WO2011154720A2 - Solar photovoltaic systems - Google Patents
Solar photovoltaic systems Download PDFInfo
- Publication number
- WO2011154720A2 WO2011154720A2 PCT/GB2011/051028 GB2011051028W WO2011154720A2 WO 2011154720 A2 WO2011154720 A2 WO 2011154720A2 GB 2011051028 W GB2011051028 W GB 2011051028W WO 2011154720 A2 WO2011154720 A2 WO 2011154720A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- input
- conditioning unit
- mains
- photovoltaic
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 158
- 230000003750 conditioning effect Effects 0.000 claims abstract description 132
- 238000004146 energy storage Methods 0.000 claims abstract description 107
- 238000010248 power generation Methods 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims description 58
- 230000001419 dependent effect Effects 0.000 claims description 24
- 230000003321 amplification Effects 0.000 claims description 23
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 23
- 238000002347 injection Methods 0.000 description 24
- 239000007924 injection Substances 0.000 description 24
- 230000001276 controlling effect Effects 0.000 description 23
- 208000037516 chromosome inversion disease Diseases 0.000 description 10
- 230000005611 electricity Effects 0.000 description 10
- 238000012546 transfer Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000000605 extraction Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/66—Regulating electric power
- G05F1/67—Regulating electric power to the maximum power available from a generator, e.g. from solar cell
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
- H02J2300/26—The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Definitions
- This invention relates to improved techniques for photovoltaic power generation with maximum power point tracking (MPPT).
- MPPT maximum power point tracking
- a photovoltaic power generation system comprising: at least two photovoltaic panels each having a dc power output; a power conditioning unit having a dc power input and an ac mains power supply output for delivering an ac mains supply; wherein said dc power outputs of said at least two photovoltaic panels are connected in parallel with one another to said dc power input of said power conditioning unit; wherein said power conditioning unit comprises a dc-to-dc converter having an input coupled to said dc power input and having an output coupled to a dc link of said power conditioning unit, a dc-to-ac converter having an input coupled to said dc link and having an output coupled to said ac mains power supply output, and an energy storage capacitor coupled to said dc link; wherein said power conditioning unit is configured to perform maximum power point tracking (MPPT) responsive to a level of power flowing into said dc power input, and wherein said level
- MPPT maximum power point tracking
- the invention provides a photovoltaic power generation system, the system comprising: at least two photovoltaic panels each having a dc power output; a power conditioning unit having a dc power input and an ac mains power supply output for delivering an ac mains power supply; wherein said dc power outputs of said at least two photovoltaic panels are connected in parallel with one another to said dc power input of said power conditioning unit; wherein said power conditioning unit includes an energy storage capacitor to store energy from said photovoltaic panels and a dc-to-ac converter having a dc input coupled to said energy storage capacitor and an ac output coupled to said ac mains power supply output; wherein said power conditioning unit comprises a controller coupled to control said dc-to-ac converter to perform maximum power point tracking (MPPT); wherein said controller has a sense input coupled to said energy storage capacitor to sense at said energy storage capacitor a signal responsive to a level of power flowing into said dc power input of said power
- MPPT
- the inventors have recognised that by using an energy storage capacitor on the dc link, and by performing maximum power point tracking (MPPT) based upon a power flow sensed at this link two or more parallel connected (that is positive to positive and negative to negative connected) solar photovoltaic panels may be employed and still achieve almost an optimal harvesting of power from the pair (or more) of panels:
- MPPT maximum power point tracking
- the approximate ac mains power generation cost per watt is approximately halved, since only a relatively small up-rating of the inverter is typically needed, for example by increasing the value of the energy storage capacitor by perhaps 30%, up to say 36 ⁇ for an ac power output of up to around 350 watts.
- the power conditioning unit operates more efficiently with greater input power, in part because of a fixed overhead for the power required by the internal circuitry (which is particularly significant for microinverters). Because of this providing an input from two or more parallel connected panels tends to maintain the input power even under cloudy conditions, maintaining the inverter in a more efficient mode of operation for one.
- the power conditioning unit tracks the MPPT without directly measuring a dc voltage or current from the panels - instead in embodiments a voltage (but not a current) is sensed on the dc link to which the energy storage capacitor is connected.
- a controller senses the level of a ripple voltage on this link to sense an intermediate power flow through the dc link which, in the absence of losses, measures a combined dc input power flow from the photovoltaic panels to the power conditioning unit.
- the controller controls the dc-to-ac converter to maximise the ripple voltage and hence this intermediate power flow, thereby maximizing the combined dc input power from the pair of solar photovoltaic panels.
- a substantially fixed amplitude dc-to-dc converter is connected between the dc input of the power conditioning unit and the dc link to provide a substantially fixed amplification factor increasing the input dc voltage from the panels to an intermediate dc voltage typically greater than 100 volts, 200 volts, 300 volts, 400 volts or 500 volts.
- a photovoltaic power generation system comprising: at least two photovoltaic panels each having a dc power output; a power conditioning unit having a dc power input and an ac mains power supply output for delivering an ac mains supply; wherein said dc power outputs of said at least two photovoltaic panels are connected in parallel with one another to said dc power input of said power conditioning unit; wherein said power conditioning unit comprises a dc-to-ac converter and a dc link between said dc power input of said power conditioning unit and an input of said dc-to-ac converter, wherein said dc-to-ac converter has an output coupled to said ac mains power supply output, and wherein said power conditioning unit further comprises an energy storage capacitor coupled to said dc link; wherein said energy storage capacitor is a non- electrolytic capacitor; and wherein said power conditioning unit is configured to perform maximum power point tracking (MPPT) responsive to MPPT
- Embodiments of the above power conditioning system can provide an effective cost saving per watt of power generated because of the way the component values scale with power. More particularly because the energy storage capacitor is located at the dc link, a relatively small, non-electrolytic capacitor may still be employed (see also our WO2007/080429, hereby incorporated by reference). With an energy storage capacitor located at the dc link, the required energy storage is still relatively low even when two or more PV panels are connected in parallel. Furthermore, even where the MPPT is sub-optimal because a microinverter can be physically located close to the PV panels to which it is connected the voltage drop across the connecting cables (which can be significant) is reduced, and this can help to mitigate any deficit in the MPPT.
- Some preferred embodiments of the above system employ a controller to control an amplitude of an ac current injected into the ac mains such that it is substantially linearly dependent on or proportional to an amplitude of a sinusoidal component of ripple voltage (at twice the mains frequency) on the energy storage capacitor. More particularly the ac current injected into the mains is controlled by controlling the dc-to- ac converter, and in some preferred embodiments the same controller performs MPPT, controlling the injected current by sensing a voltage on the energy storage capacitor.
- a transformerless power conditioning unit inverter
- the power conditioning unit includes a dc-to-dc converter at the front end, as previously described.
- use of a dc- to-dc converter between the dc input of the power conditioning unit and the dc link provides a convenient way of allowing a ripple voltage to be present on the energy storage capacitor when it is not present at the dc input of the power conditioning unit.
- the invention provides a method generating an ac mains power supply from a plurality of photovoltaic panels, the method comprising: connecting dc power outputs from said photovoltaic panels in parallel to the input of a power conditioning unit; converting said flow of dc power into a said ac mains power supply using said power supply using said power conditioning unit, wherein said converting comprises converting said input flow of dc power units into an intermediate flow of dc power on a dc link of said power conditioning unit coupled to an energy storage capacitor, and converting said intermediate flow of dc power to said ac mains power supply; and tracking substantially a maximum power point of said common input flow of dc power.
- embodiments by sensing the intermediate power flow rather than by employing MPPT tracking at the front end of the power conditioning unit substantially maximize the combined dc input power flow from the pair (or more) of parallel-connected solar photovoltaic panels.
- the invention also provides a system for generating an ac mains power supply from a plurality of photovoltaic panels, the system comprising: means for connecting dc power outputs from said photovoltaic panels in parallel to the input of a power conditioning unit to provide a common flow of dc power; means for converting said flow of dc power into a said ac mains power supply using said power conditioning unit, wherein said converting comprises converting said input flow of dc power into an intermediate flow of dc power on a dc link of said power conditioning unit coupled to an energy storage capacitor; means for converting said intermediate flow of dc power to said ac mains power supply; and means for tracking substantially a maximum power point of said common input flow of dc power.
- the photovoltaic panels are directly connected to one another in parallel that is without an intermediate series- connected panel or panels.
- the parallel connections of the panels may be internal or external to the power conditioning unit.
- two pairs of photovoltaic panels may be connected in series and then the pairs of panels connected in parallel.
- the MPPT fails to operate properly if one panel is significantly shaded or fails, resulting in a voltage drift.
- a microinverter may be defined as an inverter having a power rating suitable for connection to less than 10 or less than 5 panels and/or as an inverter having a dc input voltage which is less than half a peak-to-peak voltage of the ac mains, more typically less than 100 volts dc or less than 60 volts dc.
- Preferred embodiments of the system provide single phase ac, but the techniques we describe are not limited to use with a single phase ac mains supply, and may also be applied to a photovoltaic power generation system providing a three phase ac mains supply. In this latter case, preferably one dc-to-ac converter per phase is employed.
- a particularly preferred power conditioning unit with maximum power point tracking for delivering power from a dc power source to an ac mains power supply output, comprises: an input for receiving power from said dc power source; an output for delivering ac power to said ac mains power supply; an energy storage capacitor for storing energy from said dc power source for delivering to said ac mains power supply output; a dc-to-ac converter coupled to said output for converting energy stored in said energy storage capacitor to ac power for said ac mains power supply output; a power injection control block having a sense input coupled to said energy storage capacitor and having an output coupled to said dc-to-ac converter, to control said dc-to-ac converter to control power injected into said ac mains power supply; and wherein said power injection control block is configured to track a maximum power point of said dc power source without measuring a dc voltage or dc current provided from said dc power source.
- MPPT maximum power point tracking
- a voltage on the energy storage capacitor has a sinusoidal voltage component (at twice the frequency of the ac mains), and the power injection control block is configured to control an amplitude of an ac current provided to the ac mains power supply output such that an amount of power transferred to the output is dependent on an amplitude of the sinusoidal voltage component on the energy storage capacitor.
- the average energy transferred is linearly dependent on, more particularly proportional to, a squared value of the sinusoidal voltage component.
- the sinusoidal voltage component is superimposed on a dc link voltage (input to the dc-to-ac converter), and this link voltage is relatively high, for example less than 200, 300, 400 or 500 volts.
- the average power transferred is proportional to the difference between the peak (maximum) capacitor voltage squared and the trough (minimum) capacitor voltage squared (although alternatively a power conditioning unit may be arranged such that there is, on average, zero dc voltage on the energy storage capacitor).
- the instantaneous power transferred to the ac mains power supply output is dependent on or proportional to the instantaneous value of voltage on the energy storage capacitor.
- a power conditioning unit with maximum power point tracking for delivering power from a dc power source to an ac mains power supply output
- the power conditioning unit comprising: an input for receiving power from said dc power source; an output for delivering ac power to said ac mains power supply; an energy storage capacitor for storing energy from said dc power source for delivering to said ac mains power supply output; a dc-to-ac converter coupled to said output for converting energy stored in said energy storage capacitor to ac power for said ac mains power supply output; a power injection control block having a sense input coupled to said energy storage capacitor and having an output coupled to said dc-to-ac converter, to control said dc-to-ac converter to control power injected into said ac mains power supply; and wherein, in operation, a voltage on said energy storage capacitor has a sinusoidal voltage component at twice a frequency of said ac mains; wherein said power injection control block is configured
- an energy flow from the dc power source to the energy storage capacitor is substantially proportional to an amount of energy change in the energy storage capacitor (this is explained further below). Further, an amount of energy drawn from the energy storage capacitor and provided to the ac mains output is controlled by the power injection control block such that the amount of ac power delivered to the ac mains power supply is dependent on the amount of energy stored in the energy storage capacitor.
- the power arrangement control block is thereby able to track the maximum power point of the dc power source by controlling the ac power delivered to the AC mains power supply by controlling the dc-to-ac converter, without the need for MPP tracking on the front end of the power conditioning unit, which typically includes a dc-to-dc converter.
- the power injection loop pulls power, in the first instance, from the dc power source and delivers this into the energy storage capacitor. In the second instance the power injection loop extracts power from the energy storage capacitor and delivers this to the AC output.
- this fluctuating sinusoidal component of (a generally dc) voltage on the energy storage capacitor has, in operation, a peak amplitude of at least 10 Volts, 20 Volts, 30 Volts, 40 Volts, 50 Volts, 60 Volts or 100 Volts.
- the peak amplitude of this sinusoidal voltage component depends upon the current injected into the ac mains output.
- an MPPT tracking algorithm would generally impose a degree of ripple on the dc input voltage to the power conditioning unit, in order that the operating point of the dc power source can be varied to hence determine the maximum power operating point.
- the operating point automatically adjusts according to the energy change in the energy storage capacitor.
- a "pull" arrangement in which power flows from the dc power source into the energy storage capacitor in effect on demand, the demand being controlled by the second, power injection control loop.
- the degree of ripple on the DC link is effectively a measure of the amount of power drawn from the DC input, for example a solar photovoltaic panel. If the ripple reduces this implies that less power is being provided from the DC input and in broad terms the power injection control block then responds by reducing the current injected into the grid, that is by adjusting the power injection. In embodiments the current is regulated by adjusting the switching speed (rate) of the output DC-to-AC converter. When the system is tracking the maximum power point, if the power from the DC input reduces, the ripple reduces and the switching speed of the converter is adjusted downwards, to inject less current into the grid.
- the control block then periodically increases the switching speed of the power injection block with the aim of increasing the amount of current flowing into the grid.
- This has the effect of increasing the ripple in the event that the amount of energy being provided by the DC source is greater than that being harvested, and hence the control loop effectively operates so as to maximise the ripple and therefore harvested energy.
- this corresponds to servoing around the maximum power point, more particularly moving along the characteristic curve in a direction of decreasing current and increasing voltage (as in the just mentioned example), or increasing current and decreasing voltage, towards the maximum power point.
- the power injection control block generates a template of the AC current injected into the mains. More particularly the template comprises a sinusoidal or half-sinusoidal voltage in phase with the grid mains and the amplitude of this template is adjusted dependent on the measured DC link ripple voltage, more particularly dependent on whether this has previously gone up or down. Thus the amplitude of this template signal is responsive to the ripple voltage on the energy storage capacitor/DC link.
- An error signal dependent on the difference between the measured AC current injected into the grid mains and this template is used to control the switching rate of the power injection control block. In embodiments the error signal is used to increase the switching rate if the template magnitude is greater than the magnitude of the current injected into the AC mains. In this way the current injected is controlled with the aim of maximising the energy storage capacitor/ DC link ripple.
- the ripple amplitude at the energy storage capacitor/DC link is used to effectively measure power provided from the DC source (photovoltaic panel).
- the power provided from the DC power source may be assumed to be given by the product of voltage on and current through the DC link providing an input to the DC-to-AC converter.
- our power conditioning unit have a ripple which is proportional to input power (assuming input and output power are substantially the same)
- measuring the ripple is an advantageous technique for obtaining the desired power information.
- MPPT maximum power point tracking
- the power conditioning unit including an energy storage capacitor for storing energy from said dc power source for delivering to said ac mains power supply output
- the method comprising: tracking a maximum power point of said dc power source by controlling a dc-to-ac converter converting energy stored in said energy storage capacitor to ac power for said ac mains power supply input, wherein said tracking comprises: sensing, at a circuit node coupled to said energy storage capacitor, a signal responsive to a level of power drawn from said dc power source; and controlling said dc-to-ac converter to adjust an amplitude of an ac output to substantially maximise said sensed signal.
- the method/system comprises two independent control blocks.
- the first block controls the voltage amplification stage that interfaces with the energy generator.
- the energy generator is preferably a solar module.
- the first control block does not function to regulate the amount of energy to be transmitted but functions only as a switch, either allowing energy flow or preventing any energy flow from the generator and through the amplification stage, regardless of the amount.
- the output of the voltage amplification stage is coupled to an energy reservoir capacitor. Energy flow is therefore dependent on the amount of "room” (the amount of additional energy which can be stored) in the reservoir capacitor.
- Figure 18b shows a power generation system 1850 with parallel connected series- coupled panels 1602, 1606 and 1604, 1608. This works, but unlike with directly parallel connected panels if one panel in the arrangement of Figure 18b is shaded this generates a voltage offset because the panel is series (as well as parallel) connected. This reduces the effectiveness of the MPPT when the panels are unevenly illuminated.
- the panels are directly parallel connected - that is without intermediate series-connected panels. (The skilled person will appreciate that directly parallel connected panels may be connected either internally or externally to the inverter when making the parallel connections).
- One potential advantage of the arrangement of Figure 18b is that it can be employed to remove the need for an input dc-to-dc converter to increase the dc input voltage, thus potentially avoiding the need for a transformer.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
- Inverter Devices (AREA)
- Photovoltaic Devices (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11724014.3A EP2577828B1 (de) | 2010-06-07 | 2011-06-01 | Fotovoltaische solarsysteme |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB201009430A GB2482653B (en) | 2010-06-07 | 2010-06-07 | Solar photovoltaic systems |
GB1009430.8 | 2010-06-07 | ||
US12/947,116 | 2010-11-16 | ||
US12/947,116 US8674668B2 (en) | 2010-06-07 | 2010-11-16 | Solar photovoltaic systems |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011154720A2 true WO2011154720A2 (en) | 2011-12-15 |
WO2011154720A3 WO2011154720A3 (en) | 2012-06-14 |
Family
ID=42471210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2011/051028 WO2011154720A2 (en) | 2010-06-07 | 2011-06-01 | Solar photovoltaic systems |
Country Status (5)
Country | Link |
---|---|
US (2) | US8674668B2 (de) |
EP (1) | EP2577828B1 (de) |
CN (1) | CN202218176U (de) |
GB (1) | GB2482653B (de) |
WO (1) | WO2011154720A2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9496803B2 (en) | 2010-06-07 | 2016-11-15 | Solarcity Corporation | Solar photovoltaic system with maximized ripple voltage on storage capacitor |
Families Citing this family (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US8405367B2 (en) | 2006-01-13 | 2013-03-26 | Enecsys Limited | Power conditioning units |
GB2454389B (en) | 2006-01-13 | 2009-08-26 | Enecsys Ltd | Power conditioning unit |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8473250B2 (en) | 2006-12-06 | 2013-06-25 | Solaredge, Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US8384243B2 (en) | 2007-12-04 | 2013-02-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8618692B2 (en) | 2007-12-04 | 2013-12-31 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US8947194B2 (en) | 2009-05-26 | 2015-02-03 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US8816535B2 (en) | 2007-10-10 | 2014-08-26 | Solaredge Technologies, Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US8963369B2 (en) | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US8013472B2 (en) | 2006-12-06 | 2011-09-06 | Solaredge, Ltd. | Method for distributed power harvesting using DC power sources |
US8319471B2 (en) | 2006-12-06 | 2012-11-27 | Solaredge, Ltd. | Battery power delivery module |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US8319483B2 (en) | 2007-08-06 | 2012-11-27 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
JP2011507465A (ja) | 2007-12-05 | 2011-03-03 | ソラレッジ テクノロジーズ リミテッド | 分散型電力据付における安全機構、ウェークアップ方法およびシャットダウン方法 |
WO2009072075A2 (en) | 2007-12-05 | 2009-06-11 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US8049523B2 (en) | 2007-12-05 | 2011-11-01 | Solaredge Technologies Ltd. | Current sensing on a MOSFET |
WO2009073867A1 (en) | 2007-12-05 | 2009-06-11 | Solaredge, Ltd. | Parallel connected inverters |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
EP4145691A1 (de) | 2008-03-24 | 2023-03-08 | Solaredge Technologies Ltd. | Schaltwandler mit einem hilfskommutierungsschaltkreis zur nullstromschaltung |
EP2294669B8 (de) | 2008-05-05 | 2016-12-07 | Solaredge Technologies Ltd. | Gleichstrom-leistungskombinierer |
US9142960B2 (en) * | 2010-02-03 | 2015-09-22 | Draker, Inc. | Constraint weighted regulation of DC/DC converters |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
GB2485527B (en) | 2010-11-09 | 2012-12-19 | Solaredge Technologies Ltd | Arc detection and prevention in a power generation system |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9660451B1 (en) * | 2010-11-29 | 2017-05-23 | Sunpower Corporation | Islanded operation of distributed power sources |
GB2486408A (en) | 2010-12-09 | 2012-06-20 | Solaredge Technologies Ltd | Disconnection of a string carrying direct current |
GB2496140B (en) * | 2011-11-01 | 2016-05-04 | Solarcity Corp | Photovoltaic power conditioning units |
GB2483317B (en) | 2011-01-12 | 2012-08-22 | Solaredge Technologies Ltd | Serially connected inverters |
GB2486032B (en) | 2011-03-22 | 2013-06-19 | Enecsys Ltd | Solar photovoltaic inverters |
GB2486509B (en) * | 2011-03-22 | 2013-01-09 | Enecsys Ltd | Solar photovoltaic power conditioning units |
KR101796045B1 (ko) | 2011-04-12 | 2017-11-10 | 엘지전자 주식회사 | 태양광 모듈 |
FR2975497B1 (fr) * | 2011-05-16 | 2013-06-28 | Centre Nat Rech Scient | Convertisseur electronique de puissance |
US8780592B1 (en) * | 2011-07-11 | 2014-07-15 | Chilicon Power, LLC | Systems and methods for increasing output current quality, output power, and reliability of grid-interactive inverters |
US8570005B2 (en) | 2011-09-12 | 2013-10-29 | Solaredge Technologies Ltd. | Direct current link circuit |
KR101310551B1 (ko) * | 2011-11-11 | 2013-09-23 | 성균관대학교산학협력단 | 컨버터, 컨버터 제어방법 및 인버터 |
GB2498365A (en) | 2012-01-11 | 2013-07-17 | Solaredge Technologies Ltd | Photovoltaic module |
GB2498791A (en) | 2012-01-30 | 2013-07-31 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
GB2498790A (en) | 2012-01-30 | 2013-07-31 | Solaredge Technologies Ltd | Maximising power in a photovoltaic distributed power system |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
GB2499991A (en) | 2012-03-05 | 2013-09-11 | Solaredge Technologies Ltd | DC link circuit for photovoltaic array |
WO2013140109A1 (en) * | 2012-03-20 | 2013-09-26 | British Telecommunications Public Limited Company | Control of line power |
GB2517336A (en) * | 2012-05-23 | 2015-02-18 | Sunedison Inc | Photovoltaic DC-AC converter with soft switching |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
DE102012218889A1 (de) * | 2012-10-17 | 2014-04-17 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Übertragen von elektrischer Leistung |
US9042141B2 (en) * | 2013-02-07 | 2015-05-26 | Caterpillar Inc. | Control of energy storage system inverter system in a microgrid application |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
EP3506370B1 (de) | 2013-03-15 | 2023-12-20 | Solaredge Technologies Ltd. | Bypass-mechanismus |
CN104079194B (zh) * | 2013-03-29 | 2017-03-01 | 通用电气公司 | 电能转换系统和方法 |
CN103219901B (zh) * | 2013-04-19 | 2015-12-09 | 矽力杰半导体技术(杭州)有限公司 | Ac/dc变换器控制电路以及应用其的ac/dc变换器 |
FR3009757B1 (fr) | 2013-08-13 | 2015-09-04 | Alstom Technology Ltd | Procede et dispositif pour la regulation de l'alimentation d'un convertisseur photovoltaique |
KR101830666B1 (ko) * | 2013-09-17 | 2018-02-21 | 엘에스산전 주식회사 | 전력 변환 장치 |
WO2015054157A1 (en) * | 2013-10-07 | 2015-04-16 | Garrity Power Services, Llc | Smart grid power converter |
JP5915619B2 (ja) * | 2013-10-22 | 2016-05-11 | トヨタ自動車株式会社 | 太陽光発電装置及び太陽光発電装置の制御方法 |
DE102013114271B4 (de) * | 2013-12-18 | 2023-01-12 | Sma Solar Technology Ag | Wechselrichter und verfahren zum betrieb eines wechselrichters |
US9554431B2 (en) * | 2014-01-06 | 2017-01-24 | Garrity Power Services Llc | LED driver |
UA107542C2 (uk) * | 2014-01-24 | 2015-01-12 | Товариство З Обмеженою Відповідальністю "Техінвест-Еко" | Спосіб та пристрій для відбору електричної енергії від фотоелектричного модуля |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US20150288188A1 (en) * | 2014-04-08 | 2015-10-08 | Marvin S Keshner | Parallel-Connected Solar Electric System |
KR101687870B1 (ko) * | 2014-04-09 | 2016-12-21 | 숭실대학교산학협력단 | 리플 제거를 위한 전력변환 장치 |
KR101797270B1 (ko) * | 2014-04-16 | 2017-11-13 | 엘에스산전 주식회사 | 계통연계형 인버터 시스템의 제어장치 |
US20170222439A1 (en) * | 2014-05-08 | 2017-08-03 | Abb Schweiz Ag | Configurable inverter apparatus, photovoltaic system comprising such an inverter apparatus |
CN104411075B (zh) * | 2014-12-17 | 2016-08-31 | 重庆辉腾光电有限公司 | 一种自适应负载的太阳能路灯控制器 |
WO2016129464A1 (ja) * | 2015-02-10 | 2016-08-18 | 株式会社 東芝 | 電力変換装置の制御装置、制御プログラム及び電力変換装置 |
US9755537B2 (en) * | 2015-03-04 | 2017-09-05 | Infineon Technologies Austria Ag | Multi-cell power conversion method with failure detection and multi-cell power converter |
EP3089347B1 (de) * | 2015-04-27 | 2018-06-27 | ABB Schweiz AG | Verfahren zur erfassung von werten, die auf einen wechselstrom eines umrichters hinweisen, und zugehörige schaltung und wechselrichter |
CN105068591B (zh) * | 2015-07-28 | 2016-08-24 | 宁波大学 | 一种光伏阵列局部遮挡下最大功率点跟踪方法 |
US10256732B2 (en) | 2015-10-16 | 2019-04-09 | General Electric Company | Power conversion system and method of operating the same |
US20170170662A1 (en) * | 2015-12-15 | 2017-06-15 | Marvin S. Keshner | Parallel-Connected Solar Panel Array System with Split Inverter |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US9979321B2 (en) * | 2016-05-25 | 2018-05-22 | Casco Products Corporation | N-sine wave inverter |
US9748853B1 (en) * | 2016-11-01 | 2017-08-29 | Macau University Of Science And Technology | Semi-dual-active-bridge converter system and methods thereof |
US11309714B2 (en) | 2016-11-02 | 2022-04-19 | Tesla, Inc. | Micro-batteries for energy generation systems |
TWI633409B (zh) * | 2017-04-20 | 2018-08-21 | 台達電子工業股份有限公司 | 最大功率點追蹤方法與最大功率點追蹤系統 |
CN108803770B (zh) * | 2017-04-28 | 2020-07-14 | 亚洲慧宇纳米科技有限公司 | 最佳化输入输出功率控制太阳能电源装置及设备 |
WO2019098709A1 (en) * | 2017-11-15 | 2019-05-23 | Lg Electronics Inc. | Photovoltaic module |
US10511187B2 (en) * | 2017-12-11 | 2019-12-17 | LT Lighting (Taiwan) Corp. | Energy utilization point tracker inverter |
IL263278B2 (en) * | 2018-11-25 | 2024-07-01 | Vigdu V Tech Ltd | A system for raising the direct voltage level between the panels and the converter, in solar power generation systems |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH053678A (ja) | 1991-06-25 | 1993-01-08 | Toshiba F Ee Syst Eng Kk | Dc/ac電源装置 |
WO1996007130A1 (en) | 1993-07-12 | 1996-03-07 | Led Corporation N.V. | Low frequency square wave electronic ballast for gas discharge devices |
EP0780750A2 (de) | 1995-12-20 | 1997-06-25 | Sharp Kabushiki Kaisha | Wechselrichtersteuerungsverfahren und das Verfahren benutzende Wechselrichtervorrichtung |
EP0947905A2 (de) | 1998-03-30 | 1999-10-06 | Sanyo Electric Co. Ltd | Sonnenenergieerzeugungsanlage |
JP2000020150A (ja) | 1998-06-30 | 2000-01-21 | Toshiba Fa Syst Eng Corp | 太陽光発電インバータ装置 |
DE10064039A1 (de) | 2000-05-24 | 2001-12-20 | Mitsubishi Electric Corp | Entladungslampen-Einschaltvorrichtung |
EP1235339A2 (de) | 2001-02-26 | 2002-08-28 | Canon Kabushiki Kaisha | Umrichter, Leistungsversorgungsvorrichtung und Verfahren zur Verminderung des Leckstroms in der Leistungsversorgungsvorrichtung |
US6657419B2 (en) | 2001-11-19 | 2003-12-02 | Solarmate Corporation | Micro-solar insolation circuit |
WO2004001942A1 (en) | 2002-06-23 | 2003-12-31 | Powerlynx A/S | Power converter |
WO2004006342A1 (en) | 2002-07-09 | 2004-01-15 | Canon Kabushiki Kaisha | Solar power generation apparatus and its manufacturing method |
US20040117676A1 (en) | 2002-12-11 | 2004-06-17 | Canon Kabushiki Kaisha | Method of controlling signal generator |
US20050030772A1 (en) | 2003-08-08 | 2005-02-10 | Phadke Vijay Gangadhar | Circuit for maintaining hold-up time while reducing bulk capacitor size and improving efficiency in a power supply |
US20050068012A1 (en) | 2003-09-29 | 2005-03-31 | Cutler Henry H. | Method and apparatus for controlling power drawn from an energy converter |
GB2415841A (en) | 2004-11-08 | 2006-01-04 | Enecsys Ltd | Power conditioning unit for connecting dc source to a mains utility supply |
WO2006011071A2 (en) | 2004-07-20 | 2006-02-02 | Koninklijke Philips Electronics N.V. | 3-phase solar converter circuit and method |
GB2419968A (en) | 2004-11-08 | 2006-05-10 | Enecsys Ltd | Regulating the voltage fed to a power converter |
US7064967B2 (en) | 2003-02-28 | 2006-06-20 | Hitachi, Ltd. | Fuel cell system and control method |
US20060232220A1 (en) | 2005-04-13 | 2006-10-19 | Ballastronic, Inc. | Low frequency electronic ballast for gas discharge lamps |
WO2007080429A2 (en) | 2006-01-13 | 2007-07-19 | Enecsys Limited | Power conditioning unit |
WO2008000429A2 (en) | 2006-06-26 | 2008-01-03 | Novartis Ag | Polymers with antimicrobial activity containing quaternary ammonium groups |
US7319313B2 (en) | 2005-08-10 | 2008-01-15 | Xantrex Technology, Inc. | Photovoltaic DC-to-AC power converter and control method |
US20080097655A1 (en) | 2006-10-19 | 2008-04-24 | Tigo Energy, Inc. | Method and system to provide a distributed local energy production system with high-voltage DC bus |
US7414870B2 (en) | 2005-02-26 | 2008-08-19 | Kostal Industrie Elektrik Gmbh | Inverter |
WO2008119034A1 (en) | 2007-03-27 | 2008-10-02 | Newdoll Enterprises Llc. | Distributed maximum power point tracking system, structure and process |
US7450401B2 (en) | 2005-10-17 | 2008-11-11 | Kabushiki Kaisha Toyota Jidoshokki | Bidirectional DC/AC inverter |
US20090097283A1 (en) | 2007-10-11 | 2009-04-16 | Krein Philip T | Methods for Minimizing Double-Frequency Ripple Power in Single-Phase Power Conditioners |
US20100052425A1 (en) | 2008-08-28 | 2010-03-04 | Optisolar, Inc. | Networked multi-inverter maximum power point tracking |
US20100309692A1 (en) | 2006-01-13 | 2010-12-09 | Lesley Chisenga | Power conditioning units |
GB2478789A (en) | 2010-03-19 | 2011-09-21 | Enecsys Ltd | Power conditioning unit with maximum power point tracking |
Family Cites Families (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB600658A (en) | 1943-08-20 | 1948-04-15 | Ayerst Mckenna & Harrison | Hormone extracts |
US2852721A (en) | 1954-06-16 | 1958-09-16 | Dortmund Harder Huttenunion Ag | Glow discharge circuits |
US3080035A (en) | 1959-01-29 | 1963-03-05 | Automatic Canteen Co | Change-making machine |
GB1004621A (en) | 1960-08-22 | 1965-09-15 | Honeywell Controls Ltd | Improvements in transistor switching circuits, especially for use in modulators |
GB1009430A (en) | 1961-06-06 | 1965-11-10 | Meiji Seika Kaisha | Process for the production of seasonings from mushrooms with cellulase produced by microorganisms |
US4772994A (en) | 1987-09-10 | 1988-09-20 | Nishimu Electronics Industries, Co., Ltd. | Power source using high-frequency phase control |
GB9206022D0 (en) | 1992-03-19 | 1992-04-29 | Astec Int Ltd | Push-pull inverter |
US5329222A (en) | 1992-11-30 | 1994-07-12 | Westinghouse Electric Corporation | Apparatus and method for dynamic voltage restoration of utility distribution networks |
JP2771096B2 (ja) | 1993-06-11 | 1998-07-02 | キヤノン株式会社 | 電力制御装置、電力制御方法及び電力発生装置 |
JP3205762B2 (ja) | 1993-07-14 | 2001-09-04 | シャープ株式会社 | 系統連系型インバータ制御装置 |
US5576941A (en) | 1994-08-10 | 1996-11-19 | York Technologies, Inc. | Modular power supply system |
US5585749A (en) | 1994-12-27 | 1996-12-17 | Motorola, Inc. | High current driver providing battery overload protection |
JP3516101B2 (ja) | 1995-02-20 | 2004-04-05 | オムロン株式会社 | 太陽光発電装置 |
JP3541982B2 (ja) | 1995-05-17 | 2004-07-14 | 株式会社安川電機 | 太陽光発電用電力変換装置の系統過電圧保護方法及び装置 |
US5708576A (en) | 1996-07-10 | 1998-01-13 | Sundstrand Corporation | Fault tolerant power converter |
JPH10201086A (ja) * | 1997-01-14 | 1998-07-31 | Nissin Electric Co Ltd | 太陽光発電装置 |
JP3744679B2 (ja) | 1998-03-30 | 2006-02-15 | 三洋電機株式会社 | 太陽光発電装置 |
US6081104A (en) | 1998-11-20 | 2000-06-27 | Applied Power Corporation | Method and apparatus for providing energy to a lighting system |
JP2000316282A (ja) | 1999-04-28 | 2000-11-14 | Toshiba Fa Syst Eng Corp | 太陽光発電用パワーコンディショナ装置 |
JP3930999B2 (ja) | 1999-06-08 | 2007-06-13 | 三菱電機株式会社 | 太陽電池制御装置及び太陽光発電装置 |
JP2001178145A (ja) | 1999-12-20 | 2001-06-29 | Akihiko Yonetani | 最大電力運転インバータシステム |
US6593520B2 (en) * | 2000-02-29 | 2003-07-15 | Canon Kabushiki Kaisha | Solar power generation apparatus and control method therefor |
US6281485B1 (en) | 2000-09-27 | 2001-08-28 | The Aerospace Corporation | Maximum power tracking solar power system |
US20030066555A1 (en) | 2000-12-04 | 2003-04-10 | Hui Ron Shu Yuen | Maximum power tracking technique for solar panels |
JP3655831B2 (ja) | 2001-02-14 | 2005-06-02 | シャープ株式会社 | 昇圧ユニット、パワーコンディショナ、およびそれらを用いた太陽光発電システム |
JP3394996B2 (ja) | 2001-03-09 | 2003-04-07 | 独立行政法人産業技術総合研究所 | 最大電力動作点追尾方法及びその装置 |
AT411946B (de) | 2001-03-09 | 2004-07-26 | Fronius Schweissmasch Prod | Verfahren zum regeln eines wechselrichtersystems |
JP2002270876A (ja) | 2001-03-14 | 2002-09-20 | Nissin Electric Co Ltd | 太陽光発電装置 |
JP2002354677A (ja) | 2001-05-28 | 2002-12-06 | Japan Storage Battery Co Ltd | 太陽光発電用パワーコンディショナ |
US20050242795A1 (en) | 2001-08-22 | 2005-11-03 | Shihab Al-Kuran | MMIC DC-to-DC converter |
DE10222621A1 (de) | 2002-05-17 | 2003-11-27 | Josef Steger | Verfahren und Schaltungsanordnung zur Steuer- und Regelung von Photovoltaikanlagen |
EP1532727A2 (de) | 2002-07-15 | 2005-05-25 | Koninklijke Philips Electronics N.V. | Wechselrichter |
US7099169B2 (en) | 2003-02-21 | 2006-08-29 | Distributed Power, Inc. | DC to AC inverter with single-switch bipolar boost circuit |
US7463500B2 (en) | 2003-02-21 | 2008-12-09 | Xantrex Technology, Inc. | Monopolar DC to bipolar DC to AC converter |
US6914418B2 (en) | 2003-04-21 | 2005-07-05 | Phoenixtec Power Co., Ltd. | Multi-mode renewable power converter system |
US8067855B2 (en) | 2003-05-06 | 2011-11-29 | Enecsys Limited | Power supply circuits |
DE602004023497D1 (de) | 2003-05-06 | 2009-11-19 | Enecsys Ltd | Stromversorgungsschaltungen |
US6949843B2 (en) | 2003-07-11 | 2005-09-27 | Morningstar, Inc. | Grid-connected power systems having back-up power sources and methods of providing back-up power in grid-connected power systems |
AU2004264223B2 (en) | 2003-08-06 | 2009-07-23 | Biosource, Inc | Power efficient flow through capacitor system |
US7078883B2 (en) | 2004-04-07 | 2006-07-18 | The Board Of Trustees Of The University Of Illinois | Method and apparatus for starting power converters |
US7248946B2 (en) | 2004-05-11 | 2007-07-24 | Advanced Energy Conversion, Llc | Inverter control methodology for distributed generation sources connected to a utility grid |
US7262979B2 (en) | 2004-06-09 | 2007-08-28 | Yuan Ze University | Current source wave voltage inverter voltage-clamping and soft-switching techniques, and fuel cell system using the same |
US7142997B1 (en) | 2004-12-08 | 2006-11-28 | Tripac Systems, Inc. | Automatic power factor corrector |
US7193872B2 (en) | 2005-01-28 | 2007-03-20 | Kasemsan Siri | Solar array inverter with maximum power tracking |
JP5379948B2 (ja) | 2005-02-02 | 2013-12-25 | シャープ株式会社 | 分散型発電管理システム用のサーバーおよびそれを用いた発電管理システム |
DE102005023291A1 (de) | 2005-05-20 | 2006-11-23 | Sma Technologie Ag | Wechselrichter |
SE529218C2 (sv) | 2005-10-26 | 2007-06-05 | Volvo Lastvagnar Ab | System och förfarande för reglering av axellastfördelningsförhållandet på ett fordon med två framaxlar |
AU2007229854B2 (en) | 2006-03-23 | 2011-02-03 | Enphase Energy, Inc. | Method and apparatus for converting direct current to alternating current |
EP1887672A4 (de) | 2006-03-27 | 2009-03-18 | Mitsubishi Electric Corp | Systemverknüpfungs-wechselrichtervorrichtung |
US7479774B2 (en) | 2006-04-07 | 2009-01-20 | Yuan Ze University | High-performance solar photovoltaic (PV) energy conversion system |
US7375984B2 (en) | 2006-06-16 | 2008-05-20 | Astec Custom Power (Hk) Ltd. | Zero voltage zero current switching converter |
US7626834B2 (en) | 2006-06-29 | 2009-12-01 | Enecsys Limited | Double ended converter with output synchronous rectifier and auxiliary input regulator |
US7885085B2 (en) | 2007-01-22 | 2011-02-08 | Power Integrations, Inc. | Cascaded PFC and resonant mode power converters |
US7681090B2 (en) | 2007-01-25 | 2010-03-16 | Solarbridge Technologies, Inc. | Ripple correlation control based on limited sampling |
EP2122816A4 (de) | 2007-02-22 | 2011-11-30 | Virginia Tech Intell Prop | Steuerverfahren für ein universelles aufbereitungssystem |
EP1971018A1 (de) | 2007-03-13 | 2008-09-17 | SMA Solar Technology AG | Schaltungsvorrichtung zum transformatorlosen Umwandeln einer Gleichspannung in eine Wechselspannung mittels zweier DC/DC Wandler und einem AC/DC Wandler |
US20080283118A1 (en) | 2007-05-17 | 2008-11-20 | Larankelo, Inc. | Photovoltaic ac inverter mount and interconnect |
US7660135B2 (en) | 2007-05-23 | 2010-02-09 | Hamilton Sundstrand Corporation | Universal AC high power inveter with galvanic isolation for linear and non-linear loads |
US7787270B2 (en) | 2007-06-06 | 2010-08-31 | General Electric Company | DC-DC and DC-AC power conversion system |
US8461806B2 (en) | 2007-10-15 | 2013-06-11 | O2Micro Inc | Systems and methods for cell balancing |
US7986539B2 (en) | 2007-09-26 | 2011-07-26 | Enphase Energy, Inc. | Method and apparatus for maximum power point tracking in power conversion based on dual feedback loops and power ripples |
CA2737134C (en) | 2007-10-15 | 2017-10-10 | Ampt, Llc | Systems for highly efficient solar power |
WO2009055474A1 (en) | 2007-10-23 | 2009-04-30 | And, Llc | High reliability power systems and solar power converters |
JP5643104B2 (ja) * | 2007-11-30 | 2014-12-17 | アレンコン・アクイジション・カンパニー・エルエルシー | 多相グリッド同期調整電流形インバータシステム |
US9077262B2 (en) * | 2008-04-29 | 2015-07-07 | Cirrus Logic, Inc. | Cascaded switching power converter for coupling a photovoltaic energy source to power mains |
US8139382B2 (en) | 2008-05-14 | 2012-03-20 | National Semiconductor Corporation | System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking |
US7768155B2 (en) | 2008-10-10 | 2010-08-03 | Enphase Energy, Inc. | Method and apparatus for improved burst mode during power conversion |
US20100157632A1 (en) * | 2008-12-20 | 2010-06-24 | Azuray Technologies, Inc. | Energy Conversion Systems With Power Control |
US8648497B2 (en) * | 2009-01-30 | 2014-02-11 | Renewable Power Conversion, Inc. | Photovoltaic power plant with distributed DC-to-DC power converters |
EP2219276B1 (de) | 2009-02-11 | 2015-12-02 | SMA Solar Technology AG | Photovoltaikanlage zur dreiphasigen Einspeisung in ein elektrisches Energieversorgungsnetz |
US8058752B2 (en) | 2009-02-13 | 2011-11-15 | Miasole | Thin-film photovoltaic power element with integrated low-profile high-efficiency DC-DC converter |
EP2249457A1 (de) | 2009-05-08 | 2010-11-10 | Nxp B.V. | PV-Solarzelle |
EP2478606A4 (de) * | 2009-09-18 | 2017-01-18 | Queen's University At Kingston | Schnittstelle für verteilte energieerzeugung |
DE102009051383A1 (de) | 2009-10-30 | 2011-05-12 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zum sicheren Übertragen von Daten |
WO2011050529A1 (zh) | 2009-10-30 | 2011-05-05 | 华为技术有限公司 | 在光网络中发送下行帧的方法及相关装置 |
EP2348597A1 (de) | 2010-01-20 | 2011-07-27 | SMA Solar Technology AG | Angleichung der über die einzelnen Phasen eines mehrphasigen Wechselstroms fließenden Teilleistungen |
JP2011200096A (ja) | 2010-02-26 | 2011-10-06 | Sanyo Electric Co Ltd | 蓄電システム |
GB2482653B (en) | 2010-06-07 | 2012-08-29 | Enecsys Ltd | Solar photovoltaic systems |
US8576591B2 (en) | 2010-09-30 | 2013-11-05 | Astec International Limited | Converters and inverters for photovoltaic power systems |
-
2010
- 2010-06-07 GB GB201009430A patent/GB2482653B/en active Active
- 2010-11-16 US US12/947,116 patent/US8674668B2/en active Active
-
2011
- 2011-05-19 CN CN2011201612844U patent/CN202218176U/zh not_active Expired - Lifetime
- 2011-06-01 EP EP11724014.3A patent/EP2577828B1/de active Active
- 2011-06-01 WO PCT/GB2011/051028 patent/WO2011154720A2/en active Application Filing
-
2014
- 2014-03-10 US US14/202,485 patent/US9496803B2/en active Active
Patent Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH053678A (ja) | 1991-06-25 | 1993-01-08 | Toshiba F Ee Syst Eng Kk | Dc/ac電源装置 |
WO1996007130A1 (en) | 1993-07-12 | 1996-03-07 | Led Corporation N.V. | Low frequency square wave electronic ballast for gas discharge devices |
EP0780750A2 (de) | 1995-12-20 | 1997-06-25 | Sharp Kabushiki Kaisha | Wechselrichtersteuerungsverfahren und das Verfahren benutzende Wechselrichtervorrichtung |
EP0947905A2 (de) | 1998-03-30 | 1999-10-06 | Sanyo Electric Co. Ltd | Sonnenenergieerzeugungsanlage |
JP2000020150A (ja) | 1998-06-30 | 2000-01-21 | Toshiba Fa Syst Eng Corp | 太陽光発電インバータ装置 |
DE10064039A1 (de) | 2000-05-24 | 2001-12-20 | Mitsubishi Electric Corp | Entladungslampen-Einschaltvorrichtung |
EP1235339A2 (de) | 2001-02-26 | 2002-08-28 | Canon Kabushiki Kaisha | Umrichter, Leistungsversorgungsvorrichtung und Verfahren zur Verminderung des Leckstroms in der Leistungsversorgungsvorrichtung |
US6657419B2 (en) | 2001-11-19 | 2003-12-02 | Solarmate Corporation | Micro-solar insolation circuit |
WO2004001942A1 (en) | 2002-06-23 | 2003-12-31 | Powerlynx A/S | Power converter |
WO2004006342A1 (en) | 2002-07-09 | 2004-01-15 | Canon Kabushiki Kaisha | Solar power generation apparatus and its manufacturing method |
US20040117676A1 (en) | 2002-12-11 | 2004-06-17 | Canon Kabushiki Kaisha | Method of controlling signal generator |
US7064967B2 (en) | 2003-02-28 | 2006-06-20 | Hitachi, Ltd. | Fuel cell system and control method |
US20050030772A1 (en) | 2003-08-08 | 2005-02-10 | Phadke Vijay Gangadhar | Circuit for maintaining hold-up time while reducing bulk capacitor size and improving efficiency in a power supply |
US20050068012A1 (en) | 2003-09-29 | 2005-03-31 | Cutler Henry H. | Method and apparatus for controlling power drawn from an energy converter |
WO2006011071A2 (en) | 2004-07-20 | 2006-02-02 | Koninklijke Philips Electronics N.V. | 3-phase solar converter circuit and method |
GB2415841A (en) | 2004-11-08 | 2006-01-04 | Enecsys Ltd | Power conditioning unit for connecting dc source to a mains utility supply |
GB2419968A (en) | 2004-11-08 | 2006-05-10 | Enecsys Ltd | Regulating the voltage fed to a power converter |
US7414870B2 (en) | 2005-02-26 | 2008-08-19 | Kostal Industrie Elektrik Gmbh | Inverter |
US20060232220A1 (en) | 2005-04-13 | 2006-10-19 | Ballastronic, Inc. | Low frequency electronic ballast for gas discharge lamps |
US7319313B2 (en) | 2005-08-10 | 2008-01-15 | Xantrex Technology, Inc. | Photovoltaic DC-to-AC power converter and control method |
US7450401B2 (en) | 2005-10-17 | 2008-11-11 | Kabushiki Kaisha Toyota Jidoshokki | Bidirectional DC/AC inverter |
WO2007080429A2 (en) | 2006-01-13 | 2007-07-19 | Enecsys Limited | Power conditioning unit |
US20100309692A1 (en) | 2006-01-13 | 2010-12-09 | Lesley Chisenga | Power conditioning units |
WO2008000429A2 (en) | 2006-06-26 | 2008-01-03 | Novartis Ag | Polymers with antimicrobial activity containing quaternary ammonium groups |
US20080097655A1 (en) | 2006-10-19 | 2008-04-24 | Tigo Energy, Inc. | Method and system to provide a distributed local energy production system with high-voltage DC bus |
WO2008119034A1 (en) | 2007-03-27 | 2008-10-02 | Newdoll Enterprises Llc. | Distributed maximum power point tracking system, structure and process |
US20090097283A1 (en) | 2007-10-11 | 2009-04-16 | Krein Philip T | Methods for Minimizing Double-Frequency Ripple Power in Single-Phase Power Conditioners |
US20100052425A1 (en) | 2008-08-28 | 2010-03-04 | Optisolar, Inc. | Networked multi-inverter maximum power point tracking |
GB2478789A (en) | 2010-03-19 | 2011-09-21 | Enecsys Ltd | Power conditioning unit with maximum power point tracking |
Non-Patent Citations (2)
Title |
---|
C. RODRIGUEZ; G. A. J. AMARATUNGA: "Long-Lifetime Power Inverter for Photovoltaic AC Modules", IEEE TRANS IE, vol. 55, no. 7, 2008, pages 2593, XP011229267, DOI: doi:10.1109/TIE.2008.922401 |
P. T. KERIN; R. S. BALOG: "Cost-Effective Hundred-Year Life for Single-Phase Inverters and Rectifiers in Solar and LED Lighting Applications Based on Minimum Capacitance Requirements and a Ripple Power Port", TECHNICAL PAPER |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9496803B2 (en) | 2010-06-07 | 2016-11-15 | Solarcity Corporation | Solar photovoltaic system with maximized ripple voltage on storage capacitor |
Also Published As
Publication number | Publication date |
---|---|
GB2482653B (en) | 2012-08-29 |
EP2577828B1 (de) | 2015-08-19 |
US20140252859A1 (en) | 2014-09-11 |
CN102270850A (zh) | 2011-12-07 |
GB201009430D0 (en) | 2010-07-21 |
US8674668B2 (en) | 2014-03-18 |
GB2482653A (en) | 2012-02-15 |
WO2011154720A3 (en) | 2012-06-14 |
EP2577828A2 (de) | 2013-04-10 |
US9496803B2 (en) | 2016-11-15 |
CN202218176U (zh) | 2012-05-09 |
US20110298305A1 (en) | 2011-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2577828B1 (de) | Fotovoltaische solarsysteme | |
US10193467B2 (en) | Power conditioning units | |
US10141745B2 (en) | Photovoltaic power conditioning units | |
US9246397B2 (en) | Solar power conditioning unit | |
US8526205B2 (en) | Photovoltaic power conditioning units | |
EP2774243B1 (de) | Fotovoltaische aufbereitungseinheiten | |
GB2478789A (en) | Power conditioning unit with maximum power point tracking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011724014 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11724014 Country of ref document: EP Kind code of ref document: A2 |