WO2011157425A1 - Dispositif de traitement au plasma et/ou de revêtement au plasma en continu d'un morceau de matière - Google Patents

Dispositif de traitement au plasma et/ou de revêtement au plasma en continu d'un morceau de matière Download PDF

Info

Publication number
WO2011157425A1
WO2011157425A1 PCT/EP2011/002972 EP2011002972W WO2011157425A1 WO 2011157425 A1 WO2011157425 A1 WO 2011157425A1 EP 2011002972 W EP2011002972 W EP 2011002972W WO 2011157425 A1 WO2011157425 A1 WO 2011157425A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
barrier
piece
barrier electrode
probe
Prior art date
Application number
PCT/EP2011/002972
Other languages
German (de)
English (en)
Inventor
Peter Palm
Original Assignee
WPNLB UG (haftungsbeschränkt) & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WPNLB UG (haftungsbeschränkt) & Co. KG filed Critical WPNLB UG (haftungsbeschränkt) & Co. KG
Publication of WO2011157425A1 publication Critical patent/WO2011157425A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Definitions

  • the invention relates to a device for continuous plasma treatment and / or plasma coating of a particular sheet- or plate-shaped piece of material, comprising at least one arranged on one side of the piece of material barrier electrode with an electrically conductive electrode core and a dielectric sheath, and arranged on the other side of the piece of material counter electrode in that a plasma discharge can be generated by means of a high voltage applied between the barrier electrode and the counterelectrode.
  • Such devices for corona treatment of a piece of material are widely known. Due to the dielectric covering of the barrier electrode, a dielectrically impeded discharge (barrier discharge or silent discharge) occurs between the barrier electrode and the counterelectrode, producing a plasma to which a surface of the material piece to be treated is exposed. If, during the operation of such a device, a breakage of the dielectric covering of the barrier electrode occurs, a short circuit may occur in the case of a metallic counterelectrode, which in any case can damage the piece of material to be treated, but in the worst case also the counterelectrode. In the case of a counter-electrode provided with a dielectric barrier, or if the material piece to be treated itself acts as a dielectric, however, there is no short circuit, so that it may take a long time until the
  • CONFIRMATION COPY Fracture of the dielectric cladding is discovered. Since a fraction of the dielectric envelope usually leads to a highly inhomogeneous discharge, the quality of the material piece thus treated is usually insufficient, which can result in significant downtime as a result.
  • the object of the invention is to provide a device in which the described negative effects due to the breakage of the dielectric coating of the barrier electrode can be prevented.
  • the invention achieves this object by the means of independent claim 1.
  • the distance between the barrier electrode and the electrically conductive probe is relatively small, i. sufficiently small to cause a short-circuit discharge between the barrier electrode and the electrically conductive probe according to the invention in the event of breakage of the dielectric sheath.
  • the corresponding short-circuit current, or a corresponding voltage dip can easily be detected by suitable means, in particular can lead to an immediate shutdown of the device.
  • the probe according to the invention is a particularly simple means for detecting a rupture of the dielectric covering of the barrier electrode, since the already existing high voltage is used to trigger the short-circuit current and electrical means for detecting a short circuit are usually also present. Since the probe is arranged on the same side of the material piece as the barrier electrode, the material piece and the counter electrode are advantageously not affected by the short-circuit current.
  • the distance between the probe and the barrier electrode is preferably in the range of the distance between the barrier electrode and the barrier electrode. Rode and the counter electrode and is preferably at most twice, more preferably at most 1.5 times this distance. Preferably, the distance of the probe to the barrier electrode is less than the distance between the barrier electrode and the counter electrode, more preferably at most half as large. In the case of a metallic counterelectrode, this can ensure that no short-circuit discharge takes place to the counterelectrode or to the piece of material to be treated.
  • barrier electrodes are at the same potential, so that only a high-voltage potential has to be generated.
  • an electrically conductive probe is preferably arranged at a sufficiently small distance for each barrier electrode so that a possible break in the dielectric envelope of each barrier electrode can be detected by means of a corresponding short-circuit current.
  • a plurality of electrically conductive probes is provided, it is advantageous if, for the sake of simplicity, they are at the same potential, in particular ground potential.
  • the plasma discharge is a corona discharge.
  • a corona discharge is a plasma discharge that is generated at atmospheric pressure, preferably without protective gas. It differs from a simple field strength in that ne (partial) ionization of the fluid (usually air) takes place and a small current flows.
  • Fig. 1 shows a schematic view of a plasma treatment apparatus in a longitudinal section
  • Fig. 2 shows a schematic, not to scale
  • FIGS. 3, 4 are schematic longitudinal sectional views of plasma processing apparatuses in further embodiments.
  • FIGS. 5-10 show schematic longitudinal sectional views of various electrode arrangements for plasma treatment apparatuses in further embodiments.
  • the plasma treatment apparatus 10 for continuous plasma treatment, in particular corona treatment of a surface 11 of a flat, in particular web or plate-shaped piece of material 12, here a material web, for example a plastic film, comprises at least one on one side 14 of the piece of material 12 arranged, in particular rod-shaped barrier electrode 13 and a the other side 15 of the piece of material 12 arranged electrically conductive, in particular metallic counter electrode 16, which is in particular at ground potential.
  • the distance d between the barrier electrode 13 and the piece of material 12 is greater than zero.
  • a gas-filled free discharge space 20 is formed, in which the plasma or corona discharges are generated.
  • the preferably gap-shaped discharge chamber 20 is in particular free of dielectric materials.
  • the extent d of the discharge space 20 is preferably greater than 0.5 mm, more preferably greater than 1 mm.
  • barrier electrode 13 and piece of material 12, and / or barrier electrode 13 and counter electrode 16 are arranged at a distance from one another.
  • the gas-filled free discharge space 20, or a part thereof may also be arranged between the material web 12 and the counter electrode, ie on the side of the counter electrode 16.
  • the barrier electrode 13 has an electrically conductive, in particular metallic, electrode core 17 and an in particular all-round jacket 18 made of a dielectric material, for example a ceramic.
  • the electrode core 17 forming the actual electrode is placed on a high-voltage potential generated by means of a high-voltage generating device 19.
  • the high voltage may in particular be a high-frequency alternating voltage in the range of, for example, 10 to 50 kHz.
  • the high voltage can also be pulsed.
  • a plasma discharge impeded by the dielectric sheath 18, in particular a corona discharge is generated in the discharge space 20 between the barrier electrode 13 and the counter electrode 16, which is indicated by dashed lines in FIG.
  • the plasma generated in the space 20, the surface 11 of the piece of material 12 is modified and / or coated in the desired manner.
  • the plasma treatment and / or plasma coating can advantageously take place under atmospheric pressure, so that means for generating a Vacuums are dispensable.
  • the barrier electrode 13 preferably extends over the entire width or transverse extent of the piece of material 12.
  • the plasma treatment apparatus 10 has means, not shown, for moving the piece of material 12 in the longitudinal direction between the barrier electrode 13 and the counter-electrode 16 Passing plasma treatment device 10 through or past this, so that optionally a continuous and complete plasma treatment of the surface 11 of the piece of material 12 can be achieved.
  • the continuous delivery of the piece of material 12 is indicated in the figures 1 to 4 by arrows. It may be a translatory conveying or linear conveying, as shown in Figures 1 and 3.
  • the piece of material 12 can be conveyed rotationally past the barrier electrode 13, for example by means of a counter-electrode 16 designed as a roller, as shown in FIG. 4.
  • the piece of material is fixed and instead the electrode arrangement is guided over the piece of material 12 in the longitudinal direction.
  • a not (at least not completely) dielectrically shielded, electrically conductive, in particular metallic probe 21 is arranged.
  • the probe 21 has, at least on the side facing the barrier electrode 13, a region extending expediently over its length, for example a slot-shaped region which is free of a dielectric coating.
  • the entire probe 21 is completely free of a dielectric sheath.
  • the probe 21 preferably extends over the entire width or transverse extent of the material web 12 and is advantageously arranged parallel to the barrier electrode 13, as shown in FIG. 2 can be seen.
  • the probe 21 is plate-shaped, but the probe 21 may also have another suitable shape.
  • Suitable detection means 22 are provided in the high-voltage circuit in order to detect a short circuit current caused by a short circuit discharge or a voltage dip caused thereby and to cause a shutdown of the device 10.
  • the electronic detection means 22 may be active or passive, it may be, for example, a simple backup or an electronic monitoring device.
  • the distance of the probe 21 to the barrier electrode 13 is at most twice, more preferably at most 1.5 times the distance between the barrier electrode 13 and the counter electrode 16.
  • the distance of the probe 21 from the barrier electrode preferably smaller, preferably at most half as large as the distance of the counter electrode 16 of the barrier electrode 13. This may optionally be achieved that advantageously no short-circuit discharge between the barrier electrode 13 and the counter electrode or to be treated piece of material 12 takes place.
  • the counterelectrode 16 has a dielectric barrier 23 on the side facing the barrier electrode 13.
  • the dielectric barrier 23 is added.
  • the electrically conductive probe 21 provides a simple and secure automatic detection "of breakage of the dielectric coating 18 of the barrier electrode 13 because in such a case due to the dielectric barrier 23 can be no short circuit discharge to the counter electrode 16 under normal conditions.
  • a metallic counterelectrode see FIG. 1
  • the material piece 12 to be treated acts as a dielectric and prevents a short-circuit current to the counter electrode 16.
  • FIGS. 5 to 10 make clear that the device 10 is not limited to a barrier electrode 13 and / or to an electrically conductive probe 21.
  • a plurality of barrier electrodes 13 may be provided, whereby the process speed can be increased due to the increased treatment area.
  • FIG. 5 shows an embodiment with a central probe 21 and two barrier electrodes 13 symmetrically arranged relative to the probe 21.
  • FIG. 8 shows a series connection of two electrode arrangements according to FIG. 5; Also, more than two such electrode arrangements are possible.
  • the probe 21 is arranged behind the barrier electrode 13 in the conveying direction.
  • the probe 21 may be arranged in the conveying direction in front of the barrier electrode 13.
  • the embodiment according to FIG. 6 clarifies that in each case an electrically conductive probe 21 can also be arranged in front of and behind the barrier electrode 13; This may be advantageous to detect a break at various locations of the enclosure 18 of the barrier electrode 13 to be able to.
  • a plurality of probes 21 may be associated with a barrier electrode 13. 6 shows an electrode unit consisting of a central barrier electrode 13 and two probes 21 symmetrically arranged relative to the barrier electrode 13.
  • FIG. 10 shows a series connection of two electrode arrangements according to FIG. 6; Also, more than two such electrode arrangements, and / or combinations with electrode arrangements according to Figures 5, 8 are possible.
  • FIGS. 7 and 9 show series arrangements of alternating barrier electrodes 13 and probes 21.
  • At least one electrically conductive probe 21 is arranged at a relatively small distance to each barrier electrode 13 in order to break in the dielectric sheath 18 of each barrier electrode 13 to be able to detect.
  • the probe 12 additionally has the function of a further electrode. In a preferred embodiment, it is a particular rod-shaped metal electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma Technology (AREA)

Abstract

La présente invention concerne un dispositif (10) de traitement au plasma et/ou de revêtement au plasma en continu d'un morceau de matière (12) notamment en forme de bande ou de plaque, ledit dispositif comprenant une électrode barrière (13) qui est disposée sur un premier côté (14) du morceau de matière (12) et présente un noyau d'électrode (17) électro-conducteur et une enveloppe (18) diélectrique, et une contre-électrode (16) disposée sur l'autre côté (15) du morceau de matière (12), de sorte qu'une haute tension appliquée entre l'électrode barrière (13) et la contre-électrode (16) permet la production d'une décharge plasma. Sur le même côté (14) du morceau de matière (12) sur lequel se trouve l'électrode barrière (13) se trouve au moins une sonde (21) électro-conductrice, à une distance relativement faible de l'électrode barrière (13).
PCT/EP2011/002972 2010-06-17 2011-06-16 Dispositif de traitement au plasma et/ou de revêtement au plasma en continu d'un morceau de matière WO2011157425A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010024135A DE102010024135A1 (de) 2010-06-17 2010-06-17 Vorrichtung zur kontinuierlichen Plasmabehandlung und/oder Plasmabeschichtung eines Materialstücks
DE102010024135.0 2010-06-17

Publications (1)

Publication Number Publication Date
WO2011157425A1 true WO2011157425A1 (fr) 2011-12-22

Family

ID=44510845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/002972 WO2011157425A1 (fr) 2010-06-17 2011-06-16 Dispositif de traitement au plasma et/ou de revêtement au plasma en continu d'un morceau de matière

Country Status (2)

Country Link
DE (1) DE102010024135A1 (fr)
WO (1) WO2011157425A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710379A (zh) * 2015-07-03 2018-02-16 利乐拉瓦尔集团及财务有限公司 用于在等离子体增强工艺中处理卷材基材的装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014009883A2 (fr) 2012-07-11 2014-01-16 Asahi Glass Company, Limited Dispositif et processus pour empêcher des dommages de substrat dans une installation de plasma dbd

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1073091A2 (fr) * 1999-07-27 2001-01-31 Matsushita Electric Works, Ltd. Electrode pour la production de plasma, appareil de traitement par plasma utilisant une telle électrode, et traitement par plasma à l'aide de cet appareil
JP2003208999A (ja) * 2002-01-10 2003-07-25 Sekisui Chem Co Ltd 放電プラズマ処理方法及びその装置
DE10254427A1 (de) * 2002-11-21 2004-06-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beschichtungsanlage und Verfahren zur Beschichtung
WO2008061784A1 (fr) * 2006-11-24 2008-05-29 Hüttinger Elektronik Gmbh + Co. Kg Commande d'arc à plasma décentralisée
US20090151871A1 (en) * 2007-12-13 2009-06-18 John Pease Systems for detecting unconfined-plasma events
JP2009193741A (ja) * 2008-02-13 2009-08-27 Sekisui Chem Co Ltd プラズマ処理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118900A (ja) * 1999-10-21 2001-04-27 Mitsubishi Electric Corp 絶縁膜評価用テスト構造
US7922979B2 (en) * 2005-03-28 2011-04-12 Mitsubishi Denki Kabushiki Kaisha Silent discharge plasma apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1073091A2 (fr) * 1999-07-27 2001-01-31 Matsushita Electric Works, Ltd. Electrode pour la production de plasma, appareil de traitement par plasma utilisant une telle électrode, et traitement par plasma à l'aide de cet appareil
JP2003208999A (ja) * 2002-01-10 2003-07-25 Sekisui Chem Co Ltd 放電プラズマ処理方法及びその装置
DE10254427A1 (de) * 2002-11-21 2004-06-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beschichtungsanlage und Verfahren zur Beschichtung
WO2008061784A1 (fr) * 2006-11-24 2008-05-29 Hüttinger Elektronik Gmbh + Co. Kg Commande d'arc à plasma décentralisée
US20090151871A1 (en) * 2007-12-13 2009-06-18 John Pease Systems for detecting unconfined-plasma events
JP2009193741A (ja) * 2008-02-13 2009-08-27 Sekisui Chem Co Ltd プラズマ処理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710379A (zh) * 2015-07-03 2018-02-16 利乐拉瓦尔集团及财务有限公司 用于在等离子体增强工艺中处理卷材基材的装置
CN107710379B (zh) * 2015-07-03 2020-07-17 利乐拉瓦尔集团及财务有限公司 用于在等离子体增强工艺中处理卷材基材的装置
CN111933510A (zh) * 2015-07-03 2020-11-13 利乐拉瓦尔集团及财务有限公司 用于在等离子体增强工艺中处理卷材基材的装置
CN111933510B (zh) * 2015-07-03 2023-09-22 利乐拉瓦尔集团及财务有限公司 用于在等离子体增强工艺中处理卷材基材的装置

Also Published As

Publication number Publication date
DE102010024135A1 (de) 2011-12-22

Similar Documents

Publication Publication Date Title
DE102015118372B4 (de) Plasmaerzeugungselektrodenmodul
DE10108717C1 (de) Vorrichtung und Verfahren zur Entladung von dielektrischen Oberflächen
EP0258296B1 (fr) Dispositif de generation d'ions dans des courants de gaz
EP2890318B1 (fr) Dispositif de traitement d'un tissu biologique au moyen d'un plasma basse pression
EP1902156B1 (fr) Procede de traitement plasma et/ou de revetement plasma en pression atmospherique continue de pieces d'usinage
DE102007030915A1 (de) Vorrichtung zur Behandlung von Oberflächen mit einem mittels einer Elektrode über ein Feststoff-Dielektrikum durch eine dielektrische behinderte Gasentladung erzeugten Plasma
WO2011092186A1 (fr) Dispositif et procédé pour produire une décharge électrique dans des corps creux
EP2237018B1 (fr) Dispositif et procédé de détection de particules contenues dans un flux de gaz
WO2011157425A1 (fr) Dispositif de traitement au plasma et/ou de revêtement au plasma en continu d'un morceau de matière
DE102007003887A1 (de) Verfahren zur Bedienung einer Vorrichtung zur kapazitiven Bestimmung und/oder Überwachung einer Prozessgröße
EP2461980A2 (fr) Dispositif et procédé pour le traitement de surface avec une station d'essai
EP2092279A1 (fr) Dispositif pour déterminer et/ou surveiller une grandeur de traitement
DE4426225A1 (de) Vorrichtung zur Überprüfung der Porosität von dünnen Gummiprodukten
DE112013000365T5 (de) Differenzielles Ionenmobilitätsspektrometer
DE102016104852A1 (de) Verfahren zur Ionisierung von gasförmigen Proben mittels dielektrisch behinderter Entladung und zur nachfolgenden Analyse der erzeugten Probenionen in einem Analysegerät
WO2011157424A1 (fr) Dispositif de traitement au plasma et/ou de revêtement au plasma en continu d'un morceau de matière
DE202013105685U1 (de) Ionenbeweglichkeitsspektrometer
AT523591B1 (de) Vorrichtung und Verfahren zur Messung von Eigenschaften eines Fluids
DE102014000931B4 (de) Verfahren zum Betrieb einer Ionisatorvorrichtung und Ionisatorvorrichtung zur Beaufschlagung von Luft, z.B. der Innenraumluft von Kraftfahrzeugen, mit negativen Ionen"
EP3396352B1 (fr) Procédé et dispositif de détermination extractive de la concentration d'une ou de plusieurs des substances
DE102017112726A1 (de) Verfahren zur Ionisierung von gasförmigen Proben mittels dielektrisch behinderter Entladung und zur nachfolgenden Analyse der erzeugten Probenionen in einem Analysegerät
EP2529602B1 (fr) Dispositif et procédé pour produire une décharge électrique dans des corps creux
EP1868269B1 (fr) Ensemble d'électrodes
EP4198479A1 (fr) Dispositif et système de contrôle de l'étanchéité d'un récipient et procédé associé
DE102022101193B4 (de) Ionisator und Verfahren zum Neutralisieren von Ladungen auf Oberflächen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11729061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11729061

Country of ref document: EP

Kind code of ref document: A1