WO2011156978A1 - 基于非正弦曲线的模切机传动系统 - Google Patents

基于非正弦曲线的模切机传动系统 Download PDF

Info

Publication number
WO2011156978A1
WO2011156978A1 PCT/CN2010/074112 CN2010074112W WO2011156978A1 WO 2011156978 A1 WO2011156978 A1 WO 2011156978A1 CN 2010074112 W CN2010074112 W CN 2010074112W WO 2011156978 A1 WO2011156978 A1 WO 2011156978A1
Authority
WO
WIPO (PCT)
Prior art keywords
mandrel
fixedly connected
die
cutting machine
planet carrier
Prior art date
Application number
PCT/CN2010/074112
Other languages
English (en)
French (fr)
Inventor
吴凤彪
Original Assignee
Wu Fengbiao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wu Fengbiao filed Critical Wu Fengbiao
Priority to PCT/CN2010/074112 priority Critical patent/WO2011156978A1/zh
Publication of WO2011156978A1 publication Critical patent/WO2011156978A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/26Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by cams, eccentrics, or cranks
    • B30B1/266Drive systems for the cam, eccentric or crank axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/08Means for actuating the cutting member to effect the cut
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/40Cutting-out; Stamping-out using a press, e.g. of the ram type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines

Definitions

  • the present invention relates to a flat die-cutting machine, and more particularly to a non-sinusoidal based die-cutting machine transmission system suitable for large-format machining. Background technique
  • Die-cutting technology is widely used in the fields of medical, automotive, electronics, and electrical products manufacturing, especially in the field of flat-panel display manufacturing. Die-cutting processing is more widely used.
  • the precision die-cutting machine comprises a body, a feeding mechanism is arranged at the front end of the body, and a traction mechanism is arranged at the rear end of the body, which is characterized in that the upper part of the body is arranged a mold base; an upper mold base is disposed above the lower mold base, and the upper mold base is arranged in parallel with the lower mold base; the upper mold base is fixedly connected with the four pull rods, and the axial centers of the four pull rods are respectively arranged perpendicularly to the upper mold base; the four pull rods are disposed under the mold base
  • the mold base is connected to the transmission in the machine body;
  • the transmission device is connected to the motor through the clutch device, the transmission device includes a connecting rod, one end of the connecting rod is disposed with an eccentric shaft, and the eccentric shaft is connected to the clutch device through a speed reducing mechanism.
  • the other end of the connecting rod is also disposed with an eccentric shaft, and the eccentric shaft is disposed on the movable seat.
  • the movable seat is fixedly connected with the four pull rods, and a worm wheel is disposed on the eccentric shaft, and the worm wheel is engaged with an adjusting screw.
  • the speed reduction mechanism is a gear set.
  • Chinese patent document CN201175934 discloses a punching machine on January 7, 2009, the punching machine includes a body, and a lower die seat is arranged on the upper part of the body; an upper die seat is arranged above the lower die seat, and the upper die base is parallel to the lower die base
  • the upper mold base is fixedly connected with the four tie rods, the axial center of the four pull rods and the four pull rods of the upper mold base are disposed on the upper part of the body, and are fixedly connected to the movable seat in the body; the vertical setting; the movable seat and the bottom end of the connecting rod are pivotally connected
  • the connecting rod is disposed above the moving seat; the top end of the connecting rod is sleeved on the eccentric shaft, and the eccentric shaft is connected to the motor through the clutch device;
  • the moving seat is further provided with a guiding sleeve, the bottom of the body is provided with a guiding column, and the guiding sleeve is disposed on the guiding column.
  • Chinese patent document CN201175933 discloses a punching machine on January 7, 2009, the punching machine includes a body, and a lower die seat is arranged on the upper part of the body; an upper die seat is arranged above the lower die seat, and the upper die seat is The lower mold base is arranged in parallel; the upper mold base is fixedly connected with the four pull rods, and the axial centers of the four pull rods are respectively arranged perpendicular to the upper mold base; the four pull rods are disposed on the upper part of the body and fixedly connected to the movable seat in the machine body; the punching machine also includes An excessive piece, the lower end of the excess piece is connected to the moving seat by an automatic adjusting mechanism; the upper end of the excessive piece is hinged to the lower end of the connecting rod; the top end of the connecting rod is sleeved on the eccentric shaft, and the eccentric shaft is connected to the motor through the clutch device.
  • the hinge of the upper end of the excessive piece and the lower end of the connecting rod is a ball joint.
  • the automatic adjusting mechanism between the excess piece and the moving seat comprises a vertical axis of the lower end of the excess piece, the middle part of the vertical axis is provided with a thread, and the moving base is correspondingly provided with a threaded hole, and the vertical axis is threaded through the threaded connection a lower end of the vertical shaft is provided with a spline, and a worm wheel is connected by a spline, and a screw connected to the worm wheel is connected to adjust the output shaft of the motor.
  • the existing die-cutting equipment has a common feature, that is, each has an eccentric shaft, thereby Forming a punching motion, which is essentially a crank slider mechanism, the motor is connected to the eccentric shaft through a speed reduction mechanism, and the eccentric portion of the eccentric shaft drives the connecting rod to form a reciprocating motion of the movable mold base. Because the motor rotates at a constant speed during operation, the reciprocating motion of the existing die-cutting equipment movable mold base and the time axis constitute a sinusoidal motion. In order to achieve continuous processing, the existing die-cutting equipment has a set of pulling mechanism.
  • the above-mentioned sinusoidal movement is basically no problem in the die cutting equipment, and the pulling action is completed in the return time of the movable mold base, but for the large format (refer to The length of the mold base in the drawing direction is greater than or equal to 500mm.)
  • the absolute time of pulling the material is relatively long. If the return time of the movable mold base is determined by the pulling time, the return time of the movable mold base will be compared. Long, this will result in waste of time, low productivity; sometimes it is impossible to complete die-cutting, because the movable mold base moves in a sinusoidal curve. If the return time of the movable mold base is longer, the cutting time of the movable mold base is also It must be relatively long. When the punching line speed is less than the limit value, the die cutting process cannot be completed.
  • An object of the present invention is to provide a non-sinusoidal based die cutting machine drive system suitable for large format machining that overcomes the deficiencies of the prior art described above.
  • the die-cutting machine includes a body, the upper body of the body is fixedly connected to the lower mold base, and the upper mold base is disposed above the lower mold base, and the upper mold base is oriented Four guide posts are fixedly connected to the bottom, four guide posts are passed through the four guide sleeves of the lower die holder and extend to the inside of the body, and the four guide bottoms are connected to a bottom plate to connect the driving device disposed inside the body;
  • the driving device includes a crank connecting rod
  • the crank linkage mechanism comprises a connecting rod and a crankshaft, one end of the connecting rod is pivoted on the bottom plate, and the other end of the connecting rod is sleeved on the eccentric section of the crankshaft;
  • the non-sinusoidal die-cutting machine transmission system further comprises a main a motor and a secondary motor, the main motor and the secondary motor are coupled to an eccentric section of
  • the die-cutting machine comprises a body, the upper part of the body is fixedly connected to the lower mold base, and the upper mold base is arranged above the lower mold base, and the upper mold base is fixedly connected to the four guide pillars, and the four guide pillars are worn.
  • the four guide sleeves are disposed on the lower mold base and extend to the inside of the body, and the four guide bottoms are connected to a bottom plate to connect the driving device disposed inside the body;
  • the driving device includes a crank connecting rod mechanism, and the crank connecting rod mechanism includes a connecting rod and a crankshaft One end of the connecting rod is pivoted on the bottom plate, and the other end of the connecting rod is sleeved on the eccentric section of the crankshaft;
  • the non-sinusoidal die-cutting machine transmission system further comprises a main motor and a sub-motor, and the main motor and the sub-motor pass a planetary coupling device is coupled to the eccentric section of the crankshaft;
  • the planetary coupling device has a first input end, a second input end, and an output end, the first input end having a first mandrel and the second input end having a second mandrel, The output end has a third mandrel, the main motor is connected to one end of the first mandrel, the
  • the die-cutting machine flywheel and the planet carrier wheel are driven by a reduction gear; in one embodiment of the invention, the gear ratio between the die-cutting machine flywheel and the planet carrier wheel is 1 : 0.25. In another embodiment of the invention, the ratio between the die cutter speed wheel and the planet carrier wheel is 1:0.4. In another embodiment of the invention, the ratio between the die cutter speed wheel and the planet carrier wheel is 1: 0.125.
  • the die-cutting machine comprises a body, the upper part of the body is fixedly connected to the lower mold base, and the upper mold base is provided with an upper mold base, the upper mold base Four guide posts are fixedly connected downwards, four guide posts are passed through the four guide sleeves of the lower die holder and extend to the inside of the body, and four guide bottoms are connected to a bottom plate to connect the driving device disposed inside the body;
  • the driving device includes a crank connection
  • the lever mechanism, the crank connecting rod mechanism comprises a connecting rod and a crankshaft, one end of the connecting rod is pivoted on the bottom plate, and the other end of the connecting rod is sleeved on the eccentric section of the crankshaft;
  • the non-sinusoidal die-cutting machine transmission system further comprises a main motor and a sub motor, the main motor and the sub motor are connected to an eccentric section of the crankshaft through a
  • the die-cutting machine comprises a body, the upper part of the body is fixedly connected to the lower mold base, and the upper mold base is arranged above the lower mold base, and the upper mold base is fixedly connected to the four guide pillars, and the four guide pillars are worn.
  • the four guide sleeves are disposed on the lower mold base and extend to the inside of the body, and the four guide bottoms are connected to a bottom plate to connect the driving device disposed inside the body;
  • the driving device includes a crank connecting rod mechanism, and the crank connecting rod mechanism includes a connecting rod and a crankshaft One end of the connecting rod is pivoted on the bottom plate, and the other end of the connecting rod is sleeved on the eccentric section of the crankshaft;
  • the non-sinusoidal die-cutting machine transmission system further comprises a main motor and a sub-motor, and the main motor and the sub-motor pass a planetary coupling device is coupled to the eccentric section of the crankshaft;
  • the planetary coupling device has a first input end, a second input end, and an output end, the first input end having a first mandrel and the second input end having a second mandrel, The output end has a third mandrel, the main motor is connected to one end of the first mandrel, the
  • the die-cutting machine flywheel and the planet carrier wheel are driven by a reduction gear; in one embodiment of the invention, the gear ratio between the die-cutting machine flywheel and the planet carrier wheel is 1 : 0.25. In another embodiment of the invention, the ratio between the die cutter speed wheel and the planet carrier wheel is 1:0.4. In another embodiment of the invention, the ratio between the die cutter speed wheel and the planet carrier wheel is 1: 0.125.
  • the non-sinusoidal die-cutting machine transmission system of the invention has a secondary motor, and the output of the secondary motor and the output of the main motor are finally output to the crankshaft through the coupling of the planetary coupling device to form a die-cut motion.
  • the main The motor provides the main power for die cutting
  • the secondary motor is mainly used for speed regulation.
  • the present invention can form a non-sinusoidal die-cutting motion, and can separately compensate for the insufficient pulling time, and existing Compared with the technology, it is more suitable for large-format punching, and the die-cutting machine of the invention can actively allocate various time periods, avoiding the waste of time caused by the symmetric sinusoidal movement, and has the characteristics of high efficiency.
  • FIG. 1 is a graph showing the relationship between the motion trajectory of a conventional sinusoidal die-cutting machine transmission system and time.
  • FIG. 1 is a relationship diagram of a motion path of a conventional die-cutting machine and time
  • FIG. 2 is a relationship diagram of an ideal die-cutting machine motion trajectory and time in large-format machining.
  • LT1 represents the pull time
  • LT2 represents the pause time
  • CT1 represents the punch time
  • CT2 represents the return time
  • CT3 represents the pause time.
  • the motion curve is a symmetric sinusoid.
  • the pulling time LT1 is equal to the punching time CT1 and is equal to half of the stroke period T.
  • the die-cutting machine must first meet the requirements of the pull material on time, otherwise there will be defects such as broken material and deformation of the material being processed. Therefore, when the pulling time is insufficient, the pulling time is actively increased.
  • a first embodiment of the present invention is a non-sinusoidal die-cutting machine drive system.
  • the non-sinusoidal die-cutting machine transmission system comprises a body, the upper part of the body is fixedly connected to the lower mold base, and the upper mold base is arranged above the lower mold base, the upper mold base is fixedly connected to the four guide pillars, and the four guide pillars are disposed on the lower mold
  • the four guide sleeves of the seat extend to the inside of the body, and the four guide bottoms are connected to a bottom plate to connect the driving device disposed inside the body;
  • the driving device includes a crank connecting rod mechanism, the crank connecting rod mechanism includes a connecting rod and a crankshaft, and one end of the connecting rod
  • the utility model is pivoted on the bottom plate, and the other end of the connecting rod is sleeved on the eccentric section of the crankshaft.
  • the non-sinusoidal die-cutting machine drive system further includes a main motor and a secondary motor, the main motor and the secondary motor being coupled to the eccentric section of the crankshaft by a planetary coupling device.
  • the planetary coupling device has a first input end, a second input end, and an output end.
  • the first input end has a first mandrel
  • the second input end has a second mandrel
  • the output end has a third mandrel.
  • the main motor is connected to one end of the first mandrel
  • the sub motor is connected to one end of the second mandrel
  • one end of the output end is connected to the crankshaft.
  • the other end of the first mandrel is fixedly connected with an external gear, which is defined as a sun gear; the other end of the third mandrel is fixedly connected with an internal gear; the sun gear is concentric with the internal gear, and between the sun gear and the internal gear Engaged with a set of planet wheels, the core of each planet is fixedly connected to the planet carrier.
  • the first mandrel is threaded through the center of the planet carrier, and the first mandrel forms a rotatable connection with the planet carrier.
  • the planetary carrier is also fixedly connected with an external gear, which is defined as a planet carrier wheel; the other end of the second mandrel is fixedly connected with an external gear, which is defined as a flywheel; the flywheel meshes with the planet carrier wheel.
  • the secondary motor is a servo motor, and the transmission ratio between the die-cutting machine flywheel and the planet carrier wheel is 1:0.25.
  • a second embodiment of the present invention is also a non-sinusoidal die-cutting machine drive.
  • the non-sinusoidal die-cutting machine transmission system comprises a body, the upper part of the body is fixedly connected to the lower mold base, and the upper mold base is arranged above the lower mold base, the upper mold base is fixedly connected to the four guide pillars, and the four guide pillars are disposed on the lower mold
  • the four guide sleeves of the seat extend to the inside of the body, and the four guide bottoms are connected to a bottom plate to connect the driving device disposed inside the body;
  • the driving device includes a crank connecting rod mechanism, the crank connecting rod mechanism includes a connecting rod and a crankshaft, and one end of the connecting rod
  • the utility model is pivoted on the bottom plate, and the other end of the connecting rod is sleeved on the eccentric section of the crankshaft.
  • the non-sinusoidal die-cutting machine drive system further includes a main motor and a secondary motor, the main motor and the secondary motor being coupled to the eccentric section of the crankshaft by a planetary coupling device.
  • the planetary coupling device has a first input end, a second input end, and an output end.
  • the first input end has a first mandrel
  • the second input end has a second mandrel
  • the output end has a third mandrel.
  • the main motor is connected to one end of the first mandrel
  • the sub motor is connected to one end of the second mandrel
  • one end of the output end is connected to the crankshaft.
  • the other end of the first mandrel is fixedly connected with an external gear, which is defined as a sun gear; the other end of the third mandrel is fixedly connected with an internal gear; the sun gear is concentric with the internal gear, and between the sun gear and the internal gear Engaged with a set of planet wheels, the core of each planet is fixedly connected to the planet carrier.
  • an external gear which is defined as a sun gear
  • the other end of the third mandrel is fixedly connected with an internal gear
  • the sun gear is concentric with the internal gear, and between the sun gear and the internal gear Engaged with a set of planet wheels, the core of each planet is fixedly connected to the planet carrier.
  • the planet carrier is provided with a bearing fixedly connected with the body, the center of the bearing is concentric with the axis of the first mandrel, and the planet carrier and the body form a rotatable connection; the planet carrier is also fixedly connected with an external gear, the external gear is defined It is a planet carrier wheel; the other end of the second mandrel is fixedly connected with an external gear, which is defined as a flywheel; the flywheel meshes with the planet carrier wheel.
  • the secondary motor is a servo motor, and the transmission ratio between the speed-adjusting wheel of the die-cutting machine and the planet carrier wheel is 1: 0.25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Press Drives And Press Lines (AREA)

Description

基于非正弦曲线的模切机传动系统 技术领域 本发明涉及平压式模切加工装备, 尤其涉及一种适合大幅面加工的基于 基于非正弦曲线的模切机传动系统。 背景技术
模切加工技术广泛应用于医疗、 汽车、 电子、 电器产品制造领域, 尤其 是平面显示制造领域, 模切加工应用更为广泛。
然而, 作为一种专用装备, 二十世纪末期, 模切装备才从传统的冲床中 分离出来, 得到飞跃发展。
中国专利文献 CN201189682于 2009年 2月 4日公开了一种精密模切机, 该精密模切机包括机体, 机体前端设置进料机构, 机体后端设置牵引机构, 其特征在于; 机体上部设置下模座; 下模座上方设置上模座, 上模座与下模 座平行设置; 上模座与四条拉杆固定连接, 四条拉杆的轴心均与上模座垂直 设置; 四条拉杆穿设于下模座, 并与机体内的传动装置连接; 传动装置通过 离合装置连接马达,所述传动装置包括一个连杆,连杆的一端穿设一偏心轴, 偏心轴通过减速机构连接所述离合装置。 所述连杆的另一端也穿设一偏心 轴, 并且偏心轴穿设于活动座, 活动座与所述四条拉杆固定连接, 偏心轴上 套设一蜗轮, 蜗轮与一调节螺杆啮合。 所述减速机构是齿轮组。
中国专利文献 CN201175934于 2009年 1月 7日公开了一种冲型机, 该 冲型机包括机体, 机体上部设置下模座; 下模座上方设置上模座, 上模座与 下模座平行设置; 上模座与四条拉杆固定连接, 四条拉杆的轴心均与上模座 四条拉杆穿设于机体上部, 固定连接于机体内的移动座; 垂直设置; 移动座 与连杆底端枢接, 连杆设置于移动座的上方; 连杆的顶端套设于偏心轴, 偏 心轴通过离合装置连接马达; 移动座还设置有导向套, 机体底部设置有导向 柱, 导向套套设于导向柱。
中国专利文献 CN201175933于 2009年 1月 7日公开了一种冲型机, 该 冲型机包括机体, 机体上部设置下模座; 下模座上方设置上模座, 上模座与 下模座平行设置; 上模座与四条拉杆固定连接, 四条拉杆的轴心均与上模座 垂直设置; 四条拉杆穿设于机体上部, 固定连接于机体内的移动座; 冲型机 还包括一过度件, 过度件下端通过自动调节机构连接移动座; 过度件上端与 连杆下端铰接; 连杆的顶端套设于偏心轴, 偏心轴通过离合装置连接马达。 所述过度件上端与所述连杆下端的铰接是球头铰接。所述过度件与移动座之 间的自动调节机构包括所述过度件下端的一段竖轴, 竖轴的中部设有螺纹, 对应地移动座设有螺纹孔, 竖轴通过螺纹连接穿设于移动座; 竖轴的下端设 有花键,并通过花键连接一蜗轮,与蜗轮啮合的螺杆连接调节马达的输出轴。
以上专利文献代表了平压式模切装备的主流, 然而从以上专利文献公开 的模切装备中, 不难得出现有的模切装备具有一个共同的特点, 即均具有一 个偏心轴, 籍此来形成冲切运动, 其本质上是一个曲柄滑块机构, 马达通过 减速机构连接偏心轴, 偏心轴的偏心部分带动连杆形成活动模座的往复运 动。 因为马达工作时均速转动, 所以现有的模切装备活动模座的往复运动与 时间轴均构成基于正弦曲线运动。 为实现连续加工, 现有的模切装备均具有 一套拉料机构。
对于小幅面 (指模座在拉料方向的长度小于 500mm) 模切装备来说, 前述的正弦曲线运动基本没有问题, 在活动模座的回程时间内完成拉料动 作, 但对于大幅面 (指模座在拉料方向的长度大于等于 500mm) 模切装备 来说, 拉料的绝对时间比较长, 如果以拉料时间来确定活动模座的回程时间 的话, 活动模座的回程时间也会比较长, 这会造成时间上的浪费, 生产效率 低下; 有时甚至无法完成模切加工, 因为活动模座按正弦曲线运动, 如果活 动模座的回程时间比较长, 那么活动模座的冲切时间也必然比较长, 当冲切 线速度小于极限值时, 即无法完成模切加工。
综上, 现有技术的模切装备, 不适合大幅面模切加工。 发明公开 本发明的目的在于克服上述现有技术的不足之处而提供一种适合大幅 面加工的基于非正弦曲线的模切机传动系统。 本发明的目的可以通过以下技术方案实现: 基于非正弦曲线的模切机传动系统, 该模切机包括机体, 机体上面固定 连接下模座, 下模座上方设置上模座, 上模座向下固定连接四条导柱, 四条 导柱穿设于下模座的四个导套并延伸至机体内部, 四条导底部共同连接一底 板, 连接设置于机体内部的驱动装置; 驱动装置包括曲柄连杆机构, 曲柄 连杆机构包括连杆和曲轴, 连杆一端枢设于底板, 连杆另一端套设于曲轴的 偏心段; 其特征在于: 该基于非正弦曲线的模切机传动系统还包括主马达和 副马达, 主马达和副马达通过一行星藕合装置连接于曲轴的偏心段; 行星藕 合装置具有第一输入端、 第二输入端、 输出端, 第一输入端具有第一芯轴, 第二输入端具有第二芯轴, 输出端具有第三芯轴, 主马达连接于第一芯轴的 一端, 副马达连接于第二芯轴的一端, 输出端的一端连接曲轴; 第一芯轴的 另一端固定连接一外齿轮, 该外齿轮定义为太阳轮; 第三芯轴的另一端固定 连接一内齿轮; 太阳轮与内齿轮同心设置, 且太阳轮与内齿轮之间啮合有一 组行星轮, 各行星轮这轴芯固定连接于行星架; 第一芯轴穿设于行星轮架的 中心, 第一芯轴与行星轮架之间构成能够转动的连接; 行星轮架还固定连接 一外齿轮,该外齿轮定义为行星架轮;第二芯轴的另一端固定连接一外齿轮, 该外齿轮定义为调速轮; 调速轮与行星架轮啮合。 基于非正弦曲线的模切机传动系统, 该模切机包括机体, 机体上面固定 连接下模座, 下模座上方设置上模座, 上模座向下固定连接四条导柱, 四条 导柱穿设于下模座的四个导套并延伸至机体内部, 四条导底部共同连接一底 板, 连接设置于机体内部的驱动装置; 驱动装置包括曲柄连杆机构, 曲柄 连杆机构包括连杆和曲轴, 连杆一端枢设于底板, 连杆另一端套设于曲轴的 偏心段; 其特征在于: 该基于非正弦曲线的模切机传动系统还包括主马达和 副马达, 主马达和副马达通过一行星藕合装置连接于曲轴的偏心段; 行星藕 合装置具有第一输入端、 第二输入端、 输出端, 第一输入端具有第一芯轴, 第二输入端具有第二芯轴, 输出端具有第三芯轴, 主马达连接于第一芯轴的 一端, 副马达连接于第二芯轴的一端, 输出端的一端连接曲轴; 第一芯轴的 另一端固定连接一外齿轮, 该外齿轮定义为太阳轮; 第三芯轴的另一端固定 连接一内齿轮; 太阳轮与内齿轮同心设置, 且太阳轮与内齿轮之间啮合有一 组行星轮, 各行星轮这轴芯固定连接于行星架; 第一芯轴穿设于行星轮架的 中心, 第一芯轴与行星轮架之间构成能够转动的连接; 行星轮架还固定连接 一外齿轮,该外齿轮定义为行星架轮;第二芯轴的另一端固定连接一外齿轮, 该外齿轮定义为调速轮; 调速轮与行星架轮啮合; 副马达是伺服马达。 在本 发明的一个实施例中, 模切机调速轮与行星架轮之间为减速传动; 在本发明 的一个实施例中, 模切机调速轮与行星架轮之间的传动比为 1 : 0.25。 在本 发明的另一个实施例中, 模切机调速轮与行星架轮之间的传动比为 1 : 0.4。 在本发明的另一个实施例中, 模切机调速轮与行星架轮之间的传动比为 1 : 0.125。 本发明的目的还可以通过以下技术方案实现: 基于非正弦曲线的模切机传动系统, 该模切机包括机体, 机体上面固定 连接下模座, 下模座上方设置上模座, 上模座向下固定连接四条导柱, 四条 导柱穿设于下模座的四个导套并延伸至机体内部, 四条导底部共同连接一底 板, 连接设置于机体内部的驱动装置; 驱动装置包括曲柄连杆机构, 曲柄 连杆机构包括连杆和曲轴, 连杆一端枢设于底板, 连杆另一端套设于曲轴的 偏心段; 其特征在于: 该基于非正弦曲线的模切机传动系统还包括主马达和 副马达, 主马达和副马达通过一行星藕合装置连接于曲轴的偏心段; 行星藕 合装置具有第一输入端、 第二输入端、 输出端, 第一输入端具有第一芯轴, 第二输入端具有第二芯轴, 输出端具有第三芯轴, 主马达连接于第一芯轴的 一端, 副马达连接于第二芯轴的一端, 输出端的一端连接曲轴; 第一芯轴的 另一端固定连接一外齿轮, 该外齿轮定义为太阳轮; 第三芯轴的另一端固定 连接一内齿轮; 太阳轮与内齿轮同心设置, 且太阳轮与内齿轮之间啮合有一 组行星轮, 各行星轮这轴芯固定连接于行星架; 行星架外套设与机体固定连 接的轴承, 轴承的中心与第一芯轴的轴心同心, 行星架与机体之间构成能够 转动的连接; 行星轮架还固定连接一外齿轮, 该外齿轮定义为行星架轮; 第 二芯轴的另一端固定连接一外齿轮, 该外齿轮定义为调速轮; 调速轮与行星 架轮啮合。 基于非正弦曲线的模切机传动系统, 该模切机包括机体, 机体上面固定 连接下模座, 下模座上方设置上模座, 上模座向下固定连接四条导柱, 四条 导柱穿设于下模座的四个导套并延伸至机体内部, 四条导底部共同连接一底 板, 连接设置于机体内部的驱动装置; 驱动装置包括曲柄连杆机构, 曲柄 连杆机构包括连杆和曲轴, 连杆一端枢设于底板, 连杆另一端套设于曲轴的 偏心段; 其特征在于: 该基于非正弦曲线的模切机传动系统还包括主马达和 副马达, 主马达和副马达通过一行星藕合装置连接于曲轴的偏心段; 行星藕 合装置具有第一输入端、 第二输入端、 输出端, 第一输入端具有第一芯轴, 第二输入端具有第二芯轴, 输出端具有第三芯轴, 主马达连接于第一芯轴的 一端, 副马达连接于第二芯轴的一端, 输出端的一端连接曲轴; 第一芯轴的 另一端固定连接一外齿轮, 该外齿轮定义为太阳轮; 第三芯轴的另一端固定 连接一内齿轮; 太阳轮与内齿轮同心设置, 且太阳轮与内齿轮之间啮合有一 组行星轮, 各行星轮这轴芯固定连接于行星架; 行星架外套设与机体固定连 接的轴承, 轴承的中心与第一芯轴的轴心同心, 行星架与机体之间构成能够 转动的连接; 行星轮架还固定连接一外齿轮, 该外齿轮定义为行星架轮; 第 二芯轴的另一端固定连接一外齿轮, 该外齿轮定义为调速轮; 调速轮与行星 架轮啮合; 副马达是伺服马达。 在本发明的一个实施例中, 模切机调速轮与 行星架轮之间为减速传动; 在本发明的一个实施例中, 模切机调速轮与行星 架轮之间的传动比为 1 : 0.25。 在本发明的另一个实施例中, 模切机调速轮 与行星架轮之间的传动比为 1 : 0.4。 在本发明的另一个实施例中, 模切机调 速轮与行星架轮之间的传动比为 1 : 0.125。 本发明的基于非正弦曲线的模切机传动系统, 具有副马达, 副马达的输 出与主马达的输出通过行星藕合装置的藕合最终输出到曲轴, 形成模切运 动, 本发明中, 主马达为模切提供主要动力, 副马达主要用作调速, 通过对 副马达转速的控制, 本发明即可形成非正弦的模切运动, 可以单独对拉料时 间的不足进行补偿, 与现有技术相比, 更适合大幅面冲切, 并且, 本发明的 模切机能够主动地分配各段时间, 避免了对称式正弦运动带来的时间浪费, 又具有效率高的特点。 附图说明 图 1是传统的基于正弦曲线的模切机传动系统的运动轨迹与时间的关系 图。 图 2 是大幅面加工中理想的模切机传动系统的运动轨迹与时间的关系 图。 图 3是本发明第一个实施例的原理图。 图 4是本发明第二个实施例的原理图。 发明实施方式 下面将结合附图对本发明作进一歩详述。 参考图 1和图 2, 图 1是传统模切机的运动轨迹与时间的关系图, 图 2 是大幅面加工中理想的模切机运动轨迹与时间的关系图。 图中, LT1表示拉 料时间, LT2表示停顿时间, CT1表示冲切时间, CT2表示回程时间, CT3 表示间歇时间。 传统的模切机, 其运动曲线是对称式正弦曲线, 从图 1可以看出, 拉料 时间 LT1等到于冲切时间 CT1 , 且等于行程周期 T的一半。无论如何, 模切 机首先要满足拉料对时间的要求,不然会出现断料、被加工材料变形等缺陷。 因此当拉料时间不足时, 就要主动地增加拉料时间, 其结果是, 行程周期成 倍增加 (T=2xLTl ) ,冲切时间也对应地增加 (CT1=LT1 ), 这一立面导致生 产效率的降低,另一方面当冲切时间 CT1增加超过一定极限时,会因冲切速 度过低导致被加工材料无法切穿或切口过于粗糙。 大幅面加工中理想的模切机运动轨迹, 各行程的时间可以主动分配, 尤 其是可以在一个冲切周期中设置一个间歇时间 CT3 , 用于等待拉料。 从图 2 不难看出, 理想状态中, 一个行程周期 T等于冲切时间 CT1加上拉料时间 LT1 , 接料时是绝对不能冲切的, 因此, 行程周期 T=CT1+LT1是在满足大幅 面加工条件下最小的行程周期。 本发明的实施例将提供二种将以上理想变为现实的基于非正弦曲线的 模切机传动系统。 参考图 3, 本发明第一个实施例是一种基于非正弦曲线的模切机传动系 统。 该基于非正弦曲线的模切机传动系统包括机体,机体上面固定连接下模 座, 下模座上方设置上模座, 上模座向下固定连接四条导柱, 四条导柱穿设 于下模座的四个导套并延伸至机体内部, 四条导底部共同连接一底板, 连接 设置于机体内部的驱动装置; 驱动装置包括曲柄连杆机构, 曲柄连杆机构包 括连杆和曲轴, 连杆一端枢设于底板, 连杆另一端套设于曲轴的偏心段。 该基于非正弦曲线的模切机传动系统还包括主马达和副马达,主马达和 副马达通过一行星藕合装置连接于曲轴的偏心段。 行星藕合装置具有第一输入端、 第二输入端、 输出端, 第一输入端具有 第一芯轴, 第二输入端具有第二芯轴, 输出端具有第三芯轴。 主马达连接于第一芯轴的一端, 副马达连接于第二芯轴的一端, 输出端 的一端连接曲轴。 第一芯轴的另一端固定连接一外齿轮, 该外齿轮定义为太阳轮; 第三芯 轴的另一端固定连接一内齿轮; 太阳轮与内齿轮同心设置, 且太阳轮与内齿 轮之间啮合有一组行星轮, 各行星轮这轴芯固定连接于行星架。 第一芯轴穿设于行星轮架的中心,第一芯轴与行星轮架之间构成能够转 动的连接。 行星轮架还固定连接一外齿轮, 该外齿轮定义为行星架轮; 第二芯轴的 另一端固定连接一外齿轮,该外齿轮定义为调速轮;调速轮与行星架轮啮合。 副马达是伺服马达, 模切机调速轮与行星架轮之间的传动比为 1 : 0.25。 参考图 4, 本发明第二个实施例也是一种基于非正弦曲线的模切机传动 该基于非正弦曲线的模切机传动系统包括机体,机体上面固定连接下模 座, 下模座上方设置上模座, 上模座向下固定连接四条导柱, 四条导柱穿设 于下模座的四个导套并延伸至机体内部, 四条导底部共同连接一底板, 连接 设置于机体内部的驱动装置; 驱动装置包括曲柄连杆机构, 曲柄连杆机构包 括连杆和曲轴, 连杆一端枢设于底板, 连杆另一端套设于曲轴的偏心段。 该基于非正弦曲线的模切机传动系统还包括主马达和副马达,主马达和 副马达通过一行星藕合装置连接于曲轴的偏心段。 行星藕合装置具有第一输入端、 第二输入端、 输出端, 第一输入端具有 第一芯轴, 第二输入端具有第二芯轴, 输出端具有第三芯轴。 主马达连接于第一芯轴的一端, 副马达连接于第二芯轴的一端, 输出端 的一端连接曲轴。 第一芯轴的另一端固定连接一外齿轮, 该外齿轮定义为太阳轮; 第三芯 轴的另一端固定连接一内齿轮; 太阳轮与内齿轮同心设置, 且太阳轮与内齿 轮之间啮合有一组行星轮, 各行星轮这轴芯固定连接于行星架。 行星架外套设与机体固定连接的轴承,轴承的中心与第一芯轴的轴心同 心, 行星架与机体之间构成能够转动的连接; 行星轮架还固定连接一外齿轮, 该外齿轮定义为行星架轮; 第二芯轴的 另一端固定连接一外齿轮,该外齿轮定义为调速轮;调速轮与行星架轮啮合。
副马达是伺服马达, 模切机调速轮与行星架轮之间的传动比为 1 : 0.25。 工业上的应用
以上实施例只是优选的实施方式, 凡在本发明权利要求的范围内, 对具 体实施方式所作的变化, 均属本发明的涵盖范围。

Claims

权 利 要 求 书
1、 一种基于非正弦曲线的模切机传动系统, 该模切机包括机体, 机体 上面固定连接下模座, 下模座上方设置上模座, 上模座向下固定连接四条导 柱, 四条导柱穿设于下模座的四个导套并延伸至机体内部, 四条导底部共同 连接一底板, 连接设置于机体内部的驱动装置; 驱动装置包括曲柄连杆机 构, 曲柄连杆机构包括连杆和曲轴, 连杆一端枢设于底板, 连杆另一端套设 于曲轴的偏心段; 其特征在于: 该基于非正弦曲线的模切机传动系统还包括主马达和副马达,主马达和 副马达通过一行星藕合装置连接于曲轴的偏心段; 行星藕合装置具有第一输入端、 第二输入端、 输出端, 第一输入端具有 第一芯轴, 第二输入端具有第二芯轴, 输出端具有第三芯轴, 主马达连接于 第一芯轴的一端, 副马达连接于第二芯轴的一端, 输出端的一端连接曲轴; 第一芯轴的另一端固定连接一外齿轮, 该外齿轮定义为太阳轮; 第三芯轴的另一端固定连接一内齿轮; 太阳轮与内齿轮同心设置, 且太阳轮与内齿轮之间啮合有一组行星轮, 各行星轮这轴芯固定连接于行星架; 第一芯轴穿设于行星轮架的中心,第一芯轴与行星轮架之间构成能够转 动的连接; 行星轮架还固定连接一外齿轮, 该外齿轮定义为行星架轮; 第二芯轴的另一端固定连接一外齿轮, 该外齿轮定义为调速轮; 调速轮与行星架轮啮合。
2、 根据权利要求 1所述的基于非正弦曲线的模切机传动系统, 其特征 在于: 副马达是伺服马达。
3、 根据权利要求 2所述的基于非正弦曲线的模切机传动系统, 其特征 在于: 调速轮与行星架轮之间为减速传动。
4、 一种基于非正弦曲线的模切机传动系统, 该模切机包括机体, 机体 上面固定连接下模座, 下模座上方设置上模座, 上模座向下固定连接四条导 柱, 四条导柱穿设于下模座的四个导套并延伸至机体内部, 四条导底部共同 连接一底板, 连接设置于机体内部的驱动装置; 驱动装置包括曲柄连杆机 构, 曲柄连杆机构包括连杆和曲轴, 连杆一端枢设于底板, 连杆另一端套设 于曲轴的偏心段; 其特征在于: 该基于非正弦曲线的模切机传动系统还包括主马达和副马达,主马达和 副马达通过一行星藕合装置连接于曲轴的偏心段; 行星藕合装置具有第一输入端、 第二输入端、 输出端, 第一输入端具有 第一芯轴, 第二输入端具有第二芯轴, 输出端具有第三芯轴, 主马达连接于 第一芯轴的一端, 副马达连接于第二芯轴的一端, 输出端的一端连接曲轴; 第一芯轴的另一端固定连接一外齿轮, 该外齿轮定义为太阳轮; 第三芯轴的另一端固定连接一内齿轮; 太阳轮与内齿轮同心设置, 且太阳轮与内齿轮之间啮合有一组行星轮, 各行星轮这轴芯固定连接于行星架; 行星架外套设与机体固定连接的轴承,轴承的中心与第一芯轴的轴心同 心, 行星架与机体之间构成能够转动的连接; 行星轮架还固定连接一外齿轮, 该外齿轮定义为行星架轮; 第二芯轴的另一端固定连接一外齿轮, 该外齿轮定义为调速轮; 调速轮与行星架轮啮合。
5、 根据权利要求 4所述的基于非正弦曲线的模切机传动系统, 其特征 在于: 副马达是伺服马达。
6、 根据权利要求 4所述的基于非正弦曲线的模切机传动系统, 其特征 在于: 调速轮至行星架轮之间为减速传动。
PCT/CN2010/074112 2010-06-19 2010-06-19 基于非正弦曲线的模切机传动系统 WO2011156978A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/074112 WO2011156978A1 (zh) 2010-06-19 2010-06-19 基于非正弦曲线的模切机传动系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/074112 WO2011156978A1 (zh) 2010-06-19 2010-06-19 基于非正弦曲线的模切机传动系统

Publications (1)

Publication Number Publication Date
WO2011156978A1 true WO2011156978A1 (zh) 2011-12-22

Family

ID=45347651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074112 WO2011156978A1 (zh) 2010-06-19 2010-06-19 基于非正弦曲线的模切机传动系统

Country Status (1)

Country Link
WO (1) WO2011156978A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111002627A (zh) * 2019-12-30 2020-04-14 南京埃斯顿自动化股份有限公司 一种机械压力机滑块停上死点的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453060A (en) * 1992-03-16 1995-09-26 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Power transmission for mechanical press
JPH1158091A (ja) * 1997-08-26 1999-03-02 Aida Eng Ltd サーボモータ駆動プレス機械
JP2002066798A (ja) * 2000-08-31 2002-03-05 Kawasaki Hydromechanics Corp 差動歯車減速機によるプレス装置およびその差動歯車減速装置
CN201175934Y (zh) * 2008-04-01 2009-01-07 戴爱媛 冲型机
CN201189682Y (zh) * 2008-04-01 2009-02-04 戴爱媛 精密模切机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453060A (en) * 1992-03-16 1995-09-26 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Power transmission for mechanical press
JPH1158091A (ja) * 1997-08-26 1999-03-02 Aida Eng Ltd サーボモータ駆動プレス機械
JP2002066798A (ja) * 2000-08-31 2002-03-05 Kawasaki Hydromechanics Corp 差動歯車減速機によるプレス装置およびその差動歯車減速装置
CN201175934Y (zh) * 2008-04-01 2009-01-07 戴爱媛 冲型机
CN201189682Y (zh) * 2008-04-01 2009-02-04 戴爱媛 精密模切机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111002627A (zh) * 2019-12-30 2020-04-14 南京埃斯顿自动化股份有限公司 一种机械压力机滑块停上死点的控制方法
CN111002627B (zh) * 2019-12-30 2021-03-19 南京埃斯顿自动化股份有限公司 一种机械压力机滑块停上死点的控制方法

Similar Documents

Publication Publication Date Title
CN2918047Y (zh) 动力下置式冲床
CN102602033B (zh) 一种高速压力机滑块装模高度调节装置
CN104290344B (zh) 双伺服电机驱动多连杆压力机及工作方法
CN203409504U (zh) 冷镦机
US11214029B2 (en) Energy-saving double-motor double-station screw press
CN201926891U (zh) 汽车连接套自动生产装置
CN101954654B (zh) 一种模切机设计方法及一种模切机
WO2011156978A1 (zh) 基于非正弦曲线的模切机传动系统
CN201780934U (zh) 一种高精度对轮定长送丝装置
CN200970645Y (zh) 汽轮机低压缸轴承球面镗削设备
WO2011156979A1 (zh) 基于非对称运动的模切机传动系统
CN203622048U (zh) 一种床身式铣床进给机构
CN203541196U (zh) 能连续弯制螺旋管的新型弯管机
CN211145173U (zh) 一种紧凑型两挡减速箱的换挡同步机构
CN211515872U (zh) 一种翅片管外翅片加工装置
CN209754659U (zh) 凸轮机构
CN2564280Y (zh) 模内攻牙机
CN106427030A (zh) 一种自行保养的小型压片机
CN201244747Y (zh) 一种进给机构
CN108927449B (zh) 一种针对管状零件进行单点渐进成形加工装置
CN201432190Y (zh) 法兰加工机
CN204367445U (zh) 用于高速伺服压力机的主传动结构
CN2640698Y (zh) 普通车床快速数控改造结构
CN206009699U (zh) 冷镦机的反拉驱动式主滑台装置
CN205800247U (zh) 一种冲床多连杆偏心齿轮传动结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853088

Country of ref document: EP

Kind code of ref document: A1