WO2014101540A1 - 一种预编码矩阵的选择方法和装置 - Google Patents

一种预编码矩阵的选择方法和装置 Download PDF

Info

Publication number
WO2014101540A1
WO2014101540A1 PCT/CN2013/085576 CN2013085576W WO2014101540A1 WO 2014101540 A1 WO2014101540 A1 WO 2014101540A1 CN 2013085576 W CN2013085576 W CN 2013085576W WO 2014101540 A1 WO2014101540 A1 WO 2014101540A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
channel
precoding matrix
channel estimation
module
Prior art date
Application number
PCT/CN2013/085576
Other languages
English (en)
French (fr)
Inventor
胡艳辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014101540A1 publication Critical patent/WO2014101540A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters

Definitions

  • the present invention relates to a multi-receive multi-transmission (MIMO) technology for mobile communications, and more particularly to a method and apparatus for selecting a precoding matrix.
  • MIMO multi-receive multi-transmission
  • MIMO technology is a key technology for broadband wireless communications in 3G, 4G and beyond.
  • MIMO technology can be divided into two categories: Open Loop MIMO technology and Closed Loop MIMO technology.
  • Open Loop MIMO technology the transmitter does not have information on the transmission channel.
  • closed-loop MIMO technology the transmitter selects the appropriate transmission method according to the characteristics of the transmission channel. Closed-loop MIMO technology can greatly increase system capacity, but requires information on the transmission channel.
  • a way for a transmitter to acquire transmission channel information is through feedback, ie: the receiver measures the characteristics of the transmission channel and feeds it back to the transmitter.
  • This closed-loop MIMO mode through feedback has been widely used in 3G and 4G broadband wireless communication fields such as Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX).
  • LTE Long Term Evolution
  • WiMAX Worldwide Interoperability for Microwave Access
  • the UE when the UE operates in a spatially multiplexed closed-loop MIMO mode, the user equipment (UE) needs to select an optimal (to maximize the throughput of the system) from a set of pre-defined precoding matrices.
  • the coding matrix is fed back to the base station.
  • the pre-coding matrix selection is performed by using the cell-specific reference signal, and in the LTE-Advance system, a dedicated channel state indication reference signal is introduced for precoding matrix selection.
  • the channel estimation value of the cell-specific reference signal (Cell-RS, Cell Reference Single) is used to calculate the channel capacity of each precoding matrix.
  • Cell-RS Cell-specific reference signal
  • the number of transmitting antennas is increased to eight, and the maximum transmission can support eight layers.
  • the beamforming mode PDSCH It can transmit simultaneously on 8 antenna ports, and the Cell-RS can only transmit on only 4 ports. Therefore, the channel capacity calculation using Cell-RS does not get real channel state information. Summary of the invention
  • the main purpose of the embodiments of the present invention is to provide a method for selecting a precoding matrix, which can implement precoding in a beamforming mode when there are multiple transmit antenna ports, without being affected by the limitation of the Cell-RS port.
  • the choice of matrix is to provide a method for selecting a precoding matrix, which can implement precoding in a beamforming mode when there are multiple transmit antenna ports, without being affected by the limitation of the Cell-RS port.
  • a method for selecting a precoding matrix includes: generating and buffering a precoding matrix; performing channel estimation on a channel state indication reference signal CSI-RS at a time-frequency domain location, obtaining each CSI- The channel estimation value of the RS; obtaining the channel capacity corresponding to each precoding matrix according to the channel estimation value of each CSI-RS, and selecting the index number of the precoding matrix having the largest channel capacity to feed back to the base station.
  • the channel estimation is performed on the CSI-RS in the time-frequency domain position, and the channel estimation value of each CSI-RS is obtained, which is: performing descrambling on the receiving sequence for each transmitting port, and obtaining two transmitting ports. Orthogonal frequency division multiplexing OFDM symbols on each CSI-RS descrambling result, and then averaging each CSI-RS descrambling result on two OFDM symbols to obtain channel estimation of each CSI-RS on a single OFDM symbol value.
  • the method further includes: feeding back, to the base station, an index number of the codebook corresponding to the precoding matrix having the largest channel capacity as the precoding value.
  • the method further includes: selecting a codebook corresponding to the precoding matrix having the largest channel capacity within a specified codebook subset, and feeding back the index number of the codebook to the base station as a precoding value.
  • the embodiment of the present invention further provides a precoding matrix selection device, where the device includes: a precoding matrix module, a channel estimation module, and a selection module, where
  • the precoding matrix module is configured to generate and cache a precoding matrix
  • the channel estimation module is configured to perform channel estimation on the CSI-RS in a time-frequency domain location, and obtain Obtaining channel estimates for each CSI-RS;
  • the selecting module is configured to obtain a channel capacity corresponding to each precoding matrix according to a channel estimation value of each CSI-RS, and select an index number of a precoding matrix with a largest channel capacity to feed back to the base station.
  • the channel estimation module is configured to perform descrambling on a receive sequence for each transmit port, and obtain a CSI-RS descrambling result on two OFDM symbols of each transmit port, and then on the two OFDM symbols.
  • Each CSI-RS descrambling result is averaged to obtain channel estimation values for each CSI-RS on a single OFDM symbol.
  • the selecting module is further configured to feed back, to the base station, an index number of the codebook corresponding to the precoding matrix having the largest channel capacity as a precoding value.
  • the selecting module is further configured to select a codebook corresponding to a precoding matrix having the largest channel capacity in a predetermined codebook subset range, and feed the index number of the codebook as a precoding value to the base station.
  • An embodiment of the present invention provides a method and an apparatus for selecting a precoding matrix, which generates and buffers a precoding matrix, and performs channel estimation on a CSI-RS channel in a time-frequency domain position to obtain a channel estimation value of each CSI-RS.
  • the antenna port is not affected by the limitation of the Cell-RS port, the selection of the precoding matrix is implemented.
  • the CSI-RS can support the selection of 256 codebooks, which greatly improves the adaptive ability of tracking channel changes and improves The capacity of the system, and forward compatible with the channel capacity selection method of LTE, can reuse the channel capacity calculation module in the original LTE module.
  • FIG. 1 is a schematic flowchart of a method for selecting a precoding matrix according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a CSI-RS position of a port 15 and a port 16 according to an embodiment of the present invention
  • 3 is a schematic diagram of a transmission and reception channel between a port 15 and a port 16 according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a device for selecting a precoding matrix according to an embodiment of the present invention.
  • CSI-RS Channel State Information Reference Signal
  • eight CSI-RS transmission ports are specified, that is, ports 15 to 22, each of which is two The ports use the same time domain and frequency domain resources (the same time domain and frequency domain location are the same), and the two ports CSI-RS with the same time-frequency domain resources are code-multiplexed (port 15 and port 16 are the same, port 17 is the same as port 18, port 19 is the same as port 20, port 21 is the same as port 22).
  • the embodiment of the present invention utilizes the characteristics of the CSI-RS to calculate the channel capacity by estimating the channel estimation value at the subcarrier of the CSI-RS, thereby performing precoding matrix feedback.
  • a precoding matrix is generated and buffered; a CSI-RS channel is estimated at a time-frequency domain location, and a channel estimation value of each CSI-RS is obtained; and each channel estimation value of each CSI-RS is obtained.
  • the channel capacity corresponding to the precoding matrix is selected, and the index number of the precoding matrix with the largest channel capacity is selected and fed back to the base station.
  • the embodiment of the present invention implements a method for selecting a precoding matrix. As shown in FIG. 1, the method includes the following steps:
  • Step 101 Generate and cache a precoding matrix
  • Step 102 Perform channel estimation on the CSI-RS in the time-frequency domain location, and obtain a channel estimation value of each CSI-RS.
  • the CSI-RS uses the same time domain and frequency domain resources.
  • Port 15 and port 16 are used to illustrate the channel estimation process of CSI-RS:
  • a, b, c, d, e, and f represent the sender data of the CSI-RS at different carrier positions, and 1 " represents the OFDM symbol position, and the value is 0 or 1, as shown in FIG. 2,
  • One column represents one OFDM symbol, and there are CSI-RSs on 2 OFDM symbols in one subframe;
  • the transmission sequence of the end, W represents the precoding matrix, ⁇ . Expressing noise;
  • Xo represents the transmission sequence of port 15 and port 16, respectively, Yo, ⁇ represents the reception sequence of two receiving antennas, and H [rx][tx] represents the channel estimation value of the transmission port tx to the receiving port rx.
  • port 15 is the transmission port 0
  • port 16 is the transmission port 1
  • H 00 represents the channel estimation value of the transmission port 0 to the reception port
  • H m represents the channel estimation value of the transmission port 1 to the reception port 0.
  • H [rx][tx] is a matrix of 2x8
  • W is a matrix of 8x1
  • H is a matrix of 2x1.
  • the received signal Y is a 2x1 matrix
  • the receiving sequence Yo is:
  • the received sequence is descrambled to obtain:
  • Y ld /-d -H 10 +H n It can be seen here that the results of the descrambling of the received sequence Y 0a /a, Y 0d /d, Y la /a, Y ld /-d are not the channel estimation value H of the required CSI-RS, but also to 1
  • ⁇ [1 ⁇ [ ⁇ ] ⁇ represents the CSI-RS descrambling result on one OFDM symbol
  • the descrambling of the receive sequence Yo is:
  • the descrambling of the receive sequence is:
  • H10 ( HH010 + HHiio) / 2
  • H 02 , H 03 , H 12 , H 13 , H 04 , H 05 , H 14 , H 15 , H 06 , 3 ⁇ 47 , H 16 , H 17 can be obtained separately .
  • Step 103 Obtain a channel capacity corresponding to each precoding matrix according to the channel estimation value of each CSI-RS, and select an index number of a precoding matrix with a largest channel capacity to feed back to the base station;
  • the capacity value corresponding to the precoding matrix with the largest channel capacity is:
  • C. pi argmax ⁇ log(
  • C. pi the capacity value corresponding to the precoding matrix with the largest channel capacity
  • w the precoding matrix set.
  • W is a precoding matrix set
  • H is a channel estimation value of CSI-RS
  • NO noise
  • I is a unit matrix
  • k is a CSI-RS position index
  • K is a set of all CSI-RS numbers , i.e., the channel capacity of each pre-coding matrix corresponding to all the capacity of a CSI-RS subcarrier position and; thus, the UE will C. pi precoding matrix corresponding to the index number to the base station.
  • the step further includes: feeding back, to the base station, an index number of the codebook corresponding to the precoding matrix having the largest channel capacity as the precoding value;
  • the step further includes: selecting a codebook corresponding to the precoding matrix with the largest channel capacity in a predetermined codebook subset, and feeding back the index number of the codebook to the base station as a precoding value.
  • the embodiment of the present invention further provides a device for selecting a precoding matrix.
  • the device includes: a precoding matrix module 41, a channel estimation module 42, and a selection module, where
  • the precoding matrix module 41 is configured to generate and cache a precoding matrix
  • the channel estimation module 42 is configured to perform channel estimation on the CSI-RS in a time-frequency domain location to obtain a channel estimation value of each CSI-RS;
  • the selecting module 43 is configured to obtain a channel capacity corresponding to each precoding matrix according to a channel estimation value of each CSI-RS, and select an index number of a precoding matrix with a largest channel capacity to feed back to the base station;
  • the channel estimation module 42 is specifically configured to perform descrambling on a receiving sequence for each transmitting port to obtain a CSI-RS descrambling result on two OFDM symbols of each transmitting port, and then to two OFDM symbols.
  • Each CSI-RS descrambling result is averaged to obtain a channel estimation value of each CSI-RS on a single OFDM symbol;
  • the selecting module 43 is further configured as a precoding matrix pair that maximizes channel capacity.
  • the index number of the codebook to be fed back to the base station as a precoding value;
  • the selecting module 43 is further configured to select a codebook corresponding to the precoding matrix with the largest channel capacity in a predetermined codebook subset range, and feed the index number of the codebook as a precoding value to the base station.
  • the embodiment of the present invention selects an optimal precoding matrix by performing channel estimation on the CSI-RS, which can be affected by the limitation of the Cell-RS port when there are multiple transmit antenna ports in the beamforming mode.
  • the CSI-RS can support up to 256 codebook selections, greatly improving the adaptive ability of tracking channel changes, increasing the capacity of the system, and being forward compatible with the channel capacity of LTE.
  • the selection method can reuse the channel capacity calculation module in the original LTE module.
  • the precoding matrix module 41, the channel estimation module 42, and the selection module 43 in the selection device of the precoding matrix proposed in the embodiment of the present invention may be implemented by a processor of a receiver in the UE, and may also adopt a specific logic.
  • the circuit implementation; for example, in a practical application, the processor may be a central processing unit (CPU), a microprocessor (MPU, a Micro Processor Unit), a digital signal processor (DSP), or Field-Programmable Gate Array (FPGA).
  • CPU central processing unit
  • MPU microprocessor
  • DSP digital signal processor
  • FPGA Field-Programmable Gate Array
  • the embodiment of the present invention generates and buffers a precoding matrix; performs channel estimation on the CSI-RS in a time-frequency domain position, obtains a channel estimation value of each CSI-RS; and obtains each channel estimation value according to each CSI-RS.
  • the channel capacity corresponding to the precoding matrix is selected, and the index number of the precoding matrix with the largest channel capacity is selected and fed back to the base station.
  • the technical solution provided by the embodiment of the present invention can be used in the beam.
  • the molding mode when there are multiple transmit antenna ports, it is not affected by the cell-specific reference signal Cell-RS port limitation, and the selection of the precoding matrix is realized, the adaptive capability of tracking channel changes is greatly improved, and the capacity of the system is improved.
  • the CSI-RS can support a maximum of 256 codebooks, greatly improving the adaptive capability of tracking channel changes, improving the capacity of the system, and being forward compatible with the channel capacity selection method of LTE, which can be reused.
  • Channel capacity calculation module in the LTE module is

Abstract

本发明公开了一种预编码矩阵的选择方法和装置,生成并缓存预编码矩阵;在时频域位置上对信道状态指示参考信号 CSI-RS做信道估计,获得每个 CSI-RS的信道估计值;根据每个 CSI-RS的信道估计值获得每个预编码矩阵对应的信道容量,并选择信道容量最大的预编码矩阵的索引号反馈给基站;本发明同时还公开了一种预编码矩阵的选择装置,通过本发明的方案,能够在波束成型模式下,在有多发射天线端口时,不受小区专用参考信号 Cell-RS端口限制的影响,实现预编码矩阵的选择,极大的提高跟踪信道变化的自适应能力,提高系统的容量,并且向前兼容 LTE的信道容量选择方法。

Description

一种预编码矩阵的选择方法和装置 技术领域
本发明涉及移动通信的多收多发( MIMO )技术, 尤其涉及一种预编码 矩阵的选择方法和装置。 背景技术
MIMO技术是 3G、 4G乃至未来宽带无线通信的关键技术。 MIMO技 术可分为两大类: 开环 (Open Loop ) MIMO技术和闭环(Closed Loop ) MIMO技术。 在开环 MIMO技术中, 传输机没有传输信道的信息。 而在闭 环 MIMO技术中, 传输机根据传输信道的特性选择合适的传输方式。 闭环 MIMO技术可以大幅提高系统容量, 但是需要得到传输信道的信息。
一种传输机获取传输信道信息的方式是通过反馈, 即: 接收机测量传 输信道的特性并将其反馈给传输机。 这种通过反馈的闭环 MIMO模式在长 期演进( LTE )、全球微波互联接入( WiMAX, Worldwide Interoperability for Microwave Access )等 3G、 4G宽带无线通信领域得到了广泛应用。 在 LTE 协议中, 当 UE工作在空间复用的闭环 MIMO模式时, 用户设备(UE )需 要从一组事先规定好的预编码矩阵中选择出一个最优(使系统的吞吐量最 大) 的预编码矩阵反馈给基站。 在目前的已实现的 LTE系统中, 是利用小 区专用参考信号来进行预编码矩阵选择, 而在 LTE- Advance系统中, 引入 了专用的信道状态指示参考信号进行预编码矩阵选择。
在目前的 LTE 系统中, 是利用小区专用参考信号 (Cell-RS, Cell Reference Single ) 的信道估计值来计算每个预编码矩阵的信道容量。 但在 LTE- Advance系统中, 为了提高系统的容量, 将发射天线数增加到了 8个, 最大可以支持 8 层的传输, 在波束成型 ( Beamforming )模式下, PDSCH 可以在 8个天线端口上同时传输, 而 Cell-RS最多只在 4个端口进行传输, 因此采用 Cell-RS进行信道容量计算并不能得到真实的信道状态信息。 发明内容
有鉴于此, 本发明实施例的主要目的在于提供一种预编码矩阵的选择 方法, 能够在波束成型模式下, 在有多发射天线端口时, 不受 Cell-RS端口 限制的影响, 实现预编码矩阵的选择。
为达到上述目的, 本发明实施例的技术方案是这样实现的:
本发明实施例提供的一种预编码矩阵的选择方法, 该方法包括: 生成并緩存预编码矩阵; 在时频域位置上对信道状态指示参考信号 CSI-RS做信道估计, 获得每个 CSI-RS的信道估计值; 根据每个 CSI-RS的 信道估计值获得每个预编码矩阵对应的信道容量, 并选择信道容量最大的 预编码矩阵的索引号反馈给基站。
优选地,所述在时频域位置上对 CSI-RS做信道估计,获得每个 CSI-RS 的信道估计值, 为: 对各发射端口进行接收序列的解扰, 得到各发射端口 的两个正交频分复用 OFDM符号上的每个 CSI-RS解扰结果, 之后对两个 OFDM符号上的每个 CSI-RS解扰结果求平均, 得到单个 OFDM符号上各 CSI-RS的信道估计值。
优选地, 该方法还包括: 将信道容量最大的预编码矩阵对应的码本的 索引号作为预编码值反馈给基站。
优选地, 该方法还包括: 在规定的码本子集范围内选择信道容量最大 的预编码矩阵对应的码本, 将所述码本的索引号作为预编码值反馈给基站。
本发明实施例还提供的一种预编码矩阵的选择装置, 该装置包括: 预 编码矩阵模块、 信道估计模块、 选择模块, 其中,
所述预编码矩阵模块, 配置为生成并緩存预编码矩阵;
所述信道估计模块, 配置为在时频域位置上对 CSI-RS做信道估计, 获 得每个 CSI-RS的信道估计值;
所述选择模块, 配置为根据每个 CSI-RS的信道估计值获得每个预编码 矩阵对应的信道容量, 并选择信道容量最大的预编码矩阵的索引号反馈给 基站。
优选地, 所述信道估计模块, 配置为对各发射端口进行接收序列的解 扰, 得到各发射端口的两个 OFDM符号上的每个 CSI-RS解扰结果, 之后 对两个 OFDM符号上的每个 CSI-RS解扰结果求平均, 得到单个 OFDM符 号上各 CSI-RS的信道估计值。
优选地, 所述选择模块, 还配置为将信道容量最大的预编码矩阵对应 的码本的索引号作为预编码值反馈给基站。
优选地, 所述选择模块, 还配置为在规定的码本子集范围内选择信道 容量最大的预编码矩阵对应的码本, 将所述码本的索引号作为预编码值反 馈给基站。
本发明实施例提供了一种预编码矩阵的选择方法和装置, 生成并緩存 预编码矩阵; 在时频域位置上对 CSI-RS ^故信道估计, 获得每个 CSI-RS的 信道估计值; 根据每个 CSI-RS的信道估计值获得每个预编码矩阵对应的信 道容量, 并选择信道容量最大的预编码矩阵的索引号反馈给基站; 如此, 能够在波束成型模式下, 在有多发射天线端口时, 不受 Cell-RS端口限制的 影响, 实现预编码矩阵的选择; 另外, CSI-RS最大可以支持 256个码本的 选择, 极大的提高了跟踪信道变化的自适应能力, 提高系统的容量, 并且 向前兼容了 LTE的信道容量选择方法, 可以复用原 LTE模块中的信道容量 计算模块。 附图说明
图 1为本发明实施例提供的预编码矩阵的选择方法流程示意图; 图 2为本发明实施例中端口 15和端口 16的 CSI-RS位置示意图; 图 3为本发明实施例中端口 15和端口 16间的收发信道示意图; 图 4为本发明实施例提供的预编码矩阵的选择装置的结构示意图。 具体实施方式
在 LTE-Advance中, 增加了信道状态指示参考信号( CSI-RS, Channel State Information Reference Signal ), 在 LTE-Advance协议中规定了 8 个 CSI-RS发送端口, 即端口 15〜端口 22, 每两个端口使用相同的时域和频域 资源 (即时域和频域位置都相同), 时频域资源相同的两个端口 CSI-RS采 用码分复用的方式(端口 15和端口 16相同, 端口 17和端口 18相同, 端 口 19和端口 20相同, 端口 21和端口 22相同)传输。 本发明实施例利用 CSI-RS的特性, 通过估计 CSI-RS的子载波处的信道估计值来计算信道的 容量, 从而进行预编码矩阵反馈。
在本发明实施例中,生成并緩存预编码矩阵;在时频域位置上对 CSI-RS 信道估计, 获得每个 CSI-RS的信道估计值; 根据每个 CSI-RS的信道估 计值获得每个预编码矩阵对应的信道容量, 并选择信道容量最大的预编码 矩阵的索引号反馈给基站。
下面通过附图及具体实施例对本发明^:进一步的详细说明。
本发明实施例实现一种预编码矩阵的选择方法, 如图 1 所示, 该方法 包括以下几个步骤:
步骤 101 : 生成并緩存预编码矩阵;
这里, 所述生成并緩存预编码矩阵可以通过 UE中的接收机来实现。 步骤 102: 在时频域位置上对 CSI-RS做信道估计, 获得每个 CSI-RS 的信道估计值;
具体的, 对各发射端口进行接收序列的解扰, 得到各发射端口的两个 OFDM符号上的每个 CSI-RS解扰结果, 之后对两个 OFDM符号上的每个 CSI-RS解扰结果求平均,得到单个 OFDM符号上各 CSI-RS的信道估计值; 这里, 所述 CSI-RS使用相同的时域和频域资源。
下面以 8发 2收为例,取端口 15和端口 16说明 CSI-RS的信道估计过 程:
图 2中的 a、 b、 c、 d、 e、 f表示 CSI-RS在不同载波位置处的发送端数 据, 1 "表示 OFDM符号位置, 取值为 0或 1, 如图 2所示, 每一列表示一 个 OFDM符号, 1个子帧中在 2个 OFDM符号上有 CSI-RS;
信道模型可以为: Y=H*W*X+N0 = H,*X+N0, 其中, H,=H*W, Y表 示接收天线的接收序列, Η表示信道估计值, X表示发送端的发送序列, W 表示预编码矩阵, Ν。表示噪声;
如图 3所示, Xo、 分别表示端口 15和端口 16的发送序列, Yo、 Υι 表示两个接收天线的接收序列, H[rx][tx]表示发送端口 tx到接收端口 rx的信 道估计值, 这里, 以端口 15为发送端口 0, 端口 16为发送端口 1, 如 H00 表示发送端口 0到接收端口 0的信道估计值, Hm表示发送端口 1到接收端 口 0的信道估计值。 如当发射天线总数 Ntx=8, 接收天线总数 Νκ=2, 层数 v=l时, H[rx][tx]为 2x8的矩阵, W为 8x1的矩阵, H,为 2x1的矩阵, 接收信 号 Y为 2x1的矩阵, 接收序列 Yo和 为:
Yo=Xo¾o+X 1 ¾ 1
Υι=ΧοΗιο+ΧιΗι i
当端口 15的发送序列 Χ0为(a, d ), 端口 16的发送序列 1为(a, -d ) 时, 对接收序列进行解扰, 得到:
端口 15:
Figure imgf000007_0001
端口 16:
Figure imgf000007_0002
Yld/-d=-H10+Hn 这里能够看出, 接收序列进行解扰后的结果 Y0a/a、 Y0d/d、 Yla/a、 Yld/-d 并不是要求的 CSI-RS的信道估计值 H,还要对 1"=0和 1"=1两个 OFDM符 号位置的 CSI-RS解扰结果求平均,得到单个 OFDM符号上 CSI-RS的信道 估计值。
下面以 ΗΗ[1Ί[ΓΧ]Μ表示一个 OFDM符号上的 CSI-RS解扰结果, 其中,
1"表示 OFDM符号位置, 取值为 0或 1 ; rx表示接收端口, tx表示发送端 口, 则:
接收序列 Yo的解扰为:
接收序列 Υ。点除端口 15在 1 =0位置的发送序列, 得到 HHooo 接收序列 Υ。点除端口 16在 1 =0位置的发送序列, 得到 HH001
接收序列 Υ。点除端口 15在 1 =1位置的发送序列, 得到 HH100
接收序列 Υ。点除端口 16在 1 =1位置的发送序列, 得到 HH101
接收序列 的解扰为:
接收序列 点除端口 15在 1 =0位置的发送序列, 得到 HH010
接收序列 点除端口 16在 1 =0位置的发送序列, 得到 HH011
接收序列 点除端口 15在 1 =1位置的发送序列, 得到 HH110
接收序列 点除端口 16在 1 =1位置的发送序列, 得到 HH111
单个 OFDM符号上 CSI-RS的信道估计值分别为:
¾ο =( Η¾οο+ ΗΗιοο) 2
Hoi =( HH001+ ΗΗ10ι)/2
H10 =( HH010+ HHiio)/2
Figure imgf000008_0001
同理, 可以分别求得 H02、 H03、 H12、 H13、 H04、 H05、 H14、 H15、 H06、 ¾7、 H16、 H17
步骤 103 : 根据所述每个 CSI-RS的信道估计值获得每个预编码矩阵对 应的信道容量, 选择信道容量最大的预编码矩阵的索引号反馈给基站; 本步骤中, 所述信道容量最大的预编码矩阵对应的容量值为:
Copt = argmax ^ log(| dct(w"Hk HkJw/ N0 + 1) |) 其中, C。pi为信道容量最大的预编码矩阵对应的容量值, w为属于预编 码矩阵集合中的各预编码矩阵, W为预编码矩阵集合, H为 CSI-RS的信道 估计值, NO为噪声, I为单位阵, k为 CSI-RS位置索引, K为所有 CSI-RS 个数集合, 即各预编码矩阵对应的信道容量为所有 CSI-RS位置的子载波的 容量和; 这样, UE将 C。pi对应的预编码矩阵的索引号反馈给基站。
优选地, 本步骤还包括: 将信道容量最大的预编码矩阵对应的码本的 索引号作为预编码值反馈给基站;
优选地, 本步骤还包括: 在规定的码本子集范围内选择信道容量最大 的预编码矩阵对应的码本, 将所述码本的索引号作为预编码值反馈给基站。
基于上述方法, 本发明实施例还提供一种预编码矩阵的选择装置, 如 图 4所示, 该装置包括: 预编码矩阵模块 41、 信道估计模块 42、 选择模块 43, 其中,
所述预编码矩阵模块 41, 配置为生成并緩存预编码矩阵;
所述信道估计模块 42, 配置为在时频域位置上对 CSI-RS做信道估计, 获得每个 CSI-RS的信道估计值;
所述选择模块 43,配置为根据每个 CSI-RS的信道估计值获得每个预编 码矩阵对应的信道容量, 并选择信道容量最大的预编码矩阵的索引号反馈 给基站;
优选地, 所述信道估计模块 42, 具体配置为对各发射端口进行接收序 列的解扰, 得到各发射端口的两个 OFDM符号上的每个 CSI-RS解扰结果, 之后对两个 OFDM符号上的每个 CSI-RS解扰结果求平均,得到单个 OFDM 符号上各 CSI-RS的信道估计值;
优选地, 所述选择模块 43, 还配置为将信道容量最大的预编码矩阵对 应的码本的索引号作为预编码值反馈给基站;
优选地, 所述选择模块 43, 还配置为在规定的码本子集范围内选择信 道容量最大的预编码矩阵对应的码本, 将所述码本的索引号作为预编码值 反馈给基站。
综上所述,本发明实施例通过对 CSI-RS做信道估计来选择最优的预编 码矩阵, 能够在波束成型模式下, 在有多发射天线端口时, 不受 Cell-RS端 口限制的影响, 实现预编码矩阵的选择; 另外, CSI-RS最大可以支持 256 个码本的选择, 极大的提高了跟踪信道变化的自适应能力, 提高系统的容 量, 并且向前兼容了 LTE的信道容量选择方法, 可以复用原 LTE模块中的 信道容量计算模块。
本发明实施例中提出的预编码矩阵的选择装置中的预编码矩阵模块 41、 信道估计模块 42、 选择模块 43都可以通过 UE中的接收机的处理器来 实现, 当然也可通过具体的逻辑电路实现; 比如, 在实际应用中, 所述处 理器可以为中央处理器(CPU, Central Processing Unit ), 微处理器(MPU, Micro Processor Unit )、 数字信号处理器(DSP, Digital Signal Processor )或 现场可编程门阵列 ( FPGA, Field - Programmable Gate Array )等。
以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利保护 范围, 凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保 护范围。 工业实用性
本发明实施例通过生成并緩存预编码矩阵; 在时频域位置上对 CSI-RS 做信道估计, 获得每个 CSI-RS的信道估计值; 根据每个 CSI-RS的信道估计 值获得每个预编码矩阵对应的信道容量, 并选择信道容量最大的预编码矩 阵的索引号反馈给基站; 这样, 本发明实施例提供的技术方案能够在波束 成型模式下, 在有多发射天线端口时, 不受小区专用参考信号 Cell-RS端口 限制的影响, 实现预编码矩阵的选择, 极大的提高跟踪信道变化的自适应 能力,提高系统的容量,并且向前兼容 LTE的信道容量选择方法。进一步的, CSI-RS最大可以支持 256个码本的选择,极大的提高了跟踪信道变化的自适 应能力, 提高系统的容量, 并且向前兼容了 LTE的信道容量选择方法, 可以 复用原 LTE模块中的信道容量计算模块。

Claims

权利要求书
1、 一种预编码矩阵的选择方法, 该方法包括:
生成并緩存预编码矩阵; 在时频域位置上对信道状态指示参考信号
CSI-RS做信道估计, 获得每个 CSI-RS的信道估计值; 根据每个 CSI-RS的 信道估计值获得每个预编码矩阵对应的信道容量, 并选择信道容量最大的 预编码矩阵的索引号反馈给基站。
2、 根据权利要求 1 所述的选择方法, 其中, 所述在时频域位置上对 CSI-RS做信道估计, 获得每个 CSI-RS的信道估计值, 为: 对各发射端口 进行接收序列的解扰, 得到各发射端口的两个正交频分复用 OFDM符号上 的每个 CSI-RS解扰结果,之后对两个 OFDM符号上的每个 CSI-RS解扰结 果求平均, 得到单个 OFDM符号上各 CSI-RS的信道估计值。
3、 根据权利要求 2所述的选择方法, 其中, 该方法还包括: 将信道容
4、 根据权利要求 2所述的选择方法, 其中, 该方法还包括: 在规定的 码本子集范围内选择信道容量最大的预编码矩阵对应的码本, 将所述码本 的索引号作为预编码值反馈给基站。
5、 一种预编码矩阵的选择装置, 该装置包括: 预编码矩阵模块、 信道 估计模块、 选择模块, 其中,
所述预编码矩阵模块, 配置为生成并緩存预编码矩阵;
所述信道估计模块, 配置为在时频域位置上对 CSI-RS做信道估计, 获 得每个 CSI-RS的信道估计值;
所述选择模块, 配置为根据每个 CSI-RS的信道估计值获得每个预编码 矩阵对应的信道容量, 并选择信道容量最大的预编码矩阵的索引号反馈给 基站。
6、 根据权利要求 5所述的选择装置, 其中, 所述信道估计模块, 配置 为对各发射端口进行接收序列的解扰, 得到各发射端口的两个 OFDM符号 上的每个 CSI-RS解扰结果,之后对两个 OFDM符号上的每个 CSI-RS解扰 结果求平均, 得到单个 OFDM符号上各 CSI-RS的信道估计值。
7、 根据权利要求 5所述的选择装置, 其中, 所述选择模块, 还配置为 站。
8、 根据权利要求 5所述的选择装置, 其中, 所述选择模块, 还配置 为在规定的码本子集范围内选择信道容量最大的预编码矩阵对应的码 本, 将所述码本的索引号作为预编码值反馈给基站。
PCT/CN2013/085576 2012-12-26 2013-10-21 一种预编码矩阵的选择方法和装置 WO2014101540A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210575873.6 2012-12-26
CN201210575873.6A CN103905161A (zh) 2012-12-26 2012-12-26 一种预编码矩阵的选择方法和装置

Publications (1)

Publication Number Publication Date
WO2014101540A1 true WO2014101540A1 (zh) 2014-07-03

Family

ID=50996323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085576 WO2014101540A1 (zh) 2012-12-26 2013-10-21 一种预编码矩阵的选择方法和装置

Country Status (2)

Country Link
CN (1) CN103905161A (zh)
WO (1) WO2014101540A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160807A (zh) * 2015-04-09 2016-11-23 株式会社Ntt都科摩 波束选择方法、移动台和基站
CN109391391B (zh) * 2017-08-08 2020-04-17 维沃移动通信有限公司 一种用于传输参考信号的方法及装置
EP3826385A4 (en) * 2018-07-18 2022-03-16 Ntt Docomo, Inc. USER DEVICE AND BASE STATION DEVICE
CN111865380B (zh) * 2020-08-07 2021-07-27 成都爱瑞无线科技有限公司 一种利用参考信号进行pmi/ri/mcs选择和反馈的方法
CN115843053B (zh) * 2023-02-17 2023-05-23 深圳国人无线通信有限公司 基于5g小基站srs信号计算tpmi和ri的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388752A (zh) * 2007-09-11 2009-03-18 大唐移动通信设备有限公司 基于时分双工系统的上行空间传输方法、终端和基站
CN102111197A (zh) * 2009-12-28 2011-06-29 电信科学技术研究院 预编码矩阵索引信息上报方法和设备
CN102223212A (zh) * 2010-04-16 2011-10-19 电信科学技术研究院 预编码矩阵索引上报方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087258A2 (en) * 2010-01-12 2011-07-21 Pantech Co.,Ltd. Apparatus and method for channel information feedback, base station receiving the channel information, and communication method of the base station
CN102299775B (zh) * 2010-06-24 2013-12-04 上海贝尔股份有限公司 一种预编码矩阵的选择方法和装置
CN102136891A (zh) * 2011-05-16 2011-07-27 电子科技大学 Mu-mimo系统中一种改进的csi有限反馈方法
CN102546110A (zh) * 2011-12-31 2012-07-04 电信科学技术研究院 一种传输信道状态信息的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388752A (zh) * 2007-09-11 2009-03-18 大唐移动通信设备有限公司 基于时分双工系统的上行空间传输方法、终端和基站
CN102111197A (zh) * 2009-12-28 2011-06-29 电信科学技术研究院 预编码矩阵索引信息上报方法和设备
CN102223212A (zh) * 2010-04-16 2011-10-19 电信科学技术研究院 预编码矩阵索引上报方法和设备

Also Published As

Publication number Publication date
CN103905161A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
EP3272022B1 (en) Methods and devices for determining precoder parameters in a wireless communication network
TWI442726B (zh) 無線通信系統之方法及配置
US7912141B2 (en) Pre-coding method for MIMO system and apparatus using the method
EP2985924B1 (en) Method and apparatus for acquiring a precoding matrix indicator and a precoding matrix
WO2020225642A1 (en) Csi omission rules for enhanced type ii csi reporting
WO2018142204A1 (en) Multi-beam csi reporting
WO2012059000A1 (zh) 一种信道质量信息的上报方法及其装置
TW201126955A (en) Open loop channel reporting in a wireless communication system
KR20110044876A (ko) 채널 상태 정보를 송신 및 수신하기 위한 시스템
WO2013033919A1 (zh) 数据传输方法、系统、发射机和接收机
WO2011140782A1 (zh) 多输入多输出系统的下行传输方法和基站
WO2015172393A1 (zh) 信息处理方法、基站和用户设备
WO2014101540A1 (zh) 一种预编码矩阵的选择方法和装置
KR20180087257A (ko) 프리코더 모드 선택에 기초한 사이클릭 프리픽스 (cp) 길이의 변경
WO2018024157A1 (zh) 信道状态信息的发送方法、接收方法、装置和系统
KR20180112796A (ko) 채널 상태 정보(csi) 보고 방법 및 장치
WO2011118962A2 (en) Apparatus and method for generating codebook in a wireless communication system
WO2013040741A1 (zh) 数据传输方法、系统、发射机和接收机
WO2011023079A1 (zh) 实现CoMP场景下多用户MIMO的方法、装置及系统
WO2013007146A1 (zh) 一种上行多天线系统开环空间复用的发射方法和装置
JP2017063447A (ja) 無線ローカル・エリア・ネットワーク(lan)におけるアドバンスト受信機パフォーマンスを保護するためにシグナリングすること
WO2018196589A1 (zh) 数据发送方法、数据接收方法、网络设备和终端设备
CN109478972B (zh) 切换状态的方法、网络设备和终端设备
WO2011124024A1 (zh) 用于在多输入多输出系统中反馈和构建相关矩阵的方法和设备
WO2011085549A1 (zh) 用于信道信息反馈及预编码的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866662

Country of ref document: EP

Kind code of ref document: A1