穴に嵌入され、後端部において操作部材に連結され、かつ、その操作部材の操作によって収縮可能とされた入力ピストンと、
 その入力ピストンの収縮に対して弾性反力を発生させる反力発生機構と、
 前記加圧ピストンの進退に伴う前記対向室の容積変化と前記ピストン間室の容積変化とを相互に吸収可能とすべく、それら対向室とピストン間室とを相互に連通させる室間連通路と、
 を備え、
 通常、前記室間連通路によって連通させられた前記対向室および前記ピストン間室が密閉され、前記操作部材に加えられた操作力が前記入力ピストンから前記加圧ピストンへ伝達されない状態において、前記反力発生機構によって発生させられる弾性反力を前記操作部材の操作に対する操作反力として機能させつつ、前記高圧源から導入された作動液の圧力に依存して前記加圧ピストンが前記加圧室内の作動液を加圧するように構成され、
 前記高圧源から導入される作動液の圧力が不充分となる状況下において、前記入力ピストンから前記加圧ピストンへの前記操作力の伝達を許容して、その操作力に依存した前記加圧ピストンによる前記加圧室内の作動液の加圧を実現させる操作力依存加圧実現機構を、さらに備え、
 その操作力依存加圧実現機構が、
 前記入力ピストンの前記加圧ピストンへの当接を許容すべく、前記対向室および前記ピストン間室を低圧源に連通させる対低圧源連通器と、
 前記入力ピストンの収縮を禁止する入力ピストン収縮禁止機構と
 を含んで構成されたマスタシリンダ装置。
 上記のように構成されたマスタシリンダ装置では、室間連通路によって連通されたピストン間室内および対向室内の作動液の圧力は同じ大きさとなる。したがって、例えば、対向室内の作動液の圧力が作用する加圧ピストンの鍔部の受圧面積と、ピストン間室内の作動液の圧力が作用する入力ピストンの受圧面積とが略等しいような場合には、ピストン間室内および対向室内の作動液の圧力によって加圧ピストンを前進させるように作用する力と後退させるように作用する力とは殆ど等しくなる。したがって、加圧ピストンはピストン間室内および対向室内の作動液の圧力が変化しても殆ど移動しない。そのため、運転者が操作部材に加える操作力が、入力ピストンを介してピストン間室内および対向室内の作動液へと伝達されても、加圧ピストンは殆ど移動しない。つまり、このようなマスタシリンダ装置は、通常、操作力に依存して加圧室内の作動液を加圧することはできなくされている。換言すれば、操作部材に加えられた操作力が加圧ピストンへと伝達されないようにされているのである。
 本マスタシリンダ装置では、通常、入力室に高圧源から作動液が導入されると、その作動液の圧力に依存して加圧ピストンが前進し、その前進によって加圧室内の作動液が加圧されることとなる。また、その加圧ピストンの前進によって、対向室内の作動液はピストン間室内へと流入する。そのため、前述のように、加圧ピストンの鍔部の受圧面積と入力ピストンの受圧面積とが略等しいような場合、対向室の容積変化における加圧ピストンのハウジングに対する移動距離と、ピストン間室の容積変化における加圧ピストンの入力ピストンに対する移動距離とは、互いに略等しくなる。したがって、通常、ブレーキ操作によって高圧源から導入された作動液の圧力に依存して加圧ピストンが前進しても、入力ピストンのピストン間室を区画する前端は殆ど移動しない。
 このように、本マスタシリンダ装置では、通常、マスタシリンダ装置が高圧源から導入される作動液の圧力である高圧源圧に依存して加圧室内の作動液を加圧するように作動する状態である高圧源圧依存加圧状態が実現される。また、ブレーキ操作中、入力ピストンは、ピストン間室を区画する前端が移動できない状態で、操作力によって後端部において前方への力が加えられている。したがって、入力ピストンは操作力によって収縮させられ、その収縮に対して反力発生機構は弾性反力を発生する。本マスタシリンダ装置では、このような反力発生機構を含んでストロークシミュレータが構成されており、運転者は、弾性反力を自身のブレーキ操作に対する操作反力として実感することができる。その際、操作部材の操作量は入力ピストンの収縮量に応じた大きさとなる。
 また、本マスタシリンダ装置は上記対低圧源連通器を備えており、対向室およびピストン間室を低圧源に連通させて、ピストン間室および対向室を密閉していない状態にすることができる。その状態で、操作部材に操作力が加えられると、入力ピストンは、ピストン間室内および対向室内の作動液を低圧源に流出させながら前進することができ、加圧ピストンに当接する。その際、入力ピストン収縮禁止機構により入力ピストンの収縮が禁止されると、入力ピストンが収縮できない状態で操作力が加圧ピストンに伝達され、加圧ピストンが前進させられる。つまり、操作力に依存して加圧室内の作動液を加圧することができる。その場合、操作部材の操作量は、入力ピストンの収縮が禁止されているため、加圧ピストンの移動量に応じた大きさとなり、操作量を比較的小さくできる。したがって、操作量が必要以上に大きくならず、ブレーキ操作における操作感を良好なものとさせることができる。
 本マスタシリンダ装置は、高圧源圧が不充分な状況となった場合に、入力ピストンから加圧ピストンへの操作力の伝達が許容される。高圧源圧が不充分な状況には、例えば、電気的失陥等のため、高圧源が高圧とされた作動液を供給することができない状況が考えられる。そのことに鑑みれば、電気的失陥時に、対低圧源連通器は対向室およびピストン間室を低圧源に連通させるように作動することが望ましく、かつ、入力ピストン収縮禁止機構は入力ピストンの収縮を禁止するように作動することが望ましい。対低圧源連通器および入力ピストン収縮禁止機構がそのように作動すれば、電気的失陥時であっても、運転者は良好な操作感の下でブレーキ操作をすることができる。このように、本マスタシリンダ装置では、高圧源圧が不充分な状況となった場合に、マスタシリンダ装置が操作力に専ら依存して加圧室内の作動液を加圧するように作動できる状態である操作力依存加圧状態が実現される。
 本マスタシリンダ装置の反力発生機構は、所謂ストロークシミュレータの一部を構成するものであり、入力ピストンの収縮に対して弾性反力を発生させるものであれば、それの構成は特に限定されるものではない。例えば、弾性反力を入力ピストンに直接的に付与するような反力発生機構であってもよいし、入力ピストンの内部に満たされた作動液を加圧することで、弾性反力を入力ピストンに間接的に付与するような反力発生機構であってもよい。
 (2)前記入力ピストンが、作動液で満たされる内部室が自身の内部に形成されるようにして互いに嵌め合わせれた2つの部材を含んで構成され、それら2つの部材の相対移動が許容されて収縮可能とされており、
 入力ピストン収縮禁止機構が、前記内部室を密閉することで前記入力ピストンの収縮を禁止するように構成された(1)項に記載のマスタシリンダ装置。
 上記構成により、本入力ピストンは、2つの部材が互いに相対移動することによって収縮する。その収縮によって、内部室の容積が減少し、内部室内の作動液が内部室から流出するため、入力ピストン収縮禁止機構は、内部室を密閉することで作動液の内部室からの流出を禁止し、入力ピストンの収縮を禁止することができる。
 (3)前記入力ピストンが、前記内部室が低圧源に連通することで収縮可能とされており、
 前記入力ピストン収縮禁止機構が、
 前記内部室を密閉すべく、前記内部室の低圧源への連通を遮断する内部室連通遮断器を含んで構成された(2)項に記載のマスタシリンダ装置。
 内部室内の作動液の圧力は、入力ピストンの収縮を妨げる方向、つまり、入力ピストンの上記2つの部材を離間させる方向に作用する。本マスタシリンダ装置では、通常、内部室内の作動液の圧力が低圧源の圧力となるため、その入力ピストンの収縮を妨げる力を比較的小さくすることができる。そのため、入力ピストンは比較的円滑に収縮することができる。また、上記構成により、内部室連通遮断器によって内部室の低圧源への連通を遮断すれば、内部室内の作動液は低圧源に流出、または、低圧源から流入することができなくなり、内部室の容積変化、つまり、入力ピストンの収縮を禁止することができる。
 (4)前記内部室連通遮断器が、
 前記内部室と低圧源とを繋ぐ連通路に配設され、前記対向室および前記ピストン間室内の作動液の圧力がパイロット圧として導入されて、そのパイロット圧が設定圧以上である場合に開弁し、そのパイロット圧がその設定圧を下回った場合に閉弁する機械式開閉弁を含んで構成された(3)項に記載のマスタシリンダ装置。
 本マスタシリンダ装置では、入力ピストンの収縮が、対向室内およびピストン間室内の作動液の圧力に依拠して禁止あるいは許容されることになる。対向室およびピストン間室が密閉されている状態では、操作力が入力ピストンを介して対向室内およびピストン間室内の作動液に伝達されると、対向室内およびピストン間室内の作動液の圧力が上昇する。本マスタシリンダ装置の内部室連通遮断器である機械式開閉弁は、その作動液の圧力の上昇を自身の開閉に利用しており、圧力が設定圧以上となった場合に開弁し、内部室を低圧源に連通する。その状態において、入力ピストンの収縮の禁止は解除される。一方、対向室およびピストン間室が低圧源に連通させられている状態では、対向室内およびピストン間室内の作動液の圧力が設定圧以上となることはなく、機械式開閉弁は閉弁状態で維持されることとなる。
 なお、上記設定圧はなるべく低い圧力に設定されていることが望ましい。設定圧が低くされていれば、ブレーキ操作直後、つまり、対向室内およびピストン間室内の作動液の圧力が操作力によってわずかに上昇させられるだけで、内部室は低圧源に連通することができる。換言すれば、本機械式開閉弁は、対向室およびピストン間室が密閉された状態でのブレーキ操作に応答し、内部室を低圧源に連通させる機構とされているのである。このように、本マスタシリンダ装置では、内部室連通遮断器が比較的簡便な機構によって構成されている。
 (5)前記内部室連通遮断器が、前記内部室と低圧源とを繋ぐ連通路に配設された電磁式開閉弁を含んで構成された(3)項に記載のマスタシリンダ装置。
 本項の態様は、内部室連通遮断器が電磁式開閉弁とされた態様であり、それの開閉によって入力ピストンの収縮の許容と禁止とを切り換えることが可能とされている。なお、本電磁式開閉弁は、電気的失陥時に入力ピストンの収縮を禁止して操作力依存加圧状態を実現するように、常閉弁、つまり、非励磁状態で閉弁状態となり、励磁状態で開弁状態となる開閉弁であることが望ましい。
 (6)前記反力発生機構が、
 前記内部室内に配設され、前記2つの部材を、前記入力ピストンが伸長する方向に付勢するスプリングを含んで構成された(3)項ないし(5)項のいずれか1つに記載のマスタシリンダ装置。
 本反力発生機構には、例えば、圧縮コイルスプリングを採用することができる。圧縮コイルスプリングの両端の各々が、入力ピストンの2つの部材の各々に連結されていれば、入力ピストンが収縮するような2つの部材の相対移動に対し、圧縮コイルスプリングは、その相対移動と反対の方向の弾性反力を発生する。その弾性力は、入力ピストンを伸張させる方向の力として2つの部材の各々に作用する。
 (7)前記反力発生機構が、
 それぞれが前記スプリングとして機能し、一方の一端部が前記2つの部材の一方に支持され、かつ、他方の一端部が前記2つの部材の他方に支持された状態で直列的に配設され、互いにばね定数の異なる2つのスプリングと、
 それら2つのスプリングの一方の他端部と他方の他端部との間に挟まれて、それら2つのスプリングによって浮動支持されるとともに、それら2つのスプリングの弾性反力を、前記2つの部材に作用させるべくそれら2つのスプリングを連結する浮動座と
 を含んで構成された(6)項に記載のマスタシリンダ装置。
 上記構成による入力ピストンの収縮では、ばね定数の小さい方のスプリングがより大きく変形することとなる。また、そのスプリングの変形が限界に達した場合には、そのスプリングがそれ以上弾性変形できない状態で、ばね定数の大きい方のスプリングだけが変形することとなる。したがって、操作量の比較的小さい範囲では、ばね定数の小さい方のスプリングを主に変形させ、操作量の比較的大きい範囲では、ばね定数の大きい方のスプリングだけを変形させるようにマスタシリンダ装置を構成することができる。したがって、操作部材の操作量に対する操作反力の変化を示す操作反力勾配を、操作量の比較的小さい範囲では小さくし、操作量の比較的大きい範囲では大きくさせることができる。
 (8)前記反力発生機構が、前記内部室に連通して作動液で満たされるとともに容積の変化が許容された液室と、その液室内の作動液を弾性的に加圧する加圧機構とを含んで構成されており、
 前記入力ピストン収縮禁止機構が、
 前記内部室を密閉すべく、前記内部室の前記液室への連通を遮断する内部室連通遮断器を含んで構成された(2)項に記載のマスタシリンダ装置。
 上記構成とされた反力発生機構は、所謂アキュムレータ型のストロークシミュレータを構成しており、加圧機構によって加圧される液室内の作動液の圧力が、内部室内の作動液に伝達されて、入力ピストンの収縮に対する弾性反力、つまり、操作部材の操作に対する操作反力として入力ピストンに作用する。また、上記構成により、内部室連通遮断器によって内部室の液室への連通を遮断すれば、内部室内の作動液は液室に流出、または、液室から流入することができなくなり、内部室の容積変化、つまり、入力ピストンの収縮を禁止することができる。
 (9)前記対低圧源連通器が、
 前記対向室および前記ピストン間室と低圧源とを繋ぐ連通路に配設された電磁式開閉弁を含んで構成された(1)項ないし(8)項のいずれか1つに記載のマスタシリンダ装置。
 本マスタシリンダ装置は、対低圧源連通器が電磁式開閉弁とされた態様であり、それの開閉によって対向室およびピストン間室の低圧源への連通の許容と禁止とを切り換えることができる。なお、本電磁式開閉弁は、電気的失陥時に入力ピストンの加圧ピストンへの当接を許容して操作力依存加圧状態を実現するように、常開弁、つまり、非励磁状態で開弁状態となり、励磁状態で閉弁状態となる開閉弁であることが望ましい。
 (10)前記マスタシリンダ装置が、
 前記操作部材が操作されていない状態において、前記入力ピストンの前端と前記加圧ピストンの有底穴の底部とが離間するように構成された(1)項ないし(9)項のいずれか1つに記載のマスタシリンダ装置。
 (11)前記マスタシリンダ装置が、
 前記操作部材が操作されていない状態における前記入力ピストンの前端と前記加圧ピストンの有底穴の底部との離間距離が、前記有底穴の内径の5分の1以下とされた(10)項に記載のマスタシリンダ装置。
 上記態様のマスタシリンダ装置では、前述の操作力依存加圧状態において操作部材が操作されても、入力ピストンが加圧ピストンに当接するまでは操作力によって加圧室内の作動液を加圧することができない。言わば、本マスタシリンダ装置には、操作部材の操作開始において空走距離が設けられており、操作部材が操作されても操作力によってブレーキ装置を作動させることができない状態が設けられている。つまり、この空走距離は、ブレーキ操作における「遊び」とされている。
 本マスタシリンダ装置が操作力依存加圧状態において作動することに鑑みれば、操作部材が操作されていない状態で、入力ピストンと加圧ピストンとの距離は比較的短くされていることが望ましく、具体的には10分の1以下とされることがより望ましく、極端には、その距離は殆ど0であってもよい。前述のように、操作力依存加圧状態では、入力ピストンが加圧ピストンに当接した状態で加圧室内の作動液が加圧される。したがって、入力ピストンと加圧ピストンとの距離が比較的短くされていれば、ブレーキ操作開始直後に入力ピストンが加圧ピストンに当接し、作動液を加圧してブレーキ装置を作動させることができる。したがって、少しブレーキ操作するだけでブレーキ装置が制動力を発生し始めるため、ブレーキ操作の操作感を良好なものとさせることができる。
 (12)前記マスタシリンダ装置が、
 前記対向室内の作動液の圧力が作用する前記鍔部の受圧面積と前記ピストン間室内の作動液の圧力が作用する前記入力ピストンの受圧面積とが等しくなるように構成された(1)項ないし(11)項のいずれか1つに記載のマスタシリンダ装置。
 上記構成により、例えば、入力ピストンが、ピストン間室を区画形成する部材と、操作部材が連結される部材とから構成されている場合、前述の高圧源圧依存加圧状態においてブレーキ操作がされても、前述のように、入力ピストンのピストン間室を区画形成する前端はハウジングに対して移動しない。そのため、ブレーキ操作における操作部材の位置は、操作力と反力発生機構の弾性反力とに依存する。つまり、ブレーキ操作において、操作部材は、操作力と弾性反力とが釣り合った位置に停止することになる。したがって、操作部材が加圧ピストンの位置に応じて移動してしまうことがないため、運転者はその移動による違和感を感じることなくブレーキ操作をすることができる。
請求可能発明の第1実施例のマスタシリンダ装置を搭載したハイブリッド車両の駆動システムおよび制動システムを表す模式図である。 請求可能発明の第1実施例のマスタシリンダ装置を含んで構成される液圧ブレーキシステムを示す図である。 マスタシリンダ装置に連結される操作部材の操作量と、マスタシリンダ装置から操作部材に付与される操作反力との関係を示すグラフである。 第1実施例の変形例のマスタシリンダ装置を含んで構成される液圧ブレーキシステムを示す図である。 第1実施例の変形例のマスタシリンダ装置に採用される機械式開閉弁を示す図である。 請求可能発明の第2実施例のマスタシリンダ装置を含んで構成される液圧ブレーキシステムを示す図である。 第2実施例のマスタシリンダ装置に採用される反力発生機構を示す図である。
 以下、請求可能発明の実施例を、図を参照しつつ詳しく説明する。なお、請求可能発明は、下記の実施例および変形例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。
≪車両の構成≫
 図1に、第1実施例のマスタシリンダ装置を搭載したハイブリッド車両の駆動システムおよび制動システムを模式的に示す。車両には、動力源として、エンジン10と電気モータ12とが搭載されており、また、エンジン10の出力により発電を行う発電機14も搭載されている。これらエンジン10、電気モータ12、発電機14は、動力分割機構16によって互いに接続されている。この動力分割機構16を制御することで、エンジン10の出力を発電機14を作動させるための出力と、4つの車輪18のうちの駆動輪となるものを回転させるための出力とに振り分けたり、電気モータ12の出力を駆動輪に伝達させることができる。つまり、動力分割機構16は、減速機20および駆動軸22を介して駆動輪に伝達される駆動力に関する変速機として機能するのである。なお、「車輪18」等のいくつかの構成要素は、総称として使用するが、4つの車輪のいずれかに対応するものであることを示す場合には、左前輪,右前輪,左後輪,右後輪にそれぞれ対応して、添え字「FL」,「FR」,「RL」,「RR」を付すこととする。この表記に従えば、本車両における駆動輪は、車輪18RL,および車輪18RRである。
 電気モータ12は、交流同期電動機であり、交流電力によって駆動される。車両にはインバータ24が備えられており、インバータ24は、電力を、直流から交流、あるいは、交流から直流に変換することができる。したがって、インバータ24を制御することで、発電機14によって出力される交流の電力を、バッテリ26に蓄えるための直流の電力に変換させたり、バッテリ26に蓄えられている直流の電力を、電気モータ12を駆動するための交流の電力に変換させることができる。発電機14は、電気モータ12と同様に、交流同期電動機としての構成を有している。つまり、本実施例の車両では、交流同期電動機が2つ搭載されていると考えることができ、一方が、電気モータ12として、主に駆動力を出力するために使用され、他方が、発電機14として、主にエンジン10の出力により発電するために使用されている。
 また、電気モータ12は、車両の走行に伴う車輪18RL,18RRの回転を利用して、発電(回生発電)を行うことも可能である。このとき、車輪18RL,18RRに連結される電気モータ12では、電力が発生させられるとともに、電気モータ12の回転を制止するための抵抗力が発生する。したがって、その抵抗力を、車両を制動する制動力として利用することができる。つまり、電気モータ12は、電力を発生させつつ車両を制動するための回生ブレーキの手段として利用される。したがって、本車両は、回生ブレーキをエンジンブレーキや後述する液圧ブレーキとともに制御することで、制動されるのである。一方、発電機14は主にエンジン10の出力により発電をするが、インバータ24を介してバッテリ26から電力が供給されることで、電気モータとしても機能する。
 本車両において、上記のブレーキの制御や、その他の車両に関する各種の制御は、複数の電子制御ユニット(ECU)によって行われる。複数のECUのうち、メインECU40は、それらの制御を統括する機能を有している。例えば、ハイブリッド車両は、エンジン10の駆動および電気モータ12の駆動によって走行することが可能とされているが、それらエンジン10の駆動と電気モータ12の駆動は、メインECU40によって総合的に制御される。具体的に言えば、メインECU40によって、エンジン10の出力と電気モータ12による出力の配分が決定され、その配分に基づき、エンジン10を制御するエンジンECU42、電気モータ12及び発電機14を制御するモータECU44に各制御についての指令が出力される。
 メインECU40には、バッテリ26を制御するバッテリECU46も接続されている。バッテリECU46は、バッテリ26の充電状態を監視しており、充電量が不足している場合には、メインECU40に対して充電要求指令を出力する。充電要求指令を受けたメインECU40は、バッテリ26を充電させるために、発電機14による発電の指令をモータECU44に出力する。
 また、メインECU40には、ブレーキを制御するブレーキECU48も接続されている。当該車両には、運転者によって操作されるブレーキ操作部材(以下、単に「操作部材」という場合がある)が設けられており、ブレーキECU48は、その操作部材の操作量であるブレーキ操作量(以下、単に「操作量」という場合がある)と、その操作部材に加えられる運転者の力であるブレーキ操作力(以下、単に「操作力」という場合がある)との少なくとも一方に基づいて目標制動力を決定し、メインECU40に対してこの目標制動力を出力する。メインECU40は、モータECU44にこの目標制動力を出力し、モータECU44は、その目標制動力に基づいて回生ブレーキを制御するとともに、それの実行値、つまり、発生させている回生制動力をメインECU40に出力する。メインECU40では、目標制動力から回生制動力が減算され、その減算された値によって、車両に搭載される液圧ブレーキシステム100において発生すべき目標液圧制動力が決定される。メインECU40は、目標液圧制動力をブレーキECU48に出力し、ブレーキECU48は、液圧ブレーキシステム100が発生させる液圧制動力が目標液圧制動力となるように制御するのである。
≪液圧ブレーキシステムの構成≫
 上述のように構成された本ハイブリッド車両に搭載される液圧ブレーキシステム100について、図2を参照しつつ詳細に説明する。なお、以下の説明において、「前方」は図2における左方、「後方」は図2における右方をそれぞれ表している。また、「前側」、「前端」、「前進」や、「後側」、「後端」、「後進」等も同様に表すものとされている。以下の説明において[ ]の文字は、センサ等を図面において表わす場合に用いる符号である。
 図2に、本車両が備える液圧ブレーキシステム100を、模式的に示す。液圧ブレーキシステム100は、作動液を加圧するためのマスタシリンダ装置110を有している。車両の運転者は、マスタシリンダ装置110に連結された操作装置112を操作することでマスタシリンダ装置110を作動させることができ、マスタシリンダ装置110は、自身の作動によって作動液を加圧する。その加圧された作動液は、マスタシリンダ装置110に接続されるアンチロック装置114を介して、各車輪に設けられたブレーキ装置116に供給される。ブレーキ装置116は、加圧された作動液の圧力(以下、「出力圧」と呼ぶ)、所謂マスタ圧に依拠して、車輪18の回転を制止するための力、すなわち、液圧制動力を発生させる。
 液圧ブレーキシステム100は、高圧源として作動液の圧力を高圧にするための高圧源装置118を有している。その高圧源装置118は、増減圧装置120を介して、マスタシリンダ装置110に接続されている。増減圧装置120は、高圧源装置118によって高圧とされた作動液の圧力を制御する装置であり、マスタシリンダ装置110へ入力される作動液の圧力(以下、「入力圧」と呼ぶ)を増加および減少する。マスタシリンダ装置110は、その入力圧の増減によって作動可能に構成されている。また、液圧ブレーキシステム100は、低圧源として作動液を大気圧下で貯留するリザーバ122を有している。リザーバ122は、マスタシリンダ装置110、増減圧装置120、高圧源装置118の各々に接続されている。
 操作装置112は、操作部材としてのブレーキペダル150と、ブレーキペダル150に連結されるオペレーションロッド152とを含んで構成されている。ブレーキペダル150は、車体に回動可能に保持されている。オペレーションロッド152は、後端部においてブレーキペダル150に連結され、前端部においてマスタシリンダ装置110に連結されている。また、操作装置112は、ブレーキペダル150の操作量を検出するための操作量センサ[SP]156と、操作力を検出するための操作力センサ[FP]158とを有している。操作量センサ156および操作力センサ158は、ブレーキECU48に接続されており、ブレーキECU48は、それらのセンサの検出値を基にして、目標制動力を決定する。
 ブレーキ装置116は、液通路200,202を介してマスタシリンダ装置110に接続されている。それら液通路200,202は、マスタシリンダ装置110によって出力圧に加圧された作動液をブレーキ装置116に供給するための液通路である。液通路202には出力圧センサ[Po]204(所謂マスタ圧センサ)が設けられている。詳しい説明は省略するが、各ブレーキ装置116は、ブレーキキャリパと、そのブレーキキャリパに取り付けられたホイールシリンダ(ブレーキシリンダ)およびブレーキパッドと、各車輪とともに回転するブレーキディスクとを含んで構成されている。液通路200,202は、アンチロック装置114を介して、各ブレーキ装置116のブレーキシリンダに接続されている。ちなみに、液通路200が、前輪側のブレーキ装置116FL,116FRに繋がるようにされており、また、液通路202が、後輪側のブレーキ装置116RL,116RRに繋がるようにされている。ブレーキシリンダは、マスタシリンダ装置110によって加圧された作動液の出力圧に依拠して、ブレーキパッドをブレーキディスクに押し付ける。その押し付けによって発生する摩擦によって、各ブレーキ装置116では、車輪の回転を制止する液圧制動力が発生し、車両は制動されるのである。
 アンチロック装置114は、一般的な装置であり、簡単に説明すれば、各車輪に対応する4対の開閉弁を有している。各対の開閉弁のうちの1つは増圧用開閉弁であり、車輪がロックしていない状態では、開弁状態とされており、また、もう1つは減圧用開閉弁であり、車輪がロックしていない状態では、閉弁状態とされている。車輪がロックした場合に、増圧用開閉弁が、マスタシリンダ装置110からブレーキ装置116への作動液の流れを遮断するとともに、減圧用開閉弁が、ブレーキ装置116からリザーバへの作動液の流れを許容して、車輪のロックを解除するように構成されている。
 高圧源装置118は、リザーバ122から作動液を吸込んでその作動液の液圧を増加させる液圧ポンプ220と、増圧された作動液が溜められるアキュムレータ222とを含んで構成されている。ちなみに、液圧ポンプ220は電動のモータ224によって駆動される。また、高圧源装置118は、高圧とされた作動液の圧力を検出するための高圧源圧センサ[Ph]226を有している。ブレーキECU48は、高圧源圧センサ226の検出値を監視しており、その検出値に基づいて、液圧ポンプ220は制御駆動される。この制御駆動によって、高圧源装置118は、常時、設定された圧力以上の作動液を増減圧装置120に供給する。
 増減圧装置120は、入力圧を増加させる電磁式の増圧リニア弁240と、入力圧を低減させる電磁式の減圧リニア弁242とを含んで構成されている。増圧リニア弁240は、高圧源装置118からマスタシリンダ装置110に至る液通路の途中に設けられている。一方、減圧リニア弁242は、リザーバ122からマスタシリンダ装置110に至る液通路の途中に設けられている。なお、増圧リニア弁240および減圧リニア弁242の各々からマスタシリンダ装置110に至る液通路は、1つの液通路とされて、マスタシリンダ装置110に接続されている。また、その液通路には、入力圧を検出するための入力圧センサ[Pc]246が設けられている。ブレーキECU48は、入力圧センサ246の検出値に基づいて、増減圧装置120を制御する。
 上記増圧リニア弁240は、電流が供給されていない状態では、つまり、非励磁状態では、閉弁状態とされており、それに電流を供給することによって、つまり、励磁状態とすることで、その供給された電流に応じた開弁圧において開弁する。ちなみに、供給される電流が大きい程、開弁圧が高くなるように構成されている。一方、減圧リニア弁242は、電流が供給されていない状態では、開弁状態となり、通常時、つまり、当該システムへの電力の供給が可能である時には、設定された範囲における最大電流が供給されて閉弁状態とされ、供給される電流が減少させられることで、その電流に応じた開弁圧において開弁する。ちなみに、電流が小さくなるほど開弁圧が低くなるように構成されている。
≪マスタシリンダ装置の構成≫
 マスタシリンダ装置110は、マスタシリンダ装置110の筐体であるハウジング302と、ブレーキ装置116に供給する作動液を加圧する第1加圧ピストン304および第2加圧ピストン306と、運転者の操作が操作装置112を通じて入力される入力ピストン308とを含んで構成されている。なお、図2は、マスタシリンダ装置110が動作していない状態、つまり、ブレーキ操作がされていない状態を示している。
 ハウジング302は、主に、2つの部材から、具体的には、第1ハウジング部材310、第2ハウジング部材312から構成されている。第1ハウジング部材310は、前端部が閉塞された概して円筒形状とされており、後端部の外周にはフランジ320が形成され、そのフランジ320において車体に固定されている。第1ハウジング部材310は、内径が互いに異なる2つの部分、具体的には、前方側に位置して内径の小さい前方小径部322、後方側に位置して内径の大きい後方大径部324に区分けされている。
 第2ハウジング部材312は、前方側に位置して内径の大きい前方大径部330、後方側に位置して内径の小さい後方小径部332とを有する円筒形状をなしている。それら前方大径部330と後方小径部332との間には、内径が異なることによって段差面が形成されている。第2ハウジング部材312は、前方大径部330の前端部が第1ハウジング部材310の前方小径部322と後方大径部324との段差面に接する状態で、その後方大径部324に嵌め込まれている。それら第1ハウジング部材310,第2ハウジング部材312は、第1ハウジング部材310の後端部の内周面に嵌め込まれたロック環334によって、互いに締結されている。
 第2加圧ピストン306は、後端部が塞がれた有底円筒形状をなしており、第1ハウジング部材310の前方小径部322に摺動可能に嵌め合わされている。第1加圧ピストン304は、円筒形状をなす本体部350と、その本体部350の後端部に設けられた鍔部352とを有する形状とされている。第1加圧ピストン304は、第2加圧ピストン306の後方に配設され、本体部350の前方の部分が第1ハウジング部材310の前方小径部322の内周面の後部側に、鍔部352が第2ハウジング部材312の前方大径部330の内周面に、それぞれ、摺動可能に嵌め合わされている。また、第1加圧ピストン304の本体部350の内部は、前後方向における中間位置に設けられた仕切壁部354によって、2つの部分に区画されている。つまり、第1加圧ピストン304は、前端,後端にそれぞれ開口する2つの有底穴を有する形状とされている。
 第1加圧ピストン304の本体部350の前方で第2加圧ピストン306との間には、2つの後輪に設けられたブレーキ装置116RL,RRに供給される作動液を加圧するための第1加圧室R1が区画形成されており、また、第2加圧ピストン306の前方には、2つの前輪に設けられたブレーキ装置116FL,FRに供給される作動液を加圧するための第2加圧室R2が区画形成されている。なお、第1加圧ピストン304と第2加圧ピストン306とは、第1加圧ピストン304の仕切壁部354に螺着立設された有頭ピン360と、第2加圧ピストン306の後端面に固設されたピン保持筒362とによって、離間距離が設定範囲内に制限されている。また、第1加圧室R1内,第2加圧室R2内には、それぞれ、圧縮コイルスプリング(以下、「リターンスプリング」という場合がある)364,366が配設されており、それらスプリングによって、第1加圧ピストン304,第2加圧ピストン306はそれらが互いに離間する方向に付勢されつつ、後方に向かうように付勢されている。
 一方、第1加圧ピストン304の後方、詳しくは、第1加圧ピストン304の鍔部352の後方には、第2ハウジング部材312の段差面との間に、高圧源装置118からの作動液が供給される液室、つまり、高圧源装置118からの圧力が入力される液室(以下、「入力室」という場合がある)R3が区画形成されている。ちなみに、図2では、ほとんど潰れた状態で示されている。また、ハウジング302の内部には、第2ハウジング部材312の内周面と第1加圧ピストン304の本体部350の外周面との間に形成された空間が存在する。その空間が、第1加圧ピストン304の鍔部352の前端面と、第1ハウジング部材310の前方小径部322と後方大径部324との段差面とによって区画されることで、環状の液室が形成されている。この液室は、第1加圧ピストン304の鍔部352を挟んで入力室R3と対向する対向室R4とされている。
 入力ピストン308は、後方に位置して前端部が開口されて後端部が塞がれている円筒形状の後方側部材370と、後方側部材370の前方に位置して前端部が塞がれて後端部が開口する前方側部材372とを含んで構成されている。この前方側部材372は、後方側部材370の内周部に摺接するようにして後方側部材370に嵌め合わされており、前方側部材372と後方側部材370とは相対移動可能となっている。つまり、入力ピストン608は伸縮可能とされている。なお、この相対移動により、前方側部材372の前端部は、後方側部材370の前端に対して進退可能とされている。なお、このように構成された入力ピストン308の内部には、後方側部材370と前方側部材372とによって液室(以下、「内部室」と言う場合がある)R5が区画形成されている。
 入力ピストン308は、ハウジング302の後端側から、第2ハウジング部材312の後方小径部332に挿し込まれるとともに、第1加圧ピストン304の後方に開口する有底穴に嵌入されている。この状態で、入力ピストン308の前方には、第1加圧ピストン304との間に液室(以下「ピストン間室」という場合がある)R6が区画形成されている。また、入力ピストン308と第1加圧ピストン304との間には、ある程度の流路面積を有する液通路374が形成されており、入力ピストン308と第2ハウジング部材312との間にも、ある程度の流路面積を有する液通路376が形成されている。
 また、内部室R5には、前方側部材372を支持する第1反力スプリング380と、第1反力スプリング380の後方に直列に配設されて、後方側部材370を支持する第2反力スプリング382と、それらの反力スプリングに挟まれて浮動支持される鍔付ロッド形状の浮動座384とが配置されている。第1反力スプリング380,第2反力スプリング382は、ともに圧縮コイルスプリングであって、前方側部材372を、入力ピストン308の後方側部材370から突出する方向、つまり、入力ピストン608が伸張する方向に付勢しており、前方側部材372を弾性的に支持している。
 ちなみに、前方側部材372は、それの後端の外周部に設けられた被係止部が、本体部370の前端の内周部に設けられた係止部に係止されることで、後方側部材370からある程度以上前方に突出することが制限されている。また、浮動座384の前端部には緩衝ゴム386が嵌め込まれており、その緩衝ゴム386が前方側部材372の後端面に当接することで、前方側部材372と浮動座384との接近はある範囲に制限されている。また、後方側部材370の後端部にも緩衝ゴム388が嵌め込まれており、その緩衝ゴム388が浮動座384の後端面に当接することで、後方側部材370と浮動座384との接近もある範囲に制限されている。つまり、入力ピストン608の伸縮がある程度に制限されているのである。
 入力ピストン308の後方側部材370には、ブレーキペダル150の操作力を入力ピストン308に伝達すべく、また、ブレーキペダル150の操作量に応じて入力ピストン308を進退させるべく、オペレーションロッド152の前端部が連結されている。ちなみに、入力ピストン308の後端部は、第2ハウジング部材312の後方小径部332の後端部によって係止されることで、後退が制限されている。また、オペレーションロッド152には、円板状のスプリングシート390が付設されており、このスプリングシート390と第2ハウジング部材312との間には圧縮コイルスプリング(以下、「リターンスプリング」という場合がある)392が配設されており、このリターンスプリング392によって、オペレーションロッド152は後方に向かって付勢されている。なお、スプリングシート390とハウジング302との間にはブーツ394が渡されており、マスタシリンダ装置110の後部の防塵が図られている。
 第1加圧室R1は、開口が出力ポートとなる連通孔400を介して、アンチロック装置114に繋がる液通路202と連通しており、第1加圧ピストン304に設けられた連通孔402および開口がドレインポートとなる連通孔404を介して、リザーバ122に連通可能とされている。一方、第2加圧室R2は、開口が出力ポートとなる連通孔406を介して、アンチロック装置114に繋がる液通路200と連通しており、第2加圧ピストン306に設けられた連通孔408および開口がドレインポートとなる連通孔410を介して、リザーバ122に連通可能とされている。第1加圧ピストン304の本体部350は、第1ハウジング部材310の前方小径部322の内径よりある程度小さい外径とされており、それらの間には、ある程度の流路面積を有する液通路412が形成されている。その液通路412は、開口がドレインポートとなる連通孔414を介してリザーバ122に連通するとともに、開口が連結ポートとなる連通孔416を介して外部に連通している。また、第2ハウジング部材312の前方大径部330の一部分は、第1ハウジング部材310の内径よりある程度小さい外径とされており、それらハウジング部材310,312間にはある程度の流路面積を有する液通路418が形成されている。入力室R3は、その液通路418,第2ハウジング部材312に設けられた連通孔420および開口が入力ポートとなる連通孔422を介して、増減圧装置120に繋がっている。
 第1加圧ピストン304には、対向室R4とピストン間室R6とを連通させるための室間連通路としての連通孔424が設けられている。本マスタシリンダ装置110では、その連通孔424と液通路374とによって、対向室R4およびピストン間室R6は、1つの液室(以下、「反力室」という場合がある)R7とされている。なお、対向室R4内の作動液の圧力が作用する鍔部352の受圧面積と、ピストン間室R6内の作動液の圧力が作用する入力ピストン308の受圧面積とは等しくされている。また、反力室R7は、第2ハウジング部材312に設けられた連通孔426および開口が連結ポートとなる連通孔428によって、外部に連通している。その連通孔428には、連通孔416,液通路412,連通孔414を介してリザーバ122に連通される外部連通路430が接続されている。また、その外部連通路430の途中には、電磁式の開閉弁432が設けられている。開閉弁432は、非励磁状態で開弁状態となる常開弁であり、開弁状態において、反力室R7はリザーバ122に連通している。
 入力ピストン308の内部室R5は、入力ピストン308の後方側部材370に設けられた連通孔434、液通路376、第2ハウジング部材312に設けられた連通孔436、第1ハウジング部材310に設けられて開口が連結ポートとなる連通孔438を介して、外部に連通している。その連通孔438には、一端が外部連通路430に接続される外部連通路440の他端が接続されている。また、その外部連通路440の途中には、電磁式の開閉弁442が設けられている。開閉弁442は、非励磁状態で閉弁状態となる常閉弁であり、閉弁状態において、内部室R5のリザーバ122への連通は遮断されている。   
 このように構成されるマスタシリンダ装置110において、ブレーキペダル150が操作されていない状態で、入力ピストン308の前方側部材372の前端と、第1加圧ピストン304の有底穴の底部とは離間している。また、その離間している距離は、その有底穴の直径の1/5以下、詳しくは、1/10以下とされている。
≪マスタシリンダ装置の作動≫
 以下にマスタシリンダ装置110の作動について説明する。通常時、つまり、液圧ブレーキシステム100が正常に作動することができる場合、開閉弁432および開閉弁442は励磁されて、それぞれ閉弁および開弁させられている。したがって、反力室R7は密閉されており、内部室R5はリザーバ122に連通している。運転者によってブレーキペダル150の踏込操作が開始されると、入力ピストン308を介して操作力がピストン間室R6内、つまり、反力室R7内の作動液に伝達され、反力室R7内の作動液の圧力は上昇する。前述のように、鍔部352の受圧面積と入力ピストン308の受圧面積とは等しくされているため、反力室R7内の作動液の圧力によって第1加圧ピストン304を前進させようとする力と後退させようとする力とは等しくなる。そのため、操作力によって反力室R7内の作動液の圧力が上昇しても、そのことだけによって第1加圧ピストン304が移動させられることはない。つまり、マスタシリンダ装置110は、通常時、操作力に依存して加圧室内の作動液を加圧することができなくされている。換言すれば、ブレーキペダル150に加えられた操作力が第1加圧ピストン304へと伝達されないようにされているのである。
 また、上記ブレーキ操作の途中で液圧制動力を発生させるべく、第1加圧ピストン304,第2加圧ピストン306によって第1加圧室R1,第2加圧室R2内の作動液を加圧する場合には、高圧源装置118によって発生させられた圧力を、入力室R3に入力すればよい。具体的には、回生制動力を超える分の液圧制動力が得られるように、増減圧装置120によって制御された圧力を入力室R3に入力すればよい。第1加圧ピストン304は、入力室R3の作動液の圧力に依存して前進し、第1加圧室R1内の作動液が加圧される。その第1加圧室R1内の作動液の圧力に依拠して、第2加圧ピストン306が前進し、第2加圧室R2内の作動液も加圧される。また、第1加圧ピストン304の前進によって、対向室R4内の作動液はピストン間室R6内へと流入する。前述のように、鍔部352の受圧面積と入力ピストン308の受圧面積とは等しくされているから、対向室R4の容積変化における第1加圧ピストン304のハウジング302に対する移動距離と、ピストン間室R6の容積変化における第1加圧ピストン304の入力ピストン308に対する移動距離とは、互いに等しくなる。したがって、通常時、第1加圧ピストン304の前進によって入力ピストン308が移動することはない。このように、マスタシリンダ装置110では、通常時、マスタシリンダ装置110が高圧源圧に依存して加圧室R1,R2内の作動液を加圧するように作動する状態、すなわち、高圧源圧依存加圧状態が実現される。
 また、高圧源圧依存加圧状態におけるブレーキ操作中、入力ピストン308は、ピストン間室R6を区画する前方側部材372が移動できない状態で、後方側部材370には操作力によって前方への力が加えられている。したがって、入力ピストン308は、操作力によって前方側部材372と後方側部材370とが相対移動することで収縮する。その収縮に対して、第1反力スプリング380および第2反力スプリング382は弾性反力を発生し、その弾性反力は入力ピストン308を伸長させるように前方側部材372と後方側部材370とに作用する。つまり、第1反力スプリング380および第2反力スプリング382と、それらを連結する浮動座384とは、入力ピストン308の収縮に対して弾性反力を発生する反力発生機構として機能する。マスタシリンダ装置110では、このような反力発生機構を含んでストロークシミュレータが構成されており、運転者は、その弾性反力を自身のブレーキ操作に対する操作反力として実感することができる。
 前述のように、高圧源圧依存加圧状態では、入力ピストン308、詳しくは、入力ピストン308の前方側部材372が移動しないため、ブレーキ操作におけるブレーキペダル150の操作位置は、操作力と反力発生機構の弾性反力とに依存することとなる。つまり、ブレーキ操作において、ブレーキペダル150の操作量は入力ピストン308の収縮量に応じた大きさとなり、ブレーキペダル150は、操作力と操作反力とが釣り合った位置に停止することになる。したがって、ブレーキペダル150が第1加圧ピストン304の位置に応じて移動してしまうことがないため、運転者はその移動による違和感を感じることなくブレーキ操作をすることができる。
 図3は、入力ピストン308の後方側部材370の前進量、つまり、ブレーキぺダル150の操作量に対する操作反力の変化(以下、「操作反力勾配」という場合がある)を示すグラフである。言い換えれば、本シリンダ装置110の操作反力特性を示すグラフである。この図から解るように、ブレーキペダル150の操作量が増加するとそれにつれて操作反力は増加する。そして、設定量(以下、「反力勾配変化操作量」という場合がある)を超えてブレーキペダル150の操作量が増加すると、操作量の変化に対する操作反力の変化は大きくなる。すなわち、操作反力の増加勾配が大きくなるようにされている。詳しく説明すると、本シリンダ装置110では、第1反力スプリング380のばね定数が第2反力スプリング382のばね定数より相当小さくされている。そのため、ブレーキ操作における第1反力スプリング380の圧縮変形量は第2反力スプリング382の圧縮変形量より相当大きくなる。したがって、操作量が増加すると、前方側部材372が浮動座384の緩衝ゴム386に当接し、第1反力スプリング380は変形できなくなり、さらに操作量が増加すると、第1反力スプリング380が弾性変形できない状態で、第2反力スプリング382が弾性変形する。つまり、本シリンダ装置110では、このように第1反力スプリング380が変形できなくなる際の操作量が反力勾配変化操作量とされている。そのため、マスタシリンダ装置110では、操作反力勾配が、操作量の比較的小さい範囲では小さく、操作量の比較的大きい範囲では大きくなっている。このような操作反力特性により、ブレーキペダル150の操作感は良好なものとされている。
 先に説明したように、本車両では、液圧ブレーキシステム100は、目標制動力のうちの回生制動力を超える分だけ液圧制動力を発生させればよい。極端に言えば、目標制動力を回生制動力で賄える限り、液圧ブレーキシステム100による液圧制動力を必要としない。本車両において回生ブレーキで得られる最大の回生制動力を利用可能最大回生制動力と定義すれば、目標制動力がその利用可能最大回生制動力を超えた時点から液圧制動力を発生させると仮定した場合において、その液圧制動力の発生が開始される時点のブレーキペダルの操作量は、概して、図3における最大回生時液圧制動開始操作量となる。液圧ブレーキシステム100では、この最大回生時液圧制動開始操作量は、前述の反力勾配変化操作量よりもやや大きく設定されている。ちなみに、バッテリ26の充電量等の関係で、目標制動力が利用可能最大回生制動力を超えない場合であっても、液圧制動力が必要となる場合があるため、その場合には、最大回生時液圧制動開始操作量に至らぬ段階で、入力室R3に高圧源装置118からの圧力を入力すればよい。
 運転者がブレーキ操作を終了させると、つまり、操作力のブレーキペダル150への付与をやめると、第1加圧ピストン304,第2加圧ピストン306は、リターンスプリング364,366によって、それぞれ、初期位置(図2に示す位置であり、第1加圧ピストン304の後端が第2ハウジング部材312の段差面に当接する状態となる位置)に戻される。また、入力ピストン308は、オペレーションロッド152とともに、リターンスプリング392によって、初期位置(図2に示す位置であり、後方側部材370の後端が、第2ハウジング部材312の後端部によって係止される位置)に戻される。
 次に、電気的失陥のため、液圧ブレーキシステム100に電力が供給されていない状況下における作動について説明する。ちなみに、電気的失陥時、高圧源装置118は作動液を高圧とすることはできない。このような状況下で、開閉弁432は、励磁されていないため、開弁させられている。したがって、反力室R7はリザーバ122に連通されているため、入力ピストン308は、反力室R7内の作動液をリザーバ122へと流出させながら前進することができ、第1加圧ピストン304の仕切壁部354に当接する。つまり、開閉弁432は、入力ピストン308の第1加圧ピストン304への当接を許容し、対向室R4およびピストン間室R6をリザーバ122に連通させる対低圧源連通器として機能する。また、この当接によって、操作力は入力ピストン308を介して第1加圧ピストン304に伝達されるため、開閉弁432は、操作力に依存して加圧室R1,R2内の作動液の加圧を実現する操作力依存加圧実現機構とされている。
 一方、開閉弁442は、通電させられていないため、閉弁させられている。したがって、内部室連通遮断器としての開閉弁442は内部室R5のリザーバ122への連通を遮断しており、内部室R5は密閉されている。そのため、入力ピストン308の後方側部材370と前方側部材372とは相対移動することができず、入力ピストン308は収縮が禁止された状態にされている。つまり、開閉弁442は、入力ピストン308の収縮を禁止する入力ピストン収縮禁止機構として機能する。この状態でブレーキ操作がされると、ブレーキペダル150の操作量は、第1加圧ピストン304の移動量に応じた大きさとなり、操作量を比較的小さくすることができる。そのため、操作量が必要以上に大きくならず、ブレーキ操作における操作感を良好なものとさせることができる。このように、本シリンダ装置110では、高圧源装置118が高圧とされた作動液を供給することができない場合に、シリンダ装置110が加圧室R1,R2内の作動液を操作力に専ら依存して加圧するように作動できる状態、すなわち、操作力依存加圧状態が実現される。
 また、前述のように、ブレーキペダル150が操作されていない状態で、入力ピストン308の前方側部材372の前端と、第1加圧ピストン304の有底穴の底部とは離間している。そのため、マスタシリンダ装置110が操作力依存加圧状態で作動する場合、マスタシリンダ装置110には、ブレーキ操作開始において、空走距離、つまり、ブレーキ操作における「遊び」が設けられており、操作力によってブレーキ装置を作動させることができない状態が設定されている。しかしながら、マスタシリンダ装置110では、その空走距離が第1加圧ピストン304の有底穴の直径の1/5以下、詳しくは、1/10以下と比較的短くされており、ブレーキ操作における比較的早い段階で入力ピストン308が第1加圧ピストン304に当接することができる。したがって、マスタシリンダ装置110では、操作力依存加圧状態において、ブレーキペダル150を少し操作するだけで液圧制動力が発生し始めるため、ブレーキの操作感が良好なものとされている。
変形例
 図4に、第1実施例のマスタシリンダ装置110に代えて、変形例のマスタシリンダ装置500を採用した液圧ブレーキシステム100を示す。マスタシリンダ装置500は、大まかには、第1実施例のマスタシリンダ装置110の外部連通路440に設けられた電磁式の開閉弁442に代えて機械式の開閉弁502を採用していることを除いて、第1実施例のマスタシリンダ装置110と同じ構造とされている。以下の説明においては、この開閉弁502を中心に、第1実施例のマスタシリンダ装置110と異なる構成および作動についてのみ説明する。
 開閉弁502は、外部連通路440の途中に設けられている。図5は、開閉弁502の断面図である。開閉弁502は、筐体であるハウジング510と、そのハウジング510内部に配置された弁子部材512およびプランジャ514を含んで構成されている。ハウジング510は、両端が閉塞された円筒形状とされている。ハウジング510の内部には、内径の大きい大内径部520と内径の小さい小内径部522とが形成されており、それら内径部の境界には段差面524が形成されている。ハウジング510内には、概して円柱形状とされた仕切部材525が、段差面524に当接する状態で大内径部520に固定的に嵌入されている。なお、仕切部材525の中心部には、連通孔526が設けられている。また、仕切部材525の外周において段差面524に近い部分では、外径が小さくされており、第1ハウジング部材320の大内径部520と仕切部材525との間には、隙間528が形成されている。
 ハウジング510の大内径部520には、仕切部材525とによって液室R11が区画されている。その液室R11には、球形とされた弁子部材512と圧縮コイルスプリング530とが配置されており、弁子部材512はスプリング530の弾性反力によって連通孔526にそれを塞ぐようにして押し付けられている。なお、弁子部材512の直径は、連通孔526の直径より大きくされている。つまり、仕切部材525は弁座として機能し、弁子部材512が着座することで、連通孔526を塞ぐことができる。この状態で、開閉弁502は閉弁状態となる。ハウジング510の小内径部522には、概して円柱形状とされたプランジャ514が配置されている。プランジャ514は、一端が連通孔526の直径より小さな外径とされた先端部532とされており、他端が小内径部522の内径より若干小さな外径とされた基底部534とされている。したがって、プランジャ514は、基底部534が小内径部522に摺動可能な状態で、ハウジング510内部に嵌め込まれている。また、プランジャ514の前方には、小内径部522,仕切部材525,プランジャ514によって液室R12が区画されており、後方には、小内径部522,プランジャ514によって、後述するパイロット圧とされる作動液が導入されるパイロット圧室R13が区画されている。なお、パイロット圧室R13は図5では殆ど潰れた状態で示されている。また、前述の連通孔526によって、液室R12は液室R11に連通することが可能とされている。
 ハウジング510の大内径部520には、一端が液室R11に開口し、他端が連結ポートとされた連通孔536が設けられている。また、大内径部520の段差面524の近くには、一端が隙間528に開口し、他端が連結ポートとされた連通孔538が設けられている。また、仕切部材525には、隙間528と液室R12とを連通する連通孔540が設けられている。さらに、ハウジング510の小内径部522には、一端がパイロット圧室R13に開口し、他端が連結ポートとされた連通孔542が設けられている。
 上述のように構成された開閉弁502は、連通孔536,538の各々の連結ポートにおいて外部連通路440に接続されている。つまり、連通孔536,液室R11,R12,連通孔540,隙間528,連通孔538は,外部連通路440の一部を構成していると言うこともでき、その外部連通路440によって、マスタシリンダ装置500の連通孔438はリザーバ122に連通することが可能とされている。また、連通孔542の連結ポートには、外部連通路430から分岐する連通路が繋げられており、連通孔542には、反力室R7内の作動液と同じ圧力の作動液が供給される。したがって、プランジャ514は、反力室R7内の作動液の圧力に応じて、自身の先端部532が連通孔526を挿通して弁子部材512を押圧するように作動することができる。その弁子部材512を押圧する力が、圧縮スプリング530の弁子部材512を押す力以上になると、プランジャ514は弁子部材512を連通孔526から離間させることができる。この状態で開閉弁502は開弁状態となる。
 シリンダ装置500の作動について以下に説明する。通常時、開閉弁432は励磁されて閉弁状態とされているため、反力室R7が密閉されている。この状態でブレーキ操作が行われると、反力室R7内の作動液の圧力は上昇する。そのため、開閉弁502では、弁子部材512が連通孔526から離間して、開閉弁502は開弁状態となり、液室R11とR12とが互いに連通する状態、つまり、内部室R5がリザーバ122に連通する状態となる。したがって、マスタシリンダ装置500は、通常時、高圧源圧依存加圧状態で作動することができる。
 本マスタシリンダ装置500の開閉弁502では、パイロット圧室R13の作動液の圧力が作用するプランジャ514の基底部534の受圧面積が比較的大きくされている。そのため、反力室R7内の作動液の圧力がわずかに上昇すれば、開閉弁502は開弁することが可能とされている。したがって、マスタシリンダ装置500では、開閉弁502によって、ブレーキ操作直後、つまり、反力室内R7内の作動液の圧力が操作力によってわずかに上昇するだけで、内部室R5はリザーバ122に連通することができる。
 一方、電気的失陥時では、開閉弁432は開弁状態とさせられている。そのため、反力室R7および外部連通路430の作動液の圧力は大気圧となっており、パイロット圧室R13の作動液の圧力も大気圧となっている。したがって、電気的失陥時においては、弁子部材512が連通孔526から離間することはない。つまり、開閉弁502は閉弁状態で維持され、内部室R5のリザーバ122への連通が遮断されている。したがって、シリンダ装置500は、操作力依存加圧状態で作動することができる。
 なお、シリンダ装置110が操作力依存加圧状態とされている場合、液室R12内の作動液には、内部室R5の作動液の圧力が作用するが、開閉弁302はその圧力によって開弁しないように構成されている。詳しく言うと、液室R12内の作動液が弁子部材512に作用する部分の面積は相当に小さくされており、その作動液の圧力によって弁子部材512を仕切部材525から押し上げる力が、スプリング530によって弁子部材512を仕切部材525に押し付ける力より大きくなることがないように、開閉弁302は構成されている。したがって、操作力依存加圧状態では、開閉弁302は閉弁状態に維持されるのである。
 したがって、開閉弁502は、反力室R7内の作動液の圧力をパイロット圧として導入し、そのパイロット圧が圧縮スプリング530の弾性反力に依拠して設定された設定圧以上である場合に開弁し、設定圧を下回ると閉弁するように作動する内部室連通遮断器として機能する。このように、マスタシリンダ装置500では、比較的簡便な機構によって内部室連通遮断器が構成されている。
 図6に、第1実施例のマスタシリンダ装置110に代えて、第2実施例のマスタシリンダ装置600を採用した液圧ブレーキシステム100を示す。マスタシリンダ装置600は、大まかには、第1実施例のマスタシリンダ装置110と同じ構造とされている。以下の説明においては、説明の簡略化に配慮し、第1実施例のマスタシリンダ装置110と異なる構成および作動についてのみ説明する。
 マスタシリンダ装置600の入力ピストン602は、第1実施例のマスタシリンダ装置110の入力ピストン308から、それの内部に設けられていたスプリング等が除かれた形状とされている。また、マスタシリンダ装置600では、外部連通路440に、常閉弁とされている電磁式の開閉弁606と、常開弁とされている電磁式の開閉弁608とが設けられている。つまり、本マスタシリンダ装置600では、それらの開閉弁に挟まれて外部式のストロークシミュレータ610が設けられているのである。
 図7は、ストロークシミュレータ610の断面図である。ストロークシミュレータ610は、筐体であるハウジング612と、そのハウジング612内部に配置された加圧ピストン614および圧縮コイルスプリング616を含んで構成されている。ハウジング612は、両端が閉塞された円筒形状とされている。加圧ピストン614は、円盤状とされており、ハウジング612の内周面に摺動可能に配設されている。スプリング616は、それの一端がハウジング612の内底面に支持されており、他端が加圧ピストン614の一端面に支持されている。したがって、加圧ピストン614は、スプリング616によってハウジング612に弾性的に支持されている。また、ハウジング612の内部には、加圧ピストン614の他端面とハウジング612とによって液室R21が区画されている。また、ハウジング612には、一端が液室R21に開口し、他端が連結ポートとされた連通孔618が設けられている。その連通孔618の連結ポートには、外部連通路440から分岐する連通路が接続されている。したがって、液室R21は内部室R5と連通可能となっている。
 液室R21内の作動液は、加圧ピストン614を介してスプリング616によって弾性的に加圧されている。また、液室R21が内部室R5と連通している状態で、入力ピストン602が収縮すると、内部室R5内の作動液は外部連通路440を介して液室R21に流入することができる。その作動液の流入によって液室R21の容積が増大すると、加圧ピストン614がスプリング616を圧縮し、スプリング616から作動液に作用する弾性反力が増大する。このように、ストロークシミュレータ610は、容積の変化が許容された液室R21と、加圧機構として作動液を加圧するスプリング616とを含んで構成され、入力ピストン602の収縮に対して弾性反力を発生させる反力発生機構とされている。
 このように構成されたマスタシリンダ装置600において、通常時、開閉弁606および開閉弁608は励磁されて、それぞれ開弁および閉弁させられている。したがって、内部室R5は開閉弁606を介してストロークシミュレータ610に連通しており、また、内部室R5およびストロークシミュレータ610のリザーバ122への連通は開閉弁608によって遮断されている。そのため、運転者によってブレーキペダル150が操作され、入力ピストン602が収縮すると、ストロークシミュレータ610では、スプリング616の弾性反力が増大する。したがって、通常時、運転者は自身のブレーキ操作に応じて変化する弾性反力を操作反力として実感することができ、マスタシリンダ装置600は高圧源圧依存加圧状態において作動することができる。なお、ストロークシミュレータ610は1つのスプリングによって構成されているため、操作量に対する操作反力の変化は図3のグラフに示すようにはならず、操作量に対して操作反力は略一定の割合で変化する。つまり、操作反力勾配は略一定の大きさとなる。
 また、電気的失陥のため、液圧ブレーキシステム100に電力が供給されていない状況下では、開閉弁606および開閉弁608は励磁されておらず、それぞれ閉弁および開弁させられている。したがって、内部室R5は開閉弁606によってストロークシミュレータ610への連通が遮断されており、内部室R5は密閉されている。つまり、開閉弁606は内部室R5の液室R21への連通を遮断する内部室連通遮断器として機能し、また、内部室R5を密閉することで入力ピストン602の収縮を禁止することができる入力ピストン収縮禁止機構として機能する。したがって、電気的失陥時、マスタシリンダ装置600は操作力依存加圧状態において作動することができる。
 なお、電気的失陥時、ストロークシミュレータ610は開閉弁608の開弁によってリザーバ122に連通されている。また、イグニッションがOFFとされたときにも、開閉弁608は非励磁とされて開弁し、ストロークシミュレータ610はリザーバ122に連通する。マスタシリンダ装置600では、通常時のブレーキ操作で、例えば、内部の作動液の漏れ等によって、液室R21内の作動液に残圧が生じてしまう可能性がある。そのような残圧は、ストロークシミュレータ610の適正な作動を妨げてしまう。本マスタシリンダ装置600は、液室R21を定期的にリザーバ122に連通することで、そのような残圧を解消することが可能とされている。
 また、本マスタシリンダ装置600に採用されるストロークシミュレータは、所謂ダイアフラム式のストロークシミュレータであってもよい。つまり、液室R21が加圧ピストン614の代わりにダイアフラムによって区画されており、作動液がそのダイアフラムを介して加圧機構によって加圧されるようなストロークシミュレータを採用することも可能である。
 さらに、本マスタシリンダ装置600では、電磁式の開閉弁606に代えて、前述の第1実施例の変形例のマスタシリンダ装置600で採用された機械式の開閉弁602を内部式連通遮断器として採用することも可能である。開閉弁602が採用された場合、開閉弁602は、外部連通路440のうち、連通孔438の接続ポートとストロークシミュレータ610との間に配置され、外部連通路430から反力室R7内の作動液の圧力をパイロット圧として導入すればよい。そのように配設された開閉弁602は、通常時、開弁状態となり、電気的失陥時に、閉弁状態となるように作動することができる。
 110:マスタシリンダ装置  116:ブレーキ装置  118:高圧源装置(高圧源)  122:リザーバ  150:ブレーキペダル(操作部材)  302:ハウジング  304:第1加圧ピストン(加圧ピストン)  308:入力ピストン 350:本体部  352:鍔部  370:後方部材  372:前方部材  380:第1反力スプリング(反力発生機構)  382:第2反力スプリング(反力発生機構)  384:浮動座(反力発生機構)  424:連通孔(室間連通路)  432:電磁式開閉弁(対低圧源連通器)  442:電磁式開閉弁(入力ピストン収縮禁止機構)  R1:第1加圧室  R3:入力室  R4:対向室  R5:内部室  R6:ピストン間室  500:マスタシリンダ装置  502:機械式開閉弁(入力ピストン収縮禁止機構)  600:マスタシリンダ装置  606:電磁式開閉弁(入力ピストン収縮禁止機構)  610:ストロークシミュレータ(反力発生機構)  616:圧縮コイルスプリング(加圧機構)  R21:液室

Claims (12)

  1.  車輪に設けられて作動液の圧力によって作動するブレーキ装置に、加圧された作動液を供給するためのマスタシリンダ装置であって、
     前方が閉塞されたハウジングと、
     後端に開口する有底穴を有するとともに、本体部とその本体部の外周に形成された鍔部とを有し、前記本体部の前方に、前記ブレーキ装置に供給される作動液を加圧するための加圧室が区画されるとともに、前記鍔部の後方に、高圧源から作動液が導入される環状の入力室が、前記鍔部の前方に、作動液で満たされて前記鍔部を挟んで前記入力室と対向する環状の対向室が、それぞれ区画されるようにして、前記ハウジング内に配設された加圧ピストンと、
     作動液で満たされるピストン間室が前記加圧ピストンとによって自身の前方に区画されるようにして、前記加圧ピストンの有底穴に嵌入され、後端部において操作部材に連結され、かつ、その操作部材の操作によって収縮可能とされた入力ピストンと、
     その入力ピストンの収縮に対して弾性反力を発生させる反力発生機構と、
     前記加圧ピストンの進退に伴う前記対向室の容積変化と前記ピストン間室の容積変化とを相互に吸収可能とすべく、それら対向室とピストン間室とを相互に連通させる室間連通路と、
     を備え、
     通常、前記室間連通路によって連通させられた前記対向室および前記ピストン間室が密閉され、前記操作部材に加えられた操作力が前記入力ピストンから前記加圧ピストンへ伝達されない状態において、前記反力発生機構によって発生させられる弾性反力を前記操作部材の操作に対する操作反力として機能させつつ、前記高圧源から導入された作動液の圧力に依存して前記加圧ピストンが前記加圧室内の作動液を加圧するように構成され、
     前記高圧源から導入される作動液の圧力が不充分となる状況下において、前記入力ピストンから前記加圧ピストンへの前記操作力の伝達を許容して、その操作力に依存した前記加圧ピストンによる前記加圧室内の作動液の加圧を実現させる操作力依存加圧実現機構を、さらに備え、
     その操作力依存加圧実現機構が、
     前記入力ピストンの前記加圧ピストンへの当接を許容すべく、前記対向室および前記ピストン間室を低圧源に連通させる対低圧源連通器と、
     前記入力ピストンの収縮を禁止する入力ピストン収縮禁止機構と
     を含んで構成されたマスタシリンダ装置。
  2.  前記入力ピストンが、作動液で満たされる内部室が自身の内部に形成されるようにして互いに嵌め合わせれた2つの部材を含んで構成され、それら2つの部材の相対移動が許容されて収縮可能とされており、
     入力ピストン収縮禁止機構が、前記内部室を密閉することで前記入力ピストンの収縮を禁止するように構成された請求項1に記載のマスタシリンダ装置。
  3.  前記入力ピストンが、前記内部室が低圧源に連通することで収縮可能とされており、
     前記入力ピストン収縮禁止機構が、
     前記内部室を密閉すべく、前記内部室の低圧源への連通を遮断する内部室連通遮断器を含んで構成された請求項2に記載のマスタシリンダ装置。
  4.  前記内部室連通遮断器が、
     前記内部室と低圧源とを繋ぐ連通路に配設され、前記対向室および前記ピストン間室内の作動液の圧力がパイロット圧として導入されて、そのパイロット圧が設定圧以上である場合に開弁し、そのパイロット圧がその設定圧を下回った場合に閉弁する機械式開閉弁を含んで構成された請求項3に記載のマスタシリンダ装置。
  5.  前記内部室連通遮断器が、前記内部室と低圧源とを繋ぐ連通路に配設された電磁式開閉弁を含んで構成された請求項3に記載のマスタシリンダ装置。
  6.  前記反力発生機構が、
     前記内部室内に配設され、前記2つの部材を、前記入力ピストンが伸長する方向に付勢するスプリングを含んで構成された請求項3ないし請求項5のいずれか1つに記載のマスタシリンダ装置。
  7.  前記反力発生機構が、
     それぞれが前記スプリングとして機能し、一方の一端部が前記2つの部材の一方に支持され、かつ、他方の一端部が前記2つの部材の他方に支持された状態で直列的に配設され、互いにばね定数の異なる2つのスプリングと、
     それら2つのスプリングの一方の他端部と他方の他端部との間に挟まれて、それら2つのスプリングによって浮動支持されるとともに、それら2つのスプリングの弾性反力を、前記2つの部材に作用させるべくそれら2つのスプリングを連結する浮動座と
     を含んで構成された請求項6に記載のマスタシリンダ装置。
  8.  前記反力発生機構が、前記内部室に連通して作動液で満たされるとともに容積の変化が許容された液室と、その液室内の作動液を弾性的に加圧する加圧機構とを含んで構成されており、
     前記入力ピストン収縮禁止機構が、
     前記内部室を密閉すべく、前記内部室の前記液室への連通を遮断する内部室連通遮断器を含んで構成された請求項2に記載のマスタシリンダ装置。
  9.  前記対低圧源連通器が、
     前記対向室および前記ピストン間室と低圧源とを繋ぐ連通路に配設された電磁式開閉弁を含んで構成された請求項1ないし請求項8のいずれか1つに記載のマスタシリンダ装置。
  10.  前記マスタシリンダ装置が、
     前記操作部材が操作されていない状態において、前記入力ピストンの前端と前記加圧ピストンの有底穴の底部とが離間するように構成された請求項1ないし請求項9のいずれか1つに記載のマスタシリンダ装置。
  11.  前記マスタシリンダ装置が、
     前記操作部材が操作されていない状態における前記入力ピストンの前端と前記加圧ピストンの有底穴の底部との離間距離が、前記有底穴の内径の5分の1以下とされた請求項10に記載のマスタシリンダ装置。
  12.  前記マスタシリンダ装置が、
     前記対向室内の作動液の圧力が作用する前記鍔部の受圧面積と前記ピストン間室内の作動液の圧力が作用する前記入力ピストンの受圧面積とが等しくなるように構成された請求項1ないし請求項11のいずれか1つに記載のマスタシリンダ装置。
PCT/JP2011/063642 2010-06-16 2011-06-15 マスタシリンダ装置 WO2011158850A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112011102033.3T DE112011102033B4 (de) 2010-06-16 2011-06-15 Hauptzylindervorrichtung
CN201180011323.5A CN102939227B (zh) 2010-06-16 2011-06-15 制动主缸装置
US13/582,827 US9038380B2 (en) 2010-06-16 2011-06-15 Master cylinder device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010136895A JP5158137B2 (ja) 2010-06-16 2010-06-16 マスタシリンダ装置
JP2010-136895 2010-06-16

Publications (1)

Publication Number Publication Date
WO2011158850A1 true WO2011158850A1 (ja) 2011-12-22

Family

ID=45348247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063642 WO2011158850A1 (ja) 2010-06-16 2011-06-15 マスタシリンダ装置

Country Status (5)

Country Link
US (1) US9038380B2 (ja)
JP (1) JP5158137B2 (ja)
CN (1) CN102939227B (ja)
DE (1) DE112011102033B4 (ja)
WO (1) WO2011158850A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012005675B4 (de) 2012-01-13 2018-03-01 Toyota Jidosha Kabushiki Kaisha Hydraulikbremssystem

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5771861B2 (ja) * 2012-03-27 2015-09-02 株式会社アドヴィックス 車両用液圧ブレーキ装置
JP5692202B2 (ja) 2012-11-08 2015-04-01 トヨタ自動車株式会社 マスタシリンダおよびマスタシリンダ装置
JP5733291B2 (ja) 2012-11-08 2015-06-10 トヨタ自動車株式会社 マスタシリンダ装置
US9409559B2 (en) * 2013-03-13 2016-08-09 Autoliv Asp, Inc. Vehicle braking system with electric brake booster
JP6750497B2 (ja) * 2016-12-21 2020-09-02 日立オートモティブシステムズ株式会社 液圧制御装置およびブレーキシステム
CN115158262A (zh) * 2022-09-07 2022-10-11 万向钱潮股份公司 主缸、线控制动系统和车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362352A (ja) * 2001-06-12 2002-12-18 Aisin Seiki Co Ltd 車両用ブレーキ液圧発生装置
JP2005162132A (ja) * 2003-12-05 2005-06-23 Nissin Kogyo Co Ltd 車両用ブレーキ装置
JP2006282001A (ja) * 2005-03-31 2006-10-19 Nissin Kogyo Co Ltd 車両用ブレーキ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2627444B2 (ja) * 1989-04-18 1997-07-09 本田技研工業株式会社 車両用制動油圧制御装置
US5713640A (en) * 1994-01-20 1998-02-03 Itt Automotive Europe Gmbh Hydraulic braking system with an auxiliary pressure source having a quick fill chamber
JPH0986363A (ja) 1995-09-20 1997-03-31 Tokico Ltd ブレーキ液圧制御装置
FR2761034B1 (fr) * 1997-03-21 1999-04-30 Bosch Sist De Frenado Sl Maitre-cylindre tandem compact a sortie primaire decalee
FR2820701B1 (fr) * 2001-02-09 2003-04-18 Bosch Sist S Frenado Sl Maitre cylindre comportant un joint d'etancheite et de realimentation
US8186772B2 (en) * 2007-03-30 2012-05-29 Nissin Kogyo Co., Ltd. Vehicle brake apparatus
DE102009033499A1 (de) * 2008-07-18 2010-01-21 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge
RU2531788C2 (ru) 2010-02-02 2014-10-27 Тойота Дзидося Кабусики Кайся Тормозная система

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362352A (ja) * 2001-06-12 2002-12-18 Aisin Seiki Co Ltd 車両用ブレーキ液圧発生装置
JP2005162132A (ja) * 2003-12-05 2005-06-23 Nissin Kogyo Co Ltd 車両用ブレーキ装置
JP2006282001A (ja) * 2005-03-31 2006-10-19 Nissin Kogyo Co Ltd 車両用ブレーキ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012005675B4 (de) 2012-01-13 2018-03-01 Toyota Jidosha Kabushiki Kaisha Hydraulikbremssystem

Also Published As

Publication number Publication date
DE112011102033T5 (de) 2013-04-04
CN102939227A (zh) 2013-02-20
US20120324883A1 (en) 2012-12-27
DE112011102033B4 (de) 2016-01-28
CN102939227B (zh) 2015-05-20
JP5158137B2 (ja) 2013-03-06
US9038380B2 (en) 2015-05-26
JP2012001069A (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5333364B2 (ja) マスタシリンダ装置
JP5317069B2 (ja) マスタシリンダ装置
JP5516819B2 (ja) マスタシリンダ装置およびそれを用いた液圧ブレーキシステム
JP5240237B2 (ja) ブレーキ装置
JP5045717B2 (ja) シリンダ装置
JP5158137B2 (ja) マスタシリンダ装置
JP5626414B2 (ja) マスタシリンダ装置およびそれを用いた液圧ブレーキシステム
JP5177296B2 (ja) 液圧ブレーキシステム
WO2013175556A1 (ja) 車両用ブレーキシステムおよびそれに用いられる調圧器
JP5263087B2 (ja) シリンダ装置
JP5471913B2 (ja) シリンダ装置
JP5494200B2 (ja) 液圧制動システム
JP5565333B2 (ja) マスタシリンダ装置
JP5724493B2 (ja) マスタシリンダ装置
JP5761130B2 (ja) マスタシリンダ装置
JP5505290B2 (ja) マスタシリンダ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011323.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795754

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13582827

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111020333

Country of ref document: DE

Ref document number: 112011102033

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795754

Country of ref document: EP

Kind code of ref document: A1