WO2011153822A1 - 一种植物氮吸收和耐旱相关蛋白及其编码的基因和应用 - Google Patents

一种植物氮吸收和耐旱相关蛋白及其编码的基因和应用 Download PDF

Info

Publication number
WO2011153822A1
WO2011153822A1 PCT/CN2011/000956 CN2011000956W WO2011153822A1 WO 2011153822 A1 WO2011153822 A1 WO 2011153822A1 CN 2011000956 W CN2011000956 W CN 2011000956W WO 2011153822 A1 WO2011153822 A1 WO 2011153822A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
sequence
interest
gene
plants
Prior art date
Application number
PCT/CN2011/000956
Other languages
English (en)
French (fr)
Inventor
赖锦盛
宋伟彬
董永彬
鲁晓民
赵海铭
Original Assignee
中国农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业大学 filed Critical 中国农业大学
Priority to CN2011800048077A priority Critical patent/CN102666573A/zh
Publication of WO2011153822A1 publication Critical patent/WO2011153822A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to plant nitrogen uptake and drought tolerance related protein 0S1 and its coding gene and application. Background technique
  • Nitrogen is an important nutrient element in the growth and development of plants, accounting for the total dry matter weight of plants.
  • nitrogen is an important component of macromolecular substances in different tissues of plants (such as proteins, nucleic acids, chloroplasts, etc.), so plants must absorb enough nitrogen nutrients from the soil to meet their own growth and development.
  • the forms of nitrogen uptake by plants include the types of oganic nitrogen and inoganic nitrogen, and legume crops can utilize various forms of nitrogen through Rhi zobium.
  • Inorganic nitrogen sources such as ammonium
  • crops including chloroplast formation, root growth, and crop yield formation.
  • photosynthetic capacity and photosynthetic efficiency are reduced.
  • plant growth is hindered and crop yield is reduced, which is mainly attributed to chloroplast, ribulose bisphosphate carboxylase.
  • Nitrogen is not only an important nutrient source in the growth and development of plants, but also an important signal substance. It regulates leaf morphological development, main and lateral root structure, flowering stage and stem branch formation during plant growth and development. It also regulates the expression of genes involved in nitrogen and carbon metabolism processes.
  • the soil environment in which plants grow is often subject to rainwater erosion, microbial consumption, etc., which causes the nitrogen content level to fluctuate greatly. Therefore, plants must adopt various self-regulation mechanisms. To adapt to this change in nitrogen levels.
  • the plant regulates its own growth through a mechanism to adapt to nitrogen stress, such as: delaying growth, reducing photosynthetic efficiency, nitrogen reuse of its mature tissue, Accumulate a large amount of anthocyanins and so on.
  • Maize is an important food crop in China, and nitrogen is one of the important nutrient elements that are indispensable for corn growth and development. At present, the utilization efficiency of nitrogen in corn is very low, which not only causes a huge waste of fertilizer, but also causes a lot of pressure on the environment caused by the excessive abuse of chemical fertilizer, which causes huge losses to China's corn production and soil environment. Drought is an important problem in current agricultural production. As a result of drought, the large-scale reduction of crop yields is increasing year by year. Therefore, improving the nitrogen absorption and utilization efficiency of crops and enhancing the drought resistance of crops are important ways to solve the problems in current and future agricultural production. With the increasing shortage of global water resources, it is important to study and improve the drought resistance of maize. In order to accelerate the research and utilization of important drought-regulating functional genes, it is necessary to increase the intensity of intellectual property protection of genes induced by drought.
  • the present invention provides plant nitrogen uptake and drought tolerance related protein 0S1 and its coding gene and application.
  • the protein provided by the present invention, obtained from corn, is designated as 0S1 protein and is as follows (a) or (b):
  • a label as shown in Table 1 may be attached to the amino terminus or the carboxy terminus of the protein consisting of the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing.
  • the protein in (b) above may be artificially synthesized, or may be synthesized by first synthesizing the encoded gene.
  • the gene encoding the protein in (b) above can be sequenced in the sequence 2 Or a codon deleted by one or several amino acid residues in the DNA sequence shown in SEQ ID NO: 3, and/or a missense mutation of one or several base pairs, and/or at its 5' end and/or 3'
  • the coding sequence of the label shown in Table 1 is obtained.
  • the gene encoding the protein (05 gene) is also within the scope of the present invention.
  • the gene may be the DNA molecule of any one of the following 1) to 6):
  • DNA molecule that is a transparency-related protein.
  • the above stringent conditions may be to hybridize and wash the membrane in a solution of 0.1XSSPE (or 0.1XSSC) and 0.1% SDS at 65 °C.
  • a recombinant expression vector, expression cassette, transgenic cell line or recombinant strain containing the gene is within the scope of the present invention.
  • a recombinant expression vector containing the gene can be constructed using an existing plant expression vector.
  • the plant expression vector includes a dual Agrobacterium vector and a vector which can be used for plant microprojectile bombardment and the like.
  • the plant expression vector may further comprise a 3' untranslated region of the foreign gene, ie comprising a polyadenylation signal and any other fragment of the gene involved in mRNA processing or gene expression.
  • the polyadenylation signal can direct polyadenylation to the 3' end of the mRNA precursor.
  • any of the enhanced promoters or constitutive promoters may be added before the transcription initiation nucleotide, and they may be used alone or in combination with other plant promoters;
  • an enhancer including a translation enhancer or a transcription enhancer, may be used, and these enhancer regions may be an ATG start codon or a contiguous region start codon, etc., but The same as the reading frame of the coding sequence to ensure the correct translation of the entire sequence.
  • the sources of the translational control signals and initiation codons are broad and may be natural or synthetic.
  • the translation initiation region can be from a transcription initiation region or a structural gene.
  • the plant expression vector used can be processed, such as a gene encoding a color-changing enzyme or luminescent compound that can be expressed in plants, and a resistant antibiotic marker. Or anti-chemical reagents, etc. From the safety of transgenic plants, the transformed plants can be directly screened by adversity without any selectable marker genes.
  • the recombinant expression vector may be a recombinant plasmid obtained by inserting the DNA of the sequence 3 of the sequence listing from the nucleotides indicated by nucleotides 820 to 9176 at the 5' end at the multiple cloning site of the plasmid PCAMBIA3301.
  • the recombinant expression vector may be a recombinant plasmid obtained by inserting the DNA of the sequence 3 of the sequence of the sequence pCAMBIA3301 between the BamH I and Hindlll cleavage sites from the nucleotides indicated by nucleotides 820 to 9176 at the 5' end.
  • Primer pairs that amplify the full length of the gene or any fragment thereof are also within the scope of the invention.
  • the present invention also protects a method for cultivating a transgenic plant by introducing the gene into a plant of interest to obtain a plant having a drought tolerance lower than the plant of interest and/or having a nitrogen sensitivity higher than that of the plant and/or grain endosperm of the plant of interest.
  • the embryonic surface is smaller than the transgenic plant of the plant of interest and/or the grain endosperm (transparency of the endosperm) is smaller than the transgenic plant of the plant of interest.
  • the gene can be specifically introduced into the plant of interest through the recombinant expression vector.
  • An expression vector carrying the gene can be transformed into a plant cell or tissue by using conventional biological methods such as Ti plasmid, Ri plasmid, plant viral vector, direct DNA transformation, microinjection, conductance, Agrobacterium-mediated, gene gun, and the like, and The transformed plant tissue is grown into plants.
  • the plant of interest may be either a monocot or a dicot.
  • the monocotyledonous plant may specifically be corn, such as B73 plants, alfalfa plants, hybrid progeny of alfalfa plants and osl plants (e.g., F1 generation), and the like.
  • the present invention also protects a method for cultivating a transgenic plant by inhibiting expression of the gene in a plant of interest, obtaining drought tolerance higher than the plant of interest and/or nitrogen sensitivity lower than the plant and/or grain endosperm of the plant of interest.
  • the embryonic surface is larger than the transgenic plant of the plant of interest and/or the grain endosperm (transparency of the endosperm) is greater than the transgenic plant of the plant of interest.
  • the plant of interest may be either a monocotyledonous plant or a dicotyledonous plant.
  • the monocotyledonous plant may specifically be a corn, such as a B73 plant, a sorghum plant, a hybrid progeny of a scorpion plant and an osl plant (e.g., F1 generation), and the like.
  • a corn such as a B73 plant, a sorghum plant, a hybrid progeny of a scorpion plant and an osl plant (e.g., F1 generation), and the like.
  • the gene, or the recombinant expression vector, or the expression cassette, transgenic cell line or recombinant strain, or any of the methods described above can be used for plant breeding.
  • the plant may be a monocot or a dicot.
  • the monocot may specifically be corn.
  • the present invention also protects the DNA (promoter) shown in SEQ ID NO: 4 of the Sequence Listing.
  • the present invention also protects the DNA (terminator) shown in SEQ ID NO: 5 of the Sequence Listing.
  • Figure 1 shows the phenotype of osl plants and Mol7 plants: A is Mol7 grain embryo surface; B is Mol7 grain endosperm transparency; C is mutant osl grain embryo surface; D is mutant osl grain endosperm transparency.
  • Figure 2 shows the fine mapping of the osl gene.
  • Figure 3 is a diagram showing the structure of the second exon insertion transposon in the osl gene.
  • Figure 4 is a map of two allelic mutation sites.
  • Figure 5 shows the drought resistance performance of osl mutant and wild-type B73 for 10 days in drought treatment (left: osl, right B73).
  • Figure 6 shows the drought resistance of mutants in the isolated population in the B73 background and wild-type drought treatment for 10 days (left panel: mutant, right panel: wild type).
  • Figure ⁇ is a drought-resistant performance of mutants in the isolated population of Zheng 58 and wild-type drought treatment for 10 days (left panel: mutant, right panel: wild type).
  • Figure 8 shows the drought resistance of the mutants in the isolated population of Chang 7-2 and the wild type drought treatment for 10 days (left panel: mutant, right panel: wild type).
  • Figure 9 shows the drought resistance of mutants in the isolated population in the H99 background and wild-type drought treatment for 10 days (left panel: mutant, right panel: wild type).
  • Figure 10 shows the subcellular localization of the 0S1 gene: the localization of the GFP fusion protein of the A-F 0S1 gene in the onion epidermis.
  • AC 35S GFP in GFP light channel (A), light mirror channel (B) and GFP with light mirror superimposed channel (C);
  • DF 35S GFP: 0S1 in GFP light channel (D), light mirror channel (E) and GFP and light mirror superimposed channel (F).
  • the following examples are provided to facilitate a better understanding of the invention but are not intended to limit the invention.
  • the experimental methods in the following examples are conventional methods unless otherwise specified.
  • the test materials used in the following examples, unless otherwise specified, were purchased from conventional biochemical reagent stores. In the quantitative tests in the following examples, three replicate experiments were set, and the results were averaged.
  • Maize Inbred Line B73 (B73 Plant) : References: Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Rei ly AD, Courtney L, Kruchowski SS, Toml inson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gi llam B, Chen W, Yan L, Higginbotham J, Cardenas M, Wal igorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J
  • Os l Plant (mutant) References: Song Tongming, Lu Xiaowu: Chromosome localization and preliminary genetic study of a maize double-tagged new mutant gene (OS). Journal of Genetics, 1993, 20 (5): 432-438.
  • Plasmid PCAMBIA3301 References: Han JS, Kim CK, Park SH, Hirschi KD, Mok I. Agrobacterium-mediated transformat i on of bottl e gourd (Lagenaria s iceraria Standi. ) . Plant Cel l Rep. 2005; (10-11): 692-8.
  • Agrobacterium strain EHA105 References: Joyce P, Kuwahata M, Turner N, Lakshmanan P. Selection system and co-cultivation medium are important determinants of Agrobacterium- mediated transformation of sugarcane. Plant Cell Rep. 2010,; 29 (2) : 173- 83 ⁇ .
  • Hi I IA Plant References: Juan M. Vega. Weichang Yu. Angela R. Kennon. Xinlu Chen . Zhanyuan J. Zhang. Improvement of
  • the size of the embryonic surface of the corn kernel and the transparency of the endosperm were used as the phenotypic identification criteria.
  • the target gene was finely mapped using the backcrossing population (BC) of the osl plant and the Mol7 plant, and finally the 3345 individual plants were used.
  • the gene is located in the interval of about 250 kb in the 2.03 region of the short arm of maize chromosome 2.
  • the newly developed markers were used to genotype the exchanged plants away from the target gene, and combined with the phenotype of the exchanged plants, and found that IDP3802 (P3), AC2066221 (P4), AC2066222 (PI), AC2102034 (P7) Reduce the number of exchanged plants between the left side (umc2193) and the target gene to 38, 11 , 11 and 2 strains; AC1975212 (P6), umc2195 (P2), AC1910252 (P8), IDP668 ( P5), AC1940411 (P9) reduced the exchange rate between the right side (umcl845) and the target gene to 15 strains, 14 strains, 14 strains, 12 strains, and 10 strains; the exchanged plants on both sides to the marker AC199521 MSPI ( At P10), all of the exchanged plants were reduced to zero, indicating that the marker appeared to be co-segregated with the target gene in 3345 backcrossed isolates.
  • the target gene was finally locked between ACC2102034 (P7) and AC1940411 (P9), with 2 and 10 exchanges, respectively.
  • Further analysis of this region revealed that there are two overlapping BACs in this region: AC210203 and AC199521, the lengths of the two BACs are 155kp and 198kb, respectively, and the two BACs have an overlap area of about 103kb, removing the overlapping area, the actual physical distance of the two markers. It is about 250kb.
  • the allelic test of the new alleles osl-Mul and osl was carried out in Hainan.
  • the mutant seeds of osl-Mul plants and osl plants were planted in a single row, and then the two mutants were subjected to positive and negative hybridization and respectively.
  • Self-crossing it was found that the seeds of the osl-Mul self-crossing progeny were all homozygous, and all of them showed the mutation type of osl grain.
  • the grain of the hybrid ear F1 also showed a mutant phenotype with small embryo surface and opaque endosperm.
  • the annotation software for FGENESH-Mo extracts the total RNA from the leaves of maize inbred line B73, then reverse transcribes, and then sequenced the amplified products. According to the sequencing results, the sequence of the 0S1 protein, its genomic DNA and the full-length cDNA was obtained.
  • the protein shown in SEQ ID NO: 1 of the sequence listing was named as 0S1 protein (consisting of 331 amino acid residues).
  • the gene encoding the 0S1 protein was named 05 gene. 05 gene open reading frame
  • the genomic DNA of the 05 gene (6278 bp), as shown in the sequence 3 of the sequence listing, has 5 exons (60 bp, 291 bp, 190 bp, 224 bp, 228 bp in length) and 4 introns (length 117 bp, 161 bp, respectively). , 3632bp, 114bp), 5, UTR
  • the (untranslated region) is 1289 bp in length and the 3' UTR is 30 bp in length.
  • the 2398th to 2400th position from the 5' end is the start codon
  • the 7th to 7417th position is the stop codon.
  • positions 2398 to 2457 are the first exons
  • positions 2458 to 2574 are the first introns
  • positions 2575 to 2865 are the second exons
  • the third intron is from 3026
  • the third exon is from 3027 to 3216
  • the third intron is from 3217 to 6848
  • the fourth exon is from 6849 to 7072, from 7073 to 7186.
  • the position is the fourth intron
  • the 7187th to 7414th position is the fifth exon.
  • the BAC clone containing the gene of the target gene 0S1 was obtained from:
  • the plasmid of BAC clone containing the gene of target gene OS1 was extracted and digested with restriction endonucleases BamHl and Hindlll to recover the fragment (about 7062 bp).
  • the fragment has sequence of sequence 3 from 5 DNA indicated by nucleotides at positions 2115 bp to 9176 bp.
  • the plasmid pCAMBIA3301 was digested with restriction endonucleases BamHl and Hindlll to recover the vector backbone.
  • step 3 The restriction fragment of step 1 is ligated to the vector backbone of step 2 to obtain an intermediate plasmid.
  • genomic DNA of B73 plants was extracted, and genomic DNA was used as a template to perform PCR amplification using primer pairs consisting of F1 and R1 to obtain PCR amplification products.
  • R1 5' - GCAAGCTTGCGAATTCTGCTGTGCAGTG-3'.
  • step 4 The PCR amplification product of step 4 was ligated to the pEASY-Tl vector (purchased from Beijing Quanjin Biotechnology Co., Ltd., catalog number CT101), and the sequencing plasmid was obtained and sequenced.
  • the sequencing result showed that the sequence was as follows. Sequence 3 of the Sequence Listing is shown at nucleotides 820 to 2120 of the 5' end.
  • step 5 The sequencing fragment of step 5 was digested with restriction endonuclease Hindlll to recover small fragments.
  • step 3 The intermediate plasmid of step 3 was digested with restriction endonuclease Hindl l l to recover the vector backbone.
  • step 6 and the vector backbone of step 7 are ligated to obtain the recombinant plasmid of interest (in the recombinant plasmid of interest, the sequence 3 of the sequence listing was inserted between the BamHl and Hindlll cleavage sites of the plasmid PCAMBIA3301 from the 5' end. DNA shown in nucleotides 820 to 9176).
  • the plant of the sorghum and the QSI plant were crossed to harvest the F1 plant.
  • step 3 The recombinant Agrobacterium of step 1 was transformed into a F1 plant, and the transgenic plants were obtained by screening with glufosinate.
  • the selection medium A N6 salt 4g/L, 2,4-D 1.5mg/L, valine 0.7g/L, glucose 30g/L, plant gel 3g/L, pH5 .8; After sterilizing at 121 °C for 15 minutes, add silver nitrate to a final concentration of 0.85 mg / L, cysteine to a final concentration of 300 mg / L, 1000 XN6 vitamin to lml / L, carbenicillin to a final concentration of 100 mg/L, glufosinate to a final concentration of 1.5 mg/L), cultured for two weeks; culture conditions: 28 ° C, cultured under dark conditions.
  • regeneration medium II MS salt 4. 3g / L, 2, 4-D 1. 5mg / L, glucose 30g / L, plant gel 3g / L, pH 5. 8; 121 °C
  • 1000 XMS vitamins to a final concentration of 1 ml / L, carbenicillin to a final concentration of 100 mg / L
  • grow to germination which is a transgenic plant; culture conditions are: 26 ° C, light intensity is 10000 LUX Culture under conditions.
  • the characteristic phenotype refers to the small grain surface and the opaque-small germ.
  • the grain traits of F1 plants are as follows: The grain phenotype is normal for the embryo surface and endosperm.
  • the grain traits of the transgenic plants are: Compared with the F1 plants (parents), the grain shows a small embryo surface and the endosperm is opaque (ie, the translucency of the endosperm is reduced).
  • the grain traits of F2 plants are: Some of the grain characters are characterized by transgenic plants, and the other part of the grain phenotype is the trait of F1 plants.
  • Example 3 os1 plant (mutant) and B73 plant (wild type) nitrogen stress treatment
  • the seedling culture of maize was hydroponics, and the culture solution was Hoagland nitrogen-deficient nutrient solution, with Ca(N0 3 ) 2 ' 4H 2 0 is a nitrogen source.
  • Corn plant culture process select corn seeds with uniform size and full grain, firstly disinfected with 10% 3 ⁇ 40 2 for 20min, then rinsed with deionized water; germination at 25 °C, after whitening, germination on the washed wet sand bed; When one leaf and one heart are selected, the seedlings with the same growth are selected and the endosperm is removed and transplanted into a hydroponic tank with nutrient solution. The 1/2 concentration nutrient solution is started, and after 3 days, it is replaced with a complete nutrient solution, and then replaced every two days. , continuous ventilation with an electric air pump, culture for 25 days; set the concentration of two nitrogen sources of 0 mM, 4 mM, each sample is set to repeat twice.
  • the roots of corn are the most direct part of nitrogen nutrition in the induction medium.
  • the changes of nutrients in the medium will affect the growth and development of the roots, and the osl plants at the concentration levels of two nitrogen sources of OmM and 4 mM
  • the growth changes of the upper and lower roots of B73 plants were observed.
  • the upper root mutant and the wild type showed very different performances at the nitrogen-free and nitrogen-free levels.
  • the main difference was in the leaves, and the nitrogen-free behavior was chlorotic; compared with the wild type, the mutants were nitrogen and nitrogen-free. In all cases, the performance is weak.
  • the mutants and wild type showed no significant levels at the nitrogen-free and nitrogen-free levels; compared to the wild-type, the mutants showed weaker root growth in both nitrogen and nitrogen-free conditions.
  • Example 4 Drought treatment of os l plants (mutants) and B73 plants (wild type) Under the greenhouse environment, pots (30 X 60 ⁇ ) were used to hold the same weight of nutrient soil and vermiculite (1:1) Mix), then plant the same number of osl plants (mutant) and B73 plants (wild type) in each pot, first manage according to normal management, and wait until the seedling grows to 3 leaves to stop watering. Drought treatment was carried out, and the drought response of the mutant and wild type seedlings was observed 10 days later.
  • the package of the target DNA is firstly packed with gold powder (-2CTC) (1.5 mg per tube) Stored in 50 ⁇ l of ultrapure water, placed on ice, while CaCL 2 concentration was 2. 5M (4 ° C) and spermidine concentration was 0. 1M (-70 ° C) also melted on ice.
  • CaCL 2 and spermidine are packaged into a single-use package; use a finger to gently suspend the centrifuge tube containing the gold powder, then add the DNA of interest (60-200 ng) and quickly flick it with your fingers.
  • the bombardment of the receptor material Use the tweezers to tear the young onion epidermis, cut into small pieces of about 2cm 2 , place the young onion epidermis in the central area of the MS medium containing the corresponding carrier antibiotics, and pre-culture at 28 ° C for 4 ho.
  • the membrane was ruptured, and the wrapped 15 ⁇ 1 gold powder-DNA mixture was spotted in the center of the bombardment membrane with a pipette, bombarded with a PDS-1000/He (Gene Gun System) type gene gun (Bio-Rad), bombardment distance 6 cm, vacuum
  • the degree is 28In *Hg.
  • GFP fluorescence was observed after confocal microscopy (Confocal: NIKOND-Eclipse Cl, TE2000-E).
  • the present invention discovers a novel protein by phenotypic observation and genetic analysis of osl mutant strain and Mol7 plant wild strain and its progeny. Through related experiments, it was found that the new protein is involved in the nitrogen metabolism regulation pathway, drought stress regulation pathway and drought environment response process, and can regulate the drought resistance of maize. After the mutation of the coding gene of the protein is inactivated, the drought resistance of the corn is greatly enhanced. The gene encoding the protein can be used for plant breeding to improve nitrogen uptake efficiency and drought resistance of plants.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Description

一种植物氮吸收和耐旱相关蛋白及其编码的基因和应用
技术领域
本发明涉及植物氮吸收和耐旱相关蛋白 0S1及其编码基因和应用。 背景技术
氮是植物生长发育过程中重要的营养元素, 占植物总干物质重量的
1. 5-2%, 氮元素是植物不同组织大分子物质的重要组成元件 (如蛋白质、 核酸、 叶绿体等) , 因此植物必须从土壤中吸收足够的氮营养来满足自身 的生长发育。 植物吸收氮的形式包括有机氮 (oganic nitrogen ) 和无机 氣 ( inoganic nitrogen ) 两禾中类型, 其中豆科 ( legume ) 作物可以通过 固氮菌 ( Rhi zobium) 利用多种形式的氮。 硝态氮 ( nitrate ) 和铵态氮
( ammonium) 等无机氮源是植物吸收和利用主要形式, 对农作物的生长发 育 (包括叶绿体形成、 根的生长以及作物的产量形成) 有着至关重要的作 用。 植物缺氮的情况下会表现为光合能力和光合效率减低, 结果造成植物 生长受阻以及作物产量下降, 这主要归因于叶绿体、 二磷酸核酮糖羧化酶
( ribulose bi sphosphate carboxylase ) 等光合元件受阻。 在农业生产 当中, 为了保证农作物的产量, 氮肥的用量不断加大, 但是利用效率并没 有得到提高, 造成 50-70%氮肥不能够被农作物吸收, 这在一等程度上造成 资源的白白浪费, 同时给环境带来了一定的压力, 并引起严重的环境氮源 污染。 在农作物玉米中已经证实通过提高植物的耐低氮特性并减少氮肥的 使用量来保持或增加作物产量, 近年来, 通过对早期的玉米杂交种和当前 的杂交种的产量研究证明, 与早期的玉米杂交种相比, 新培育出的杂交种 在低氮环境条件下能够更好的生长。 因此, 随着植物基因组学研究的不断 深入, 寻找并克隆氮吸收调控相关基因, 开展植物氮元素吸收和转运过程 的调节机制、 信号传导途径等研究是提高氮营养高效的很好途径。
氮在植物的生长发育过程中不但是重要的营养来源, 同时还是重要的 信号物质, 该物质调节植物生长发育过程中的叶形态发育、 主根和侧根结 构、 开花期和茎分支生成等重要生理过程, 同时还调节氮和碳代谢过程相 关基因的表达。 植物生长的土壤环境往往会受到雨水冲蚀、 微生物消耗等 原因使得氮素含量水平浮动很大, 因此, 植物必须通过多种自身调节机制 来适应这种氮素水平变化。 当环境中的氮水平降低到一定程度的时候, 植 物就会通过某种机制来调控自身的生长来适应氮素的胁迫,如:延缓生长、 降低光合效率、 自身成熟组织的氮素重新利用、 积累大量花青素等。
玉米是我国的重要粮食作物, 氮又是玉米生长发育不可缺少的重要营 养元素之一。当前玉米对氮的利用效率很低,不但造成肥料数量巨大浪费, 而且化肥的大量滥用给环境造成重要的压力, 由此对我国玉米生产和土壤 环境造成巨大损失。 干旱是当前农业生产中面临的重要难题, 因干旱造成 农作物的大面积减产逐年递增, 因此提高农作物的氮素吸收利用效率和增 强农作物的抗旱能力是解决当前和今后农业生产中难题的重要途径。 随着 全球水资源的日趋紧缺, 研究并提高玉米的抗旱性就显得有重要的现实意 义。 为了加快重要的干旱调节功能基因的研究和利用, 必须加大对干旱诱 导调控基因的知识产权保护的力度。
发明公开
本发明提供了植物氮吸收和耐旱相关蛋白 0S1及其编码基因和应用。 本发明提供的蛋白质, 获自玉米, 命名为 0S1 蛋白, 是如下 (a) 或 (b ) :
( a) 由序列表中序列 1所示的氨基酸序列组成的蛋白质;
(b ) 将序列 1的氨基酸序列经过一个或几个氨基酸残基的取代和 /或 缺失和 /或添加且与植物氮吸收和 /或耐旱和 /或籽粒胚乳的胚面大小和 / 或籽粒胚乳的透明度相关的由序列 1衍生的蛋白质。
为了使 (a) 中的蛋白质便于纯化, 可在由序列表中序列 1所示的 氨基酸序列组成的蛋白质的氨基末端或羧基末端连接上如表 1 所示 的标签。
表 1 标签的序列
Figure imgf000003_0001
上述 (b ) 中的蛋白质可人工合成, 也可先合成其编码基因, 再进行 生物表达得到。 上述(b ) 中的蛋白质的编码基因可通过将序列表中序列 2 或序列 3所示的 DNA序列中缺失一个或几个氨基酸残基的密码子, 和 /或 进行一个或几个碱基对的错义突变, 和 /或在其 5'端和 /或 3'端连上表 1 所示的标签的编码序列得到。
编码所述蛋白的基因 (05 基因) 也属于本发明的保护范围。
所述基因可为如下 1) 至 6) 中任一所述的 DNA分子:
1)序列表的序列 3自 5' 末端第 2398至 7414核苷酸所示的 DNA分子;
2)序列表的序列 3 自 5' 末端第 820至 9176核苷酸所示的謹分子;
3) 序列表的序列 3所示的 DNA分子;
4) 序列表的序列 2所示的 DNA分子;
5) 在严格条件下与 1) 或 2) 或 3) 或 4) 限定的謹序列杂交且编 码植物氮吸收和 /或耐旱和 /或籽粒胚乳的胚面大小和 /或籽粒胚乳的透明 度相关蛋白的 DNA分子;
6) 与 1) 或 2) 或 3) 或 4) 限定的 DNA序列具有 90%以上同源性且编 码植物氮吸收和 /或耐旱和 /或籽粒胚乳的胚面大小和 /或籽粒胚乳的透明 度相关蛋白的 DNA分子。
上述严格条件可为在 0.1XSSPE (或 0.1XSSC) 、 0.1% SDS的溶液 中, 65°C条件下杂交并洗膜。
含有所述基因的重组表达载体、 表达盒、 转基因细胞系或重组菌均属 于本发明的保护范围。
可用现有的植物表达载体构建含有所述基因的重组表达载体。 所述植 物表达载体包括双元农杆菌载体和可用于植物微弹轰击的载体等。 所述植 物表达载体还可包含外源基因的 3' 端非翻译区域, 即包含聚腺苷酸信号 和任何其它参与 mRNA加工或基因表达的謹片段。 所述聚腺苷酸信号可 引导聚腺苷酸加入到 mRNA前体的 3' 端。 使用所述基因构建重组植物表达 载体时, 在其转录起始核苷酸前可加上任何一种增强型启动子或组成型启 动子, 它们可单独使用或与其它的植物启动子结合使用; 此外, 使用本发 明的基因构建植物表达载体时, 还可使用增强子, 包括翻译增强子或转录 增强子,这些增强子区域可以是 ATG起始密码子或邻接区域起始密码子等, 但必需与编码序列的阅读框相同, 以保证整个序列的正确翻译。 所述翻译 控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。 翻译起始区域可以来自转录起始区域或结构基因。 为了便于对转基因植物 细胞或植物进行鉴定及筛选, 可对所用植物表达载体进行加工, 如加入可 在植物中表达的编码可产生颜色变化的酶或发光化合物的基因、 具有抗性 的抗生素标记物或是抗化学试剂标记基因等。 从转基因植物的安全性考 虑, 可不加任何选择性标记基因, 直接以逆境筛选转化植株。
所述重组表达载体可为在质粒 PCAMBIA3301的多克隆位点插入序列表 的序列 3 自 5 ' 末端第 820至 9176核苷酸所示的 DNA得到的重组质粒。所 述重组表达载体具体可为在质粒 pCAMBIA3301 的 BamH I和 Hindlll酶切位 点之间插入了序列表的序列 3 自 5 ' 末端第 820至 9176核苷酸所示的 DNA 得到的重组质粒。
扩增所述基因的全长或其任一片段的引物对也属于本发明的保护范围。 本发明还保护一种培育转基因植物的方法, 是将所述基因导入目的植 物中, 得到耐旱性低于所述目的植物和 /或氮敏感性高于所述目的植物和 / 或籽粒胚乳的胚面小于所述目的植物和 /或籽粒胚乳的透明度 (胚乳的透 光性) 小于所述目的植物的转基因植物。 所述基因具体可通过所述重组表 达载体导入所述目的植物中。 携带有所述基因的表达载体可通过使用 Ti 质粒、 Ri质粒、 植物病毒载体、 直接 DNA转化、 显微注射、 电导、 农杆菌 介导、 基因枪等常规生物学方法转化植物细胞或组织, 并将转化的植物组 织培育成植株。 所述目的植物既可以是单子叶植物也可以是双子叶植物。 所述单子叶植物具体可为玉米, 如 B73植株、 ΗΠΙΑ植株、 ΗΠΙΑ植株与 osl植株的杂交子代 (如 F1代) 等。
本发明还保护一种培育转基因植物的方法, 是抑制目的植物中所述基 因的表达, 得到耐旱性高于所述目的植物和 /或氮敏感性低于所述目的植 物和 /或籽粒胚乳的胚面大于所述目的植物和 /或籽粒胚乳的透明度 (胚乳 的透光性) 大于所述目的植物的转基因植物。 所述目的植物既可以是单子 叶植物也可以是双子叶植物。所述单子叶植物具体可为玉米,如 B73植株、 ΗΠΙΑ植株、 ΗΠ ΙΑ植株与 osl植株的杂交子代 (如 F1代) 等。
所述基因, 或所述重组表达载体、 或所述表达盒、 转基因细胞系或重 组菌, 或以上任一所述方法均可用于植物育种。 所述植物可为单子叶植物 或双子叶植物。 所述单子叶植物具体可为玉米。 本发明还保护序列表的序列 4所示的 DNA (启动子) 。
本发明还保护序列表的序列 5所示的 DNA (终止子) 。
附图说明
图 1为 osl植株和 Mol7植株的表型: A为 Mol7籽粒胚面; B为 Mol7 籽粒胚乳透明度; C为突变体 osl籽粒胚面; D为突变体 osl籽粒胚乳透 明度。
图 2为 osl基因的精细定位图。
图 3为 osl基因中的第二个外显子插入转座子结构图。
图 4为两个等位基因突变位点图。
图 5为 osl突变体和野生型 B73干旱处理 10天的抗旱性表现(左图: osl , 右图 B73)。
图 6为 B73背景下分离群体中的突变体和野生型干旱处理 10天的抗 旱性表现 (左图: 突变型, 右图: 野生型)。
图 Ί为郑 58背景下分离群体中的突变体和野生型干旱处理 10天的抗 旱性表现 (左图: 突变型, 右图: 野生型)。
图 8为昌 7-2背景下分离群体中的突变体和野生型干旱处理 10天的 抗旱性表现 (左图: 突变型, 右图: 野生型)。
图 9为 H99背景下分离群体中的突变体和野生型干旱处理 10天的抗 旱性表现 (左图: 突变型, 右图: 野生型)。
图 10为 0S1基因的亚细胞定位: A-F 0S1基因的 GFP融合蛋白在洋葱 表皮的定位情况。 A-C 35S : GFP 在 GFP 光通道 (A) 、 光镜通道 (B) 和 GFP与光镜叠加通道 (C) ; D-F 35S : GFP : 0S1在 GFP光通道 (D) 、 光镜 通道 (E) 和 GFP与光镜叠加通道 (F) 。
实施发明的最佳方式
以下的实施例便于更好地理解本发明, 但并不限定本发明。 下述实施 例中的实验方法, 如无特殊说明, 均为常规方法。 下述实施例中所用的试 验材料, 如无特殊说明, 均为自常规生化试剂商店购买得到的。 以下实施 例中的定量试验, 均设置三次重复实验, 结果取平均值。
玉米自交系 B73 (B73植株) : 参考文献: Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Rei ly AD, Courtney L, Kruchowski SS, Toml inson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gi llam B, Chen W, Yan L, Higginbotham J, Cardenas M, Wal igorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomel i R, Scara G, Ko A, Delaney K, Wi ssotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Mi ller B, Ambroi se C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumar i S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Esti ll JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Li sch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer 丽, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Cl ifton SW, McCombie WR, Wing RA, Wi lson RK. The B73 maize genome: complexity, diversity, and dynamics. Science.
2009 : 326 (5956) : 1112-5.。
os l 植株 (突变体) : 参考文献: 宋同明, 陆效武: 对一个玉米双重 标记新突变基因(OS ) 的染色体定位和初歩遗传研究。 遗传学报, 1993, 20 ( 5 ) : 432-438。
质粒 PCAMBIA3301 : 参考文献: Han JS, Kim CK, Park SH, Hirschi KD, Mok I. Agrobacterium-mediated transformat i on of bottl e gourd (Lagenaria s iceraria Standi. ) . Plant Cel l Rep. 2005; (10-11) :692-8.。
农杆菌菌株 EHA105: 参考文献: Joyce P, Kuwahata M, Turner N, Lakshmanan P. Selection system and co-cultivation medium are important determinants of Agrobacterium— mediated transformation of sugarcane. Plant Cell Rep. 2010,; 29 (2) : 173- 83·。
Hi I IA植株:参考文献: Juan M. Vega. Weichang Yu. Angela R. Kennon. Xinlu Chen . Zhanyuan J. Zhang. Improvement of
Agrobacterium- mediated transformation in Hi- II maize (Zea mays) using standard binary vectors. Plant Cell Rep. 2008, 27: 297 - 305. 。 实施例 1、 0S1蛋白及其编码基因的发现
一、 osl植株 (突变体) 和 Mol7植株 (野生型) 的表型分析 osl植株和 Mol7植株的表型见图 1。 osl植株表现为胚面变小, 只有 Mol7植株的 1/2-1/3大小, 同时胚乳顶部发白并表现为不透明。 osl植株 籽粒的含油量明显降低, 但是籽粒中的营养成分 (氨基酸的含量、 部分金 属、 非金属离子、 非蛋白氮等) 均没有差异。
将 osl植株与 Mol7植株组配的 6个世代进行遗传规律分析, 结果表 明, 该 osl植株的表型受单基因隐性控制。
二、 0S1基因的精细定位
以玉米籽粒胚面的大小和胚乳的透明与否为表型鉴定标准, 用 osl植 株和 Mol7 植株组配的回交分离群体 (BC) 对目标基因进行了精细定位, 最终用 3345个单株把该基因定位在了玉米第二号染色体短臂上 2.03区大 约 250kb的区间。
具体步骤如下 (见图 2) :
1、 根据 B73的物理图谱, 把标记 umc2193和 umcl845定位在 B73的 物理图谱上, 界定两个标记的序列, 并获得 umcl845和 umc2193两个标记 之间已经测序的 BAC序列, 用这些公布的序列来开发新的标记, 然后选择 了 12个 BAC来开发 SSR标记, 根据重复序列两端的保守序列来设计引物, 用这些新合成的标记对 osl植株、 Mol7植株以及它们组配的 F1等 3个样 品进行多态性标记的筛选, 最终开发了 13 对有多态性的分子标记, 它们 分别为 AC206622 AC2066222, AC2066225, AC2102034, AC199521MSPI, AC194041 AC1940412 、 AC1910252, AC1975212, AC2021625, umc2215、 IDP668、 IDP3802o
2、 用离目标基因较远的标记 umc213和 umcl845继续从 BC1分离群体 中的大胚和小胚筛选重组单株, 共计筛选了 3345株, umc2193和 umcl845 两侧标记分别筛选了交换单株个数为 54株、 19株, 共计 73株, 然后用以 上 13个新开发的标记对这 73个重组单株进行进一步的基因型分析。
最后, 用新开发的标记对远离目标基因两侧的交换单株进行基因型分 析,同时结合交换单株的表型,结果发现, IDP3802 (P3) , AC2066221 (P4) , AC2066222 (PI) 、 AC2102034 (P7) 使左侧 (umc2193) 和目标基因之间 的交换单株分别减少到 38株、 11株、 11株和 2株; AC1975212 (P6) 、 umc2195 (P2) 、 AC1910252 (P8) 、 IDP668 (P5) 、 AC1940411 (P9) 使 右侧 (umcl845)和目标基因之间的交换单株分别减少到 15株、 14株、 14 株、 12株、 10株; 两侧的交换单株到标记 AC199521MSPI (P10) 的时候, 所有的交换单株的都减少为零, 这说明该标记在 3345 个回交分离群体中 表现为和目标基因共分离。 根据交换单株递减规律和三点测验等方法最终 把目标基因锁定在 ACC2102034 (P7) 和 AC1940411 (P9) 之间, 分别有 2 个和 10 个交换单株。 对这个区域进一步分析发现该区域有两个重叠的 BACs: AC210203和 AC199521, 两给 BACs的长度分别是 155kp和 198kb, 两个 BACs有大约 103kb重叠区域, 除去重叠区域, 两个标记的实际物理 距离约为 250kb。
三、 目标区域的候选基因分析
对目标基因所在的 250kb区间进行基因注释以及候选基因的生物信息 学分析。 结果表明, 该区域有 3 个候选基因, 它们分别是: Cyclin-B2, HMG-1/2 like protein, RWP-RK transcriptional factor。 X寸候选基因 进行了亲本间的测序分析, 结果表明: 候选基因 Cyclin-B2, HMG-1/2 like protein在基因组水平上两个亲本间没有差异, RWP-RK transcriptional factor基因的第二个外显子上面有一个 J家族的转座子插入,该转座子 长度为 3.5kb (见图 3)。通过候选基因的生物信息学分析, 最终把 RWP-RK transcriptional factor作为候选基因。
四、 新等位基因 osl-Mul的筛选 通过对 3507个突变体家系 (该家系的名称为 L17627) 的田间筛选, 发现一个有花药增多的突变体, 命名为 osl-Mul植株, 然后用 osl-Mul植 株分别与综 31和 B73进行杂交, 杂交后再进行自交, 在自交后代的籽粒 中发现果籽粒性状有分离, 经分析发现, 这些分离的突变籽粒表型和 osl 的籽粒表型表现一样, 遗传规律分析表明也是单基因隐性遗传。
五、 osl和 osl-Mul基因的功能互补
2009年冬在海南进行新等位基因 osl-Mul和 osl的等位性测验,首先 是把 osl-Mul植株和 osl植株的突变籽粒进行单行种植, 然后对两个突变 体进行正反杂交和分别自交, 结果发现 osl-Mul 自交后代中的籽粒全部纯 合, 都表现为 osl籽粒的突变类型, 在杂交果穗 F1 的籽粒的也表现出胚 面变小、 胚乳不透明的突变表型。 测序发现, 2 个突变体 (osl-Mul 植株 和 osl植株) 的扩增结果分别比野生型多出大约 4.5kb和 1.5kb左右, 发 现 osl-Mul突变体中的插入片段为 Mul转座子, 实际大小为 1.3kb, 而该 基因的其它位点均和野生型没有碱基差异。 因此可以得出 osl-Mul植株和 osl植株的突变发生在同一个基因, 两个转座子插入到 0S1基因第二个外 显子的不同位点 (见图 4) 。
六、 0S1蛋白及其基因组 DNA和全长 cDNA的获得
根据基因注释结果 (http:〃 www. softberry. com) , 注释软件为 FGENESH-Mo 通过提取玉米自交系 B73的叶片总 RNA, 然后进行反转录, 然 后对扩增产物进行测序。 根据测序结果得到了 0S1蛋白、 其基因组 DNA和 全长 cDNA的序列。
将序列表的序列 1所示的蛋白命名为 0S1蛋白 (由 331个氨基酸残基 组成) 。 将 0S1蛋白的编码基因命名为 05 基因。 05 基因的开放阅读框
(996bp) 如序列表的序列 2所示。 05 基因的基因组 DNA (6278bp) 如序 列表的序列 3所示,有 5个外显子(长度分别为 60bp、291bp、 190bp、224bp、 228bp)和 4个内含子(长度分别为 117bp、 161bp、 3632bp、 114bp), 5, UTR
(非翻译区)长度为 1289bp, 3' UTR长度为 30bp。序列 3所示基因组 DNA 中, 自 5' 末端第 2398至 2400位为起始密码子, 第 7415至 7417位为终 止密码子。 序列 3所示基因组 DNA中, 第 2398至 2457位为第一外显子, 第 2458至 2574位为第一内含子,第 2575至 2865位为第二外显子,第 2866 至 3026位为第二内含子,第 3027至 3216位为第三外显子,第 3217至 6848 位为第三内含子, 第 6849至 7072位为第四外显子, 第 7073至 7186位为 第四内含子, 第 7187至 7414位为第五外显子。 实施例 2、 转基因植物的获得和鉴定
含有目标基因 0S1的基因的 BAC克隆获自:
http: //www. maizesequence. org/Zea_mays/UniSearch/Summary?species =Zea_mays ; idx= ; q=ZMMBBc0166I20, 编号为 ZMMBBc0166I20。
一、 重组表达载体的构建
1、 对含有目标基因 0S1的基因的 BAC克隆提取质粒, 用限制性内切酶 BamHl和 Hindlll进行双酶切, 回收酶切片段 (约 7062bp ) , 该酶切片段具 有序列表的序列 3自 5'末端第 2115bp至 9176bp位核苷酸所示的 DNA。
2、 用限制性内切酶 BamHl和 Hindlll双酶切质粒 pCAMBIA3301, 回收载 体骨架。
3、 将步骤 1的酶切片段和步骤 2的载体骨架连接, 得到中间质粒。
4、 提取 B73植株的基因组 DNA, 以基因组 DNA为模板, 用 F1和 R1组成的 引物对进行 PCR扩增, 得到 PCR扩增产物。
F1 : 5' -GCAAGCTTTTCAGCGGGAGTTCACGATG-3';
R1 : 5' - GCAAGCTTGCGAATTCTGCTGTGCAGTG- 3'。
5、 将步骤 4的 PCR扩增产物连接至 pEASY-Tl载体 (购自北京全式金生 物技术科技有限公司, 产品目录号 CT101 ) 上, 得到测序质粒并进行测序, 测序结果表明, 其序列如序列表的序列 3自 5 ' 末端第 820至 2120位核苷酸 所示。
6、 用限制性内切酶 Hindlll单酶切步骤 5的测序质粒, 回收小片段。
7、 用限制性内切酶 Hindl l l单酶切步骤 3的中间质粒, 回收载体骨架。
8、将步骤 6的小片段和步骤 7的载体骨架连接, 得到目的重组质粒(目 的重组质粒中, 在质粒 PCAMBIA3301的 BamHl和 Hindlll酶切位点之间插入了 序列表的序列 3自 5 ' 末端第 820至 9176核苷酸所示的 DNA) 。
二、 转基因植物的获得
1、 将目的重组质粒转化农杆菌菌株 EHA105, 通过抗生素利福平和卡 那霉素进行筛选, 获得重组农杆菌。
2、 将 ΗΠΙΑ植株和 QSI植株进行杂交, 收获 F1代植株。
3、 将步骤 1的重组农杆菌转化 F1代植株, 通过草丁膦进行筛选, 获 得转基因植株。
具体转化方法如下:
(1) 把刚剥离的 F1 代植株的幼胚完全浸泡入重组农杆菌菌液 (0D550=0.3-0.4) 中, 在暗箱里浸染 10分钟。
(2) 把浸染过的幼胚转移到共培养培养基 (N6 盐 4g/L、 2,4-D 1.5mg/L、 脯氨酸 0.7g/L、 葡萄糖 30g/L、 植物凝胶 3g/L, pH5.8; 121°C 灭菌 15 分钟后加入硝酸银至终浓度为 0.85mg/L,乙酰丁香酮至终浓度为 lOOmM, 半胱氨酸至终浓度为 300mg/L, 1000 XN6维生素至 lml/L) ,使幼 胚的胚轴接触培养基表面, 同时驱除培养基表面多余的农杆菌, 用封口膜 封住培养皿, 在 2CTC条件下暗培养 3天。
(3)把幼胚转移到静息培养基(共培养培养基 +100mg/L羧苄青霉素) 上, 同时用封口膜封住培养皿, 放在 28°C条件下暗培养 7天。
(4) 把幼胚转移到选择培养基甲 (N6 盐 4g/L、 2,4-D 1.5mg/L、 脯 氨酸 0.7g/L、 葡萄糖 30g/L、 植物凝胶 3g/L, pH5.8; 121°C灭菌 15分钟 后加入硝酸银至终浓度为 0.85mg/L,半胱氨酸至终浓度为 300mg/L, 1000 XN6维生素至 lml/L,羧苄青霉素至终浓度为 100mg/L,草丁膦至终浓度为 1.5mg/L) 上, 培养两周; 培养条件为: 28°C, 黑暗条件下培养。
(5) 把幼胚转移到选择培养基乙 (N6 盐 4g/L、 2,4-D 1.5mg/L、 脯 氨酸 0.7g/L、 葡萄糖 30g/L、 植物凝胶 3g/L, pH5.8; 121°C灭菌 15分钟 后加入硝酸银至终浓度为 0.85mg/L,半胱氨酸至终浓度为 300mg/L, 1000 XN6维生素至 lml/L,羧苄青霉素至终浓度为 100mg/L,草丁膦至终浓度为 3mg/L) 上, 培养至产生明显的愈伤组织 (约 3周) ; 培养条件为: 28°C, 黑暗条件下培养。
(6) 将愈伤组织转移到在再生培养基 I (MS 盐 4.3g/L、 2,4-D 1.5mg/L、 葡萄糖 60g/L、 植物凝胶 3g/L, pH 5.8; 121°C灭菌 15分钟后 加入 1000 XMS维生素至终浓度为 lml/L,羧苄青霉素至终浓度为 100mg/L, 草丁膦至终浓度为 3mg/L) 上培养 3周; 培养条件为: 28°C, 黑暗条件下 培养。
( 7 ) 然后转移到再生培养基 II (MS盐 4. 3g/L、 2, 4-D 1. 5mg/L、 葡 萄糖 30g/L、 植物凝胶 3g/L, pH 5. 8; 121 °C灭菌 15分钟后加入 1000 XMS 维生素至终浓度为 lml/L, 羧苄青霉素至终浓度为 100mg/L) 上培养至发 芽, 即为转基因植株; 培养条件为: 26°C, 光照强度为 10000LUX 条件下 培养。
三、 转基因植物的鉴定
1、 性状分离鉴定
通过籽粒的性状进行鉴定, 根据转基因后代的分离比例来确定转基因 互补结果。 见表 2。
表 2 转基因后代籽粒的分离比例
Figure imgf000013_0001
特征表型指的是籽粒胚面小且胚乳不透明 (opaque-small germ) 。 2、 转基因植物的性状鉴定
分别统计在相同生长条件下转基因植株、 F1代植株以及 F1代植株自 交得到的 F2代植株的籽粒性状, 结果如下:
F1代植株的籽粒性状为: 籽粒表型为胚面和胚乳正常。
转基因植株的籽粒性状为: 与 F1 代植株 (亲本) 相比, 籽粒表现为 胚面小, 且胚乳不透明 (即胚乳的透光性降低) 。
F2代植株的籽粒性状为: 一部分籽粒表现为转基因植株的性状, 另一 部分籽粒表型为 F1代植株的性状。
转空载体植株与 F1代植株的籽粒性状一致, 没有显著差异。 实施例 3、 os l植株 (突变体) 和 B73植株 (野生型) 的氮胁迫处理 玉米的苗期培养采用水培, 培养液为霍格兰缺氮营养液, 以 Ca (N03) 2 ' 4H20为氮源。
玉米植株培养过程:选取大小均匀、 籽粒饱满的玉米种子,先经 10%的 ¾02消毒 20min, 再用去离子水冲洗; 于 25°C催芽,露白后,在洗净的湿润 沙床上发芽; 一叶一心时, 挑选长势一致的苗去除胚乳后移栽到有营养液 的水培槽中培养, 开始用 1/2浓度营养液, 3天后换成完全营养液, 以后 每隔两天更换一次, 用电动气泵连续通气, 培养 25天; 设 0mM、 4mM两个 氮源浓度, 每个样品设二次重复。
玉米的根部是感应培养基中的氮素营养最直接的部位, 培养基中的营 养元素发生变化以后势必影响根的生长和发育, 通过对 OmM和 4mM两个氮 源浓度水平下的 osl植株和 B73植株根上部和下部生长变化进行观察。 根上部突变体和野生型在无氮和有氮的水平下表现差别很大, 主要的差异 表现在叶片上, 无氮表现为褪绿; 和野生型相比, 突变体在有氮和无氮情 况下都表现为长势较弱。 根部中, 突变体和野生型在无氮和有氮的水平下 表现不明显; 和野生型相比, 突变体在有氮和无氮情况下都表现为根生长 较弱。 实施例 4、 os l植株 (突变体) 和 B73植株 (野生型) 的干旱处理 在温室环境条件下, 用花盆 (30 X 60匪) 盛放同样重量的营养土和蛭 石 (1 : 1混合) , 然后在每个花盆中种植同样数量 osl植株 (突变体) 和 B73 植株 (野生型) 籽粒, 先按照正常的管理方式管理, 等到幼苗长到 3 片叶的时候开始停止浇水, 进行干旱处理, 10天以后观察突变体和野生型 的幼苗干旱反应情况。
结果发现, 突变体的生长情况显著优于野生型, 即突变体比野生型有 较强的抗旱性能 (图 5 ) 。
在 osl 植株 (突变体) 与不同的遗传背景的野生型玉米植株 (B73植 株、 郑 58植株、 昌 7-2植株或 H99植株) 组配的回交分离群体 BC1中, 突变 体的生长情况均显著优于野生型, 突变型比野生型表现出明显的抗旱性。 B73 (图 6 ) 、 郑 58 (图 7 ) 、 昌 7-2 (图 8 ) 、 H99 (图 9) 实施例 5、 0S 1蛋白的亚细胞定位
一、 金粉洗涤
称量 15mg金粉并放入灭菌后的 1. 5ml的印 pendorf离心管当中, 这样结 果是 10 X的量; 在超净台下, 向每个离心管中加入 500ul冰冻 (-20°C ) 无 水乙醇, 震荡 15seC, 在超净台上收集金粉到离心管管底部, 静止 30分钟, 直到金粉全部沉淀; 然后转速 3000rpm离心 60sec, 彻底去除乙醇。 再向离 心管中加入冰浴的无菌 ddH20, 用手指轻弹混匀, 然后转速 3000rpm离心 60sec。 重复上述步骤 2-3次, 最后一次用转速 5000rpm离心 15sec,然后移 去上清, 再用 500uldd¾0悬浮。 震荡 15sec, 然后快速悬浮混匀, 边混边分 装; 具体的分装方法是: 先把 10个离心管放好, 用 25ul的量分装, 重复分 装两次, 第一遍从第一个管开始, 第二遍从最后一个管开始, 这样每个离 心管含有 50ul水, 1. 5mg金粉。 然后盖上盖子于 -2CTC保存备用。
二、 DNA包裹步骤
首先把要打枪的愈伤分成小块, 堆积在渗透培养基 (N60SM)的中央区 域, 根据计划做准备; 目的 DNA的包裹先把分装好的金粉 (-2CTC ) (每管 1. 5mg并保存在 50微升超纯水当中)放在冰上,同时把 CaCL2浓度为 2. 5M (4°C ) 和亚精胺浓度为 0. 1M (-70°C )也放在冰上融化, 其中 CaCL2和亚精胺分装成 一次性使用的包装; 用手指轻轻弹装有金粉的离心管使之悬浮起来, 然后 加入目的 DNA ( 60-200ng ),迅速用手指轻弹使之混匀然后加入 50微升 CaCL2 并用枪头轻轻吸吐使之混匀, 然后加入 20微升亚精胺, 静置 30秒把离心管 放在漩涡振荡器上面震荡 10分钟 (注意使旋涡液体不要上升太高,同时使 液体全部悬浮起来) ; 离心管放到冰上静置 5分钟(如果震荡以后有金粉在 液体表面漂浮,静置前再用手指轻弹使金粉沉淀下来), 然后 2000rpm离心 15秒, 然后用吸头吸掉上清加入预冷 (-2CTC ) 的无水乙醇 250微升, 并用 枪头轻轻 (使 20微升的枪调到 10-13微升) 吸吐混匀重复以上步骤 3-4次, 然后加入无水乙醇 120-140微升使之平均分成 8份并加到宏载片上面开始 基因枪轰击。
三、 受体材料的轰击 用镊子撕取幼嫩洋葱表皮, 切成 2cm2左右的小片, 将幼嫩的洋葱表皮 摆放在含有相应载体抗生素的 MS培养基中央区域紧密摆放, 28°C预培养 4 ho 选用 650psi的破裂膜, 用移液器将包裹后的 15μ 1金粉 -DNA 混合物点 在轰击膜中央,采用 PDS-1000/He(Gene Gun System) 型基因枪(Bio-Rad) 进行轰击, 轰击距离 6cm, 真空度为 28In *Hg。轰击后的洋葱表皮细胞 28°C 暗培养 24h后在共聚焦显微镜 (Confocal:NIKOND-Eclipse Cl, TE2000-E) 下后观察 GFP荧光。
四、 GFP荧光的观察
小心的把基因枪轰击后的洋葱表皮从 MS 培养基中取下, 背面朝上平 铺在加有水的载玻片上, 盖上盖玻片, 用激光扫瞄共聚焦显微镜 (Confocal: NIKON D- Eclipse CI, TE2000- E) 观察 GFP 荧光。 参数: 激 发光波长 488醒, GFP荧光通过 505-530醒的滤光片接收。 通过构建 0S1 蛋白与 GFP的融合表达载体, 利用洋葱表皮细胞来观察 0S1蛋白的亚细胞 定位。结果表明:对照 35S:sGFP分布在细胞质中(图 10 A-C);35S:sGFP:0Sl 融合表达的绿色荧光蛋白定位在细胞核中 (图 10 D-F) 。
工业应用
本发明通过对 osl突变株和 Mol7植株野生株及其子代进行表型观察 和遗传分析, 发现了一个新蛋白。 通过相关实验, 发现该新蛋白参与了玉 米的氮代谢调控途径、 干旱胁迫调控途径和干旱环境应答过程, 可以调节 玉米的抗旱性。该蛋白的编码基因突变失活后,玉米的抗旱能力大大增强。 该蛋白的编码基因可用于植物育种, 改善植物的氮素吸收效率和抗旱性

Claims

权利要求
1、 一种蛋白质, 是如下 (a) 或 (b) :
(a) 由序列表中序列 1所示的氨基酸序列组成的蛋白质;
(b) 将序列 1的氨基酸序列经过一个或几个氨基酸残基的取代和 /或 缺失和 /或添加且与植物氮吸收和 /或耐旱和 /或籽粒胚乳的胚面大小和 / 或籽粒胚乳的透明度相关的由序列 1衍生的蛋白质。
2、 编码权利要求 1所述蛋白的基因。
3、 如权利要求 2所述的基因, 其特征在于: 所述基因是如下 1)至 6) 中任一所述的 DNA分子:
1)序列表的序列 3自 5' 末端第 2398至 7414核苷酸所示的 DNA分子;
2)序列表的序列 3 自 5' 末端第 820至 9176核苷酸所示的謹分子;
3) 序列表的序列 3所示的 DNA分子;
4) 序列表的序列 2所示的 DNA分子;
5) 在严格条件下与 1) 或 2) 或 3) 或 4) 限定的謹序列杂交且编 码植物氮吸收和 /或耐旱和 /或籽粒胚乳的胚面大小和 /或籽粒胚乳的透明 度相关蛋白的 DNA分子;
6) 与 1) 或 2) 或 3) 或 4) 限定的 DNA序列具有 90%以上同源性且编 码植物氮吸收和 /或耐旱和 /或籽粒胚乳的胚面大小和 /或籽粒胚乳的透明 度相关蛋白的 DNA分子。
4、 含有权利要求 2或 3所述基因的重组表达载体、 表达盒、 转基因 细胞系或重组菌。
5、 如权利要求 4 所述的重组表达载体, 其特征在于: 所述重组表达 载体为在质粒 PCAMBIA3301的多克隆位点插入序列表的序列 3 自 5' 末端 第 820至 9176核苷酸所示的 DNA得到的重组质粒。
6、 扩增权利要求 2或 3所述基因的全长或其任一片段的引物对。
7、 一种培育转基因植物的方法, 是将权利要求 2或 3所述基因导入 目的植物中, 得到耐旱性低于所述目的植物和 /或氮敏感性高于所述目的 植物和 /或籽粒胚乳的胚面小于所述目的植物和 /或籽粒胚乳的透明度小 于所述目的植物的转基因植物。
8、 如权利要求 7所述的方法, 其特征在于: 权利要求 2或 3所述基 因通过权利要求 4或 5所述重组表达载体导入所述目的植物中。
9、 如权利要求 7或 8所述的方法, 其特征在于: 所述目的植物为单 子叶植物或双子叶植物。
10、如权利要求 9所述的方法, 其特征在于: 所述单子叶植物为玉米。
11、 一种培育转基因植物的方法, 是抑制目的植物中权利要求 2或 3 所述基因的表达, 得到耐旱性高于所述目的植物和 /或氮敏感性低于所述 目的植物和 /或籽粒胚乳的胚面大于所述目的植物和 /或籽粒胚乳的透明 度大于所述目的植物的转基因植物。
12、 如权利要求 11 所述的方法, 其特征在于: 所述目的植物为单子 叶植物或双子叶植物。
13、 如权利要求 12 所述的方法, 其特征在于: 所述单子叶植物为玉 米。
14、权利要求 2或 3所述基因,或权利要求 4或 5所述重组表达载体、 或权利要求 4所述表达盒、 转基因细胞系或重组菌, 或权利要求 7至 13 中任一所述方法在植物育种中的应用。
15、 如权利要求 14 所述的应用, 其特征在于: 所述植物为单子叶植 物或双子叶植物。
16、 如权利要求 15 所述的应用, 其特征在于: 所述单子叶植物为玉 米。
17、 序列表的序列 4所示的 DNA。
18、 序列表的序列 5所示的 DNA。
PCT/CN2011/000956 2010-06-07 2011-06-07 一种植物氮吸收和耐旱相关蛋白及其编码的基因和应用 WO2011153822A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800048077A CN102666573A (zh) 2010-06-07 2011-06-07 一种植物氮吸收和耐旱相关蛋白及其编码的基因和应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101924314A CN102268439B (zh) 2010-06-07 2010-06-07 调控玉米氮吸收利用和干旱胁迫基因os1及应用
CN201010192431.4 2010-06-07

Publications (1)

Publication Number Publication Date
WO2011153822A1 true WO2011153822A1 (zh) 2011-12-15

Family

ID=45050899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000956 WO2011153822A1 (zh) 2010-06-07 2011-06-07 一种植物氮吸收和耐旱相关蛋白及其编码的基因和应用

Country Status (2)

Country Link
CN (2) CN102268439B (zh)
WO (1) WO2011153822A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011631A (zh) * 2022-06-09 2022-09-06 中国农业科学院作物科学研究所 调控玉米苗期抗旱性的蛋白及其编码基因和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111434678B (zh) * 2019-01-10 2022-03-15 中国农业科学院作物科学研究所 植物脱水应答元件编码蛋白及其编码基因在耐低氮胁迫中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009052476A2 (en) * 2007-10-19 2009-04-23 Pioneer Hi-Bred International, Inc. Maize stress-responsive nac transcription factors and promoter and methods of use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715407A (zh) * 2005-07-18 2006-01-04 中国农业大学 一种提高玉米对矮花叶病抗性的方法及其专用干扰rna
CN100526465C (zh) * 2007-03-12 2009-08-12 华中农业大学 利用水稻转录因子基因snac2提高植物耐冷耐盐能力
DE112008001453T5 (de) * 2007-05-22 2010-04-29 Basf Plant Science Gmbh Pflanzenzellen und Pflanzen mit erhöhter Toleranz und/oder Resistenz gegenüber Umweltstress und erhöhter Biomasseproduktion-KO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009052476A2 (en) * 2007-10-19 2009-04-23 Pioneer Hi-Bred International, Inc. Maize stress-responsive nac transcription factors and promoter and methods of use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK 30 July 2008 (2008-07-30), Database accession no. ACF 82353 *
DATABASE GENBANK 30 July 2008 (2008-07-30), Database accession no. BT037348 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011631A (zh) * 2022-06-09 2022-09-06 中国农业科学院作物科学研究所 调控玉米苗期抗旱性的蛋白及其编码基因和应用
CN115011631B (zh) * 2022-06-09 2024-04-30 中国农业科学院作物科学研究所 调控玉米苗期抗旱性的蛋白及其编码基因和应用

Also Published As

Publication number Publication date
CN102268439A (zh) 2011-12-07
CN102268439B (zh) 2013-03-20
CN102666573A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
US9068195B2 (en) Methods for enhancing stress tolerance in plants and compositions thereof
Du et al. Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize
CN109112146B (zh) 控制甘蓝型油菜角果长和粒重性状的基因qSLWA9的克隆与育种应用
WO2019104346A1 (en) Synthetic apomixis in a crop plant
CN113046360A (zh) 玉米基因zmspl1和zmspl2及其用途
US20150299723A1 (en) Plants with altered root architecture, related constructs and methods involving genes encoding leucine rich repeat kinase (llrk) polypeptides and homologs thereof
US20220396804A1 (en) Methods of improving seed size and quality
US11168334B2 (en) Constructs and methods to improve abiotic stress tolerance in plants
CN103103166B (zh) 植物耐逆性相关蛋白TaNCED1及其编码基因与应用
US9200295B2 (en) Stress tolerant plants and methods thereof
Rustgi et al. Use of microspore-derived calli as explants for biolistic transformation of common wheat
WO2015007241A1 (en) Molecular marker
CN106674337B (zh) 一种植物磷转运蛋白及其编码基因和应用
US20180105824A1 (en) Modulation of dreb gene expression to increase maize yield and other related traits
US20110277183A1 (en) Alteration of plant architecture characteristics in plants
WO2011153822A1 (zh) 一种植物氮吸收和耐旱相关蛋白及其编码的基因和应用
KR20120001465A (ko) 배추속 식물의 자가불화합성 인자에 대한 rna 간섭 카세트, 그를 포함하는 벡터 및 상기 rna 간섭 카세트가 도입된 형질전환 배추속 식물
CN114958867A (zh) 玉米穗粒重和产量调控基因kwe2、其编码蛋白、功能标记、表达载体及应用
CN112662687B (zh) 推迟玉米花期的方法、试剂盒、基因
CN103788187B (zh) 植物开花相关蛋白GmSOC1-like及其编码基因与应用
CN113652434B (zh) 一种具有促进水稻籽粒增大作用的芡实dna分子及其应用
CN113061602A (zh) 一种高通量启动子变异创制方法
Li et al. Functional analysis of CqPORB in the regulation of chlorophyll biosynthesis in Chenopodium quinoa
US20110191910A1 (en) Plants with altered root architecture, related constructs and methods involving genes encoding lectin protein kinase (lpk) polypeptides and homologs thereof
Lin et al. The Component of the TAC Complex, TCD7, Controls Rice Chloroplast Development at the Early Seedling Stage under Cold Stress

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004807.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11791814

Country of ref document: EP

Kind code of ref document: A1