WO2011155214A1 - Bonding member and manufacturing method thereof - Google Patents

Bonding member and manufacturing method thereof Download PDF

Info

Publication number
WO2011155214A1
WO2011155214A1 PCT/JP2011/003298 JP2011003298W WO2011155214A1 WO 2011155214 A1 WO2011155214 A1 WO 2011155214A1 JP 2011003298 W JP2011003298 W JP 2011003298W WO 2011155214 A1 WO2011155214 A1 WO 2011155214A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
aluminum
alloy
intermediate layer
interface
Prior art date
Application number
PCT/JP2011/003298
Other languages
French (fr)
Japanese (ja)
Inventor
英樹 山岸
昭二 餅川
Original Assignee
ワシマイヤー株式会社
富山県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ワシマイヤー株式会社, 富山県 filed Critical ワシマイヤー株式会社
Priority to JP2012519278A priority Critical patent/JP5830727B2/en
Publication of WO2011155214A1 publication Critical patent/WO2011155214A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2333Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer one layer being aluminium, magnesium or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/15Magnesium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials

Definitions

  • the present invention relates to a coupling member and a manufacturing method thereof, and more specifically, a coupling member that is lightweight and excellent in the joining property between a magnesium member and an aluminum member, and the coupling member can be easily manufactured, and the productivity is also improved.
  • the present invention relates to a method for manufacturing an excellent coupling member.
  • an aluminum alloy has excellent mechanical strength, whereas a magnesium alloy has a characteristic of being lightweight.
  • a coupling member having both of these characteristics.
  • a magnesium-aluminum clad material in which a magnesium alloy is used as an inner core material and the surface layer of the magnesium alloy is directly coated with aluminum or an alloy thereof by extrusion is known (for example, see Patent Document 1). Also, rolling, extruding, drawing, or compression processing is performed on one or a plurality of surfaces of the magnesium material or the magnesium alloy material so that the thickness is 0.1 to 10% of the vertical thickness of the magnesium material or the magnesium alloy material.
  • An aluminum-coated magnesium alloy material coated with a pure aluminum material or an aluminum alloy material is known (see, for example, Patent Document 2).
  • the magnesium-aluminum clad material described in Patent Document 1 and the aluminum-coated magnesium alloy material described in Patent Document 2 are both in a form in which the magnesium alloy is simply coated with an aluminum alloy.
  • the tensile strength (hereinafter also referred to as “joinability”) of the joint portion with the above is not sufficient.
  • Non-Patent Document 1 Although the tensile strength of the joint portion is relatively strong (tensile strength of about 115 MPa: Non-Patent Document 1), in practice, wire bonding or point bonding is used. Therefore, the bondability is insufficient. The friction stir welding method cannot be applied to the joining interface inside the member, and is difficult to apply to a three-dimensional curved surface. For this reason, processing takes time and it is difficult to cope with mass production.
  • the present invention has been made in view of the above circumstances, and although it is lightweight, it is easy to manufacture a coupling member excellent in bondability between a magnesium member and an aluminum member, and the coupling member, and is excellent in productivity. It aims at providing the manufacturing method of a coupling member.
  • the inventors of the present invention have intensively studied to solve the above-mentioned problems.
  • the joining interface is fine under a predetermined condition. It has been found that a mechanical joint interface is formed in addition to diffusion bonding, resulting in an anchor effect and greatly improving the joint strength. Based on this knowledge, it has been found that the above problem can be solved by providing an intermediate layer made of a predetermined metal between the magnesium member and the aluminum member, and the present invention has been completed.
  • the present invention is a coupling member comprising (1) a magnesium member made of a magnesium alloy, an aluminum member made of an aluminum alloy, and an intermediate layer formed between the magnesium member and the aluminum member.
  • the layer is made of at least one insert material selected from the group consisting of Ni, Cu, and Ti, and exists in the bonding member that is joined so that the magnesium member, the aluminum member, and the intermediate layer are integrated.
  • a first diffusion layer made of a magnesium alloy and an insert material is formed at the interface between the magnesium member and the intermediate layer, and an aluminum alloy is formed at the interface between the aluminum member and the intermediate layer. It exists in the coupling member of the said (1) description in which the 2nd diffused layer which consists of insert materials is formed.
  • the present invention includes (3) an interface between the magnesium member and the first diffusion layer, an interface between the first diffusion layer and the intermediate layer, an interface between the intermediate layer and the second diffusion layer, and an aluminum member and the second diffusion layer.
  • a mechanical joint by plastic flow is formed at the interface.
  • the present invention is (4) the method of manufacturing a coupling member according to any one of (1) to (3) above, wherein a magnesium alloy, an insert material made of Ti, and an aluminum alloy are overlapped, It exists in the manufacturing method of the coupling member which joins a magnesium member, an intermediate
  • the present invention provides (5) the method for producing a coupling member according to any one of (1) to (3) above, wherein a magnesium alloy, an insert material made of Ni or Cu, and an aluminum alloy are laminated.
  • the present invention resides in a method for manufacturing a bonding member that joins a magnesium member, an intermediate layer, and an aluminum member by heating in a range of 300 ° C. to 400 ° C. and pressurizing at 700 MPa to 750 MPa.
  • the present invention provides (6) the method for producing a bonded member according to (4) or (5) above, wherein after the magnesium member, the intermediate layer, and the aluminum member are joined, solution treatment and aging treatment are further performed. Exist.
  • the brittle aluminum and magnesium described above are provided by providing an intermediate layer made of at least one insert material selected from the group consisting of Ni, Cu and Ti between the magnesium member and the aluminum member. Since no intermetallic compound phase is formed, the bondability between the magnesium member and the aluminum member is excellent over the entire surface via the intermediate layer. Moreover, the said coupling member is excellent in the lightweight property resulting from a magnesium alloy, and is excellent in mechanical strength or corrosion resistance resulting from an aluminum alloy. For this reason, for example, when used for a wheel of an automobile or the like, it is preferable to reduce the weight by using an aluminum member as the outer side and a magnesium member as the inner side that are easily damaged in a corrosive environment. Furthermore, since the coupling member is surface-bonded, it can be applied to the bonding interface inside the member and can be applied to a three-dimensional curved surface.
  • a first diffusion layer made of a magnesium alloy and an insert material is formed at an interface between the magnesium member and the intermediate layer, and an aluminum alloy and an insert material are formed at the interface between the aluminum member and the intermediate layer.
  • bondability improves more.
  • plastic flow occurs at the interface between the magnesium member and the first diffusion layer, the interface between the first diffusion layer and the intermediate layer, the interface between the intermediate layer and the second diffusion layer, and the interface between the aluminum member and the second diffusion layer.
  • the area to be diffusion-bonded increases, so that the bondability is further improved.
  • the coupling member of the present invention since the coupling member is obtained simply by superimposing a magnesium alloy, a predetermined insert material, and an aluminum alloy and heating and pressing under a predetermined condition, the manufacturing is easy. And excellent in productivity. Further, when the solution treatment and the aging treatment are performed after joining, it is possible to suppress the aluminum alloy from being annealed, so that the joining property is reliably improved.
  • FIG. 1 is a cross-sectional view schematically showing a coupling member according to this embodiment.
  • FIG. 2 is a schematic enlarged sectional view of a portion P in FIG. In the coupling member which concerns on Example 1, it is a side view which shows the state which laminated
  • FIGS. 4 (a) to 4 (c) show the bonding member according to Example 1 from the state in which the magnesium alloy billet, the insert material, and the aluminum alloy billet are stacked to heat and press until the bonding member is obtained. It is explanatory drawing for demonstrating this process.
  • FIG. 5 is a graph showing the relationship between the tensile strength of the joint surface, the applied pressure during heating, and the heating temperature in Examples 1 to 11.
  • FIG. 5 is a graph showing the relationship between the tensile strength of the joint surface, the applied pressure during heating, and the heating temperature in Examples 1 to 11.
  • FIG. 6 is a graph showing the relationship between the tensile strength of the joint surface, the applied pressure during heating, and the heating temperature in Examples 12 to 20.
  • FIG. 7 is a graph showing the relationship between the tensile strength of the joining surface and the applied pressure during joining in Examples 21 to 25.
  • FIGS. 8A to 8C are photographs of secondary electron images obtained by a scanning electron microscope (SEM) on the joint surface of the coupling member according to the second embodiment.
  • FIG. 9 is a photograph of a secondary electron image obtained by a scanning electron microscope (SEM) on the joint surface of the coupling member according to Example 22.
  • FIG. 10A to FIG. 10F show the surface analysis results of the coupling member according to Example 2 using an X-ray microanalyzer (EPMA).
  • FIG. 11B show the surface analysis results of the coupling member according to Example 22 by X-ray microanalyzer (EPMA).
  • 12 (a) to 12 (d) show the results of line analysis by EPMA of the coupling member according to the second embodiment.
  • FIG. 13A is a line analysis result by EPMA of the coupling member according to Example 22.
  • FIG. 13B is a line analysis result by EPMA of the coupling member according to Example 22.
  • FIG. 14 shows the relationship between the heating temperature during bonding in the bonding member according to Comparative Example 1, the tensile strength of the obtained bonding member, and the thickness of the intermetallic compound phase composed of aluminum and magnesium formed at the bonding interface. It is a graph to show.
  • 15A and 15B are photographs of secondary electron images obtained by SEM of the coupling member according to Comparative Example 1.
  • FIG. 1 is a cross-sectional view schematically showing a coupling member according to this embodiment.
  • a coupling member 100 according to this embodiment includes a magnesium member 1 made of a magnesium alloy, an aluminum member 2 made of an aluminum alloy, and an intermediate layer inserted between the magnesium member 1 and the aluminum member 2. 3. That is, the coupling member 100 has a structure in which the magnesium member 1, the intermediate layer 3, and the aluminum member 2 are laminated in this order and joined together.
  • the magnesium member 1 is made of an alloy containing magnesium as a main component. For this reason, the coupling member 100 is lightweight, and the magnesium member 1 side has a feature that internal friction is large and vibration and impact are easily absorbed.
  • the additive element of the magnesium alloy include aluminum, zinc, calcium, and lithium. The characteristics of the magnesium alloy can be changed by adjusting the blending of these additive metals. Among these, it is preferable that an additive metal is aluminum and zinc from a versatility viewpoint.
  • the aluminum member 2 is made of an alloy mainly composed of aluminum. For this reason, the aluminum member 2 side is characterized by excellent mechanical strength.
  • the additive element of the aluminum alloy include copper, manganese, silicon, magnesium, zinc, nickel, and the like.
  • the characteristics of the aluminum alloy can be changed by adjusting the blending of these additive metals. Specifically, Al—Cu alloy (duralumin), Al—Mn alloy, Al—Si alloy, Al—Mg alloy, Al—Mg—Si alloy, Al—Zn—Mg alloy, Al— Zn-Mg-Cu based alloys and the like can be mentioned.
  • the intermediate layer 3 functions like an adhesive for joining the magnesium member 1 and the aluminum member 2.
  • the intermediate layer 3 is made of at least one insert material selected from the group consisting of Ni, Cu and Ti.
  • the thickness of the intermediate layer 3 is preferably 10 ⁇ m to 2 mm.
  • the thickness of the intermediate layer 3 is preferably 10 ⁇ m to 2 mm.
  • the thickness is less than 10 ⁇ m, compared with the case where the thickness is within the above range, for example, when the shape of the coupling member is an arc, a curved surface, a three-dimensional surface, etc., unevenness occurs in the applied pressure, and the magnesium member 1 And the aluminum member 2 may be insufficiently joined.
  • the thickness exceeds 2 mm, the characteristics of the magnesium member 1 and the aluminum member 2 may not be sufficiently exhibited as compared with the case where the thickness is within the above range, resulting in an increase in weight and cost. There are also drawbacks.
  • the bonding member 100 is provided with the intermediate layer 3 made of an insert material between the magnesium member 1 and the aluminum member 2, thereby connecting the magnesium member 1 and the aluminum member 2 via the intermediate layer 3. Is excellent over the entire surface.
  • FIG. 2 is a schematic enlarged sectional view of a portion P in FIG.
  • a first diffusion layer 11 made of a magnesium alloy and an insert material is formed at the interface between the magnesium member 1 and the intermediate layer 3.
  • a second diffusion layer 12 made of an aluminum alloy and an insert material is formed at the interface between the member 2 and the intermediate layer 3.
  • a mechanical joint 21 by plastic flow is formed at the interface between the magnesium member 1 and the first diffusion layer 11, and a machine by plastic flow is formed at the interface between the first diffusion layer 11 and the intermediate layer 3.
  • the mechanical joint 22 is formed at the interface between the intermediate layer 3 and the second diffusion layer 12, and the mechanical joint 23 by plastic flow is formed at the interface between the aluminum member 2 and the second diffusion layer 12.
  • a mechanical joint 24 is formed by plastic flow.
  • the mechanical joint means a fine concavo-convex part formed by plastic flow on the boundary surface, thereby exhibiting an anchor effect.
  • the coupling member 100 not only the first diffusion layer 11 and the second diffusion layer 12 are provided, but also the mechanical joints 21 to 24 that are fine plastic flow interfaces exhibit an anchor effect. Therefore, high strength surface bonding is achieved. In addition, in the formation of the plastic flow interface, the bonding strength is further improved by increasing the area to be diffusion bonded.
  • the bonding member 100 is formed by laminating a magnesium alloy, an insert material, and an aluminum alloy, and heating and pressurizing the magnesium member 1, the intermediate layer 3 made of the insert material, and an aluminum member made of the aluminum alloy. 2 is obtained by joining them so as to be integrated with each other.
  • a magnesium alloy, a sheet of at least one insert material selected from the group consisting of Ni, Cu and Ti, and an aluminum alloy are laminated.
  • the surface roughness (Rz) of the surface laminated with the insert material of the magnesium alloy is 10 ⁇ m or less
  • the surface roughness (Rz) of the surface laminated with the insert material of the aluminum alloy is 10 ⁇ m or less.
  • the surface is clean and has a natural oxide film level by polishing. In this case, the bonding strength is further improved.
  • the surface roughness (Rz) means a value measured according to JIS B0601 (2001).
  • the whole member is heated and pressed to form the first diffusion layer and the second diffusion layer on the bonding surface, whereby the coupling member 100 is obtained.
  • the mechanical joint it is preferable to form the mechanical joint by the fine plastic flow described above.
  • the insert material is Ni or Cu
  • the tensile strength of the joint surface reaches at least 115 MPa to 120 MPa
  • the insert material is Ti
  • the tensile strength of the joint surface reaches at least 154 MPa.
  • the heating temperature is preferably in the range of 200 ° C. to 450 ° C., more preferably in the range of 200 ° C. to 400 ° C., and in the range of 300 ° C. to 350 ° C. More preferably it is. If the temperature is lower than 200 ° C., the plastic flow may be reduced as compared with the case where the temperature is within the above range, resulting in insufficient bonding. Further, when the temperature exceeds 450 ° C., the diffusion reaction layer may grow more than necessary and the bonding may be insufficient as compared with the case where the temperature is within the above range.
  • the pressure applied is preferably in the range of 100 MPa to 700 MPa.
  • the pressure is less than 100 MPa, bonding may be insufficient as compared with the case where the pressure is within the above range, and when the pressure exceeds 700 MPa, the pressure is within the above range.
  • the plastic flow becomes too large, the insert material is broken, a brittle intermetallic compound is generated by the direct reaction between the magnesium alloy and the aluminum alloy, and the strength may be lowered due to the generation of defects such as cracks and Kirkendall voids.
  • the heating temperature is preferably in the range of 300 ° C to 400 ° C. If the temperature is lower than 300 ° C., the plastic flow may be reduced as compared with the case where the temperature is within the above range, resulting in insufficient bonding. Further, when the temperature exceeds 400 ° C., the diffusion reaction layer may grow more than necessary and the bonding may be insufficient as compared with the case where the temperature is within the above range.
  • the pressure applied is preferably in the range of 700 MPa to 750 MPa. If the pressure is less than 700 MPa, bonding may be insufficient as compared with the case where the pressure is within the above range, and if the pressure exceeds 750 MPa, the pressure is within the above range. Further, the plastic flow becomes too large, the insert material is broken, a brittle intermetallic compound is generated by the direct reaction between the magnesium alloy and the aluminum alloy, and the strength may be lowered due to the generation of defects such as cracks and Kirkendall voids.
  • a coupling member is obtained simply by laminating a magnesium member, an intermediate layer, and an aluminum member, and heating and pressing under predetermined conditions, the production is easy. Excellent productivity. That is, in the atmosphere, for example, three-dimensional surface bonding is possible in a short time of about 20 seconds, so that it is possible to improve mass productivity and reduce costs.
  • the coupling member according to the present embodiment has a two-layer structure of a magnesium member and an aluminum member, but may have three or more layers. That is, the aluminum member may be laminated on both surfaces of the magnesium member, and the magnesium member may be laminated on both surfaces of the aluminum member.
  • the joint surfaces of the magnesium alloy billet and the aluminum alloy billet were ground, polished with a SiC # 1000 abrasive paper, and further the surface was degreased with acetone.
  • a magnesium alloy billet 31, an intermediate layer 33, and an aluminum alloy billet 32 are laminated, and in order to fix them, connecting plate members 34 are bolted to the side surfaces of the magnesium alloy billet 31 and the aluminum alloy billet 32. 35 and screwed.
  • laminated body As shown in Table 1, the weight of the laminated magnesium alloy billet 31, intermediate layer 33 and aluminum alloy billet 32 (hereinafter simply referred to as “laminated body”) was about 27 kg. In Table 1, “-” means not measured.
  • a laminated body 36 is installed between a lower die 37 for flat pressing and an upper die 38 of a press machine having a pressurizing force of 9000 tons.
  • the laminate 36 was placed on the mold 37. Thereafter, the laminate was heated under the temperature conditions shown in Table 2 and pressurized for 20 seconds under the pressure conditions shown in Table 1 as shown in FIG. In Table 2, “-” means that no measurement was performed. And after natural cooling, it formed into the solution by heat processing and age-hardened, and the coupling member 40 shown to (c) of FIG. 4 was obtained.
  • the joining member of Example 2 using Ni as the insert material and having a heating temperature of 300 ° C. and a pressing force of 750 MPa exhibits a tensile strength of about 120 MPa at the maximum.
  • the joining members of Examples 12 to 17 using Cu as the insert material had a maximum tensile strength of about 100 MPa. It was found that when the insert material is Ni or Cu, it is not joined at a low temperature (tensile strength of 0 MPa), but it suddenly joins when a certain temperature is exceeded. This is thought to be related to the formation of a plastic flow interface. Further, it was found that the tensile strength tends to decrease conversely when the temperature is increased beyond the point at which the joining becomes abrupt.
  • the tensile strength ⁇ B 120 MPa or more was recorded even when the applied pressure was 100 MPa, 300 MPa, 500 MPa, and 700 MPa. From these results, it was found that Ti was the most excellent insert material compared to Ni and Cu (not only the tensile strength but also the tolerance of the processing range).
  • FIG. 5 shows the relationship between the tensile strength of the joint surface in Examples 1 to 11 and the applied pressure and heating temperature at the time of joining, and the tensile strength of the joined surface in Examples 12 to 20, the applied pressure and heating at the time of joining.
  • FIG. 6 shows the relationship with temperature
  • FIG. 7 shows the relationship between the tensile strength of the joint surface in Examples 21 to 25 and the applied pressure during joining. In addition, in FIG. 7, the value with the higher result of the tensile strength shown in Table 3 is shown.
  • FIG. 8 is a photograph of the joining part of a magnesium member, an intermediate
  • FIG. 8B is a photograph of a joint portion between the magnesium member and the intermediate layer (Ni) having a measurement scale of 20 ⁇ m.
  • (C) of FIG. 8 is a photograph of the joint portion between the intermediate layer and the aluminum member having a measurement scale of 20 ⁇ m.
  • the description of arrows Line1 and Line2 indicates the joint surface and the measurement direction of the line analysis described later.
  • the upper part of the photograph is a magnesium alloy (AZ80), the central part is an insert material Ti, and the lower part is an aluminum alloy (A2017, duralumin).
  • the measurement scale is 100 ⁇ m.
  • FIG. 10 (a) to 10 (c), the measurement scale is 5 ⁇ m, the upper side is a magnesium member, and the lower side is an intermediate layer (Ni).
  • (a) of FIG. 10 is a secondary electron image.
  • FIG. 10B is a reflected electron image.
  • FIG. 10 is a surface analysis result of magnesium.
  • FIG. 10D shows the Ni surface analysis results.
  • E) of FIG. 10 is a surface analysis result of aluminum.
  • (F) of FIG. 10 is an oxygen surface analysis result. From FIG.
  • the measurement scale is 5 ⁇ m.
  • 11A is a surface analysis result of the joint surface between the magnesium alloy AZ80 and the insert material Ti along the Line 1 in FIG. 9, where SL is a secondary electron image, and CP is a reflected electron. It is a statue. Mg, Ti, Al, and O represent each element analyzed.
  • Mg in FIG. 11 (a) the upper part is a magnesium alloy AZ80 and the lower part is an insert material Ti. A thin diffusion layer and a fine plastic flow interface are formed at the interface (anchor effect). Looking at the phase diagram of the binary system, it is considered that these diffusion reactions are small because Ti has very little mutual dissolution with Mg.
  • the diffusion reaction in this case is considered to be mainly the Al component and Ti in the Mg alloy. That is, it is considered that the use of Ti for the insert material can suppress the growth of the fragile Mg reaction layer as much as possible, thereby obtaining a high-strength diffusion layer.
  • the upper surface portion is Ti and the lower surface portion is an aluminum alloy. A diffusion reaction is observed at the bonding interface.
  • the upper part is Ti and the lower part is an aluminum alloy.
  • formation of a good diffusion layer that is thin and free from defects was confirmed.
  • FIG. 12 is a line analysis corresponding to (c) of FIG. 10, and shows the analysis result of magnesium.
  • the scanning direction is perpendicular to the interface from the magnesium alloy side to the Ni insert material direction.
  • the vertical axis represents the intensity of the generated characteristic X-ray, and the horizontal axis represents the scanning distance (mm).
  • the horizontal axis of the graph is one scale of 0.001 mm (1 ⁇ m), and shows a boundary portion between a portion where magnesium is present and a portion where magnesium is not present. That is, it is a portion where a diffusion layer with nickel (Ni) can be read.
  • FIG. 12B shows the result of nickel line analysis. It can be seen that a magnesium member and a diffusion layer of about 1 ⁇ m are formed.
  • FIG. 12 is a line analysis result of aluminum.
  • FIG. 12 (d) shows the results of oxygen line analysis. It can be confirmed that the oxide layer Q is detected. Note that this portion corresponds to the oxide layer shown in FIG. The thickness of the oxide layer was about 10 ⁇ m.
  • FIG. 13A is performed along Line 1 in FIG. 9, and FIG. 13B is performed along Line 2 in FIG.
  • CP indicates the reflected electron intensity.
  • Mg, Ti, Al, and O represent the element symbols analyzed.
  • the horizontal axis is the scanning distance, and the unit is (mm).
  • FIG. 13A shows that the diffusion layer is about 2 ⁇ m.
  • Magnesium has low mutual solubility with Ti.
  • reaction with Mg is suppressed as much as possible, while thin and good diffusion layers can be obtained by mainly reacting with Al in the magnesium alloy.
  • a high-strength joint interface can be formed together with a fine plastic flow interface (a synergistic effect of mechanical joining (anchor effect) and metallurgical joining (diffusion reaction)). From the results of the oxygen line analysis, it can be understood that the formation of a fragile oxide layer is very small in Ti compared to Ni (FIG. 12) (contributes to high strength).
  • FIG. 13B shows that a thin and good diffusion layer is formed between Ti and Al at the bonding interface between the insert material (Ti) and A2017.
  • the thickness of the diffusion reaction layer seems to be around 1 ⁇ m (very thin with a resolution determined by the region where characteristic X-rays are generated). It can also be seen that there is almost no generation of oxide at the bonding interface.
  • Example 1 A coupling member was obtained in the same manner as in Example 1 except that the insert material serving as the intermediate layer was not used. That is, a magnesium alloy (AZ80) and an aluminum alloy (A6151) are directly brought into contact with each other to form a laminate, and the laminate temperature is set to 360 ° C., 385 ° C., 400 ° C., and 420 ° C. Went.
  • a magnesium alloy (AZ80) and an aluminum alloy (A6151) are directly brought into contact with each other to form a laminate, and the laminate temperature is set to 360 ° C., 385 ° C., 400 ° C., and 420 ° C. Went.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] In order to provide a bonding member which is light weight and has a superior ability to bond a magnesium member and an aluminium member, and a manufacturing method for the bonding member which enables the simple, high productivity manufacture of said bonding member. [Solution] The present invention is a bonding member (100) provided with a magnesium member (1) comprising a magnesium alloy, an aluminium member (2) comprising an aluminium alloy, and an intermediate layer (3) formed between the magnesium member (1) and the aluminium member (2); wherein the intermediate layer (3) comprises an insert material selected from a group comprising Ni, Cu, and Ti, and the magnesium member (1), the aluminium member (2), and intermediate layer (3) are integrally bonded.

Description

結合部材及びその製造方法CONNECTING MEMBER AND MANUFACTURING METHOD THEREOF
 本発明は、結合部材及びその製造方法に関し、更に詳しくは、軽量でありながら、マグネシウム部材とアルミニウム部材との接合性に優れる結合部材、及び、該結合部材を容易に製造でき、生産性にも優れる結合部材の製造方法に関する。 The present invention relates to a coupling member and a manufacturing method thereof, and more specifically, a coupling member that is lightweight and excellent in the joining property between a magnesium member and an aluminum member, and the coupling member can be easily manufactured, and the productivity is also improved. The present invention relates to a method for manufacturing an excellent coupling member.
 一般に、アルミニウム合金は、機械的強度が優れるのに対し、マグネシウム合金は、軽量であるという特性を有している。
 近年、これらの特性を合わせ持つ結合部材が求められている。
In general, an aluminum alloy has excellent mechanical strength, whereas a magnesium alloy has a characteristic of being lightweight.
In recent years, there has been a demand for a coupling member having both of these characteristics.
 例えば、マグネシウム合金を内芯材とし、マグネシウム合金の表層をアルミニウム又はその合金で押出し加工により直接被覆したマグネシウム-アルミニウムクラッド材が知られている(例えば、特許文献1参照)。
 また、マグネシウム材若しくはマグネシウム合金材の一面若しくは複数面に、該マグネシウム材若しくはマグネシウム合金材の垂直方向厚さの0.1~10%の厚さとなるように、圧延、押出し、引抜き若しくは圧縮加工にて純アルミニウム材若しくはアルミニウム合金材で被覆したアルミニウム被覆マグネシウム合金材が知られている(例えば、特許文献2参照)。
For example, a magnesium-aluminum clad material in which a magnesium alloy is used as an inner core material and the surface layer of the magnesium alloy is directly coated with aluminum or an alloy thereof by extrusion is known (for example, see Patent Document 1).
Also, rolling, extruding, drawing, or compression processing is performed on one or a plurality of surfaces of the magnesium material or the magnesium alloy material so that the thickness is 0.1 to 10% of the vertical thickness of the magnesium material or the magnesium alloy material. An aluminum-coated magnesium alloy material coated with a pure aluminum material or an aluminum alloy material is known (see, for example, Patent Document 2).
 アルミニウム合金とマグネシウム合金とを直接接合させる方法としては、母材を加圧密着させて、母材の融点以下の温度条件において原子の拡散を利用する拡散接合法や回転工具の摩擦熱により固相状態で練り混ぜ塑性流動により部材を一体化させる摩擦攪拌接合法(FSW)が知られている(例えば、非特許文献1参照)。 As a method of directly joining an aluminum alloy and a magnesium alloy, the base material is pressed and adhered, and a solid phase is formed by a diffusion joining method using atomic diffusion under a temperature condition below the melting point of the base material or by frictional heat of a rotary tool. There is known a friction stir welding method (FSW) in which members are integrated in a state by plastic flow (for example, see Non-Patent Document 1).
特開平6-328270号公報JP-A-6-328270 特開2003-181975号公報JP 2003-181975 A
 しかしながら、上記特許文献1記載のマグネシウム-アルミニウムクラッド材及び上記特許文献2記載のアルミニウム被覆マグネシウム合金材は、いずれもマグネシウム合金が単にアルミニウム合金で被覆された形態となっており、マグネシウム合金とアルミニウム合金との接合部分の引張強さ(以下「接合性」ともいう。)が十分とはいえない。 However, the magnesium-aluminum clad material described in Patent Document 1 and the aluminum-coated magnesium alloy material described in Patent Document 2 are both in a form in which the magnesium alloy is simply coated with an aluminum alloy. The tensile strength (hereinafter also referred to as “joinability”) of the joint portion with the above is not sufficient.
 上記特許文献1及び2に記載の拡散接合法においては、一般に、アルミニウム合金とマグネシウム合金を直接拡散接合させると、接合界面に、AlMg、Al12Mg17等からなる金属間化合物相が成長する。この金属間化合物相は、非常に脆弱であり、また容易に形成されるため、割れやカーケンダルボイド等の欠陥を生じやすい。一般にはその引っ張り強さは、30MPa程度である。
 また、接合過程において、酸化膜が生じるため、減圧又は不活性ガス雰囲気において加工しなければならないという欠点がある。
 さらに、数十分から数時間の加圧保持時間を要するため、強度および生産性の観点からも実用性が乏しい。
In the diffusion bonding methods described in Patent Documents 1 and 2, generally, when an aluminum alloy and a magnesium alloy are directly diffusion bonded, an intermetallic compound phase composed of Al 3 Mg 2 , Al 12 Mg 17 or the like is formed at the bonding interface. grow up. This intermetallic compound phase is very fragile and easily formed, so that defects such as cracks and Kirkendall voids are likely to occur. Generally, the tensile strength is about 30 MPa.
In addition, since an oxide film is formed in the bonding process, there is a disadvantage that it must be processed in a reduced pressure or an inert gas atmosphere.
Furthermore, since a pressure holding time of several tens of minutes to several hours is required, the practicality is poor from the viewpoint of strength and productivity.
 一方、上記非特許文献1記載の摩擦攪拌接合法においては、接合部分の引張強さは比較的強くなるものの(引張強さ約115MPa: 非特許文献1)、現実的には線接合或いは点接合に限られているので接合性が不十分である。なお、摩擦攪拌接合法では部材内部の接合界面への施工は不可能であり、且つ3次元曲面にも適用が難しい。このため、加工に時間がかかり、量産対応が困難である。 On the other hand, in the friction stir welding method described in Non-Patent Document 1, although the tensile strength of the joint portion is relatively strong (tensile strength of about 115 MPa: Non-Patent Document 1), in practice, wire bonding or point bonding is used. Therefore, the bondability is insufficient. The friction stir welding method cannot be applied to the joining interface inside the member, and is difficult to apply to a three-dimensional curved surface. For this reason, processing takes time and it is difficult to cope with mass production.
 本発明は、上記事情に鑑みてなされたものであり、軽量でありながら、マグネシウム部材とアルミニウム部材との接合性に優れる結合部材、及び、該結合部材を容易に製造でき、生産性にも優れる結合部材の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and although it is lightweight, it is easy to manufacture a coupling member excellent in bondability between a magnesium member and an aluminum member, and the coupling member, and is excellent in productivity. It aims at providing the manufacturing method of a coupling member.
 本発明者等は、上記課題を解決するため鋭意検討したところ、アルミニウム合金とマグネシウム合金とを直接接合させる場合に熱間鍛造等の加熱加圧を施すと、所定の条件下では接合界面が微細に塑性流動し、拡散接合の他に機械的な接合界面が形成され、アンカー効果が生じて接合強度が大きく向上することを見出した。
 かかる知見を元にして、マグネシウム部材及びアルミニウム部材の間に所定の金属からなる中間層を設けることにより、上記課題を解決できることを見出し、本発明を完成させるに至った。
The inventors of the present invention have intensively studied to solve the above-mentioned problems. As a result, when the aluminum alloy and the magnesium alloy are directly joined, when the heating and pressurizing such as hot forging is performed, the joining interface is fine under a predetermined condition. It has been found that a mechanical joint interface is formed in addition to diffusion bonding, resulting in an anchor effect and greatly improving the joint strength.
Based on this knowledge, it has been found that the above problem can be solved by providing an intermediate layer made of a predetermined metal between the magnesium member and the aluminum member, and the present invention has been completed.
 すなわち、本発明は、(1)マグネシウム合金からなるマグネシウム部材と、アルミニウム合金からなるアルミニウム部材と、マグネシウム部材及びアルミニウム部材の間に形成された中間層と、を備えた結合部材であって、中間層が、Ni、Cu及びTiからなる群より選ばれる少なくとも一種のインサート材からなり、マグネシウム部材、アルミニウム部材及び中間層が一体となるように接合されている結合部材に存する。 That is, the present invention is a coupling member comprising (1) a magnesium member made of a magnesium alloy, an aluminum member made of an aluminum alloy, and an intermediate layer formed between the magnesium member and the aluminum member. The layer is made of at least one insert material selected from the group consisting of Ni, Cu, and Ti, and exists in the bonding member that is joined so that the magnesium member, the aluminum member, and the intermediate layer are integrated.
 本発明は、(2)マグネシウム部材と中間層との界面には、マグネシウム合金とインサート材とからなる第1拡散層が形成されており、アルミニウム部材と中間層との界面には、アルミニウム合金とインサート材とからなる第2拡散層が形成されている上記(1)記載の結合部材に存する。 In the present invention, (2) a first diffusion layer made of a magnesium alloy and an insert material is formed at the interface between the magnesium member and the intermediate layer, and an aluminum alloy is formed at the interface between the aluminum member and the intermediate layer. It exists in the coupling member of the said (1) description in which the 2nd diffused layer which consists of insert materials is formed.
 本発明は、(3)マグネシウム部材と第1拡散層との界面、第1拡散層と中間層との界面、中間層と第2拡散層との界面、及び、アルミニウム部材と第2拡散層との界面、には、塑性流動による機械的接合部が形成されている上記(2)記載の結合部材に存する。 The present invention includes (3) an interface between the magnesium member and the first diffusion layer, an interface between the first diffusion layer and the intermediate layer, an interface between the intermediate layer and the second diffusion layer, and an aluminum member and the second diffusion layer. In the connecting member of (2), a mechanical joint by plastic flow is formed at the interface.
 本発明は、(4)上記(1)~(3)のいずれか一つに記載の結合部材の製造方法であって、マグネシウム合金と、Tiからなるインサート材と、アルミニウム合金とを重ね合わせ、200℃~450℃の範囲に加熱し、100MPa~700MPaで加圧することにより、マグネシウム部材と、中間層と、アルミニウム部材とを接合する結合部材の製造方法に存する。 The present invention is (4) the method of manufacturing a coupling member according to any one of (1) to (3) above, wherein a magnesium alloy, an insert material made of Ti, and an aluminum alloy are overlapped, It exists in the manufacturing method of the coupling member which joins a magnesium member, an intermediate | middle layer, and an aluminum member by heating in the range of 200 to 450 degreeC, and pressurizing by 100 Mpa-700 Mpa.
 本発明は、(5)上記(1)~(3)のいずれか一つに記載の結合部材の製造方法であって、マグネシウム合金と、Ni又はCuからなるインサート材と、アルミニウム合金とを重ね合わせ、300℃~400℃の範囲に加熱し、700MPa~750MPaで加圧することにより、マグネシウム部材と、中間層と、アルミニウム部材とを接合する結合部材の製造方法に存する。 The present invention provides (5) the method for producing a coupling member according to any one of (1) to (3) above, wherein a magnesium alloy, an insert material made of Ni or Cu, and an aluminum alloy are laminated. In addition, the present invention resides in a method for manufacturing a bonding member that joins a magnesium member, an intermediate layer, and an aluminum member by heating in a range of 300 ° C. to 400 ° C. and pressurizing at 700 MPa to 750 MPa.
 本発明は、(6)マグネシウム部材と、中間層と、アルミニウム部材とを接合した後、更に溶体化処理と時効処理とを行う上記(4)又は(5)に記載の結合部材の製造方法に存する。 The present invention provides (6) the method for producing a bonded member according to (4) or (5) above, wherein after the magnesium member, the intermediate layer, and the aluminum member are joined, solution treatment and aging treatment are further performed. Exist.
 本発明の結合部材によれば、マグネシウム部材とアルミニウム部材との間にNi、Cu及びTiからなる群より選ばれる少なくとも一種のインサート材からなる中間層を設けることにより、上述した脆弱なアルミニウムとマグネシウムからなる金属間化合物相が形成されないので、中間層を介してマグネシウム部材とアルミニウム部材との接合性が面全体において優れるものとなる。
 また、上記結合部材は、マグネシウム合金に起因して軽量性に優れるものであり、アルミニウム合金に起因して機械的強度あるいは耐食性に優れるものである。このため、例えば、自動車のホイール等に用いる場合、腐食環境下でまた傷等が付きやすい外側をアルミニウム部材とし、内側をマグネシウム部材とすると軽量化に好適である。
 さらに、上記結合部材は、面接合されているので、部材内部の接合界面への施工が可能であり、且つ3次元曲面にも適用できる。
According to the coupling member of the present invention, the brittle aluminum and magnesium described above are provided by providing an intermediate layer made of at least one insert material selected from the group consisting of Ni, Cu and Ti between the magnesium member and the aluminum member. Since no intermetallic compound phase is formed, the bondability between the magnesium member and the aluminum member is excellent over the entire surface via the intermediate layer.
Moreover, the said coupling member is excellent in the lightweight property resulting from a magnesium alloy, and is excellent in mechanical strength or corrosion resistance resulting from an aluminum alloy. For this reason, for example, when used for a wheel of an automobile or the like, it is preferable to reduce the weight by using an aluminum member as the outer side and a magnesium member as the inner side that are easily damaged in a corrosive environment.
Furthermore, since the coupling member is surface-bonded, it can be applied to the bonding interface inside the member and can be applied to a three-dimensional curved surface.
 上記結合部材において、マグネシウム部材と中間層との界面には、マグネシウム合金とインサート材とからなる第1拡散層が形成されており、アルミニウム部材と中間層との界面には、アルミニウム合金とインサート材とからなる第2拡散層が形成されている場合、接合性がより向上する。
 特に、マグネシウム部材と第1拡散層との界面、第1拡散層と中間層との界面、中間層と第2拡散層との界面、及び、アルミニウム部材と第2拡散層との界面に塑性流動界面が形成されている場合、拡散接合される面積が増大するので接合性がより一層向上する。
In the above coupling member, a first diffusion layer made of a magnesium alloy and an insert material is formed at an interface between the magnesium member and the intermediate layer, and an aluminum alloy and an insert material are formed at the interface between the aluminum member and the intermediate layer. When the 2nd diffusion layer which consists of is formed, bondability improves more.
In particular, plastic flow occurs at the interface between the magnesium member and the first diffusion layer, the interface between the first diffusion layer and the intermediate layer, the interface between the intermediate layer and the second diffusion layer, and the interface between the aluminum member and the second diffusion layer. In the case where the interface is formed, the area to be diffusion-bonded increases, so that the bondability is further improved.
 本発明の結合部材の製造方法においては、単にマグネシウム合金と、所定のインサート材と、アルミニウム合金とを重ね合わせ、所定の条件下で加熱加圧することにより、結合部材が得られるので、製造が容易であり、生産性にも優れる。
 また、接合後に溶体化処理と時効処理とを行うと、アルミニウム合金が焼き鈍し状態となることを抑制できるので、接合性が確実に向上する。
In the manufacturing method of the coupling member of the present invention, since the coupling member is obtained simply by superimposing a magnesium alloy, a predetermined insert material, and an aluminum alloy and heating and pressing under a predetermined condition, the manufacturing is easy. And excellent in productivity.
Further, when the solution treatment and the aging treatment are performed after joining, it is possible to suppress the aluminum alloy from being annealed, so that the joining property is reliably improved.
図1は、本実施形態に係る結合部材を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a coupling member according to this embodiment. 図2は、図1の部分Pの模式拡大断面図である。FIG. 2 is a schematic enlarged sectional view of a portion P in FIG. 実施例1に係る結合部材において、マグネシウムビレットとインサート材とアルミニウムビレットとを積層させた状態を示す側面図である。In the coupling member which concerns on Example 1, it is a side view which shows the state which laminated | stacked the magnesium billet, the insert material, and the aluminum billet. 図4の(a)~図4の(c)は、実施例1に係る結合部材において、マグネシウム合金ビレットとインサート材とアルミニウム合金ビレットとを積層させた状態から加熱加圧し、結合部材とするまでの工程を説明するための説明図である。FIGS. 4 (a) to 4 (c) show the bonding member according to Example 1 from the state in which the magnesium alloy billet, the insert material, and the aluminum alloy billet are stacked to heat and press until the bonding member is obtained. It is explanatory drawing for demonstrating this process. 図5は、実施例1~11における接合面の引張強さと、接合時の加圧力及び加熱温度との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the tensile strength of the joint surface, the applied pressure during heating, and the heating temperature in Examples 1 to 11. 図6は、実施例12~20における接合面の引張強さと、接合時の加圧力及び加熱温度との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the tensile strength of the joint surface, the applied pressure during heating, and the heating temperature in Examples 12 to 20. 図7は、実施例21~25における接合面の引張強さと、接合時の加圧力との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the tensile strength of the joining surface and the applied pressure during joining in Examples 21 to 25. 図8の(a)~図8の(c)は、実施例2に係る結合部材の接合面における走査型電子顕微鏡(SEM)による二次電子像の写真である。FIGS. 8A to 8C are photographs of secondary electron images obtained by a scanning electron microscope (SEM) on the joint surface of the coupling member according to the second embodiment. 図9は、実施例22に係る結合部材の接合面における走査型電子顕微鏡(SEM)による二次電子像の写真である。FIG. 9 is a photograph of a secondary electron image obtained by a scanning electron microscope (SEM) on the joint surface of the coupling member according to Example 22. 図10の(a)~図10の(f)は、実施例2に係る結合部材のX線マイクロアナライザー(EPMA)による面分析結果である。FIG. 10A to FIG. 10F show the surface analysis results of the coupling member according to Example 2 using an X-ray microanalyzer (EPMA). 図11の(a)~図11の(b)は、実施例22に係る結合部材のX線マイクロアナライザー(EPMA)による面分析結果である。FIG. 11A to FIG. 11B show the surface analysis results of the coupling member according to Example 22 by X-ray microanalyzer (EPMA). 図12の(a)~図12の(d)は、実施例2に係る結合部材のEPMAによる線分析結果である。12 (a) to 12 (d) show the results of line analysis by EPMA of the coupling member according to the second embodiment. 図13(a)は、実施例22に係る結合部材のEPMAによる線分析結果である。FIG. 13A is a line analysis result by EPMA of the coupling member according to Example 22. FIG. 図13(b)は、実施例22に係る結合部材のEPMAによる線分析結果である。FIG. 13B is a line analysis result by EPMA of the coupling member according to Example 22. 図14は、比較例1に係る結合部材における接合時の加熱温度と、得られた結合部材の引張強さ及び接合界面に形成されるアルミニウムとマグネシウムからなる金属間化合物相の厚みとの関係を示すグラフである。FIG. 14 shows the relationship between the heating temperature during bonding in the bonding member according to Comparative Example 1, the tensile strength of the obtained bonding member, and the thickness of the intermetallic compound phase composed of aluminum and magnesium formed at the bonding interface. It is a graph to show. 図15の(a)及び図15の(b)は、比較例1に係る結合部材のSEMによる二次電子像の写真である。15A and 15B are photographs of secondary electron images obtained by SEM of the coupling member according to Comparative Example 1. FIG.
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
 図1は、本実施形態に係る結合部材を模式的に示す断面図である。
 図1に示すように、本実施形態に係る結合部材100は、マグネシウム合金からなるマグネシウム部材1と、アルミニウム合金からなるアルミニウム部材2と、マグネシウム部材1及びアルミニウム部材2の間に挿入された中間層3と、を備える。すなわち、結合部材100は、マグネシウム部材1、中間層3、アルミニウム部材2がこの順序で積層され一体となるように接合された構造となっている。
FIG. 1 is a cross-sectional view schematically showing a coupling member according to this embodiment.
As shown in FIG. 1, a coupling member 100 according to this embodiment includes a magnesium member 1 made of a magnesium alloy, an aluminum member 2 made of an aluminum alloy, and an intermediate layer inserted between the magnesium member 1 and the aluminum member 2. 3. That is, the coupling member 100 has a structure in which the magnesium member 1, the intermediate layer 3, and the aluminum member 2 are laminated in this order and joined together.
 マグネシウム部材1は、マグネシウムを主成分とする合金からなる。このため、結合部材100は、軽量であり、マグネシウム部材1側は、内部摩擦が大きく振動や衝撃を吸収し易いという特徴を有する。
 マグネシウム合金の添加元素としては、アルミニウム、亜鉛、カルシウム、リチウム等が挙げられる。これらの添加金属の配合を調整することにより、マグネシウム合金の特性を変えることができる。
 これらの中でも、添加金属は、汎用性の観点から、アルミニウム及び亜鉛であることが好ましい。
The magnesium member 1 is made of an alloy containing magnesium as a main component. For this reason, the coupling member 100 is lightweight, and the magnesium member 1 side has a feature that internal friction is large and vibration and impact are easily absorbed.
Examples of the additive element of the magnesium alloy include aluminum, zinc, calcium, and lithium. The characteristics of the magnesium alloy can be changed by adjusting the blending of these additive metals.
Among these, it is preferable that an additive metal is aluminum and zinc from a versatility viewpoint.
 アルミニウム部材2は、アルミニウムを主成分とする合金からなる。このため、アルミニウム部材2側は、機械的強度が優れるという特徴を有する。
 アルミニウム合金の添加元素としては、銅、マンガン、ケイ素、マグネシウム、亜鉛、ニッケル等が挙げられる。これらの添加金属の配合を調整することにより、アルミニウム合金の特性を変えることができる。
 具体的には、Al-Cu系合金(ジュラルミン)、Al-Mn系合金、Al-Si系合金、Al-Mg系合金、Al-Mg-Si系合金、Al-Zn-Mg系合金、Al-Zn-Mg-Cu系合金等が挙げられる。
The aluminum member 2 is made of an alloy mainly composed of aluminum. For this reason, the aluminum member 2 side is characterized by excellent mechanical strength.
Examples of the additive element of the aluminum alloy include copper, manganese, silicon, magnesium, zinc, nickel, and the like. The characteristics of the aluminum alloy can be changed by adjusting the blending of these additive metals.
Specifically, Al—Cu alloy (duralumin), Al—Mn alloy, Al—Si alloy, Al—Mg alloy, Al—Mg—Si alloy, Al—Zn—Mg alloy, Al— Zn-Mg-Cu based alloys and the like can be mentioned.
 中間層3は、マグネシウム部材1と、アルミニウム部材2とを接合するための接着剤のような働きをする。
 中間層3は、Ni、Cu及びTiからなる群より選ばれる少なくとも一種のインサート材からなる。
The intermediate layer 3 functions like an adhesive for joining the magnesium member 1 and the aluminum member 2.
The intermediate layer 3 is made of at least one insert material selected from the group consisting of Ni, Cu and Ti.
 中間層3の厚みは、10μm~2mmであることが好ましい。特に1mmとすると、接合面の加圧力が均等化しやすい利点がある。厚みが10μm未満であると、厚みが上記範囲内にある場合と比較して、例えば、結合部材の形状を円弧、曲面、立体面等にした場合、加圧力にムラが生じて、マグネシウム部材1とアルミニウム部材2との接合が不十分となる場合がある。一方、厚みが2mmを超えると、厚みが上記範囲内にある場合と比較して、マグネシウム部材1とアルミニウム部材2との特性を十分に発揮できない場合があり、重量が大きくなり、コスト高になる欠点もある。 The thickness of the intermediate layer 3 is preferably 10 μm to 2 mm. In particular, when it is 1 mm, there is an advantage that the applied pressure on the joint surface is easily equalized. When the thickness is less than 10 μm, compared with the case where the thickness is within the above range, for example, when the shape of the coupling member is an arc, a curved surface, a three-dimensional surface, etc., unevenness occurs in the applied pressure, and the magnesium member 1 And the aluminum member 2 may be insufficiently joined. On the other hand, when the thickness exceeds 2 mm, the characteristics of the magnesium member 1 and the aluminum member 2 may not be sufficiently exhibited as compared with the case where the thickness is within the above range, resulting in an increase in weight and cost. There are also drawbacks.
 結合部材100は、上述したように、マグネシウム部材1とアルミニウム部材2との間にインサート材からなる中間層3を設けることにより、中間層3を介してマグネシウム部材1とアルミニウム部材2との接合性が面全体において優れるものとなる。 As described above, the bonding member 100 is provided with the intermediate layer 3 made of an insert material between the magnesium member 1 and the aluminum member 2, thereby connecting the magnesium member 1 and the aluminum member 2 via the intermediate layer 3. Is excellent over the entire surface.
 図2は、図1の部分Pの模式拡大断面図である。
 図2に示すように、本実施形態に係る結合部材100においては、マグネシウム部材1と中間層3との界面には、マグネシウム合金とインサート材からなる第1拡散層11が形成されており、アルミニウム部材2と中間層3との界面には、アルミニウム合金とインサート材からなる第2拡散層12が形成されている。
FIG. 2 is a schematic enlarged sectional view of a portion P in FIG.
As shown in FIG. 2, in the coupling member 100 according to the present embodiment, a first diffusion layer 11 made of a magnesium alloy and an insert material is formed at the interface between the magnesium member 1 and the intermediate layer 3. A second diffusion layer 12 made of an aluminum alloy and an insert material is formed at the interface between the member 2 and the intermediate layer 3.
 結合部材100においては、マグネシウム部材1と第1拡散層11との界面に塑性流動による機械的接合部21が形成されており、第1拡散層11と中間層3との界面に塑性流動による機械的接合部22が形成されており、中間層3と第2拡散層12との界面に塑性流動による機械的接合部23が形成されており、アルミニウム部材2と第2拡散層12との界面に塑性流動による機械的接合部24が形成されている。
 ここで、機械的接合部とは、境界面に塑性流動により形成される微細な凹凸部を意味し、これによりアンカー効果が発揮される。
In the coupling member 100, a mechanical joint 21 by plastic flow is formed at the interface between the magnesium member 1 and the first diffusion layer 11, and a machine by plastic flow is formed at the interface between the first diffusion layer 11 and the intermediate layer 3. The mechanical joint 22 is formed at the interface between the intermediate layer 3 and the second diffusion layer 12, and the mechanical joint 23 by plastic flow is formed at the interface between the aluminum member 2 and the second diffusion layer 12. A mechanical joint 24 is formed by plastic flow.
Here, the mechanical joint means a fine concavo-convex part formed by plastic flow on the boundary surface, thereby exhibiting an anchor effect.
 したがって、結合部材100においては、第1拡散層11及び第2拡散層12が設けられているだけでなく、微細な塑性流動界面となっている機械的接合部21~24がアンカー効果を発揮するので、高強度な面接合となる。また、塑性流動界面の形成では、拡散接合される面積が増大することにもより、接合強度がより一層向上する。 Therefore, in the coupling member 100, not only the first diffusion layer 11 and the second diffusion layer 12 are provided, but also the mechanical joints 21 to 24 that are fine plastic flow interfaces exhibit an anchor effect. Therefore, high strength surface bonding is achieved. In addition, in the formation of the plastic flow interface, the bonding strength is further improved by increasing the area to be diffusion bonded.
 本実施形態に係る結合部材100は、マグネシウム合金に起因して軽量であり、アルミニウム合金に起因して耐食性及び機械的強度が優れるものである。このため、車両用ホイール、ハウジング、構造部材(クラッド材)、電子機器に於ける筺体用途等の用途に好適に用いられる。例えば、車両用ホイールに用いる場合、腐食環境下でかつ傷等が付きやすい外側をアルミニウム部材とし、内側をマグネシウム部材とすると好適である。
 また、これら以外にも、結合部材をプレス加工等して種々の立体成型品を提供できることから、広い分野に亘り、軽量化が図られた製品を提供することができる。
The coupling member 100 according to the present embodiment is lightweight due to the magnesium alloy, and has excellent corrosion resistance and mechanical strength due to the aluminum alloy. For this reason, it is suitably used for applications such as a vehicle wheel, a housing, a structural member (clad material), and a casing in an electronic device. For example, when it is used for a vehicle wheel, it is preferable that the outer side which is easily damaged in a corrosive environment is an aluminum member and the inner side is a magnesium member.
In addition to these, since various three-dimensional molded products can be provided by pressing the connecting member, products with reduced weight can be provided over a wide range of fields.
 次に、結合部材100の製造方法について説明する。
 結合部材100は、マグネシウム合金と、インサート材と、アルミニウム合金とを積層し、加熱加圧することにより、マグネシウム合金からなるマグネシウム部材1と、インサート材からなる中間層3と、アルミニウム合金からなるアルミニウム部材2とが一体となるように接合することにより得られる。
Next, a method for manufacturing the coupling member 100 will be described.
The bonding member 100 is formed by laminating a magnesium alloy, an insert material, and an aluminum alloy, and heating and pressurizing the magnesium member 1, the intermediate layer 3 made of the insert material, and an aluminum member made of the aluminum alloy. 2 is obtained by joining them so as to be integrated with each other.
 まず、マグネシウム合金と、Ni、Cu及びTiからなる群より選ばれる少なくとも一種のインサート材をシート状にしたものと、アルミニウム合金と、を積層する。 First, a magnesium alloy, a sheet of at least one insert material selected from the group consisting of Ni, Cu and Ti, and an aluminum alloy are laminated.
 このとき、マグネシウム合金のインサート材と積層させる側の面の表面粗さ(Rz)が10μm以下であり、アルミニウム合金のインサート材と積層させる側の面の表面粗さ(Rz)が10μm以下であること、及び表面は清浄で研磨により自然酸化被膜程度にしておくことが好ましい。この場合、接合強度がより一層向上する。
 ここで、表面粗さ(Rz)は、JIS B0601(2001)に準じて測定した値を意味する。
At this time, the surface roughness (Rz) of the surface laminated with the insert material of the magnesium alloy is 10 μm or less, and the surface roughness (Rz) of the surface laminated with the insert material of the aluminum alloy is 10 μm or less. In addition, it is preferable that the surface is clean and has a natural oxide film level by polishing. In this case, the bonding strength is further improved.
Here, the surface roughness (Rz) means a value measured according to JIS B0601 (2001).
 そして、全体を加熱加圧して第1拡散層及び第2拡散層を接合面に形成させることにより結合部材100が得られる。なお、このとき、上述した微細な塑性流動による機械的接合部が形成されるようにすることが好ましい。そうすると、インサート材がNi,Cuの場合、接合面の引張強さが少なくとも115MPa~120MPaに達し、インサート材がTiの場合、接合面の引張強さが少なくとも154MPaに達する。 Then, the whole member is heated and pressed to form the first diffusion layer and the second diffusion layer on the bonding surface, whereby the coupling member 100 is obtained. At this time, it is preferable to form the mechanical joint by the fine plastic flow described above. Then, when the insert material is Ni or Cu, the tensile strength of the joint surface reaches at least 115 MPa to 120 MPa, and when the insert material is Ti, the tensile strength of the joint surface reaches at least 154 MPa.
 ここで、インサート材がTiの場合、加熱する温度は、200℃~450℃の範囲であることが好ましく、200℃~400℃の範囲であることがより好ましく、300℃~350℃の範囲であることが更に好ましい。
 温度が200℃未満であると、温度が上記範囲内にある場合と比較して、塑性流動が小さくなる結果、接合が不十分となる場合がある。また、温度が450℃を超えると、温度が上記範囲内にある場合と比較して、拡散反応層が必要以上に厚く成長し接合が不十分となる場合がある。
Here, when the insert material is Ti, the heating temperature is preferably in the range of 200 ° C. to 450 ° C., more preferably in the range of 200 ° C. to 400 ° C., and in the range of 300 ° C. to 350 ° C. More preferably it is.
If the temperature is lower than 200 ° C., the plastic flow may be reduced as compared with the case where the temperature is within the above range, resulting in insufficient bonding. Further, when the temperature exceeds 450 ° C., the diffusion reaction layer may grow more than necessary and the bonding may be insufficient as compared with the case where the temperature is within the above range.
 インサート材がTiの場合、加圧する圧力は、100MPa~700MPaの範囲であることが好ましい。
 圧力が100MPa未満であると、圧力が上記範囲内にある場合と比較して、接合が不十分となる場合があり、圧力が700MPaを超えると、圧力が上記範囲内にある場合と比較して、塑性流動が大きくなり過ぎ、インサート材が破れ、マグネシウム合金とアルミニウム合金の直接反応による脆弱な金属間化合物が生じ、さらに割れやカーケンダルボイド等の欠陥の生成により強度が低下する恐れがある。
When the insert material is Ti, the pressure applied is preferably in the range of 100 MPa to 700 MPa.
When the pressure is less than 100 MPa, bonding may be insufficient as compared with the case where the pressure is within the above range, and when the pressure exceeds 700 MPa, the pressure is within the above range. Further, the plastic flow becomes too large, the insert material is broken, a brittle intermetallic compound is generated by the direct reaction between the magnesium alloy and the aluminum alloy, and the strength may be lowered due to the generation of defects such as cracks and Kirkendall voids.
 インサート材がNi、Cuの場合、加熱する温度は、300℃~400℃の範囲であることが好ましい。
 温度が300℃未満であると、温度が上記範囲内にある場合と比較して、塑性流動が小さくなる結果、接合が不十分となる場合がある。また、温度が400℃を超えると、温度が上記範囲内にある場合と比較して、拡散反応層が必要以上に厚く成長し接合が不十分となる場合がある。
When the insert material is Ni or Cu, the heating temperature is preferably in the range of 300 ° C to 400 ° C.
If the temperature is lower than 300 ° C., the plastic flow may be reduced as compared with the case where the temperature is within the above range, resulting in insufficient bonding. Further, when the temperature exceeds 400 ° C., the diffusion reaction layer may grow more than necessary and the bonding may be insufficient as compared with the case where the temperature is within the above range.
 インサート材がNi、Cuの場合、加圧する圧力は、700MPa~750MPaの範囲であることが好ましい。
 圧力が700MPa未満であると、圧力が上記範囲内にある場合と比較して、接合が不十分となる場合があり、圧力が750MPaを超えると、圧力が上記範囲内にある場合と比較して、塑性流動が大きくなり過ぎ、インサート材が破れ、マグネシウム合金とアルミニウム合金の直接反応による脆弱な金属間化合物が生じ、さらに割れやカーケンダルボイド等の欠陥の生成により強度が低下する恐れがある。
When the insert material is Ni or Cu, the pressure applied is preferably in the range of 700 MPa to 750 MPa.
If the pressure is less than 700 MPa, bonding may be insufficient as compared with the case where the pressure is within the above range, and if the pressure exceeds 750 MPa, the pressure is within the above range. Further, the plastic flow becomes too large, the insert material is broken, a brittle intermetallic compound is generated by the direct reaction between the magnesium alloy and the aluminum alloy, and the strength may be lowered due to the generation of defects such as cracks and Kirkendall voids.
 加熱加圧する方法としては、特に限定されないが、例えば、熱間鍛造等が挙げられる。
 また、加熱加圧する際には、大気減圧下で行うか不活性ガス雰囲気で行うと、接合性低下の原因となる酸化皮膜の形成を抑制できる。このことから、より高強度な接合が期待できる。なお、接合前のマグネシウム合金、インサート材及びアルミニウム合金のそれぞれの接合面の状態は、研磨等により調整されていることが必要である(自然酸化被膜程度の状態)。
Although it does not specifically limit as a method to heat-press, For example, hot forging etc. are mentioned.
In addition, when heating and pressurization is performed under reduced pressure in the atmosphere or in an inert gas atmosphere, formation of an oxide film that causes a decrease in bondability can be suppressed. For this reason, higher strength bonding can be expected. In addition, the state of each joint surface of the magnesium alloy, insert material, and aluminum alloy before joining needs to be adjusted by grinding | polishing etc. (state about a natural oxide film).
 なお、マグネシウム部材と、中間層と、アルミニウム部材とを接合した後、更に溶体化処理と時効処理とを行うことが好ましい。
 この場合、アルミニウム合金が焼き鈍し状態となることを抑制できるので、接合性が確実に向上する。特に、熱間鍛造を行った場合に効果的である。
In addition, after joining a magnesium member, an intermediate | middle layer, and an aluminum member, it is preferable to perform a solution treatment and an aging treatment further.
In this case, since it can suppress that an aluminum alloy will be in the annealing state, bondability improves reliably. This is particularly effective when hot forging is performed.
 結合部材の製造方法によれば、単に、マグネシウム部材と、中間層と、アルミニウム部材とを積層し、所定の条件下で加熱加圧することにより、結合部材が得られるので、製造が容易であり、生産性にも優れる。すなわち、大気中において、例えば、20秒程度の短時間で三次元の面接合を可能としているので量産性の向上とコスト低減が見込める。 According to the manufacturing method of a coupling member, since a coupling member is obtained simply by laminating a magnesium member, an intermediate layer, and an aluminum member, and heating and pressing under predetermined conditions, the production is easy. Excellent productivity. That is, in the atmosphere, for example, three-dimensional surface bonding is possible in a short time of about 20 seconds, so that it is possible to improve mass productivity and reduce costs.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.
 例えば、本実施形態に係る結合部材おいては、マグネシウム部材とアルミニウム部材との2層構造になっているが、3層以上あってもよい。すなわち、マグネシウム部材の両面にアルミニウム部材が積層されていてもよく、アルミニウム部材の両面にマグネシウム部材が積層されていてもよい。 For example, the coupling member according to the present embodiment has a two-layer structure of a magnesium member and an aluminum member, but may have three or more layers. That is, the aluminum member may be laminated on both surfaces of the magnesium member, and the magnesium member may be laminated on both surfaces of the aluminum member.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
(実施例1~25及び参考例1~10)
 まず、AZ80(マグネシウム合金)の円柱状に鋳造されたマグネシウム合金ビレット
(直径204mm、高さ184mm)、表1に示すインサート材(Ni,Cu,Ti)からなる中間層(100mm×100mm×1mm(厚さ))と、A6151(アルミニウム合金)の円柱状に鋳造されたアルミニウム合金ビレット(直径204mm、高さ184mm)を準備した。なお、インサート材としてTiを用いた場合は、アルミニウム合金としてA6151の代わりに、A2000系合金のA2017(ジュラルミン)を用いた。
(Examples 1 to 25 and Reference Examples 1 to 10)
First, a magnesium alloy billet (diameter 204 mm, height 184 mm) cast into a columnar shape of AZ80 (magnesium alloy), and an intermediate layer (100 mm × 100 mm × 1 mm (100 mm × 100 mm × 1 mm) made of insert materials (Ni, Cu, Ti) shown in Table 1 Thickness)) and an aluminum alloy billet (diameter 204 mm, height 184 mm) cast into a cylindrical shape of A6151 (aluminum alloy). When Ti was used as the insert material, A2000 series alloy A2017 (duralumin) was used as the aluminum alloy instead of A6151.
 次に、マグネシウム合金ビレット及びアルミニウム合金ビレットの接合面を研削し、SiC#1000の研磨紙で磨き、更に研磨面をアセトンで表面脱脂処理を行った。なお、表面粗さ(Rz)は、アルミニウム合金ビレット側の面が中央部でRz=3.4μmであり、マグネシウム合金ビレット側の面粗さRz=2.6μmであった。 Next, the joint surfaces of the magnesium alloy billet and the aluminum alloy billet were ground, polished with a SiC # 1000 abrasive paper, and further the surface was degreased with acetone. The surface roughness (Rz) was Rz = 3.4 μm at the center of the aluminum alloy billet side surface, and the surface roughness Rz = 2.6 μm at the magnesium alloy billet side.
 そして、図3に示すように、マグネシウム合金ビレット31、中間層33及びアルミニウム合金ビレット32を積層し、これらを固定するために、マグネシウム合金ビレット31及びアルミニウム合金ビレット32の側面に連結板材34をボルト35で螺着した。なお、マグネシウム合金ビレット31、中間層33及びアルミニウム合金ビレット32を積層したもの(以下単に「積層体」という。)の重量は、表1に示すように約27kgであった。なお、表1中の「-」は測定していないことを意味する。 Then, as shown in FIG. 3, a magnesium alloy billet 31, an intermediate layer 33, and an aluminum alloy billet 32 are laminated, and in order to fix them, connecting plate members 34 are bolted to the side surfaces of the magnesium alloy billet 31 and the aluminum alloy billet 32. 35 and screwed. As shown in Table 1, the weight of the laminated magnesium alloy billet 31, intermediate layer 33 and aluminum alloy billet 32 (hereinafter simply referred to as “laminated body”) was about 27 kg. In Table 1, “-” means not measured.
 次に、図4の(a)に示すように、加圧力9000トン級のプレス機の平押し用の下金型37と、上金型38の間に、積層体36を設置して、下金型37に積層体36を載置した。
 その後、積層体を表2に示す温度条件下で加熱し、図4の(b)に示すように、表1に示す圧力条件下で20秒間加圧した。なお、表2中の「-」は測定していないことを意味する。
 そして、自然冷却した後、熱処理により溶体化し、時効硬化させることにより、図4の(c)に示す結合部材40を得た。
Next, as shown in FIG. 4A, a laminated body 36 is installed between a lower die 37 for flat pressing and an upper die 38 of a press machine having a pressurizing force of 9000 tons. The laminate 36 was placed on the mold 37.
Thereafter, the laminate was heated under the temperature conditions shown in Table 2 and pressurized for 20 seconds under the pressure conditions shown in Table 1 as shown in FIG. In Table 2, “-” means that no measurement was performed.
And after natural cooling, it formed into the solution by heat processing and age-hardened, and the coupling member 40 shown to (c) of FIG. 4 was obtained.
(表1)
Figure JPOXMLDOC01-appb-I000001
(Table 1)
Figure JPOXMLDOC01-appb-I000001
(表2)
Figure JPOXMLDOC01-appb-I000002
(Table 2)
Figure JPOXMLDOC01-appb-I000002
(評価1)
 実施例1~25及び参考例1~10で得られた結合部材に対して接合界面に垂直方向にサンプルを採取し、JIS-Z2241(金属材料引張試験方法)に基づいて、結合部材の引張強さを測定した。なお、異なる箇所から試料を採取することで各サンプルに対して2回ずつ評価を行った。
 得られた結果を表3に示す。
(Evaluation 1)
Samples were taken in the direction perpendicular to the bonding interface for the bonding members obtained in Examples 1 to 25 and Reference Examples 1 to 10, and based on JIS-Z2241 (metal material tensile test method), the tensile strength of the bonding members Was measured. Each sample was evaluated twice by collecting samples from different locations.
The obtained results are shown in Table 3.
(表3)
Figure JPOXMLDOC01-appb-I000003
(Table 3)
Figure JPOXMLDOC01-appb-I000003
 表3の結果より、インサート材にNiを用い、加熱温度300℃、加圧力750MPaとした実施例2の結合部材は、最大約120MPaの引張強さを示すことがわかった。
 インサート材にCuを用いた実施例12~17の結合部材は、最大約100MPaの引張強さであった。
 インサート材がNi、Cuいずれの場合も、低温では接合しないが(引張強さ0MPa)、ある温度を超えると急激に接合するようになることが分かった。これには塑性流動界面の形成が関係していると考えられる。また、急激に接合するようになる点以上に温度を増加させると、引っ張り強さが逆に低下する傾向にあることが分かった。この加工温度上昇と共に引張強さが低下する理由は、母材に比べ脆弱な拡散層が必要以上に厚く成長するためと考えられる(高強度な拡散接合相を得るためには、一般にその反応層が薄いほど良い)。
From the results shown in Table 3, it was found that the joining member of Example 2 using Ni as the insert material and having a heating temperature of 300 ° C. and a pressing force of 750 MPa exhibits a tensile strength of about 120 MPa at the maximum.
The joining members of Examples 12 to 17 using Cu as the insert material had a maximum tensile strength of about 100 MPa.
It was found that when the insert material is Ni or Cu, it is not joined at a low temperature (tensile strength of 0 MPa), but it suddenly joins when a certain temperature is exceeded. This is thought to be related to the formation of a plastic flow interface. Further, it was found that the tensile strength tends to decrease conversely when the temperature is increased beyond the point at which the joining becomes abrupt. The reason why the tensile strength decreases as the processing temperature rises is considered to be because a fragile diffusion layer grows thicker than necessary compared to the base material (in order to obtain a high-strength diffusion bonding phase, generally the reaction layer The thinner the better.)
 インサート材にTiを用い、アルミニウム合金としてA2017を用い、加熱温度300℃、加圧力200MPaとした実施例22の結合部材は、最高の引張強さσ=151.0MPaを示した。加圧力が100MPa、300MPa、500MPa、700MPaにおいても引張強さσ=120MPa以上を記録した。この結果からインサート材としてNi、Cuに比較してTiが最も優れていることが判明した(引張強さだけでなく、加工範囲の裕度についても優れている)。 The joining member of Example 22 using Ti as the insert material, A2017 as the aluminum alloy, heating temperature 300 ° C., and pressurizing force 200 MPa showed the highest tensile strength σ B = 151.0 MPa. The tensile strength σ B = 120 MPa or more was recorded even when the applied pressure was 100 MPa, 300 MPa, 500 MPa, and 700 MPa. From these results, it was found that Ti was the most excellent insert material compared to Ni and Cu (not only the tensile strength but also the tolerance of the processing range).
 実施例1~11における接合面の引張強さと、接合時の加圧力及び加熱温度との関係を図5に示し、実施例12~20における接合面の引張強さと、接合時の加圧力及び加熱温度との関係を図6に示し、実施例21~25における接合面の引張強さと、接合時の加圧力との関係を図7に示す。なお、図7においては、表3に示す引張強さの結果が高い方の値を示している。 FIG. 5 shows the relationship between the tensile strength of the joint surface in Examples 1 to 11 and the applied pressure and heating temperature at the time of joining, and the tensile strength of the joined surface in Examples 12 to 20, the applied pressure and heating at the time of joining. FIG. 6 shows the relationship with temperature, and FIG. 7 shows the relationship between the tensile strength of the joint surface in Examples 21 to 25 and the applied pressure during joining. In addition, in FIG. 7, the value with the higher result of the tensile strength shown in Table 3 is shown.
(評価2)
 実施例2及び実施例22で得られた結合部材の接合部分を走査型電子顕微鏡(SEM)で撮影した。なお、SEMにおいては、電子線を絞って電子ビームと成して対象物に照射し対象物から放出される二次電子、あるいは対象物によって反射される反射電子などを検出することで対象物を観察することができる。実施例2で得られた二次電子像を図8の(a)~(c)に示し、実施例22で得られた二次電子線を図9に示す。
(Evaluation 2)
The joint part of the coupling member obtained in Example 2 and Example 22 was photographed with a scanning electron microscope (SEM). In SEM, an electron beam is squeezed into an electron beam to irradiate the object and detect secondary electrons emitted from the object or reflected electrons reflected by the object. Can be observed. The secondary electron images obtained in Example 2 are shown in FIGS. 8A to 8C, and the secondary electron beam obtained in Example 22 is shown in FIG.
 図8の(a)は、測定スケールが200μmであり、マグネシウム部材と、中間層(Ni)と、アルミニウム部材との接合部分の写真である。図8の(b)は、測定スケールが20μmであり、マグネシウム部材と、中間層(Ni)との接合部分の写真である。図8の(c)は、測定スケールが20μmであり、中間層と、アルミニウム部材との接合部分の写真である。
 図8の断面観察において、アルミニウムとマグネシウムの直接拡散接合時に形成されやすい割れやカーケンダルボイド等の欠陥は認められなかった。
(A) of FIG. 8 is a photograph of the joining part of a magnesium member, an intermediate | middle layer (Ni), and an aluminum member whose measurement scale is 200 micrometers. FIG. 8B is a photograph of a joint portion between the magnesium member and the intermediate layer (Ni) having a measurement scale of 20 μm. (C) of FIG. 8 is a photograph of the joint portion between the intermediate layer and the aluminum member having a measurement scale of 20 μm.
In the cross-sectional observation of FIG. 8, no defects such as cracks and Kirkendall voids that were easily formed during direct diffusion bonding of aluminum and magnesium were observed.
 図9中、矢印Line1、Line2の記載は、後述する線分析の接合面と測定方向を示している。なお、写真の上側部分はマグネシウム合金(AZ80)であり、中央部分はインサート材Tiであり、下側部分はアルミニウム合金(A2017、ジュラルミン)である。また、測定スケールは100μmである。 In FIG. 9, the description of arrows Line1 and Line2 indicates the joint surface and the measurement direction of the line analysis described later. The upper part of the photograph is a magnesium alloy (AZ80), the central part is an insert material Ti, and the lower part is an aluminum alloy (A2017, duralumin). The measurement scale is 100 μm.
(評価3)
 実施例2及び実施例22で得られた結合部材の接合界面を電子線マイクロアナライザー(EPMA)で面分析した。なお、EPMAにおいては、電子線を対象物に照射することにより発生する特性X線の波長から構成元素を分析することができる。実施例2で得られた面分析像を図10の(a)~図10の(f)に示し、実施例22で得られた面分析像を図11の(a)~図11の(b)に示す。
(Evaluation 3)
The joint interface of the coupling members obtained in Example 2 and Example 22 was subjected to surface analysis using an electron beam microanalyzer (EPMA). In EPMA, constituent elements can be analyzed from the wavelength of characteristic X-rays generated by irradiating an object with an electron beam. The surface analysis images obtained in Example 2 are shown in FIGS. 10 (a) to 10 (f), and the surface analysis images obtained in Example 22 are shown in FIGS. 11 (a) to 11 (b). ).
 図10の(a)~図10の(c)は、測定スケールが5μmであり、上側がマグネシウム部材であり、下側が中間層(Ni)となっており、図10の(d)~図10の(f)は、測定スケールが5μmであり、上側が中間層(Ni)であり、下側がアルミニウム部材である。なお、図10の(a)は、二次電子像である。図10の(b)は、反射電子像である。図10の(c)は、マグネシウムの面分析結果である。図10の(d)は、Niの面分析結果である。図10の(e)は、アルミニウムの面分析結果である。図10の(f)は、酸素の面分析結果である。
 図10の(f)より、微細な酸化物の存在が明らかに確認できた(界面からマグネシウム合金側に約10μmまで存在)。これは大気中の加工プロセスであったため、ある程度の酸化物が形成されたと考えられる。なお、これは図10の(a)、(b)、(c)及び(e)の信号強度変化部にも合致する。
10 (a) to 10 (c), the measurement scale is 5 μm, the upper side is a magnesium member, and the lower side is an intermediate layer (Ni). FIG. 10 (d) to FIG. In (f), the measurement scale is 5 μm, the upper side is the intermediate layer (Ni), and the lower side is the aluminum member. In addition, (a) of FIG. 10 is a secondary electron image. FIG. 10B is a reflected electron image. (C) of FIG. 10 is a surface analysis result of magnesium. FIG. 10D shows the Ni surface analysis results. (E) of FIG. 10 is a surface analysis result of aluminum. (F) of FIG. 10 is an oxygen surface analysis result.
From FIG. 10 (f), the presence of fine oxides was clearly confirmed (existing from the interface to the magnesium alloy side to about 10 μm). Since this was a processing process in the atmosphere, it is considered that a certain amount of oxide was formed. This also coincides with the signal intensity changing portions of (a), (b), (c) and (e) of FIG.
 図11の(a)~図11の(b)は、測定スケールは5μmである。なお、図11の(a)は、図9のLine1に沿ってマグネシウム合金AZ80とインサート材Tiとの接合面の面分析結果であり、図中SLは二次電子像であり、CPは反射電子像である。また、Mg、Ti、Al、Oは分析した各元素を示す。
 図11の(a)の分析写真Mgの場合の接合面は、上側部分がマグネシウム合金AZ80であり、下側部分はインサート材Tiである。界面には薄い拡散層と微細な塑性流動界面の形成(アンカー効果)が認められる。二元系の状態図を見ると、TiはMgとの相互溶解が極めて小さいことから、これらの拡散反応は小さいと考えられる。この場合の拡散反応は主にMg合金中のAl成分とTiと考えられる。すなわち、インサート材にTiを用いることで、脆弱なMgの反応層の成長を極力抑えることができ、それにより高強度な拡散層を得ていると考えられる。
 図11の(b)の分析写真Tiの場合の接合面は、上側部分がTiであり、下側部分がアルミニウム合金である。接合界面では拡散反応が認められる。Alの記載される写真では上側部分がTiであり、下側部分がアルミニウム合金である。AZ80合金側と同様に薄く欠陥の無い良好な拡散層の形成が確認できた。
In FIG. 11 (a) to FIG. 11 (b), the measurement scale is 5 μm. 11A is a surface analysis result of the joint surface between the magnesium alloy AZ80 and the insert material Ti along the Line 1 in FIG. 9, where SL is a secondary electron image, and CP is a reflected electron. It is a statue. Mg, Ti, Al, and O represent each element analyzed.
In the case of the analysis photograph Mg in FIG. 11 (a), the upper part is a magnesium alloy AZ80 and the lower part is an insert material Ti. A thin diffusion layer and a fine plastic flow interface are formed at the interface (anchor effect). Looking at the phase diagram of the binary system, it is considered that these diffusion reactions are small because Ti has very little mutual dissolution with Mg. The diffusion reaction in this case is considered to be mainly the Al component and Ti in the Mg alloy. That is, it is considered that the use of Ti for the insert material can suppress the growth of the fragile Mg reaction layer as much as possible, thereby obtaining a high-strength diffusion layer.
In the case of the analysis photograph Ti in FIG. 11 (b), the upper surface portion is Ti and the lower surface portion is an aluminum alloy. A diffusion reaction is observed at the bonding interface. In the photograph in which Al is described, the upper part is Ti and the lower part is an aluminum alloy. As in the case of the AZ80 alloy side, formation of a good diffusion layer that is thin and free from defects was confirmed.
 図11の(b)において、各写真の上側部分がインサート材Tiであり、下側部分はアルミニウム合金A2017(ジュラルミン)である。写真に記載されるSLは二次電子像であり、CPは反射電子像である。Ti記載の図では界面に薄い拡散層と微細な塑性流動界面の形成(アンカー効果)が認められる。同様にAl記載の図では界面に薄い拡散層と塑性流動界面の形成が認められる。O記載の写真では特に顕著な酸化物の存在は認められない。 11 (b), the upper part of each photograph is the insert material Ti, and the lower part is aluminum alloy A2017 (duralumin). SL described in the photograph is a secondary electron image, and CP is a reflected electron image. In the figure described in Ti, formation of a thin diffusion layer and a fine plastic flow interface (anchor effect) is recognized at the interface. Similarly, formation of a thin diffusion layer and a plastic flow interface is recognized at the interface in the diagram described in Al. In the photograph described in O, the presence of a particularly remarkable oxide is not recognized.
(評価4)
 評価3と同様にして、実施例2及び実施例22で得られた結合部材の接合部分をEPMAで線分析した。実施例2で得られた線分析のグラフを図12の(a)~図12の(d)に示し、実施例22で得られた線分析のグラフを図13(a)及び図13(b)に示す。
(Evaluation 4)
In the same manner as in Evaluation 3, the joint portion of the coupling member obtained in Example 2 and Example 22 was subjected to line analysis by EPMA. The line analysis graphs obtained in Example 2 are shown in FIGS. 12 (a) to 12 (d), and the line analysis graphs obtained in Example 22 are shown in FIGS. 13 (a) and 13 (b). ).
 図12の(a)は、図10の(c)に対応する線分析であり、マグネシウムの分析結果を示す。その走査方向はマグネシウム合金側からNiのインサート材方向へ界面に垂直に行っている。縦軸は発生した特性X線の強度、横軸は走査距離(mm)である。グラフの横軸は1目盛り0.001mm(1μm)であり、マグネシウムが存在する部分と存在しない部分の境界部分を示している。すなわち、ニッケル(Ni)との拡散層が読み取れる部分である。図12の(b)は、ニッケルの線分析結果を示す。主にマグネシウム部材と1 μm前後の拡散層を形成していることが分かる。非常に薄い拡散層であることが分かり、良好な拡散層であることが理解できる。図12の(c)は、アルミニウムの線分析結果である。図12の(d)は、酸素の線分析結果である。酸化物層Qが検出されていることが確認できる。なお、この部分は、図10の(f)に示す酸化物層に相当する。酸化物層の厚みは10μm程度であった。 (A) of FIG. 12 is a line analysis corresponding to (c) of FIG. 10, and shows the analysis result of magnesium. The scanning direction is perpendicular to the interface from the magnesium alloy side to the Ni insert material direction. The vertical axis represents the intensity of the generated characteristic X-ray, and the horizontal axis represents the scanning distance (mm). The horizontal axis of the graph is one scale of 0.001 mm (1 μm), and shows a boundary portion between a portion where magnesium is present and a portion where magnesium is not present. That is, it is a portion where a diffusion layer with nickel (Ni) can be read. FIG. 12B shows the result of nickel line analysis. It can be seen that a magnesium member and a diffusion layer of about 1 μm are formed. It turns out that it is a very thin diffusion layer, and it can be understood that it is a favorable diffusion layer. (C) of FIG. 12 is a line analysis result of aluminum. FIG. 12 (d) shows the results of oxygen line analysis. It can be confirmed that the oxide layer Q is detected. Note that this portion corresponds to the oxide layer shown in FIG. The thickness of the oxide layer was about 10 μm.
 図13(a)は、図9のLine1に沿って行われており、図13(b)は、図9のLine2に沿って行われている。また、分析する元素の種別をグラフ毎に記載している。図13中、CPは反射電子強度を示す。また、Mg,Ti,Al,Oはそれぞれ分析した元素記号を示す。横軸は走査距離であり、単位は(mm)である。 FIG. 13A is performed along Line 1 in FIG. 9, and FIG. 13B is performed along Line 2 in FIG. In addition, the type of element to be analyzed is described for each graph. In FIG. 13, CP indicates the reflected electron intensity. Mg, Ti, Al, and O represent the element symbols analyzed. The horizontal axis is the scanning distance, and the unit is (mm).
 図13(a)より、拡散層は2μm程度であることが分かる。マグネシウムはTiとの相互溶解度が小さい。Tiを中間材に用いることでMgとの反応を極力抑え、一方でマグネシウム合金中のAlと主に反応させることで薄く良好な拡散層が得られる。これにより微細な塑性流動界面と合わせて高強度な接合界面が形成できる(機械的接合(アンカー効果)と冶金的接合(拡散反応)の相乗効果)。なお、酸素の線分析結果を見ると、脆弱な酸化層の形成もTiにおいてはNi(図12)に比較し、非常に少ないことが理解できる(高強度に寄与している)。 FIG. 13A shows that the diffusion layer is about 2 μm. Magnesium has low mutual solubility with Ti. By using Ti as an intermediate material, reaction with Mg is suppressed as much as possible, while thin and good diffusion layers can be obtained by mainly reacting with Al in the magnesium alloy. As a result, a high-strength joint interface can be formed together with a fine plastic flow interface (a synergistic effect of mechanical joining (anchor effect) and metallurgical joining (diffusion reaction)). From the results of the oxygen line analysis, it can be understood that the formation of a fragile oxide layer is very small in Ti compared to Ni (FIG. 12) (contributes to high strength).
 図13(b)より、インサート材(Ti)とA2017の接合界面についてもTiとAlとの間で薄く良好な拡散層が形成されていることが分かる。拡散反応層の厚みは1μm前後と思われる(特性X線の発生領域で決まる分解能程度で極めて薄い)。また、接合界面の酸化物の生成もほとんどないことが分かる。 FIG. 13B shows that a thin and good diffusion layer is formed between Ti and Al at the bonding interface between the insert material (Ti) and A2017. The thickness of the diffusion reaction layer seems to be around 1 μm (very thin with a resolution determined by the region where characteristic X-rays are generated). It can also be seen that there is almost no generation of oxide at the bonding interface.
(比較例1)
 中間層となるインサート材を用いないこと以外は、実施例1と同様にして、結合部材を得た。すなわち、マグネシウム合金(AZ80)とアルミニウム合金(A6151)とを直接接触させて積層体とし、積層体の温度360℃、385℃、400℃、420℃に設定して、加圧力300MPaで加熱加圧を行った。
(Comparative Example 1)
A coupling member was obtained in the same manner as in Example 1 except that the insert material serving as the intermediate layer was not used. That is, a magnesium alloy (AZ80) and an aluminum alloy (A6151) are directly brought into contact with each other to form a laminate, and the laminate temperature is set to 360 ° C., 385 ° C., 400 ° C., and 420 ° C. Went.
(評価5)
 比較例1で得られた結合部材に対し、評価1と同様にして、引張強さを測定した。得られた結果を図14に示す。
 図14に示すように、比較例1の結合部材は、420℃の加工温度で急激に引張強さが増加する傾向を示した(引張強さσ=55MPa)。
 また、これより低い温度では、引張強さがσ=10MPa~30MPaの範囲となった。
 420 ℃で急激に引張強さが増加する理由は、塑性流動界面の形成がこの温度以上で顕著になるためである。
 しかしながら、インサート材を用いないこのAl-Mg直接接合法では、極めて脆弱で欠陥の多い金属間化合物相(Al12Mg17,AlMg)が容易に形成される(図14)。
 直接接合では、熱間鍛造による塑性流動界面の形成により、ある程度の引張強さ(約55MPa)は得られるものの、破壊の起点となるワレやボイドと言ったクリティカルな欠陥の形成は避けようがなく、適切なインサート材の使用は不可欠と理解できる。
(Evaluation 5)
The tensile strength of the coupling member obtained in Comparative Example 1 was measured in the same manner as in Evaluation 1. The obtained result is shown in FIG.
As shown in FIG. 14, the joint member of Comparative Example 1 showed a tendency for the tensile strength to increase rapidly at a processing temperature of 420 ° C. (tensile strength σ B = 55 MPa).
At lower temperatures, the tensile strength was in the range of σ B = 10 MPa to 30 MPa.
The reason why the tensile strength suddenly increases at 420 ° C. is that the formation of the plastic flow interface becomes remarkable above this temperature.
However, in this Al—Mg direct bonding method using no insert material, an intermetallic compound phase (Al 12 Mg 17 , Al 3 Mg 2 ) that is extremely brittle and has many defects is easily formed (FIG. 14).
In direct bonding, a certain degree of tensile strength (about 55 MPa) can be obtained by forming a plastic flow interface by hot forging, but it is inevitable to form critical defects such as cracks and voids that are the starting point of fracture. Therefore, it can be understood that the use of appropriate insert materials is essential.
(評価6)
 比較例1で得られた結合部材に対し、評価2と同様にして、結合部材の接合部分を走査型電子顕微鏡(SEM)で撮影した。得られた二次電子像を図15の(a)及び図15の(b)に示す。
 図15の(a)及び図15の(b)に示すように、マグネシウム部材側に金属間化合物であるAl12Mg17とAlMgとの各層が確認された。また、図15の(a)では割れが認められ、図15の(b)ではカーケンダルボイド(拡散速度の差から生じる空孔)が生じていた。この結果から良好な拡散層を形成する中間層を用いる優位性が証明できる。
(Evaluation 6)
For the coupling member obtained in Comparative Example 1, the joint portion of the coupling member was photographed with a scanning electron microscope (SEM) in the same manner as in Evaluation 2. The obtained secondary electron images are shown in FIGS. 15 (a) and 15 (b).
As shown in FIGS. 15A and 15B, layers of Al 12 Mg 17 and Al 3 Mg 2 as intermetallic compounds were confirmed on the magnesium member side. In FIG. 15A, cracks were observed, and in FIG. 15B, Kirkendall voids (holes resulting from the difference in diffusion rate) were generated. This result demonstrates the superiority of using an intermediate layer that forms a good diffusion layer.
 本発明の結合部材は、マグネシウム合金に起因して軽量で、耐久性が優れるものであり、アルミニウム合金に起因して機械的強度が優れるものである。このため、車両用ホイール、ハウジング、構造部材(クラッド材)、電子機器に於ける筺体用途等の用途に好適に用いられる。 The bonding member of the present invention is lightweight and has excellent durability due to the magnesium alloy, and has excellent mechanical strength due to the aluminum alloy. For this reason, it is suitably used for applications such as a vehicle wheel, a housing, a structural member (clad material), and a casing in an electronic device.
 1・・・マグネシウム部材
 2・・・アルミニウム部材
 3,33・・・中間層
 11・・・第1拡散層
 12・・・第2拡散層
 21,22,23,24・・・機械的接合部
 31・・・マグネシウム合金ビレット
 32・・・アルミニウム合金ビレット
 34・・・連結板材
 35・・・ボルト
 36・・・積層体
 37・・・下金型
 38・・・上金型
 40,100・・・結合部材
 P・・・部分
 Q・・・酸化物層
DESCRIPTION OF SYMBOLS 1 ... Magnesium member 2 ... Aluminum member 3,33 ... Intermediate | middle layer 11 ... 1st diffused layer 12 ... 2nd diffused layer 21, 22, 23, 24 ... Mechanical junction 31 ... Magnesium alloy billet 32 ... Aluminum alloy billet 34 ... Connecting plate material 35 ... Bolt 36 ... Laminate 37 ... Lower mold 38 ... Upper mold 40, 100 ...・ Coupling member P ... part Q ... oxide layer

Claims (6)

  1.  マグネシウム合金からなるマグネシウム部材と、アルミニウム合金からなるアルミニウム部材と、前記マグネシウム部材及び前記アルミニウム部材の間に形成された中間層と、を備えた結合部材であって、
     前記中間層が、Ni、Cu及びTiからなる群より選ばれる少なくとも一種のインサート材からなり、
     前記マグネシウム部材、前記アルミニウム部材及び中間層が一体となるように接合されている結合部材。
    A coupling member comprising a magnesium member made of a magnesium alloy, an aluminum member made of an aluminum alloy, and an intermediate layer formed between the magnesium member and the aluminum member,
    The intermediate layer is made of at least one insert material selected from the group consisting of Ni, Cu and Ti,
    The coupling member joined so that the said magnesium member, the said aluminum member, and an intermediate | middle layer may be united.
  2.  前記マグネシウム部材と前記中間層との界面には、前記マグネシウム合金と前記インサート材とからなる第1拡散層が形成されており、
     前記アルミニウム部材と前記中間層との界面には、前記アルミニウム合金と前記インサート材とからなる第2拡散層が形成されている請求項1記載の結合部材。
    A first diffusion layer made of the magnesium alloy and the insert material is formed at the interface between the magnesium member and the intermediate layer,
    The coupling member according to claim 1, wherein a second diffusion layer made of the aluminum alloy and the insert material is formed at an interface between the aluminum member and the intermediate layer.
  3.  前記マグネシウム部材と前記第1拡散層との界面、前記第1拡散層と前記中間層との界面、前記中間層と前記第2拡散層との界面、及び、前記アルミニウム部材と前記第2拡散層との界面、には、塑性流動による機械的接合部が形成されている請求項2記載の結合部材。 The interface between the magnesium member and the first diffusion layer, the interface between the first diffusion layer and the intermediate layer, the interface between the intermediate layer and the second diffusion layer, and the aluminum member and the second diffusion layer The coupling member according to claim 2, wherein a mechanical joint portion by plastic flow is formed at an interface with.
  4.  請求項1~3のいずれか一項に記載の結合部材の製造方法であって、
     前記マグネシウム合金と、Tiからなるインサート材と、前記アルミニウム合金とを重ね合わせ、200℃~450℃の範囲に加熱し、100MPa~700MPaで加圧することにより、前記マグネシウム部材と、前記中間層と、前記アルミニウム部材とを接合する結合部材の製造方法。
    A method for manufacturing a coupling member according to any one of claims 1 to 3,
    The magnesium alloy, the insert material made of Ti, and the aluminum alloy are overlaid, heated to a range of 200 ° C. to 450 ° C., and pressurized at 100 MPa to 700 MPa, thereby the magnesium member, the intermediate layer, A method for manufacturing a coupling member for joining the aluminum member.
  5.  請求項1~3のいずれか一項に記載の結合部材の製造方法であって、
     前記マグネシウム合金と、Ni又はCuからなるインサート材と、前記アルミニウム合金とを重ね合わせ、300℃~400℃の範囲に加熱し、700MPa~750MPaで加圧することにより、前記マグネシウム部材と、前記中間層と、前記アルミニウム部材とを接合する結合部材の製造方法。
    A method for manufacturing a coupling member according to any one of claims 1 to 3,
    The magnesium member, the insert material made of Ni or Cu, and the aluminum alloy are overlaid, heated to a range of 300 ° C. to 400 ° C., and pressurized at 700 MPa to 750 MPa, whereby the magnesium member and the intermediate layer And the manufacturing method of the coupling member which joins the said aluminum member.
  6.  前記マグネシウム部材と、前記中間層と、前記アルミニウム部材とを接合した後、更に溶体化処理と時効処理とを行う請求項4又は5に記載の結合部材の製造方法。 6. The method for manufacturing a coupling member according to claim 4, wherein after the magnesium member, the intermediate layer, and the aluminum member are joined, a solution treatment and an aging treatment are further performed.
PCT/JP2011/003298 2010-06-10 2011-06-10 Bonding member and manufacturing method thereof WO2011155214A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012519278A JP5830727B2 (en) 2010-06-10 2011-06-10 Coupling member and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010133451 2010-06-10
JP2010-133451 2010-06-10

Publications (1)

Publication Number Publication Date
WO2011155214A1 true WO2011155214A1 (en) 2011-12-15

Family

ID=45097829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003298 WO2011155214A1 (en) 2010-06-10 2011-06-10 Bonding member and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5830727B2 (en)
WO (1) WO2011155214A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014097526A (en) * 2012-11-15 2014-05-29 Auto Network Gijutsu Kenkyusho:Kk Connection structure and connection structure
CN104780739A (en) * 2014-01-09 2015-07-15 株式会社新王材料 Chassis and portable apparatus
JP2015202680A (en) * 2014-04-16 2015-11-16 株式会社Neomaxマテリアル Cladding material and production method of cladding material
JP6135835B1 (en) * 2015-12-28 2017-05-31 日立金属株式会社 Cladding material and housing for electronic equipment
WO2017110001A1 (en) 2015-12-25 2017-06-29 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional additive manufacturing device, control method of three-dimensional additive manufacturing device, and control program of three-dimensional additive manufacturing device
WO2017115661A1 (en) * 2015-12-28 2017-07-06 日立金属株式会社 Cladding material and casing for electronic devices
CN108161263A (en) * 2018-02-24 2018-06-15 张春红 A kind of argon-arc welding-braze welding composite welding method
CN110461529A (en) * 2017-04-14 2019-11-15 旭化成株式会社 Xenogenesis joint material containing antiflaming magnesium alloy layer
CN111226315A (en) * 2017-10-27 2020-06-02 三菱综合材料株式会社 Joined body, insulated circuit board with heat sink, and heat sink
WO2020184489A1 (en) * 2019-03-14 2020-09-17 日立金属株式会社 Magnesium clad material, housing for electronic devices, and component for mobile objects

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5950791B2 (en) * 2012-10-29 2016-07-13 日立金属Mmcスーパーアロイ株式会社 Composite member made of corrosion-resistant Ni-based alloy and aluminum or aluminum alloy
JP7114029B2 (en) * 2017-12-20 2022-08-08 富山県 metal joining method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328270A (en) * 1993-05-19 1994-11-29 Nippon Steel Corp Magnesium-aluminum clad material and manufacture thereof
JP2002294376A (en) * 2001-03-29 2002-10-09 Showa Denko Kk Aluminum-dissimilar metal clad plate and production method therefor
JP2003200273A (en) * 2001-07-02 2003-07-15 General Motors Corp <Gm> Method of manufacturing weldingless bonded magnetic/ aluminum member
JP2004114073A (en) * 2002-09-25 2004-04-15 Nagasaki Prefecture Method for splicing pure aluminum and magnesium alloy
JP2004195493A (en) * 2002-12-17 2004-07-15 Railway Technical Res Inst Joining material, production method therefor, structure of traffic transportation means, and structure of railway vehicle
JP2005281824A (en) * 2004-03-30 2005-10-13 Sumitomo Metal Ind Ltd Clad plate of magnesium alloy and aluminum and its production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328617A (en) * 1993-05-18 1994-11-29 Nippon Steel Corp Magnesium-aluminum clad material
JPH11156995A (en) * 1997-09-25 1999-06-15 Daido Steel Co Ltd Clad plate, battery case using it, and manufacture thereof
JP5098792B2 (en) * 2008-05-09 2012-12-12 日産自動車株式会社 Dissimilar metal joining method of magnesium alloy and steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328270A (en) * 1993-05-19 1994-11-29 Nippon Steel Corp Magnesium-aluminum clad material and manufacture thereof
JP2002294376A (en) * 2001-03-29 2002-10-09 Showa Denko Kk Aluminum-dissimilar metal clad plate and production method therefor
JP2003200273A (en) * 2001-07-02 2003-07-15 General Motors Corp <Gm> Method of manufacturing weldingless bonded magnetic/ aluminum member
JP2004114073A (en) * 2002-09-25 2004-04-15 Nagasaki Prefecture Method for splicing pure aluminum and magnesium alloy
JP2004195493A (en) * 2002-12-17 2004-07-15 Railway Technical Res Inst Joining material, production method therefor, structure of traffic transportation means, and structure of railway vehicle
JP2005281824A (en) * 2004-03-30 2005-10-13 Sumitomo Metal Ind Ltd Clad plate of magnesium alloy and aluminum and its production method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014097526A (en) * 2012-11-15 2014-05-29 Auto Network Gijutsu Kenkyusho:Kk Connection structure and connection structure
TWI612880B (en) * 2014-01-09 2018-01-21 Hitachi Metals Ltd Undercarriage and portable machine
CN104780739A (en) * 2014-01-09 2015-07-15 株式会社新王材料 Chassis and portable apparatus
JP2015128883A (en) * 2014-01-09 2015-07-16 株式会社Neomaxマテリアル Chassis and portable device
KR101760557B1 (en) * 2014-01-09 2017-07-31 히타치 긴조쿠 가부시키가이샤 Chassis and portable apparatus
JP2015202680A (en) * 2014-04-16 2015-11-16 株式会社Neomaxマテリアル Cladding material and production method of cladding material
US10239305B2 (en) 2015-12-25 2019-03-26 Technology Research Association For Future Additive Manufacturing Three-dimensional laminating and shaping apparatus, control method of three-dimensional laminating and shaping apparatus, and control program of three-dimensional laminating and shaping apparatus
WO2017110001A1 (en) 2015-12-25 2017-06-29 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional additive manufacturing device, control method of three-dimensional additive manufacturing device, and control program of three-dimensional additive manufacturing device
WO2017115661A1 (en) * 2015-12-28 2017-07-06 日立金属株式会社 Cladding material and casing for electronic devices
CN107206747A (en) * 2015-12-28 2017-09-26 日立金属株式会社 Clad material and housing for electronic equipment
JP6135835B1 (en) * 2015-12-28 2017-05-31 日立金属株式会社 Cladding material and housing for electronic equipment
US10532422B2 (en) 2015-12-28 2020-01-14 Hitachi Metals, Ltd. Clad material and electronic device housing
KR101808999B1 (en) 2015-12-28 2017-12-13 히타치 긴조쿠 가부시키가이샤 Cladding material and casing for electronic devices
CN110461529B (en) * 2017-04-14 2022-02-25 旭化成株式会社 Dissimilar joint material containing flame-retardant magnesium alloy layer
US11534871B2 (en) 2017-04-14 2022-12-27 Asahi Kasei Kabushiki Kaisha Dissimilar metal joint including flame-retardant magnesium alloy layer
CN110461529A (en) * 2017-04-14 2019-11-15 旭化成株式会社 Xenogenesis joint material containing antiflaming magnesium alloy layer
EP3610979A4 (en) * 2017-04-14 2020-08-26 Asahi Kasei Kabushiki Kaisha Multimaterial joint material including flame-retardant magnesium alloy layer
CN111226315A (en) * 2017-10-27 2020-06-02 三菱综合材料株式会社 Joined body, insulated circuit board with heat sink, and heat sink
CN111226315B (en) * 2017-10-27 2023-06-06 三菱综合材料株式会社 Joint body, insulating circuit substrate with radiator and radiator
CN108161263A (en) * 2018-02-24 2018-06-15 张春红 A kind of argon-arc welding-braze welding composite welding method
JPWO2020184489A1 (en) * 2019-03-14 2020-09-17
WO2020184489A1 (en) * 2019-03-14 2020-09-17 日立金属株式会社 Magnesium clad material, housing for electronic devices, and component for mobile objects
JP7147957B2 (en) 2019-03-14 2022-10-05 日立金属株式会社 Magnesium clad materials, housings for electronic devices and parts for moving bodies
US11931821B2 (en) 2019-03-14 2024-03-19 Proterial, Ltd. Magnesium clad material, electronic device housing, and mobile object component

Also Published As

Publication number Publication date
JP5830727B2 (en) 2015-12-09
JPWO2011155214A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5830727B2 (en) Coupling member and manufacturing method
JP4961512B2 (en) Aluminum copper clad material
JP6865172B2 (en) Metal laminate and its manufacturing method
JP4037901B2 (en) Method for producing aluminum composite material
KR102051697B1 (en) Bonding structure for aluminum member and copper member
WO2012029789A1 (en) Method for bonding aluminum-based metals
JP6003108B2 (en) Joining method and joining part manufacturing method
JP2012130948A (en) Rotating tool
JP6016095B2 (en) Joining method and joining parts
WO2010110476A1 (en) Joint material and method of joining
JP2008254003A (en) Method for manufacturing clad material, and clad material
KR101474533B1 (en) Method for manufacturing Al-Mg clad sheet having improved bonding strength at room temperature and the Al-Mg clad sheet thereby
JP2007002281A (en) Aluminum alloy casting for self-pierce rivet joining, and method for producing the same
JP6020391B2 (en) Pb-free Zn-Al-based alloy solder and Cu-based base material clad material for joining semiconductor elements
Mehtedi et al. Bonding of similar AA3105 aluminum alloy by Accumulative Roll Bonding process
JP2019107686A (en) Metal joining method, metal joining device, and metal member joining system
JP2015107525A (en) Rotary tool
JP6036795B2 (en) Rotation tool
JP2631460B2 (en) Method for producing copper alloy clad material
KR101279112B1 (en) A manufacturing method of clad plate using the precipitation hardening cu alloys as the insert bonding materials and the clad plat obtained using the same
JP6522952B2 (en) Bonding body and method for manufacturing the same
KR101131930B1 (en) Method of manufacturing terminals for secondary battery
JPH0353074B2 (en)
JP6848991B2 (en) Titanium material for hot rolling
KR20140102469A (en) Cu/al hybrid alloy with enhanced reliability through the control of diffusion and reaction kinetics of cu and al and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792173

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519278

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792173

Country of ref document: EP

Kind code of ref document: A1