JP5098804B2 - Dissimilar metal joining method and joining structure of magnesium alloy and steel - Google Patents

Dissimilar metal joining method and joining structure of magnesium alloy and steel Download PDF

Info

Publication number
JP5098804B2
JP5098804B2 JP2008132796A JP2008132796A JP5098804B2 JP 5098804 B2 JP5098804 B2 JP 5098804B2 JP 2008132796 A JP2008132796 A JP 2008132796A JP 2008132796 A JP2008132796 A JP 2008132796A JP 5098804 B2 JP5098804 B2 JP 5098804B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
steel
joining
materials
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008132796A
Other languages
Japanese (ja)
Other versions
JP2009279605A (en
Inventor
実 粕川
成幸 中川
雅之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008132796A priority Critical patent/JP5098804B2/en
Publication of JP2009279605A publication Critical patent/JP2009279605A/en
Application granted granted Critical
Publication of JP5098804B2 publication Critical patent/JP5098804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、性質の異なる異種金属として、特にマグネシウム合金と鋼との接合方法と、このような方法によって接合されたマグネシウム合金と鋼との接合構造に関するものである。   The present invention relates to a dissimilar metal having different properties, in particular, a method of joining a magnesium alloy and steel, and a joining structure of a magnesium alloy and steel joined by such a method.

互いに物性が相違する異種の金属であるマグネシウム合金材と鋼材とを接合する場合、マグネシウム合金材の表面に酸化皮膜が存在すると共に、接合時の加熱過程で鋼表面の酸化皮膜が成長するために、大気中での接合が困難となる。
また、Fe−Mg二元状態図からわかるように、マグネシウムと鉄は二相分離型の挙動を示し、互いの固溶限も極めて小さいことから、このような特性の材料同士を直接接合することは、冶金的に極めて困難である。
When joining magnesium alloy materials and steel materials, which are dissimilar metals with different physical properties, an oxide film exists on the surface of the magnesium alloy material, and the oxide film on the steel surface grows during the heating process during joining. , Bonding in the atmosphere becomes difficult.
In addition, as can be seen from the Fe-Mg binary phase diagram, magnesium and iron exhibit a two-phase separation type behavior and their solid solubility limit is extremely small. Is extremely difficult metallurgically.

したがって、従来、このようなマグネシウム系材料と鋼との異種金属材料を組み合わせて使用する場合には、ボルトやリベット等による機械的締結によっていた(例えば、特許文献1参照)。
特開2000−272541号公報
Therefore, conventionally, in the case of using a combination of such different metal materials of magnesium-based material and steel, it has been mechanically fastened by bolts, rivets or the like (for example, see Patent Document 1).
JP 2000-272541 A

しかしながら、上記特許文献1に記載の方法においては、接合に用いる部品点数が増加することから、接合部材のは重量やコストが増加する点に問題があった。   However, the method described in Patent Document 1 has a problem in that the weight and cost of the joining member increase because the number of parts used for joining increases.

本発明は、このような異種金属材料同士の接合における上記課題に鑑みてなされたものであり、冶金的な接合が直接的には困難なマグネシウム合金と鋼との組合せであっても、強固に接合することができる異種金属の接合方法を提供することを目的としている。   The present invention has been made in view of the above-mentioned problems in joining different kinds of metal materials, and even if it is a combination of a magnesium alloy and steel that are difficult to metallurgically join directly, It aims at providing the joining method of the dissimilar metal which can be joined.

本発明者らは、上記目的を達成するため、鋭意検討を重ねた結果、両材料の間にAlを介在させてMg及びFeとAlとの金属間化合物をそれぞれ生成させ、これらの金属間化合物を含む複合層を接合界面に介在させることによって、上記課題が解決できることを見出し、本発明を完成するに到った。   As a result of intensive studies to achieve the above object, the inventors have produced intermetallic compounds of Mg, Fe and Al by interposing Al between both materials, and these intermetallic compounds. The present inventors have found that the above-mentioned problems can be solved by interposing a composite layer containing bismuth at the bonding interface, and have completed the present invention.

すなわち、本発明は上記知見に基づくものであって、本発明の異種金属接合方法においては、マグネシウム合金材と鋼材とを重ね合わせた状態で、高エネルギービームを鋼材の表面に照射しつつ両材料を相対加圧し、鋼材側からの伝熱により上記マグネシウム合金材と鋼材を接合するようにしている。そして、この接合に際して、両材料の接合界面にAlを介在させておき、両材料に含まれるMg及びFeとAlとの金属間化合物を接合界面にそれぞれ形成させ、少なくともAlMgとFeAlとが混在した複合組織から成る化合物層を介して両材料を接合することを特徴としている。
また、本発明の異種金属接合構造は、マグネシウム合金材と鋼材の新生面同士が少なくともAlMgとFeAlとが混在した複合組織から成る化合物層を介して接合されていることを特徴とする。
That is, the present invention is based on the above knowledge, and in the dissimilar metal joining method of the present invention, both materials are irradiated while irradiating the surface of the steel material with a high energy beam in a state where the magnesium alloy material and the steel material are overlapped. The magnesium alloy material and the steel material are joined by heat transfer from the steel material side. In this joining, Al is interposed at the joining interface between the two materials, and intermetallic compounds of Mg, Fe, and Al contained in the both materials are formed at the joining interface, and at least Al 3 Mg 2 and FeAl 3 are formed. It is characterized in that both materials are bonded through a compound layer composed of a composite structure in which and are mixed.
Further, the dissimilar metal joint structure of the present invention is characterized in that the new surfaces of the magnesium alloy material and the steel material are joined via a compound layer composed of a composite structure in which at least Al 3 Mg 2 and FeAl 3 are mixed. .

本発明によれば、高エネルギービームを鋼材表面に照射し、加熱された鋼材側からの伝熱によりマグネシウム合金材と鋼材を接合するに際して、接合界面にAlを介在させておき、両材料の主成分金属であるMg及びFeのそれぞれとAlとの金属間化合物が混在する複合組織を備えた化合物層を介して両材料を接合するようにしている。したがって、冶金的に直接接合が困難な材料の組合せにおいても相互拡散が可能となり、強固な接合が達成できることになる。   According to the present invention, when a magnesium alloy material and a steel material are joined by irradiating the surface of the steel material with a high energy beam and heat transfer from the heated steel material side, Al is interposed at the joining interface, Both materials are joined through a compound layer having a composite structure in which intermetallic compounds of Mg and Fe, which are component metals, and Al are mixed. Accordingly, mutual diffusion is possible even in a combination of materials that are difficult to be metallurgically directly joined, and a firm joining can be achieved.

以下に、本発明のマグネシウム合金と鋼との異種金属接合方法と、これによって得られる異種金属の接合構造について、さらに詳細、かつ具体的に説明する。なお、本明細書において、「%」は特記しない限り、質量百分率を表すものとする。   Below, the dissimilar metal joining method of the magnesium alloy and steel of this invention, and the joining structure of the dissimilar metal obtained by this are demonstrated still in detail and concretely. In the present specification, “%” represents mass percentage unless otherwise specified.

本発明の異種金属接合方法においては、上記したように、マグネシウム合金材と鋼材とを接合するに際して、予め両材料の接合界面に、両材料の主成分金属であるMgとFeのそれぞれと金属間化合物を形成する金属であるAlを介在させた状態で両材料を重ね合わせる。そして、重ね合わせた両材料の鋼材の側に高エネルギービーム、例えばレーザビームや電子ビームを照射し、照射によって加熱された鋼材とマグネシウム合金材を相対的に加圧する。   In the dissimilar metal bonding method of the present invention, as described above, when the magnesium alloy material and the steel material are bonded, the main component metals of both materials, Mg and Fe, are bonded to each other in advance at the bonding interface between the two materials. Both materials are overlapped with Al being a metal forming compound. And the high energy beam, for example, a laser beam or an electron beam, is irradiated to the steel material side of both the superimposed materials, and the steel material heated by the irradiation and the magnesium alloy material are relatively pressurized.

これによって、マグネシウム合金材が鋼材側からの伝熱により急熱され、合金材表面の酸化皮膜が熱衝撃によって破壊され、さらなる加圧により、局部的に溶融された合金材の表層部と共に接合部の周囲に排出され、両材料の新生面同士が高温下で直接接触する。
このとき、接合界面においては、接合界面に介在するAlが合金材中のMg及び鋼材中のFeとそれぞれ反応してAlMgとFeAl を生成し、これらが混在した複合組織を含む化合物層を介して両材料が接合されるため、相互拡散が生じて接合強度が向上することになる。
As a result, the magnesium alloy material is rapidly heated by heat transfer from the steel material side, and the oxide film on the surface of the alloy material is broken by thermal shock. The new surfaces of both materials are in direct contact at high temperatures.
At this time, at the bonding interface, Al present in the bonding interface reacts with Mg in the alloy material and Fe in the steel material to generate Al 3 Mg 2 and FeAl 3 , and a compound containing a composite structure in which these are mixed Since both materials are bonded through the layers, mutual diffusion occurs and the bonding strength is improved.

ここで、両材料の接合界面にAlを介在させるための具体的手段としては、Alを含有する材料、例えばZn−Al合金やMg−Al合金などの薄板や箔を両材料間に挟持させたり、少なくとも一方の材料にめっきや溶射、蒸着、コーティングなどの被覆手段によって付着させたりすることができる。
また、マグネシウム合金材として、Alを含有するマグネシウム合金、例えばASTM(アメリカ材料試験協会)に規定されるAZ31(3%Al)、AZ61(6%Al)、AZ80(8%Al)、AZ91(9%Al)を用いることも可能である。
Here, as a specific means for interposing Al at the joint interface between both materials, a material containing Al, for example, a thin plate or foil of Zn-Al alloy or Mg-Al alloy is sandwiched between both materials. Further, it can be attached to at least one material by a coating means such as plating, thermal spraying, vapor deposition, or coating.
In addition, as a magnesium alloy material, a magnesium alloy containing Al, for example, AZ31 (3% Al), AZ61 (6% Al), AZ80 (8% Al), AZ91 (9) defined by ASTM (American Material Testing Association). % Al) can also be used.

さらに、鋼材のめっき層中にAlを添加することもできる。この場合、JIS G 3317に規定される溶融亜鉛−5%アルミニウム合金めっき鋼板を用いることが望ましい。
このような一般的な市販鋼材を使用することによって、新たにめっきを施したり、特別な準備を要したりすることもなく、極めて簡便かつ安価に、マグネシウム合金との強固な接合を行なうことができる。また、Alを含有しないマグネシウム合金材(例えば、ZK51A、ZK60A、ZE33Aなど)や純マグネシウム材との接合が可能となり、接合相手として、種々のマグネシウム系材料を自由に選択できるようになる。
Furthermore, Al can also be added in the plating layer of steel materials. In this case, it is desirable to use a hot dip zinc-5% aluminum alloy plated steel sheet defined in JIS G 3317.
By using such a general commercially available steel material, it is possible to perform strong bonding with a magnesium alloy extremely simply and inexpensively without newly plating or requiring special preparation. it can. Moreover, it becomes possible to join with magnesium alloy materials (for example, ZK51A, ZK60A, ZE33A, etc.) not containing Al or pure magnesium materials, and various magnesium-based materials can be freely selected as joining partners.

なお、純マグネシウム材は、工業的にはほとんど用いられないことから、本発明においては、被接合材の一方を「マグネシウム合金材」としている。しかし、上記したように、本発明によれば純マグネシウム材と鋼材の接合も可能であるからして、本発明に言う「マグネシウム合金材」には、「合金」が除外されることにはならず、実質的に純マグネシウムも含まれることになる。   In addition, since a pure magnesium material is hardly used industrially, in the present invention, one of the materials to be joined is a “magnesium alloy material”. However, as described above, according to the present invention, it is possible to join a pure magnesium material and a steel material. Therefore, “alloy” is not excluded from the “magnesium alloy material” referred to in the present invention. However, pure magnesium is also substantially contained.

上記Alの添加量としては、接合界面に介在するAl量の総和(例えば、裸鋼板とAZ31合金材の接合の場合には3%、亜鉛−5%アルミニウム合金めっき鋼板とAZ31合金材の接合の場合には8%、裸鋼板とAl無添加マグネシウム材の間にザマック合金(Zn−4%Al−0.05%Mg)の薄板を挟持して接合する場合には4%)で、3%以上10%未満とすることが望ましい。
すなわち、接合界面に介在するAl量が3%に満たない場合は、Alとの金属間化合物が生成され難くなって、AlMgとFeAl が混在した複合型の化合物層が形成されなくなることがある。一方、Al量が10%以上になると、接合界面に厚いFe−Al反応層と薄いMg−Al反応層の二重構造の反応層が生成し、接合強度が低下するという不都合が生じ易くなる傾向がある。
The amount of Al added is the sum of the amounts of Al present at the bonding interface (for example, 3% in the case of joining a bare steel plate and an AZ31 alloy material, and 3% in the case of joining a bare steel plate and an AZ31 alloy material) 8% in the case, 4% in the case where the thin plate of zamak alloy (Zn-4% Al-0.05% Mg) is sandwiched between the bare steel plate and the Al-free magnesium material, and 3% It is desirable that the content be less than 10%.
That is, when the amount of Al present at the bonding interface is less than 3%, an intermetallic compound with Al is difficult to be generated, and a composite type compound layer in which Al 3 Mg 2 and FeAl 3 are mixed is not formed. Sometimes. On the other hand, when the Al content is 10% or more, a reaction layer having a double structure of a thick Fe-Al reaction layer and a thin Mg-Al reaction layer is formed at the bonding interface, and the inconvenience that the bonding strength is likely to be lowered tends to occur. There is.

本発明の異種金属接合方法を実施工に適用するに際しては、高エネルギービームの照射ヘッドと、加圧ローラを備えた加圧装置とを一体的に備えた加工ヘッドを重ね合わせた鋼板とマグネシウム合金材に対して相対移動させながら、高エネルギービームを鋼材表面に連続的又は断続的に照射すると共に、照射直後位置を加圧ローラによって両材料を連続的に加圧することが望ましい。   When applying the dissimilar metal joining method of the present invention to a working machine, a steel plate and a magnesium alloy in which a high energy beam irradiation head and a processing head integrally provided with a pressure device provided with a pressure roller are stacked. It is desirable to continuously or intermittently irradiate the surface of the steel material with a high energy beam while moving the material relative to the material, and to pressurize both materials continuously with a pressure roller immediately after irradiation.

図1は、上記した異種金属接合に用いる装置の一例を示すものである。
図に示す接合装置は、接合の熱源となる高エネルギービームとしてYAGレーザを照射する照射ヘッド11と、この照射ヘッド11の進行方向後方側に配置され、エアシリンダによって加圧ローラ12を上下方向に駆動する加圧装置13を備えている。ここで、当該ローラ12が被接合材料、すなわちマグネシウム合金材1と、その上に重ねられた鋼板2に加える加圧力は、上記エアシリンダに送給するエア圧力を調整することによってコントロールすることができる。
FIG. 1 shows an example of an apparatus used for the dissimilar metal bonding described above.
The bonding apparatus shown in the figure is arranged on the rear side in the traveling direction of the irradiation head 11 that irradiates a YAG laser as a high energy beam serving as a heat source for bonding, and the pressure roller 12 is moved up and down by an air cylinder. A pressing device 13 for driving is provided. Here, the pressure applied by the roller 12 to the material to be joined, that is, the magnesium alloy material 1 and the steel plate 2 stacked thereon can be controlled by adjusting the air pressure supplied to the air cylinder. it can.

加圧ローラ12は、上記のように照射ヘッド11と一体的に取り付けられ、レーザビームBに追随して移動し、上側に位置する鋼板2がレーザビームBによって加熱された直後に、当該鋼板2をマグネシウム合金材1に押し付け、接合部を加圧することができる。
したがって、ワークが平面の場合はもとより、車体のような3次元形状の場合にもレーザ照射位置に追従することができ、当該接合装置が図中の矢印方向に相対移動することによって、両材料1,2を連続的あるいは断続的な線状に接合することができるようになっている。
The pressure roller 12 is attached integrally with the irradiation head 11 as described above, moves following the laser beam B, and immediately after the upper steel plate 2 is heated by the laser beam B, the steel plate 2 is moved. Can be pressed against the magnesium alloy material 1 to pressurize the joint.
Therefore, it is possible to follow the laser irradiation position not only when the workpiece is a flat surface but also when the workpiece is a three-dimensional shape such as a vehicle body. , 2 can be joined in a continuous or intermittent line.

なお、当該接合装置においては、図示以外にも各種の制御手段や調整装置を備えており、レーサビームBの照射角度や照射位置、フォーカス位置、照射位置と加圧位置の距離調整などができるようにしてある。   Note that the bonding apparatus includes various control means and adjustment devices other than those shown in the figure, so that the irradiation angle of the laser beam B, the irradiation position, the focus position, and the distance between the irradiation position and the pressing position can be adjusted. It is.

図2(A)〜図3(E)は、本発明による異種金属の接合プロセスとして、マグネシウム合金材と鋼板との接合過程を示す概略工程図である。   2 (A) to 3 (E) are schematic process diagrams showing a joining process of a magnesium alloy material and a steel plate as a joining process of dissimilar metals according to the present invention.

まず、図2(A)に示すように、被接合材料として、マグネシウム合金材1と鋼板2が準備され、マグネシウム合金材1の上に鋼板2が重ねられる。
このとき、マグネシウム合金材1には、例えば6%程度のAlが添加されていると共に、その表面には酸化皮膜1fが生成されている。
First, as shown in FIG. 2A, magnesium alloy material 1 and steel plate 2 are prepared as materials to be joined, and steel plate 2 is stacked on magnesium alloy material 1.
At this time, for example, about 6% Al is added to the magnesium alloy material 1, and an oxide film 1f is formed on the surface thereof.

次に、図2(B)に示すように、レーザビームBを高融点材料である鋼板2の表面に照射して加熱し、ローラ12により加圧し、鋼板2をマグネシウム合金材1に接触させる。 このように、鋼板2は高温、マグネシウム合金材1は冷たい状態で互いに接触すると、鋼板2と接触したマグネシウム合金材1の最表面のみが瞬間的に溶融し、さらに急加熱による熱衝撃、膨張差、加圧ローラ12からの加圧力により、図3(C)に示すように、マグネシウム合金材表面の酸化皮膜1fが部分的に破壊される。さらに加圧することにより、溶融した表層のマグネシウム合金1mと、酸化皮膜1fが周囲に排出物Wとなって排出される。   Next, as shown in FIG. 2B, the surface of the steel plate 2, which is a high melting point material, is irradiated with the laser beam B and heated, and the roller 12 is pressed to bring the steel plate 2 into contact with the magnesium alloy material 1. Thus, when the steel plate 2 is in contact with each other in a high temperature and the magnesium alloy material 1 is cold, only the outermost surface of the magnesium alloy material 1 in contact with the steel plate 2 is instantaneously melted, and further, thermal shock due to rapid heating, expansion difference Due to the pressure applied from the pressure roller 12, the oxide film 1f on the surface of the magnesium alloy material is partially broken as shown in FIG. By further pressurization, the molten surface layer magnesium alloy 1 m and the oxide film 1 f are discharged as discharged W around.

これにより、図3(D)に示すように、鋼材2とマグネシウム合金材1の新生面が直接接触し、当該接触部は高温下で加圧されているので、材料の拡散が生じ、両材料1,2が接合される。
このとき、接合界面では、マグネシウム合金材1に添加されたAl原子が鋼材2の主成分であるFe、及びマグネシウム合金材1の主成分であるMgと反応し、Al−Mg系金属間化合物と、Al−Fe系金属間化合物を形成し、図3(E)に示すように、これらが混在した複合型の化合物層Lを形成する。
As a result, as shown in FIG. 3D, the new surface of the steel material 2 and the magnesium alloy material 1 are in direct contact with each other, and the contact portion is pressurized at a high temperature. , 2 are joined.
At this time, at the bonding interface, Al atoms added to the magnesium alloy material 1 react with Fe, which is the main component of the steel material 2, and Mg, which is the main component of the magnesium alloy material 1, and the Al—Mg intermetallic compound and Then, an Al—Fe based intermetallic compound is formed, and as shown in FIG. 3E, a composite type compound layer L in which these are mixed is formed.

このように、複合型の上記化合物層Lを介してマグネシウム合金材1と鋼材2の強固な接合が完成する。
本発明方法によれば、接合後の接合界面には酸化皮膜1f層は残存せず、鋼材2として亜鉛めっき鋼板を使用した場合にも、亜鉛めっき層は、マグネシウム合金材の表層溶融部1mと共に排出されるために接合界面に残存せず、これが強固な接合が可能になる要因のひとつでもある。
In this way, the firm joining of the magnesium alloy material 1 and the steel material 2 is completed via the composite type compound layer L.
According to the method of the present invention, the oxide film 1f layer does not remain at the bonded interface after bonding, and even when a galvanized steel sheet is used as the steel material 2, the galvanized layer is combined with the surface layer melting portion 1m of the magnesium alloy material. Since it is discharged, it does not remain at the bonding interface, which is one of the factors that enables strong bonding.

本発明の異種金属接合方法においては、マグネシウム合金材1を直接加熱することなく、レーザビームBのような高エネルギービームを鋼板側にのみ照射し、マグネシウム合金材1を鋼板側からの伝熱のみによって加熱するようにしている。したがって、マグネシウム合金材1は、ごく表層部のみの局部的な溶融となるため、低融点のマグネシウム材を溶損させることなく、高融点の鋼材との重ね接合が可能となる。   In the dissimilar metal joining method of the present invention, the magnesium alloy material 1 is not directly heated, but a high energy beam such as the laser beam B is irradiated only to the steel plate side, and the magnesium alloy material 1 is only subjected to heat transfer from the steel plate side. To be heated by. Therefore, since the magnesium alloy material 1 is locally melted only at the surface layer portion, it can be lap-joined with a high-melting-point steel material without damaging the low-melting-point magnesium material.

図4は、上記方法によって得られたマグネシウム合金材1と鋼材2との接合部の断面構造を示すものであって、表面に酸化皮膜1fが生成さたマグネシウム合金材1の上に、鋼材2が重ねられている。そして、接合界面には、前述のようにAl−Mg系及びAl−Fe系の金属間化合物が生成しており、少なくともAlMgとFeAl が混在した複合型の化合物層Lが形成され、この化合物層Lを介して両材料1,2が接合されている。
さらに、この接合部の周囲を囲むように、局部溶融したマグネシウム合金と共に酸化皮膜1fや接合界面の不純物など(亜鉛めっき鋼板を用いた場合には、亜鉛めっき層も)を含む排出物Wが排出されている。
FIG. 4 shows a cross-sectional structure of the joint portion between the magnesium alloy material 1 and the steel material 2 obtained by the above method, and the steel material 2 is formed on the magnesium alloy material 1 having an oxide film 1f formed on the surface. Are superimposed. As described above, an Al—Mg-based and Al—Fe-based intermetallic compound is generated at the bonding interface, and a composite type compound layer L in which at least Al 3 Mg 2 and FeAl 3 are mixed is formed. Both materials 1 and 2 are joined via this compound layer L.
Furthermore, the waste W including the oxide film 1f and impurities at the bonding interface (in the case of using a galvanized steel sheet, the galvanized layer) is discharged so as to surround the periphery of the bonded portion. Has been.

以下、本発明を実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

マグネシウム合金材と鋼材との異種金属接合を行うに際して、マグネシウム合金材としては、Alを含有しない純マグネシウム材と、Al含有量が異なる4種のマグネシウム合金、AZ31(3%Al)、AZ61(6%Al)、AZ81(7.5%Al)及びAZ−91(9%Al)を用いた。
一方、鋼材としては、裸鋼板(CR)と、溶融亜鉛めっき鋼板(GI)と、亜鉛めっき中にアルミニウムが添加された55%アルミニウム−亜鉛合金めっき鋼板(ガルバリウム鋼板)と亜鉛−5%アルミニウム合金めっき鋼板を用いた。これら鋼材とマグネシウム材とを後述のように組み合わせ、種々の条件で接合し、せん断引張り試験を行うと共に、接合界面における化合物層の組成や厚さをオージェ分析、走査型電子顕微鏡により測定し、得られた界面構造と強度の関係を調査した。
When performing dissimilar metal bonding between a magnesium alloy material and a steel material, as the magnesium alloy material, pure magnesium material not containing Al, four kinds of magnesium alloys having different Al contents, AZ31 (3% Al), AZ61 (6 % Al), AZ81 (7.5% Al) and AZ-91 (9% Al) were used.
On the other hand, as steel materials, bare steel plate (CR), hot dip galvanized steel plate (GI), 55% aluminum-zinc alloy plated steel plate (galvalume steel plate) and zinc-5% aluminum alloy to which aluminum was added during galvanization A plated steel plate was used. These steel materials and magnesium materials are combined as described below, joined under various conditions, and subjected to a shear tensile test, and the composition and thickness of the compound layer at the joining interface are measured by Auger analysis and a scanning electron microscope. The relationship between the obtained interface structure and strength was investigated.

すなわち、図1に示した接合装置を用い、マグネシウム合金材1、鋼材2共に、85mm×250mmに切断し、マグネシウム合金材1の長辺(250mm)の上に、鋼材の長辺を5mmだけラップさせた状態に重ね、ラップ部中央にレーザビームBを照射した。
加工ヘッドを移動させながら、レーザビームBを鋼材2の表面に照射して、鋼材2を加熱した後、レーザ照射位置の後方20mmの位置を加圧装置13先端の加圧ローラ12により加圧し、鋼材2をマグネシウム合金材1に押し付けることにより接合を行った。
That is, using the joining apparatus shown in FIG. 1, both the magnesium alloy material 1 and the steel material 2 are cut into 85 mm × 250 mm, and the long side of the steel material is wrapped by 5 mm on the long side (250 mm) of the magnesium alloy material 1. The laser beam B was irradiated to the center of the lap portion in a superimposed manner.
While moving the machining head, after irradiating the surface of the steel material 2 with the laser beam B and heating the steel material 2, the position 20 mm behind the laser irradiation position is pressurized by the pressure roller 12 at the tip of the pressure device 13, Joining was performed by pressing the steel material 2 against the magnesium alloy material 1.

このとき、レーザビームBは、鋼材表面において4mm×5.5mmの楕円となるようにデフォーカスさせ、レーザ出力を1.5〜2.7kW、接合速度を0.8及び0.9m/min、加圧装置13による加圧力を120MPaとした。
接合後、継手強度を測定するため、接合長さが20mmとなるように溶接した材料を20mm幅で切断し、せん断引張り試験を実施した。
これらの結果を材料や接合条件の組合せと併せて、表1に示す。
At this time, the laser beam B is defocused so as to be an ellipse of 4 mm × 5.5 mm on the steel material surface, the laser output is 1.5 to 2.7 kW, the joining speed is 0.8 and 0.9 m / min, The pressure applied by the pressure device 13 was 120 MPa.
After joining, in order to measure joint strength, the welded material was cut to a width of 20 mm so that the joining length was 20 mm, and a shear tensile test was performed.
These results are shown in Table 1 together with combinations of materials and bonding conditions.

Figure 0005098804
Figure 0005098804

表1において、実施No.1〜5は、鋼材としてめっきが施されていない裸鋼板を用いており、実施No.6〜10は、亜鉛めっき鋼板を用いた実施例である。これらのうち、発明例2〜5及び7〜10の結果から明らかなように、亜鉛めっき層の有無に拘わらず、Alを含有するマグネシウム合金材を適用することによって、接合界面にAlMgとFeAl が混在した複合型の化合物層が形成され、強固な接合が可能であることが確認された。
また、マグネシウム合金材のAl含有量が9%までの範囲では、Al含有量の増加と共に接合強度が増す傾向と共に、亜鉛めっき鋼板を用いた方が強度が僅かに高くなる傾向が認められた。
In Table 1, the implementation No. Nos. 1 to 5 use bare steel plates that are not plated as steel materials. 6 to 10 are examples using galvanized steel sheets. Among these, as is apparent from the results of Invention Examples 2 to 5 and 7 to 10, Al 3 Mg 2 is applied to the bonding interface by applying a magnesium alloy material containing Al regardless of the presence or absence of the galvanized layer. It was confirmed that a composite compound layer in which FeAl 3 and FeAl 3 were mixed was formed, and that strong bonding was possible.
In addition, in the range where the Al content of the magnesium alloy material is up to 9%, a tendency that the strength is slightly higher when using the galvanized steel sheet is observed together with the tendency that the bonding strength increases as the Al content increases.

これに対し、比較例1及び6は、裸鋼板及び亜鉛めっき鋼板にそれぞれ純マグネシウム材を接合した例であるが、接合界面にAlが存在していないために、化合物層が形成されず、引張りせん断強度は1〜1.2kNと低い結果となった。   On the other hand, Comparative Examples 1 and 6 are examples in which a pure magnesium material is bonded to a bare steel plate and a galvanized steel plate, respectively, but since no Al is present at the bonding interface, a compound layer is not formed and tensile is performed. The shear strength was as low as 1 to 1.2 kN.

発明例2及び7は、裸鋼板及び亜鉛めっき鋼板と、3%Alを含有するマグネシウム合金材(AZ31)の接合例である。
裸鋼板、亜鉛めっき鋼板、いずれの場合も、接合強度は、2.7kN前後であって、それぞれ純マグネシウム材を用いた比較例1及び6と比較して飛躍的に向上していることが確認された。そして、接合界面には、AlMgとFeAl の金属間化合物が混在する複合組織を含む化合物層の形成が確認されている。
Invention Examples 2 and 7 are joining examples of a bare steel plate and a galvanized steel plate and a magnesium alloy material (AZ31) containing 3% Al.
In any case of the bare steel plate and the galvanized steel plate, the bonding strength was around 2.7 kN, and it was confirmed that each was dramatically improved as compared with Comparative Examples 1 and 6 using a pure magnesium material. It was done. Then, in the bonding interface, the formation of the compound layer containing a composite structure intermetallic compound Al 3 Mg 2 and FeAl 3 are mixed has been confirmed.

発明例3及び8は、マグネシウム合金材として6%Alを含有するAZ61合金材を用いた接合例であって、接合強度は、裸鋼板、亜鉛めっき鋼板いずれを用いた場合も、3%のAlを含有するAZ31合金材を用いた場合と比べて、さらに0.5kN程度向上している。また、接合界面には、同様の複合組織を備えた化合物層が形成されている。
強度が向上した要因としては、マグネシウム合金材中に添加されたAl量が増加したため、Fe−Al系及びAl−Mg系金属間化合物を含む複合型化合物層がより強固に形成されたことによるものと考えられる。
Invention Examples 3 and 8 are joining examples using an AZ61 alloy material containing 6% Al as a magnesium alloy material, and the joining strength is 3% Al regardless of whether a bare steel plate or a galvanized steel plate is used. Compared with the case of using an AZ31 alloy material containing N, it is further improved by about 0.5 kN. In addition, a compound layer having a similar composite structure is formed at the bonding interface.
The reason for the improvement in strength is that the amount of Al added to the magnesium alloy material has increased, resulting in the formation of a more complex compound layer containing Fe-Al and Al-Mg intermetallic compounds. it is conceivable that.

さらに、発明例4,5及び9,10は、鋼材として裸鋼板及び亜鉛めっき鋼板を用い、マグネシウム合金材として7.5%及び9%のAlを含有するAZ81合金材及びAZ91合金材を使用した場合のそれぞれ接合例である。
いずれの場合も、6%のAlを含有するAZ61材を用いた場合と比べて、上記と同様の理由により、接合強度がさらに向上していることが確認された。接合界面には、同様の複合組織を備えた化合物層が形成されていることが確認された。
Inventive Examples 4, 5 and 9, 10 used bare steel and galvanized steel as steel materials, and used AZ81 alloy material and AZ91 alloy material containing 7.5% and 9% Al as magnesium alloy materials. Each of the cases is a bonding example.
In any case, it was confirmed that the bonding strength was further improved for the same reason as described above, compared with the case where AZ61 material containing 6% Al was used. It was confirmed that a compound layer having a similar composite structure was formed at the bonding interface.

一方、実施No.11〜14は、鋼材として、Alを含有する亜鉛合金をめっきした鋼板を用いたものである。
このうち、発明例14は、鋼材として亜鉛−5%アルミニウム合金めっき鋼板を用い、マグネシウム材として、Alを含有しない純Mgを用いた接合例であって、接合界面近傍に含有されるAl量の総和が5%となる。この場合には、通常の亜鉛めっき鋼板と6%Alを含有するAZ61合金材の接合例である上記発明例8の場合と同様の化合物層が形成され、上記発明例と同等の接合強度が得られることが確認された。
On the other hand, the implementation No. 11-14 use the steel plate which plated the zinc alloy containing Al as steel materials.
Of these, Invention Example 14 is a joining example using a zinc-5% aluminum alloy plated steel sheet as a steel material, and using pure Mg not containing Al as a magnesium material, and the amount of Al contained in the vicinity of the joining interface. The total is 5%. In this case, a compound layer similar to that in the case of the invention example 8 which is a joining example of a normal galvanized steel sheet and an AZ61 alloy material containing 6% Al is formed, and a joining strength equivalent to that of the invention example is obtained. It was confirmed that

発明例11は、鋼材として亜鉛−5%アルミニウム合金めっき鋼板を用い、マグネシウム合金材として3%のAlを含有するAZ31合金材を用いた接合例であって、接合界面近傍に含有されるAl量の総和が8%となる。この場合には、通常の亜鉛めっき鋼板と9%Alを含有するAZ91合金材の接合例である上記発明例10の場合と同様の化合物層が接合界面に形成され、上記発明例と同等の接合強度が得られることが確認された。   Invention Example 11 is a joining example using a zinc-5% aluminum alloy plated steel sheet as a steel material and an AZ31 alloy material containing 3% Al as a magnesium alloy material, and the amount of Al contained in the vicinity of the joining interface Is 8%. In this case, a compound layer similar to that in the case of the invention example 10 which is a joining example of a normal galvanized steel sheet and an AZ91 alloy material containing 9% Al is formed at the joining interface, and the same joining as in the invention example above. It was confirmed that strength was obtained.

これに対して、比較例12は、亜鉛−5%アルミニウム合金めっき鋼板と6%のAlを含有するAZ61合金材の接合例であり、この場合には、接合界面近傍に含有されるAl量の総和が11%となる。
この組合せの場合、引張りせん断強度は2.4kNであって、上記した発明例2〜5、6〜11と比較して、接合強度が低下する結果となった。また、接合界面には、金属間化合物の混合組織は形成されず、厚いFe−Al系金属間化合物層と薄いAl−Mg系金属間化合物層から成る二層分離構造の化合物層が生成しており、これら化合物層の界面、又はAl−Mg系金属間化合物層とマグネシウム母材の界面から破断していた。
On the other hand, Comparative Example 12 is a joining example of a AZ61 alloy material containing zinc-5% aluminum alloy plated steel sheet and 6% Al. In this case, the amount of Al contained in the vicinity of the joining interface The total is 11%.
In the case of this combination, the tensile shear strength was 2.4 kN, which resulted in a decrease in bonding strength as compared with the above-described Invention Examples 2 to 5 and 6 to 11. In addition, a mixed structure of intermetallic compounds is not formed at the bonding interface, and a compound layer having a two-layer separation structure formed of a thick Fe-Al intermetallic compound layer and a thin Al-Mg intermetallic compound layer is generated. It was fractured from the interface between these compound layers or the interface between the Al—Mg intermetallic compound layer and the magnesium base material.

また、接合界面近傍に含有されるAl量の総和が58%となる55%アルミニウム−亜鉛合金めっき鋼板と3%のAlを含有するAZ31合金材の接合例である比較例13の場合、接合強度は1.8kNとなり、上記各発明例と較べてかなり低い結果となった。
そして、接合界面には、上記比較例12と同様に、厚いFe−Al系金属間化合物層と薄いAl−Mg系金属間化合物層から成る二層分離構造の化合物層が形成されていることが確認された。
Moreover, in the case of the comparative example 13 which is a joining example of the 55% aluminum-zinc alloy plated steel plate in which the total amount of Al contained in the vicinity of the joining interface is 58% and the AZ31 alloy material containing 3% Al, the joining strength Was 1.8 kN, which was considerably lower than those of the above invention examples.
As in Comparative Example 12, a compound layer having a two-layer separation structure composed of a thick Fe—Al-based intermetallic compound layer and a thin Al—Mg-based intermetallic compound layer is formed at the bonding interface. confirmed.

上記の結果、AlMgとFeAl の金属間化合物が混在する複合組織を含む化合物層が接合界面に形成されていることによって、2.5kN以上の高い引張りせん断強度が得られ、それには接合界面近傍に含有されるAl量の総和を3%以上10%未満とすることが望ましいことになる。
また、このときの接合界面における上記化合物層の厚さは、0.5μm以上3μm未満であることが判った。
As a result, a high tensile shear strength of 2.5 kN or more is obtained by forming a compound layer including a composite structure in which intermetallic compounds of Al 3 Mg 2 and FeAl 3 are mixed at the bonding interface. It is desirable that the total amount of Al contained in the vicinity of the bonding interface is 3% or more and less than 10%.
It was also found that the thickness of the compound layer at the bonding interface at this time was 0.5 μm or more and less than 3 μm.

図5(A)〜(C)は、上記実施例により得られた接合部の断面組織を走査型電子顕微鏡によって観察した結果を示す代表例である。
すなわち、図5(A)は、裸鋼板とAZ31合金(3%Al)の接合例である発明例3の接合構造を示すものであって、接合界面には、Fe−Al系及びAl−Mg系の金属間化合物を含む複合型の化合物層が形成され、その平均厚さは0.7μmであった。
FIGS. 5A to 5C are representative examples showing the results of observing the cross-sectional structure of the joint obtained by the above-described example with a scanning electron microscope.
That is, FIG. 5 (A) shows the joining structure of Invention Example 3, which is a joining example of a bare steel plate and an AZ31 alloy (3% Al), and the joining interface includes Fe—Al and Al—Mg. A composite type compound layer containing an intermetallic compound was formed, and the average thickness thereof was 0.7 μm.

また、図5(B)は、亜鉛めっき鋼板とAZ91合金(9%Al)の接合例である発明例9の接合構造を示すものであって、接合界面には、同様の複合型化合物層が均一に形成され、その平均厚さは1.5μmであり、最も高強度が得られた実施例である。   FIG. 5B shows the joint structure of Invention Example 9, which is a joint example of a galvanized steel sheet and an AZ91 alloy (9% Al), and a similar composite compound layer is formed at the joint interface. It was formed uniformly and its average thickness is 1.5 μm, which is an example in which the highest strength was obtained.

これらに対し、図5(C)は、亜鉛−55%アルミニウム合金めっき鋼板とAZ31合金(3%Al)の接合例に係わる比較例13(Al総和量:58%)の接合構造を示すものである。
この場合には、接合界面にFe−Al系とAl−Mg系の金属間化合物から成る2層構造の反応層が形成されているが、これら金属間化合物が互いに混合することなく、Fe−Al系金属間化合物層が3〜4μmの厚さに形成されているため、強度低下が生じている例である。
On the other hand, FIG. 5C shows the joining structure of Comparative Example 13 (Al total amount: 58%) related to the joining example of the zinc-55% aluminum alloy plated steel sheet and the AZ31 alloy (3% Al). is there.
In this case, a reaction layer having a two-layer structure composed of Fe-Al and Al-Mg intermetallic compounds is formed at the bonding interface, but these intermetallic compounds do not mix with each other, and Fe-Al This is an example in which the strength is reduced because the intermetallic compound layer is formed to a thickness of 3 to 4 μm.

以上、本発明の実施例について詳述したが、本発明は上記した実施例のみに限定されることはなく、本発明の趣旨から逸脱しない範囲で、種々の変形、さらなる改良が可能である。
例えば、鋼材として亜鉛−5%アルミニウム合金めっき鋼板を使用すれば、上記実施例で使用したAl含有マグネシウム合金以外の一般的なマグネシウム合金に適用することができる。また、上記実施例では、接合のための加熱手段として、レーザを用いたが、特にこれに限定されるものではなく、鋼材側を加熱することができる限り、電子ビーム等の他の手段を用いることも可能である。
As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited only to an above-described Example, A various deformation | transformation and further improvement are possible in the range which does not deviate from the meaning of this invention.
For example, if a zinc-5% aluminum alloy plated steel sheet is used as the steel material, it can be applied to a general magnesium alloy other than the Al-containing magnesium alloy used in the above examples. In the above embodiment, a laser is used as a heating means for bonding. However, the laser is not particularly limited, and other means such as an electron beam are used as long as the steel material side can be heated. It is also possible.

本発明の異種金属接合に用いる接合装置の一例を示す概略図である。It is the schematic which shows an example of the joining apparatus used for the dissimilar metal joining of this invention. (A)〜(B)は本発明の異種金属接合方法における接合プロセスを示す工程図である。(A)-(B) is process drawing which shows the joining process in the dissimilar metal joining method of this invention. (C)〜(E)は図2(A)及び(B)に続く接合プロセスを示す工程図である。(C)-(E) are process drawings which show the joining process following FIG. 2 (A) and (B). 本発明の異種金属接合による重ね継手の接合構造を示す概略断面図である。It is a schematic sectional drawing which shows the joining structure of the lap joint by the dissimilar metal joining of this invention. (A)〜(C)は本発明の実施例によって得られた接合構造の代表例を示す電子顕微鏡写真である。(A)-(C) are the electron micrographs which show the typical example of the joining structure obtained by the Example of this invention.

符号の説明Explanation of symbols

1 マグネシウム合金材
2 鋼板
12 加圧ローラ
B レーザビーム(高エネルギービーム)
1 Magnesium alloy material 2 Steel plate 12 Pressure roller B Laser beam (high energy beam)

Claims (6)

マグネシウム合金材と鋼材とを重ね合わせた状態で、高エネルギービームを鋼材の表面に照射しつつ両材料を相対加圧し、鋼材側からの伝熱により上記マグネシウム合金材と鋼材を接合するに際して、
上記両材料の接合界面にAlを介在させ、当該Alと上記両材料に含まれるMg及びFeとの金属間化合物を接合界面に形成させ、少なくともAlMgとFeAlとが混在した複合組織から成る化合物層を介して両材料を接合することを特徴とするマグネシウム合金と鋼との異種金属接合方法。
In a state where the magnesium alloy material and the steel material are overlapped, both materials are relatively pressurized while irradiating the surface of the steel material with a high energy beam, and when joining the magnesium alloy material and the steel material by heat transfer from the steel material side,
A composite structure in which Al is interposed at the joint interface between the two materials, an intermetallic compound of Mg and Fe contained in the two materials is formed at the joint interface, and at least Al 3 Mg 2 and FeAl 3 are mixed. A method for joining dissimilar metals between a magnesium alloy and steel, wherein both materials are joined via a compound layer comprising:
上記Alがマグネシウム合金材に含まれていることを特徴とする請求項1に記載の異種金属接合方法。   2. The dissimilar metal joining method according to claim 1, wherein the Al is contained in a magnesium alloy material. 上記Alが鋼材表面に形成されためっき層に含まれていることを特徴とする請求項1又は2に記載の異種金属接合方法。   The dissimilar metal joining method according to claim 1 or 2, wherein the Al is contained in a plating layer formed on a steel surface. 接合界面に介在するAl量の総和が質量比で3%以上10%未満であることを特徴とする請求項1〜3のいずれか1つの項に記載の異種金属接合方法。   The dissimilar metal joining method according to any one of claims 1 to 3, wherein the total amount of Al present at the joining interface is 3% or more and less than 10% by mass ratio. 高エネルギービームを両材料に対して相対移動させながら連続的又は断続的に照射すると共に、上記高エネルギービームの照射位置の進行方向後方に配置した加圧ローラによって両材料を連続的に加圧することを特徴とする請求項1〜4のいずれか1つの項に記載の異種金属接合方法。   While irradiating a high energy beam relative to both materials continuously or intermittently, both materials are continuously pressed by a pressure roller arranged behind the irradiation position of the high energy beam. The dissimilar metal joining method according to any one of claims 1 to 4. マグネシウム合金材と鋼材の新生面同士が少なくともAlMgとFeAlとが混在した複合組織から成る化合物層を介して接合されていることを特徴とするマグネシウム合金と鋼との異種金属接合構造。 A dissimilar metal joint structure of magnesium alloy and steel, wherein the new surfaces of the magnesium alloy material and the steel material are joined via a compound layer composed of a composite structure in which at least Al 3 Mg 2 and FeAl 3 are mixed.
JP2008132796A 2008-05-21 2008-05-21 Dissimilar metal joining method and joining structure of magnesium alloy and steel Active JP5098804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132796A JP5098804B2 (en) 2008-05-21 2008-05-21 Dissimilar metal joining method and joining structure of magnesium alloy and steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132796A JP5098804B2 (en) 2008-05-21 2008-05-21 Dissimilar metal joining method and joining structure of magnesium alloy and steel

Publications (2)

Publication Number Publication Date
JP2009279605A JP2009279605A (en) 2009-12-03
JP5098804B2 true JP5098804B2 (en) 2012-12-12

Family

ID=41450628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132796A Active JP5098804B2 (en) 2008-05-21 2008-05-21 Dissimilar metal joining method and joining structure of magnesium alloy and steel

Country Status (1)

Country Link
JP (1) JP5098804B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495093B2 (en) * 2008-01-17 2014-05-21 日産自動車株式会社 Joining method and structure of dissimilar metals
JP5326862B2 (en) 2008-09-08 2013-10-30 日産自動車株式会社 Dissimilar metal joining method of magnesium alloy and steel
KR101438783B1 (en) 2012-12-28 2014-09-15 주식회사 포스코 Structure for fixing roof module of vehicle
JP5847209B2 (en) * 2014-01-21 2016-01-20 株式会社神戸製鋼所 Dissimilar metal joined body and manufacturing method of dissimilar metal joined body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4383837B2 (en) * 2003-12-05 2009-12-16 地方独立行政法人 大阪市立工業研究所 Method for producing metal matrix composite material and composite material produced by the method
JP2005281824A (en) * 2004-03-30 2005-10-13 Sumitomo Metal Ind Ltd Clad plate of magnesium alloy and aluminum and its production method
JP4656495B2 (en) * 2005-02-22 2011-03-23 日産自動車株式会社 Joining method and joining structure of oxide film forming material
JP4868210B2 (en) * 2005-12-06 2012-02-01 日産自動車株式会社 Bonding method of dissimilar materials
JP4868222B2 (en) * 2006-06-19 2012-02-01 日産自動車株式会社 Method and apparatus for joining dissimilar metal panels
JP4961532B2 (en) * 2006-07-25 2012-06-27 日産自動車株式会社 Method and apparatus for joining dissimilar metals
JP5376391B2 (en) * 2007-03-30 2013-12-25 日産自動車株式会社 Dissimilar metal joining method and joining structure

Also Published As

Publication number Publication date
JP2009279605A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
Haghshenas et al. Joining of automotive sheet materials by friction-based welding methods: A review
Pouranvari et al. Dissimilar gas tungsten arc weld-brazing of Al/steel using Al-Si filler metal: Microstructure and strengthening mechanisms
Taban et al. Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: Properties and microstructural characterization
JP5326862B2 (en) Dissimilar metal joining method of magnesium alloy and steel
Kang et al. Joining Al 5052 alloy to aluminized steel sheet using cold metal transfer process
Dong et al. Refilled friction stir spot welding of aluminum alloy to galvanized steel sheets
JP5495093B2 (en) Joining method and structure of dissimilar metals
Kouadri-David et al. Study of metallurgic and mechanical properties of laser welded heterogeneous joints between DP600 galvanised steel and aluminium 6082
Ma et al. Dissimilar joining of galvanized high-strength steel to aluminum alloy in a zero-gap lap joint configuration by two-pass laser welding
Sierra et al. Galvanised steel to aluminium joining by laser and GTAW processes
Ren et al. Interface microstructure and mechanical properties of arc spot welding Mg–steel dissimilar joint with Cu interlayer
Yamamoto et al. Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of a high strength Mg alloy and Al alloy
Aonuma et al. Dissimilar metal joining of ZK60 magnesium alloy and titanium by friction stir welding
Li et al. Comparative study on microstructure and mechanical properties of laser welded–brazed Mg/mild steel and Mg/stainless steel joints
Tan et al. Microstructure and mechanical properties of laser welded-brazed Mg/Ti joints with AZ91 Mg based filler
Windmann et al. Laser beam welding of aluminum to Al-base coated high-strength steel 22MnB5
Harooni et al. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration
JP5098792B2 (en) Dissimilar metal joining method of magnesium alloy and steel
Wang et al. TIG welding-brazing of Ti6Al4V and Al5052 in overlap configuration with assistance of zinc foil
Dai et al. Microstructure and properties of Mg/Al joint welded by gas tungsten arc welding-assisted hybrid ultrasonic seam welding
Dai et al. Improving weld strength of arc-assisted ultrasonic seam welded Mg/Al joint with Sn interlayer
JP4656495B2 (en) Joining method and joining structure of oxide film forming material
Tan et al. Laser welding-brazing of Mg to stainless steel: joining characteristics, interfacial microstructure, and mechanical properties
Tan et al. Microstructural characteristics and mechanical properties of fiber laser welded-brazed Mg alloy-stainless steel joint
Xu et al. Influencing mechanism of Al-containing Zn coating on interfacial microstructure and mechanical properties of friction stir spot welded Mg–steel joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150