WO2011157176A2 - 应用于分布式mimo系统中的预编码方法及发射机 - Google Patents

应用于分布式mimo系统中的预编码方法及发射机 Download PDF

Info

Publication number
WO2011157176A2
WO2011157176A2 PCT/CN2011/075306 CN2011075306W WO2011157176A2 WO 2011157176 A2 WO2011157176 A2 WO 2011157176A2 CN 2011075306 W CN2011075306 W CN 2011075306W WO 2011157176 A2 WO2011157176 A2 WO 2011157176A2
Authority
WO
WIPO (PCT)
Prior art keywords
interference channel
original
precoding matrix
matrix
dual
Prior art date
Application number
PCT/CN2011/075306
Other languages
English (en)
French (fr)
Other versions
WO2011157176A3 (zh
Inventor
沈晖
李斌
罗毅
朱胡飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180000813.5A priority Critical patent/CN102918781B/zh
Priority to PCT/CN2011/075306 priority patent/WO2011157176A2/zh
Publication of WO2011157176A2 publication Critical patent/WO2011157176A2/zh
Publication of WO2011157176A3 publication Critical patent/WO2011157176A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present invention relates to the field of communications, and in particular, to a precoding method and a transmitter for use in a distributed MIMO system. Background technique
  • Gaussian interference channels are mainly manifested in the fact that signals of different users interfere with each other, data between users cannot be shared, and The joint transmission is performed, but each user knows the complete channel information.
  • time division multiple access multiplexing is usually used in the prior art.
  • TDMA Time Division Multiple Access
  • the system diagram can be as shown in Figure 1-a.
  • the transmitter 1 and the transmitter 2 adopt the TDMA mode, and the data of the user 1 and the user 2 are respectively sent to the receiver 1 of the corresponding user in different time slots.
  • the receiver 2 because it is time-sharing, avoids mutual interference between different user signals.
  • the transmitter also uses Frequency Division Multiple Access (FDMA) to transmit data. Similar to TDMA, FDMA is to enable the transmitter to send data to the user on the same time slot but different frequency channels. FDMA method It is also possible to avoid mutual interference between different user signals.
  • FDMA Frequency Division Multiple Access
  • Embodiments of the present invention provide a precoding method and a transmitter for use in a distributed MIMO system, which are used to reduce mutual interference of signals between users and improve system channel capacity.
  • the embodiment of the present invention provides the following technical solutions:
  • a precoding method applied to a distributed multiple input multiple output MIMO system comprising: a precoding matrix for a transmitter to initialize an original interference channel; Transmitting, by the transmitter, a receiving filter matrix in the original interference channel according to a precoding matrix of the current original interference channel;
  • the transmitter calculates a precoding matrix of the dual interference channel according to the current calculation of the received filtering matrix in the original interference channel and the precoding matrix of the current original interference channel, using the conversion relationship between the dual interference channel and the original interference channel, wherein
  • the dual interference channel has the following relationship with the original interference channel:
  • the receiver in the above dual interference channel is a transmitter in the original interference channel, and the transmitter in the dual interference channel is a receiver in the original interference channel;
  • the transmitter calculates a receive filter matrix in the dual interference channel according to the precoding matrix of the currently calculated dual interference channel;
  • the transmitter calculates a precoding matrix of the new original interference channel by using a precoding matrix and a receiving filter matrix in the currently calculated dual interference channel, and using a conversion relationship between the dual interference channel and the original interference channel;
  • the transmitter determines whether the preset stop operation condition is currently satisfied, and if yes, performs precoding on the pre-coding matrix of the original interference channel obtained by the last calculation, and then sends data to the opposite receiver; if not, the new The precoding matrix of the original interference channel replaces the precoding matrix of the previous original interference channel, and the precoding matrix of the new original interference channel is used as the precoding matrix of the current original interference channel, and the above calculation is performed in the original interference channel.
  • the interference alignment iterative operation is performed on the precoding matrix in the original channel, on the one hand, with the iterative calculation
  • MSE mean square error
  • the MSE Mean Square Error
  • the technical solution provided by the present invention is supported.
  • the system can transmit user data to multiple receivers in one time slot or one frequency, further improving the system channel capacity.
  • FIG. 1-a is a schematic diagram of a process for transmitting user data by using a TDMA method in the prior art
  • FIG. 1-b is a schematic diagram of an original interference channel in a MIMO system according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram of a dual interference channel in a MIMO system according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of an embodiment of a precoding method according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an embodiment of a transmitter according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a precoding method applied to a distributed MIMO system.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in conjunction with the accompanying drawings in the embodiments of the present invention.
  • the embodiments are merely a part of the embodiments of the invention, and not all of the embodiments.
  • the interference alignment method in the embodiment of the present invention is mainly applied to a distributed multiple input multiple output (MIMO) system, such as a MIMO interference system, where the MIMO dry 4
  • MIMO distributed multiple input multiple output
  • the system can be as shown in Figure 1-b.
  • MSE Mean Square Error
  • MSE k tr R tH ki H H ki H , R k H -R k H kk v k -v k H H kk H R k H + I +G n 2 R k R k
  • R A represents k receptions
  • the machine's filter matrix, H fa . represents the channel coefficient matrix from transmitter i to receiver k, Vi represents the precoding matrix of the ith transmitter, and K represents the number of transmitters in the original interference channel.
  • the total MSE of the system is calculated as follows: ⁇
  • the filtered-wave giant array R k is calculated as:
  • the precoding method applied to the distributed MIMO system in the embodiment of the present invention includes:
  • the transmitter initializes a precoding matrix of the original interference channel.
  • the transmitter may randomly initialize the precoding matrix of the original interference channel, or may select an initial from the preset codebook according to the channel environment (such as channel throughput, signal to noise ratio, frame error rate, etc.).
  • the precoding matrix is not limited herein, and its specific implementation is well known in the art and will not be described in detail herein.
  • the transmitter calculates a receive filter matrix in the original interference channel according to a precoding matrix of the current original interference channel.
  • the transmitter can calculate the receive filter matrix in the original interference channel according to the precoding matrix of the current original interference channel (the precoding matrix of the current original interference channel is the precoding matrix initialized in step 101 when the first calculation is performed).
  • the transmitter can calculate the receiving filter matrix in the original interference channel according to the precoding matrix of the current original interference channel by using a corresponding calculation formula. For example, if the peer receiver is a linear MMSE receiver, The transmitter may substitute the precoding matrix of the original interference channel into equation (a) to calculate the receive filter matrix in the original interference channel.
  • each transmitter in the original interference channel can learn the original interference channel information through negotiation scheduling, etc. (such as the channel matrix coefficient of each transmitter to the opposite receiver in the current original interference channel). .
  • the transmitter calculates a precoding matrix of the dual interference channel.
  • the above dual interference channel may be as shown in FIG. 1-c, which is specifically defined as follows: the receiver of the dual interference channel is the transmitter in the original interference channel, and the transmitter in the dual interference channel is the receiver in the original interference channel. ;
  • the rotation of the dual interference channel and the original interference channel can be obtained.
  • the relationship between the channel coefficient matrix of the dual interference channel and the channel coefficient matrix of the original interference channel has the following relationship:
  • H y represents a conjugate matrix of channel coefficient matrices H, . of the i-th transmitter to the j-th receiver in the original channel.
  • the MSE of the kth receiver of the above dual interference channel can be calculated as follows:
  • the filter matrix representing the kth receiver in the dual interference channel fa . represents the channel coefficient matrix from the transmitter i to the receiver k in the dual interference channel, indicating the precoding matrix of the i-th transmitter, K represents the above The total amount of transmitters in the dual interference channel.
  • the total MSE in the dual interference channel system is calculated as follows:
  • the filter matrix is calculated as follows:
  • the precoding matrix representing the dual interference channel of the transmitter R H represents the conjugate matrix of the reception filter matrix R in the original interference channel currently calculated by the transmitter, ⁇ represents the reception filter matrix in the dual interference channel, and v H represents The conjugate matrix of the precoding matrix V of the current original interference channel of the transmitter, R A represents the reception filter matrix of the current original interference channel of the receiver k, R is a conjugate matrix of ⁇ , and ⁇ represents the pre-predicted channel of the transmitter k.
  • the coding matrix which is the conjugate matrix of ⁇ , is the number of transmitters and receivers in the original interference channel.
  • the transmitter may switch from the original interference channel to the dual interference channel according to the conversion relationship between the dual interference channel and the original interference channel, and may obtain the received filter matrix and the current original in the original interference channel calculated according to step 102.
  • the precoding matrix of the interference channel is calculated using equations (c) and (d).
  • the transmitter calculates a receive filter matrix in the dual interference channel according to the precoding matrix of the currently calculated dual interference channel.
  • the transmitter can calculate the receive filter matrix in the dual interference channel according to the precoding matrix of the dual interference channel calculated in step 103.
  • step 102 The calculation manner is similar to step 102, and details are not described herein again.
  • the transmitter calculates a precoding matrix of the new original interference channel.
  • V represents a precoding matrix of the original interference channel of the transmitter
  • H represents a conjugate matrix of the reception filter matrix ⁇ in the dual interference channel currently calculated by the transmitter
  • R represents a reception filter matrix in the original interference channel, indicating a transmitter
  • the conjugate matrix of the precoding matrix of the current dual interference channel, the receiving filter matrix of the current dual interference channel of the receiver k, the conjugate matrix of H , and the precoding matrix of the current dual interference channel of the transmitter k which is a total of k Yoke matrix
  • K is the number of transmitters and receivers in the dual interference channel.
  • the transmitter may switch from the dual interference channel to the original interference channel according to the conversion relationship between the dual interference channel and the original interference channel, and may be based on the precoding matrix of the dual interference channel calculated according to step 103 and step 104.
  • the received transmission filter matrix in the dual interference channel is calculated, and the precoding matrix of the new original interference channel is calculated by using equations (e) and (f).
  • the transmitter determines whether the preset stop operation condition is met currently
  • the preset stop operation condition may be that the current cumulative judgment number exceeds a preset threshold, and the transmitter determines whether to stop the iterative operation by determining whether the current cumulative judgment number exceeds a preset threshold. If yes, the transmitter performs step 108. If not, step 107 is performed.
  • the preset stop operation condition may be that the difference between the current MSE value and the previous MSE value is lower than a preset threshold.
  • the transmitter may first perform the step according to step 102.
  • the precoding matrix of the original interference channel calculates a first MSE value (ie, the previous MSE value), and then calculates a second MSE value (ie, the current MSE value) according to the precoding matrix of the new original interference channel calculated in step 105, and then
  • the transmitter determines whether the difference between the second MSE value and the first MSE value is lower than a preset threshold. If yes, the transmitter performs step 108. If not, step 107 is performed.
  • the above-mentioned preset stop operation conditions may be other various settings, which are not limited herein.
  • the transmitter updates a precoding matrix of the current original interference channel.
  • the transmitter replaces the previous precoding matrix of the original original interference channel with the precoding matrix of the new original interference channel calculated in step 105, and uses it as the precoding matrix of the current original trunk channel, and repeats step 102.
  • the transmitter performs precoding according to the precoding matrix of the original interference channel calculated in step 105.
  • the specific precoding process is a prior art known technique and will not be described in detail herein.
  • the transmitter in the embodiment of the present invention may be a base station, a relay station, or a cell
  • each of the original interference channels may be a different base station, a relay station, or a different cell, or may be between them. Different combinations are not limited here.
  • the interference alignment iterative operation is performed on the precoding matrix in the original channel, on the one hand, with the iterative calculation
  • the calculated precoding matrix in the original channel will gradually converge, and the total MSE of the interference channel system calculated according to the final calculated precoding matrix of the original channel will also tend to a minimum, thereby achieving a minimum MSE.
  • the mutual interference of signals between different users (receivers) is reduced, and the system is in one time slot or one frequency, supported by the technical solution provided by the present invention, compared with the conventional anti-interference method using TDMA or FDMA.
  • User data can be sent to multiple receivers, further increasing the system channel capacity.
  • Embodiment 2 includes:
  • An initializing unit 201 configured to initialize a precoding matrix of the original interference channel
  • the initializing unit 201 may randomly initialize the precoding matrix of the original interference channel, or may select from a preset codebook according to a channel environment (such as channel throughput, signal to noise ratio, frame error rate, etc.).
  • the initial precoding matrix is not limited herein, and its specific implementation is well known in the art and will not be described in detail herein.
  • An update calculation unit 202 configured to calculate a receive filter matrix in the original interference channel according to a precoding matrix of the current original interference channel;
  • the update calculation unit 202 can be based on the precoding matrix of the current original interference channel (in the first calculation) When the precoding matrix of the current original interference channel is the precoding matrix initialized in step 101, the reception filtering matrix in the original interference channel is calculated.
  • the transmitter can calculate the receiving filter matrix in the original interference channel according to the precoding matrix of the current original interference channel by using a corresponding calculation formula.
  • the update calculation unit 202 may substitute the precoding matrix of the original interference channel into the formula (a) of the first embodiment to calculate the receive filter matrix of the opposite receiver.
  • each transmitter in the original interference channel can learn the channel information of the original interference channel by means of negotiation scheduling, etc. (such as the channel matrix coefficient of each transmitter to the opposite receiver in the original interference channel).
  • the implementation is a well-known prior art and will not be described in detail herein.
  • the first calculating unit 203 is configured to calculate a dual-dry 4 by using a conversion relationship between the dual-interference channel and the original interference channel according to the received filtering matrix and the updated pre-coding matrix in the original interference channel currently calculated by the update computing unit 202. a precoding matrix of the channel;
  • the dual interference channel has the following relationship with the original interference channel:
  • the receiver in the dual interference channel is the transmitter in the original interference channel, and the transmitter in the dual interference channel is the receiver in the original interference channel;
  • the first calculating unit 203 may switch from the original interference channel to the dual interference channel according to the conversion relationship between the dual interference channel and the original interference channel, and may be based on the original interference channel currently calculated by the update calculation unit 202.
  • the precoding matrix of the dual interference channel is calculated by using equations (c) and (d) of the implementation one.
  • the second calculating unit 204 is configured to calculate a receiving filter matrix in the dual interference channel according to the precoding matrix of the dual interference channel currently calculated by the first calculating unit 203.
  • the third calculating unit 205 is configured to: according to the precoding matrix of the dual interference channel currently calculated by the first calculating unit 203, and the receiving filtering matrix in the dual interference channel currently calculated by the second calculating unit 204, using the dual interference channel and Calculating the conversion relationship of the original interference channel, and calculating a precoding matrix of the new original trunk 4 channel;
  • the determining unit 206 is configured to determine whether the preset stop operation condition is currently satisfied, and if so, trigger the precoding transmitting unit 207, and if not, trigger the replacing unit 208;
  • the preset stop operation condition may be that the cumulative judgment number of the current determination unit 206 exceeds a preset threshold, and the determining unit 206 may be specifically configured to determine the current judgment.
  • the cumulative number of determinations of the unit 206 i.e., the total number of times the determination unit 206 is triggered
  • exceeds a preset threshold If so, the precoding transmitting unit 207 is triggered, and if not, the replacement unit 208 is triggered.
  • the preset stop operation condition may be that the difference between the current MSE value and the previous MSE value is lower than a preset threshold
  • the determining unit 206 may include:
  • a first mean square error calculating unit configured to calculate a first MSE value according to a precoding matrix of the original interference channel calculated by the third calculating unit 205
  • a second mean square error calculating unit configured to calculate a second MSE value according to a precoding matrix of the original interference channel currently calculated by the third calculating unit 205;
  • the comparison determining unit is configured to determine whether the difference between the calculated second MSE value and the first MSE value is lower than a preset threshold, and if yes, trigger the precoding sending unit 207, if not, trigger the replacement unit 208.
  • the precoding transmitting unit 207 is configured to perform precoding on the precoding matrix of the original interference channel calculated by the third calculating unit 205, and then send the data to the peer receiver.
  • the replacing unit 208 is configured to replace the precoding matrix of the new original interference channel calculated by the third calculating unit 205 with the precoding matrix of the previous original interference channel, and use it as a precoding matrix of the current original interference channel, and trigger The calculation unit 202 is updated.
  • the transmitter 200 in the embodiment of the present invention may be a base station, a relay station, or a cell, and each of the original interference channels may be a different base station, a relay station, or a different cell, or may be between them. Different combinations are not limited here.
  • the transmitter 200 of this embodiment may be used as the transmitter in the foregoing method embodiment, and may be used to implement all the technical solutions in the foregoing method embodiments, and the functions of the respective functional modules may be in accordance with the foregoing method embodiments.
  • the specific implementation of the method may be referred to the related description in the foregoing embodiments, and details are not described herein again.
  • the transmitter 200 performs interference alignment iterative operation on the precoding matrix in the original channel by constructing a dual interference channel and utilizing a conversion relationship between the dual interference channel and the original interference channel.
  • the number of iterative calculations increases, and the calculated precoding matrix in the original channel will converge one by one, and the total MSE of the interference channel system calculated according to the final calculated precoding matrix of the original channel will also reach a minimum value, thereby achieving The MSE is minimized, and the mutual interference of signals between different users (receivers) is reduced.
  • the system is in one time slot supported by the technical solution provided by the present invention. Or one User data can be transmitted to multiple receivers in the frequency, further increasing the system channel capacity.
  • the medium can be a read only memory, a random access memory, a magnetic or optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例公开了一种应用于分布式多输入多输出(MIMO)系统中的预编码方法和发射机。所述方法包括:构建对偶干扰信道,利用对偶干扰信道与原始干扰信道的转化关系,对原始信道中的预编码矩阵进行干扰对齐迭代运算;一方面,随着迭代运算次数的增加,计算得到的原始信道中的预编码矩阵会逐渐收敛,另一方面,根据最终计算得到的原始信道的预编码矩阵所计算的干扰信道系统总的均方误差(MSE)也将趋于最小值,从而实现了MSE最小化,降低了不同用户间信号的相互干扰。

Description

应用于分布式 MIMO系统中的预编码方法及发射机 技术领域
本发明涉及通信领域, 尤其涉及一种应用于分布式 MIMO 系统中的预编 码方法及发射机。 背景技术
在无线通信系统中,如何解决信号在传输过程中的相互干扰一直是业界探 讨的重点, 其中, 高斯干扰信道的特征主要表现在, 不同用户的信号存在相互 干扰, 用户间数据不能共享, 且无法进行联合的发送, 但每个用户均知道完整 的信道信息。
为了避免用户间信号的相互干扰, 现有技术中通常采用时分多址复用
( TDMA, Time Division Multiple Access )方式来发送数据, 即发射机在不同 的时隙向用户发送数据。 其系统示意图可如图 1-a所示, 由图 1可见, 发射机 1和发射机 2采用 TDMA方式, 在不同的时隙分别将用户 1和用户 2的数据 发送到相应用户的接收机 1和接收机 2, 由于是分时发送, 避免了不同用户信 号间的相互干扰。 目前发射机也有采用频分多址复用 (FDMA , Frequency Division Multiple Access )方式来发送数据, 与 TDMA类似, FDMA是使发射 机在时隙相同但频率不同的信道上向用户发送数据, FDMA 方法同样可避免 不同用户信号间的相互干扰。
但是, 由上述可知, 虽然采用 FDMA或 TDMA方式来发送数据可避免不 同用户信号间的相互干扰,但是要求系统在一个时隙或一个频率中只能发送一 个用户数据, 这必然导致系统的整体信道容量较低,也使系统的吞吐量受到了 限制。 发明内容
本发明实施例提供了一种应用于分布式 MIMO 系统中的预编码方法及发 射机, 用于降低用户间信号的相互干扰, 提高系统信道容量。
为解决上述技术问题, 本发明实施例提供以下技术方案:
一种应用于分布式多输入多输出 MIMO系统中的预编码方法, 包括: 发射机初始化原始干扰信道的预编码矩阵; 发射机根据当前原始干扰信道的预编码矩阵计算原始干扰信道中的接收 滤波矩阵;
发射机根据当前计算得到的原始干扰信道中的接收滤波矩阵和当前原始 干扰信道的预编码矩阵, 利用对偶干扰信道与上述原始干扰信道的转化关系, 计算对偶干扰信道的预编码矩阵, 其中, 上述对偶干扰信道与上述原始干扰信 道具有如下关系:
上述对偶干扰信道中的接收机为上述原始干扰信道中的发射机,上述对偶 干扰信道中的发射机为上述原始干扰信道中的接收机;
发射机根据当前计算得到的对偶干扰信道的预编码矩阵,计算对偶干扰信 道中的接收滤波矩阵;
发射机根据当前计算得到的对偶干扰信道中的预编码矩阵和接收滤波矩 阵, 利用对偶干扰信道与上述原始干扰信道的转化关系, 计算新的原始干扰信 道的预编码矩阵;
发射机判断当前是否满足预置的停止运算条件, 若是, 则按照最后计算得 到的上述原始干扰信道的预编码矩阵进行预编码后, 向对端接收机发送数据; 若否,则用上述新的原始干扰信道的预编码矩阵替换前一次的原始干扰信道的 预编码矩阵,将上述新的原始干扰信道的预编码矩阵作为当前原始干扰信道的 预编码矩阵, 重复执行上述计算上述原始干扰信道中的接收滤波矩阵, 上述对 偶干扰信道的预编码矩阵,上述对偶干扰信道中的接收滤波矩阵和上述新的原 始干扰信道的预编码矩阵以及判断当前是否满足预置的停止运算条件的流程。
由上可见, 本发明实施例中, 通过构建对偶干扰信道, 利用对偶干扰信道 与原始干扰信道的转化关系,对原始信道中的预编码矩阵进行干扰对齐迭代运 算, 一方面, 随着迭代计算的次数增加, 计算得到的原始信道中的预编码矩阵 会逐渐收敛,而根据最终计算得到的原始信道的预编码矩阵所计算的干扰信道 系统总的均方误差(MSE, Mean Square Error )也将趋于最小值, 从而实现了 MSE 最小化, 降低了不同用户 (接收机) 间信号的相互干扰, 同时, 与传统 的采用 TDMA或 FDMA的抗干扰方法相比,在本发明提供的技术方案支持下, 系统在一个时隙或一个频率中可向多个接收机发送用户数据,进一步提高了系 统信道容量。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1-a为现有技术中采用 TDMA方式发送用户数据的流程示意图; 图 1-b为本发明实施例中 MIMO系统下原始干扰信道的示意图;
图 1-c为本发明实施例提供的 MIMO系统下对偶干扰信道的示意图; 图 2为本发明实施例提供的预编码方法的实施例流程示意图;
图 3为本发明实施例提供的发射机的实施例结构示意图。 具体实施方式
本发明实施例提供了一种应用于分布式 MIMO系统中的预编码方法。 为使得本发明的发明目的、 特征、 优点能够更加的明显和易懂, 下面将结 合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而非全部实施例。
实施例一
首先说明的是,本发明实施例中的干扰对齐方法主要应用于分布式多输入 多输出 ( MIMO , Multiple-Input Multiple-Out-put ) 系统中,例如 MIMO干扰系 统中, 其中, MIMO干 4尤系统可如图 1-b所示, 在图 1-b所示的 MIMO干 4尤系 统中, 原始干扰信道下存在 K个发射机, 及 K个接收机, 每个发射机和接收 机均存在多条天线, 则在此 MIMO 干扰系统中, 第 k个接收机的均方误差 (MSE, Mean Square Error )计算如下:
MSEk = E[ d, - d, ] = E{tr[(dk -dk)(dk -dk)H]}
即可得,
MSEk =tr R tHki HHki H、Rk H -RkHkkvk -vk H H kk H Rk H + I +G n 2RkRk 其中, RA表示 k个接收机的滤波矩阵, Hfa.表示从发射机 i到接收机 k 的信道系数矩阵, Vi表示第 i个发射机的预编码矩阵, K表示原始干扰信道中 的发射机数量。
在此 MIMO干扰系统中, 系统总的 MSE计算如下: κ
MSE = ^ MSEk
k=l
对于第 k个接收机, 若该接收机为线性最小化均方误差接收机 ( MMSE , Minimum Mean Square Error ), 则其滤-波巨阵 Rk计算^口下: .
Figure imgf000006_0001
如参阅图 2,本发明实施例中的应用于分布式 MIMO系统中的预编码方法 包括:
101、 发射机初始化原始干扰信道的预编码矩阵;
在实际应用中,发射机可通过随机初始化原始干扰信道的预编码矩阵, 或 者, 也可根据信道环境(如信道吞吐量、 信噪比、 误帧率等)从预置的码本中 选择初始的预编码矩阵,此处不作限定,其具体实现方式为本领域技术所公知, 此处不作详述。
102、 发射机根据当前原始干扰信道的预编码矩阵计算原始干扰信道中的 接收滤波矩阵;
发射机可根据当前原始干扰信道的预编码矩阵(在首次计算时, 当前原始 干扰信道的预编码矩阵为步骤 101初始化的预编码矩阵), 计算出原始干扰信 道中的接收滤波矩阵。
针对不同的接收机,发射机可利用相应的计算公式,根据当前原始干扰信 道的预编码矩阵, 计算出原始干扰信道中的接收滤波矩阵, 例如, 若对端接收 机为线性 MMSE接收机, 则发射机可将原始干扰信道的预编码矩阵代入公式 ( a )计算出原始干扰信道中的接收滤波矩阵。
可理解的是,在实际应用中,原始干扰信道中的各个发射机通过协商调度 等方式, 可获知原始干扰信道信息(如当前原始干扰信道中各个发射机到对端 接收机的信道矩阵系数)。
103、 发射机计算对偶干扰信道的预编码矩阵;
其中, 上述对偶干扰信道可如图 1-c所示, 其具体如下定义: 对偶干扰信 道的接收机为原始干扰信道中的发射机,对偶干扰信道中的发射机为原始干扰 信道中的接收机;
依据上述对偶干扰信道的定义,可得到对偶干扰信道与原始干扰信道的转 化关系, 其中, 对偶干扰信道的信道系数矩阵 与原始干扰信道的信道系数 矩阵存在如下关系:
Hy , 其中, H.;表示原始信道中第 i个发射机到第 j个接收机的信道 系数矩阵 H,.的共轭矩阵。
依据 MIMO干扰系统中原始干扰信道的 MSE计算公式,可得出上述对偶 干扰信道的第 k个接收机的 MSE计算如下:
MSEk D→ = E[ \d, - dt ] = E{tr[(dk-dk)(dk-dk)H]}
-vk HHkk HRk H +/+σ„¾"]
Figure imgf000007_0001
其中, 表示对偶干扰信道中第 k个接收机的滤波矩阵, fa.表示对偶干 扰信道中从发射机 i到接收机 k的信道系数矩阵, 表示第 i个发射机的预编 码矩阵, K表示上述对偶干扰信道中发射机的总量。
对偶干扰信道系统中总的 MSE计算如下:
MSE D ality = ^ MSE Quality
k=l
对于对偶干扰信道的第 k个接收机, 若该接收机为线性 MMSE接收机, 则其滤波矩阵 计算如下:
¾ = vk HHkk H (f H^H 121 (b)
i=l
通过对上述对偶干扰信道与原始干扰信道的转化关系,可得出如下转换公
v=aRH
R=—v (c) a
其中, 公式(C ) 中的
( d )
Figure imgf000007_0002
其中, 表示发射机对偶干扰信道的预编码矩阵, RH表示发射机当前计算 得到的原始干扰信道中的接收滤波矩阵 R的共轭矩阵, ^表示对偶干扰信道中 的接收滤波矩阵, vH表示发射机当前原始干扰信道的预编码矩阵 V的共轭矩 阵, RA表示接收机 k当前原始干扰信道的接收滤波矩阵, R 为^的共轭矩阵, ^表示发射机 k当前原始干扰信道的预编码矩阵, 为^的共轭矩阵, K为 原始干扰信道中发射机和接收机的数量。
在实际应用中, 发射机可根据对偶干扰信道与原始干扰信道的转化关系, 从原始干扰信道切换到对偶干扰信道中,并可根据步骤 102计算得到的原始干 扰信道中的接收滤波矩阵及当前原始干扰信道的预编码矩阵, 利用公式(c ) 和(d )计算出对偶干扰信道的预编码矩阵。
可以理解的是, 基于对上述公式(c )和(d )的变形换算, 将可能得到其 它多组转换公式, 因此, 上述公式(c )和(d )不应理解为是本发明实施例中 唯一的转换公式, 即,基于对偶干扰信道与原始干扰信道的转化关系及上述公 式(c )和(d )下相应变形换算所得到的其它转换公式均在本发明实施例的保 护范围之下。
104、 发射机根据当前计算得到的对偶干扰信道的预编码矩阵, 计算对偶 干扰信道中的接收滤波矩阵;
发射机可根据步骤 103计算得到的对偶干扰信道的预编码矩阵,计算出对 偶干扰信道中的接收滤波矩阵。
其计算方式可与步骤 102类似, 此处不再赘述。
105、 发射机计算新的原始干扰信道的预编码矩阵;
依据步骤 103中上述的对偶干扰信道与原始干扰信道的转化关系,可得到 如下 换公式:
Figure imgf000008_0001
其中, 公式(e ) 中的 α为:
Figure imgf000009_0001
其中, V表示发射机原始干扰信道的预编码矩阵, H表示发射机当前计算 得到的对偶干扰信道中的接收滤波矩阵 Έ的共轭矩阵, R表示原始干扰信道中 的接收滤波矩阵, 表示发射机当前对偶干扰信道的预编码矩阵 的共轭矩 阵, 表示接收机 k当前对偶干扰信道的接收滤波矩阵, H为 的共轭矩阵, 表示发射机 k当前对偶干扰信道的预编码矩阵, 为 k的共轭矩阵, K为 对偶干扰信道中发射机和接收机的数量。
在实际应用中, 发射机可根据对偶干扰信道与原始干扰信道的转化关系, 从对偶干扰信道切换到原始干扰信道中,并可根据根据步骤 103计算得到的对 偶干扰信道的预编码矩阵及步骤 104 计算得到的对偶干扰信道中的接收滤波 矩阵, 利用公式(e )和(f )计算出新的原始干扰信道的预编码矩阵。
可以理解的是, 基于对上述公式(e )和(f )的变形换算, 将可能得到其 它多组转换公式, 因此, 上述公式(e )和(f )不应理解为是本发明实施例中 唯一的转换公式, 即,基于对偶干扰信道与原始干扰信道的转化关系及上述公 式(e )和(f )下相应变形换算所得到的其它转换公式均在本发明实施例的保 护范围之下。
106、 发射机判断当前是否满足预置的停止运算条件;
在一种应用场景下,上述预置的停止运算条件可以是当前累计判断次数超 过预置的门限值,发射机通过判断当前累计判断次数是否超过预置的门限值来 决定是否停止迭代运算, 若超过, 则发射机执行步骤 108, 若不超过, 则执行 步骤 107。
在一种应用场景下, 上述预置的停止运算条件也可以是本次 MSE值与前 一次 MSE值的差值低于预置的门限值, 此时, 发射机可先根据步骤 102中的 原始干扰信道的预编码矩阵计算第一 MSE值(即前一次 MSE值), 然后根据 步骤 105计算得到的新的原始干扰信道的预编码矩阵计算第二 MSE值(即本 次 MSE值), 之后发射机判断第二 MSE值与第一 MSE值的差值是否低于预 置的门限值, 若是, 则发射机执行步骤 108, 若不超过, 则执行步骤 107。 当 然, 上述预置的停止运算条件还可以其它各种设置, 此处不作限定。
107、 发射机更新当前原始干扰信道的预编码矩阵;
发射机用步骤 105 计算得到的新的原始干扰信道的预编码矩阵替换前一 次的原始干 4尤信道的预编码矩阵, 将其作为当前原始干 4尤信道的预编码矩阵, 并重复步骤 102。
108、 发射机进行预编码后, 向对端接收机发送数据;
发射机按照步骤 105计算得到的原始干扰信道的预编码矩阵进行预编码, 具体的预编码过程为现有的公知技术, 此处不作详述。
需要说明的是,本发明实施例中的发射机可以是基站、中继站或者是 cell, 原始干扰信道中的各个发射器可以是不同的基站、 中继站或者是不同的 cell, 也可以是它们之间的不同组合, 此处不作限定。
由上可见, 本发明实施例中, 通过构建对偶干扰信道, 利用对偶干扰信道 与原始干扰信道的转化关系,对原始信道中的预编码矩阵进行干扰对齐迭代运 算, 一方面, 随着迭代计算的次数增加, 计算得到的原始信道中的预编码矩阵 会逐渐收敛,而根据最终计算得到的原始信道的预编码矩阵所计算的干扰信道 系统总的 MSE也将趋于最小值,从而实现了 MSE最小化,降低了不同用户(接 收机)间信号的相互干扰, 同时, 与传统的采用 TDMA或 FDMA的抗干扰方 法相比,在本发明提供的技术方案支持下, 系统在一个时隙或一个频率中可向 多个接收机发送用户数据, 进一步提高了系统信道容量。
实施例二 包括:
初始化单元 201 , 用于初始化原始干扰信道的预编码矩阵;
在实际应用中 ,初始化单元 201可通过随机初始化原始干扰信道的预编码 矩阵, 或者, 也可根据信道环境(如信道吞吐量、 信噪比、 误帧率等)从预置 的码本中选择初始的预编码矩阵, 此处不作限定, 其具体实现方式为本领域技 术所公知, 此处不作详述。
更新计算单元 202, 用于根据当前原始干扰信道的预编码矩阵计算原始干 扰信道中的接收滤波矩阵;
更新计算单元 202 可根据当前原始干扰信道的预编码矩阵(在首次计算 时, 当前原始干扰信道的预编码矩阵为步骤 101初始化的预编码矩阵), 计算 出原始干扰信道中的接收滤波矩阵。
针对不同的接收机,发射机可利用相应的计算公式,根据当前原始干扰信 道的预编码矩阵, 计算出原始干扰信道中的接收滤波矩阵, 例如, 若对端接收 机为线性 MMSE接收机, 则更新计算单元 202可将原始干扰信道的预编码矩 阵代入实施例一的公式(a )计算出对端接收机的接收滤波矩阵。
可理解的是,在实际应用中,原始干扰信道中的各个发射机通过协商调度 等方式, 可获知原始干扰信道的信道信息(如原始干扰信道中各个发射机到对 端接收机的信道矩阵系数), 其实现方式为现有的公知技术, 此处不作详述。
第一计算单元 203 , 用于根据更新计算单元 202当前计算得到的原始干扰 信道中的接收滤波矩阵和更新后的预编码矩阵,利用对偶干扰信道与原始干扰 信道的转化关系, 计算对偶干 4尤信道的预编码矩阵;
其中, 对偶干扰信道与上述原始干扰信道具有如下关系:
对偶干扰信道中的接收机为原始干扰信道中的发射机,对偶干扰信道中的 发射机为原始干扰信道中的接收机;
在实际应用中,第一计算单元 203可根据对偶干扰信道与原始干扰信道的 转化关系, 从原始干扰信道切换到对偶干扰信道中, 并可根据更新计算单元 202 当前计算得到的原始干扰信道中的接收滤波矩阵和当前原始干扰信道的 预编码矩阵, 利用实施一的公式(c )和(d )计算出对偶干扰信道的预编码矩 阵。
第二计算单元 204, 用于根据第一计算单元 203当前计算得到的对偶干扰 信道的预编码矩阵, 计算对偶干扰信道中的接收滤波矩阵;
第三计算单元 205 , 用于根据第一计算单元 203当前计算得到的对偶干扰 信道的预编码矩阵,及第二计算单元 204当前计算得到的对偶干扰信道中的接 收滤波矩阵, 利用对偶干扰信道与上述原始干扰信道的转化关系,计算新的原 始干 4尤信道的预编码矩阵;
判断单元 206, 用于判断当前是否满足预置的停止运算条件, 若是, 则触 发预编码发送单元 207, 若否, 则触发替换单元 208;
在一种应用场景下, 上述预置的停止运算条件可以是当前判断单元 206 的累计判断次数超过预置的门限值,则判断单元 206具体可用于判断当前判断 单元 206的累计判断次数(即判断单元 206被触发的总次数)是否超过预置的 门限值, 若是, 则触发预编码发送单元 207, 若否, 则触发替换单元 208。
在一种应用场景下, 上述预置的停止运算条件可以是本次 MSE值与前一 次 MSE值的差值低于预置的门限值, 则判断单元 206可包括:
第一均方误差计算单元,用于根据第三计算单元 205前一次计算得到的原 始干扰信道的预编码矩阵计算第一 MSE值;
第二均方误差计算单元,用于根据第三计算单元 205当前计算得到的原始 干扰信道的预编码矩阵计算第二 MSE值;
比较判断单元,用于判断上述计算得到的第二 MSE值与第一 MSE值的差 值是否低于预置的门限值, 若是, 则触发预编码发送单元 207, 若否, 则触发 替换单元 208。
预编码发送单元 207 , 用于按照第三计算单元 205计算得到的原始干扰信 道的预编码矩阵进行预编码后, 向对端接收机发送数据。
替换单元 208 , 用于将第三计算单元 205计算得到的新的原始干扰信道的 预编码矩阵替换前一次的原始干扰信道的预编码矩阵,将其作为当前原始干扰 信道的预编码矩阵, 并触发更新计算单元 202。
需要说明的是, 本发明实施例中的发射机 200可以是基站、 中继站或者是 cell, 原始干扰信道中的各个发射器可以是不同的基站、 中继站或者是不同的 cell, 也可以是它们之间的不同组合, 此处不作限定。
需要说明的是, 本实施例的发射机 200 可以如上述方法实施例中的发射 机, 可以用于实现上述方法实施例中的全部技术方案, 其各个功能模块的功能 可以根据上述方法实施例中的方法具体实现,其具体实现过程可参照上述实施 例中的相关描述, 此处不再赘述。
由上可见, 本发明实施例中, 发射机 200通过构建对偶干扰信道, 利用对 偶干扰信道与原始干扰信道的转化关系,对原始信道中的预编码矩阵进行干扰 对齐迭代运算, 一方面, 随着迭代计算的次数增加, 计算得到的原始信道中的 预编码矩阵会逐收敛,而根据最终计算得到的原始信道的预编码矩阵所计算的 干扰信道系统总的 MSE也将趋于最小值,从而实现了 MSE最小化,降低了不 同用户 (接收机) 间信号的相互干扰, 同时, 与传统的采用 TDMA或 FDMA 的抗干扰方法相比,在本发明提供的技术方案支持下, 系统在一个时隙或一个 频率中可向多个接收机发送用户数据, 进一步提高了系统信道容量。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可 读存储介质中, 上述提到的存储介质可以是只读存储器, 随机存储器、 磁盘或 光盘等。
以上对本发明所提供的一种应用于分布式 MIMO 系统中的预编码方法及 发射机进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思 想, 在具体实施方式及应用范围上均会有改变之处, 综上, 本说明书内容不应 理解为对本发明的限制。

Claims

权 利 要 求
1、 一种应用于分布式多输入多输出 MIMO系统中的预编码方法, 其特征 在于, 包括:
发射机初始化原始干扰信道的预编码矩阵;
发射机根据当前原始干扰信道的预编码矩阵计算原始干扰信道中的接收 滤波矩阵;
发射机根据当前计算得到的原始干扰信道中的接收滤波矩阵和当前原始 干扰信道的预编码矩阵, 利用对偶干扰信道与所述原始干扰信道的转化关系, 计算对偶干扰信道的预编码矩阵, 其中, 所述对偶干扰信道与所述原始干扰信 道具有如下关系:
所述对偶干扰信道中的接收机为所述原始干扰信道中的发射机,所述对偶 干扰信道中的发射机为所述原始干扰信道中的接收机;
发射机根据当前计算得到的对偶干扰信道的预编码矩阵,计算对偶干扰信 道中的接收滤波矩阵;
发射机根据当前计算得到的对偶干扰信道中的预编码矩阵和接收滤波矩 阵, 利用对偶干扰信道与所述原始干扰信道的转化关系, 计算新的原始干扰信 道的预编码矩阵;
发射机判断当前是否满足预置的停止运算条件, 若是, 则按照最后计算得 到的所述原始干扰信道的预编码矩阵进行预编码后, 向对端接收机发送数据; 若否,则用所述新的原始干扰信道的预编码矩阵替换前一次的原始干扰信道的 预编码矩阵,将所述新的原始干扰信道的预编码矩阵作为当前原始干扰信道的 预编码矩阵, 重复执行上述计算所述原始干扰信道中的接收滤波矩阵, 所述对 偶干扰信道的预编码矩阵,所述对偶干扰信道中的接收滤波矩阵和所述新的原 始干扰信道的预编码矩阵以及判断当前是否满足预置的停止运算条件的流程。
2、 根据权利要求 1所述的方法, 其特征在于, 所述利用对偶干扰信道与 所述原始干扰信道的转化关系, 计算对偶干扰信道的预编码矩阵具体采用: k=l
v = aR"和 进行计:
∑HRk HRk )
k=l 其中, 表示所述发射机对偶干扰信道的预编码矩阵, 表示所述发射机 当前计算得到的原始干扰信道中的接收滤波矩阵 R的共轭矩阵, Rk表示接收机 k 当前原始干扰信道的接收滤波矩阵, R 为^的共轭矩阵, ^表示发射机 k 当前原始干扰信道的预编码矩阵, 为^的共轭矩阵, A为原始干扰信道中 发射机和接收机的数量。
3、 根据权利要求 1所述的方法, 其特征在于, 所述利用对偶干扰信道与 所述原始干扰信道的转化关系, 计算新的原始干扰信道的预编码矩阵具体采 用:
进行计:
Figure imgf000015_0001
其中, v表示所述发射机原始干扰信道的预编码矩阵, Η表示所述发射机 当前计算得到的对偶干扰信道中的接收滤波矩阵 ΰ的共轭矩阵, 表示接收机 k 当前对偶干扰信道的接收滤波矩阵, H为 的共轭矩阵, 表示发射机 k 当前对偶干扰信道的预编码矩阵, 为 的共轭矩阵, A为对偶干扰信道中 发射机和接收机的数量。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于,
所述原始干扰信道中的发射机数量与接收机数量相同。
5、 根据权利要求 4所述的方法, 其特征在于, 所述判断当前是否满足预 置的停止运算条件具体为:
发射机判断当前累计判断次数是否超过预置的门限值。
6、 根据权利要求 4中任一项所述的方法, 其特征在于, 所述判断当前是 否满足预置的停止运算条件具体包括:
发射机根据前一次计算得到的原始干扰信道的预编码矩阵计算第一均方 误差 MSE值;
发射机根据当前计算得到的原始干扰信道的预编码矩阵计算第二均方误 差 MSE值;
发射机判断所述第二 MSE值与第一 MSE值的差值是否低于预置的门限 值。
7、 一种发射机, 其特征在于, 包括:
初始化单元, 用于初始化原始干 4尤信道的预编码矩阵;
更新计算单元,用于根据当前原始干扰信道的预编码矩阵计算原始干扰信 道中的接收滤波矩阵;
第一计算单元,用于根据所述更新计算单元当前计算得到的原始干扰信道 中的接收滤波矩阵和当前原始干扰信道的预编码矩阵,利用对偶干扰信道与所 述原始干扰信道的转化关系,计算对偶干扰信道的预编码矩阵, 所述对偶干扰 信道与所述原始干扰信道具有如下关系:
所述对偶干扰信道中的接收机为所述原始干扰信道中的发射机,所述对偶 干扰信道中的发射机为所述原始干扰信道中的接收机;
第二计算单元,用于根据所述第一计算单元当前计算得到的对偶干扰信道 的预编码矩阵, 计算对偶干扰信道中的接收滤波矩阵;
第三计算单元,用于根据所述第一计算单元当前计算得到的对偶干扰信道 的预编码矩阵,及所述第二计算单元当前计算得到的对偶干扰信道中的接收滤 波矩阵, 利用对偶干 4尤信道与所述原始干 4尤信道的转化关系,计算新的原始干 扰信道的预编码矩阵;
判断单元, 用于判断当前是否满足预置的停止运算条件, 若是, 则触发预 编码发送单元, 若否, 则触发替换单元;
预编码发送单元,用于按照所述第三计算单元最后计算得到的所述原始干 扰信道的预编码矩阵进行预编码后, 向对端接收机发送数据;
替换单元,用于用所述第三计算单元计算得到的所述原始干扰信道的预编 码矩阵替换前一次的原始干扰信道的预编码矩阵,将其作为当前原始干扰信道 的预编码矩阵, 并触发所述更新计算单元, 所述第一计算单元, 所述第二计算 单元, 所述第三计算单元以及所述判断单元。
8、 根据权利要求 7所述的发射机, 其特征在于,
所述判断单元具体用于判断当前所述判断单元的累计判断次数是否超过 预置的门限值, 若是, 则触发所述预编码发送单元, 若否, 则触发所述替换单 元。
9、 根据权利要求 7所述的发射机, 其特征在于,
所述判断单元具体包括: 第一均方误差计算单元,用于根据所述第三计算单元前一次计算得到的原 始干尤信道的预编码矩阵计算第一均方误差 MSE值;
第二均方误差计算单元,用于根据所述第三计算单元当前计算得到的原始 干扰信道的预编码矩阵计算第二均方误差 MSE值;
比较判断单元,用于判断所述第二 MSE值与第一 MSE值的差值是否低于 预置的门限值, 若是, 则触发预编码发送单元, 若否, 则触发替换单元。
PCT/CN2011/075306 2011-06-03 2011-06-03 应用于分布式mimo系统中的预编码方法及发射机 WO2011157176A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180000813.5A CN102918781B (zh) 2011-06-03 2011-06-03 应用于分布式mimo系统中的预编码方法及发射机
PCT/CN2011/075306 WO2011157176A2 (zh) 2011-06-03 2011-06-03 应用于分布式mimo系统中的预编码方法及发射机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075306 WO2011157176A2 (zh) 2011-06-03 2011-06-03 应用于分布式mimo系统中的预编码方法及发射机

Publications (2)

Publication Number Publication Date
WO2011157176A2 true WO2011157176A2 (zh) 2011-12-22
WO2011157176A3 WO2011157176A3 (zh) 2012-05-03

Family

ID=45348635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075306 WO2011157176A2 (zh) 2011-06-03 2011-06-03 应用于分布式mimo系统中的预编码方法及发射机

Country Status (2)

Country Link
CN (1) CN102918781B (zh)
WO (1) WO2011157176A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209059A (zh) * 2013-04-26 2013-07-17 哈尔滨工业大学 信道误差f-范数有界模型下mimo干扰对齐无线通信方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873205B (zh) * 2014-03-19 2017-05-17 山东大学 基于mmse预编码与模拟退火算法的mimo用户选择算法
CN106603135B (zh) * 2016-12-29 2020-04-17 重庆邮电大学 多用户mimo干扰系统中基于双层预编码的迭代干扰对齐方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212281A (zh) * 2006-12-31 2008-07-02 华为技术有限公司 基于多输入多输出系统的通信方法及设备
CN101771507A (zh) * 2009-01-05 2010-07-07 上海贝尔阿尔卡特股份有限公司 多小区mimo无线通信网络中消除小区间干扰的方法和装置
CN101873190A (zh) * 2009-04-21 2010-10-27 华为技术有限公司 预编码方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006052890A1 (en) * 2004-11-05 2006-05-18 University Of Florida Research Foundation, Inc. Uniform channel decomposition for mimo communications
CN101207427A (zh) * 2006-12-20 2008-06-25 华为技术有限公司 多输入多输出的传输方法、系统及装置
CN101547032B (zh) * 2008-03-25 2012-08-08 电信科学技术研究院 时分双工模式下进行mu-mimo的方法和装置
CN102273091A (zh) * 2008-11-03 2011-12-07 爱立信电话股份有限公司 发射参考信号并确定多天线发射的预编码矩阵的方法
EP3444966A1 (en) * 2009-11-25 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) A method and apparatus for using factorized precoding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212281A (zh) * 2006-12-31 2008-07-02 华为技术有限公司 基于多输入多输出系统的通信方法及设备
CN101771507A (zh) * 2009-01-05 2010-07-07 上海贝尔阿尔卡特股份有限公司 多小区mimo无线通信网络中消除小区间干扰的方法和装置
CN101873190A (zh) * 2009-04-21 2010-10-27 华为技术有限公司 预编码方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209059A (zh) * 2013-04-26 2013-07-17 哈尔滨工业大学 信道误差f-范数有界模型下mimo干扰对齐无线通信方法

Also Published As

Publication number Publication date
WO2011157176A3 (zh) 2012-05-03
CN102918781A (zh) 2013-02-06
CN102918781B (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
TWI472178B (zh) 用於長期演進(lte)頻道狀態資訊估計的方法及裝置
US9473223B2 (en) Methods for optimal collaborative MIMO-SDMA
TWI474687B (zh) 用於德耳塔量化器的處理通信信號的方法和系統
US8855257B2 (en) Adaptation techniques in MIMO
CN101039290B (zh) 基于自适应训练序列的mimo相关信道估计方法
WO2012100533A1 (zh) 预编码处理方法、基站和通信系统
EP2011251A1 (en) Reduced complexity beam-steered mimo ofdm system
WO2011072621A1 (zh) 一种预编码方法和装置以及解码方法和装置
WO2010108427A1 (en) Adaptive precoding codebooks for wireless communications
US8982803B1 (en) Systems and methods for link adaption in wireless communication systems
WO2011020226A1 (zh) 码本构建方法和设备以及预编码方法、设备和系统
WO2013033919A1 (zh) 数据传输方法、系统、发射机和接收机
WO2011137829A1 (zh) 干扰对齐方法和设备及多信道通信系统
WO2012084201A1 (en) Precoding matrix index selection process for a mimo receiver based on a near-ml detection, and apparatus for doing the same
WO2010130192A1 (zh) Lte系统中确定信道反馈信息的方法及装置
US20130078927A1 (en) Robust transceiver design
WO2010045365A1 (en) System and method for employing a six-bit rank 1 codebook for four transmit antennas
WO2008098442A1 (fr) Procédé et moyen de réglage de débit et de puissance d'un sous-canal en fonction de l'espace
WO2011157176A2 (zh) 应用于分布式mimo系统中的预编码方法及发射机
WO2014101540A1 (zh) 一种预编码矩阵的选择方法和装置
WO2009089721A1 (fr) Procédé, dispositif et système de formation de faisceaux par duplexage à répartition dans le temps à entrées multiples et sorties multiples
Yao et al. Minimum bit error rate multiuser transmission designs using particle swarm optimisation
TWI572092B (zh) 無線通訊裝置與控制天線陣列的方法
EP2649734A1 (en) Signaling to protect advanced receiver performance in wireless local area networks (lans)
WO2012095049A2 (zh) 一种mimo模式配置方法及通信设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000813.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795142

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795142

Country of ref document: EP

Kind code of ref document: A2