JP2008254003A - Method for manufacturing clad material, and clad material - Google Patents

Method for manufacturing clad material, and clad material Download PDF

Info

Publication number
JP2008254003A
JP2008254003A JP2007095818A JP2007095818A JP2008254003A JP 2008254003 A JP2008254003 A JP 2008254003A JP 2007095818 A JP2007095818 A JP 2007095818A JP 2007095818 A JP2007095818 A JP 2007095818A JP 2008254003 A JP2008254003 A JP 2008254003A
Authority
JP
Japan
Prior art keywords
plate
clad material
rolling
aluminum
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007095818A
Other languages
Japanese (ja)
Other versions
JP4588735B2 (en
Inventor
Masato Tsujikawa
正人 辻川
Yukio Oki
幸男 沖
Kenji Azuma
健司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Industrial Promotion Organization
Original Assignee
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization filed Critical Osaka Industrial Promotion Organization
Priority to JP2007095818A priority Critical patent/JP4588735B2/en
Publication of JP2008254003A publication Critical patent/JP2008254003A/en
Application granted granted Critical
Publication of JP4588735B2 publication Critical patent/JP4588735B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a clad material, which manufactures a clad plate by covering the surface of a magnesium-lithium-based alloy plate with an aluminum or aluminum alloy plate and imparts excellent strength, lightness, cold workability, and corrosion resistance to the clad material, and which manufactures it at more advantageous cost than conventional joining techniques of rolling, and to provide a clad material. <P>SOLUTION: An objective clad material is obtained by superimposing an aluminum or aluminum-alloy plate on a magnesium-lithium-based alloy plate, subjecting them to overlap joining by friction stirring, and rolling them. It is preferable that the overlap joining by friction stirring is closely applied to the whole surface of the plates. The rolling operation is preferably conducted a plurality of times in a cold condition (at room temperature). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、マグネシウム−リチウム系合金板の表面にアルミニウムまたはその合金の板を被覆したクラッド材の製造方法およびクラッド材に関する。   The present invention relates to a method for producing a clad material in which a surface of a magnesium-lithium alloy plate is covered with a plate of aluminum or an alloy thereof, and a clad material.

通常用いられるマグネシウム系合金(添加元素として主にAlやZnを含有する)は、アルミニウムやその合金よりも軽く、比強度、比剛性がアルミニウムやその合金よりも優れているため、航空機部品、自動車部品、自転車部品、各種電気製品ボディーなどの構造材料として利用されている。   Commonly used magnesium-based alloys (mainly containing Al and Zn as additive elements) are lighter than aluminum and its alloys and have higher specific strength and specific rigidity than aluminum and its alloys. It is used as a structural material for parts, bicycle parts, and various electrical product bodies.

この種のマグネシウム系合金は、結晶構造が最密六方構造であるため延性に乏しく、室温での塑性加工性が乏しい。一方、マグネシウム−リチウム系合金は、リチウムを含有することにより最密六方構造と体心立方構造との共晶組織となるため、結晶面でのすべりが改善され、室温でのプレス加工や絞り加工のような塑性加工が可能となり、構造材料として今後の展開が期待されている。   This type of magnesium-based alloy has a close-packed hexagonal crystal structure and therefore has poor ductility and poor plastic workability at room temperature. Magnesium-lithium alloys, on the other hand, have a eutectic structure with a close-packed hexagonal structure and a body-centered cubic structure due to the inclusion of lithium, so the slip on the crystal plane is improved, and press working and drawing at room temperature. Such plastic processing is possible, and future development as a structural material is expected.

しかしながら、構造材料として利用するには、強さや軽さや室温での塑性加工性に加えて耐食性を有することが必要とされる。しかるに、マグネシウム−リチウム系合金は、リチウムを含有するために耐食性が乏しくなり、例えば大気中や塩水に接触する環境下におくと表面が灰色になって腐蝕するという、実用上大きな問題がある。   However, in order to use as a structural material, it is necessary to have corrosion resistance in addition to strength, lightness, and plastic workability at room temperature. However, since magnesium-lithium alloys contain lithium, they have poor corrosion resistance. For example, when they are placed in the atmosphere or in an environment where they come into contact with salt water, there is a large practical problem that the surface becomes gray and corrodes.

下記の特許文献1には、マグネシウム−リチウム系合金基材の表面にアルミニウムまたはアルミニウム合金の板を重ね合わせ、これを室温〜300℃で圧延接合し、必要に応じて圧延接合後に300℃以下で熱処理することにより、強さや軽さや室温での塑性加工性に加えて耐食性にも優れたアルミニウム被覆マグネシウム−リチウム系合金基材(クラッド材)およびその製造方法が提案されている。   In the following Patent Document 1, an aluminum or aluminum alloy plate is superposed on the surface of a magnesium-lithium alloy base material, and this is rolled and joined at room temperature to 300 ° C. An aluminum-coated magnesium-lithium alloy base material (cladding material) excellent in corrosion resistance in addition to strength, lightness, and plastic workability at room temperature by heat treatment, and a method for producing the same have been proposed.

ところが、上記提案においては、その実施例にも記載されているように、マグネシウム−リチウム系合金基材とアルミニウムまたはその合金の板とが当接する面を、予め酸洗いし、さらに金属製ワイヤーブラシで磨いて酸化皮膜などを除去して清浄にしなければ良好な接着性は得られない。そのため、環境設備を要し、圧延操作の前の清浄処理に手間がかかり、クラッド材の製造コストが高くなるという問題がある。   However, in the above proposal, as described in the examples, the surface where the magnesium-lithium alloy base material and the plate of aluminum or its alloy are in contact is pickled in advance, and further a metal wire brush. Good adhesion cannot be obtained unless it is cleaned by removing the oxide film and the like. Therefore, there is a problem that environmental equipment is required, the cleaning process before the rolling operation is troublesome, and the manufacturing cost of the clad material increases.

さらに、上記提案においては、圧延温度が室温では実用的に強固な接合力は得られず、その実施例にも記載されているように、室温で圧延する場合は、圧延後に150〜300℃程度の温度で長時間(1時間程度)の熱処理を行って接合強度や曲げ成形性を高めねばならず、この点でも工程上、設備上の理由から製造コストが高くなるという問題がある。   Furthermore, in the above proposal, a practically strong joining force cannot be obtained at a rolling temperature of room temperature. As described in the examples, when rolling at room temperature, about 150 to 300 ° C. after rolling. Therefore, it is necessary to increase the bonding strength and bend formability by performing a heat treatment for a long time (about 1 hour) at this temperature. In this respect as well, there is a problem that the manufacturing cost increases due to the reason of the process and equipment.

また、圧延や熱処理の際に200〜300℃程度の比較的高温で且つ長時間にわたる加熱を行うと、それだけ接合界面に脆い金属間化合物が生成しやすくなって、結局、接合強度はあまり向上せずに、得られたクラッド材の曲げ試験において割れが発生するおそれがある。   In addition, if heating is performed at a relatively high temperature of about 200 to 300 ° C. for a long time during rolling or heat treatment, a brittle intermetallic compound is easily generated at the bonding interface, and the bonding strength is not much improved. In addition, cracks may occur in the bending test of the obtained clad material.

なお、下記の特許文献2には、通常のマグネシウム系合金(添加元素として主にAlやZnを含有する)の板とアルミニウム合金の板とを重ね合わせ、これを摩擦撹拌により重ね合わせ接合することにより、鉄道車両の構体などを作製することが記載されているが、単に摩擦攪拌にて部分的に接合するだけのものであって、全面に摩擦攪拌重ね合わせ接合して圧延してクラッド材を製造する本発明を示唆するものではない。また、マグネシウム−リチウム系合金板の使用を示唆するものでもない。
特開2004−323935号公報 特開2005−40851号公報
In Patent Document 2 below, a normal magnesium alloy plate (mainly containing Al or Zn as an additive element) and an aluminum alloy plate are overlapped, and this is overlapped and joined by friction stirring. According to the above, it is described that a structure of a railway vehicle or the like is manufactured. It does not suggest the invention to be produced. Nor does it suggest the use of a magnesium-lithium alloy plate.
JP 2004-323935 A JP 2005-40851 A

本発明は、上記の問題に鑑みてなされたものであり、その目的とするところは、マグネシウム−リチウム系合金板の表面にアルミニウムまたはその合金の板を被覆したクラッド材であって、強さや軽さや室温での塑性加工性に加えて耐食性にも優れ、しかもコスト的にも有利なクラッド材の製造方法およびクラッド材を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is a clad material in which a surface of a magnesium-lithium alloy plate is coated with aluminum or a plate of the alloy, and has a strength and a lightness. Another object of the present invention is to provide a clad material manufacturing method and a clad material which are excellent in corrosion resistance in addition to plastic workability at room temperature and also advantageous in cost.

上記の目的は、下記の特徴を有するクラッド材の製造方法およびクラッド材により達成することができる。
すなわち、本発明の請求項1に記載のクラッド材の製造方法は、マグネシウム−リチウム系合金板とアルミニウムまたはその合金の板を重ね合わせ、これを摩擦撹拌により重ね合わせ接合した後、圧延することを特徴とする。
The above object can be achieved by a method for producing a clad material having the following characteristics and the clad material.
In other words, the method for producing a clad material according to claim 1 of the present invention includes superimposing a magnesium-lithium alloy plate and an aluminum plate or an alloy plate thereof, superposing and joining them by friction stirring, and then rolling. Features.

本発明の請求項2に記載のクラッド材の製造方法は、請求項1に記載のクラッド材の製造方法において、摩擦撹拌による重ね合わせ接合を板の全面にわたって隙間なく施すことを特徴とする。   The method for manufacturing a clad material according to claim 2 of the present invention is characterized in that, in the method for manufacturing a clad material according to claim 1, lap joining by friction stirring is performed over the entire surface of the plate without a gap.

本発明の請求項3に記載のクラッド材の製造方法は、請求項1または2に記載のクラッド材の製造方法において、同一部分につき複数回摩擦攪拌することを特徴とする。   The method for manufacturing a clad material according to claim 3 of the present invention is characterized in that, in the method for manufacturing a clad material according to claim 1 or 2, the same portion is subjected to frictional stirring a plurality of times.

本発明の請求項4に記載のクラッド材の製造方法は、請求項1〜3のいずれか1項に記載のクラッド材の製造方法において、冷間で複数回圧延することを特徴とする。   A method for producing a clad material according to a fourth aspect of the present invention is characterized in that in the method for producing a clad material according to any one of the first to third aspects, cold rolling is performed a plurality of times.

本発明の請求項5に記載のクラッド材は、請求項1〜4のいずれか1項に記載のクラッド材の製造方法により得られたことを特徴とする。   A clad material according to claim 5 of the present invention is obtained by the method for producing a clad material according to any one of claims 1 to 4.

本発明において、マグネシウム−リチウム系合金としては、マグネシウムを主成分としこれに室温での塑性加工性を付与するためにリチウムを含有する合金が挙げられる。また、マグネシウムを主成分としこれに室温での塑性加工性を付与するためにリチウムを含有し、さらに耐熱性や強靭性の向上のために、リチウムよりも少量のアルミニウム、亜鉛、マンガン、イットリウム、ランタノイド、ジルコニウム、銀、シリコン、カルシウムなどの金属を含有する合金が挙げられる。   In the present invention, the magnesium-lithium alloy includes an alloy containing magnesium as a main component and containing lithium in order to impart plastic workability at room temperature thereto. In addition, it contains magnesium as a main component and imparts plastic workability at room temperature to it, and in order to improve heat resistance and toughness, a smaller amount of aluminum, zinc, manganese, yttrium, Examples include alloys containing metals such as lanthanoids, zirconium, silver, silicon, and calcium.

ここで、リチウムは5〜15重量%の範囲内で含有されるのが好ましい。リチウムの含有量が5重量%を下回ると室温での塑性加工性があまり改善されず、逆にリチウムの含有量が15重量%を上回ると摩擦撹拌接合や圧延の際に結晶粒が粗大化して粒界割れ(表面亀裂)の原因となることがあり、またリチウムが高価であるためコスト高になる。特に、ASTMで規格化されているLA141(Mg−14%Li−1%Al合金)やLW91(Mg−9%Li−1%Y合金)、その他、Mg−Li合金、Mg−Li−Zn合金が好適に用いられる。   Here, lithium is preferably contained within a range of 5 to 15% by weight. If the lithium content is less than 5% by weight, the plastic workability at room temperature is not improved so much. Conversely, if the lithium content exceeds 15% by weight, the crystal grains become coarse during friction stir welding or rolling. It may cause a grain boundary crack (surface crack), and the cost is high because lithium is expensive. In particular, LA141 (Mg-14% Li-1% Al alloy) and LW91 (Mg-9% Li-1% Y alloy) standardized by ASTM, Mg-Li alloy, Mg-Li-Zn alloy Are preferably used.

また、本発明において、アルミニウムまたはその合金としては、純アルミニウム(1000番台)、Al−Cu系合金(2000番台)、Al−Mn系合金(3000番台)、Al−Si系合金(4000番台)、Al−Mg系合金(5000番台)、Al−Mg−Si系合金(6000番台)、Al−Zn−Mg系合金・Al−Zn−Mg−Cu系合金(7000番台)などが挙げられ、特に限定されない。   In the present invention, as aluminum or an alloy thereof, pure aluminum (1000 series), Al-Cu alloy (2000 series), Al-Mn alloy (3000 series), Al-Si alloy (4000 series), Al-Mg based alloys (5000 series), Al-Mg-Si based alloys (6000 series), Al-Zn-Mg based alloys, Al-Zn-Mg-Cu based alloys (7000 series), etc. are particularly limited. Not.

本発明においては、マグネシウム−リチウム系合金板とアルミニウムまたはその合金の板とを重ね合わせ、これを摩擦撹拌により重ね合わせ接合した後、圧延する。マグネシウム−リチウム系合金板の厚さは特に限定されないが、構造材料として利用するには圧延率も考慮すると、一般に3〜10mm程度の厚さのものが使用される。また、アルミニウムまたはその合金の板の厚さも、特に限定されないが、マグネシウム−リチウム系合金板の表面を被覆して耐食性を付与するものであるから、マグネシウム−リチウム系合金板の厚さよりも薄く、圧延率も考慮すると、一般に0.5〜6mm程度の厚さのものが使用される。   In the present invention, a magnesium-lithium alloy plate and aluminum or an alloy plate thereof are superposed, superposed and joined by friction stirring, and then rolled. The thickness of the magnesium-lithium-based alloy plate is not particularly limited, but a thickness of about 3 to 10 mm is generally used in consideration of the rolling rate for use as a structural material. Also, the thickness of the aluminum or its alloy plate is not particularly limited, but it is intended to provide corrosion resistance by covering the surface of the magnesium-lithium alloy plate, so it is thinner than the thickness of the magnesium-lithium alloy plate, Considering the rolling rate, generally a thickness of about 0.5 to 6 mm is used.

本発明において、摩擦撹拌接合は、径大のショルダ面とその面の中央に突設された径小のプローブを有するツールを取り付けた公知の摩擦攪拌接合装置を用いて行われる。ツールは、接合する板材料よりも硬い工具鋼やWC超硬材などからなる。重ね合わされた板材料が上下に撹拌拡散されすぎないように、プローブにはねじ(スレッド)が形成されていないものが好ましいが、ねじが形成されていてもよい。また、ショルダ面は平面であってもよいが、通常は、接合部の厚みが薄くならないように、プローブを中心としてやや円弧状または円錐状に凹んだものが使用される。ここで、上記ツールのショルダ面の直径は12〜25mm程度で、プローブの直径は4〜10mm程度のものが好適に使用される。   In the present invention, the friction stir welding is performed using a known friction stir welding apparatus equipped with a tool having a large-diameter shoulder surface and a small-diameter probe projecting from the center of the surface. The tool is made of tool steel or WC superhard material that is harder than the plate materials to be joined. It is preferable that the probe is not formed with a thread (thread) so that the overlapped plate material is not excessively stirred and diffused up and down, but a thread may be formed. In addition, the shoulder surface may be a flat surface, but normally, a concave surface that is slightly arcuate or conical about the probe is used so that the thickness of the joint portion is not reduced. Here, the diameter of the shoulder surface of the tool is preferably about 12 to 25 mm, and the diameter of the probe is preferably about 4 to 10 mm.

摩擦撹拌接合の操作は、先ず、マグネシウム−リチウム系合金板とアルミニウムまたはその合金の板とを重ね合わせた状態で、これを摩擦攪拌接合装置の定盤に載置し固定する。そして、その上方の板(アルミニウムまたはその合金の板)の表面から所定の荷重で高速回転するツールのプローブを押し付けて上方の板から下方の板(マグネシウム−リチウム系合金板)の近傍まで挿入し、ツール或いは板を相対的に移動させる。すると、プローブの回転摩擦熱によりプローブ近傍の両方の板材料が軟化して塑性流動し、軟化した板材料が外方へ排出されるのをツールのショルダ面で防止しながら、プローブとショルダ面との摩擦熱により上下の板の重ね合わせ接合が行われる。   The friction stir welding operation is performed by first placing and fixing the magnesium-lithium alloy plate and the aluminum or alloy plate on the surface plate of the friction stir welding apparatus. Then, press the probe of the tool that rotates at high speed from the surface of the upper plate (aluminum or its alloy plate) with a predetermined load and insert it from the upper plate to the vicinity of the lower plate (magnesium-lithium alloy plate). , Move the tool or plate relatively. Then, both the plate material in the vicinity of the probe softens and plastically flows due to the rotational frictional heat of the probe, and the softened plate material is prevented from being discharged outward by the shoulder surface of the tool. The upper and lower plates are joined together by frictional heat.

ここで、接合部の表面に亀裂などの欠陥がなく、且つ接合面で板材料が上下に撹拌拡散されすぎず、且つ強固に接合させるために、ツールの回転速度は600〜1800pm、接合速度(ツールの送り速度)は50〜500mm/分、ツールのプローブの長さは、プローブが挿入される上方の板(アルミニウムまたはその合金の板)の板厚よりも0.6mm程度小さい長さから0.2mm程度大きい長さの範囲内で定めるのが好ましい。なお、通常、ツールの荷重は0.5〜3ton、ツールの前進角は3〜5°程度が好ましく設定される。このような条件であれば、摩擦撹拌による板材料の最高温度(ピーク温度)が250℃以下に抑えられた状態で良好な固相接合が行われ、接合部に脆い金属間化合物が殆ど生成しない。   Here, there is no defect such as a crack on the surface of the joint portion, and the plate material is not excessively stirred and diffused up and down on the joint surface, and the tool rotation speed is 600 to 1800 pm, the joint speed ( The feed rate of the tool is 50 to 500 mm / min, and the length of the probe of the tool is 0 to about 0.6 mm smaller than the thickness of the upper plate (aluminum or its alloy plate) into which the probe is inserted. It is preferable to set the length within a range of about 2 mm. Normally, the load of the tool is preferably set to 0.5 to 3 tons, and the advance angle of the tool is preferably set to about 3 to 5 °. Under such conditions, good solid phase bonding is performed in a state where the maximum temperature (peak temperature) of the plate material by friction stirring is suppressed to 250 ° C. or less, and almost no brittle intermetallic compound is generated at the joint. .

上記の摩擦撹拌による重ね合わせ接合は、板に対して並行状、格子状、渦巻き状、斑点状など隙間のある任意のパターンで行われても、接合を行うことができる。しかし、重ね合わせ接合は圧延される部分の全面にわたって隙間なく施されることが好ましい。重ね合わせ接合されていない部分があるとその部分が圧延によって剥離するからである。   The superposition joining by the friction stirrer can be performed even if it is performed in an arbitrary pattern with a gap such as a parallel shape, a lattice shape, a spiral shape, or a spot shape on the plate. However, it is preferable that the overlap bonding is performed without any gap over the entire surface of the portion to be rolled. This is because if there is a portion that is not overlap-bonded, the portion is peeled off by rolling.

また、同一部分につき複数回摩擦攪拌すると、すなわち摩擦攪拌によって生じた攪拌領域を更に複数回摩擦攪拌すると、接合部の結晶が細粒化されて接合部の強度および硬度が向上するため好ましい。また、接合部の幅を広くするために接合部が幅方向に一部重なり合うように、接合部の幅方向に少しずらしながら摩擦撹拌すると、接合部が幅方向に隙間なく広がり且つ接合部の強度および硬度も向上するため好ましい。   Further, when the same portion is subjected to frictional stirring a plurality of times, that is, when the stirring region generated by frictional stirring is further subjected to frictional stirring, it is preferable because the crystal of the joint is refined and the strength and hardness of the joint are improved. In addition, if the friction stir is performed while slightly shifting in the width direction of the joint portion so that the joint portion partially overlaps in the width direction in order to increase the width of the joint portion, the joint portion expands in the width direction without gaps and the strength of the joint portion And the hardness is also improved.

上記摩擦撹拌接合の後に圧延が施される。この圧延操作は、圧延ロール等からなる公知の圧延装置を用い、室温〜200℃の温度、好ましくは冷間(室温)で行われる。圧延温度が200℃を超えると、接合界面に脆い金属間化合物が生成しやすくなり、接合力が低下する傾向があり、得られたクラッド材の曲げ試験において、折り曲げる部の外側に粒界割れが発生することがある。本発明では、圧延前の摩擦撹拌接合により強固な接合が行われるので、その後の圧延を冷間(室温)で行っても強固な接合力が維持できる。また、複数回の圧延により順次厚みを減少させ、所望の板厚に調整するのが圧延操作中での割れを確実に防止する点で好ましいが、1回圧延であってもよい。   Rolling is performed after the friction stir welding. This rolling operation is performed at a temperature of room temperature to 200 ° C., preferably cold (room temperature), using a known rolling device composed of a rolling roll or the like. When the rolling temperature exceeds 200 ° C., brittle intermetallic compounds are likely to be formed at the bonding interface, and the bonding force tends to be reduced. In the obtained bending test of the clad material, intergranular cracking occurs outside the part to be bent. May occur. In the present invention, since strong joining is performed by friction stir welding before rolling, a strong joining force can be maintained even if the subsequent rolling is performed cold (room temperature). In addition, it is preferable to sequentially reduce the thickness by a plurality of rollings and adjust the thickness to a desired plate thickness in order to reliably prevent cracks during the rolling operation, but it may be a single rolling.

本発明において、圧延率は1回の圧延当たり20〜80%の範囲で行われるのが好ましい。圧延率が1回の圧延当たり20%を下回ると、結晶粒径を小さくしたり結晶粒のばらつきを小さくする効果が小さくなり、強度や硬度もあまり向上しない。逆に、圧延率が1回の圧延当たり80%を上回ると圧延操作中に板材料が割れやすくなる。ここで、圧延率とは、圧延前後のクラッド材の厚みの減少率をいう。すなわち、(圧延前の厚み−圧延後の厚み)/圧延前の厚み、に対する百分率で表わされる。   In the present invention, the rolling rate is preferably 20 to 80% per rolling. When the rolling rate is less than 20% per rolling, the effect of reducing the crystal grain size or the variation of crystal grains becomes small, and the strength and hardness are not improved so much. On the other hand, if the rolling rate exceeds 80% per rolling, the plate material tends to break during the rolling operation. Here, a rolling rate means the decreasing rate of the thickness of the clad material before and behind rolling. That is, it is expressed as a percentage with respect to (thickness before rolling−thickness after rolling) / thickness before rolling.

このような圧延操作により、摩擦撹拌による接合部とそれ以外の未接合部との結晶粒径に違いが小さくなり、しかも表面に生じる接合痕も消失し、両者の板材料が層状に積層接合された状態で得られ、室温でのプレス加工や絞り加工のような塑性加工に適するクラッド材が得られる。なお、摩擦撹拌接合により強固な接合が行われるので、圧延の後にクラッド材を熱処理して接合力や曲げ加工性を高める必要はない。   By such a rolling operation, the difference in the crystal grain size between the bonded portion by friction stirrer and the other unbonded portion is reduced, and also the bonding traces generated on the surface disappear, and both plate materials are laminated and bonded in layers. Thus, a clad material suitable for plastic working such as pressing or drawing at room temperature can be obtained. In addition, since strong joining is performed by friction stir welding, it is not necessary to heat-treat the clad material after rolling to increase the joining force and bending workability.

本発明によれば、摩擦撹拌により上下の板材料が適度に撹拌拡散され固相状態で接合が行われるので、従来の圧延接合のように、マグネシウム−リチウム系合金板とアルミニウムまたはその合金の板とが当接する面を、予め酸洗いし、金属製ワイヤーブラシで磨いて酸化皮膜などを除去する前処理をしなくても強固な接合がなされ、この点で従来の圧延接合に比べて、製品コストおよび製造コストを低く抑えることができる。   According to the present invention, the upper and lower plate materials are appropriately stirred and diffused by friction stir and joined in a solid state, so that a magnesium-lithium alloy plate and aluminum or its alloy plate are used as in conventional rolling joining. The surface where the contact is made is pickled in advance and polished with a metal wire brush to remove the oxide film, etc., so that strong bonding can be achieved. Compared with conventional rolling bonding in this respect, the product Costs and manufacturing costs can be kept low.

また、本発明によれば、摩擦撹拌接合により強固な接合が行われるので、摩擦撹拌接合の後に行われる圧延は、冷間(室温)で行っても接合力が維持されて低下することはなく、従来の圧延接合のように、室温での圧延の後にクラッド材を200〜300℃程度の温度で長時間にわたり熱処理して接合力や曲げ加工性を高める必要がなく、この点でも従来の圧延接合に比べて、製品コストおよび製造コストを低く抑えることができる。   In addition, according to the present invention, since strong joining is performed by friction stir welding, the rolling performed after friction stir welding does not decrease because the joining force is maintained even when performed cold (room temperature). Unlike conventional rolling joining, there is no need to heat the clad material at a temperature of about 200 to 300 ° C. for a long time after rolling at room temperature to improve the joining force and bending workability. Product costs and manufacturing costs can be kept low compared to bonding.

こうして得られるクラッド板は、マグネシウム−リチウム系合金板の表面にアルミニウムまたはその合金の板が被覆されているので、従来の圧延接合により得られるクラッド板と同様に、強さや軽さや室温での塑性加工性に加えて耐食性にも優れ、しかも従来の圧延接合のように、200〜300℃程度の温度で長時間にわたり熱処理して接合力や曲げ加工性を高める必要がなく、この点でも従来の圧延接合に比べて熱処理の必要がないので接合界面に脆い金属間化合物が生成しにくくなり、クラッド材の曲げ試験において、折り曲げる部の外側に粒界割れが発生しにくくなる。   The clad plate obtained in this way is coated with aluminum or its alloy plate on the surface of the magnesium-lithium alloy plate, so that the strength, lightness and plasticity at room temperature are the same as the clad plate obtained by conventional rolling joining. In addition to workability, it has excellent corrosion resistance, and it is not necessary to increase the joining force and bending workability by heat treatment at a temperature of about 200 to 300 ° C. for a long time as in conventional rolling joining. Since there is no need for heat treatment as compared with rolling joining, brittle intermetallic compounds are less likely to be formed at the joining interface, and intergranular cracking is less likely to occur outside the part to be bent in the bending test of the clad material.

なお、従来の摩擦撹拌接合の技術では、アルミニウムまたはその合金の板を薄く被覆することには制約があるが、本発明では摩擦撹拌接合の後で全面を圧延して薄板化するので、アルミニウムまたはその合金の板を薄く被覆することができるという利点がある。   In the conventional friction stir welding technique, there is a limitation in thinly coating a plate of aluminum or an alloy thereof. However, in the present invention, the entire surface is rolled and thinned after the friction stir welding. There is an advantage that the alloy plate can be thinly coated.

以下、本発明の実施例を挙げる。なお、本発明はこれ等の実施例に限定されるものではない。   Examples of the present invention will be given below. The present invention is not limited to these examples.

厚さ3mmのマグネシウム−リチウム系合金板(LA141)の表面に厚さ1mmのアルミニウム板(A5083)を重ね合わせ、長さ1.2mm×直径4mmのねじ付きプローブを有するツール(ショルダ直径12mm)を用い、ツール回転数600rpm、接合速度100mm/分、ツール荷重2tonの条件で、ツールを被接合材に対し相対的に直線的に移動させることにより1回の摩擦撹拌による重ね合わせ接合を60mmにわたって行った。その結果、接合部の表面に亀裂などの欠陥はなく、LA141板(下方の層)とA5083板(上方の層)とは接合面で上下に混ざりすぎず良好に接合されていた。   A 1 mm thick aluminum plate (A5083) is superposed on the surface of a 3 mm thick magnesium-lithium alloy plate (LA141), and a tool (shoulder diameter 12 mm) having a threaded probe of length 1.2 mm × diameter 4 mm is provided. Using a tool rotation speed of 600 rpm, a welding speed of 100 mm / min, and a tool load of 2 ton, the tool is moved linearly relative to the material to be joined, and superposition joining is performed over 60 mm by one friction stir. It was. As a result, there were no defects such as cracks on the surface of the joint, and the LA141 plate (lower layer) and the A5083 plate (upper layer) were joined well without being mixed up and down at the joint surface.

上記と同じ条件でツールを接合痕に対して幅方向に2mm平行にずらして移動させ、さらにその接合痕に対して幅方向に2mm平行にずらせて移動させることにより、合計3回の摩擦撹拌による重ね合わせ接合を行った。この3回の摩擦撹拌接合後の表面写真(倍率1.2倍)を図1に示し、その断面写真(倍率7倍)を図2に示し、断面写真(倍率50倍)を図3に示す。図1〜図3から明らかなように、接合部の表面に亀裂などの欠陥はなく、LA141板(下方の層)とA5083板(上方の層)とは接合面で上下に混ざりすぎず良好に接合されていた。   Under the same conditions as described above, the tool is shifted in parallel by 2 mm in the width direction with respect to the joint trace, and further moved by being shifted in parallel by 2 mm in the width direction with respect to the joint trace. Lamination bonding was performed. A surface photograph (magnification 1.2 times) after the three times of friction stir welding is shown in FIG. 1, a cross-sectional photograph (magnification 7 times) is shown in FIG. 2, and a cross-sectional photograph (magnification 50 times) is shown in FIG. . As is apparent from FIGS. 1 to 3, the surface of the joint is free from defects such as cracks, and the LA141 plate (lower layer) and the A5083 plate (upper layer) do not mix too much at the joint surface. It was joined.

上記の3回の摩擦撹拌接合の後、これを室温(25℃)にて圧延率約30%で1回圧延を行った。得られた圧延材の断面写真(倍率3.5倍)を図4に示し、断面写真(倍率50倍)を図5に示す。図4および図5から明らかなように、表面に生じる接合痕が消失し、接合部の表面に亀裂などの欠陥はなく、LA141板(下方の層)とA5083板(上方の層)が層状に積層接合された状態で良好に接合されていた。すなわち、LA141板の表面にA5083板が被覆されたクラッド材が得られた。   After the above three friction stir weldings, this was rolled once at room temperature (25 ° C.) at a rolling rate of about 30%. FIG. 4 shows a cross-sectional photograph (magnification 3.5 times) of the obtained rolled material, and FIG. 5 shows a cross-sectional photograph (magnification 50 times). As is apparent from FIG. 4 and FIG. 5, the bonding marks generated on the surface disappear, there are no defects such as cracks on the surface of the bonding portion, and the LA141 plate (lower layer) and the A5083 plate (upper layer) are layered. It was joined well in a laminated state. That is, a clad material in which the surface of the LA141 plate was coated with the A5083 plate was obtained.

厚さ3mmのマグネシウム−リチウム系合金板(LA141)の表面に厚さ1mmのアルミニウム(A5083)板を重ね合わせ、長さ0.6mm×直径3.5mmのプローブを有するネジなしツール(ショルダ直径12mm)を用い、ツール回転数1400rpm、接合速度300mm/分、ツール荷重2tonの条件で、1回の摩擦撹拌による重ね合わせ接合を50mmにわたって行った。その結果、接合部の表面に亀裂などの欠陥はなく、LA141板(下方の層)とA5083板(上方の層)とは接合面で上下に混ざりすぎず良好に接合されていた。   A 1 mm thick aluminum (A5083) plate is superimposed on the surface of a 3 mm thick magnesium-lithium alloy plate (LA141), and a screwless tool (shoulder diameter 12 mm) having a probe of length 0.6 mm × diameter 3.5 mm. ), And overlap welding by one friction stirring was performed over 50 mm under the conditions of a tool rotation speed of 1400 rpm, a welding speed of 300 mm / min, and a tool load of 2 ton. As a result, there were no defects such as cracks on the surface of the joint, and the LA141 plate (lower layer) and the A5083 plate (upper layer) were joined well without being mixed up and down at the joint surface.

上記と同じ条件でツールを接合痕に対して幅方向に2mmずつ平行にずらして合計3回の摩擦撹拌による重ね合わせ接合を行った。この3回の摩擦撹拌接合後の表面写真(倍率1.5倍)を図6に示し、その断面写真(倍率5倍)を図7に示す。図6および図7から明らかなように、接合部の表面に亀裂などの欠陥はなく、LA141板(下方の層)とA5083板(上方の層)とは接合面で上下に混ざりすぎずに良好に接合されていた。   Under the same conditions as described above, the tool was shifted in parallel by 2 mm in the width direction with respect to the welding marks, and overlap welding was performed by friction stirring three times in total. FIG. 6 shows a surface photograph (magnification 1.5 times) after the three times of friction stir welding, and FIG. 7 shows a cross-sectional photograph (magnification 5 times). As is clear from FIGS. 6 and 7, the surface of the joint is free from defects such as cracks, and the LA141 plate (lower layer) and the A5083 plate (upper layer) do not mix too much at the joint surface. It was joined to.

上記の3回の摩擦撹拌接合の後、これを室温(25℃)で圧延率が1回の圧延当たり約20%で合計5回の圧延を行って、LA141板の表面にA5083板が被覆されたクラッド材(総厚み1.0mm)を作製した。得られたクラッド材の断面写真(倍率15倍)を図8に示す。図8から明らかなように、表面に生じる接合痕が消失し、接合部の表面に亀裂などの欠陥はなく、LA141板(下方の層)とA5083板(上方の層)が層状に積層接合された状態で良好に接合されていた。すなわち、LA141板の表面にA5083板が被覆されたクラッド材が得られた。   After the above three times of friction stir welding, this is rolled at a room temperature (25 ° C.) at a rolling rate of about 20% per rolling for a total of 5 times, and the surface of LA141 plate is coated with A5083 plate. A clad material (total thickness 1.0 mm) was prepared. A cross-sectional photograph (magnification 15 times) of the obtained clad material is shown in FIG. As can be seen from FIG. 8, the bonding marks generated on the surface disappear, the surface of the bonded portion has no defects such as cracks, and the LA141 plate (lower layer) and the A5083 plate (upper layer) are laminated and bonded in layers. It was well joined in the state. That is, a clad material in which the surface of the LA141 plate was coated with the A5083 plate was obtained.

接合速度を500mm/分に変えたこと、および接合長さを40mmに変えたこと以外は実施例2と同様に行った。
合計3回の摩擦撹拌接合後の表面写真(倍率1.5倍)を図9に示し、その断面写真(倍率5倍)を図10に示す。図9および図10から明らかなように、接合部の表面に亀裂などの欠陥はなく、LA141板(下方の層)とA5083板(上方の層)とは接合面で上下に混ざりすぎずに良好に接合されていた。
The same operation as in Example 2 was performed except that the joining speed was changed to 500 mm / min and the joining length was changed to 40 mm.
A surface photograph (1.5 times magnification) after three times of friction stir welding is shown in FIG. 9, and a cross-sectional photograph (5 times magnification) is shown in FIG. As is clear from FIGS. 9 and 10, the surface of the joint is free from defects such as cracks, and the LA141 plate (lower layer) and the A5083 plate (upper layer) do not mix too much at the joint surface. It was joined to.

上記の3回の摩擦撹拌接合の後、これを室温(25℃)で圧延率が1回の圧延当たり約20%で合計5回の圧延を行って、LA141板の表面にA5083板が被覆されたクラッド材(総厚み1.0mm)を作製した。得られたクラッド材の断面写真(倍率50倍)を図11に示す。図11から明らかなように、表面に生じる接合痕が消失し、接合部の表面に亀裂などの欠陥はなく、LA141板(下方の層)とA5083板(上方の層))が層状に積層接合された状態で良好に接合されていた。すなわち、LA141板の表面にA5083板が被覆されたクラッド材が得られた。   After the above-mentioned three times of friction stir welding, this is rolled at a room temperature (25 ° C.) at a rolling rate of about 20% per rolling for a total of five times, and the surface of LA141 plate is coated with A5083 plate. A clad material (total thickness 1.0 mm) was prepared. FIG. 11 shows a cross-sectional photograph (50 times magnification) of the obtained clad material. As can be seen from FIG. 11, the bonding marks generated on the surface disappear, the surface of the bonded portion has no defects such as cracks, and the LA141 plate (lower layer) and the A5083 plate (upper layer)) are laminated in layers. In this state, it was well bonded. That is, a clad material in which the surface of the LA141 plate was coated with the A5083 plate was obtained.

実施例1において、3回の摩擦撹拌接合を行った後の接合部の表面を示す写真(倍率1.5倍)である。In Example 1, it is the photograph (1.5 times magnification) which shows the surface of the junction part after performing friction stir welding 3 times. 実施例1において、3回の摩擦撹拌接合を行った後の接合部の断面を示す写真(倍率7倍)である。In Example 1, it is the photograph (7-times multiplication factor) which shows the cross section of the junction part after performing friction stir welding 3 times. 実施例1において、3回の摩擦撹拌接合を行った後の接合部の断面を示す写真(倍率50倍)である。In Example 1, it is the photograph (50-times multiplication factor) which shows the cross section of the junction part after performing friction stir welding 3 times. 実施例1において、3回の摩擦撹拌接合を行った後圧延して得られたクラッド材の接合部の断面を示す写真(倍率3.5倍)である。In Example 1, it is the photograph (magnification 3.5 times) which shows the cross section of the junction part of the clad material obtained by rolling after performing friction stir welding 3 times. 実施例1において、3回の摩擦撹拌接合を行った後圧延して得られたクラッド材の接合部の断面を示す写真(倍率50倍)である。In Example 1, it is the photograph (50-times multiplication factor) which shows the cross section of the junction part of the clad material obtained by rolling after performing friction stir welding 3 times. 実施例2において、3回の摩擦撹拌接合を行った後の接合部の表面を示す写真(倍率1.5倍)である。In Example 2, it is the photograph (1.5 times magnification) which shows the surface of the junction part after performing friction stir welding 3 times. 実施例2において、3回の摩擦撹拌接合を行った後の接合部の断面を示す写真(倍率5倍)である。In Example 2, it is the photograph (5 times magnification) which shows the cross section of the junction part after performing friction stir welding 3 times. 実施例2において、3回の摩擦撹拌接合を行った後圧延して得られたクラッド材の接合部の断面を示す写真(倍率15倍)である。In Example 2, it is a photograph (magnification 15 times) which shows the section of the joined part of the clad material obtained by rolling after performing friction stir welding three times. 実施例3において、3回の摩擦撹拌接合を行った後の接合部の表面を示す写真(倍率1.5倍)である。In Example 3, it is the photograph (1.5 times magnification) which shows the surface of the junction part after performing friction stir welding 3 times. 実施例3において、3回の摩擦撹拌接合を行った後の接合部の断面を示す写真(倍率5倍)である。In Example 3, it is a photograph (5 times magnification) which shows the cross section of the junction part after performing friction stir welding 3 times. 実施例3において、3回の摩擦撹拌接合を行った後圧延して得られたクラッド材の接合部の断面を示す写真(倍率50倍)である。In Example 3, it is a photograph (50-times multiplication factor) which shows the cross section of the junction part of the clad material obtained by rolling after performing friction stir welding 3 times.

Claims (5)

マグネシウム−リチウム系合金板とアルミニウムまたはその合金の板とを重ね合わせ、これを摩擦撹拌により重ね合わせ接合した後、圧延することを特徴とするクラッド材の製造方法。   A method for producing a clad material, comprising: superimposing a magnesium-lithium alloy plate and aluminum or a plate of an alloy thereof; 摩擦撹拌による重ね合わせ接合を板の全面にわたって隙間なく施すことを特徴とする請求項1記載のクラッド材の製造方法。   The method for producing a clad material according to claim 1, wherein the overlapping joining by friction stirring is performed over the entire surface of the plate without any gap. 同一部分につき複数回摩擦攪拌することを特徴とする請求項1または2に記載のクラッド材の製造方法。   The method for producing a clad material according to claim 1 or 2, wherein the same portion is subjected to friction stirring a plurality of times. 冷間で複数回圧延することを特徴とする請求項1〜3のいずれか1項に記載のクラッド材の製造方法。   The method for producing a clad material according to any one of claims 1 to 3, wherein the cold rolling is performed a plurality of times. 請求項1〜4のいずれか1項に記載の製造方法により得られたクラッド材。
The clad material obtained by the manufacturing method of any one of Claims 1-4.
JP2007095818A 2007-03-31 2007-03-31 Clad material manufacturing method and clad material Expired - Fee Related JP4588735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007095818A JP4588735B2 (en) 2007-03-31 2007-03-31 Clad material manufacturing method and clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007095818A JP4588735B2 (en) 2007-03-31 2007-03-31 Clad material manufacturing method and clad material

Publications (2)

Publication Number Publication Date
JP2008254003A true JP2008254003A (en) 2008-10-23
JP4588735B2 JP4588735B2 (en) 2010-12-01

Family

ID=39978129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095818A Expired - Fee Related JP4588735B2 (en) 2007-03-31 2007-03-31 Clad material manufacturing method and clad material

Country Status (1)

Country Link
JP (1) JP4588735B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2169626A1 (en) 2008-09-30 2010-03-31 Nintendo Co., Ltd. Storage medium storing image processing program for implementing image processing according to input coordinate, and information processing device
WO2014141423A1 (en) * 2013-03-14 2014-09-18 新日鉄住金エンジニアリング株式会社 Method and structure for welding clad steel tube
CN104384703A (en) * 2014-10-17 2015-03-04 燕山大学 Manufacturing method of Al-Cu heterogeneous butt-joint thin plate
CN111672904A (en) * 2020-05-27 2020-09-18 北京科技大学 Preparation method of titanium steel layered composite thin coil
CN115228936A (en) * 2022-08-02 2022-10-25 集美大学 Preparation method of laminated aluminum alloy with high interface bonding strength

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181975A (en) * 2001-12-21 2003-07-03 Niigata Prefecture Aluminum-coated magnesium alloy material and manufacturing method therefor
JP2004323935A (en) * 2003-04-25 2004-11-18 Mitsui Mining & Smelting Co Ltd Aluminum-coated magnesium-lithiumalloy base material, and its production method
JP2005040851A (en) * 2003-07-25 2005-02-17 Railway Technical Res Inst Joined material, joint structure thereof, method of producing joined material, and body structure of traffic transportation means
JP2005205449A (en) * 2004-01-22 2005-08-04 Mitsubishi Heavy Ind Ltd Clad material manufacturing method
JP2007000880A (en) * 2005-06-21 2007-01-11 Sumitomo Light Metal Ind Ltd Friction stirring and joining spot welding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181975A (en) * 2001-12-21 2003-07-03 Niigata Prefecture Aluminum-coated magnesium alloy material and manufacturing method therefor
JP2004323935A (en) * 2003-04-25 2004-11-18 Mitsui Mining & Smelting Co Ltd Aluminum-coated magnesium-lithiumalloy base material, and its production method
JP2005040851A (en) * 2003-07-25 2005-02-17 Railway Technical Res Inst Joined material, joint structure thereof, method of producing joined material, and body structure of traffic transportation means
JP2005205449A (en) * 2004-01-22 2005-08-04 Mitsubishi Heavy Ind Ltd Clad material manufacturing method
JP2007000880A (en) * 2005-06-21 2007-01-11 Sumitomo Light Metal Ind Ltd Friction stirring and joining spot welding method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2169626A1 (en) 2008-09-30 2010-03-31 Nintendo Co., Ltd. Storage medium storing image processing program for implementing image processing according to input coordinate, and information processing device
WO2014141423A1 (en) * 2013-03-14 2014-09-18 新日鉄住金エンジニアリング株式会社 Method and structure for welding clad steel tube
CN104384703A (en) * 2014-10-17 2015-03-04 燕山大学 Manufacturing method of Al-Cu heterogeneous butt-joint thin plate
CN111672904A (en) * 2020-05-27 2020-09-18 北京科技大学 Preparation method of titanium steel layered composite thin coil
CN111672904B (en) * 2020-05-27 2021-11-30 北京科技大学 Preparation method of titanium steel layered composite thin coil
CN115228936A (en) * 2022-08-02 2022-10-25 集美大学 Preparation method of laminated aluminum alloy with high interface bonding strength
CN115228936B (en) * 2022-08-02 2024-02-06 集美大学 Preparation method of laminated aluminum alloy with high interface bonding strength

Also Published As

Publication number Publication date
JP4588735B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP5495093B2 (en) Joining method and structure of dissimilar metals
CN112771197B (en) High corrosion resistant plated steel sheet excellent in weld liquefaction brittleness resistance and plating adhesion
JP5388156B2 (en) Aluminum alloy clad material for forming
JP5830727B2 (en) Coupling member and manufacturing method
CN103079744B (en) The joint method of aluminum-based metal
JP4588735B2 (en) Clad material manufacturing method and clad material
JP5893749B2 (en) Aluminum alloy
EP3093356A1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
Guo et al. Ultrasonic-assisted soldering of fine-grained 7034 aluminum alloy using Sn-Zn solders below 300° C
Satpathy et al. Mechanical performance and metallurgical characterization of ultrasonically welded dissimilar joints
JP2015501877A5 (en)
JP4425159B2 (en) Resistance spot welding method for dissimilar materials
Avettand-Fènoël et al. Upon the effect of Zn during friction stir welding of aluminum-copper and aluminum-brass systems
TWI577264B (en) Magnesium alloy member and method for producing the same
KR20170088248A (en) METHOD FOR FLUXLESS BRAZING Cu-Al PLATE USING ULTRASONIC VIBRATION
EP4093608A2 (en) Aluminium alloys, coated aluminium alloy product, clad aluminium alloy product with high corrosion resistance
JP2013159806A (en) Aluminum alloy sheet, and joined body and member for automobile using the same
JP2005281824A (en) Clad plate of magnesium alloy and aluminum and its production method
JP5215986B2 (en) Dissimilar material joint and dissimilar material joining method
KR101474533B1 (en) Method for manufacturing Al-Mg clad sheet having improved bonding strength at room temperature and the Al-Mg clad sheet thereby
JP5098804B2 (en) Dissimilar metal joining method and joining structure of magnesium alloy and steel
US6921583B2 (en) Al-Cu bonded structure and method for making the same
JP5019163B2 (en) Friction spot joint structure
Alobaid et al. Microstructure and deformation behavior of hot-rolled AZ31/Ti multilayers
Li et al. Microstructure and mechanical properties of TIG welded-brazed AZ61 Mg alloy and mild steel joints with and without interlayer

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20100514

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100525

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100718

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100831

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130917

LAPS Cancellation because of no payment of annual fees