JP5215986B2 - Dissimilar material joint and dissimilar material joining method - Google Patents

Dissimilar material joint and dissimilar material joining method Download PDF

Info

Publication number
JP5215986B2
JP5215986B2 JP2009285505A JP2009285505A JP5215986B2 JP 5215986 B2 JP5215986 B2 JP 5215986B2 JP 2009285505 A JP2009285505 A JP 2009285505A JP 2009285505 A JP2009285505 A JP 2009285505A JP 5215986 B2 JP5215986 B2 JP 5215986B2
Authority
JP
Japan
Prior art keywords
joint
intermetallic compound
spot welding
phase
reaction layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009285505A
Other languages
Japanese (ja)
Other versions
JP2011125889A (en
Inventor
英雄 畠
茂信 難波
雅男 杵渕
賢司 斎藤
正裕 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009285505A priority Critical patent/JP5215986B2/en
Publication of JP2011125889A publication Critical patent/JP2011125889A/en
Application granted granted Critical
Publication of JP5215986B2 publication Critical patent/JP5215986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、接合強度に優れた異材接合継手および異材接合方法に関する。   The present invention relates to a dissimilar material joint having excellent joint strength and a dissimilar material joining method.

近年、排気ガス等による地球環境問題に対して、自動車などの輸送機の車体の軽量化による燃費の向上が追求されている。また、この軽量化をできるだけ阻害せずに、自動車の車体衝突時の安全性を高めることも追求されている。このため、特に、自動車の車体構造に対し、従来から使用されている鋼板などの鋼材に代わって、より軽量で、エネルギー吸収性にも優れたアルミニウム合金板などのアルミニウム合金材の適用が増加しつつある。ここで言う、アルミニウム合金板とは、アルミニウム合金の熱延板、冷延板(圧延上がりだけでなく、調質された板を含む)などの圧延板の総称である。   In recent years, with respect to global environmental problems caused by exhaust gas and the like, improvement in fuel efficiency has been pursued by reducing the weight of the body of a transport aircraft such as an automobile. In addition, it has been pursued to improve safety at the time of automobile body collision without hindering the weight reduction as much as possible. For this reason, in particular, the use of aluminum alloy materials such as aluminum alloy plates that are lighter in weight and superior in energy absorption, instead of steel materials such as steel plates that have been used in the past, has increased for automobile body structures. It's getting on. The aluminum alloy plate referred to here is a general term for rolled plates such as a hot-rolled plate and a cold-rolled plate of aluminum alloy (including not only a rolled plate but also a tempered plate).

例えば、自動車のフード、フェンダー、ドア、ルーフ、トランクリッドなどのパネル構造体の、アウタパネル (外板) やインナパネル(内板) 等のパネルには、Al−Mg−Si系のAA乃至JIS6000系 (以下、単に6000系と言う) やAl−Mg系のAA乃至JIS5000系 (以下、単に5000系と言う) などのアルミニウム合金板の使用が検討されている。   For example, panels such as outer panels (outer plates) and inner panels (inner plates) of panel structures such as automobile hoods, fenders, doors, roofs, trunk lids, etc. are made of Al-Mg-Si AA to JIS6000 series. The use of aluminum alloy plates such as AA to JIS5000 (hereinafter simply referred to as 5000), such as Al-Mg based (hereinafter simply referred to as 6000), is being studied.

これらのアルミニウム合金板は、オールアルミニウムの自動車車体で無い限り、通常の自動車の車体では、元々汎用されている鋼板や型鋼などの鋼材(鋼部材)と接合して用いられる。したがって、自動車の車体にアルミニウム合金材を使用する場合(鋼材とアルミニウム合金材とを組み合わせた部材)には、これも必然的に、Fe−Alの異材接合(鉄ーアルミの異種金属部材同士の接合)の必要性がある。   These aluminum alloy plates are used by being joined to steel materials (steel members) such as steel plates and mold steels that are generally used in ordinary automobile bodies unless they are all aluminum automobile bodies. Therefore, when an aluminum alloy material is used for an automobile body (a member in which a steel material and an aluminum alloy material are combined), this also inevitably involves the joining of dissimilar materials of Fe-Al (bonding between dissimilar metal members of iron-aluminum). ) Is necessary.

しかし、このFe−Al異材接合を溶接により行う際の問題点として、周知の通り、互いの接合界面(以下、単に界面とも言う)における高硬度で非常に脆いFeとAlとの金属間化合物層(反応層)の生成がある。このため、見かけ上では、互いに異材接合されてはいても、この金属間化合物層の界面での生成が原因となって、溶接によるFe−Al異材接合では、異材接合継手や異材溶接接合体に、十分な接合強度が得られないことが多い。   However, as well known as a problem when performing this Fe-Al dissimilar material joining by welding, as is well known, an intermetallic compound layer of Fe and Al that is highly brittle and extremely brittle at the joint interface (hereinafter also referred to simply as an interface). (Reaction layer) is generated. For this reason, even if they are joined to each other, even though they are joined to each other, due to the formation at the interface of this intermetallic compound layer, in the Fe-Al dissimilar material joint by welding, it becomes a dissimilar material joint or dissimilar material welded joint. In many cases, sufficient bonding strength cannot be obtained.

これを反映して、従来から、これら異材接合体(異種金属部材同士の接合体)の接合には、溶接だけでなく、ボルトやリベット等、あるいは接着剤を併用した接合がなされているが、接合作業の煩雑さや接合コスト上昇等の問題がある。   Reflecting this, conventionally, these dissimilar material joined bodies (joints of dissimilar metal members) are joined not only by welding, but also by using bolts, rivets, etc., or using an adhesive, There are problems such as complexity of the joining operation and an increase in joining cost.

そこで、従来より、Fe−Al異材接合の溶接法につき、通常の自動車の車体の鋼板同士の接合に汎用されている、効率的なスポット溶接を用いることが検討されている。   Therefore, conventionally, it has been studied to use efficient spot welding, which is widely used for joining steel plates of a normal automobile body, as a welding method for joining different materials of Fe-Al.

このようなスポット溶接として、前記した脆いFeとAlとの金属間化合物層の界面での生成を抑制するために、例えば、アルミニウム材と鋼材の間に、アルミニウム−鋼クラッド材をインサートする方法が提案されている。また、鋼材側に融点の低い金属をめっきしたり、インサートしたりする方法が提案されている。更に、アルミニウム材と鋼材の間に絶縁体粒子を挟む方法や、部材に予め凹凸を付ける方法なども提案されている。更に、アルミニウム材の不均一な酸化膜を除去した後、大気中で加熱して均一な酸化膜を形成し、アルミニウム表面の接触抵抗が高められた状態で、アルミニウム−鋼の2層の複層鋼板をインサート材に用いてスポット溶接する方法も提案されている。   As such spot welding, for example, a method of inserting an aluminum-steel clad material between an aluminum material and a steel material in order to suppress the formation at the interface between the brittle Fe and Al intermetallic compound layers described above. Proposed. In addition, methods have been proposed in which a metal having a low melting point is plated or inserted on the steel material side. Furthermore, a method of sandwiching insulator particles between an aluminum material and a steel material, a method of providing unevenness in a member in advance, and the like have been proposed. Further, after removing the non-uniform oxide film of the aluminum material, it is heated in the atmosphere to form a uniform oxide film, and in a state where the contact resistance of the aluminum surface is increased, two layers of aluminum-steel are formed. A method of spot welding using a steel plate as an insert material has also been proposed.

一方、鋼材側でも、鋼板の高強度化のために、Si、Mn、Alなどの酸化物を形成しやすい元素を添加すると、母材表面には、これらSi、Mn、Alなどを含む酸化物が生成することが公知である。そして、これらSi、Mn、Alなどを含む酸化物が、亜鉛めっきなどの表面被覆と鋼板との密着性を阻害することも知られている。更に一方では、鋼板を酸洗などして、これらSi、Mn、Alなどを含む酸化物層の厚みを0.05〜1μm の範囲とすれば、亜鉛めっきなどの表面被覆と鋼板との密着性および鋼板同士のスポット溶接性が向上されることも知られている(特許文献1参照)。   On the other hand, when elements that easily form oxides such as Si, Mn, and Al are added on the steel material side to increase the strength of the steel sheet, the surface of the base material contains oxides containing these Si, Mn, and Al. Is known to form. It is also known that these oxides containing Si, Mn, Al, etc. inhibit the adhesion between the surface coating such as galvanization and the steel sheet. On the other hand, if the thickness of the oxide layer containing Si, Mn, Al, etc. is in the range of 0.05 to 1 μm by pickling the steel plate, the adhesion between the surface coating such as galvanization and the steel plate It is also known that spot weldability between steel plates is improved (see Patent Document 1).

しかし、これらの従来技術では、通常の自動車の車体の接合に汎用されている、効率的なスポット溶接による接合条件では、溶接接合されたFe−Alの異材溶接接合体に、十分な接合強度が得られない。言い換えると、接合強度を得るためのスポット溶接条件が煩雑にならざるを得ず、現実的では無い。   However, in these prior arts, sufficient joining strength is provided to the welded joint of Fe-Al dissimilar materials, which is commonly used for joining the body of an ordinary automobile, and under the joining conditions by efficient spot welding. I can't get it. In other words, the spot welding conditions for obtaining the joint strength must be complicated, which is not realistic.

これに対して、特に、自動車車体用として汎用される、6000系アルミニウム合金材などと、引張強度が450MPa以上の高強度鋼板(ハイテン材)との、異材溶接接合体のスポット溶接を意図した技術も種々提案されている。   On the other hand, in particular, a technique intended for spot welding of a dissimilar welded joint between a 6000 series aluminum alloy material, etc., which is widely used for automobile bodies, and a high-strength steel plate (high-tensile material) with a tensile strength of 450 MPa or more. Various proposals have also been made.

例えば、特許文献2、3では、板厚を3mm以下に制限した鋼材とアルミニウム合金材とを、鋼材を2枚以上重ね合わせるか、鋼材をアルミニウム合金材間に挟み込んだ形でスポット溶接することが提案されている。特許文献4では、スポット溶接部におけるナゲット面積や界面反応層の厚さを規定して接合強度を向上させることが提案されている。また、特許文献5、6では、溶接界面における、鋼材側とアルミニウム合金材側の、各生成化合物の組成や厚み、面積などを各々細かく規定して、接合強度を向上させることが提案されている。   For example, in Patent Documents 2 and 3, spot welding is performed in such a manner that two or more steel materials are stacked or steel materials with a plate thickness limited to 3 mm or less or steel materials are sandwiched between aluminum alloy materials. Proposed. Patent Document 4 proposes to improve the joint strength by defining the nugget area and the thickness of the interface reaction layer in the spot weld. In Patent Documents 5 and 6, it is proposed that the composition, thickness, area, and the like of each generated compound on the steel material side and the aluminum alloy material side at the welding interface are each finely defined to improve the joint strength. .

更に、特許文献7では、特定組成の高強度鋼板において、鋼板表面上の既存の酸化物層を一旦除去した上で新たに生成させた外部酸化物層と、鋼生地表面直下の内部酸化物層を規定して、適切なスポット溶接条件下において、異材接合体の高い接合強度を得ることが提案されている。この特許文献7は、前記外部酸化物層と内部酸化物層とによって、スポット溶接時のFe、Alの拡散を抑えて、接合界面における、Al−Fe系の脆い金属間化合物層の過剰生成を抑制するものである。   Further, in Patent Document 7, in a high-strength steel plate having a specific composition, an existing oxide layer on the steel plate surface is removed once, and then an outer oxide layer newly formed and an inner oxide layer immediately below the steel fabric surface It is proposed to obtain a high joint strength of a dissimilar material joined body under appropriate spot welding conditions. This patent document 7 suppresses the diffusion of Fe and Al during spot welding by the outer oxide layer and the inner oxide layer, and causes excessive generation of an Al—Fe-based brittle intermetallic compound layer at the bonding interface. It is to suppress.

また、特許文献8では、鉄系材料側の被接合面に、厚さ0.1〜1μmでコーティングするか、厚さ0.01〜1mmの箔として、Cu合金層を配置し、このCu合金層をスポット溶接におけるろう材として活用し、Al−Fe系の脆い金属間化合物層の過剰生成を抑制しようとしている。そして、このCu合金層の効果を保証するために、スポット溶接により接合するに際して、アルミニウム系材料側の被接合面にフッ化物系フラックスを塗布し、アルミニウム系材料側の酸化皮膜を除去して接合することを必須としている。   Further, in Patent Document 8, a Cu alloy layer is disposed on the surface to be joined on the iron-based material side with a thickness of 0.1 to 1 μm or as a foil with a thickness of 0.01 to 1 mm. The layer is used as a brazing filler metal in spot welding to suppress excessive formation of an Al—Fe brittle intermetallic compound layer. And in order to guarantee the effect of this Cu alloy layer, when joining by spot welding, a fluoride-type flux is applied to the joining surface on the aluminum material side, and the oxide film on the aluminum material side is removed to join. It is essential to do.

特開2002−294487号公報JP 2002-294487 A 特開2007−144473号公報JP 2007-144473 A 特開2007−283313号公報JP 2007-283313 A 特開2006−167801号公報JP 2006-167801 A 特開2006−289452号公報JP 2006-289552 A 特開2007−260777号公報JP 2007-260777 A 特開2006−336070号公報JP 2006-336070 A 特開2004−351507号公報JP 2004-351507 A

これら特許文献2〜7は、共通して、アルミニウム合金材と高強度鋼板との異材溶接接合体のスポット溶接を意図し、適用条件などの制約が少なく汎用性に優れ、接合部での脆弱な金属間化合物生成を抑制して、接合強度を向上させることを目的としている。   These Patent Documents 2-7 are commonly intended for spot welding of a dissimilar welded joint between an aluminum alloy material and a high-strength steel plate, have few restrictions on application conditions, etc., have excellent versatility, and are brittle at the joint. The object is to improve the bonding strength by suppressing the formation of intermetallic compounds.

しかし、これら特許文献2〜8でも、アルミニウム合金材と高強度鋼板との異材溶接接合体のスポット溶接に関しては、未だ接合強度が2kN未満程度で決して高くなく、不十分で、改良の余地がある。これらの従来技術では、共通して、スポット溶接の接合界面におけるAl−Fe系の脆い金属間化合物層の過剰生成を抑制しているものの、実質量の生成が不可避である。すなわち、これらの従来技術は、共通して、Al−Fe系の脆い金属間化合物層の生成自体を無くせてはいない。   However, even in these Patent Documents 2 to 8, regarding spot welding of a dissimilar welded joint between an aluminum alloy material and a high-strength steel plate, the joint strength is still less than about 2 kN and is not high enough, and there is room for improvement. . In these conventional technologies, although excessive generation of an Al—Fe-based brittle intermetallic compound layer at the joint interface of spot welding is suppressed in common, generation of a substantial amount is unavoidable. In other words, these conventional techniques do not eliminate the formation of Al—Fe-based brittle intermetallic compound layers.

本発明はかかる問題点に鑑みてなされたものであって、その目的は、スポット溶接の接合界面におけるAl−Fe系の脆い金属間化合物層の生成自体を無くして、高い接合強度とできる、鋼板とアルミニウム合金板との異材接合継手および異材接合方法を提供することにある。   The present invention has been made in view of such problems, and its object is to eliminate the formation of an Al-Fe-based brittle intermetallic compound layer at the joint interface of spot welding, and to achieve high joint strength. Another object is to provide a dissimilar material joint and a dissimilar material joining method of aluminum alloy plate.

上記目的を達成するための、本発明の異材接合継手の要旨は、アルミニウム合金板と被接合面に予めCuめっきが施された鋼板とを重ね合わせてスポット溶接により接合した異材接合継手であって、前記鋼板とアルミニウム合金板との界面に前記スポット溶接によって形成された界面反応層がAlとCuとの金属間化合物相と金属Al相との共晶組織からなり、この共晶組織における前記各相の割合として、前記界面反応層の板厚方向断面の単位面積当たりの平均面積率で、前記AlとCuとの金属間化合物相が70〜90%であるとともに、前記金属Al相が10〜30%であることとする。   In order to achieve the above object, the gist of the dissimilar joint joint of the present invention is a dissimilar joint joint in which an aluminum alloy plate and a steel plate that has been plated with Cu in advance are overlapped and joined by spot welding. The interfacial reaction layer formed by spot welding at the interface between the steel plate and the aluminum alloy plate is composed of a eutectic structure of an intermetallic compound phase of Al and Cu and a metal Al phase. As a proportion of the phase, the average area ratio per unit area of the cross section in the plate thickness direction of the interface reaction layer, the intermetallic compound phase of Al and Cu is 70 to 90%, and the metal Al phase is 10 to 10%. Suppose that it is 30%.

また、上記目的を達成するための、本発明の異材接合方法の要旨は、鋼板とアルミニウム合金板とを重ね合わせてスポット溶接により接合する異材接合方法であって、前記鋼板の被接合面に予め厚さ3〜10μmのCuめっきを施した上で、加圧力:3kNを超え、6kN以下、溶接電流:18kAを超え、30kA以下、溶接時間40〜500msecの各条件を満足するように、かつフラックスを用いずにスポット溶接し、前記鋼板とアルミニウム合金板との界面に前記スポット溶接によって形成された界面反応層をAlとCuとの金属間化合物相と金属Al相との共晶組織とし、この共晶組織における前記各相の割合として、前記界面反応層の板厚方向断面の単位面積当たりの平均面積率で、前記AlとCuとの金属間化合物相を70〜90%とするとともに、前記金属Al相を10〜30%としたことである。   Further, the gist of the dissimilar material joining method of the present invention for achieving the above object is a dissimilar material joining method in which a steel plate and an aluminum alloy plate are overlapped and joined by spot welding, and is preliminarily attached to a surface to be joined of the steel plate. After applying Cu plating with a thickness of 3 to 10 μm, the applied pressure is over 3 kN, 6 kN or less, the welding current is over 18 kA, 30 kA or less, and the welding time is 40 to 500 msec. Spot welding without using, and the interface reaction layer formed by the spot welding at the interface between the steel plate and the aluminum alloy plate is a eutectic structure of an intermetallic compound phase of Al and Cu and a metallic Al phase, As a ratio of each phase in the eutectic structure, the intermetallic compound phase of Al and Cu is 70 in terms of an average area ratio per unit area in the cross section in the thickness direction of the interface reaction layer. While 90% of the metal Al phase is to have 10 to 30%.

ここで、本発明の前記界面反応層は、前記AlとCuとの金属間化合物相と金属Al相との共晶組織のみからなるだけではなく、この共晶組織の残部に、あるいは、この共晶組織以外に、他の金属間化合物相や金属相を含んでも良い。ただ、本発明の前記界面反応層あるいは共晶組織は、前記AlとCuとの金属間化合物相と金属Al相との前記面積率の規定からして、他の金属間化合物相や金属相とともに、特に、前記有害なFeとAlとの金属間化合物を規制した組織である。すなわち、本発明の前記界面反応層は、前記共晶組織の残部として、前記有害なFeとAlとの金属間化合物を、僅かな量含むか、または全く含まない。   Here, the interfacial reaction layer of the present invention is not only composed of the eutectic structure of the intermetallic compound phase of Al and Cu and the metallic Al phase, but also in the rest of the eutectic structure or in the co-crystal structure. In addition to the crystal structure, other intermetallic compound phases or metal phases may be included. However, the interfacial reaction layer or eutectic structure of the present invention, together with other intermetallic compound phases and metal phases, is based on the definition of the area ratio of the intermetallic compound phase of Al and Cu and the metallic Al phase. In particular, the structure regulates the harmful intermetallic compound of Fe and Al. That is, the interfacial reaction layer of the present invention contains a small amount or no amount of the harmful intermetallic compound of Fe and Al as the balance of the eutectic structure.

本発明者は、鉄系材料側の被接合面にCu合金層を配置した前記特許文献8において、スポット溶接の接合界面におけるAl−Fe系の脆い金属間化合物層の生成を依然として抑制できない理由につき、改めて調査した。この結果、前記Al−Fe系の脆い金属間化合物層の生成を抑制することができ、接合強度に優れた異材接合継手を得られる、新規な界面反応層組織(組成)があり、この界面反応層組成が得られるスポット溶接条件が、今までのスポット溶接条件の外に別途あることを知見した。   In the above-mentioned Patent Document 8 in which the Cu alloy layer is disposed on the surface to be joined on the iron-based material side, the present inventor still cannot suppress the formation of an Al—Fe-based brittle intermetallic compound layer at the joint interface of spot welding. Investigated anew. As a result, there is a novel interfacial reaction layer structure (composition) that can suppress the formation of the Al—Fe-based brittle intermetallic compound layer and obtain a dissimilar joint with excellent joint strength. It was found that the spot welding conditions for obtaining the layer composition are separately from the conventional spot welding conditions.

すなわち、鉄系材料側の被接合面に純Cuめっきを配置した場合、前記特別なスポット溶接条件で溶接すれば、スポット溶接によって形成された異材同士の界面反応層において、通常とは全く異なる、前記本発明で規定する新規な界面反応層組織が得られることを知見した。このような新規な界面反応層組織では、前記Al−Fe系の脆い金属間化合物層の生成が抑制されており、接合強度に優れた異材接合継手を得られる。言い換えると、鉄系材料側の被接合面にCu合金層を配置しても、あるいは純Cuめっきを配置しても、前記特許文献8に記載されたスポット溶接条件の範囲で溶接した場合には、前記本発明で規定する新規な界面反応層組織とはならず、スポット溶接の接合界面におけるAl−Fe系の脆い金属間化合物層の生成を抑制することができない。   That is, when placing pure Cu plating on the surface to be joined on the iron-based material side, if welding under the special spot welding conditions, in the interfacial reaction layer between different materials formed by spot welding, it is completely different from normal, It has been found that a novel interfacial reaction layer structure defined in the present invention can be obtained. In such a novel interfacial reaction layer structure, the formation of the Al—Fe-based brittle intermetallic compound layer is suppressed, and a dissimilar joint joint excellent in bonding strength can be obtained. In other words, even if a Cu alloy layer is disposed on the surface to be joined on the iron-based material side or pure Cu plating is disposed, when welding is performed within the range of the spot welding conditions described in Patent Document 8, Thus, the structure of the interface reaction layer defined in the present invention is not achieved, and the formation of an Al—Fe-based brittle intermetallic compound layer at the joint interface of spot welding cannot be suppressed.

本発明によれば、鋼板側の被接合面に予めCuめっきを施した上で、加圧力や溶接電流を高くし、溶接時間を短くした特別な条件を満足するように、かつ、フラックスを用いずにスポット溶接することで、形成された界面反応層をAlとCuとの金属間化合物と金属Alとからなる組成とする。これによって、この界面反応層の残りがFeとAlとの金属間化合物であるか、または、この界面反応層にFeとAlとの金属間化合物を有さないものとすることができ、接合強度に優れた異材接合継手を得られる。   According to the present invention, after pre-plating Cu on the surface to be joined on the steel plate side, a flux is used so as to satisfy special conditions in which the pressurizing force and welding current are increased and the welding time is shortened. The formed interfacial reaction layer has a composition composed of an intermetallic compound of Al and Cu and metal Al. Accordingly, the remainder of the interfacial reaction layer may be an intermetallic compound of Fe and Al, or the interfacial reaction layer may have no intermetallic compound of Fe and Al, and the bonding strength It is possible to obtain a dissimilar joint joint excellent in

本発明異材接合継手の界面組織を示す図面代用写真である。It is a drawing substitute photograph which shows the interface structure of this invention dissimilar material joint. 図1における界面組織の各部位における組成を示す説明図である。It is explanatory drawing which shows the composition in each site | part of the interface structure | tissue in FIG.

(界面組織)
図1は、後述する実施例において、ハイテン鋼板と高強度6000系アルミニウム合金板とのスポット溶接による重ね合わせ継手のナゲットの板厚方向断面を、後述する実施例の通り、SEMの反射電子像にて組織観察したもので、表4の発明例1(溶接条件は表3のg)である。
(Interface structure)
FIG. 1 shows a cross-sectional view in the thickness direction of a nugget of a lap joint by spot welding of a high-tensile steel plate and a high-strength 6000 series aluminum alloy plate in a reflected electron image of an SEM as in an example described later. The structure was observed and Example 1 of Table 4 (welding conditions are g in Table 3).

この図1において、図の上側の平坦部と不定形の凹み(クレータ)とが混在する白っぽい密な部分がハイテン鋼板の領域である。そして、図の下側の根っこ状に下方に向かって枝分かれしている白っぽい粗な部分が6000系アルミニウム合金板の領域である。   In FIG. 1, a whitish dense portion where a flat portion on the upper side of the drawing and an indented dent (crater) are mixed is a region of the high-tensile steel plate. And the whitish rough part which branches downward in the shape of a root on the lower side of the figure is the region of the 6000 series aluminum alloy plate.

一方、これらの領域の中間の(図1の中間部分の)領域においては、白っぽい畝状(峰状)の部分と、これら白っぽい畝状の部分に挟まれた黒く細長い谷状(溝状)の部分とが、層状(地層状)あるいは縞模様状に折り重なっている(重なり合っている)。   On the other hand, in the region between these regions (in the middle portion of FIG. 1), a whitish ridge-like (peak-like) portion and a black elongated valley-like (groove-like) sandwiched between these whitish ridge-like portions. The portion is folded in layers (stratified) or striped (overlapped).

この中間の領域の組織が本発明で規定する界面反応層の組織であって、前記鋼板とアルミニウム合金板との界面に前記スポット溶接によって形成された、AlとCuとの金属間化合物相と金属Al相との共晶組織からなる界面反応層である。すなわち、この界面反応層は、スポット溶接による溶融後の冷却の過程で晶出(凝固)した二つの固相(AlとCuとの金属間化合物相と金属Al相)が前記図1のように規則的に(層状に)混在(混合)する、材料用語で言う所謂「共晶」組織となっている。   The structure of the intermediate region is the structure of the interfacial reaction layer defined in the present invention, and the intermetallic compound phase of Al and Cu and the metal formed by the spot welding at the interface between the steel plate and the aluminum alloy plate. It is an interface reaction layer composed of a eutectic structure with an Al phase. That is, the interface reaction layer has two solid phases (intermetallic compound phase of Al and Cu and metallic Al phase) crystallized (solidified) in the course of cooling after melting by spot welding as shown in FIG. It is a so-called “eutectic” structure in terms of material that is mixed (mixed) regularly (in layers).

ここで、本発明では、前記共晶組織における二つの固相「相」であるAlとCuとの金属間化合物相と金属Al相とを「相」(phase)なる用語を用いて、Al−Fe系の脆い金属間化合物層の「層」とは区別して用いている。これは、Al−Fe系の脆い金属間化合物層は、界面反応層として、比較的大きな厚みと面積とを有して存在する「層」であるので、従前の言い方通り「層」(layer)なる用語を用い、前記「相」とは、技術的に別のものとして、使い分けて表現しているからである。   Here, in the present invention, two solid phase “phases” in the eutectic structure, that is, an intermetallic compound phase of Al and Cu, and a metal Al phase are used by using the term “phase”. It is used separately from the “layer” of the Fe-based brittle intermetallic compound layer. This is because an Al—Fe-based brittle intermetallic compound layer is a “layer” that has a relatively large thickness and area as an interface reaction layer, and thus, as previously stated, a “layer”. This is because the term “phase” is technically different and expressed separately.

本発明における、この共晶組織では、前記各相の割合として、前記界面反応層の板厚方向断面の単位面積当たりの平均面積率で、前記AlとCuとの金属間化合物相が70〜90%であるとともに、前記金属Al相が10〜30%である。すなわち、この共晶組織の残部に、僅かなFeとAlとの金属間化合物を含むか、またはFeとAlとの金属間化合物を分析(定量)可能な量としては含まず、スポット溶接の接合界面におけるAl−Fe系の脆い金属間化合物層の生成を抑制した組織となっていることが特徴である。   In this eutectic structure in the present invention, the ratio of the respective phases is such that the intermetallic compound phase of Al and Cu is 70 to 90 in terms of the average area ratio per unit area of the cross section in the thickness direction of the interface reaction layer. %, And the metal Al phase is 10 to 30%. That is, the remainder of this eutectic structure contains a small amount of an intermetallic compound of Fe and Al, or does not include an intermetallic compound of Fe and Al as an amount that can be analyzed (quantitatively). It is characterized by a structure that suppresses the formation of an Al—Fe brittle intermetallic compound layer at the interface.

図2は、図1の前記層状に折り重なっている界面反応層の4−1、4−2、4−3の番号の各部位におけるEDX分析による、O、Al、Fe、Cuの各原子濃度(原子濃度%)での組成を示している。図1の前記界面反応層において、前記各番号が付けられている白っぽい畝状の部分は、図2の通り、4−1、4−2、4−3の各部位とも共通して、Al、Cuが多くを占め、Feが著しく少ない。この事実が、前記白っぽい畝状の部分はAlとCuとの金属間化合物相からなるとともに、Al−Fe系の脆い金属間化合物層の生成を抑制した組織となっていることを裏付けている。なお、図2において、4−1部位におけるFeの量が、4−2、4−3の各部位におけるFeの量よりも多いのは、4−1部位が鋼板組織に近く、鋼板のFeを検出したためであると考えられる。   FIG. 2 shows the atomic concentrations of O, Al, Fe, and Cu by EDX analysis in the respective portions of the interfacial reaction layer 4-1, 4-2, and 4-3 in FIG. The composition in atomic concentration%) is shown. In the interfacial reaction layer of FIG. 1, the whitish bowl-shaped portions to which the respective numbers are attached are common to the respective parts of 4-1, 4-2, 4-3 as shown in FIG. Cu occupies much and Fe is remarkably small. This fact confirms that the whitish bowl-shaped portion is composed of an intermetallic compound phase of Al and Cu and has a structure that suppresses the formation of an Al—Fe-based brittle intermetallic compound layer. In FIG. 2, the amount of Fe in the 4-1 part is larger than the amount of Fe in each of the parts 4-2 and 4-3. This is thought to be due to detection.

また、前記層状に折り重なっている界面反応層において、白っぽい畝状の部分に挟まれた黒く細長い谷状の部分は、同じく前記EDX分析によると、やはり、Feが著しく少なく、また、Cuも著しく少ない一方で、Alが多くを占めていた。この事実が、前記黒く細長い谷状の部分は金属Alのみからなるとともに、Al−Fe系の脆い金属間化合物層の生成を抑制した組織となっていることを裏付けている。   Further, in the interfacial reaction layer folded in a layered manner, the black elongated valley-like portion sandwiched between the whitish ridge-like portions is also extremely low in Fe and also very low in Cu according to the EDX analysis. On the other hand, Al occupied the majority. This fact confirms that the black elongated valley-shaped portion is made of only metal Al and has a structure that suppresses the formation of an Al—Fe-based brittle intermetallic compound layer.

これらのことから、前記鋼板とアルミニウム合金板との界面に前記スポット溶接によって形成された界面反応層は、白っぽい畝状の部分がAlとCuとの金属間化合物からなり、白っぽい畝状の部分に挟まれた黒く細長い部分が金属Alのみからなっていることが分かる。そして、これらスポット溶接によって形成された界面反応層が、AlとCuとの金属間化合物相と金属Al相とが互いに重なりあった(折り重なった)層状の組織となっていることが分かる。   From these facts, the interfacial reaction layer formed by spot welding at the interface between the steel plate and the aluminum alloy plate has a whitish saddle-like portion made of an intermetallic compound of Al and Cu, and has a whitish saddle-like portion. It can be seen that the sandwiched black elongated portion is made of only metal Al. It can be seen that the interface reaction layer formed by spot welding has a layered structure in which the intermetallic compound phase of Al and Cu and the metallic Al phase overlap (fold) each other.

そして、スポット溶接条件を変えた種々の例における、図1の界面組織の前記AlとCuとの金属間化合物相(白っぽい畝状の部分)と、前記金属Al相(白っぽい畝状の部分に挟まれた黒く細長い部分)との占める面積率を各々測定した。その結果、図1の界面組織の板厚方向断面の単位面積当たりの平均面積率として、前記AlとCuとの金属間化合物相が70〜90%であり、前記金属Al相が10〜30%からなる組成となる場合に、異材接合継手の接合強度が向上することを知見した。   And in various examples in which the spot welding conditions are changed, the intermetallic compound phase of Al and Cu in the interfacial structure of FIG. 1 (white whitish portion) and the metal Al phase (white whitish portion) are sandwiched. The area ratio occupied by the black elongated portions) was measured. As a result, as an average area ratio per unit area of the cross section in the thickness direction of the interface structure of FIG. 1, the intermetallic compound phase of Al and Cu is 70 to 90%, and the metal Al phase is 10 to 30%. It has been found that the joint strength of the dissimilar material joint is improved when the composition is made of.

すなわち、これら規定の平均面積率の範囲では、前記図1の共晶組織(界面反応組織)は、殆ど、前記AlとCuとの金属間化合物相と前記金属Al相とから構成されており、この平均面積率の残りだけ、前記共晶組織にFeとAlとの金属間化合物(層)を含むか、または、前記共晶組織に(界面反応層に)FeとAlとの金属間化合物(層)を分析(定量)可能な量としては含まないことを意味する。   That is, in the range of these prescribed average area ratios, the eutectic structure (interfacial reaction structure) of FIG. 1 is almost composed of the intermetallic compound phase of Al and Cu and the metal Al phase, The remainder of this average area ratio contains the intermetallic compound (layer) of Fe and Al in the eutectic structure, or the intermetallic compound of Fe and Al (in the interface reaction layer) in the eutectic structure ( Layer) is not included as an amount that can be analyzed (quantified).

これに対して、前記共晶組織(界面反応組織)において、前記AlとCuとの金属間化合物が70%未満で、前記金属Alが10%未満となる場合には、この残りがFeとAlとの金属間化合物(層)となって、FeとAlとの脆い金属間化合物の割合が増して、従来の界面反応組織と同様となり、継手の接合強度が低下する。言い換えると、これら規定の平均面積率未満に前記共晶組織がある場合には、スポット溶接の接合界面におけるAl−Fe系の脆い金属間化合物層の生成を抑制できない。   On the other hand, in the eutectic structure (interfacial reaction structure), when the intermetallic compound of Al and Cu is less than 70% and the metal Al is less than 10%, the remainder is Fe and Al. As a result, the ratio of brittle intermetallic compounds of Fe and Al increases, which is similar to the conventional interfacial reaction structure, and the joint strength of the joint decreases. In other words, when the eutectic structure is below the specified average area ratio, the formation of an Al—Fe brittle intermetallic compound layer at the joint interface of spot welding cannot be suppressed.

一方、前記AlとCuとの金属間化合物が90%を超えたり、前記金属Alが30%を超えたりするような界面反応組織をつくることは、後述するCuめっき層の厚さやスポット溶接条件の適正化によっても中々困難であり、また、これ以上、前記AlとCuとの金属間化合物や前記金属Alの割合を増す必要も無い。したがって、界面反応組織の組成は前記した範囲とする。   On the other hand, the formation of an interfacial reaction structure in which the intermetallic compound of Al and Cu exceeds 90% or the metal Al exceeds 30% depends on the thickness of the Cu plating layer and spot welding conditions described later. It is difficult even if it is optimized, and there is no need to increase the intermetallic compound of Al and Cu or the ratio of the metal Al. Therefore, the composition of the interfacial reaction structure is in the above-described range.

(鋼板のCuめっき)
本発明では、前記鋼板の被接合面に、スポット溶接される前に、予めCuめっきを施す。鋼板の被接合面に予めCuめっきを施すことで、加圧力や溶接電流を高くし、溶接時間を短くした特別な条件のスポット溶接との組み合わせで、形成された界面反応層をAlとCuとの金属間化合物と金属Alとからなる組成とできる。すなわち、この界面反応層の残りがFeとAlとの金属間化合物であるか、または、この界面反応層にFeとAlとの金属間化合物を有さないものとすることができ、接合強度に優れた異材接合継手を得られる。
(Cu plating of steel sheet)
In the present invention, Cu plating is performed in advance on the bonded surfaces of the steel plates before spot welding. By applying Cu plating to the surface to be joined of the steel plate in advance, the interfacial reaction layer formed in combination with spot welding under special conditions in which the pressurizing force and welding current are increased and the welding time is shortened is made of Al and Cu. A composition comprising an intermetallic compound and metal Al. That is, the remainder of the interfacial reaction layer can be an intermetallic compound of Fe and Al, or the interfacial reaction layer can be free of an intermetallic compound of Fe and Al. An excellent dissimilar joint joint can be obtained.

スポット溶接は通電加熱であるが、鋼板とアルミニウム合金板とを接触させると複数での点接触になるため、一般的に、接合部(界面部)の均一な加熱が難しい。ここで、鋼板側の被接合面(表面)にCuめっきを施すことで、アルミニウム合金板とCuめっきとは、やはり点接触になるものの、Cuの導電性が良いために、鋼板側が均一に発熱し、より均一な前記組成の界面反応層が得られる。   Spot welding is energization heating. However, when a steel plate and an aluminum alloy plate are brought into contact with each other, a plurality of point contacts are made, so that it is generally difficult to uniformly heat the joint (interface portion). Here, by applying Cu plating to the surface (surface) to be joined on the steel plate side, the aluminum alloy plate and Cu plating are still in point contact, but because the Cu conductivity is good, the steel plate side generates heat uniformly. As a result, a more uniform interface reaction layer having the above composition can be obtained.

Cuめっきの厚み:
このためのCuめっきの平均厚みは3〜10μmの範囲とする。このCuめっきの平均厚みが3μm未満では、アルミニウム合金板と点接触するCuの量が少なすぎて、前記Cuの良導電性による効果が発揮されずに、鋼板側が均一に発熱せず、前記図1のような、組成が均一で薄いあるいは層状な界面反応層(スポット溶接後の界面層)が得られない。すなわち、前記特別な条件のスポット溶接との組み合わせでも、界面反応層をAlとCuとの金属間化合物と金属Alとからなる組成とできなくなり、FeとAlとの金属間化合物が増した組成で、しかも、この金属間化合物のみの部分が現れるなど、不均一な層状界面反応層となって、接合強度が不足する。
Cu plating thickness:
The average thickness of the Cu plating for this purpose is in the range of 3 to 10 μm. If the average thickness of the Cu plating is less than 3 μm, the amount of Cu that makes point contact with the aluminum alloy plate is too small, and the effect of the good conductivity of the Cu is not exhibited, and the steel plate side does not generate heat uniformly. As shown in FIG. 1, a thin, thin or layered interface reaction layer (interface layer after spot welding) cannot be obtained. That is, even in combination with spot welding under the above special conditions, the interface reaction layer cannot be made of a composition composed of an intermetallic compound of Al and Cu and metallic Al, and the composition of intermetallic compound of Fe and Al is increased. In addition, since only a portion of this intermetallic compound appears, it becomes a non-uniform layered interface reaction layer, resulting in insufficient bonding strength.

一方、このCuめっきの平均厚みが10μmを超えると、箔などのように厚みが厚くなり、却って、前記Cuの良導電性による効果が得られない。すなわち、前記特別な条件のスポット溶接との組み合わせでも、界面反応層をAlとCuとの金属間化合物と金属Alとからなる組成とできず、前記図1のような、組成が均一で薄いあるいは層状な界面反応層が得られない。すなわち、FeとAlとの金属間化合物が増して、しかも、この金属間化合物のみの部分が現れるなど、不均一な層状界面反応層となって、接合強度が不足する。   On the other hand, when the average thickness of the Cu plating exceeds 10 μm, the thickness becomes thick like a foil, and on the contrary, the effect of the good conductivity of Cu cannot be obtained. That is, even in combination with the spot welding under the special conditions, the interface reaction layer cannot have a composition composed of an intermetallic compound of Al and Cu and metal Al, and the composition is uniform and thin as shown in FIG. A layered interfacial reaction layer cannot be obtained. That is, the intermetallic compound of Fe and Al increases, and furthermore, only the intermetallic compound appears, resulting in a non-uniform layered interface reaction layer, resulting in insufficient bonding strength.

Cuめっきの組成:
本発明におけるCuめっきは、界面反応層をAlとCuとの金属間化合物と金属Alとからなる組成とするための原材料でもあり、前記Cuの良導電性による効果を発揮させるためにも、Cuめっきの組成は好ましくは純Cu(純銅)めっきとする。すなわち、前記特許文献8に記載されたような、第三の元素を多く含むCu合金とした場合には、却って、アルミニウム合金板と点接触するCu合金めっきの導電性が低下して、界面反応層をAlとCuとの金属間化合物と金属Alとからなる組成とできにくくなる。
Composition of Cu plating:
The Cu plating in the present invention is also a raw material for making the interface reaction layer a composition composed of an intermetallic compound of Al and Cu and metal Al. In order to exhibit the effect of the good conductivity of Cu, Cu plating The plating composition is preferably pure Cu (pure copper) plating. That is, when the Cu alloy containing a large amount of the third element as described in Patent Document 8 is used, the conductivity of the Cu alloy plating that is in point contact with the aluminum alloy plate is lowered, and the interface reaction occurs. It becomes difficult for the layer to have a composition composed of an intermetallic compound of Al and Cu and metal Al.

前記特許文献8に記載されたスポット溶接では、記載されているように、鉄系材料の被接合面にコーティングされたCu合金自体が、ろう材となって界面反応層を形成し、脆いFeとAlとの金属間化合物層の形成を抑制する。このために、前記特許文献8では、界面反応層の組成と継ぎ手の接合強度とが、このコーティングされたCu合金層によって大きく支配される。   In the spot welding described in Patent Document 8, as described, the Cu alloy itself coated on the surface to be joined of the iron-based material becomes a brazing material to form an interface reaction layer, and brittle Fe and Suppresses formation of an intermetallic compound layer with Al. For this reason, in Patent Document 8, the composition of the interface reaction layer and the joint strength of the joint are largely governed by the coated Cu alloy layer.

それゆえ、前記特許文献8で鉄系材料の被接合面にコーティングするのは、強度が低い純Cuではなく、Cuを主成分とし、Si、Mn、Zn、Cr、Mg、Ni、Al、Sn、Fe、TiおよびZrよりなる群から選ばれる1種以上の元素を含有する、強度が高いCu合金としている。例えば、AlおよびFeの合計添加量は30質量%以下の多量である。また、Si、Mn、Zn、Cr、Mg、Sn、Ti、Zr、NiなどのCu合金層への合計添加量も30質量%以下の多量である。   Therefore, the surface to be joined of the iron-based material in Patent Document 8 is not pure Cu having low strength, but mainly Cu, and Si, Mn, Zn, Cr, Mg, Ni, Al, Sn. A Cu alloy having a high strength containing at least one element selected from the group consisting of Fe, Ti and Zr. For example, the total addition amount of Al and Fe is a large amount of 30% by mass or less. Moreover, the total addition amount to Cu alloy layers, such as Si, Mn, Zn, Cr, Mg, Sn, Ti, Zr, and Ni, is also a large amount of 30% by mass or less.

しかし、本発明におけるCuめっきでは、前記した通り、純Cuのめっきが好ましく、これらの合金元素は全て不要であり、合金元素の含有量は少ないほど好ましく、Cuめっきにおけるこれらの元素全ての合計含有量で5質量%以下(0%を含む)とする。因みに、本発明におけるCuめっきは、常法による浸漬あるいは電気メッキ、または真空蒸着などの公知の、常法によるめっき方法によって鋼板の被接合面に形成することができる。   However, in the Cu plating according to the present invention, as described above, pure Cu plating is preferable, all of these alloy elements are unnecessary, and the smaller the content of alloy elements, the more preferable, the total content of all these elements in Cu plating. The amount is 5% by mass or less (including 0%). Incidentally, the Cu plating in the present invention can be formed on the bonded surface of the steel sheet by a known plating method such as immersion or electroplating by ordinary methods or vacuum deposition.

Cuめっきは、アルミニウム合金板との接合面となる、鋼板の被接合面(一面あるいは片面)に施されていることが必要であるが、もう一方の面(両面)に施されている必要は必ずしもない。ただ、鋼板をめっき液に浸漬してめっきするなど、鋼板の片面だけにめっきするのが困難であれば、両面にめっきしても良く、また、必要であれば、もう一方の面(両面)に亜鉛めっきなどの他のめっきや塗装を適宜施しても良い。   The Cu plating needs to be applied to the surface to be joined (one side or one side) of the steel sheet, which becomes the joint surface with the aluminum alloy plate, but it needs to be applied to the other side (both sides) Not necessarily. However, if it is difficult to plate only one side of the steel plate, such as by dipping the steel plate in a plating solution, it may be plated on both sides, and if necessary, the other side (both sides) Other plating or coating such as galvanization may be applied as appropriate.

(スポット溶接条件)
本発明におけるスポット溶接条件も、前記鋼板の接合面に予め施すCuめっき層との組み合わせで、形成された界面反応層をAlとCuとの金属間化合物と金属Alとからなる組成とするために重要である。すなわち、この界面反応層の残りがFeとAlとの金属間化合物であるか、または、この界面反応層にFeとAlとの金属間化合物を有さないものとすることができ、接合強度に優れた異材接合継手を得るために重要である。
(Spot welding conditions)
The spot welding condition in the present invention is also a combination with a Cu plating layer applied in advance to the joint surface of the steel sheet, so that the formed interface reaction layer has a composition composed of an intermetallic compound of Al and Cu and metal Al. is important. That is, the remainder of the interfacial reaction layer can be an intermetallic compound of Fe and Al, or the interfacial reaction layer can be free of an intermetallic compound of Fe and Al. It is important to obtain an excellent dissimilar joint joint.

本発明におけるスポット溶接条件は、常法や特許文献8のスポット溶接条件とは異なり、加圧力や溶接電流を高くし、溶接時間を短くした特別な条件とする。具体的には、加圧力:3kNを超え、6kN以下、溶接電流:18kAを超え、30kA以下、溶接時間40〜500msecの各条件を全て満足するとともに、フラックスを用いないものとする。このような条件のスポット溶接には汎用のスポット溶接装置が使用できる。   The spot welding conditions in the present invention are different from the spot welding conditions of the conventional method and Patent Document 8 and are special conditions in which the welding pressure and the welding current are increased and the welding time is shortened. Specifically, the applied pressure is over 3 kN, 6 kN or less, the welding current is over 18 kA, 30 kA or less, and the welding time is 40 to 500 msec. A general-purpose spot welding apparatus can be used for spot welding under such conditions.

前記範囲を外れて、加圧力が低すぎると、鋼板(Cuめっき)とアルミニウム合金板との接触点が少ないため、スポット溶接時の界面反応が不均一になり、界面反応層をAlとCuとの金属間化合物と金属Alとからなる組成とできず、前記図1のような、組成が均一で薄いあるいは層状な界面反応層が得られない。すなわち、FeとAlとの金属間化合物が増して、しかも、この金属間化合物のみの部分が現れるなど、不均一な層状界面反応層となって、接合強度が不足する。一方、加圧力が高すぎると、スポット溶接時に溶解部がナゲットから飛散するため、接合強度が不足する。   If the applied pressure is too low outside the above range, the contact point between the steel plate (Cu plating) and the aluminum alloy plate is few, so the interface reaction during spot welding becomes non-uniform, and the interface reaction layer is made of Al and Cu. Thus, a composition composed of an intermetallic compound and metal Al cannot be obtained, and an interface reaction layer having a uniform composition and a thin or layered structure as shown in FIG. 1 cannot be obtained. That is, the intermetallic compound of Fe and Al increases, and furthermore, only the intermetallic compound appears, resulting in a non-uniform layered interface reaction layer, resulting in insufficient bonding strength. On the other hand, when the applied pressure is too high, the melted portion scatters from the nugget during spot welding, resulting in insufficient bonding strength.

前記範囲を外れて、溶接電流が低すぎたり、溶接時間が短すぎたり、あるいは逆に長すぎたりしても、スポット溶接時の界面反応が不足して、ナゲットが十分に形成されたとしても、界面反応層を、前記したAlとCuとの金属間化合物と金属Alとからなり、前記FeとAlとの金属間化合物を含まないような組成とはできないため、やはり接合強度が不足する。   Even if the welding current is too low, the welding time is too short, or conversely too long, the interface reaction during spot welding is insufficient and the nugget is sufficiently formed. The interface reaction layer is composed of the above-described intermetallic compound of Al and Cu and metal Al, and cannot have a composition that does not include the intermetallic compound of Fe and Al.

一方、溶接電流を前記範囲を外れて高くしたり、溶接時間を前記範囲を外れて長くする、大電流あるいは長時間のスポット溶接では、界面反応が進みすぎて、却って形成された界面反応層を前記FeとAlとの金属間化合物を含まない組成とはできずに、接合強度が不足する。   On the other hand, in the case of high current or long-time spot welding where the welding current is increased outside the above range, or the welding time is increased outside the above range, the interfacial reaction proceeds too much, and the interfacial reaction layer formed on the contrary is formed. The composition does not include the intermetallic compound of Fe and Al, and the bonding strength is insufficient.

因みに、前記特許文献8では、好ましいスポット溶接条件として、溶接電流が8〜18kA、加圧力が1.5〜3kN、溶接時間は1s以下としている。そして、加圧力が3kNを超えると、元素の拡散が助長されて、Cu−Al系金属間化合物が大量に形成されるため、良好な継手が得られないとしている。また、溶接時間が1sを超えると、Cu−Al系金属間化合物の成長が助長されて良好な継手が得られないとしている。したがって、本発明のように形成された界面反応層をAlとCuとの金属間化合物と金属Alとからなる組成とすることの有用性については認識しておらず、また、本発明から外れた前記スポット溶接条件を採用しているがゆえに、本発明のような組成とはならない。   Incidentally, in the said patent document 8, welding current is 8-18 kA, a pressurizing force is 1.5-3 kN, and welding time is 1 s or less as preferable spot welding conditions. When the applied pressure exceeds 3 kN, element diffusion is promoted, and a large amount of Cu—Al intermetallic compound is formed, so that a good joint cannot be obtained. Further, when the welding time exceeds 1 s, the growth of the Cu—Al-based intermetallic compound is promoted and a good joint cannot be obtained. Therefore, the usefulness of making the interfacial reaction layer formed as in the present invention a composition comprising an intermetallic compound of Al and Cu and metal Al is not recognized, and deviated from the present invention. Since the spot welding conditions are employed, the composition of the present invention is not obtained.

このように、前記特許文献8では、スポット溶接条件によって、Cu−Al系金属間化合物の生成や成長が助長されることを認識している。しかし、このCu−Al系金属間化合物の有用性については全く認識してはおらず、それどころか、逆に、有害な金属間化合物として、積極的に排除しようとしている。   Thus, in the said patent document 8, it recognizes that the production | generation and growth of a Cu-Al type | system | group intermetallic compound are encouraged by spot welding conditions. However, the usefulness of this Cu—Al-based intermetallic compound is not recognized at all, and on the contrary, it is actively trying to eliminate it as a harmful intermetallic compound.

本発明におけるスポット溶接接合方法では、特許文献8のようなフラックスの使用は不要であり、却って有害でもある。本発明における前記スポット溶接条件によれば、前記フッ化物系などのフラックスをアルミニウム合金板の被接合面に塗布せずとも、アルミニウム合金板の被接合面からの酸化皮膜の除去は可能である。また、前記鋼板のCuめっきからの溶融Cuとアルミニウム合金板表面との濡れ性の改善も不要である。前記フッ化物系などのフラックスを使用すると、本発明における前記スポット溶接条件では、形成された界面反応層を本発明における前記FeとAlとの金属間化合物を含まない前記組成と却ってできにくくなる。   In the spot welding joining method in the present invention, the use of a flux as in Patent Document 8 is unnecessary, and it is harmful. According to the spot welding conditions in the present invention, it is possible to remove the oxide film from the bonded surface of the aluminum alloy plate without applying the fluoride-based flux to the bonded surface of the aluminum alloy plate. Further, it is not necessary to improve the wettability between the molten Cu from the Cu plating of the steel plate and the aluminum alloy plate surface. When the flux such as the fluoride is used, it becomes difficult to make the formed interface reaction layer in the spot welding condition according to the present invention different from the composition containing no intermetallic compound of Fe and Al in the present invention.

(素材鋼板)
本発明異材接合継手に使用する素材鋼板について、本発明では通常の軟鋼板が使用できる。ただ、自動車部材などの軽量化と高強度が要求される用途からして、引張強度が450MPa以上の高強度鋼板(ハイテン)を使用することが好ましい。
(Material steel plate)
About the raw steel plate used for the dissimilar joint joint of the present invention, a normal mild steel plate can be used in the present invention. However, it is preferable to use a high-strength steel plate (high tensile) having a tensile strength of 450 MPa or more in view of applications that require weight reduction and high strength such as automobile members.

また、通常の軟鋼板では、高強度鋼板に比して、スポット溶接の際に、脆いFeとAlとの金属間化合物層(反応層)が形成しやすいという傾向もある。例えば、軟鋼板は、一般には低合金鋼が多く、酸化皮膜がほぼ鉄酸化物であるため、FeとAlの拡散が容易となり、高強度鋼板に比して、脆いFeとAlとの金属間化合物層(反応層)が形成しやすい。また、軟鋼板は、高強度鋼板に比して、母材のFeとAlの拡散を抑制する効果があるSi、Mnの含有量が少ないために、やはりFeとAlの拡散が容易となり、脆いFeとAlとの金属間化合物層が形成しやすい。更に、軟鋼板は、高強度鋼板に比して、鋼板の強度が低いために、板厚にもよるが、スポット溶接時の電極チップによる加圧によって、鋼板の変形が大きくなりやすく、この加圧力を大きくできずに(限界があるので)、脆いFeとAlとの金属間化合物層が形成しやすいという傾向もある。   In addition, ordinary mild steel sheets tend to form a brittle intermetallic compound layer (reaction layer) of Fe and Al during spot welding as compared with high-strength steel sheets. For example, mild steel sheets are generally low-alloy steels, and the oxide film is almost iron oxide. Therefore, diffusion of Fe and Al is facilitated, and compared with high-strength steel sheets, a brittle metal between Fe and Al. A compound layer (reaction layer) is easily formed. In addition, mild steel sheet is less brittle than Fe steel and Al, because it contains less Si and Mn, which has the effect of suppressing the diffusion of Fe and Al as the base material, and it is easy to diffuse Fe and Al. It is easy to form an intermetallic compound layer of Fe and Al. Furthermore, mild steel sheets have lower steel strength than high-strength steel sheets, and depending on the plate thickness, the deformation of the steel sheet tends to increase due to the pressure applied by the electrode tips during spot welding. There is also a tendency that a brittle intermetallic compound layer of Fe and Al is easily formed without increasing the pressure (because there is a limit).

鋼板の成分組成:
前記高強度鋼板の成分組成としては、Si、Mnなどを所定量含む鋼板組成が好ましく、例えば、質量%で、C:0.01〜0.30%、Si:0.1〜3.00%、Mn:0.1〜3.00%を各々含有し、残部がFeおよび不可避的不純物からなる組成とすることが好ましい。これに加えて、更に、Al:0.002〜0.1%を含有しても良い。また、更に、このAlに加えて、あるいはAlの代わりに、Nb:0.005〜0.10%、Ti:0.005〜0.10%、Zr:0.005〜0.10%、Cr:0.05〜3.00%、Mo:0.01〜3.00%、Cu:0.01〜3.00%、Ni:0.01〜3.00%、の1種または2種以上を含有しても良い。なお、本発明における化学成分の単位(各元素の含有量)は、アルミニウム合金を含めて、すべて質量%である。
Component composition of steel sheet:
The component composition of the high-strength steel plate is preferably a steel plate composition containing a predetermined amount of Si, Mn, etc., for example, by mass%, C: 0.01 to 0.30%, Si: 0.1 to 3.00% , Mn: 0.1 to 3.00% each, and the balance is preferably composed of Fe and inevitable impurities. In addition to this, Al: 0.002 to 0.1% may be further contained. Further, in addition to or instead of Al, Nb: 0.005 to 0.10%, Ti: 0.005 to 0.10%, Zr: 0.005 to 0.10%, Cr : 0.05 to 3.00%, Mo: 0.01 to 3.00%, Cu: 0.01 to 3.00%, Ni: 0.01 to 3.00%, one or more May be contained. In addition, the unit (content of each element) of the chemical component in this invention is mass% altogether including an aluminum alloy.

鋼板の板厚:
接合する鋼板の板厚t1 は0.5〜5.0mmの範囲から、アルミニウム材側の板厚t2 に応じて選択することが好ましい。鋼板の板厚t1 が0.5mm未満と薄過ぎる場合、前記自動車部材などとして必要な強度や剛性を確保できない。また、スポット溶接時の鋼材の熱変形が大きくなって、これが著しい場合には、鋼材の材料が抜け落ち、健全な溶接継ぎ手が得られなくなる。一方、鋼材の板厚t1 が5.0mmを越えて厚過ぎると、入熱量の制御が難しくなり、スポット溶接が困難となり、継手の異材化の利点の一つである軽量化も犠牲になる。
Steel plate thickness:
The thickness t1 of the steel plates to be joined is preferably selected from the range of 0.5 to 5.0 mm according to the thickness t2 on the aluminum material side. If the plate thickness t1 of the steel plate is too thin at less than 0.5 mm, the strength and rigidity required for the automobile member and the like cannot be ensured. Moreover, when the thermal deformation of the steel material at the time of spot welding becomes large and this is remarkable, the material of the steel material falls off and a sound welded joint cannot be obtained. On the other hand, if the steel plate thickness t1 exceeds 5.0 mm, it becomes difficult to control the amount of heat input, spot welding becomes difficult, and the weight reduction, which is one of the advantages of dissimilar joint materials, is sacrificed.

(アルミニウム合金板)
本発明異材接合継手に使用する素材アルミニウム合金板は、その合金の種類を特に限定するものではないが、上記鋼板の場合と同様に、自動車部材などの軽量化と高強度が要求される用途からして、強度が高い方が望ましい。この点、アルミニウム合金の中でも、強度が高く、この種構造用材として汎用されている、AA(あるいはJIS)6000系、7000系、あるいは5000系などのアルミニウム合金板の使用が最適である。
(Aluminum alloy plate)
The material aluminum alloy plate used for the dissimilar joint joint of the present invention is not particularly limited in the type of the alloy, but, as in the case of the steel plate, from the application that requires weight reduction and high strength of automobile members and the like. Therefore, higher strength is desirable. In this regard, among aluminum alloys, it is optimal to use an AA (or JIS) 6000 series, 7000 series, or 5000 series aluminum alloy plate that has high strength and is widely used as this kind of structural material.

使用するアルミニウム合金板の板厚t2 は好ましくは0.5〜4.0mmの範囲とする。アルミニウム合金板の板厚t2 が0.5mm未満と薄過ぎる場合、構造材料としての強度が不足して不適切である。また、溶融溶接時のアルミニウム材の熱変形が大きくなって、これが著しい場合には、アルミニウム材の材料が抜け落ち、健全な溶接継ぎ手が得られなくなる。一方、アルミニウム材の板厚t2 が4.0mmを越えて厚過ぎる場合は、異材継手の利点の一つである軽量化が犠牲になる。その上、適正な厚みの界面反応層の生成に要する入熱量の制御が難しくなる。   The thickness t2 of the aluminum alloy plate to be used is preferably in the range of 0.5 to 4.0 mm. If the thickness t2 of the aluminum alloy plate is too thin at less than 0.5 mm, the strength as a structural material is insufficient, which is inappropriate. Moreover, when the thermal deformation of the aluminum material at the time of fusion welding becomes large and this is remarkable, the material of the aluminum material falls off and a sound welding joint cannot be obtained. On the other hand, when the thickness t2 of the aluminum material exceeds 4.0 mm and is too thick, the weight reduction which is one of the advantages of the dissimilar material joint is sacrificed. In addition, it becomes difficult to control the amount of heat input required to generate an interface reaction layer having an appropriate thickness.

以下、実施例を挙げて、本発明をより具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limitedly interpreted by this Example.

板厚が1.2mmである980MPa級ハイテン鋼板と、板厚が1.0mmで0.2%耐力が250MPa以上の6000系アルミニウム合金板とを重ね合わせ、フラックスを用いずにスポット溶接して、異材接合継手を製作し、組織や性能を調査、評価した。   A 980 MPa class high-tensile steel plate having a plate thickness of 1.2 mm and a 6000 series aluminum alloy plate having a plate thickness of 1.0 mm and a 0.2% proof stress of 250 MPa or more are spot-welded without using a flux, Dissimilar material joints were manufactured, and the structure and performance were investigated and evaluated.

より具体的には、表1に示す成分組成の鋼板と、表2に示す成分組成のアルミニウム合金板とを、JIS A 3137記載の十字引張試験片形状に加工して重ね合わせ、表3に示すa〜nの各条件でスポット溶接を行い、異材接合した。ここで、後述する表4に示す剥離強度から評価される通り、表3に示すa〜f、l〜nは、加圧力、溶接電流、溶接時間のいずれかが適切な範囲から外れる不適切なスポット溶接条件、g〜kは適切なスポット溶接条件である。   More specifically, a steel plate having the component composition shown in Table 1 and an aluminum alloy plate having the component composition shown in Table 2 were processed into a cross tensile test piece shape described in JIS A 3137 and overlapped. Spot welding was performed under each of the conditions a to n, and different materials were joined. Here, as evaluated from the peel strength shown in Table 4 described later, a to f and l to n shown in Table 3 are inappropriate in which any one of the applied pressure, the welding current, and the welding time is out of the appropriate range. Spot welding conditions, g to k, are appropriate spot welding conditions.

鋼板とアルミニウム合金板とは、共に前記十字引張試験片形状(50mm幅×150mm長さの大きさ)に加工し、互いに重ね合わせた上で、重ね合わせた中央部を幅方向にスポット溶接した。スポット溶接は、共通して、単層整流式抵抗スポット溶接機(容量90KVA)を用い、表3に示す加圧力、溶接電流、溶接時間の各1点当たりの条件にて、10点のスポット溶接を行った。この際、共通して、Cu−Cr合金からなるドーム型の電極を用い、正極をアルミニウム材、負極を鋼材とした。   Both the steel plate and the aluminum alloy plate were processed into the shape of the cross tensile test piece (50 mm width × 150 mm length), overlapped with each other, and the overlapped central portion was spot welded in the width direction. For spot welding, a single-layer rectifying resistance spot welder (capacity 90 KVA) is commonly used, and spot welding is performed at 10 points under the conditions shown in Table 3 for each of pressure, welding current, and welding time. Went. In this case, a dome-shaped electrode made of a Cu—Cr alloy was used in common, and the positive electrode was an aluminum material and the negative electrode was a steel material.

前記鋼板の被接合面には、スポット溶接される前に、予め純Cuめっきを共通して5μm施した。なお、被接合面に純Cuめっきを施していない鋼板も比較のために試験した。   The surface to be joined of the steel plate was preliminarily plated with 5 μm of pure Cu before being spot welded. In addition, the steel plate which has not given pure Cu plating to the to-be-joined surface was also tested for the comparison.

(界面反応層の厚さと形成範囲)
このようにして製作した各異材接合継手の、界面反応層の厚さと形成範囲とを測定した。これらの結果も表4に示す。界面反応層の板厚方向の厚さ測定は、各スポット溶接部の中央にて板厚方向に切断し、樹脂に埋め込んで研磨をし、スポット溶接部全体に渡り0.5mm間隔でのSEM(反射電子像)による観察を行った。界面反応層の厚さが1μm以上の場合は3000倍の視野にて、1μm未満の場合は10000倍の視野にて測定し、各スポット溶接部ごとに平均値を求め、これらを前記10箇所のスポット溶接部で平均化した値を界面反応層の平均厚みとした。この結果を表4に示す。
(Interfacial reaction layer thickness and formation range)
The thickness and the formation range of the interface reaction layer of each of the dissimilar joints thus produced were measured. These results are also shown in Table 4. The thickness of the interfacial reaction layer in the plate thickness direction is measured by cutting in the plate thickness direction at the center of each spot weld, embedding it in resin, polishing it, and performing SEM (0.5 mm intervals over the entire spot weld). Observation by reflected electron image). When the thickness of the interface reaction layer is 1 μm or more, it is measured with a field of view of 3000 times, and when it is less than 1 μm, it is measured with a field of view of 10,000 times. The value averaged at the spot welds was taken as the average thickness of the interface reaction layer. The results are shown in Table 4.

更に、このSEM観察の際に、界面反応層をEDXにて、前記図2のように元素分析して、図1に示される各層状の組織が何であるかを判別し、界面反応層における、これらAlとCuとの金属間化合物と金属Alとの存在状態と、板厚方向断面の単位面積当たりの平均面積率とを求めた。すなわち、前記3000倍のSEM(反射電子像)写真から、鋼板と界面反応層との境界に対して、界面反応層の板厚方向(図1の上下垂直方向)に幅1μmの領域を取り、この領域における界面反応層中のAlとCuとの金属間化合物と金属Alとの各々の面積を求めた。そして、この各々の面積を前記各間隔での各観察結果で平均化し、界面反応層の板厚方向断面の単位面積当たりの平均面積率(%)を求めた。この結果を表4に示すが、これらの残りが、脆いFeとAlとの金属間化合物と見なして、表4には、これらの平均面積率も記載する。   Furthermore, during this SEM observation, the interface reaction layer is subjected to elemental analysis as shown in FIG. 2 by EDX to determine what each layered structure shown in FIG. 1 is, and in the interface reaction layer, The presence state of these intermetallic compounds of Al and Cu and metal Al, and the average area ratio per unit area of the cross section in the thickness direction were determined. That is, from the 3000 times SEM (reflection electron image) photograph, a region having a width of 1 μm is taken in the thickness direction of the interface reaction layer (vertical direction in FIG. 1) with respect to the boundary between the steel plate and the interface reaction layer, The areas of the intermetallic compound of Al and Cu and the metal Al in the interface reaction layer in this region were determined. Then, the respective areas were averaged by the observation results at the intervals, and the average area ratio (%) per unit area of the cross section in the plate thickness direction of the interface reaction layer was obtained. The results are shown in Table 4, and the rest of these are regarded as brittle intermetallic compounds of Fe and Al, and Table 4 also lists their average area ratios.

これら製作した各継手を引張り試験機で十字引張試験を行い、剥離強度(最大荷重)を求めた。これらの結果も表5に示す。剥離強度は、A6022アルミニウム材同士のスポット溶接接合強度=1.0kNを参考にして、2.0kN以上であれば○、2.0kN未満であれば×とした。   Each of the manufactured joints was subjected to a cross tensile test with a tensile tester to determine the peel strength (maximum load). These results are also shown in Table 5. With reference to the spot weld joint strength between A6022 aluminum materials = 1.0 kN, the peel strength was evaluated as ◯ if it was 2.0 kN or more, and x if it was less than 2.0 kN.

表4から明らかな通り、発明例の異材接合継手は、鋼板の被接合面に予め適切な純Cuめっきが施されており、前記適切な条件でスポット溶接されている。この結果、形成された界面反応層が、この界面反応層の板厚方向断面の単位面積当たりの平均面積率で70〜90%のAlとCuとの金属間化合物と、前記平均面積率で10〜30%の金属Alとの均一な層状組織からなる。そして、この界面反応層の残りがFeとAlとの金属間化合物であるか、または、この界面反応層にFeとAlとの金属間化合物を有さない。この結果、前記発明例の異材接合継手は優れた接合強度(剥離強度)を有する。   As is apparent from Table 4, the dissimilar material joint of the invention example has an appropriate pure Cu plating applied to the surface to be joined of the steel plate in advance, and is spot-welded under the appropriate conditions. As a result, the formed interfacial reaction layer had an average area ratio of 70 to 90% per unit area of the cross section in the thickness direction of the interfacial reaction layer, an intermetallic compound of Al and Cu, and the average area ratio of 10 It consists of a uniform layered structure with ~ 30% metal Al. The remainder of the interface reaction layer is an intermetallic compound of Fe and Al, or the interface reaction layer does not have an intermetallic compound of Fe and Al. As a result, the dissimilar material joint according to the invention example has excellent joint strength (peel strength).

一方、表4から明らかな通り、比較例の異材接合継手は、鋼板の被接合面の純Cuめっきが無いか、前記スポット溶接条件が適切でない。この結果、形成された界面反応層が、前記所定面積範囲からなる、AlとCuとの金属間化合物と金属Alとの均一な層状組織ではない。また、この界面反応層の残りのFeとAlとの金属間化合物の量も比較的多い。この結果、前記比較例の異材接合継手は接合強度(剥離強度)が発明例に比して著しく劣っている。   On the other hand, as apparent from Table 4, the dissimilar joints of the comparative examples have no pure Cu plating on the surfaces to be joined of the steel plates, or the spot welding conditions are not appropriate. As a result, the formed interface reaction layer is not a uniform layered structure of the intermetallic compound of Al and Cu and the metal Al, which has the predetermined area range. Further, the amount of the intermetallic compound of Fe and Al remaining in the interface reaction layer is relatively large. As a result, the bonded joint of the dissimilar material of the comparative example is significantly inferior in bonding strength (peeling strength) as compared with the inventive example.

言い換えると、鋼板側の被接合面に純Cuめっきを予め配置しても(施しても)、表3にg〜kで示す適切なスポット溶接条件でなければ、前記本発明で規定する新規な共晶組織からなる界面反応層とはならない。この結果、スポット溶接の接合界面におけるAl−Fe系の脆い金属間化合物層の生成を抑制することができず、異材接合継手の接合強度が低下することが分かる。   In other words, even if pure Cu plating is preliminarily arranged (applied) on the surface to be joined on the steel plate side, it is not a suitable spot welding condition indicated by g to k in Table 3; It is not an interfacial reaction layer composed of a eutectic structure. As a result, it can be seen that formation of an Al—Fe brittle intermetallic compound layer at the joint interface of spot welding cannot be suppressed, and the joint strength of the dissimilar material joint is lowered.

したがって、これらの事実から、異材接合継手の接合強度に対する、本発明の鋼板の被接合面の純Cuめっきや、高加圧力、高電流、溶接短時間である、前記スポット溶接条件の臨界的な意義が裏付けられる。   Therefore, from these facts, the critical strength of the spot welding condition, which is pure Cu plating of the bonded surface of the steel sheet of the present invention, high pressurization force, high current, and short welding time, with respect to the joint strength of the dissimilar joint joint. The significance is supported.

Figure 0005215986
Figure 0005215986

Figure 0005215986
Figure 0005215986

Figure 0005215986
Figure 0005215986

Figure 0005215986
Figure 0005215986

本発明によれば、スポット溶接の接合界面におけるAl−Fe系の脆い金属間化合物層の生成自体を無くして、高い接合強度とできる、鋼板とアルミニウム合金板との異材接合継手および異材接合方法を提供できる。このような異材接合継手および異材接合方法は、自動車、鉄道車両などの輸送分野、機械部品、建築構造物等における各種構造部材およびその溶接方法として有用に適用できる。   According to the present invention, there is provided a dissimilar joint joint and dissimilar material joining method between a steel plate and an aluminum alloy plate, which can eliminate the formation of an Al-Fe brittle intermetallic compound layer itself at the joint interface of spot welding and achieve high joint strength. Can be provided. Such a dissimilar material joint and dissimilar material joining method can be usefully applied as various structural members and welding methods thereof in the transportation field such as automobiles and railway vehicles, machine parts, building structures, and the like.

Claims (3)

アルミニウム合金板と被接合面に予めCuめっきが施された鋼板とを重ね合わせてスポット溶接により接合した異材接合継手であって、前記鋼板とアルミニウム合金板との界面に前記スポット溶接によって形成された界面反応層がAlとCuとの金属間化合物相と金属Al相との共晶組織からなり、この共晶組織における前記各相の割合として、前記界面反応層の板厚方向断面の単位面積当たりの平均面積率で、前記AlとCuとの金属間化合物相が70〜90%であるとともに、前記金属Al相が10〜30%であることを特徴とする接合強度に優れた異材接合継手。   A dissimilar joint joint in which an aluminum alloy plate and a steel plate that has been subjected to Cu plating in advance are overlapped and joined by spot welding, and formed by spot welding at the interface between the steel plate and the aluminum alloy plate The interfacial reaction layer is composed of a eutectic structure of an intermetallic compound phase of Al and Cu and a metallic Al phase, and the ratio of each phase in the eutectic structure is as a unit area of the cross section in the plate thickness direction of the interfacial reaction layer. A dissimilar joint with excellent joint strength, characterized in that the intermetallic compound phase of Al and Cu is 70 to 90% and the metal Al phase is 10 to 30%. 前記鋼板の接合面に予め施すCuめっき層の平均厚みが3〜10μmであり、前記スポット溶接が、加圧力:3kNを超え、6kN以下、溶接電流:18kAを超え、30kA以下、溶接時間40〜500msecの各条件を満足するとともに、フラックスを用いないものである、請求項1に記載の接合強度に優れた異材接合継手。   The average thickness of the Cu plating layer applied in advance to the joint surface of the steel sheet is 3 to 10 μm, and the spot welding is performed with a pressure of over 3 kN, 6 kN or less, a welding current of over 18 kA, 30 kA or less, a welding time of 40 to 40 The dissimilar joint joint excellent in joining strength according to claim 1, which satisfies each condition of 500 msec and does not use a flux. 鋼板とアルミニウム合金板とを重ね合わせてスポット溶接により接合する異材接合方法であって、前記鋼板の被接合面に予め厚さ3〜10μmのCuめっきを施した上で、加圧力:3kNを超え、6kN以下、溶接電流:18kAを超え、30kA以下、溶接時間40〜500msecの各条件を満足するように、かつフラックスを用いずにスポット溶接し、前記鋼板とアルミニウム合金板との界面に前記スポット溶接によって形成された界面反応層をAlとCuとの金属間化合物相と金属Al相との共晶組織とし、この共晶組織における前記各相の割合として、前記界面反応層の板厚方向断面の単位面積当たりの平均面積率で、前記AlとCuとの金属間化合物相を70〜90%とするとともに、前記金属Al相を10〜30%としたことを特徴とする、接合強度に優れた異材接合方法。   A dissimilar material joining method in which a steel plate and an aluminum alloy plate are overlapped and joined by spot welding, and the surface to be joined of the steel plate is subjected to Cu plating with a thickness of 3 to 10 μm in advance, and the applied pressure exceeds 3 kN. 6 kN or less, welding current: exceeding 18 kA, 30 kA or less, spot welding is performed without using flux so as to satisfy each condition of welding time 40 to 500 msec, and the spot is formed at the interface between the steel plate and the aluminum alloy plate. The interfacial reaction layer formed by welding is a eutectic structure of an intermetallic compound phase of Al and Cu and a metallic Al phase, and the ratio of each phase in the eutectic structure is a cross section in the thickness direction of the interfacial reaction layer. The average area ratio per unit area of the intermetallic compound phase of Al and Cu was 70 to 90%, and the metal Al phase was 10 to 30%. Wherein, excellent dissimilar materials bonded manner bonding strength.
JP2009285505A 2009-12-16 2009-12-16 Dissimilar material joint and dissimilar material joining method Expired - Fee Related JP5215986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285505A JP5215986B2 (en) 2009-12-16 2009-12-16 Dissimilar material joint and dissimilar material joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285505A JP5215986B2 (en) 2009-12-16 2009-12-16 Dissimilar material joint and dissimilar material joining method

Publications (2)

Publication Number Publication Date
JP2011125889A JP2011125889A (en) 2011-06-30
JP5215986B2 true JP5215986B2 (en) 2013-06-19

Family

ID=44289059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285505A Expired - Fee Related JP5215986B2 (en) 2009-12-16 2009-12-16 Dissimilar material joint and dissimilar material joining method

Country Status (1)

Country Link
JP (1) JP5215986B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018003810T5 (en) * 2017-07-25 2020-04-30 Autonetworks Technologies, Ltd. Method of manufacturing a welded structure of a metal part and welded structure of a metal part
KR102299768B1 (en) 2017-09-11 2021-09-07 주식회사 엘지화학 Method for laser welding of different metals with optimization of welding condition by using intermetallic compound analysis
JP7033826B2 (en) * 2018-03-28 2022-03-11 ダイハツ工業株式会社 How to join dissimilar metal materials
CN112171036B (en) * 2020-09-11 2022-07-26 北京汽车研究总院有限公司 Welding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948714B2 (en) * 1979-10-29 1984-11-28 株式会社日立製作所 Method of pressure welding metal base materials using eutectic reaction
JP3812789B2 (en) * 1999-03-15 2006-08-23 マツダ株式会社 Metal welding method and metal joint structure
JP4601052B2 (en) * 2004-12-24 2010-12-22 日産自動車株式会社 Dissimilar metal joining method

Also Published As

Publication number Publication date
JP2011125889A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
US10857619B2 (en) Control of intermetallic compound growth in aluminum to steel resistance welding
JP5495093B2 (en) Joining method and structure of dissimilar metals
JP5513962B2 (en) Dissimilar material joining method
JP5572046B2 (en) Dissimilar material joining method
JP2008105087A (en) Joining method of iron member with aluminum member, and iron-aluminum joined structure
JPWO2006046608A1 (en) Method of joining iron-based member and aluminum-based member
JP4185930B2 (en) Dissimilar material joint
JP2012152789A (en) Method for joining dissimilar metal plates by overlapping and electric resistance brazing, and brazing joint formed by the same
EP3587614B1 (en) Laser brazing method and production method for lap joint member
WO1998028130A1 (en) Aluminium sheet product and method of welding structural components
JP5215986B2 (en) Dissimilar material joint and dissimilar material joining method
JP2007283313A (en) Joined body of dissimilar materials
JP5297099B2 (en) Dissimilar material joined body and dissimilar material joining method
JP2012179630A (en) Welded joint of aluminum plate or aluminum alloy plate and steel plate, and method for welding aluminum plate or aluminum alloy plate to steel plate
US11548091B2 (en) Pretreatment of weld flanges to mitigate liquid metal embrittlement cracking in resistance welding of galvanized steels
KR102061470B1 (en) MIG brazing method, manufacturing method of overlap joint member, and overlap joint member
JP4640995B2 (en) Steel plate for brazing joint with aluminum material, joining method and joint using the steel plate
JP2022000315A (en) Manufacturing method of weld bond joint
JP7047543B2 (en) Joined structure and its manufacturing method
JP5508926B2 (en) Dissimilar material joining method
JPH0747477A (en) Method for joining al member and steel member
JP4427590B2 (en) Steel for dissimilar material joining, dissimilar material joined body, and dissimilar material joining method
Auwal et al. Challenges and Advances in Welding and Joining Magnesium Alloy to Steel
Guzanová et al. Hybrid technologies for joining dissimilar materials
JPH067955A (en) Resistance welding method for aluminum alloy

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130301

R150 Certificate of patent or registration of utility model

Ref document number: 5215986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees