JP2004323935A - Aluminum-coated magnesium-lithiumalloy base material, and its production method - Google Patents

Aluminum-coated magnesium-lithiumalloy base material, and its production method Download PDF

Info

Publication number
JP2004323935A
JP2004323935A JP2003122232A JP2003122232A JP2004323935A JP 2004323935 A JP2004323935 A JP 2004323935A JP 2003122232 A JP2003122232 A JP 2003122232A JP 2003122232 A JP2003122232 A JP 2003122232A JP 2004323935 A JP2004323935 A JP 2004323935A
Authority
JP
Japan
Prior art keywords
magnesium
aluminum
alloy
lithium
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003122232A
Other languages
Japanese (ja)
Inventor
Koichi Miyake
行一 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003122232A priority Critical patent/JP2004323935A/en
Publication of JP2004323935A publication Critical patent/JP2004323935A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alloy base material having high corrosion resistance without impairing the characteristics of the lightness in weight and satisfactory workability in the magnesium-lithium alloy by solving the problem that it is inferior in corrosion resistance and its usable application is limited because of the incorporation of lithium though the conventional magnesium-lithium based alloy is lightweight and has satisfactory workability, and to provide its production method. <P>SOLUTION: The alloy base material is constituted in such a manner that an aluminum or an aluminum alloy film is formed on the surface of a magnesium-lithium based alloy base material, and is preferably produced by cold rolling. Thus, an intermetallic compound layer making its structure brittle is not substantially formed between the base material and the aluminum film, so that corrosion resistance can be imparted thereto. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性を向上させたマグネシウム−リチウム系合金基材及びその製造方法に関し、より詳細にはアルミニウムとマグネシウム間の反応性の高さに拘らず金属間化合物を形成させないようにした、優れた耐食性及び加工性を有するマグネシウム−リチウム系合金基材及びその製造方法に関する。
【0002】
【従来の技術】
自動車、家庭用電化製品及びコンピュータ、ワードプロセッサ及びその周辺機器等のOA機器における軽量化の流れの中で、一層軽量な合金が求められている。現在、構造用金属材料として用いられている最軽量合金はマグネシウム−リチウム系合金であり、この系統の合金としてはNASAで実用化されているLA141(Mg−14%Li−1%Al)や、超塑性Mg−9%Li−1%Y合金等が知られている。
マグネシウム−リチウム系合金は冷間加工性に優れ、この合金は一般のマグネシウム系合金に比べ、卑な金属であるリチウムを含むため耐食性に劣るという欠点がある。そのため通常は、腐食防止のために表面処理が施されて耐食性の向上が図られているが、処理コストが増大している。
【0003】
【発明が解決しようとする課題】
比較的安価な表面処理法としてマグネシウム系合金基材表面へ、耐食性の良好なアルミニウムをクラッドする方法がある。しかしマグネシウムとアルミニウムを通常通り接合させると、Mg17Al12の組成を有する金属間化合物が生成し、この化合物が脆いため安定した接合組織が形成されない。この欠点を解消するために、マグネシウム−リチウム系合金等のマグネシウム系合金基材の表面に銀や銅・金・銀・亜鉛・錫又は鉛層等の中間層を形成し、この中間層の表面にアルミニウム層を形成して、マグネシウムとアルミニウム間で化合物を生成させない方法が提案されている。
しかしながら中間層の生成は、コストと手間が掛かるだけでなく、場合によっては軽量性というマグネシウム系合金の特徴まで阻却しかねない。
従って本発明は、中間層を形成することなく、かつマグネシウムとアルミニウムの反応を最小限に制限して金属間化合物の生成を抑制したアルミニウム被覆マグネシウム−リチウム系合金基材及びその製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、マグネシウム−リチウム系合金基材表面にアルミニウム及び/又はアルミニウム合金膜を形成したことを特徴とするアルミニウム被覆マグネシウム−リチウム系合金基材(以下単に合金基材ともいう)であり、本発明方法は、マグネシウム−リチウム系合金基材の表面にアルミニウム又はアルミニウム合金膜(以下単にアルミニウム膜ともいう)を重ね合わせ、室温から300℃で圧延接合することを特徴とする合金基材の製造方法であり、必要に応じて、圧延接合後、300℃以下で熱処理を行うようにしても良い。
【0005】
以下本発明を詳細に説明する。
本発明者は、前述した従来技術において、マグネシウム−リチウム系合金基材表面にアルミニウム膜を被覆する際に生成するマグネシウム−アルミニウム金属間化合物の生成を実質的に無くすか最小限にすることにより、中間層を形成することなく、耐食性や加工性に優れた合金基材を製造できることを着想し、これを実現するために種々検討し、本発明に到達した。
本発明では従来と異なり、室温から300℃の温度での冷間又は温間圧延によりマグネシウム−リチウム系合金基材表面にアルミニウム膜を被覆する。比較的低温の好ましくは冷間圧延で得られるアルミニウム被覆マグネシウム−リチウム系合金は、従来のクラッドで製造されるアルミニウム被覆マグネシウム−リチウム系合金の場合とは異なり、マグネシウム合金とアルミニウム膜間にMg17Al12等の金属間化合物が殆ど生成しない。脆弱な金属間化合物が生成せず、マグネシウム合金表面にアルミニウム膜が被覆されるため、アルミニウム膜の耐食性がそのまま活かされて合金基材全体の耐食性が向上する。
【0006】
更に従来のように中間層が形成されないため、軽量性や良好な加工性も維持される。又表面がアルミニウムであるため、通常のアルミニウム又はアルミニウム合金で使用されている表面処理、例えば金属光沢を活かした表面処理が可能になる。
本発明ではこのようにして冷間又は温間圧延で接合した合金基材が得られ、このままでもアルミニウム膜が、基材であるマグネシウム−リチウム系合金の加工性を低下させることなくその耐食性を向上させることができるが、更なる性能向上のために冷間又は温間圧延後に熱処理を行っても良い。
【0007】
この熱処理は、比較的低温、例えば300℃以下の温度で行うこと、特に200〜300℃で行うことが望ましい。この熱処理は合金基材の接合強度や曲げ成形性を高めるための処理である。高温熱処理、つまり300℃を越える高温例えば400℃で熱処理を行うと、合金中に含まれるリチウムとアルミニウムが金属間化合物を生成して組織が脆弱化し、後述する最小曲げ半径が大幅に増加するため望ましくない。
つまり合金基材の場合、アルミニウム膜と合金基材との厚さの比にも影響されるが、通常は接合時の最小曲げ半径は200℃での熱処理により数分の1まで減少し、その後やや増加し、300℃を越えると大幅に上昇して接合時(熱処理なし)の値を大きく越えてしまう。
【0008】
本発明で使用可能な基材合金はマグネシウム−リチウム系合金である。通常はマグネシウムとリチウムのみから成る合金であり、好ましい組成(重量)比は、マグネシウムが80〜95重量%、リチウムが5〜20重量%である。このマグネシウム−リチウム合金は、室温での成形性に優れ、その性能改質には多大な意味がある。
本発明で使用できるマグネシウム−リチウム系合金は両金属以外に、マグネシウム及びリチウムより少量の他の金属、例えば亜鉛、アルミニウム、銀、マンガン、シリコン、イットリウム、ランタノイド元素、カルシウム及びジルコニウムの1種又は2種以上を含有していても良い。
又合金基材表面の被覆するアルミニウム膜は純アルミニウムから成っていてもアルミニウム合金を使用しても良く、要求される耐食性や加工性等の性能を考慮して適宜選択する。
【0009】
本発明の合金基材は、マグネシウム−リチウム系合金基材より加工性が良好になり、更に耐食性は大幅に向上する。これらの性能評価は、塩水噴霧法やL曲げ試験等により行うことができる。
このようにして製造された合金基材は、自動車、家庭用電化製品及びコンピュータ、ワードプロセッサ及びその周辺機器等のOA機器、携帯電話及び玩具等の材料として使用できる。
【0010】
[実施例]
次に本発明に係わる合金基材の製造及び得られた合金基材の性能評価に関する実施例及び比較例に関して説明するが、本発明はこれらに限定されるものではない。
【0011】
[実施例1]
[板材の準備]
リチウムを9.5質量%含有するマグネシウム合金を鋳造し、5mm厚の板材に圧延後、300℃で4時間熱処理を施して、マグネシウム−リチウム合金板とした。被覆用の板材としては0.5mm厚の純アルミニウム板を準備した。
[接合]
次に前記マグネシウム−リチウム合金板の表面を5%塩酸水溶液で酸洗し、その表面を黄銅製ワイヤブラシで磨き、次いでアルミニウム板もその表面を黄銅製ワイヤブラシで磨いた。マグネシウム−リチウム合金板の両面に前記アルミニウム板を重ね、見掛け厚6mmの積層体とした。この積層体を室温で冷間圧延し、厚さ0.5mmの接合体(合金基材)とした。
【0012】
[熱処理]
このような接合体を計5枚準備し、1枚は接合時のままとし、他の4枚の接合体にはそれぞれ100℃、200℃、300℃及び400℃で1時間熱処理を行った。
計5枚の接合体、つまり接合時のままの接合体、100℃での熱処理後の接合体、200℃で熱処理後の接合体、300℃で熱処理後の接合体及び400℃で熱処理後の接合体の表面組織の400倍の顕微鏡写真を図1Aから図1Eに順に示した。
図1Aから、熱処理を行わなかった接合時のままの接合体でも合金基材とアルミニウム膜が密着して十分に接合が行われていることが分かる。又図1B及び図1Cから、熱処理温度が低いと、合金基材とアルミニウム膜の界面が明確に維持されて金属間化合物層が形成されなかったことが分かる。更に熱処理温度が上昇して300℃になると、合金基材とアルミニウム膜の界面がやや不明確になり金属間化合物層の形成が始まっていた(厚さ6.8μm)。熱処理温度が更に上昇して400℃になると、金属間化合物層が成長して28.8μmに達し、界面から約10μmの位置にクラックが発生していた。
これらの結果から、熱処理は300℃以下で行って組織の脆弱化を防止することが望ましいことが分かる。
【0013】
[塩水噴霧試験]
接合のままの板材及び熱処理を行った4枚の板材を切り出し、5%NaCl水溶液を噴霧し、24時間曝露後の腐食の有無を調べたところ、全ての板材で腐食は生じていなかった。
【0014】
[L曲げ試験]
曲げ試験は、規定の内側半径の金型を用いて、前記計5枚の接合体のそれぞれを90°になるまでプレスにより曲げ、湾曲部の凸部表面の割れの有無を確認することにより曲げ性(加工性)を調べた。曲げ性は、割れが生じることなしに90°まで曲げることのできる最小の内側半径、即ち最小曲げ半径(R)と接合体の厚さ(t)の比(R/t)で評価した。この比の値が小さいほど曲げ性で良好であることを意味する。
接合のままの板材及び熱処理を行った4枚の板材の最小曲げ半径を測定し、この値から前述の比を算出し、その結果を図2のグラフに−◆−で示した。
グラフから、200℃で熱処理した接合材の最小曲げ半径は約0.5で最も小さく、従って曲げ性が最も良好であった。この最小曲げ半径の値はアルミニウム被覆を行っていないマグネシウム−リチウム系合金や一般のプレス用アルミニウム合金、黄銅及び軟鋼などと同等である。
【0015】
接合のまま及び100℃の熱処理でも、接合材の最小曲げ半径は約1.6であり十分な曲げ性を有していることが分かった。
300℃で熱処理した接合材では、前述した通り金属間化合物層の生成は僅か(約7μm)であり、最小曲げ半径も、接合を行わなかった接合材よりも小さく、約0.8であり、十分な曲げ性を有していた。
しかし400℃で熱処理した接合材では、前述した通り金属間化合物層の厚さは約29μmと急速に成長し、界面から約10μmにクラックが発生し、最小曲げ半径も約3.3と増大して曲げ性が極度に悪化した。
300℃で熱処理した接合材と400℃で熱処理した接合材の金属間化合物層の厚さから、金属間化合物層の厚さを約10μm以下になるよう熱処理を行うと(本実施例では300℃で1時間以下)良好な曲げ性が維持できると考えられる。
【0016】
図3Aは本実施例の接合のままの接合材を半径1.6mmの金型を使用して曲げ試験を行った後の接合材の約50倍の顕微鏡写真であり、図3Bは本実施例の200℃で熱処理を行った接合材を半径0.2mmの金型を使用して割れを生じさせた後の接合材の約500倍の顕微鏡写真である。
割れが生じていてもいなくても、合金基材とアルミニウム膜は強固に密着し、剥離が生じていないことが分かる。
【0017】
[比較例1]
リチウムを9.5質量%含有するマグネシウム合金を鋳造し、1.0mm厚の板材に圧延後、300℃で4時間熱処理を施して、マグネシウム−リチウム合金板を計5枚作製した。
この合金板のうち1枚は熱処理を行わず、他の4枚はそれぞれ100℃、200℃、300℃及び400℃で1時間熱処理を行った。
これら5枚の合金板のL曲げ試験を実施例1と同じ条件で行った。5枚の合金板の最小曲げ半径(R)と接合体の厚さ(t)の比(R/t)で評価し、その結果を図2のグラフに−▲−で示した。
グラフから、合金板の場合は接合のままでは前記比は約1.8で実施例1の接合材よりややが大きいが、熱処理温度が上昇するにつれて前記比が減少して、400℃では約0.5に達した。
200℃で熱処理を行った合金板を実施例1と同じ条件で塩水噴霧試験を行ったところ、表面全体が腐食し、手で触るだけで表面が剥離した。
【0018】
[比較例2]
板材の厚さを0.5mmとしたこと以外は比較例1と同じ条件でマグネシウム−リチウム合金板を1枚作製した。
この合金板を300℃で1時間熱処理を行い、更にこの合金板のL曲げ試験を実施例1と同じ条件で行った。最小曲げ半径(R)と接合体の厚さ(t)の比(R/t)は図2のグラフに−■−で示した通り、約0.5であった。
【0019】
[比較例3]
実施例1と同じ条件で、マグネシウム−リチウム合金板と純アルミニウム板を準備した。これらを実施例1と同様に前処理を行いかつ積層し、400℃でクラッドして接合体とした。
この接合体を熱処理を行わないまま、最小曲げ半径を測定したところ測定限界の3.2mm以上であった。又測定後断面観察を行ったところ、金属間化合物層が形成され、接合体全体が脆弱化していた。
【0020】
【発明の効果】
本発明は、マグネシウム−リチウム系合金基材表面にアルミニウム又はアルミニウム合金膜を形成したことを特徴とする合金基材である。
この合金基材は、従来の合金基材と異なり、表面のアルミニウム膜とマグネシウム−リチウム系合金の間に金属間化合物層が殆ど形成されていないため、全体の加工性(曲げ性)が保持されて従来の合金基材より強靭で耐食性に優れた合金基材が提供できる。
【0021】
当該合金基材は、積層されたマグネシウム−リチウム系合金基材とアルミニウム膜を、冷間又は温間で圧延接合することにより製造される。
このような接合により得られる合金基材(接合材)は、満足できる接合強度を有するとともに、冷間又は温間圧延で接合されているため、合金基材とアルミニウム膜間の界面で金属間化合物層が生成し難い。この金属間化合物層は接合材全体の脆弱化を招き易い。この金属間化合物層が存在しないか強度には殆ど影響しない範囲で含有する本発明の合金基材は、マグネシウム−リチウム系合金の有する軽量性や加工性を維持したまま優れた耐食性を付与した有用な材料となる。
このように接合した合金基材を300℃以下で熱処理すると、加工性が更に良好になり、最高級の素材として各種用途に提供できる。
【図面の簡単な説明】
【図1】図1Aから図1Eは、順に、実施例1における、接合時のままの接合体、100℃での熱処理後の接合体、200℃で熱処理後の接合体、300℃で熱処理後の接合体及び400℃で熱処理後の接合体の表面組織を示す400倍の顕微鏡写真。
【図2】実施例1、比較例1及び比較例2における熱処理温度と、最小曲げ半径(R)と接合体の厚さ(t)の比(R/t)の関係を示すグラフ。
【図3】図3Aは実施例1の接合のままの接合材を半径1.6mmの金型を使用して曲げ試験を行った後の接合材の約50倍の顕微鏡写真であり、図3Bは実施例1の200℃で熱処理を行った接合材を半径0.2mmの金型を使用して割れを生じさせた後の接合材の約500倍の顕微鏡写真である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnesium-lithium-based alloy base material having improved corrosion resistance and a method for producing the same, and more particularly, to prevent formation of an intermetallic compound irrespective of high reactivity between aluminum and magnesium. The present invention relates to a magnesium-lithium alloy base material having improved corrosion resistance and workability and a method for producing the same.
[0002]
[Prior art]
In the trend of lightening OA equipment such as automobiles, household appliances and computers, word processors and their peripheral equipment, there is a demand for lighter alloys. At present, the lightest alloy used as a structural metal material is a magnesium-lithium alloy. As an alloy of this system, LA141 (Mg-14% Li-1% Al) practically used by NASA, Superplastic Mg-9% Li-1% Y alloys and the like are known.
Magnesium-lithium alloys are excellent in cold workability, and have a defect that they are inferior in corrosion resistance to general magnesium-based alloys because they contain lithium as a base metal. Therefore, surface treatment is usually performed to prevent corrosion to improve corrosion resistance, but the processing cost is increasing.
[0003]
[Problems to be solved by the invention]
As a relatively inexpensive surface treatment method, there is a method of cladding aluminum having good corrosion resistance on the surface of a magnesium alloy base material. However, when magnesium and aluminum are bonded as usual, an intermetallic compound having a composition of Mg17Al12 is generated, and a stable bonding structure is not formed because the compound is brittle. In order to solve this drawback, an intermediate layer such as silver, copper, gold, silver, zinc, tin, or lead layer is formed on the surface of a magnesium-based alloy base material such as a magnesium-lithium alloy, and the surface of the intermediate layer is formed. A method has been proposed in which an aluminum layer is formed on the substrate to prevent the formation of a compound between magnesium and aluminum.
However, the formation of the intermediate layer is not only costly and labor-intensive, but also in some cases can hinder the lightweight feature of magnesium-based alloys.
Accordingly, the present invention provides an aluminum-coated magnesium-lithium-based alloy substrate in which the formation of an intermetallic compound is suppressed without forming an intermediate layer and by minimizing the reaction between magnesium and aluminum, and a method for producing the same. The purpose is to:
[0004]
[Means for Solving the Problems]
The present invention relates to an aluminum-coated magnesium-lithium-based alloy substrate (hereinafter also simply referred to as an alloy substrate), wherein an aluminum and / or aluminum alloy film is formed on the surface of a magnesium-lithium-based alloy substrate. The method according to the invention is characterized in that an aluminum or aluminum alloy film (hereinafter also simply referred to as an aluminum film) is superposed on the surface of a magnesium-lithium alloy base material and roll-bonded at room temperature to 300 ° C. However, if necessary, heat treatment may be performed at 300 ° C. or lower after rolling and joining.
[0005]
Hereinafter, the present invention will be described in detail.
The present inventor, in the prior art described above, by substantially eliminating or minimizing the generation of magnesium-aluminum intermetallic compound generated when coating the aluminum film on the surface of the magnesium-lithium alloy base material, With the idea that an alloy substrate having excellent corrosion resistance and workability can be manufactured without forming an intermediate layer, various studies were made to realize this, and the present invention was reached.
In the present invention, unlike the related art, the surface of the magnesium-lithium alloy base material is coated with an aluminum film by cold or warm rolling at a temperature from room temperature to 300 ° C. The aluminum-coated magnesium-lithium alloy obtained by cold rolling at a relatively low temperature is different from the case of the aluminum-coated magnesium-lithium alloy manufactured by the conventional cladding, in that Mg17Al12 or the like is provided between the magnesium alloy and the aluminum film. Almost no intermetallic compound is formed. Since the brittle intermetallic compound is not generated and the magnesium alloy surface is coated with the aluminum film, the corrosion resistance of the aluminum film is utilized as it is, and the corrosion resistance of the entire alloy base material is improved.
[0006]
Further, since the intermediate layer is not formed as in the conventional case, the lightness and good workability are maintained. In addition, since the surface is made of aluminum, it is possible to perform a surface treatment used for ordinary aluminum or an aluminum alloy, for example, a surface treatment utilizing metallic luster.
In the present invention, an alloy substrate joined by cold or warm rolling in this way is obtained, and as it is, the aluminum film improves its corrosion resistance without reducing the workability of the magnesium-lithium alloy as the substrate. However, heat treatment may be performed after cold or warm rolling to further improve the performance.
[0007]
This heat treatment is preferably performed at a relatively low temperature, for example, at a temperature of 300 ° C. or lower, particularly preferably at 200 to 300 ° C. This heat treatment is a treatment for improving the bonding strength and the bending formability of the alloy base material. When high-temperature heat treatment, that is, heat treatment at a high temperature exceeding 300 ° C., for example, at 400 ° C., lithium and aluminum contained in the alloy generate an intermetallic compound to weaken the structure, and the minimum bending radius described later increases significantly. Not desirable.
In other words, in the case of an alloy substrate, it is affected by the thickness ratio between the aluminum film and the alloy substrate, but usually, the minimum bending radius at the time of joining is reduced to a fraction by heat treatment at 200 ° C. When the temperature exceeds 300 ° C., the temperature rises significantly and greatly exceeds the value at the time of bonding (no heat treatment).
[0008]
The base alloy usable in the present invention is a magnesium-lithium alloy. Usually, it is an alloy consisting only of magnesium and lithium, and the preferred composition (weight) ratio is 80 to 95% by weight of magnesium and 5 to 20% by weight of lithium. This magnesium-lithium alloy is excellent in formability at room temperature, and has a great significance in improving its performance.
The magnesium-lithium alloy which can be used in the present invention is, in addition to the two metals, one or more of the other metals smaller than magnesium and lithium, such as zinc, aluminum, silver, manganese, silicon, yttrium, lanthanoid elements, calcium and zirconium. It may contain more than one species.
The aluminum film to be coated on the surface of the alloy substrate may be made of pure aluminum or an aluminum alloy, and is appropriately selected in consideration of required performance such as corrosion resistance and workability.
[0009]
The alloy base material of the present invention has better workability than the magnesium-lithium alloy base material, and the corrosion resistance is significantly improved. These performance evaluations can be performed by a salt water spray method, an L bending test, or the like.
The alloy base material thus produced can be used as a material for automobiles, household appliances and OA equipment such as computers, word processors and their peripheral devices, mobile phones and toys.
[0010]
[Example]
Next, examples and comparative examples relating to the production of the alloy base material according to the present invention and the performance evaluation of the obtained alloy base material will be described, but the present invention is not limited thereto.
[0011]
[Example 1]
[Preparation of plate material]
A magnesium alloy containing 9.5% by mass of lithium was cast, rolled into a 5 mm-thick plate, and heat-treated at 300 ° C. for 4 hours to obtain a magnesium-lithium alloy plate. A pure aluminum plate having a thickness of 0.5 mm was prepared as a plate material for coating.
[Joint]
Next, the surface of the magnesium-lithium alloy plate was pickled with a 5% hydrochloric acid aqueous solution, the surface was polished with a brass wire brush, and the aluminum plate was also polished with a brass wire brush. The aluminum plate was overlapped on both surfaces of a magnesium-lithium alloy plate to form a laminate having an apparent thickness of 6 mm. This laminate was cold-rolled at room temperature to obtain a joined body (alloy base material) having a thickness of 0.5 mm.
[0012]
[Heat treatment]
Five such bonded bodies were prepared, one was left as it was at the time of bonding, and the other four bonded bodies were heat-treated at 100 ° C., 200 ° C., 300 ° C., and 400 ° C. for 1 hour.
A total of five bonded bodies, that is, a bonded body at the time of bonding, a bonded body after heat treatment at 100 ° C., a bonded body after heat treatment at 200 ° C., a bonded body after heat treatment at 300 ° C., and a bonded body after heat treatment at 400 ° C. FIGS. 1A to 1E sequentially show micrographs of the surface structure of the joined body at a magnification of 400 times.
From FIG. 1A, it can be seen that even in the joined body without the heat treatment, the alloy base material and the aluminum film are in close contact with each other and the joining is sufficiently performed. 1B and 1C that when the heat treatment temperature is low, the interface between the alloy base material and the aluminum film is clearly maintained, and the intermetallic compound layer was not formed. When the temperature of the heat treatment further increased to 300 ° C., the interface between the alloy substrate and the aluminum film became slightly unclear, and the formation of an intermetallic compound layer had started (thickness: 6.8 μm). When the heat treatment temperature was further increased to 400 ° C., the intermetallic compound layer grew to reach 28.8 μm, and cracks were generated at a position of about 10 μm from the interface.
From these results, it is understood that it is desirable to perform the heat treatment at 300 ° C. or less to prevent the structure from becoming weak.
[0013]
[Salt spray test]
The as-bonded plate material and the four heat-treated plate materials were cut out, sprayed with a 5% NaCl aqueous solution, and examined for corrosion after exposure for 24 hours. As a result, no corrosion was found in all the plate materials.
[0014]
[L bending test]
In the bending test, each of the above-mentioned five bonded bodies was bent by pressing to 90 ° using a mold having a specified inner radius, and bent by confirming the presence or absence of cracks on the convex surface of the curved portion. Properties (workability) were examined. The bendability was evaluated by the minimum inner radius capable of bending to 90 ° without cracking, that is, the ratio (R / t) of the minimum bending radius (R) to the thickness (t) of the joined body. The smaller the value of this ratio, the better the bendability.
The minimum bending radii of the as-joined plate material and the four heat-treated plate materials were measured, and the above-described ratio was calculated from this value. The results are shown by-◆-in the graph of FIG.
From the graph, it was found that the minimum bending radius of the bonding material heat-treated at 200 ° C. was the smallest at about 0.5, and thus the bending property was the best. The value of the minimum bending radius is equivalent to a magnesium-lithium alloy not coated with aluminum, a general aluminum alloy for press, brass, mild steel, and the like.
[0015]
The minimum bending radius of the bonding material was about 1.6, and it was found that the bonding material had sufficient bending properties even after the bonding and the heat treatment at 100 ° C.
As described above, in the bonding material heat-treated at 300 ° C., the formation of the intermetallic compound layer is slight (about 7 μm), and the minimum bending radius is smaller than the bonding material without bonding, that is, about 0.8. It had sufficient bendability.
However, in the bonding material heat-treated at 400 ° C., as described above, the thickness of the intermetallic compound layer rapidly grows to about 29 μm, cracks occur about 10 μm from the interface, and the minimum bending radius increases to about 3.3. The bendability deteriorated extremely.
When the heat treatment is performed so that the thickness of the intermetallic compound layer becomes about 10 μm or less based on the thickness of the intermetallic compound layer of the bonding material heat-treated at 300 ° C. and that of the bonding material heat-treated at 400 ° C. (in this embodiment, 300 ° C. It is considered that good bendability can be maintained.
[0016]
FIG. 3A is a photomicrograph of about 50 times the bonding material obtained by performing a bending test on the bonding material as-bonded in the present example using a mold having a radius of 1.6 mm, and FIG. FIG. 5 is a photomicrograph of the bonding material obtained by subjecting the bonding material subjected to the heat treatment at 200 ° C. to cracking using a mold having a radius of 0.2 mm at a magnification of about 500 times.
It can be seen that the alloy substrate and the aluminum film were firmly adhered to each other and no peeling occurred, regardless of whether or not cracks occurred.
[0017]
[Comparative Example 1]
A magnesium alloy containing 9.5% by mass of lithium was cast, rolled into a 1.0 mm-thick plate, and then heat-treated at 300 ° C. for 4 hours to produce a total of five magnesium-lithium alloy plates.
One of the alloy plates was not heat-treated, and the other four were heat-treated at 100 ° C, 200 ° C, 300 ° C, and 400 ° C for 1 hour, respectively.
The L bending test of these five alloy plates was performed under the same conditions as in Example 1. The evaluation was made based on the ratio (R / t) of the minimum bending radius (R) of the five alloy plates to the thickness (t) of the joined body, and the results are shown in the graph of FIG.
From the graph, in the case of the alloy plate, the ratio is about 1.8 when the joining is performed as it is, which is slightly larger than that of the joining material of Example 1. However, the ratio decreases as the heat treatment temperature increases. .5 has been reached.
When a salt water spray test was performed on the alloy plate that had been heat-treated at 200 ° C. under the same conditions as in Example 1, the entire surface was corroded, and the surface was separated only by touching with a hand.
[0018]
[Comparative Example 2]
One magnesium-lithium alloy plate was produced under the same conditions as in Comparative Example 1 except that the thickness of the plate material was set to 0.5 mm.
This alloy plate was subjected to a heat treatment at 300 ° C. for 1 hour, and the L bending test of this alloy plate was performed under the same conditions as in Example 1. The ratio (R / t) between the minimum bending radius (R) and the thickness (t) of the joined body was about 0.5 as indicated by-■-in the graph of FIG.
[0019]
[Comparative Example 3]
Under the same conditions as in Example 1, a magnesium-lithium alloy plate and a pure aluminum plate were prepared. These were subjected to pretreatment and lamination in the same manner as in Example 1, and were clad at 400 ° C. to form a joined body.
When the minimum bending radius was measured without performing the heat treatment on the joined body, it was equal to or greater than the measurement limit of 3.2 mm. When the cross section was observed after the measurement, an intermetallic compound layer was formed, and the entire joined body was weakened.
[0020]
【The invention's effect】
The present invention is an alloy substrate having an aluminum or aluminum alloy film formed on the surface of a magnesium-lithium alloy substrate.
Unlike the conventional alloy substrate, this alloy substrate has almost no intermetallic compound layer formed between the aluminum film on the surface and the magnesium-lithium alloy, so that the entire workability (bendability) is maintained. Thus, an alloy base material that is stronger and more excellent in corrosion resistance than conventional alloy base materials can be provided.
[0021]
The alloy base is manufactured by cold- or hot-rolling the laminated magnesium-lithium-based alloy base and an aluminum film.
The alloy substrate (joining material) obtained by such joining has satisfactory joining strength and is joined by cold or warm rolling, so that the intermetallic compound is present at the interface between the alloy substrate and the aluminum film. It is difficult to form a layer. This intermetallic compound layer is likely to cause the entire bonding material to become brittle. The alloy base material of the present invention in which the intermetallic compound layer is not present or contains to the extent that hardly affects the strength is useful in that the magnesium-lithium alloy has excellent corrosion resistance while maintaining the lightness and workability of the alloy. Material.
When the thus-bonded alloy base material is heat-treated at 300 ° C. or lower, the workability is further improved, and it can be provided as a top-grade material for various uses.
[Brief description of the drawings]
FIG. 1A to FIG. 1E are, in order, a bonded body at the time of bonding, a bonded body after heat treatment at 100 ° C., a bonded body after heat treatment at 200 ° C., and after heat treatment at 300 ° C. in Example 1. 400 micrographs showing the surface structures of the joined body of Example 1 and the joined body after heat treatment at 400 ° C.
FIG. 2 is a graph showing a relationship between a heat treatment temperature and a ratio (R / t) of a minimum bending radius (R) and a thickness (t) of a joined body in Example 1, Comparative Example 1 and Comparative Example 2.
FIG. 3A is a photomicrograph of the bonding material obtained by subjecting the bonding material of Example 1 to a bending test by using a mold having a radius of 1.6 mm at a magnification of about 50 times, and FIG. FIG. 5 is a photomicrograph of the bonding material obtained by subjecting the bonding material subjected to the heat treatment at 200 ° C. in Example 1 to cracking using a mold having a radius of 0.2 mm at a magnification of about 500 times.

Claims (5)

マグネシウム−リチウム系合金基材表面にアルミニウム又はアルミニウム合金膜を形成したことを特徴とするアルミニウム被覆マグネシウム−リチウム系合金基材。An aluminum-coated magnesium-lithium alloy substrate, wherein an aluminum or aluminum alloy film is formed on the surface of the magnesium-lithium alloy substrate. マグネシウム−リチウム系合金基材の組成が、マグネシウムが80〜95重量%、リチウムが5〜20重量%である請求項1に記載のアルミニウム被覆マグネシウム−リチウム系合金基材。The aluminum-coated magnesium-lithium alloy substrate according to claim 1, wherein the composition of the magnesium-lithium alloy substrate is 80 to 95% by weight of magnesium and 5 to 20% by weight of lithium. マグネシウム−リチウム系合金基材が、マグネシウム及びリチウム以外に、亜鉛、アルミニウム、銀、マンガン、シリコン、イットリウム、ランタノイド元素、カルシウム及びジルコニウムから選択される少なくとも1種の金属を含有する請求項1に記載のアルミニウム被覆マグネシウム−リチウム系合金基材。2. The magnesium-lithium alloy base material according to claim 1, further comprising at least one metal selected from zinc, aluminum, silver, manganese, silicon, yttrium, a lanthanoid element, calcium and zirconium, in addition to magnesium and lithium. Aluminum-coated magnesium-lithium alloy base material. マグネシウム−リチウム系合金基材の表面にアルミニウム膜を重ね合わせ、室温〜300℃で圧延接合することを特徴とするアルミニウム被覆マグネシウム−リチウム系合金基材の製造方法。A method for producing an aluminum-coated magnesium-lithium alloy substrate, comprising laminating an aluminum film on the surface of a magnesium-lithium alloy substrate and rolling and joining at room temperature to 300 ° C. 圧延接合後、300℃以下で熱処理を行うようにした請求項4に記載のアルミニウム被覆マグネシウム−リチウム系合金基材の製造方法。The method for producing an aluminum-coated magnesium-lithium alloy substrate according to claim 4, wherein the heat treatment is performed at a temperature of 300 ° C or less after the roll joining.
JP2003122232A 2003-04-25 2003-04-25 Aluminum-coated magnesium-lithiumalloy base material, and its production method Pending JP2004323935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122232A JP2004323935A (en) 2003-04-25 2003-04-25 Aluminum-coated magnesium-lithiumalloy base material, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122232A JP2004323935A (en) 2003-04-25 2003-04-25 Aluminum-coated magnesium-lithiumalloy base material, and its production method

Publications (1)

Publication Number Publication Date
JP2004323935A true JP2004323935A (en) 2004-11-18

Family

ID=33500539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122232A Pending JP2004323935A (en) 2003-04-25 2003-04-25 Aluminum-coated magnesium-lithiumalloy base material, and its production method

Country Status (1)

Country Link
JP (1) JP2004323935A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254003A (en) * 2007-03-31 2008-10-23 Osaka Industrial Promotion Organization Method for manufacturing clad material, and clad material
KR101105870B1 (en) * 2008-12-18 2012-01-16 한국생산기술연구원 Manufacturing method of Mg-Al stratified composite material
CN106756358A (en) * 2016-12-20 2017-05-31 太仓市天丝利塑化有限公司 A kind of high corrosion-resistant notebook magnesium lithium alloy shell and its spraying chemical synthesis technology
CN114752832A (en) * 2022-05-17 2022-07-15 郑州轻研合金科技有限公司 High-strength low-notch sensitivity magnesium-lithium alloy and preparation method and application thereof
CN115011851A (en) * 2022-07-01 2022-09-06 西安四方超轻材料有限公司 Magnesium-lithium alloy suitable for die casting and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254003A (en) * 2007-03-31 2008-10-23 Osaka Industrial Promotion Organization Method for manufacturing clad material, and clad material
JP4588735B2 (en) * 2007-03-31 2010-12-01 財団法人大阪産業振興機構 Clad material manufacturing method and clad material
KR101105870B1 (en) * 2008-12-18 2012-01-16 한국생산기술연구원 Manufacturing method of Mg-Al stratified composite material
CN106756358A (en) * 2016-12-20 2017-05-31 太仓市天丝利塑化有限公司 A kind of high corrosion-resistant notebook magnesium lithium alloy shell and its spraying chemical synthesis technology
CN106756358B (en) * 2016-12-20 2019-04-16 太仓市天丝利塑化有限公司 A kind of high corrosion-resistant notebook magnesium lithium alloy shell and its spraying chemical synthesis technology
CN114752832A (en) * 2022-05-17 2022-07-15 郑州轻研合金科技有限公司 High-strength low-notch sensitivity magnesium-lithium alloy and preparation method and application thereof
CN115011851A (en) * 2022-07-01 2022-09-06 西安四方超轻材料有限公司 Magnesium-lithium alloy suitable for die casting and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5994856B2 (en) Molten Al-Zn-based plated steel sheet and method for producing the same
JP4579705B2 (en) Clad material and manufacturing method thereof
US7291401B2 (en) Non-hexavalent-chromium type corrosion resistant coating film structure having a resin layer and a metal layer that is superior in terms of adhesion to the resin layer
RU2610811C2 (en) Aluminium zinc plating
JP2004323935A (en) Aluminum-coated magnesium-lithiumalloy base material, and its production method
JP3253945B2 (en) Coated steel
JP2005281824A (en) Clad plate of magnesium alloy and aluminum and its production method
JP4588735B2 (en) Clad material manufacturing method and clad material
WO2021183212A2 (en) Aluminum alloys and coated aluminum alloys with high corrosion resistance and methods of making the same
WO2010073852A1 (en) Magnesium alloy member and method for producing same
JP2005272922A (en) HOT DIP Zn-Al-BASED ALLOY COATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND BENDING WORKABILITY AND METHOD FOR MANUFACTURING THE SAME
JP3499454B2 (en) Magnesium alloy structure and method of manufacturing the same
JPH04350193A (en) Undustrial chrome plating method
JPH02121786A (en) Manufacture of copper-aluminum clad plate
JP2718310B2 (en) Laminated plating Al plate and method for producing the same
CN113544315B (en) Aluminum-based wire rod
JP3656802B2 (en) Magnesium alloy and method for producing the same
Inoue Mechanical Properties and Formability of Titanium-Clad Magnesium Alloy Sheets
JP2014060101A (en) Material for connector terminal, connector terminal, and production method of material for connector terminal
JPS60221548A (en) Fiber reinforced composite metallic body and its production
WO2020203014A1 (en) Composite member and heat radiation member
JP3066952B2 (en) Lead frame material
JP2003181685A (en) Brazing sheet with excellent moldability and manufacturing method thereof
JP5783419B2 (en) Magnesium-based coated member
JP2011218598A (en) Magnesium-based covering member, method of manufacturing the magnesium-based covering member, and press-molded product of the magnesium-based covering member