WO2011050529A1 - 在光网络中发送下行帧的方法及相关装置 - Google Patents

在光网络中发送下行帧的方法及相关装置 Download PDF

Info

Publication number
WO2011050529A1
WO2011050529A1 PCT/CN2009/074718 CN2009074718W WO2011050529A1 WO 2011050529 A1 WO2011050529 A1 WO 2011050529A1 CN 2009074718 W CN2009074718 W CN 2009074718W WO 2011050529 A1 WO2011050529 A1 WO 2011050529A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
length
codeword
field
bytes
Prior art date
Application number
PCT/CN2009/074718
Other languages
English (en)
French (fr)
Inventor
赵泉波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN200980157583.6A priority Critical patent/CN102439874B/zh
Priority to PCT/CN2009/074718 priority patent/WO2011050529A1/zh
Publication of WO2011050529A1 publication Critical patent/WO2011050529A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection

Definitions

  • the present invention relates to the field of optical network technologies, and in particular, to a method and related apparatus for transmitting a downlink frame in a network.
  • Passive Optical Network (PON) technology is a point-to-multipoint optical fiber transmission and access technology.
  • the downlink uses broadcast mode and the uplink adopts time division multiple access mode, which can flexibly form a tree, a star, and a bus.
  • a topology such as a type does not require a node device at the optical branch point, and only needs to install a single optical splitter, which saves optical cable resources, bandwidth resource sharing, saves room investment, high device security, and network construction speed. Fast, comprehensive network construction costs are low.
  • FIG. 1 is a schematic diagram of a topology structure commonly used in existing passive optical networks.
  • the passive optical network shown in FIG. 1 is a tree topology, which includes an optical line terminal (OLT) 101 on the office side, an optical network unit (ONU) or an optical network terminal (ONT) 103 on the user side, and an optical distribution network. (ODN) 102.
  • ONT optical line terminal
  • ONU optical network unit
  • ONT optical network terminal
  • ODN optical distribution network.
  • the term "passive" means that the ODN does not contain any active electronic devices and electronic power supplies, all of which are composed of passive components such as splitters, so the cost of management and maintenance is low.
  • the main PON technologies include: ATM Passive Optical Network (APON) and Broadband Passive Optical Network (BPON) for Asynchronous Transfer Mode (ATM); Ether
  • GPON Gigabit Passive Optical Network
  • the GPON downlink frame consists of the downlink physical layer control block (PCBd) and the effective payload.
  • PCBd physical layer control block
  • the frame structure of the GPON transmission convergence layer (GTC, GPON Transmission Convergence) is shown in Figure 2.
  • the length of a GTC frame is 125 ⁇ . ⁇ .
  • the structure of the PCBd field is shown in Figure 3. From left to right, it includes:
  • Physical synchronization (Psync) field It occupies 4 bytes and is used to identify the frame;
  • Identify (ldent) field which occupies 4 bytes, contains 1 bit of FEC indicator bit, I ratio Super-reserved bit and 30-bit super frame counter (super frame counter) where the FEC indicator bit is used to indicate whether the downlink frame uses FEC encoding, and the superframe count is used as an input parameter of the downlink data encryption and decryption algorithm;
  • the Physical Layer Operations (Administration and Maintenance downstream, PLOAMd) field which occupies 13 bytes, contains a Physical Layer Operations (Administration and Maintenance, PLOAM) message, the PLOAM
  • the message is used for the operation and maintenance (OAM) in the chain-building process and link maintenance between the OLT and the ONU.
  • a PLOAM message type corresponds to a specific function, such as adjusting the optical power message and allocating traffic.
  • Container Transmission container, T-CONT
  • Bit-Interleaved Parity ( ⁇ ) field occupying 1 byte, saves the check value of all bytes from the last 6 frames ⁇ field to the front of the frame , field, and the check result is used as the error code rate.
  • Pend Payload Length downstream
  • Downstream Payload Length field Specify the length of the BWmap. To ensure robustness and prevent errors, the Plend domain is transmitted twice.
  • the upstream bandwidth map occupies N 8-byte mapping blocks. Multiple mapping blocks can enable different ONUs and different T-CONT data to be sent in the same upstream frame.
  • the payload portion of the GTC frame is encapsulated as a GEM (GPON encapsulation method) frame.
  • GEM GPON encapsulation method
  • the Psync field appears once every 125 us, and the ONU obtains downlink frame synchronization by searching for Psync.
  • FIG. 4 it is a schematic diagram of a conventional GTC downlink synchronization state machine transformation.
  • the GPON system uses RS (reed solomon) in the forward error correction mode (FEC) to encode, and the payload participating in the encoding does not change after FEC encoding. Since all codewords are arranged in order in the frame, no additional synchronization is required for the codeword, and once frame synchronization is achieved, codeword synchronization can be obtained.
  • FIG. 5 it is a schematic structural diagram of an existing RS (255, 239) encoding of a GTC frame. Each frame includes a Psync field, and the Psync field is located in the PCBd field.
  • the first codeword of each frame includes PCBd, data bytes, and check information, and the remaining codewords include only data bytes and check information. .
  • the downlink frame time of the GPON standard is 125us
  • the frame length is 38880 bytes
  • each RS code length is 255 bytes.
  • a short codeword of 120 bytes must appear at the end of each frame.
  • FIG. 6 it is a schematic diagram of a frame structure including a short codeword after RS (255, 239) encoding of a GTC frame.
  • the RS coding method of the short codeword is (120, 104).
  • the short codeword RS 120, 104 of each downlink frame in the current GPON system is placed at the end of the frame to protect the GEM frame encapsulated by the payload, and the most important one in the downlink frame.
  • the control information PCBd field is protected by an RS (255, 239) codeword with a relatively low error correction probability. It can be seen that the error correction performance of the RS code is not well utilized, resulting in low error correction performance, thereby reducing the accuracy of transmitting downlink frames in the optical network.
  • the embodiments of the present invention provide a method for transmitting a downlink frame in an optical network and related devices, so as to improve the error correction performance of the RS code, thereby improving the accuracy of transmitting the downlink frame in the optical network.
  • An embodiment of the present invention provides a method for transmitting a downlink frame in an optical network, including the following steps: determining that a fixed frame rate sent by the system is V, and an encoding type and a code type are RS (n, k), where n is the length after encoding, k is the length to be encoded; determining the number of bytes M per frame length according to the rate V;
  • the first codeword of the fixed length frame is encoded by a short codeword, and the remaining codewords of the fixed length frame are encoded according to a standard length n;
  • the encoded, encapsulated fixed length frame is sent out.
  • the embodiment of the invention provides a method for transmitting a downlink frame in an optical network, which includes the following steps: Determining that the fixed-length frame rate sent by the system is V, and the coding type and pattern used are RS (n, k), where n is the encoded length, k is the length to be encoded; The number of bytes included in the frame length M;
  • the information in the synchronization field included in the first codeword is set to the agreed value according to the position of the synchronization field in the fixed length frame, and the specified data after the synchronization field is composed of k.
  • the coded bytes are encoded, the last codeword is encoded by a short code, and the remaining codewords are coded according to a standard length n;
  • the encoded, encapsulated fixed length frame is sent out.
  • the receiving end After receiving the encapsulated information, the receiving end decapsulates the information, and replaces the content in the synchronization field with the agreed value for the first codeword of each frame, and replaces the synchronized field and the synchronization field.
  • the remaining bytes are composed of n bytes for decoding processing, and all the remaining codewords except the first codeword are subjected to decoding processing to obtain decoded data information.
  • An embodiment of the present invention provides a method for transmitting a downlink frame in an optical network, including the following steps: determining that a fixed frame rate sent by the system is V, and an encoding type and a code type are RS (n, k), where n is the length after encoding, k is the length to be encoded; determining the number of bytes M per frame length according to the rate V;
  • the encoded, encapsulated fixed length frame is sent out.
  • An embodiment of the present invention provides a method for transmitting a downlink frame in an optical network, including the following steps: determining that a fixed frame rate sent by the system is V, and an encoding type and a code type are RS (n, k), where n is the length after encoding, k is the length to be encoded; determining the number of bytes M per frame length according to the rate V;
  • the encoded, encapsulated fixed length frame is sent out.
  • An embodiment of the present invention provides an apparatus for transmitting a downlink frame in an optical network, including: a condition determining unit, configured to determine that the fixed frame rate sent by the system is V, and the coding type and the code type used are RS (n, k), where n is the length after encoding, and k is the length to be encoded;
  • the rate V determines the number of bytes M included in each frame length;
  • a first coding unit where a remainder of the M divided by n is not zero, the first codeword of the fixed length frame is encoded by a short codeword, and the remaining codewords of the fixed length frame are according to a standard a length n encoding process;
  • a sending unit configured to send the encoded and encapsulated fixed length frame.
  • An embodiment of the present invention provides a receiving apparatus, including:
  • a receiving unit configured to: after the receiving end receives the encapsulated information, perform a decapsulation synchronization field obtaining unit, where the information is used to obtain a synchronization field directly from the received information or obtain a pre-storage locally from the receiving end.
  • the first decoding unit is configured to process the received first codeword by a short code, and process the remaining codewords by a standard length n to obtain the decoded data information.
  • An embodiment of the present invention provides a receiving apparatus, including:
  • a receiving unit after receiving the encapsulated information, the receiving end decapsulates the information; and a second decoding unit, configured to replace, in the first codeword of each frame, the content in the synchronization field with And performing the decoding process on the first codeword, and sequentially performing decoding processing on the remaining codewords to obtain the decoded data information.
  • An embodiment of the present invention provides an apparatus for transmitting a downlink frame in an optical network, including:
  • condition determining unit configured to determine that the fixed frame rate sent by the system is V, and the coding type and the code type used are RS (n, k), where n is the length after encoding, and k is the length to be encoded;
  • the rate V determines the number of bytes M included in each frame;
  • a third coding unit configured to: if the remainder P of M divided by n is not zero, perform encoding processing from the synchronization field according to a standard length n, and fill the remaining P bytes at the end of the frame;
  • a sending unit configured to send the coded and encapsulated fixed length frame.
  • An embodiment of the present invention provides an apparatus for transmitting a downlink frame in an optical network, including:
  • condition determining unit configured to determine that the fixed frame rate sent by the system is V, and the coding type and the code type used are RS (n, k), where n is the length after encoding, and k is the length to be encoded;
  • the rate V determines the number of bytes M included in each frame;
  • a fourth coding unit configured to: if the remainder P of (M - I) divided by n is not zero, wherein I is the number of bytes of the synchronization field, then encoding is performed according to a standard length n from the data after the synchronization field , filling the P bytes of the end of the frame with fixed data;
  • a sending unit configured to send the coded and encapsulated fixed length frame.
  • the short codeword is used on the first codeword of the downlink frame, so that the important control information PCBd in the downlink frame is more effectively protected, the error correction performance of the RS code is optimized, and the downlink frame is transmitted in the optical network. The accuracy.
  • Another method and apparatus for transmitting a downlink frame in an optical network setting information in a synchronization field included in a first codeword to an agreed value, and including a first codeword of the specified data
  • the encoding process is performed according to the standard length n, and the receiving end applies the preset agreed value, that is, the Psync value, instead of the actually received Psync value, for decoding calculation, since the value of the synchronization field in the first codeword is actually known,
  • the error correction opportunity of other fields of the codeword in the synchronization field is increased, the error correction performance of the RS code is optimized, and the accuracy of transmitting the downlink frame in the optical network is improved.
  • the method does not affect the existing downlink synchronization mechanism, and does not need to modify the GTC downlink synchronization state machine of the GPON standard, and has good compatibility with the prior art.
  • FIG. 1 is a schematic diagram of a topology structure commonly used in existing passive optical networks
  • FIG. 2 is a schematic structural diagram of a conventional GPON downlink frame
  • FIG. 3 is a schematic structural diagram of a PCBd field in a conventional GPON downlink frame structure
  • FIG. 4 is a schematic diagram of a conventional GTC downlink synchronization state machine conversion
  • FIG. 10 is a schematic diagram showing another example of a frame structure in which a first codeword is a short code and a synchronization field does not participate in encoding according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram showing another example of a frame structure in which a first codeword is a short code and a synchronization field does not participate in coding according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram showing an example of a frame structure in which a first codeword is a short code and a synchronization field participates in coding according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram showing another example of a frame structure in which a first codeword is a short code and a synchronization field participates in coding according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram showing another example of a frame structure in which a first codeword is a short code and a synchronization field participates in coding according to an embodiment of the present invention
  • FIG. 15 is a schematic diagram showing another example of a frame structure in which a first codeword is a short code and a synchronization field participates in coding according to an embodiment of the present invention
  • FIG. 16 is a schematic flowchart of processing of a short codeword at a final transmitting end according to an embodiment of the present invention
  • FIG. 17 is a schematic flowchart of processing of a short codeword at a final receiving end according to an embodiment of the present invention
  • FIG. The synchronization field of the downlink frame does not participate in the coding and the last codeword does not need to be a short codeword FEC frame structure diagram;
  • FIG. 19 is a schematic structural diagram of an FEC frame in which a synchronization field of a downlink frame participates in coding and a last codeword does not need to be a short codeword according to an embodiment of the present invention
  • FIG. 20 is a schematic structural diagram of an apparatus for transmitting a downlink frame in an optical network according to an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of another apparatus for transmitting a downlink frame in an optical network according to an embodiment of the present invention.
  • FIG. 22 is a schematic structural diagram of a receiving apparatus according to an embodiment of the present invention.
  • FIG. 23 is a schematic structural diagram of another receiving apparatus according to an embodiment of the present invention.
  • FIG. 24 is a schematic structural diagram of another apparatus for transmitting a downlink frame in an optical network according to an embodiment of the present invention. Intention
  • Figure 25 is a block diagram showing the structure of an apparatus for transmitting a downlink frame in an optical network according to an embodiment of the present invention. detailed description
  • FEC Forward Error Correction
  • the RS (reed solomon) code which is a FEC code, is suitable for correcting burst errors.
  • the main parameters of a RS code that can correct T error symbols are as follows:
  • code length N 2 m - 1 symbol
  • the RS shortening code means that the code length N is less than 2 m -1 symbols.
  • the last codeword of the GPON downlink frame is (120, 104), which is a shortening code.
  • the number of symbols is the same, so the error correction capability is the same, but the next codeword in the RS (255, 239) format needs to protect 239 information symbols, and the next symbol in the RS (120, 104) format only protects 104 information symbols.
  • the error correction performance is higher in the RS (120, 104) format.
  • FIG. 7 is a flowchart of a method for transmitting a downlink frame in an optical network according to an embodiment of the present invention.
  • the flow is mainly for a next-generation GPON, and the first codeword is a short codeword, and specifically includes: Step 701 , determine network conditions, including:
  • the coding type and pattern used are RS (n, k), where n is the length after encoding, and k is the length to be encoded; The number of bytes included in the frame length M;
  • RS P-coded, q
  • the short codeword protects the identification field, the physical layer operation management and maintenance message field, and the bit interleaving check field in the PCBd field of the fixed length frame, or protects the fixed length frame.
  • the short codeword protects the synchronization field, the identification field, the physical layer operation management and maintenance message field, and the bit interleaving check field in the PCBd field of the fixed length frame, or The sync field, the identification field, and the physical layer operation management and maintenance message field in the PCBd field of the fixed length frame, or the synchronization field and the identification field in the PCBd field of the fixed length frame, or the protected fixed length frame in the PCBd field Synchronization field.
  • Step 703 Send the coded and encapsulated fixed length frame.
  • the receiver performs the following processing: After receiving the encapsulated information, the receiver performs the information. Decapsulation, locally acquiring a pre-stored synchronization field from the receiving end or directly acquiring a synchronization field from the received information; sending all codewords to the decoder for decoding Get the decoded data information. Wherein, the first codeword is processed by a short code, and the remaining codewords are processed by a standard length n.
  • the receiving end may perform the following processing: after receiving the encapsulated information, the receiving end decapsulates the information, and locally obtains a pre-stored synchronization field from the receiving end;
  • the synchronization field replaces the synchronization field in the received first codeword, and sends the replaced first codeword and the remaining codewords to the decoder for decoding processing to obtain the decoded data information.
  • the first codeword is processed by a short code
  • the remaining codewords are processed by a standard length n.
  • the system is an XG-PON system
  • the fixed length frame is an XGTC downlink frame
  • the rate of the XGTC downlink frame is V is 9.95328 Gbps; the length of each XGTC downlink frame is 125 us.
  • determining, according to the rate V of the XG-PON, that the number M of bytes included in each XGTC downlink frame is 155520.
  • the coding type and pattern used are RS (252, 220).
  • RS 255, 223
  • RS RS (248, 216)
  • FIG. 8 is a flowchart of another method for transmitting a downlink frame in an optical network according to an embodiment of the present invention.
  • the embodiment is mainly for a next-generation GPON, and the last codeword is a short codeword, and specifically includes:
  • Step 801 determining network conditions, specifically including:
  • the fixed-length frame rate sent by the system is V
  • the coding type and pattern used are RS (n, k), where n is the length after encoding, and k is the length to be encoded; The number of bytes included in the frame length M;
  • Step 802 if the remainder of M divided by n is not zero, the information in the synchronization field included in the first codeword is set to an agreed value according to the position of the synchronization field in the fixed length frame, and the first data is included.
  • a codeword is encoded according to a standard length n, the last codeword is encoded by a short code, and the remaining codewords are encoded according to a standard length n;
  • Step 803 Send the encoded and encapsulated fixed length frame.
  • the above process is for the transmitting end, and for the receiving end, the corresponding operation is performed: After receiving the encapsulated information, the receiving end decapsulates the information, and the first codeword of each frame is The content in the synchronization field is replaced with the agreed value, and the first codeword is decoded, and the remaining codewords are sequentially subjected to decoding processing to obtain decoded data information.
  • the system is an XG-PON system
  • the fixed length frame is an XGTC downlink frame
  • the rate of the XGTC downlink frame is V is 9.95328 Gbps; the length of each XGTC downlink frame is 125 us.
  • determining, according to the rate V of the XG-PON, that the number M of bytes included in each XGTC downlink frame is 155520.
  • the coding type and pattern used for the downlink frame are RS (252, 220).
  • RS 255, 223
  • RS RS (248, 216)
  • the next-generation GPON or XG-PON system is taken as an example.
  • the downlink frame in the XG-PON system is called an XGTC downlink frame (hereinafter also referred to as a downlink GTC frame or a GTC frame), and all of the following.
  • the downlink rate of the next-generation GPON in the embodiment is 9.35328 Gbps for V GPON , and the length of each downlink GTC frame is 125 us.
  • the number of bytes M included in each downlink GTC frame is determined according to the downlink rate V GPON of the next-generation GPON. 155520.
  • the coding type and pattern used for the downlink GTC frame are RS (225, 220).
  • the downlink frame length 155520 is not an integer multiple of the code length 252, and the downlink frame length includes 617 RS (252, 220) code words, and 36 bytes of short code words remain.
  • the first codeword of the downlink frame is a short codeword, and the synchronization field does not participate in the encoding.
  • the length of the short codeword is 32 words. Section, for a 32-byte short code, there are a variety of pattern selection schemes, specifically: Option 1: Select the pattern as RS (32, 24)
  • FIG. 9 is a schematic diagram of a frame structure in which a first codeword is a short code and a synchronization field does not participate in coding according to an embodiment of the present invention
  • the code pattern selected in this embodiment is RS (32, 24)
  • the actual The codeword information is 24 bytes
  • the short codeword protects the identification field, the payload field, and the bit interleaving check field in the PCBd field of the GTC frame, as shown in Figure 9.
  • Option 2 Select the pattern as RS (32, 20)
  • FIG. 10 it is a schematic diagram of another frame structure in which a first codeword is a short code and a synchronization field does not participate in coding according to an embodiment of the present invention
  • the code pattern selected in this embodiment is RS (32, 20)
  • the codeword information is 20 bytes
  • the short codeword protects the identification field and the payload field in the PCBd field of the GTC frame, as shown in Figure 10.
  • Option 3 Select the pattern as RS (32, 4)
  • FIG. 11 is a schematic diagram of another frame structure in which a first codeword is a short code and a synchronization field does not participate in coding according to an embodiment of the present invention
  • the code pattern selected in this embodiment is RS (32, 4), so
  • the short codeword protects the identification field in the PCBd field of the GTC frame, as shown in FIG.
  • the receiving end may perform the following processing: after receiving the encapsulated information, the receiving end decapsulates the information. Obtaining a pre-stored synchronization field locally from the receiving end or directly acquiring a synchronization field from the received information; sending all the code words to the decoder for decoding processing, and obtaining the decoded data information. Its The first codeword is processed by a short code, and the remaining codewords are processed by a standard length n.
  • the important control information PCBd in the downlink frame is more effectively protected, and the error correction performance of the RS code is optimized, and the improvement is improved.
  • the first codeword of the downlink frame is a short codeword, and the synchronization field participates in the coding embodiment:
  • the length of the short codeword is 36 bytes.
  • FIG. 12 it is a schematic diagram of a frame structure in which a first codeword is a short code and a synchronization field participates in coding according to an embodiment of the present invention.
  • the code pattern selected in this embodiment is RS (36, 28), and thus the actual code.
  • the short code word protects the synchronization field, the identification field, the payload field and the bit interleaving check field in the PCBd field of the GTC frame, as shown in Figure 12.
  • FIG. 13 is a schematic diagram of another frame structure in which a first codeword is a short code and a synchronization field participates in coding according to an embodiment of the present invention
  • the code pattern selected in this embodiment is RS (36, 24)
  • the actual The codeword information is 24 bytes
  • the short code word protection in this scheme is the synchronization field, identification field and payload field in the PCBd field of the GTC frame. See Figure 13 for details.
  • FIG. 14 is a schematic diagram of another frame structure in which a first codeword is a short code and a synchronization field participates in coding according to an embodiment of the present invention
  • the code pattern selected in this embodiment is RS (36, 8)
  • the actual The codeword information is 8 bytes
  • the short code word protects the synchronization field and the identification field in the PCBd field of the GTC frame, See Figure 14 for the body.
  • Option 4 Select the pattern as RS ( 3 6, 4 )
  • FIG. 15 is a schematic diagram of another frame structure in which a first codeword is a short code and a synchronization field participates in coding according to an embodiment of the present invention
  • the code pattern selected in this embodiment is RS (36, 4)
  • the actual The codeword information is 4 bytes
  • the short codeword protects the synchronization field in the PCBd field of the GTC frame. See Figure 15 for details. Furthermore, since the content of the synchronization field is data known by the receiving end, the receiving end knows the true Psync value without error correction in the case of obtaining frame synchronization, so the first code word is 32 bytes check digit, only The role of the frame data padding, therefore, the Parity field of the first codeword of the scheme can also be directly filled with a fixed value without calculation, and it can be seen that the scheme is not a superior scheme.
  • the receiving end may perform the following processing: after receiving the encapsulated information, the receiving end decapsulates the information; Obtaining a pre-stored synchronization field locally from the receiving end, applying the synchronization field obtained locally to replace the synchronization field in the received first codeword, replacing the first codeword and removing the first codeword All codewords are sent to the decoder for decoding processing to obtain decoded data information.
  • the first codeword is processed by a short code
  • the remaining codewords are processed by a standard length n.
  • the short codeword on the first codeword of the downlink frame by using the short codeword on the first codeword of the downlink frame, the important control information PCBd in the downlink frame is more effectively protected, and the error correction performance of the RS code is optimized, and the improvement is improved.
  • the accuracy of transmitting downstream frames in an optical network The last codeword of the downlink frame is a short codeword, and the synchronization field participates in the coding embodiment:
  • the FEC frame structure of the XGPON is processed in the manner of the existing GPON, and the short codeword is still placed in the last codeword of the downlink GTC frame.
  • the 4 bytes of the downlink synchronization field are still included in the length of the first FEC codeword, and the synchronization field is unchanged in the position of the transmitted GTC frame structure; the coding mode of the first codeword is modified, that is, the synchronization field of the first four bytes.
  • the fill-in agreement value in the position participates in the calculation.
  • the encoded or decoded 4-byte padding convention value for each 125us first codeword may be 0 or other agreed data. Referring to FIG.
  • the standard code length is RS (255, 223) as an example, which is a schematic diagram of the processing flow of the short codeword according to the embodiment of the present invention at the last transmitting end.
  • the four agreed-filled bytes participating in the encoding are not transmitted, the 4-byte sync field is sent first, and the subsequent 219-byte and 32-byte check fields are transmitted.
  • FIG. 17 there is shown a process flow diagram of a short codeword at the last receiving end in accordance with an embodiment of the present invention.
  • the receiving end After receiving the encapsulated information, the receiving end decapsulates the information, and replaces the content in the synchronization field position with the agreed value such as 0 for the first codeword of each frame, and then replaces the replaced 4 words. Section 0 and 219 bytes after the synchronization field in the first codeword are decoded together to obtain decoded data information.
  • the receiving end applies the preset agreed value, that is, the Psync value, instead of the actually received Psync value, to perform decoding calculation. Since the value of the synchronization field in the first codeword is actually known, the synchronization field is added. The error correction opportunity of other fields of the codeword optimizes the error correction performance of the RS code and improves the accuracy of transmitting the downlink frame in the optical network.
  • the method does not affect the existing downlink synchronization mechanism, and does not need to modify the GTC downlink synchronization state machine of the GPON standard, and has good compatibility with the prior art.
  • the sync field of the downstream frame does not participate in the encoding, and the last codeword does not need to be a short codeword, but an embodiment of filling invalid data:
  • the downlink FEC frame structure of the XGPON is shown in FIG. 18.
  • the downlink synchronization field of the transmitting end is 4 bytes and does not participate in the FEC encoding, and the encoding starts from the data after the synchronization field, and the standard code length is 252 bytes, and the remaining frame ends 32. Bytes do not carry valid data, and fixed padding invalid data.
  • the receiving end After detecting the synchronization field, the receiving end starts to decode from the data after the synchronization field according to the standard code length of 252 bytes, and discards the remaining 32 bytes at the end of the frame.
  • the synchronization byte since the synchronization byte does not participate in the coding calculation, the corresponding synchronization field length space is vacated to encode and protect other valid data, and the remaining bytes of the frame tail are directly filled, and the implementation scheme is further optimized, and the RS is optimized.
  • the error correction performance of the code improves the accuracy of transmitting downlink frames in the optical network.
  • the synchronization field of the downlink frame participates in the coding, and the last codeword does not need to be a short codeword, but an embodiment of filling invalid data:
  • the downlink FEC frame structure of the XGPON is shown in Figure 19.
  • the downstream end of the transmission is FEC-coded from the synchronization field.
  • the standard code length is 252 bytes, and the remaining 36 bytes at the end of the frame do not carry valid data, and the padding invalid data is fixed.
  • the receiving end After the receiving end detects the synchronization field, it starts to decode from the synchronization field according to the standard code length of 252 bytes, and discards the remaining 36 bytes at the end of the frame.
  • An embodiment of the present invention further provides an apparatus for transmitting a downlink frame in an optical network. Referring to FIG. 20, the method includes:
  • the condition determining unit 1801 is configured to determine that the fixed frame rate sent by the system is V, and the encoding type and the code pattern used are RS (n, k), where n is the encoded length, and k is the length to be encoded; Determining, according to the rate V, the number of bytes M included in each frame length;
  • a first coding unit 1802 when the remainder of the M divided by n is not zero, the first codeword of the fixed length frame is encoded by a short codeword, and the remaining codewords of the fixed length frame are standardized. Length n encoding process;
  • the sending unit 1803 is configured to send the coded and encapsulated fixed length frame.
  • the first coding unit 1802 includes:
  • a synchronization field byte obtaining unit configured to acquire a number of bytes of the synchronization field of the fixed length frame
  • a short code byte acquiring unit configured to acquire a number of bytes of the short codeword, p coding
  • M mod N represents the remainder of M divided by n, and I is the number of bytes of the sync field of the fixed length frame;
  • an encoding operation unit configured to encode the short codeword according to RS (P code, q), where q represents a length to be coded in the short codeword.
  • the first encoding unit 1802 includes:
  • M mod N represents the remainder of M divided by n
  • An encoding operation unit that encodes the short codeword in accordance with RS (P-coded, q), where q represents the length to be encoded in the short codeword.
  • the system is an XG-PON system, the fixed length frame is an XGTC downlink frame, and the rate of the XG-PON is V 9.95328 Gbps;
  • each XGTC downlink frame is 125us, and the number of bytes M of each XGTC downlink frame is determined according to the rate V of the XG-PON is 155520;
  • the coding type and pattern adopted by the XGTC downlink frame are RS (252, 220).
  • An embodiment of the present invention further provides an apparatus for transmitting a downlink frame in an optical network. Referring to FIG. 21, the method specifically includes:
  • the condition determining unit 1901 is configured to determine that the fixed frame rate sent by the system is V, and the encoding type and the code type used are RS (n, k), where n is the encoded length, and k is the length to be encoded; Determining, according to the rate V, the number of bytes M included in each frame;
  • a second encoding unit 1902 configured to: if the remainder of M divided by n is not zero, set the information in the synchronization field included in the first codeword to an agreed value according to the position of the synchronization field in the GTC frame, and the The first codeword of the designated data is encoded according to the standard length n, the last codeword is encoded by the short code, and the remaining codewords are encoded according to the standard length n;
  • the sending unit 1903 is configured to send the coded and encapsulated fixed length frame.
  • the embodiment of the present invention further provides a receiving device, as shown in FIG. 22, specifically including:
  • the receiving unit 2001 is configured to: after receiving the encapsulated information on the receiving end, decapsulating the information;
  • the synchronization field obtaining unit 2002 is configured to locally acquire a pre-stored synchronization field from the receiving end, and apply the locally acquired synchronization field to replace the synchronization field in the received first codeword.
  • the first decoding unit 2003 is configured to: The replaced first codeword and all codewords after removing the first codeword are subjected to decoding processing, wherein the first codeword is processed by a short code, and the remaining codewords are processed by a standard length n.
  • An embodiment of the present invention further provides a receiving apparatus, as shown in FIG. 23, including: The receiving unit 2101, after receiving the encapsulated information, the receiving end decapsulates the information; the second decoding unit 2102 is configured to replace the content in the synchronization field with the first codeword of each frame.
  • the agreed value further performs decoding processing on the remaining bytes in the first codeword, and performs decoding processing on all the remaining codewords except the first codeword to obtain decoded data information.
  • the embodiment of the present invention further provides an apparatus for transmitting a downlink frame in an optical network. Referring to FIG. 24, the method specifically includes:
  • the condition determining unit 2201 is configured to determine that the fixed frame rate sent by the system is V, and the encoding type and the code type used are RS (n, k), where n is the encoded length, and k is the length to be encoded; Determining, according to the rate V, the number of bytes M included in each frame;
  • the third coding unit 2202 is configured to perform coding processing according to the standard length n from the synchronization field when the remainder P of M divided by n is not zero, and divide the remaining P bytes at the end of the frame (M is divided by the remainder of N) Perform filling processing;
  • the sending unit 2203 is configured to send the coded and encapsulated fixed length frame.
  • An embodiment of the present invention further provides an apparatus for transmitting a downlink frame in an optical network. Referring to FIG. 25, the method specifically includes:
  • the condition determining unit 2301 is configured to determine that the fixed frame rate sent by the system is V, and the encoding type and the code type used are RS (n, k), where n is the encoded length, and k is the length to be encoded; Determining, according to the rate V, the number of bytes M included in each frame;
  • the fourth coding unit 2302 is configured to: if the remainder P of (M - I) divided by n is not zero, where I is the number of bytes of the synchronization field, the code is encoded according to the standard length n from the data after the synchronization field. Processing, filling the P bytes of the end of the frame with fixed data;
  • the sending unit 2303 is configured to send the coded and encapsulated fixed length frame.
  • the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • the solution can be embodied in the form of a software product that can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including a number of instructions for making a computer device (
  • a non-volatile storage medium which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • the method described in various embodiments of the present invention may be a personal computer, a server, or a network device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Optical Communication System (AREA)

Abstract

一种在光网络中发送下行帧的方法及相关装置,所述方法包括:确定下行GPON的速率为VGPON,以及下行GTC帧所采用的编码类型及码型为RS(n,k),其中,n为编码后的长度,k为待编码的长度;根据所述下行GPON的速率VGPON确定每个下行GTC帧包含的字节数M;若M除以n的余数不为零,则将所述下行GTC帧的第一个码字按短码字编码处理,将所述下行GTC帧的其余码字按标准的长度n编码处理;将编码、封装后的所述下行GTC帧发送出去。应用本发明,使得下行帧中重要的控制信息PCBd得到了更为有效的保护,优化了RS码的纠错性能,提高了在光网络中传输下行帧的准确性。

Description

在光网络中发送下行帧的方法及相关装置 技术领域
本发明涉及光网络技术领域,尤其涉及光在网络中发送下行帧的方法及相 关装置。
背景技术
无源光网络( PON, Passive Optical Network )技术是一种点对多点的光纤 传输和接入技术, 下行采用广播方式、 上行采用时分多址方式, 可以灵活地组 成树型、 星型、 总线型等拓朴结构, 在光分支点不需要节点设备, 只需要安装 一个筒单的光分支器即可, 其具有节省光缆资源、 带宽资源共享、 节省机房投 资、 设备安全性高、 建网速度快、 综合建网成本低等优点。
图 1是现有无源光网络常用的一种拓朴结构示意图。图 1所示无源光网络 为树型的拓朴结构, 其包括局侧的光线路终端 (OLT ) 101、 用户侧的光网络 单元(ONU )或者光网络终端 (ONT ) 103以及光分配网络 ( ODN ) 102。 所 谓"无源", 是指 ODN中不含有任何有源电子器件及电子电源, 全部由光分路 器(Splitter )等无源器件组成, 因此其管理维护的成本较低。
目前主要的 PON技术包括:适用于异步传输模式( Asynchronous Transfer Mode , ATM ) 的 ATM 无源光网络 ( ATM Passive Optical Network , APON ) 和宽带无源光网络( Broadband Passive Optical Network , BPON ) ;适用于以太
ATM 和以太网传输的千兆比特速率无源光网络 ( Gigabit Passive optical Network , GPON )»
GPON 下行帧由下行物理层控制块 ( Physical control block Downstream , PCBd ) 和有效净荷组成, GPON 传输汇聚层 (GTC , GPON Transmission Convergence ) 的帧结构如图 2所示, 一个 GTC帧的长度为 125μδ
PCBd字段的结构如图 3所示, 从左到右包括:
物理层同步( Physical synchronization , Psync ) 字段: 其占用 4 字节, 用 于对帧进行识别;
识别 (ldent )字段, 其占用 4 字节, 包含 1 比特的 FEC指示位、 I 比 特保留位和 30 比特的超帧计数 ( super frame counter ) 其中 FEC 指示位用于 指示本下行帧是否使用了 FEC 编码, 超帧计数作为下行数据加密解密算法的 输入参数;
下行物理层操作管理和维护( Physical Layer Operations , Administration and Maintenance downstream , PLOAMd )字段, 占用 13 字节, 包含一条物理层操 作管理和维护 ( Physical Layer Operations , Administration and Maintenance , PLOAM )消息, 所述 PLOAM 消息用于 OLT和 ONU 间建链过程和链路维 护中的操作管理和维护 ( Operations , Administration and Maintenance , OAM ) , 一个 PLOAM 消息类型对应一种很具体的功能, 如调整光功率消息、 分配流 量容器 ( Transmission container , T-CONT ) 消息等;
比特交织校验 ( Bit-Interleaved Parity , ΒΙΡ )字段, 占用 1 字节, 保存从上 6个帧 ΒΙΡ字段之后到本帧 ΒΙΡ字段前所有字节的校验值, 校验结果用作错 码率统计;
下行净荷长度域 ( Pay load Length downstream , PLend ) , 下行净荷长度域 指定 BWmap的长度。 为了保证健壮性和防止错误, Plend域传送两次。
上行带宽映射 ( upstream Bandwidth Map , us Bw Map ) , 占用 N 个 8 字 节的映射块, 多个映射块可以使不同的 ONU 和不同的 T-CONT 的数据在同 一个上行帧中都得到发送。
GTC帧的净荷部分被封装为 GEM ( GPON encapsulation method ) 帧。 基于上述 GPON下行帧结构, Psync字段每 125us出现一次, ONU通过 搜索 Psync获得下行帧同步。 参见图 4 , 其是现有的 GTC下行同步状态机变 换示意图。 GPON标准定义的 GTC帧同步状态机 (其中 Ml=2, M2=5 )如下: ONU开始于搜索状态。 在搜索状态, ONU逐比特和字节搜索 Psync字段。 一 旦找到一个正确的 Psync, ONU就进入预同步状态并设置计数器 N=l。 接着 ONU每隔 125μ8搜索下一个 Psync。 每找到一个正确的 Psync , 计数器值加 1。 如果找到一个错误的 Psync, 则 ONU回到搜索状态。 在预同步状态下, 如果 计数器的值为 Ml , 则 ONU进入同步状态。 一旦进入同步状态, ONU就可声 明已经找到下行帧结构, 并开始处理 PCBd信息。 如果检测到 M2个连续错误 的 Psync , 则 ONU声明丟失了下行帧定界, 返回到搜索状态。 GPON系统采用前向纠错方式( FEC )中的 RS ( reed solomon )进行编码, 参与编码的 payload在 FEC编码后不会改变。由于所有码字在帧中都被按次序 安排, 因此对于码字来说不需要额外同步, 一旦取得了帧同步, 就可以获得码 字同步。 参见图 5 , 其是现有的对 GTC帧进行 RS(255,239)编码后的结构示意 图。 每帧中包括一个 Psync字段, 该 Psync字段位于 PCBd字段内, 每个帧的 第一个码字中包括 PCBd、 数据字节以及校验信息, 其余码字中只包括数据字 节以及校验信息。
目前 GPON标准中下行帧时间为 125us , 帧长为 38880字节, 每个 RS码 长为 255字节,这样,在每个帧的帧尾必然出现 120字节的短码字。参见图 6, 其是现有的对 GTC帧进行 RS(255,239)编码后包括短码字的帧结构示意图。根 据前述条件可知, 该短码字的 RS编码方式为 ( 120,104 )。
通过对现有技术进行分析可知, 目前 GPON 系统中每个下行帧的短码字 RS(120,104)放在帧尾, 用来保护对净荷封装而成的 GEM帧, 而下行帧中最重 要的控制信息 PCBd字段被纠错概率相对低的 RS(255 , 239)码字保护。 可见, RS编码的纠错性能没有被很好的利用, 导致纠错性能较低, 从而降低了在光 网络中传输下行帧的准确性。 发明内容
本发明实施例提供一种在光网络中发送下行帧的方法及相关装置,以提高 RS码的纠错性能, 进而提高在光网络中传输下行帧的准确性。
本发明实施例提供一种在光网络中发送下行帧的方法, 包括以下步骤: 确定系统发送的定长帧速率为 V,所采用的编码类型及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧长 包含的字节数 M;
若 M除以 n的余数不为零, 则将所述定长帧的第一个码字按短码字编码 处理, 将所述定长帧的其余码字按标准的长度 n编码处理;
将编码、 封装后的所述定长帧发送出去。
本发明实施例提供一种在光网络中发送下行帧的方法, 包括以下步骤: 发送方: 确定系统发送的定长帧速率为 V,所采用的编码类型及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧长 包含的字节数 M;
若 M除以 n的余数不为零, 则根据同步字段在定长帧中的位置, 将包含 在第一码字内的同步字段中信息设置为约定值,和同步字段后的指定数据组成 k个待编码字节进行编码处理, 将最后一个码字按短码进行编码处理, 将其余 码字按标准的长度 n进行编码处理;
将编码、 封装后的所述定长帧发送出去。
接收方:
接收端收到已封装的信息后,对所述信息进行解封装,对每帧的第一个码 字,将同步字段中的内容替换为约定值,将替换后的同步字段和同步字段后的 其余字节组成 n个字节进行解码处理, 并且,对除第一码字外的其余所有码字 进行解码处理, 获得解码后的数据信息。
本发明实施例提供一种在光网络中发送下行帧的方法, 包括以下步骤: 确定系统发送的定长帧速率为 V,所采用的编码类型及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧长 包含的字节数 M;
若 M除以 n的余数 P不为零, 则从同步字段按标准的长度 n进行编码处 理, 将帧尾剩余 P字节进行填充处理;
将编码、 封装后的所述定长帧发送出去。
本发明实施例提供一种在光网络中发送下行帧的方法, 包括以下步骤: 确定系统发送的定长帧速率为 V,所采用的编码类型及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧长 包含的字节数 M;
若 (M - I)除以 n的余数 P不为零, 其中, I为同步字段的字节数, 则从同 步字段后的数据开始按标准的长度 n进行编码处理,将帧尾的 P个字节进行填 充固定数据;
将编码、 封装后的所述定长帧发送出去。
本发明实施例提供一种在光网络中发送下行帧的装置, 包括: 条件确定单元, 用于确定系统发送的定长帧速率为 V, 所采用的编码类型 及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所 述速率 V确定每个帧长包含的字节数 M;
第一编码单元, 用于 M除以 n的余数不为零时, 将所述定长帧的第一个 码字按短码字编码处理, 将所述定长帧的其余码字按标准的长度 n编码处理; 发送单元, 用于将编码、 封装后的所述定长帧发送出去。
本发明实施例提供一种接收装置, 包括:
接收单元, 用于在接收端收到所述已封装的信息后,对所述信息进行解封 同步字段获取单元,用于从接收到的信息中直接获取同步字段或从接收端 本地获取预先存储的同步字段;
第一解码单元, 用于对接收到的第一个码字按短码处理,对其余码字按标 准的长度 n处理, 获得解码后的数据信息。
本发明实施例提供一种接收装置, 包括:
接收单元, 接收端收到所述已封装的信息后, 对所述信息进行解封装; 第二解码单元, 用于对每帧的第一个码字,将所述同步字段中的内容替换 为所述约定值, 再对所述第一码字进行解码处理, 并且, 对其余码字依次进行 解码处理, 获得解码后的数据信息。
本发明实施例提供一种在光网络中发送下行帧的装置, 包括:
条件确定单元, 用于确定系统发送的定长帧速率为 V, 所采用的编码类型 及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所 述速率 V确定每个帧包含的字节数 M;
第三编码单元, 用于若 M除以 n的余数 P不为零时, 从同步字段按标准 的长度 n进行编码处理, 将帧尾剩余 P字节进行填充处理;
发送单元, 用于将编码、 封装后的所述定长帧发送出去。
本发明实施例提供一种在光网络中发送下行帧的装置, 包括:
条件确定单元, 用于确定系统发送的定长帧速率为 V, 所采用的编码类型 及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所 述速率 V确定每个帧包含的字节数 M; 第四编码单元, 用于若 (M - I)除以 n的余数 P不为零, 其中, I为同步字 段的字节数, 则从同步字段后的数据开始按标准的长度 n进行编码处理,将帧 尾的 P个字节进行填充固定数据;
发送单元, 用于将编码、 封装后的所述定长帧发送出去。 短码字用在下行帧的第一个码字上,使得下行帧中重要的控制信息 PCBd得到 了更为有效的保护, 优化了 RS码的纠错性能, 提高了在光网络中传输下行帧 的准确性。
应用本发明实施例所提供的另一种在光网络中发送下行帧的方法及装置, 将包含在第一码字内的同步字段中信息设置为约定值,将包含指定数据的第一 码字按标准的长度 n进行编码处理,接收端应用预设的约定值即 Psync值代替 实际接收到的 Psync值进行解码计算, 由于第一个码字中的同步字段的值实际 为已知的, 因而增加了同步字段所在码字的其他字段的纠错机会, 优化了 RS 码的纠错性能,提高了在光网络中传输下行帧的准确性。 该方法不影响现有的 下行同步机制, 不需修改 GPON标准的 GTC下行同步状态机, 与现有技术有 很好的兼容性。 附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使 用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些 实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还 可以根据这些附图获得其他的附图。
图 1是现有无源光网络常用的一种拓朴结构示意图;
图 2是现有的 GPON下行帧结构示意图;
图 3是现有的 GPON下行帧结构中 PCBd字段的结构示意图;
图 4是现有的 GTC下行同步状态机变换示意图;
图 5是现有的对 GTC帧进行 RS(255,239)编码后的结构示意图; 图; ' ' ' ' ― ' 图 Ί是根据本发明实施例的一种在光网络中发送下行帧的方法流程图; 图 8是根据本发明实施例的另一种在光网络中发送下行帧的方法流程图; 图 9 是根据本发明实施例的第一码字为短码且同步字段不参与编码的一 个帧结构实例示意图;
图 10是根据本发明实施例的第一码字为短码且同步字段不参与编码的另 一个帧结构实例示意图;
图 11是根据本发明实施例的第一码字为短码且同步字段不参与编码的再 一个帧结构实例示意图;
图 12是根据本发明实施例的第一码字为短码且同步字段参与编码的一个 帧结构实例示意图;
图 13是根据本发明实施例的第一码字为短码且同步字段参与编码的另一 个帧结构实例示意图;
图 14是根据本发明实施例的第一码字为短码且同步字段参与编码的再一 个帧结构实例示意图;
图 15是根据本发明实施例的第一码字为短码且同步字段参与编码的又一 个帧结构实例示意图;
图 16是根据本发明实施例的短码字在最后的发送端处理流程示意图; 图 17是根据本发明实施例的短码字在最后的接收端处理流程示意图; 图 18是根据本发明实施例的下行帧的同步字段不参与编码且最后一个码 字不用做短码字的 FEC帧结构示意图;
图 19是根据本发明实施例的下行帧的同步字段参与编码且最后一个码字 不用做短码字的 FEC帧结构示意图;
图 20是根据本发明实施例的一种在光网络中发送下行帧的装置结构示意 图;
图 21是根据本发明实施例的另一种在光网络中发送下行帧的装置结构示 意图;
图 22是根据本发明实施例的一种接收装置结构示意图;
图 23是根据本发明实施例的另一种接收装置结构示意图;
图 24是根据本发明实施例的再一种在光网络中发送下行帧的装置结构示 意图;
图 25是根据本发明实施例的又一种在光网络中发送下行帧的装置结构示 意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部 的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳 动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
为了更好的说明本发明实施例, 下面先筒单介绍结构概念:
前向纠错(FEC ) : 发送端发送能纠正错误的编码, 接收端根据接收到的 码和编码规则, 自动纠正传输中发生的错误。 FEC编码在光传输系统中被普遍 应用, 能够较好地提高光网络性能, 如增加光通信系统的传输距离, 减少光端 机发射功率, 降低接收机灵敏度等。
RS ( reed solomon )码, 为一种 FEC编码, 适合于纠正突发错误, 一个能 纠正 T个错误码元的 RS码的主要参数如下:
( 1 ) 码长 N=2m-1个码元; m表示每个码元的比特数, 如 GPON用到的 RS(255,239), m = 8, 每个码元为一个字节;
( 2 )监督码元数 N-K=2T个码元;
( 3 )最小码距 dmin=2T+l个码元。
RS缩短码, 是指码长 N小于 2m-l个码元。 如 GPON下行帧的最后一个码字 为 ( 120, 104 ) 就是一个缩短码。 RS(255,239)的校验码元个数为 255-239=16 个, RS(120,104)的校验码元个数为 120-104=16个, 由于 RS(255,239)和 RS(120,104)的校验码元个数相同, 因此纠错能力相同, 但 RS(255,239)格式下 一个码字需要保护 239个信息码元, 而 RS(120,104)格式下一个码元只保护 104 个信息码元, 因此 RS(120,104)格式下纠错的性能更高。
现有 GPON的下行速率为 2.48832Gbps, 目前 ITUT标准组织正在制定下 一代 GPON, 即 10 Gigabit-capable Passive Optical Network (筒称为 XG-PON ), 其下行速率将提升 4倍, 即 9.95328Gbps。 参见图 7 , 其是根据本发明实施例的一种在光网络中发送下行帧的方法流 程图, 本流程主要针对下一代 GPON, 且第一个码字为短码字, 具体包括: 步骤 701 , 确定网络条件, 具体包括:
确定系统发送的定长帧速率为 V ,所采用的编码类型及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧长 包含的字节数 M;
步骤 702 , 若 M除以 n的余数不为零, 则将所述定长帧的第一个码字按 短码字编码处理, 将所述下行 GTC帧的其余码字按标准的长度 n编码处理; 其中, 将定长帧的第一个码字按短码字处理的方式又可以分为两种: 一种是, 获取所述定长帧的同步字段的字节数 I ; 获取所述短码字的字 节数 P 编码, P 编码 = ( M mod N ) -I 同步, 其中, M mod N表示 M除以 n的余数值, I 同步为定长帧的同步字段的字节数; 对所述短码字按照 RS ( P 编码, q )进行编 码, 其中, q表示在短码字中待编码的长度。 此时, 根据所述 q的取值不同, 所述短码字保护定长帧内 PCBd字段中的识别字段、物理层操作管理和维护消 息字段和比特交织校验字段, 或者, 保护定长帧内 PCBd字段中的识别字段和 物理层操作管理和维护消息字段, 或者, 保护定长帧内 PCBd字段中的识别字 段。
另一种是, 获取所述短码字的字节数 P 编码, P 编码 =M mod N, 其中, M mod N表示 M除以 n的余数值; 对所述短码字按照 RS ( P 编码, q )进行编码, 其 中, q表示在短码字中待编码的长度。 此时, 根据所述 q的取值不同, 所述短 码字保护定长帧内 PCBd字段中的同步字段、 识别字段、 物理层操作管理和维 护消息字段和比特交织校验字段, 或者, 保护定长帧内 PCBd字段中的同步字 段、 识别字段和物理层操作管理和维护消息字段, 或者, 保护定长帧内 PCBd 字段中的同步字段和识别字段,或者,保护定长帧内 PCBd字段中的同步字段。
步骤 703 , 将编码、 封装后的所述定长帧发送出去。
以上流程是对发送端而言的, 对于接收端, 相应的执行以下操作: 对于同步字段不参与编码的,接收端可以进行如下处理: 接收端收到已封 装的信息后,对所述信息进行解封装,从接收端本地获取预先存储的同步字段 或者从接收到的信息中直接获取同步字段;将所有码字送入解码器进行解码处 理, 获得解码后的数据信息。 其中, 对第一个码字按短码处理, 对其余码字按 标准的长度 n处理。
对于同步字段参与编码的,接收端可以进行如下处理: 接收端收到已封装 的信息后, 对所述信息进行解封装, 从接收端本地获取预先存储的同步字段; 应用所述从本地获取的同步字段替换接收到的第一个码字内的同步字段,将替 换后的第一码字及其余码字送入解码器进行解码处理, 获得解码后的数据信 息。 其中, 对第一个码字按短码处理, 对其余码字按标准的长度 n处理。
在图 7所示实施例中, 所述系统为 XG-PON系统, 所述定长帧为 XGTC 下行帧, 所述 XGTC下行帧的速率为 V为 9.95328Gbps; 每个 XGTC下行帧 的长度为 125us , 根据所述 XG-PON的速率 V确定每个 XGTC下行帧包含的 字节数 M为 155520。
在图 7所示实施例中,所采用的编码类型及码型为 RS ( 252, 220 )。 当然, 根据实际需要也可以采用其他码型进行编解码处理, 如 RS ( 255 , 223 )、 RS ( 248, 216 )等等。
应用图 7所示实施例所提供的在光网络中发送下行帧的方法,通过将短码 字用在下行帧的第一个码字上,使得下行帧中重要的控制信息 PCBd得到了更 为有效的保护, 优化了 RS码的纠错性能, 提高了在光网络中传输下行帧的准 确性。
参见图 8, 其是根据本发明实施例的另一种在光网络中发送下行帧的方法 流程图, 实施例中主要针对下一代 GPON, 且最后一个码字为短码字, 具体包 括:
步骤 801 , 确定网络条件, 具体包括:
确系统发送的定长帧速率为 V, 所采用的编码类型及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧长 包含的字节数 M;
步骤 802, 若 M除以 n的余数不为零, 则根据同步字段在定长帧中的位 置,将包含在第一码字内的同步字段中信息设置为约定值,将包含指定数据的 第一码字按标准的长度 n进行编码处理, 将最后一个码字按短码进行编码处 理, 将其余码字按标准的长度 n进行编码处理; 步骤 803 , 将编码、 封装后的所述定长帧发送出去。
以上流程是对发送端而言的, 对于接收端, 相应的执行以下操作: 接收端收到已封装的信息后,对所述信息进行解封装,对每帧的第一个码 字,将所述同步字段中的内容替换为所述约定值,再对所述第一码字进行解码 处理, 并且, 对其余码字依次进行解码处理, 获得解码后的数据信息。
在图 8所示实施例中, 所述系统为 XG-PON系统, 所述定长帧为 XGTC 下行帧, 所述 XGTC下行帧的速率为 V为 9.95328Gbps; 每个 XGTC下行帧 的长度为 125us , 根据所述 XG-PON的速率 V确定每个 XGTC下行帧包含的 字节数 M为 155520。
在图 8所示实施例中,下行帧所采用的编码类型及码型为 RS ( 252, 220 )。 当然,根据实际需要也可以采用其他码型进行编解码处理,如 RS ( 255 , 223 )、 RS ( 248, 216 )等等。
应用图 8所示实施例所提供的在光网络中发送下行帧的方法,将包含在第 一码字内的同步字段中信息设置为约定值,将包含指定数据的第一码字按标准 的长度 n进行编码处理,接收端应用预设的约定值即 Psync值代替实际接收到 的 Psync值进行解码计算, 由于第一个码字中的同步字段的值实际为已知的, 因而增加了同步字段所在码字的其他字段的纠错机会, 优化了 RS码的纠错性 能,提高了在光网络中传输下行帧的准确性。该方法不影响现有的下行同步机 制, 不需修改 GPON标准的 GTC下行同步状态机, 与现有技术有很好的兼容 性。
下面结合具体实施例对本发明再做详细说明。
以下所有实施例中, 以下一代 GPON即 XG-PON系统为例进行说明, 其 中, XG-PON系统中的下行帧被称为 XGTC下行帧(以下也称为下行 GTC帧 或 GTC 帧), 以下所有实施例中下一代 GPON 的下行速率为 VGPON为 9.95328Gbps, 每个下行 GTC帧的长度为 125us, 根据所述下一代 GPON的下 行速率 VGPON确定每个下行 GTC帧包含的字节数 M为 155520, 下行 GTC帧 所采用的编码类型及码型为 RS ( 225 , 220 )。 因此, 下行帧长 155520并不是 码长 252的整数倍, 下行帧长包括了 617个 RS(252,220)码字, 还剩余 36字节 的短码字。 下行帧的第一码字为短码字, 且同步字段不参与编码的实施例: 本实施例中, 由于下行同步字段为 4字节且不参与 FEC编码, 因此短码 字的长度为 32字节, 对于 32字节的短码可以有多种码型选择方案, 具体为: 方案一: 选择码型为 RS(32,24)
参见图 9, 其是根据本发明实施例的第一码字为短码且同步字段不参与编 码的一个帧结构实例示意图; 本实施例选择的码型为 RS(32,24), 因而实际的 码字信息为 24字节, 该短码字中校验 ( Parity )字段占 32-24=8字节, 通常可 纠正 8/2=4字节错误。
本方案中, 短码字保护 GTC帧内 PCBd字段中的识别字段、 净荷字段和 比特交织校验字段, 具体参见图 9。
方案二: 选择码型为 RS(32,20)
参见图 10, 其是根据本发明实施例的第一码字为短码且同步字段不参与 编码的另一个帧结构实例示意图; 本实施例选择的码型为 RS(32,20), 因而实 际的码字信息为 20字节, 该短码字中校验 ( Parity )字段占 32-20=12字节, 通常可纠正 12/2=6字节错误。
本方案中短码字保护 GTC帧内 PCBd字段中的识别字段和净荷字段, 具 体参见图 10。
方案三: 选择码型为 RS(32,4)
参见图 11 , 其是根据本发明实施例的第一码字为短码且同步字段不参与 编码的再一个帧结构实例示意图; 本实施例选择的码型为 RS(32,4), 因而实际 的码字信息为 4字节, 该短码字中校验 ( Parity )字段占 32-4=28字节, 通常 可纠正 28/2=14字节错误。 由于可纠错字节数大大超过了需要保护的 4字节码 字信息, 因此, 该方案不是较优方案。
本方案中短码字保护 GTC帧内 PCBd字段中的识别字段,具体参见图 11。 对于下行帧的第一码字为短码字, 同步字段不参与编码的实施例而言,接 收端可以进行如下处理: 接收端收到所述已封装的信息后,对所述信息进行解 封装,从接收端本地获取预先存储的同步字段或者从接收到的信息中直接获取 同步字段; 将所有码字送入解码器进行解码处理, 获得解码后的数据信息。 其 中, 对第一个码字按短码处理, 对其余码字按标准的长度 n处理。 应用上述实施例, 通过将短码字用在下行帧的第一个码字上,使得下行帧 中重要的控制信息 PCBd得到了更为有效的保护, 优化了 RS码的纠错性能, 提高了在光网络中传输下行帧的准确性。 下行帧的第一码字为短码字, 同步字段参与编码的实施例:
本实施例中, 由于下行同步字段的 4字节参与 FEC编码, 因此短码字的 长度为 36字节, 对于 36字节的短码可以有多种码型选择方案, 具体为: 方案一: 选择码型为 RS(36,28)
参见图 12, 其是根据本发明实施例的第一码字为短码且同步字段参与编 码的一个帧结构实例示意图; 本实施例选择的码型为 RS(36,28), 因而实际的 码字信息为 28字节, 该短码字中校验 ( Parity )字段占 36-28=8字节, 通常可 纠正 8/2=4字节错误。
本方案中短码字保护 GTC帧内 PCBd字段中的同步字段、 识别字段、 净 荷字段和比特交织校验字段, 具体参见图 12。
方案二: 选择码型为 RS(36,24)
参见图 13 , 其是根据本发明实施例的第一码字为短码且同步字段参与编 码的另一个帧结构实例示意图; 本实施例选择的码型为 RS(36,24), 因而实际 的码字信息为 24字节, 该短码字中校验(Parity ) 字段占 36-24=12字节, 通 常可纠正 12/2=6字节错误。
本方案中短码字保护 GTC帧内 PCBd字段中的同步字段、 识别字段和净 荷字段, 具体参见图 13。
方案三: 选择码型为 RS(36,8)
参见图 14, 其是根据本发明实施例的第一码字为短码且同步字段参与编 码的再一个帧结构实例示意图; 本实施例选择的码型为 RS(36,8), 因而实际的 码字信息为 8字节, 该短码字中校验(Parity )字段占 36-8=28字节, 通常可 纠正 28/2=14字节错误。 由于可纠错字节数大大超过了需要保护的 8字节码字 信息, 因此, 该方案不是较优方案。
本方案中短码字保护 GTC帧内 PCBd字段中的同步字段和识别字段, 具 体参见图 14。
方案四: 选择码型为 RS(36,4)
参见图 15 , 其是根据本发明实施例的第一码字为短码且同步字段参与编 码的又一个帧结构实例示意图; 本实施例选择的码型为 RS(36,4), 因而实际的 码字信息为 4字节, 该短码字中校验(Parity )字段占 36-4=32字节, 通常可 纠正 32/2=16字节错误。 由于可纠错字节数大大超过了需要保护的 4字节码字 信息, 因此, 该方案不是较优方案。
本方案中短码字保护 GTC帧内 PCBd字段中的同步字段,具体参见图 15。 再有, 由于同步字段的内容为接收端已知的数据,接收端在获得帧同步的 情况下不用纠错也知道真实的 Psync值, 因此第一个码字 32字节校验位, 仅 起到帧数据填充的作用, 因而, 该方案的第一个码字的 Parity域也可以不用计 算, 而直接填充固定值, 可见, 该方案并不是较优方案。
对于下行帧的第一码字为短码字, 同步字段参与编码的实施例而言,接收 端可以进行如下处理: 接收端收到所述已封装的信息后,对所述信息进行解封 装; 从接收端本地获取预先存储的同步字段,应用所述从本地获取的同步字段 替换接收到的第一个码字内的同步字段,将替换后的第一码字及除去第一码字 后的所有码字送入解码器进行解码处理, 获得解码后的数据信息。 其中, 对第 一个码字按短码处理, 对其余码字按标准的长度 n处理。
应用上述实施例, 通过将短码字用在下行帧的第一个码字上,使得下行帧 中重要的控制信息 PCBd得到了更为有效的保护, 优化了 RS码的纠错性能, 提高了在光网络中传输下行帧的准确性。 下行帧的最后一个码字为短码字, 同步字段参与编码的实施例:
本实施例中, XGPON的 FEC帧结构沿用现有 GPON的方式, 按短码字 仍放在下行 GTC帧的最后一个码字处理。 下行同步字段 4字节仍包含在第一 个 FEC码字长度内, 该同步字段在发送的 GTC帧结构位置不变; 修改第一个 码字的编码方式, 即前四个字节的同步字段位置内填充约定值参与计算。 每 125us第一个码字的编码或解码的 4字节填充约定值, 该约定值可以为 0或其 他约定数据。 参见图 16, 以标准码长为 RS ( 255 , 223 )为例, 其是才艮据本发明实施例 的短码字在最后的发送端处理流程示意图。发送端对每 125us的第一个码字的 实际待编码的 223字节中前 4字节 (即同步字段的位置)填充为 0, 将填充为 0的 4个字节和其后的 223-4=219字节一起送入 RS ( 255 , 223 )编码器得到 32字节的校验字节。 在发送时, 参与编码的 4个约定填充字节不发送, 先发 送 4字节的同步字段, 再发送其后的 219字节和 32字节的校验字段。
参见图 17 , 其是根据本发明实施例的短码字在最后的接收端处理流程示 意图。 接收端收到已封装的信息后, 对所述信息进行解封装, 对每帧的第一个 码字, 将同步字段位置中的内容替换为约定值如 0, 之后, 将替换后的 4字节 0和第一码字中的同步字段后的 219字节一起进行解码处理, 获得解码后的数 据信息。
应用上述实施例,接收端应用预设的约定值即 Psync值代替实际接收到的 Psync值进行解码计算, 由于第一个码字中的同步字段的值实际为已知的, 因 而增加了同步字段所在码字的其他字段的纠错机会,优化了 RS码的纠错性能, 提高了在光网络中传输下行帧的准确性。 该方法不影响现有的下行同步机制, 不需修改 GPON标准的 GTC下行同步状态机, 与现有技术有很好的兼容性。 下行帧的同步字段不参与编码, 最后一个码字不用做短码字, 而是填充无 效数据的实施例:
本实施例中, XGPON的下行 FEC帧结构参看图 18 , 发送端下行同步字 段为 4字节不参与 FEC编码,从同步字段后的数据开始编码,按标准码长 252 字节, 帧尾剩余 32字节不承载有效数据, 固定填充无效数据。
接收端检测到同步字段后,按标准码长 252字节,从同步字段后的数据开 始解码, 对帧尾剩余的 32字节直接丟弃。
应用上述实施例, 由于同步字节不参与编码计算,腾出相应的同步字段长 度空间给其他有效数据进行编码保护, 同时对帧尾的剩余字节直接填充, 进一 步筒化实现方案, 优化了 RS码的纠错性能, 提高了在光网络中传输下行帧的 准确性。 下行帧的同步字段参与编码, 最后一个码字不用做短码字, 而是填充无效 数据的实施例:
本实施例中, XGPON的下行 FEC帧结构参看图 19 , 发送端下行从同步 字段开始进行 FEC编码, 按标准码长 252字节, 帧尾剩余 36字节不承载有效 数据, 固定填充无效数据。
接收端检测到同步字段后, 按标准码长 252字节, 从同步字段开始解码, 对帧尾剩余的 36字节直接丟弃。
应用上述实施例,对帧尾的剩余字节直接填充,进一步筒化系统实现方案, 优化了 RS码的纠错性能, 提高了在光网络中传输下行帧的准确性。 本发明实施例还提供了一种在光网络中发送下行帧的装置, 参见图 20, 包括:
条件确定单元 1801 , 用于确定系统发送的定长帧速率为 V, 所采用的编 码类型及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧长包含的字节数 M;
第一编码单元 1802, 用于 M除以 n的余数不为零时, 将所述定长帧的第 一个码字按短码字编码处理,将所述定长帧的其余码字按标准的长度 n编码处 理;
发送单元 1803 , 用于将编码、 封装后的所述定长帧发送出去。
当同步字段不参与编码时, 上述第一编码单元 1802包括:
同步字段字节获取单元, 用于获取所述定长帧的同步字段的字节数 I 同步; 短码字节获取单元, 用于获取所述短码字的字节数 p 编码,
其中, p编码 = ( M mod N ) -I 同步
其中, M mod N表示 M除以 n的余数值, I 为定长帧的同步字段的字节 数;
编码操作单元, 用于对所述短码字按照 RS ( P编码, q )进行编码, 其中, q表示在短码字中待编码的长度。
当同步字段参与编码时, 上述第一编码单元 1802包括:
短码字节获取单元, 获取所述短码字的字节数 P编码, 其中, P编码 =MmodN
其中, M mod N表示 M除以 n的余数值;
编码操作单元, 对所述短码字按照 RS (P编码, q)进行编码, 其中, q表 示在短码字中待编码的长度。
上述系统为 XG-PON系统, 所述定长帧为 XGTC下行帧, 所述 XG-PON 的速率为 V为 9.95328Gbps;
每个 XGTC下行帧的长度为 125us, 根据所述 XG-PON的速率 V确定每 个 XGTC下行帧包含的字节数 M为 155520;
所述 XGTC下行帧所采用的编码类型及码型为 RS ( 252, 220 )。 本发明实施例还提供了一种在光网络中发送下行帧的装置, 参见图 21, 具体包括:
条件确定单元 1901, 用于确定系统发送的定长帧速率为 V, 所采用的编 码类型及码型为 RS (n, k), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧包含的字节数 M;
第二编码单元 1902, 用于若 M除以 n的余数不为零, 则根据同步字段在 GTC 帧中的位置, 将包含在第一码字内的同步字段中信息设置为约定值, 将 包含指定数据的第一码字按标准的长度 n进行编码处理,将最后一个码字按短 码进行编码处理, 将其余码字按标准的长度 n进行编码处理;
发送单元 1903, 用于将编码、 封装后的所述定长帧发送出去。
本发明实施例还提供了一种接收装置, 参见图 22, 具体包括:
接收单元 2001, 用于在接收端收到已封装的信息后, 对所述信息进行解 封装;
同步字段获取单元 2002, 用于从接收端本地获取预先存储的同步字段, 应用所述从本地获取的同步字段替换接收到的第一个码字内的同步字段; 第一解码单元 2003, 用于将替换后的第一码字及除去第一码字后的所有 码字进行解码处理, 其中, 对第一个码字按短码处理, 对其余码字按标准的长 度 n处理。
本发明实施例还提供了一种接收装置, 参见图 23, 包括: 接收单元 2101 , 接收端收到已封装的信息后, 对所述信息进行解封装; 第二解码单元 2102, 用于对每帧的第一个码字, 将所述同步字段中的内 容替换为所述约定值, 再对第一码字中的其余字节进行解码处理, 并且, 对除 第一码字外的其余所有码字进行解码处理, 获得解码后的数据信息。 本发明实施例还提供了一种在光网络中发送下行帧的装置, 参见图 24, 具体包括:
条件确定单元 2201 , 用于确定系统发送的定长帧速率为 V, 所采用的编 码类型及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧包含的字节数 M;
第三编码单元 2202, 用于若 M除以 n的余数 P不为零时, 从同步字段开 始按标准的长度 n进行编码处理, 将帧尾剩余 P字节 (M除以 N的余数值) 进行填充处理;
发送单元 2203 , 用于将编码、 封装后的所述定长帧发送出去。 本发明实施例还提供了一种在光网络中发送下行帧的装置, 参见图 25 , 具体包括:
条件确定单元 2301 , 用于确定系统发送的定长帧速率为 V, 所采用的编 码类型及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧包含的字节数 M;
第四编码单元 2302, 用于若 (M - I)除以 n的余数 P不为零, 其中, I为同 步字段的字节数, 则从同步字段后的数据开始按标准的长度 n进行编码处理, 将帧尾的 P个字节进行填充固定数据;
发送单元 2303 , 用于将编码、 封装后的所述定长帧发送出去。 对于装置实施例而言, 由于其基本相似于方法实施例, 所以描述的比较筒 单, 相关之处参见方法实施例的部分说明即可。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将 一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些 实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术语"包括"、 "包 含"或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素 的过程、 方法、 物品或者设备不仅包括那些要素, 而且还包括没有明确列出的 其他要素, 或者是还包括为这种过程、 方法、 物品或者设备所固有的要素。 在 没有更多限制的情况下, 由语句 "包括一个…… "限定的要素, 并不排除在包括 所述要素的过程、 方法、 物品或者设备中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明 可以通过硬件实现, 也可以可借助软件加必要的通用硬件平台的方式来实现, 基于这样的理解, 本发明的技术方案可以以软件产品的形式体现出来, 该软件 产品可以存储在一个非易失性存储介质 (可以是 CD-ROM, U盘, 移动硬盘 等)中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机,服务器, 或者网络设备等)执行本发明各个实施例所述的方法。
总之, 以上所述仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种在光网络中发送下行帧的方法, 其特征在于, 包括以下步骤: 确定系统发送的定长帧速率为 V,所采用的编码类型及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧长 包含的字节数 M;
若 M除以 n的余数不为零, 则将所述定长帧的第一个码字按短码字编码 处理, 将所述定长帧的其余码字按标准的长度 n编码处理;
将编码、 封装后的所述定长帧发送出去。
2、根据权利要求 1所述的方法,其特征在于,若 M除以 n的余数不为零, 则将所述定长帧的第一个码字按短码字处理的步骤包括:
获取所述定长帧的同步字段的字节数 I 同步;
获取所述短码字的字节数 P 编码,
P 编码 = ( M mod N ) -I 同步
其中, M mod N表示 M除以 n的余数值, I 为下行 GTC帧的同步字段 的字节数;
对所述短码字按照 RS ( P 编码, q )进行编码, 其中, q表示在短码字中待 编码的长度。
3、 根据权利要求 2所述的方法, 其特征在于, 所述 q的取值根据实际需 要确定;
根据所述 q的取值不同,所述短码字保护定长帧内 PCBd字段中的识别字 段、 物理层操作管理和维护消息字段和比特交织校验字段, 或者, 保护定长帧 内 PCBd字段中的识别字段和物理层操作管理和维护消息字段, 或者, 保护定 长帧内 PCBd字段中的识别字段。
4、根据权利要求 1所述的方法,其特征在于,若 M除以 n的余数不为零, 则将所述定长帧的第一个码字按短码字处理的步骤包括:
获取所述短码字的字节数 P 编码,
P 编码 =M mod N
其中, M mod N表示 M除以 n的余数值;
对所述短码字按照 RS ( P 编码, q )进行编码, 其中, q表示在短码字中待 编码的长度。
5、 根据权利要求 4所述的方法, 其特征在于, 所述 q的取值根据实际需 要确定;
根据所述 q的取值不同,所述短码字保护定长帧内 PCBd字段中的同步字 段、 识别字段、 物理层操作管理和维护消息字段和比特交织校验字段, 或者, 保护定长帧内 PCBd字段中的同步字段、识别字段和物理层操作管理和维护消 息字段, 或者, 保护定长帧内 PCBd字段中的同步字段和识别字段, 或者, 保 护定长帧内 PCBd字段中的同步字段。
6、 根据权利要求 4所述的方法, 其特征在于, 所述方法进一步包括: 接收端收到已封装的信息后, 对所述信息进行解封装;
从接收端本地获取预先存储的同步字段,应用所述从本地获取的同步字段 替换接收到的第一个码字内的同步字段;
将替换后的第一码字及除去第一码字后的所有码字进行解码处理, 其中, 对第一个码字按短码处理, 对其余码字按标准的长度 n处理。
7、 根据权利要求 1所述的方法, 其特征在于,
所述系统为 XG-PON系统, 所述定长帧为 XGTC下行帧, 所述 XGTC下 行帧的速率为 V为 9.95328Gbps;
每个 XGTC下行帧的长度为 125us, 根据所述 XG-PON的速率 V确定每 个 XGTC下行帧包含的字节数 M为 155520。
8、 根据权利要求 1所述的方法, 其特征在于, 所述 XGTC下行帧所采用 的编码类型及码型为 RS ( 252, 220 )。
9、 一种在光网络中发送下行帧的方法, 其特征在于, 包括以下步骤: 发送方:
确定系统发送的定长帧速率为 V,所采用的编码类型及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧长 包含的字节数 M;
若 M除以 n的余数不为零, 则根据同步字段在定长帧中的位置, 将包含 在第一码字内的同步字段中信息设置为约定值,和同步字段后的指定数据组成 k个待编码字节进行编码处理, 将最后一个码字按短码进行编码处理, 将其余 码字按标准的长度 n进行编码处理;
将编码、 封装后的所述定长帧发送出去。
接收方:
接收端收到已封装的信息后,对所述信息进行解封装,对每帧的第一个码 字,将同步字段中的内容替换为约定值,将替换后的同步字段和同步字段后的 其余字节组成 n个字节进行解码处理, 并且,对除第一码字外的其余所有码字 进行解码处理, 获得解码后的数据信息。
10、 根据权利要求 9所述的方法, 其特征在于,
所述系统为 XG-PON系统, 所述定长帧为 XGTC下行帧, 所述 XG-PON 的速率为 V为 9.95328Gbps;
每个 XGTC下行帧的长度为 125us, 根据所述 XG-PON的速率 V确定每 个 XGTC下行帧包含的字节数 M为 155520;
所述 XGTC下行帧所采用的编码类型及码型为 RS ( 252, 220 )。
11、 一种在光网络中发送下行帧的方法, 其特征在于, 包括以下步骤: 确定系统发送的定长帧速率为 V,所采用的编码类型及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧长 包含的字节数 M;
若 M除以 n的余数 P不为零, 则从同步字段按标准的长度 n进行编码处 理, 将帧尾剩余 P字节进行填充处理;
将编码、 封装后的所述定长帧发送出去。
12、 一种在光网络中发送下行帧的方法, 其特征在于, 包括以下步骤: 确定系统发送的定长帧速率为 V,所采用的编码类型及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所述速率 V确定每个帧长 包含的字节数 M;
若 (M - I)除以 n的余数 P不为零, 其中, I为同步字段的字节数, 则从同 步字段后的数据开始按标准的长度 n进行编码处理,将帧尾的 P个字节进行填 充固定数据; 将编码、 封装后的所述定长帧发送出去。
13、 一种在光网络中发送下行帧的装置, 其特征在于, 包括:
条件确定单元, 用于确定系统发送的定长帧速率为 V , 所采用的编码类型 及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所 述速率 V确定每个帧长包含的字节数 M;
第一编码单元, 用于 M除以 n的余数不为零时, 将所述定长帧的第一个 码字按短码字编码处理, 将所述定长帧的其余码字按标准的长度 n编码处理; 发送单元, 用于将编码、 封装后的所述定长帧发送出去。
14、 根据权利要求 13所述的装置, 其特征在于, 所述第一编码单元包括: 同步字段字节获取单元, 用于获取所述定长帧的同步字段的字节数 I 同步; 短码字节获取单元, 用于获取所述短码字的字节数 p 编码,
其中, p 编码 = ( M mod N ) -I 同步
其中, M mod N表示 M除以 n的余数值, I 为定长帧的同步字段的字节 数;
编码操作单元, 用于对所述短码字按照 RS ( P 编码, q )进行编码, 其中, q表示在短码字中待编码的长度。
15、 根据权利要求 13所述的装置, 其特征在于, 所述第一编码单元包括: 短码字节获取单元, 获取所述短码字的字节数 P 编码,
其中, P 编码 =M mod N
其中, M mod N表示 M除以 n的余数值;
编码操作单元, 对所述短码字按照 RS ( P 编码, q )进行编码, 其中, q表 示在短码字中待编码的长度。
16、 根据权利要求 13所述的装置, 其特征在于,
所述系统为 XG-PON系统, 所述定长帧为 XGTC下行帧, 所述 XG-PON 的速率为 V为 9.95328Gbps ;
每个 XGTC下行帧的长度为 125us , 根据所述 XG-PON的速率 V确定每 个 XGTC下行帧包含的字节数 M为 155520;
所述 XGTC下行帧所采用的编码类型及码型为 RS ( 252 , 220 )。
17、 一种接收装置, 其特征在于, 包括:
接收单元, 用于在接收端收到所述已封装的信息后,对所述信息进行解封 同步字段获取单元,用于从接收到的信息中直接获取同步字段或从接收端 本地获取预先存储的同步字段;
第一解码单元, 用于对接收到的第一个码字按短码处理,对其余码字按标 准的长度 n处理, 获得解码后的数据信息。
18、 一种接收装置, 其特征在于, 包括:
接收单元, 接收端收到所述已封装的信息后, 对所述信息进行解封装; 第二解码单元, 用于对每帧的第一个码字,将所述同步字段中的内容替换 为所述约定值, 再对所述第一码字进行解码处理, 并且, 对其余码字依次进行 解码处理, 获得解码后的数据信息。
19、 一种在光网络中发送下行帧的装置, 其特征在于, 包括:
条件确定单元, 用于确定系统发送的定长帧速率为 V, 所采用的编码类型 及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所 述速率 V确定每个帧包含的字节数 M;
第三编码单元, 用于若 M除以 n的余数 P不为零时, 从同步字段按标准 的长度 n进行编码处理, 将帧尾剩余 P字节进行填充处理;
发送单元, 用于将编码、 封装后的所述定长帧发送出去。
20、 一种在光网络中发送下行帧的装置, 其特征在于, 包括:
条件确定单元, 用于确定系统发送的定长帧速率为 V, 所采用的编码类型 及码型为 RS ( n, k ), 其中, n为编码后的长度, k为待编码的长度; 根据所 述速率 V确定每个帧包含的字节数 M;
第四编码单元, 用于若 (M - I)除以 n的余数 P不为零, 其中, I为同步字 段的字节数, 则从同步字段后的数据开始按标准的长度 n进行编码处理,将帧 尾的 P个字节进行填充固定数据;
发送单元, 用于将编码、 封装后的所述定长帧发送出去。
PCT/CN2009/074718 2009-10-30 2009-10-30 在光网络中发送下行帧的方法及相关装置 WO2011050529A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980157583.6A CN102439874B (zh) 2009-10-30 2009-10-30 光在网络中发送下行帧的方法及相关装置
PCT/CN2009/074718 WO2011050529A1 (zh) 2009-10-30 2009-10-30 在光网络中发送下行帧的方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/074718 WO2011050529A1 (zh) 2009-10-30 2009-10-30 在光网络中发送下行帧的方法及相关装置

Publications (1)

Publication Number Publication Date
WO2011050529A1 true WO2011050529A1 (zh) 2011-05-05

Family

ID=43921256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074718 WO2011050529A1 (zh) 2009-10-30 2009-10-30 在光网络中发送下行帧的方法及相关装置

Country Status (2)

Country Link
CN (1) CN102439874B (zh)
WO (1) WO2011050529A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8674668B2 (en) 2010-06-07 2014-03-18 Enecsys Limited Solar photovoltaic systems
CN110086541A (zh) * 2015-05-20 2019-08-02 华为技术有限公司 一种无源光网络成帧的方法、装置及系统
CN110391871A (zh) * 2018-04-19 2019-10-29 华为技术有限公司 数据编译码方法和装置、olt、onu和pon系统
WO2021179696A1 (zh) * 2020-03-09 2021-09-16 华为技术有限公司 一种数据处理方法及设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107171728B (zh) * 2017-05-08 2020-04-28 许继集团有限公司 1b4b与曼彻斯特编码的正向、反向传输方法及装置、系统
CN114765528B (zh) * 2021-01-15 2023-09-26 烽火通信科技股份有限公司 帧同步方法、装置、设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238129A (ja) * 2005-02-25 2006-09-07 Tsuken Denki Kogyo Kk リードソロモン符号用誤り訂正方式、信号歪み推定・補償方式、及び通信システム
CN1913410A (zh) * 2006-03-29 2007-02-14 华为技术有限公司 简化千兆无源光网络下行前向纠错处理的方法和系统
CN101414868A (zh) * 2008-12-03 2009-04-22 中国航天科技集团公司第五研究院第五〇四研究所 Cdas站dcpr通信协议及接收方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683855B1 (en) * 1998-08-31 2004-01-27 Lucent Technologies Inc. Forward error correction for high speed optical transmission systems
US20070104225A1 (en) * 2005-11-10 2007-05-10 Mitsubishi Denki Kabushiki Kaisha Communication apparatus, transmitter, receiver, and error correction optical communication system
CN101436917B (zh) * 2007-11-12 2012-06-27 华为技术有限公司 用于以太网无源光网络的数据编译码方法及装置
CN101198190A (zh) * 2008-01-03 2008-06-11 中兴通讯股份有限公司 吉比特无源光网络封装模式帧用户数据的校验方法
US8351785B2 (en) * 2008-04-21 2013-01-08 Futurewei Technologies, Inc. Gigabit passive optical network transmission convergence extension for next generation access

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238129A (ja) * 2005-02-25 2006-09-07 Tsuken Denki Kogyo Kk リードソロモン符号用誤り訂正方式、信号歪み推定・補償方式、及び通信システム
CN1913410A (zh) * 2006-03-29 2007-02-14 华为技术有限公司 简化千兆无源光网络下行前向纠错处理的方法和系统
CN101414868A (zh) * 2008-12-03 2009-04-22 中国航天科技集团公司第五研究院第五〇四研究所 Cdas站dcpr通信协议及接收方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8674668B2 (en) 2010-06-07 2014-03-18 Enecsys Limited Solar photovoltaic systems
CN110086541A (zh) * 2015-05-20 2019-08-02 华为技术有限公司 一种无源光网络成帧的方法、装置及系统
CN110086541B (zh) * 2015-05-20 2023-02-14 华为技术有限公司 一种无源光网络成帧的方法、装置及系统
CN110391871A (zh) * 2018-04-19 2019-10-29 华为技术有限公司 数据编译码方法和装置、olt、onu和pon系统
CN110391871B (zh) * 2018-04-19 2021-11-19 华为技术有限公司 数据编译码方法和装置、olt、onu和pon系统
WO2021179696A1 (zh) * 2020-03-09 2021-09-16 华为技术有限公司 一种数据处理方法及设备
US12009918B2 (en) 2020-03-09 2024-06-11 Huawei Technologies Co., Ltd. Data processing method and device

Also Published As

Publication number Publication date
CN102439874B (zh) 2015-03-25
CN102439874A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
JP5669030B2 (ja) 10ギガビットの受動光ネットワークにおいてヘッダ誤り制御により保護される下りフレームの同期パターン
US8934772B2 (en) Method and system for upstream bandwidth allocation in a passive optical network
KR101312980B1 (ko) 채널―적응형 에러―회복 버스트 모드 송신을 위한 시스템 및 방법
US9654250B2 (en) Adding operations, administration, and maintenance (OAM) information in 66-bit code
US10855397B2 (en) Downstream data frame transmission method and device
EP3654554B1 (en) Framing method and apparatus in passive optical network and system
JP7152488B2 (ja) データ符号化方法および装置、データ復号方法および装置、olt、onu、ならびにponシステム
WO2011050529A1 (zh) 在光网络中发送下行帧的方法及相关装置
US10044467B2 (en) Method and apparatus of downstream forward error correction on-off control in XG-PON1 and NG-PON2 TWDM-PON systems
WO2017113349A1 (zh) 数据解析和数据传输方法、装置
WO2019201316A1 (zh) 数据编译码方法和装置、olt、onu和pon系统
US8924810B1 (en) Method and apparatus for enhanced error correction

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157583.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850735

Country of ref document: EP

Kind code of ref document: A1