WO2011152544A1 - Ceramic substrate and method for manufacturing same - Google Patents

Ceramic substrate and method for manufacturing same Download PDF

Info

Publication number
WO2011152544A1
WO2011152544A1 PCT/JP2011/062861 JP2011062861W WO2011152544A1 WO 2011152544 A1 WO2011152544 A1 WO 2011152544A1 JP 2011062861 W JP2011062861 W JP 2011062861W WO 2011152544 A1 WO2011152544 A1 WO 2011152544A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap filler
ceramic substrate
chip
electronic component
green sheet
Prior art date
Application number
PCT/JP2011/062861
Other languages
French (fr)
Japanese (ja)
Inventor
雄治 後藤
太治 黒岩
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011152544A1 publication Critical patent/WO2011152544A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09909Special local insulating pattern, e.g. as dam around component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3442Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Definitions

  • the present invention relates to a ceramic substrate and a manufacturing method thereof. More specifically, the present invention relates to a ceramic substrate made of a laminated fired body of green sheets, and also relates to a method for manufacturing such a ceramic substrate.
  • the ceramic substrate is excellent in heat resistance and moisture resistance, and may have good frequency characteristics in a high frequency circuit. Accordingly, the ceramic substrate is used as an RF (Radio Frequency) module of a mobile device, a substrate for a power LED (Light Emitting Diode) utilizing heat dissipation, and a substrate for an LED for a liquid crystal backlight. It is also used as a substrate for electronic equipment on which electronic components are mounted with high density.
  • RF Radio Frequency
  • the ceramic substrate is obtained by laminating and firing a plurality of green sheets.
  • the ceramic substrate is provided with vias and circuit patterns.
  • chip-type electronic components in order to further reduce the size of LEDs for liquid crystal backlights, it has been required to incorporate chip-type electronic components inside a ceramic substrate (see, for example, International Publication No. 2006/030562). .
  • Such poor electrical connection can reduce the inherent performance of the ceramic substrate, resulting in a decrease in the production yield of the ceramic substrate.
  • the main object of the present invention is to prevent electrical connection failure of a ceramic substrate incorporating a chip-type electronic component, and to improve the manufacturing yield.
  • a ceramic substrate portion formed by firing a laminate of a plurality of green sheets, and a chip-type electronic component disposed inside the ceramic substrate portion, In the peripheral region of the electrode part of the chip-type electronic component, a ceramic substrate further provided with a gap filling material formed in a fillet shape is provided.
  • One feature of the ceramic substrate according to the present invention is that a fillet-like gap filler is provided in the peripheral region of the electrode part of the chip-type electronic component.
  • “fillet” is used in the soldering industry and is used herein in view of the meaning used in the technical field of such solder. That is, “fillet” in the present specification means that the gap filler has a shape corresponding to the solder pile shape or a shape similar thereto. As a specific example, as defined in page 1825 of JIS Industrial Glossary Dictionary 5th edition (editor and publisher: Japanese Standards Association) “Fillet” may be understood as meaning “the shape of the resulting solder pile” or a shape similar thereto.
  • the fillet-like gap filler disposed inside the ceramic substrate portion has a gradually decreasing thickness.
  • the thickness of the gap filler gradually decreases along the direction from the chip-type electronic component toward the outside (that is, toward the outer side in the horizontal direction from the chip-type electronic component as a base point). The thickness of the gap filler gradually decreases).
  • the gap filler is in partial contact with the electrode part of the chip-type electronic component. That is, the fillet-like gap filler and the electrode part of the chip-type electronic component are in contact with each other.
  • the ceramic substrate portion further includes an internal wiring portion, and the gap filler is in partial contact with the internal wiring portion. That is, the fillet-like gap filler and the internal wiring part of the ceramic substrate are in contact with each other.
  • the ratio of the maximum width dimension Wmax to the maximum thickness dimension Tmax is about 3 to 15 with respect to the dimension ratio of the gap filler.
  • a gap filler is provided in a fillet shape in the peripheral region of each of the two electrode portions.
  • the gap filler for the ceramic substrate of the present invention preferably comprises at least one of the following components: -Silver component-Palladium component-Same component as inorganic component contained in green sheet-Copper component
  • the present invention also provides a method for manufacturing the above-described ceramic substrate.
  • a production method of the present invention comprises: (I) For two green sheets selected from a plurality of green sheets, a first gap filler material is applied to one green sheet to form a first gap filler precursor, and Applying a two-gap filler material to form a second gap-filler precursor; (Ii) A step of forming a green sheet laminate by laminating a plurality of green sheets, and in laminating the one green sheet and the other green sheet, the first gap filler precursor and the second gap A step of sandwiching a chip-type electronic component between the one green sheet and the other green sheet with the filler precursor facing each other; and (iii) firing the green sheet laminate And a step of obtaining a ceramic substrate portion, When the chip-type electronic component is sandwiched, the first gap filler precursor and the second gap filler precursor are aligned with each other in the peripheral region of the electrode portion of the chip-type electronic component, and the gap filling is
  • One of the features of the method for producing a ceramic substrate according to the present invention is that the first gap filler precursor and the second gap filler precursor are disposed in the peripheral region of the electrode portion of the chip type electronic component when the chip type electronic component is sandwiched.
  • To form a gap filler precursor that integrates them and presses the laminate in the thickness direction from the outside to the inside during firing of the green sheet laminate to fillet-like gap filler Is formed from “integrated gap filler precursor”.
  • one green sheet coated with the first gap filler material is arranged vertically upward (vertically upper side), while “the other green sheet coated with the second gap filler material” “Is disposed vertically downward (vertically below), it is preferable that the coating amount of the second gap filler material is larger than the coating amount of the first gap filler material. Thereby, a fillet-like gap filler can be suitably formed.
  • the first gap filler precursor and the second gap in each peripheral region of the two electrode portions It is preferable to integrate the filler precursor with each other.
  • the inner end portion of the coating film of the second gap filler precursor is about 0.2 mm to about 0.2 mm from the center portion of the chip-type electronic component.
  • the chip-type electronic component is sandwiched in a state where the positional relationship is maintained such that the position is about 0.5 mm away.
  • the thickness dimension of the coating film of the second gap filler precursor is about 60 ⁇ m to about 150 ⁇ m.
  • a constraining layer is provided on the outer surface of the green sheet laminate (especially on two opposing outer main surfaces), and the thickness of the green sheet laminate is measured from the outside to the inside through the constraining layer. Press in the direction.
  • a void that can occur in the vicinity of the electrode of the chip-type electronic component is preferably avoided.
  • the substrate of the present invention due to the fact that the fillet-like gap filler is provided, all the gaps in the vicinity of the electrodes of the built-in chip type electronic component are filled, As a result, the substrate has no internal void.
  • the present invention since a gap in the vicinity of the electrode of the chip-type electronic component is avoided, an electrical connection failure caused by the gap (particularly an electrical connection between the chip-type electronic component and the internal wiring portion). Defective), and thus the production yield of the ceramic substrate can be improved.
  • the fillet-like gap filling material can be formed from a material having high thermal conductivity
  • the present invention is effective for the heat dissipation characteristics of the substrate.
  • a “fillet-like gap filler” that effectively contributes to heat dissipation is provided without increasing the substrate volume. Therefore, a relatively thin small ceramic substrate having excellent heat dissipation characteristics can be realized.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of the ceramic substrate of the present invention.
  • FIG. 2 (FIG. 2) is a transparent perspective view schematically showing an aspect of the ceramic substrate of the present invention.
  • 3 is a diagram for explaining the “peripheral region of the electrode part” (FIG. 3A) and a diagram for explaining the dimensional ratio (Wmax / Tmax) of the gap filler (FIG. FIG. 3B).
  • FIG. 4 FIG. 4 are cross-sectional views schematically showing various forms of the fillet-like gap filler.
  • 5A is a cross-sectional view schematically showing an embodiment of the ceramic substrate of the present invention.
  • FIG. 5B is a cross-sectional view taken along the line aa ′ in FIG. It is sectional drawing of a board
  • 6 shows a process flow of the manufacturing method of the present invention.
  • Fig. 7 (Fig. 7) is a cross-sectional view schematically showing the steps in the ceramic substrate manufacturing process of the present invention.
  • Fig. 8 (Fig. 8) is a plan view schematically showing an aspect of the first gap filler precursor and the second gap filler precursor.
  • 9 (a) and 9 (b) are cross-sectional views schematically showing the steps in the ceramic substrate manufacturing process of the present invention.
  • 10 (a) and 10 (b) are cross-sectional views schematically showing the steps in the ceramic substrate manufacturing process of the present invention.
  • 11 (FIG.
  • FIG. 11 is a cross-sectional view schematically showing the steps in the ceramic substrate manufacturing process of the present invention.
  • 12 (a) and 12 (b) are cross-sectional views schematically showing steps in the ceramic substrate manufacturing process of the present invention.
  • FIG. 13 is a view for explaining a preferred embodiment of the second gap filler precursor.
  • FIG. 14 is a schematic diagram showing a test sample configuration in the example.
  • Fig. 15 (Fig. 15) is a graph showing the results of the "moisture absorption reflow test", "high temperature storage test”, and “heat cycle test” in the examples.
  • FIG. 16 (FIG. 16) is a diagram showing an aspect and a result of a “confirmation test regarding the arrangement effect of the gap filler precursor”.
  • FIG. 17 is a diagram showing an aspect and a result of a “confirmation test regarding the thickness effect of the gap filler precursor”.
  • 18 (Fig. 18) (a) to (c) are photographic diagrams showing the phenomenon found by the present inventors.
  • reference numbers refer to the following elements: DESCRIPTION OF SYMBOLS 10 Ceramic substrate part 10A, 10B, 10C Green sheet 16 Via 17 Internal wiring part (internal wiring layer) 16 ′ via precursor 17 ′ precursor of internal wiring portion 19 external electrode portion (external wiring layer) 20 Electronic circuit pattern wiring part (electronic circuit pattern wiring layer) 40 Chip-type electronic component 42 (42A, 42B) Electrode portion of chip-type electronic component 50 (50A, 50B) Gap filling material (gap filling portion) 51A, 51B First gap filler precursor 52A, 52B Second gap filler precursor 60 Constrained layer 100 Ceramic substrate
  • a ceramic substrate 100 of the present invention includes a ceramic substrate portion 10 and a chip-type electronic component 40 disposed in the ceramic substrate portion.
  • the ceramic substrate unit 10 is formed by firing a laminate of a plurality of green sheets.
  • a fillet-like gap filling material 50 is provided in the peripheral region of the chip-type electronic component 40. That is, the gap filler 50 is provided in the form of a fillet around the chip-type electronic component 40. As shown in the drawing, the fillet-like gap filler 50 is provided adjacent to and in the vicinity of the electrode portion 42 of the chip-type electronic component 40 in particular.
  • a via 16 and an internal wiring part 17 are provided in the ceramic substrate part 10. Further, on the front and back surfaces of the ceramic substrate portion 10, an external electrode portion 19 for mounting various electronic components (for example, LEDs) on the ceramic substrate 100 is provided, and an electronic circuit pattern wiring portion 20 is also provided. Yes.
  • the fillet-like gap filler 50 has a shape corresponding to a solder pile shape as its name suggests.
  • the fillet-like gap filler 50 has a thickness that gradually decreases in the direction toward the outside from the chip-type electronic component as a base point. Due to the provision of such a fillet-like gap filler, no unnecessary gap is formed inside the ceramic substrate of the present invention.
  • the gap in the vicinity of the electrode of the chip-type electronic component is preferably filled with a gap filler, and as a result, a substrate form without a gap in which the chip-type electronic component is built is realized.
  • the gap filler is “fillet-like”, it can be said that all the gaps near the electrodes of the chip-type electronic component are preferably filled.
  • the ceramic substrate 100 of the present invention will be described in more detail.
  • the ceramic substrate portion 10 constituting the body of the ceramic substrate may be a ceramic multilayer substrate obtained by laminating and firing a plurality of green sheets.
  • the material and overall dimensions of the ceramic multilayer substrate are not particularly limited as long as they are conventionally used and adopted in the electronic equipment field (for example, a package wiring substrate of a semiconductor integrated circuit LSI).
  • the materials and overall dimensions of the via 16, the internal wiring part 17, the external electrode part 19, and the electronic circuit pattern wiring part 20 are conventionally used and adopted in the electronic equipment field (for example, a package wiring board of a semiconductor integrated circuit LSI). There is no particular limitation as long as it is.
  • the chip-type electronic component 40 built in the ceramic substrate is a single electronic component manufactured in a small size.
  • Such a chip-type electronic component 40 includes an electrode portion 42, and particularly includes electrode portions (42A, 42B) at opposite side ends thereof.
  • the thickness dimension of the chip-type electronic component 40 is preferably about 50 to 300 ⁇ m, more preferably about 100 to 200 ⁇ m.
  • the width L ⁇ length W may be about L: 0.4 to 0.6 mm ⁇ W: 0.2 to 0.3 mm.
  • the chip type electronic component 40 examples include a varistor element (chip varistor), a chip type resistor, a chip type capacitor, and the like.
  • one varistor element may be a varistor used in an electronic circuit for driving an LED for a liquid crystal backlight.
  • the gap filler 50 provided inside the ceramic substrate portion 10 has a fillet shape.
  • the fillet-like gap fillers 50 ⁇ / b> A and 50 ⁇ / b> B are provided in the peripheral regions of the two electrode portions 42 ⁇ / b> A and 42 ⁇ / b> B facing each other of the chip type electronic component 40.
  • each of the fillet-like gap fillers 50A and 50B is preferably in partial contact with each of the chip-type electronic components 40A and 40B of the chip-type electronic component 40. More preferably, each gap filler is provided in a fillet shape so as to be at least in contact with the side surface of each chip-type electronic component 40.
  • the term “peripheral region of the electrode part” used in this specification means an electrode vicinity region adjacent to the electrode part. More specifically, the “peripheral region of the electrode part” is preferably a separation distance from the electrode part (for example, horizontal separation distances L 1 , L 2 and L 3 as shown in FIG. 3A). Indicates a region in the range of about 0.1 to 1.5 mm, more preferably about 0.2 to 1.0 mm.
  • the fillet-shaped gap filler 50 gradually decreases in thickness in the direction toward the outside centering on the chip-type electronic component. More specifically, the thickness of the fillet-like gap filler 50 gradually decreases toward the outer side in the horizontal direction parallel to the main surface of the electronic component or the main surface of the substrate, and the thickness is substantially eliminated at the outermost side. That is, the form of the gap filler 50 is not particularly limited as long as it is “fillet-like”, and may be various forms as shown in FIGS. 4 (a) to 4 (d), for example.
  • the ratio of the maximum width dimension Wmax to the maximum thickness dimension Tmax (Wmax / Tmax) as shown in FIG. 3B is preferably about 3 to 15, more preferably It is about 5-8.
  • the material of the gap filling material 50 may be the same as the material of the via 16 and the internal wiring part 17, for example. That is, the gap filler 50 may contain a silver component (Ag component), and may be formed from, for example, a silver paste containing silver particles and a glass component. Such a silver paste can be deformed by an external force at the time of heating and pressing during the manufacturing process, and therefore, “a void portion that can occur in the vicinity of an electrode of a chip-type electronic component” can be preferably filled. Further, the silver paste itself can be obtained at a relatively low cost and does not increase the number of materials for manufacturing the substrate, leading to low-cost manufacturing of the ceramic substrate.
  • a silver component Ag component
  • the gap filler 50 may contain a palladium component (Pd component). That is, the gap filler 50 may be formed from a conductive paste containing palladium. Since the volume of such a palladium-containing paste increases due to oxidation of palladium during heating and pressing during the manufacturing process, the effect of filling the gap can be improved.
  • a palladium component Pd component
  • the gap filler 50 may contain the same inorganic component as that of the green sheet. That is, the gap filler 50 may be made of an alumina powder and a glass component. Such a gap filler 50 can be formed from a paste containing the same inorganic components as the green sheet (for example, alumina powder and glass component). In the “paste containing the same inorganic components as the green sheet”, the shrinkage ratio of the green sheet and the shrinkage ratio of the gap filler paste can be made substantially the same during firing in the manufacturing process. Stable firing can be performed. In addition, since the paste itself can be obtained when the green sheet is prepared, the number of materials for manufacturing the substrate is not increased, and as a result, low-cost manufacturing of the ceramic substrate is achieved.
  • the gap filler 50 may additionally contain a copper component.
  • substrate excellent in the thermal radiation characteristic especially can be implement
  • Method for producing a ceramic substrate of the present invention Next, the manufacturing method of the ceramic substrate of this invention is demonstrated. As a representative example, a method for manufacturing a ceramic substrate as shown in FIG. 5 will be described. An example of the process flow of the manufacturing method of the present invention is shown in FIG.
  • step (i) is performed. That is, the filler precursor raw material is applied to two green sheets selected from a plurality of green sheets. Specifically, as shown in FIGS. 7 and 8, the first gap filler material is applied to one green sheet 10A to form the first gap filler precursor (51A, 51B), and the other green sheet A second gap filler material is applied to the sheet 10B to form second gap filler precursors (52A, 52B).
  • the green sheet itself may be a sheet-like member including a ceramic component, a glass component, and an organic binder component.
  • the ceramic component may be alumina powder (average particle size: about 0.5 to 10 ⁇ m)
  • the glass component may be borosilicate glass powder (average particle size: about 1 to 20 ⁇ m).
  • the organic binder component may be at least one component selected from the group consisting of polyvinyl butyral resin, acrylic resin, vinyl acetate copolymer, polyvinyl alcohol and vinyl chloride resin, for example.
  • the green sheet may be 40 to 50 wt% alumina powder, 30 to 40 wt% glass powder, and 10 to 30 wt% organic binder component (based on the total weight of the green sheet).
  • the green sheet is a weight ratio between the solid component (alumina powder 50-60 wt% and glass powder 40-50 wt%: solid component weight basis) and the organic binder component, ie, solid Component weight: Organic binder component weight may be about 80 to 90:10 to 20.
  • the green sheet component may contain other components as required.
  • a plasticizer that imparts flexibility to a green sheet such as phthalate ester or dibutyl phthalate, or a dispersant for ketones such as glycol.
  • an organic solvent an organic solvent.
  • the thickness of each green sheet itself may be about 30 ⁇ m to 500 ⁇ m, for example, about 60 to 350 ⁇ m.
  • precursors for the vias 16 and the internal wiring portions 17 are formed.
  • a hole is formed in the green sheet by an NC punch press (Numerical Control punch press) or a carbon dioxide laser, and the via precursor 16 ′ is formed by filling the hole with a conductive paste material that is a raw material for the inner layer via. .
  • a fired circuit pattern including the necessary precursor 17 ′ of the internal wiring portion 17 is formed on the green sheet.
  • the conductive paste as a raw material for the via 16 and the internal wiring part 17 is not particularly limited as long as it is conventionally used / adopted as a package wiring board for a semiconductor integrated circuit LSI.
  • the conductive paste may comprise Ag powder, glass frit for obtaining adhesive strength, and an organic vehicle (for example, an organic mixture of ethyl cellulose and terpineol).
  • the first gap filler material and the second gap filler material applied on the green sheet may be the following pastes (may be used alone or in combination): ⁇ Paste containing silver component (silver paste containing silver particles and glass component) -Paste containing a palladium component-Paste containing the same inorganic components as the green sheet (for example, alumina powder and glass component)-Paste containing a copper component
  • the first gap filler precursor (51A, 51B) is formed on the green sheet 10A by application of the first gap filler material, whereas the green sheet is applied by application of the second gap filler material.
  • a second gap filler precursor (52A, 52B) is formed at 10B.
  • the first gap filler precursor (51A, 51B) and the second gap filler precursor (52A, 52B) are disposed in the peripheral region of the electrode portion 42 of the chip-type electronic component 40 when the green sheets are stacked. They are positioned so as to be arranged (see FIG. 8).
  • the first gap filler precursor (51A, 51B) and the second gap filler precursor (52A, 52B) are arranged along the outer peripheral edge of the electrode portion (see FIG. It is formed in the shape of a letter “)”.
  • the second gap filler precursor (52A, 52B) is at least partially in contact with the “internal wiring portion precursor 17 ′” formed in advance on the green sheet. As such, it may be formed on its precursor 17 '.
  • step (ii) is performed. That is, a plurality of green sheets are stacked to form a green sheet stack (see FIGS. 9 and 10).
  • the first gap filler precursor (51A, 51B) and the second gap filler precursor (52A, 52B) are directly opposed to each other.
  • the chip-type electronic component 40 is sandwiched and laminated between the green sheet 10A and the green sheet 10B.
  • the first gap filler precursor (51A, 51B) and the first Two gap filler precursors (52A, 52B) are brought into contact with each other. Thereby, a gap filler precursor in which the first gap filler precursor (51A, 51B) and the second gap filler precursor (52A, 52B) are integrated is formed.
  • the first gap filler precursor (51A, 51B) and the second gap filler precursor (52A, 52B) are preferably integrated with each other.
  • the number of green sheets in the green sheet laminate is not particularly limited, and may be, for example, about 3 to 50 in total, preferably about 3 to 15 sheets.
  • step (iii) is performed. That is, the ceramic laminate 10 is obtained by firing the green sheet laminate.
  • the green sheet laminate prior to firing or prior to firing, the green sheet laminate is pressed in the thickness direction from the outside to the inside, and the fillet-like gap filler 50 is formed from the integrated gap filler precursor ( FIG. 11 and FIG. 12 (a)).
  • the green sheet laminate is preferably subjected to an organic substance decomposition / desorption treatment (binder burnout treatment) such as a binder removal step prior to firing.
  • binder burnout treatment organic substance decomposition / desorption treatment
  • heat treatment may be performed for 20 to 50 hours under a temperature condition of 500 ° C. to 700 ° C.
  • the green sheet laminate is preferably heat-treated at a temperature of 800 ° C. to 1000 ° C. (preferably 850 ° C. to 950 ° C.) for about 0.1 hours to 3 hours.
  • the condition is preferably 0.2 to 2.0 MPa (for example, 0.3 to 1.0 MPa).
  • the heat treatment itself may be performed by subjecting the green sheet laminate to a firing furnace such as a mesh belt furnace.
  • the pressure treatment may be performed using a conventional press member or the like.
  • a constraining layer 60 is provided on the outside of the green sheet laminate, and the green sheet laminate is pressed in the thickness direction from the outside to the inside via the constraining layer 60. It is preferable to do.
  • the green sheet laminate (10A, 10B, 10C,%) Does not shrink in the horizontal direction during firing, but shrinks only in the vertical direction.
  • the green sheet laminate (10A, 10B, 10C,%) Does not contract along a direction parallel to the main surface of the green sheet, and can contract only along a direction orthogonal to the main surface. . Therefore, it can be said that the constraining layer 60 can be used for suppressing the horizontal contraction of the green sheet and contracting only in the thickness direction to obtain the ceramic substrate portion.
  • the constraining layer 60 is a sheet formed by mixing alumina powder with the same organic material as the green sheet, and preferably has the same outer size as the green sheet.
  • the thickness dimension of the constraining layer 60 is preferably about 100 to 350 ⁇ m.
  • a spraying process may be performed.
  • the constraining layer 60 can be removed by spraying a mixture of water and alumina powder onto the constraining layer 60.
  • the removal process of the constraining layer 60 is performed by spraying a mixture of about 96 g of water and about 4 g of alumina having an average particle diameter of 0 to 10 ⁇ m on the constraining layer 60 with compressed air having a pressure of about 0.4 MPa. It can be carried out.
  • the ceramic substrate portion 10 When the step (iii) is completed, as shown in FIG. 12 (a), the ceramic substrate portion 10, the chip-type electronic component 40 and the fillet-like gap filler 50 disposed inside the ceramic substrate portion are provided. A ceramic substrate 100 is obtained.
  • the fillet-like gap filling material 50 is obtained in contact with the electrode part 42 of the chip-type electronic component and also with the internal wiring part 17. . Therefore, if the fillet-like gap filler 50 has conductivity, the electrical connection between the internal wiring part 17 and the electrode part 42 of the chip-type electronic component is strengthened, and as a result, the connection between them. Reliability can be improved.
  • an external electrode portion 19 and an electronic circuit pattern wiring portion 20 may be formed as necessary.
  • the conductor paste is printed so as to have a desired pattern by a screen printing method, and then “temperature at which the printed conductor paste is sufficiently fired” and “temperature lower than the firing temperature of the green sheet laminate”
  • the external electrode portion 19 and the electronic circuit pattern wiring portion 20 can be formed by subjecting to a heat treatment under conditions.
  • a conductive paste used for forming the external electrode portion 19 and the electronic circuit pattern wiring portion 20 a silver paste (for example, a conductive paste containing Ag particles and a glass component) having a firing temperature of about 680 to 720 ° C. is used.
  • the heat treatment may be performed under a temperature condition of about 730 to 770 ° C.
  • the external electrode portion 19 and the electronic circuit pattern wiring portion 20 may be formed by using photolithography and wet etching.
  • a copper thin film is formed by a wet plating method (such as an electroless plating method or an electroplating method), followed by patterning on the copper thin film using a photoresist, and then performing etching, whereby the external electrodes 19 and the electrons are formed.
  • the circuit pattern wiring part 20 and the like can be formed.
  • Gap filler material / Gap filler precursor Gap filler material / Gap filler precursor
  • the first gap filler material and the second gap filler material used in the production method of the present invention may be a silver paste containing silver particles and a glass component.
  • a silver paste can be deformed by an external force during the heat-pressing process during the manufacturing process, so that “a void portion that can be generated in the vicinity of an electrode of a chip-type electronic component” can be suitably filled. That is, when a silver paste is used, a desired fillet-like gap filler can be formed in the peripheral region of the electrode portion. Since the silver paste itself can be obtained relatively inexpensively and does not increase the number of materials for manufacturing the substrate, it leads to low-cost manufacturing of the ceramic substrate.
  • first gap filler material and the second gap filler material may be a conductive paste containing palladium.
  • a palladium-containing paste increases in volume due to oxidation of palladium during the heat-pressing process during the manufacturing process, and as a result, the effect of filling the gap can be improved. That is, when a palladium-containing paste is used, a desired fillet-like gap filler can be formed in the peripheral region of the electrode part of the chip-type electronic component.
  • the first gap filler material and the second gap filler material may be formed from a paste containing the same inorganic components (for example, alumina powder and glass component) as the green sheet.
  • a paste containing the same inorganic components for example, alumina powder and glass component
  • the shrinkage ratio of the green sheet and the shrinkage ratio of the gap filler paste can be made substantially the same during firing during the manufacturing process. Stable firing is possible. Therefore, as a result, when “a paste containing the same inorganic component as the green sheet” is used, a desired fillet-like gap filler can be formed in the peripheral region of the electrode part of the chip-type electronic component.
  • such paste itself can be obtained at the time of preparation of a green sheet, it does not increase the number of materials for substrate production, and leads to low-cost production of a ceramic substrate.
  • first gap filler material and the second gap filler material may additionally contain a copper component. This is because the thermal conductivity of the gap filler can be improved by the copper component, and a substrate with particularly excellent heat dissipation characteristics can be obtained.
  • the application amount of the second gap filler material is larger than the application amount of the first gap filler material.
  • a fillet-like gap filler can be suitably formed in the peripheral region.
  • the coating amount of the second gap filler material is preferably 3% to 60% by weight, more preferably 5% to 40% by weight, and even more preferably 10%, more than the coating amount of the first gap filler material. Increase by weight percent to 30 weight percent.
  • the inner end portion of the coating film (precursor disposed vertically below) of the second gap filler precursor (52A, 52B) is It is preferable to sandwich the chip-type electronic component so that it is positioned 0.2 to 0.5 mm away from the center of the chip-type electronic component (see FIG. 13). That is, it is preferable to sandwich the chip-type electronic component 40 so that the separation distance L shown in FIG. 13 is 0.2 to 0.5 mm. Such process conditions also lead to the formation of the desired fillet-like gap filler.
  • the thickness of the coating film of the second gap filler precursor (52A, 52B) is preferably 60 to 150 ⁇ m, more preferably 80 to 130 ⁇ m (see FIG. 13). That is, it is preferable to sandwich the chip-type electronic component under the condition that the thickness dimension T shown in FIG. 13 is preferably 60 to 150 ⁇ m, more preferably 80 ⁇ m to 130 ⁇ m. Such process conditions also lead to the formation of the desired fillet-like gap filler.
  • the present invention has the following aspects.
  • 1st aspect It has a ceramic substrate part formed by baking (sintering) of the laminated body of several green sheets, and the chip type electronic component distribute
  • Second aspect The ceramic substrate according to the first aspect, wherein the thickness of the gap filler gradually decreases along the direction from the position of the chip-type electronic component toward the outside.
  • the ceramic substrate according to the first aspect or the second aspect wherein the fillet-shaped gap filler is in partial contact with the electrode portion of the chip-type electronic component.
  • the ceramic substrate portion further includes an internal wiring portion, and the fillet-like gap filler partially contacts the internal wiring portion.
  • a ceramic substrate (particularly in the case of being subordinate to the third aspect, a ceramic substrate in which a fillet-like gap filler is in contact with both the electrode part and the internal wiring part of the chip-type electronic component) .
  • the fillet-shaped gap filler has a ratio of the maximum width dimension Wmax to the maximum thickness dimension Tmax (Wmax / Tmax) of 3 to 15. Ceramic substrate.
  • the chip-type electronic component has two electrode portions facing each other, and the gap filler is a fillet in the peripheral region of each of the two electrode portions.
  • a ceramic substrate provided in a shape.
  • Eighth aspect The ceramic substrate according to any one of the first to seventh aspects, wherein the fillet-like gap filler contains a palladium component.
  • a tenth aspect a method of manufacturing a ceramic substrate comprising a ceramic substrate portion and chip-type electronic components disposed inside the ceramic substrate portion, (I) For two green sheets selected from a plurality of green sheets, a first gap filler material is applied to one green sheet to form a first gap filler precursor, and Applying a two-gap filler material to form a second gap-filler precursor; (Ii) A step of laminating a plurality of green sheets to form a green sheet laminate, wherein the first gap filler precursor and the second gap filling when the one green sheet and the other green sheet are laminated A step of sandwiching a chip-type electronic component between the one green sheet and the other green sheet in a state where the material precursor faces directly, and (iii) firing the green sheet laminate And a step of obtaining a ceramic substrate portion, When sandwiching
  • a method for producing a ceramic substrate comprising: Eleventh aspect: In the tenth aspect, when the chip-type electronic component is sandwiched, the one green sheet coated with the first gap filler material is disposed vertically upward, while the second gap filler material is coated. The other green sheet is placed vertically downward, A method for producing a ceramic substrate, wherein the amount of application of the second gap filler material is greater than the amount of application of the first gap filler material.
  • Twelfth aspect A method for producing a ceramic substrate according to the eleventh aspect, wherein the thickness of the second gap filler precursor (coating film) is 60 to 150 ⁇ m.
  • the chip electronic component has two electrode portions facing each other, When sandwiching a chip-type electronic component, the first gap filler precursor and the second gap filler precursor are integrated with each other in the peripheral region of each of the two electrode portions, and the ceramic A method for manufacturing a substrate.
  • 14th aspect In said 13th aspect, when it sees along the opposing direction of two electrode parts, the inner side edge part of a 2nd clearance gap material precursor (coating film) is 0.2 from the center part of a chip-type electronic component.
  • a method of manufacturing a ceramic substrate wherein a chip-type electronic component is sandwiched so as to be positioned at a distance of ⁇ 0.5 mm.
  • a constraining layer is formed on the opposing outer main surface of the green sheet laminate, and the green sheet laminate is formed from the outside to the inside through the constraining layer.
  • a ceramic substrate as shown in FIG. 14 was prepared by test according to the present invention, and a “moisture absorption reflow test”, a “high temperature storage test”, and a “temperature cycle test” were performed (see Table 1).
  • a “confirmation test on the arrangement effect of the gap filler precursor” was performed.
  • a test was conducted on the arrangement effect of the gap filler precursor arranged on the lower side. Specifically, the effect was examined by changing the horizontal separation distance between the second gap filler precursor and the chip-type electronic component.
  • the horizontal separation distance is about 0.2 to 0.5 mm
  • a “fillet-like gap filling material” can be suitably formed (particularly, “short” is possible). It has been confirmed that a ceramic substrate with satisfactory quality characteristics can be obtained.
  • a “confirmation test on the thickness effect of the gap filler precursor” was performed.
  • a test was conducted for the thickness effect of the gap filler precursor disposed on the lower side. Specifically, the effect was investigated by changing the thickness dimension of the second gap filler precursor.
  • the thickness of the second gap filler precursor is about 60 to 150 ⁇ m (particularly about 80 ⁇ m to 130 ⁇ m)
  • a “fillet-like gap filler” is suitably formed. It was confirmed that a ceramic substrate having satisfactory quality characteristics could be obtained (especially, the conductor thickness was increased and the connection between the electronic component and the conductor was strengthened).
  • the ceramic substrate according to the present invention is suitably used as an RF module of a mobile device, a power LED substrate using heat dissipation, or an LED substrate for a liquid crystal backlight, and an electronic component mounted with high density. It is also suitably used as a substrate for equipment.
  • the present invention can improve the yield of the manufacturing process of the ceramic multilayer substrate with the built-in chip type electronic components, so that the backlight LED for LCD screens of liquid crystal televisions and mobile phones, which have recently been widely used, is used. Highly expected to be used as a substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

Disclosed is a ceramic substrate having a ceramic substrate section, which is formed by firing a laminated body of a plurality of green sheets, and a chip-type electronic component, which is disposed inside of the ceramic substrate section. Furthermore, the ceramic substrate has a gap filling material, which is formed in a fillet shape in a peripheral region of an electrode section of the chip-type electronic component.

Description

セラミック基板およびその製造方法Ceramic substrate and manufacturing method thereof
 本発明は、セラミック基板およびその製造方法に関する。より詳細には、本発明は、グリーンシートの積層焼成体から成るセラミック基板に関すると共に、かかるセラミック基板の製造方法にも関する。 The present invention relates to a ceramic substrate and a manufacturing method thereof. More specifically, the present invention relates to a ceramic substrate made of a laminated fired body of green sheets, and also relates to a method for manufacturing such a ceramic substrate.
 セラミック基板は、耐熱性・耐湿性に優れており、また、高周波回路において良好な周波数特性を有し得る。従って、セラミック基板は、モバイル機器のRF(Radio Frequency)モジュールや放熱性を利用したパワーLED(Light Emitting Diode:発光ダイオード)用の基板、および、液晶のバックライト向けLED用の基板として用いられると共に、電子部品が高密度実装された電子機器の基板としても用いられる。 The ceramic substrate is excellent in heat resistance and moisture resistance, and may have good frequency characteristics in a high frequency circuit. Accordingly, the ceramic substrate is used as an RF (Radio Frequency) module of a mobile device, a substrate for a power LED (Light Emitting Diode) utilizing heat dissipation, and a substrate for an LED for a liquid crystal backlight. It is also used as a substrate for electronic equipment on which electronic components are mounted with high density.
 セラミック基板は、複数のグリーンシートを積層して焼成することによって得られる。セラミック基板にはビアや回路パターンなどが設けられている。近年においては、液晶のバックライト向けLEDの小型化を更に図るため、セラミック基板内部にチップ型電子部品を内蔵することが求められている(例えば、国際公開第2006/030562号を参照のこと)。 The ceramic substrate is obtained by laminating and firing a plurality of green sheets. The ceramic substrate is provided with vias and circuit patterns. In recent years, in order to further reduce the size of LEDs for liquid crystal backlights, it has been required to incorporate chip-type electronic components inside a ceramic substrate (see, for example, International Publication No. 2006/030562). .
 上記背景ゆえセラミック基板にチップ型電子部品を内蔵する試みがなされているが、本願発明者らは、チップ型電子部品を内蔵してグリーンシート積層体からセラミック基板を得る際、ある特有の現象が生じることを見出した。具体的には、図18(a)~(c)に示すように、チップ型電子部品の電極近傍には空隙部が生じ、その結果、電気的な接続不良を引き起こすことを見出した。 Due to the above background, attempts have been made to incorporate chip-type electronic components in the ceramic substrate, but the inventors of the present application have a specific phenomenon when the ceramic substrate is obtained from the green sheet laminate by incorporating the chip-type electronic components. Found out that it would occur. Specifically, as shown in FIGS. 18 (a) to 18 (c), it has been found that a gap is generated in the vicinity of the electrode of the chip-type electronic component, resulting in poor electrical connection.
 このような電気的な接続不良は、セラミック基板の本来備えている性能を低下させ得るので、結果的にセラミック基板の製造歩留まりを低下させることになる。 Such poor electrical connection can reduce the inherent performance of the ceramic substrate, resulting in a decrease in the production yield of the ceramic substrate.
 本発明はかかる事情に鑑みて為されたものである。つまり、本発明の主たる目的は、チップ型電子部品を内蔵したセラミック基板の電気的な接続不良を防止し、その製造歩留まりを向上させることである。 The present invention has been made in view of such circumstances. That is, the main object of the present invention is to prevent electrical connection failure of a ceramic substrate incorporating a chip-type electronic component, and to improve the manufacturing yield.
 上記課題を解決するため、本発明では、
 複数枚のグリーンシートの積層体の焼成により形成されたセラミック基板部、および
 セラミック基板部の内部に配されたチップ型電子部品
を有して成り、
 チップ型電子部品の電極部の周辺領域においてはフィレット状に形成された隙間充填材を更に有して成るセラミック基板が提供される。
In order to solve the above problems, in the present invention,
Comprising a ceramic substrate portion formed by firing a laminate of a plurality of green sheets, and a chip-type electronic component disposed inside the ceramic substrate portion,
In the peripheral region of the electrode part of the chip-type electronic component, a ceramic substrate further provided with a gap filling material formed in a fillet shape is provided.
 本発明に係るセラミック基板の特徴の1つは、チップ型電子部品の電極部の周辺領域にフィレット状の隙間充填材が設けられていることである。 One feature of the ceramic substrate according to the present invention is that a fillet-like gap filler is provided in the peripheral region of the electrode part of the chip-type electronic component.
 「フィレット」という用語は、半田業界で用いられており、かかる半田の技術分野で用いられている意味に鑑みて本明細書で使用している。つまり、本明細書における「フィレット」は、半田盛り形状に相当するような形状又はそれに類似する形状を隙間充填材が有していることを意味している。1つ具体的に例示すれば、JIS工業用語大辞典第5版(編者および発行所:日本規格協会)の第1825頁にて定義されているような「部品リードとランドを半田付けした際に生じる半田盛りの形状」又はそれに類似する形状を意味するものとして「フィレット」を解してもよい。 The term “fillet” is used in the soldering industry and is used herein in view of the meaning used in the technical field of such solder. That is, “fillet” in the present specification means that the gap filler has a shape corresponding to the solder pile shape or a shape similar thereto. As a specific example, as defined in page 1825 of JIS Industrial Glossary Dictionary 5th edition (editor and publisher: Japanese Standards Association) “Fillet” may be understood as meaning “the shape of the resulting solder pile” or a shape similar thereto.
 セラミック基板部の内部に配されたフィレット状の隙間充填材は、漸次減少する厚みを有している。特に本発明のセラミック基板においては、チップ型電子部品からその外側へと向かう方向に沿って隙間充填材の厚みが漸次減少している(つまり、チップ型電子部品を基点として水平方向外側に向かって隙間充填材の厚みが漸次減少している)。 The fillet-like gap filler disposed inside the ceramic substrate portion has a gradually decreasing thickness. In particular, in the ceramic substrate of the present invention, the thickness of the gap filler gradually decreases along the direction from the chip-type electronic component toward the outside (that is, toward the outer side in the horizontal direction from the chip-type electronic component as a base point). The thickness of the gap filler gradually decreases).
 ある好適な態様では、隙間充填材がチップ型電子部品の電極部と部分的に接触している。つまり、フィレット状の隙間充填材とチップ型電子部品の電極部とが相互に接触した状態となっている。 In a preferred aspect, the gap filler is in partial contact with the electrode part of the chip-type electronic component. That is, the fillet-like gap filler and the electrode part of the chip-type electronic component are in contact with each other.
 別のある好適な態様では、セラミック基板部の内部において内部配線部を更に有して成り、隙間充填材が内部配線部と部分的に接触している。つまり、フィレット状の隙間充填材とセラミック基板の内部配線部とが相互に接触した状態となっている。 In another preferred aspect, the ceramic substrate portion further includes an internal wiring portion, and the gap filler is in partial contact with the internal wiring portion. That is, the fillet-like gap filler and the internal wiring part of the ceramic substrate are in contact with each other.
 更に別のある好適な態様では、隙間充填材の寸法比につき最大厚さ寸法Tmaxに対する最大幅寸法Wmaxの比(Wmax/Tmax)が3~15程度となっている。 In still another preferred embodiment, the ratio of the maximum width dimension Wmax to the maximum thickness dimension Tmax (Wmax / Tmax) is about 3 to 15 with respect to the dimension ratio of the gap filler.
 チップ型電子部品が対向する2つの電極部を有している場合、かかる2つの電極部の各々の周辺領域において隙間充填材がフィレット状に設けられていることが好ましい。 When the chip-type electronic component has two opposing electrode portions, it is preferable that a gap filler is provided in a fillet shape in the peripheral region of each of the two electrode portions.
 本発明のセラミック基板の隙間充填材は、以下の成分のうち少なくとも1種を含んで成ることが好ましい:
 ・銀成分
 ・パラジウム成分
 ・グリーンシートに含まれる無機成分と同一の成分
 ・銅成分
The gap filler for the ceramic substrate of the present invention preferably comprises at least one of the following components:
-Silver component-Palladium component-Same component as inorganic component contained in green sheet-Copper component
 本発明では、上述のセラミック基板を製造するための方法も提供される。かかる本発明の製造方法は、
 (i)複数のグリーンシートから選択される2枚のグリーンシートにつき、一方のグリーンシートに第1隙間充填材原料を塗布して第1隙間充填材前駆体を形成し、他方のグリーンシートに第2隙間充填材原料を塗布して第2隙間充填材前駆体を形成する工程、
 (ii)複数のグリーンシートを積層してグリーンシート積層体を形成する工程であって、前記一方のグリーンシートおよび前記他方のグリーンシートの積層に際しては、第1隙間充填材前駆体と第2隙間充填材前駆体とを相互に対向させた状態で該一方のグリーンシートと該他方のグリーンシートとの間にチップ型電子部品を挟み込むことを行う工程、ならびに
 (iii)グリーンシート積層体を焼成に付してセラミック基板部を得る工程を含んで成り、
 チップ型電子部品の挟み込みに際しては、チップ型電子部品の電極部の周辺領域において第1隙間充填材前駆体と第2隙間充填材前駆体とを相互に合せて、それらを一体化させた隙間充填材前駆体を形成し、また
 グリーンシート積層体の焼成に際しては、外側から内側へとグリーンシート積層体をその厚み方向に押圧し、それによって、フィレット状の隙間充填材を“一体化した隙間充填材前駆体”から形成する。
The present invention also provides a method for manufacturing the above-described ceramic substrate. Such a production method of the present invention comprises:
(I) For two green sheets selected from a plurality of green sheets, a first gap filler material is applied to one green sheet to form a first gap filler precursor, and Applying a two-gap filler material to form a second gap-filler precursor;
(Ii) A step of forming a green sheet laminate by laminating a plurality of green sheets, and in laminating the one green sheet and the other green sheet, the first gap filler precursor and the second gap A step of sandwiching a chip-type electronic component between the one green sheet and the other green sheet with the filler precursor facing each other; and (iii) firing the green sheet laminate And a step of obtaining a ceramic substrate portion,
When the chip-type electronic component is sandwiched, the first gap filler precursor and the second gap filler precursor are aligned with each other in the peripheral region of the electrode portion of the chip-type electronic component, and the gap filling is performed by integrating them. When the green sheet laminate is fired, the green sheet laminate is pressed in the thickness direction from the outside to the inside. It is formed from a “material precursor”.
 かかる本発明に係るセラミック基板の製造方法の特徴の1つは、チップ型電子部品の挟み込みに際してチップ型電子部品の電極部周辺領域にて第1隙間充填材前駆体と第2隙間充填材前駆体とを相互に合わせ、それらを一体化させた隙間充填材前駆体を形成すると共に、グリーンシート積層体の焼成に際してその積層体を外側から内側へと厚み方向に押圧し、フィレット状の隙間充填材を“一体化した隙間充填材前駆体”から形成することである。 One of the features of the method for producing a ceramic substrate according to the present invention is that the first gap filler precursor and the second gap filler precursor are disposed in the peripheral region of the electrode portion of the chip type electronic component when the chip type electronic component is sandwiched. To form a gap filler precursor that integrates them, and presses the laminate in the thickness direction from the outside to the inside during firing of the green sheet laminate to fillet-like gap filler Is formed from “integrated gap filler precursor”.
 チップ型電子部品の挟み込みに際して「第1隙間充填材原料が塗布された一方のグリーンシート」を垂直上方(垂直上側)に配置する一方、「第2隙間充填材原料が塗布された他方のグリーンシート」を垂直下方(垂直下側)に配置する場合、第2隙間充填材原料の塗布量を第1隙間充填材原料の塗布量よりも多くすることが好ましい。これにより、好適にフィレット状の隙間充填材を形成できる。 While sandwiching the chip-type electronic component, “one green sheet coated with the first gap filler material” is arranged vertically upward (vertically upper side), while “the other green sheet coated with the second gap filler material” "Is disposed vertically downward (vertically below), it is preferable that the coating amount of the second gap filler material is larger than the coating amount of the first gap filler material. Thereby, a fillet-like gap filler can be suitably formed.
 また、対向する2つの電極部を備えたチップ型電子部品を内蔵する場合、そのチップ型電子部品の挟み込みに際して、2つの電極部の各々の周辺領域において第1隙間充填材前駆体と第2隙間充填材前駆体とを相互に一体化させることが好ましい。 Further, when a chip-type electronic component having two opposing electrode portions is incorporated, when the chip-type electronic component is sandwiched, the first gap filler precursor and the second gap in each peripheral region of the two electrode portions It is preferable to integrate the filler precursor with each other.
 ある好適な態様では、2つの電極部が相互に向きあう方向に沿ってみた場合に第2隙間充填材前駆体の塗布膜の内側端部がチップ型電子部品の中央部から約0.2mm~約0.5mm離れた位置となるような位置関係を保持した状態で、チップ型電子部品の挟み込みを行う。 In a preferred embodiment, when the two electrode portions are viewed along a direction in which they face each other, the inner end portion of the coating film of the second gap filler precursor is about 0.2 mm to about 0.2 mm from the center portion of the chip-type electronic component. The chip-type electronic component is sandwiched in a state where the positional relationship is maintained such that the position is about 0.5 mm away.
 別のある好適な態様では、第2隙間充填材前駆体の塗布膜につき、その厚さ寸法を約60μm~約150μmとする。 In another preferred embodiment, the thickness dimension of the coating film of the second gap filler precursor is about 60 μm to about 150 μm.
 更に別のある好適な態様では、グリーンシート積層体の外面(特に対向する2つの外側主面上)に拘束層を設け、その拘束層を介して外側から内側へとグリーンシート積層体をその厚み方向に押圧する。 In still another preferred embodiment, a constraining layer is provided on the outer surface of the green sheet laminate (especially on two opposing outer main surfaces), and the thickness of the green sheet laminate is measured from the outside to the inside through the constraining layer. Press in the direction.
 本発明に従えば、チップ型電子部品を内蔵してグリーンシート積層体からセラミック基板を得る際、“チップ型電子部品の電極近傍に生じ得る空隙部”が好適に回避される。 According to the present invention, when a ceramic substrate is obtained from a green sheet laminate with a built-in chip-type electronic component, “a void that can occur in the vicinity of the electrode of the chip-type electronic component” is preferably avoided.
 より具体的には、本発明のセラミック基板は、フィレット状の隙間充填材が設けられていることに起因して、内蔵されたチップ型電子部品の電極近傍の空隙部が全て埋められており、その結果、内部空隙の無い基板となっている。 More specifically, in the ceramic substrate of the present invention, due to the fact that the fillet-like gap filler is provided, all the gaps in the vicinity of the electrodes of the built-in chip type electronic component are filled, As a result, the substrate has no internal void.
 つまり、本発明では、チップ型電子部品の電極近傍の空隙部が回避されているので、かかる空隙部に起因した電気的な接続不良(特にチップ型電子部品と内部配線部との電気的な接続不良)を防止することができ、ひいては、セラミック基板の製造歩留まりの向上を図ることができる。 In other words, in the present invention, since a gap in the vicinity of the electrode of the chip-type electronic component is avoided, an electrical connection failure caused by the gap (particularly an electrical connection between the chip-type electronic component and the internal wiring portion). Defective), and thus the production yield of the ceramic substrate can be improved.
 更には、フィレット状の隙間充填材は熱伝導性の高い材質から形成できるので、本発明は基板の放熱特性にとって有効となる。例えば、LEDパッケージ基板やモジュール基板に対して放熱対策を行うことが求められているところ、本発明では放熱性に有効に寄与する“フィレット状の隙間充填材”が基板体積を増すことなく設けることができるので、放熱特性に優れた比較的薄い小型セラミック基板を実現できる。 Furthermore, since the fillet-like gap filling material can be formed from a material having high thermal conductivity, the present invention is effective for the heat dissipation characteristics of the substrate. For example, when it is required to take measures against heat dissipation for an LED package substrate or a module substrate, in the present invention, a “fillet-like gap filler” that effectively contributes to heat dissipation is provided without increasing the substrate volume. Therefore, a relatively thin small ceramic substrate having excellent heat dissipation characteristics can be realized.
 図1(Fig.1)は、本発明のセラミック基板の態様を模式的に表した断面図である。
 図2(Fig.2)は、本発明のセラミック基板の態様を模式的に表した透過斜視図である。
 図3(Fig.3)は、「電極部の周辺領域」を説明するための図(図3(a))、および、隙間充填材の寸法比(Wmax/Tmax)を説明するための図(図3(b))である。
 図4(Fig.4)における(a)~(d)は、フィレット状の隙間充填材の各種形態を模式的に表した断面図である。
 図5(Fig.5)における(a)は、本発明のセラミック基板の態様を模式的に表した断面図であり、(b)は、図5(a)のa−a’に沿ったセラミック基板の断面図である。
 図6(Fig.6)は、本発明の製造方法のプロセス・フローを示している。
 図7(Fig.7)は、本発明のセラミック基板の製造プロセスにおける工程を模式的に示した断面図である。
 図8(Fig.8)は、第1隙間充填材前駆体および第2隙間充填材前駆体の態様を模式的に示した平面図である。
 図9(Fig.9)(a)および(b)は、本発明のセラミック基板の製造プロセスにおける工程を模式的に示した断面図である。
 図10(Fig.10)(a)および(b)は、本発明のセラミック基板の製造プロセスにおける工程を模式的に示した断面図である。
 図11(Fig.11)は、本発明のセラミック基板の製造プロセスにおける工程を模式的に示した断面図である。
 図12(Fig.12)(a)および(b)は、本発明のセラミック基板の製造プロセスにおける工程を模式的に示した断面図である。
 図13(Fig.13)は、第2隙間充填材前駆体の好適な態様を説明するための図である。
 図14(Fig.14)は、実施例における試験サンプル構成を示した模式図である。
 図15(Fig.15)は、実施例における「吸湿リフロー試験」、「高温放置試験」および「ヒートサイクル試験」の結果を示すグラフ図である。
 図16(Fig.16)は、「隙間充填材前駆体の配置効果に関する確認試験」の態様および結果を示した図である。
 図17(Fig.17)は、「隙間充填材前駆体の厚さ効果に関する確認試験」の態様および結果を示した図である。
 図18(Fig.18)(a)~(c)は、本願発明者らが見出した現象を示した写真図である。
1 (FIG. 1) is a cross-sectional view schematically showing an embodiment of the ceramic substrate of the present invention.
FIG. 2 (FIG. 2) is a transparent perspective view schematically showing an aspect of the ceramic substrate of the present invention.
3 (FIG. 3) is a diagram for explaining the “peripheral region of the electrode part” (FIG. 3A) and a diagram for explaining the dimensional ratio (Wmax / Tmax) of the gap filler (FIG. FIG. 3B).
(A) to (d) in FIG. 4 (FIG. 4) are cross-sectional views schematically showing various forms of the fillet-like gap filler.
5A is a cross-sectional view schematically showing an embodiment of the ceramic substrate of the present invention, and FIG. 5B is a cross-sectional view taken along the line aa ′ in FIG. It is sectional drawing of a board | substrate.
6 (FIG. 6) shows a process flow of the manufacturing method of the present invention.
Fig. 7 (Fig. 7) is a cross-sectional view schematically showing the steps in the ceramic substrate manufacturing process of the present invention.
Fig. 8 (Fig. 8) is a plan view schematically showing an aspect of the first gap filler precursor and the second gap filler precursor.
9 (a) and 9 (b) are cross-sectional views schematically showing the steps in the ceramic substrate manufacturing process of the present invention.
10 (a) and 10 (b) are cross-sectional views schematically showing the steps in the ceramic substrate manufacturing process of the present invention.
11 (FIG. 11) is a cross-sectional view schematically showing the steps in the ceramic substrate manufacturing process of the present invention.
12 (a) and 12 (b) are cross-sectional views schematically showing steps in the ceramic substrate manufacturing process of the present invention.
FIG. 13 (FIG. 13) is a view for explaining a preferred embodiment of the second gap filler precursor.
FIG. 14 (FIG. 14) is a schematic diagram showing a test sample configuration in the example.
Fig. 15 (Fig. 15) is a graph showing the results of the "moisture absorption reflow test", "high temperature storage test", and "heat cycle test" in the examples.
FIG. 16 (FIG. 16) is a diagram showing an aspect and a result of a “confirmation test regarding the arrangement effect of the gap filler precursor”.
FIG. 17 (FIG. 17) is a diagram showing an aspect and a result of a “confirmation test regarding the thickness effect of the gap filler precursor”.
18 (Fig. 18) (a) to (c) are photographic diagrams showing the phenomenon found by the present inventors.
図面中、参照番号は次の要素を意味する:
 10 セラミック基板部
 10A,10B,10C グリーンシート
 16 ビア
 17 内部配線部(内部配線層)
 16’ ビア前駆体
 17’ 内部配線部の前駆体
 19 外部電極部(外部配線層)
 20 電子回路パターン配線部(電子回路パターン配線層)
 40 チップ型電子部品
 42(42A,42B) チップ型電子部品の電極部
 50(50A,50B) 隙間充填材(隙間充填部)
 51A,51B 第1隙間充填材前駆体
 52A,52B 第2隙間充填材前駆体
 60 拘束層
 100 セラミック基板
In the drawings, reference numbers refer to the following elements:
DESCRIPTION OF SYMBOLS 10 Ceramic substrate part 10A, 10B, 10C Green sheet 16 Via 17 Internal wiring part (internal wiring layer)
16 ′ via precursor 17 ′ precursor of internal wiring portion 19 external electrode portion (external wiring layer)
20 Electronic circuit pattern wiring part (electronic circuit pattern wiring layer)
40 Chip-type electronic component 42 (42A, 42B) Electrode portion of chip-type electronic component 50 (50A, 50B) Gap filling material (gap filling portion)
51A, 51B First gap filler precursor 52A, 52B Second gap filler precursor 60 Constrained layer 100 Ceramic substrate
 以下、図面を参照しながら、本発明の実施の形態を説明する。図面においては、説明の簡略化のため、実質的に同一の機能を有する構成要素を同一の参照番号で示している。また、各図における寸法関係(長さ、幅、厚さなど)は実際の寸法関係を反映するものではない。更に、本明細書で説明される“上下方向”は、便宜上、図中における上下方向に対応した方向に相当する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, components having substantially the same function are denoted by the same reference numerals for the sake of simplicity. Further, the dimensional relationship (length, width, thickness, etc.) in each figure does not reflect the actual dimensional relationship. Further, the “vertical direction” described in this specification corresponds to a direction corresponding to the vertical direction in the drawing for convenience.
(本発明のセラミック基板)
 本発明のセラミック基板100は、図1に示すように、セラミック基板部10およびそのセラミック基板部内に配されたチップ型電子部品40を有して成る。セラミック基板部10は、複数枚のグリーンシートの積層体が焼成されることによって形成されたものである。
(Ceramic substrate of the present invention)
As shown in FIG. 1, a ceramic substrate 100 of the present invention includes a ceramic substrate portion 10 and a chip-type electronic component 40 disposed in the ceramic substrate portion. The ceramic substrate unit 10 is formed by firing a laminate of a plurality of green sheets.
 本発明のセラミック基板100においては、チップ型電子部品40の周辺領域にフィレット状の隙間充填材50が設けられている。つまり、隙間充填材50がチップ型電子部品40の周囲にてフィレット形態で設けられている。図示されるように、かかるフィレット状の隙間充填材50は、特に、チップ型電子部品40の電極部42に隣接してその近傍に設けられている。 In the ceramic substrate 100 of the present invention, a fillet-like gap filling material 50 is provided in the peripheral region of the chip-type electronic component 40. That is, the gap filler 50 is provided in the form of a fillet around the chip-type electronic component 40. As shown in the drawing, the fillet-like gap filler 50 is provided adjacent to and in the vicinity of the electrode portion 42 of the chip-type electronic component 40 in particular.
 図1に示されるように、セラミック基板部10の内部においては、チップ型電子部品40および隙間充填材50に加えて、ビア16および内部配線部17などが設けられている。また、セラミック基板部10の表裏面には、セラミック基板100に各種電子部品(例えばLED)を実装するための外部電極部19が設けられていると共に、電子回路パターン配線部20なども設けられている。 As shown in FIG. 1, in the ceramic substrate part 10, in addition to the chip-type electronic component 40 and the gap filling material 50, a via 16 and an internal wiring part 17 are provided. Further, on the front and back surfaces of the ceramic substrate portion 10, an external electrode portion 19 for mounting various electronic components (for example, LEDs) on the ceramic substrate 100 is provided, and an electronic circuit pattern wiring portion 20 is also provided. Yes.
 フィレット状の隙間充填材50は、その名称のごとく、はんだ盛り形状に相当するような形状を有している。例えば、図1および図2に示されるように、フィレット状の隙間充填材50は、チップ型電子部品を基点としてその外側へと向かう方向に隙間充填材の厚みが漸次減少している。かかるフィレット状の隙間充填材が設けられていることに起因して、本発明のセラミック基板の内部には無用な隙間が形成されていない。特に、チップ型電子部品の電極近傍の空隙部は隙間充填材により好適に埋められており、その結果、チップ型電子部品が内蔵された隙間の無い基板形態が実現されている。換言すれば、本発明では、隙間充填材が“フィレット状”であるがゆえに、チップ型電子部品の電極近傍の空隙が好適に全て埋められているといえる。 The fillet-like gap filler 50 has a shape corresponding to a solder pile shape as its name suggests. For example, as shown in FIG. 1 and FIG. 2, the fillet-like gap filler 50 has a thickness that gradually decreases in the direction toward the outside from the chip-type electronic component as a base point. Due to the provision of such a fillet-like gap filler, no unnecessary gap is formed inside the ceramic substrate of the present invention. In particular, the gap in the vicinity of the electrode of the chip-type electronic component is preferably filled with a gap filler, and as a result, a substrate form without a gap in which the chip-type electronic component is built is realized. In other words, in the present invention, since the gap filler is “fillet-like”, it can be said that all the gaps near the electrodes of the chip-type electronic component are preferably filled.
 本発明のセラミック基板100を更に詳細に説明していく。セラミック基板のボディを成すセラミック基板部10は、複数のグリーンシートを積層して焼成することにより得られたセラミック多層基板であってよい。セラミック多層基板の材質や全体寸法などは、電子機器分野(例えば半導体集積回路LSIのパッケージ配線基板)として常套的に使用・採用されているものであれば特に制限はない。また、ビア16、内部配線部17、外部電極部19および電子回路パターン配線部20などの材質や全体寸法も電子機器分野(例えば半導体集積回路LSIのパッケージ配線基板)として常套的に使用・採用されているものであれば特に制限はない。 The ceramic substrate 100 of the present invention will be described in more detail. The ceramic substrate portion 10 constituting the body of the ceramic substrate may be a ceramic multilayer substrate obtained by laminating and firing a plurality of green sheets. The material and overall dimensions of the ceramic multilayer substrate are not particularly limited as long as they are conventionally used and adopted in the electronic equipment field (for example, a package wiring substrate of a semiconductor integrated circuit LSI). In addition, the materials and overall dimensions of the via 16, the internal wiring part 17, the external electrode part 19, and the electronic circuit pattern wiring part 20 are conventionally used and adopted in the electronic equipment field (for example, a package wiring board of a semiconductor integrated circuit LSI). There is no particular limitation as long as it is.
 セラミック基板に内蔵されているチップ型電子部品40は、小型に作製された単独の電子部品である。かかるチップ型電子部品40は電極部42を備えており、特にその対向する側端部に電極部(42A,42B)を備えている。チップ型電子部品40の厚さ寸法は、好ましくは50~300μm程度、より好ましくは100~200μm程度である。また、チップ型電子部品40の主面サイズについていえば、横幅L×縦幅WがL:0.4~0.6mm×W:0.2~0.3mm程度であってよい。 The chip-type electronic component 40 built in the ceramic substrate is a single electronic component manufactured in a small size. Such a chip-type electronic component 40 includes an electrode portion 42, and particularly includes electrode portions (42A, 42B) at opposite side ends thereof. The thickness dimension of the chip-type electronic component 40 is preferably about 50 to 300 μm, more preferably about 100 to 200 μm. Further, regarding the main surface size of the chip-type electronic component 40, the width L × length W may be about L: 0.4 to 0.6 mm × W: 0.2 to 0.3 mm.
 チップ型電子部品40としては、例えば、バリスタ素子(チップ・バリスタ)、チップ型抵抗およびチップ型コンデンサなどを挙げることができる。特にバリスタ素子を1つ例示すると、液晶のバックライト向けLEDの駆動用電子回路に使用されるバリスタであってよい。 Examples of the chip type electronic component 40 include a varistor element (chip varistor), a chip type resistor, a chip type capacitor, and the like. In particular, one varistor element may be a varistor used in an electronic circuit for driving an LED for a liquid crystal backlight.
 本発明に係るセラミック基板100においては、そのセラミック基板部10の内部に設けられている隙間充填材50がフィレット形状を有している。図1および図2に示すように、フィレット状の隙間充填材50A,50Bは、チップ型電子部品40の対向する2つの電極部42A,42Bの周辺領域にそれぞれ設けられている。図示するように、フィレット状の隙間充填材50A,50Bの各々は、チップ型電子部品40のチップ型電子部品40A,40Bの各々と部分的に接していることが好ましい。より好ましくは、各チップ型電子部品40の側面と少なくとも接するような状態で各隙間充填材がフィレット状に設けられている。 In the ceramic substrate 100 according to the present invention, the gap filler 50 provided inside the ceramic substrate portion 10 has a fillet shape. As shown in FIGS. 1 and 2, the fillet-like gap fillers 50 </ b> A and 50 </ b> B are provided in the peripheral regions of the two electrode portions 42 </ b> A and 42 </ b> B facing each other of the chip type electronic component 40. As illustrated, each of the fillet- like gap fillers 50A and 50B is preferably in partial contact with each of the chip-type electronic components 40A and 40B of the chip-type electronic component 40. More preferably, each gap filler is provided in a fillet shape so as to be at least in contact with the side surface of each chip-type electronic component 40.
 ここで、本明細書で用いる「電極部の周辺領域」といった用語は、電極部に隣接した電極近傍領域を意味している。より具体的には、「電極部の周辺領域」は、電極部からの離隔距離(例えば図3(a)に示すような水平方向の離隔距離L、LおよびLなど)が、好ましくは0.1~1.5mm程度、より好ましくは0.2~1.0mm程度の範囲となった領域のことを指している。 Here, the term “peripheral region of the electrode part” used in this specification means an electrode vicinity region adjacent to the electrode part. More specifically, the “peripheral region of the electrode part” is preferably a separation distance from the electrode part (for example, horizontal separation distances L 1 , L 2 and L 3 as shown in FIG. 3A). Indicates a region in the range of about 0.1 to 1.5 mm, more preferably about 0.2 to 1.0 mm.
 フィレット状の隙間充填材50は、図1および図2に示すように、チップ型電子部品を中心にその外側に向かう方向に厚みが漸次減少している。より具体的には、フィレット状の隙間充填材50の厚みは、電子部品主面または基板主面と平行な水平方向の外側に向かって漸次減少しており、最も外側においてその厚みが実質無くなる。つまり、隙間充填材50の形態としては、“フィレット状”であれば特に制限はなく、例えば図4(a)~(d)に示すような種々の形態であってよい。 As shown in FIG. 1 and FIG. 2, the fillet-shaped gap filler 50 gradually decreases in thickness in the direction toward the outside centering on the chip-type electronic component. More specifically, the thickness of the fillet-like gap filler 50 gradually decreases toward the outer side in the horizontal direction parallel to the main surface of the electronic component or the main surface of the substrate, and the thickness is substantially eliminated at the outermost side. That is, the form of the gap filler 50 is not particularly limited as long as it is “fillet-like”, and may be various forms as shown in FIGS. 4 (a) to 4 (d), for example.
 隙間充填材50の寸法について例示すると、図3(b)に示すような最大厚さ寸法Tmaxに対する最大幅寸法Wmaxの比(Wmax/Tmax)は、好ましくは3~15程度であり、より好ましくは5~8程度である。 As an example of the size of the gap filler 50, the ratio of the maximum width dimension Wmax to the maximum thickness dimension Tmax (Wmax / Tmax) as shown in FIG. 3B is preferably about 3 to 15, more preferably It is about 5-8.
 隙間充填材50の材質は、例えば、ビア16や内部配線部17の材質と同種であってよい。即ち、隙間充填材50は、銀成分(Ag成分)を含有して成るものであってよく、例えば、銀粒子とガラス成分とを含有した銀ペーストから形成され得る。このような銀ペーストは、製造プロセス時の加熱押圧に際して外力による変形が可能であり、それゆえ、“チップ型電子部品の電極近傍に生じ得る空隙部”を好適に埋めることができる。また、銀ペースト自体は、比較的安価に手に入れることができ、かつ、基板製造の材料点数を増加させないので、セラミック基板の低コスト製造につながる。 The material of the gap filling material 50 may be the same as the material of the via 16 and the internal wiring part 17, for example. That is, the gap filler 50 may contain a silver component (Ag component), and may be formed from, for example, a silver paste containing silver particles and a glass component. Such a silver paste can be deformed by an external force at the time of heating and pressing during the manufacturing process, and therefore, “a void portion that can occur in the vicinity of an electrode of a chip-type electronic component” can be preferably filled. Further, the silver paste itself can be obtained at a relatively low cost and does not increase the number of materials for manufacturing the substrate, leading to low-cost manufacturing of the ceramic substrate.
 また、隙間充填材50は、パラジウム成分(Pd成分)を含有して成るものであってもよい。即ち、隙間充填材50が、パラジウムを含有する導電性ペーストから形成されるものであってよい。かかるパラジウム含有ペーストは、製造プロセス時の加熱押圧に際して、パラジウムの酸化によって体積が増加するので、隙間を埋める効果が向上し得る。 Further, the gap filler 50 may contain a palladium component (Pd component). That is, the gap filler 50 may be formed from a conductive paste containing palladium. Since the volume of such a palladium-containing paste increases due to oxidation of palladium during heating and pressing during the manufacturing process, the effect of filling the gap can be improved.
 更にいえば、隙間充填材50は、グリーンシートと同一の無機成分を含有して成るものであってもよい。即ち、隙間充填材50は、アルミナ粉末およびガラス成分から成るものであってよい。このような隙間充填材50は、グリーンシートと同一の無機成分(例えば、アルミナ粉末およびガラス成分)を含有するペーストから形成され得る。“グリーンシートと同一の無機成分を含有したペースト”では、製造プロセス時の焼成に際してグリーンシートの収縮率と隙間充填材ペーストの収縮率とを略同じにすることができるので、グリーンシート積層体の安定した焼成を行うことができる。また、かかるペースト自体は、グリーンシート調製に際して得ることができるので、基板製造の材料点数を増加させず、結果としてセラミック基板の低コスト製造につながる。 Furthermore, the gap filler 50 may contain the same inorganic component as that of the green sheet. That is, the gap filler 50 may be made of an alumina powder and a glass component. Such a gap filler 50 can be formed from a paste containing the same inorganic components as the green sheet (for example, alumina powder and glass component). In the “paste containing the same inorganic components as the green sheet”, the shrinkage ratio of the green sheet and the shrinkage ratio of the gap filler paste can be made substantially the same during firing in the manufacturing process. Stable firing can be performed. In addition, since the paste itself can be obtained when the green sheet is prepared, the number of materials for manufacturing the substrate is not increased, and as a result, low-cost manufacturing of the ceramic substrate is achieved.
 尚、隙間充填材50の熱伝導性向上のために、隙間充填材50が付加的に銅成分を含んで成るものであってもよい。これにより、特に放熱特性に優れた基板が実現され得る。 In addition, in order to improve the thermal conductivity of the gap filler 50, the gap filler 50 may additionally contain a copper component. Thereby, the board | substrate excellent in the thermal radiation characteristic especially can be implement | achieved.
(本発明のセラミック基板の製造方法)
 次に、本発明のセラミック基板の製造方法について説明する。代表例として図5に示されるようなセラミック基板を製造する方法について説明する。本発明の製造方法のプロセス・フローの一例は図6に示される。
(Method for producing a ceramic substrate of the present invention)
Next, the manufacturing method of the ceramic substrate of this invention is demonstrated. As a representative example, a method for manufacturing a ceramic substrate as shown in FIG. 5 will be described. An example of the process flow of the manufacturing method of the present invention is shown in FIG.
 まず、本発明のセラミック基板の製造に際しては、工程(i)を実施する。つまり、複数のグリーンシートから選択される2枚のグリーンシートについて充填材前駆体原料を塗布する。具体的には、図7および図8に示すように、一方のグリーンシート10Aに第1隙間充填材原料を塗布して第1隙間充填材前駆体(51A,51B)を形成し、他方のグリーンシート10Bに第2隙間充填材原料を塗布して第2隙間充填材前駆体(52A,52B)を形成する。 First, in manufacturing the ceramic substrate of the present invention, step (i) is performed. That is, the filler precursor raw material is applied to two green sheets selected from a plurality of green sheets. Specifically, as shown in FIGS. 7 and 8, the first gap filler material is applied to one green sheet 10A to form the first gap filler precursor (51A, 51B), and the other green sheet A second gap filler material is applied to the sheet 10B to form second gap filler precursors (52A, 52B).
 グリーンシート自体は、セラミック成分、ガラス成分および有機バインダ成分を含んで成るシート状部材であってよい。例えば、セラミック成分としては、アルミナ粉末(平均粒径:0.5~10μm程度)であってよく、ガラス成分としては、ホウケイ酸塩ガラス粉末(平均粒径:1~20μm程度)であってもよい。そして、有機バインダ成分としては、例えば、ポリビニルブチラール樹脂、アクリル樹脂、酢酸ビニル共重合体、ポリビニルアルコールおよび塩化ビニル樹脂から成る群から選択される少なくとも1種以上の成分であってよい。あくまでも例示にすぎないが、グリーンシートは、アルミナ粉末40~50wt%、ガラス粉末を30~40wt%、および、有機バインダ成分10~30wt%であってよい(グリーンシートの全重量基準)。また、別の観点で捉えるとすると、グリーンシートは、固体成分(アルミナ粉末50~60wt%およびガラス粉末を40~50wt%:固体成分の重量基準)と有機バインダ成分との重量比、即ち、固体成分重量:有機バインダ成分重量が80~90:10~20程度となっているものであってもよい。グリーンシート成分としては、必要に応じてその他の成分が含まれていてよく、例えば、フタル酸エステル、フタル酸ジブチルなどのグリーンシートに柔軟性を付与する可塑剤、グリコールなどのケトン類の分散剤や有機溶剤などが含まれていてよい。各グリーンシートの厚さ自体は30μm~500μm程度、例えば60~350μm程度であってよい。 The green sheet itself may be a sheet-like member including a ceramic component, a glass component, and an organic binder component. For example, the ceramic component may be alumina powder (average particle size: about 0.5 to 10 μm), and the glass component may be borosilicate glass powder (average particle size: about 1 to 20 μm). Good. The organic binder component may be at least one component selected from the group consisting of polyvinyl butyral resin, acrylic resin, vinyl acetate copolymer, polyvinyl alcohol and vinyl chloride resin, for example. The green sheet may be 40 to 50 wt% alumina powder, 30 to 40 wt% glass powder, and 10 to 30 wt% organic binder component (based on the total weight of the green sheet). From another viewpoint, the green sheet is a weight ratio between the solid component (alumina powder 50-60 wt% and glass powder 40-50 wt%: solid component weight basis) and the organic binder component, ie, solid Component weight: Organic binder component weight may be about 80 to 90:10 to 20. The green sheet component may contain other components as required. For example, a plasticizer that imparts flexibility to a green sheet such as phthalate ester or dibutyl phthalate, or a dispersant for ketones such as glycol. Or an organic solvent. The thickness of each green sheet itself may be about 30 μm to 500 μm, for example, about 60 to 350 μm.
 第1および第2の隙間充填材前駆体の形成に先だって又はその後においては、ビア16、内部配線部17のための前駆体を形成する。例えば、NCパンチプレス(Numerical Control パンチプレス)または炭酸ガスレーザなどによってグリーンシートに孔を形成して、その孔に内層ビアの原料となる導電性ペースト材料を充填してビア前駆体16’を形成する。また、必要な内部配線部17の前駆体17’を含んだ焼成型の回路パターン等もグリーンシート上に形成する。ビア16や内部配線部17の原料となる導電性ペーストとしては、半導体集積回路LSIのパッケージ配線基板として常套的に使用・採用されているものであれば特に制限はない。例えば、当該導電性ペーストは、Ag粉末と、接着強度を得るためのガラスフリットと、有機ビヒクル(例えばエチルセルロースとターピネオールとの有機混合物)とを含んで成るものであってよい。 Prior to or after the formation of the first and second gap filler precursors, precursors for the vias 16 and the internal wiring portions 17 are formed. For example, a hole is formed in the green sheet by an NC punch press (Numerical Control punch press) or a carbon dioxide laser, and the via precursor 16 ′ is formed by filling the hole with a conductive paste material that is a raw material for the inner layer via. . Also, a fired circuit pattern including the necessary precursor 17 ′ of the internal wiring portion 17 is formed on the green sheet. The conductive paste as a raw material for the via 16 and the internal wiring part 17 is not particularly limited as long as it is conventionally used / adopted as a package wiring board for a semiconductor integrated circuit LSI. For example, the conductive paste may comprise Ag powder, glass frit for obtaining adhesive strength, and an organic vehicle (for example, an organic mixture of ethyl cellulose and terpineol).
 グリーンシート上に塗布される第1隙間充填材原料および第2隙間充填材原料は、以下のペーストであってよい(単独でもよいし組み合わせて用いてもよい):
 ・銀成分を含有して成るペースト(銀粒子とガラス成分とを含有した銀ペースト)
 ・パラジウム成分を含有して成るペースト
 ・グリーンシートと同一の無機成分(例えば、アルミナ粉末およびガラス成分)を含有して成るペースト
 ・銅成分を含有して成るペースト
The first gap filler material and the second gap filler material applied on the green sheet may be the following pastes (may be used alone or in combination):
・ Paste containing silver component (silver paste containing silver particles and glass component)
-Paste containing a palladium component-Paste containing the same inorganic components as the green sheet (for example, alumina powder and glass component)-Paste containing a copper component
 工程(i)では第1隙間充填材原料の塗布によってグリーンシート10Aに第1隙間充填材前駆体(51A,51B)が形成されるのに対して、第2隙間充填材原料の塗布によってグリーンシート10Bに第2隙間充填材前駆体(52A,52B)が形成される。「第1隙間充填材前駆体(51A,51B)が設けられたグリーンシート10A」および「第2隙間充填材前駆体(52A,52B)が設けられたグリーンシート10B」は、グリーンシート積層時に、チップ型電子部品を間に挟んで直接的に対向配置されるものである。その点において、第1隙間充填材前駆体(51A,51B)および第2隙間充填材前駆体(52A,52B)は、グリーンシート積層時、チップ型電子部品40の電極部42の周辺領域にて配されるように位置付けて形成される(図8参照)。例えば図8に示されるように、第1隙間充填材前駆体(51A,51B)および第2隙間充填材前駆体(52A,52B)は電極部42の外周縁部に沿うような形態(“コの字状形態”)で形成される。尚、図7および図8に示すように、第2隙間充填材前駆体(52A,52B)は、グリーンシート上に予め形成された「内部配線部の前駆体17’」と少なくとも部分的に接触するように、その前駆体17’上に形成されてよい。 In step (i), the first gap filler precursor (51A, 51B) is formed on the green sheet 10A by application of the first gap filler material, whereas the green sheet is applied by application of the second gap filler material. A second gap filler precursor (52A, 52B) is formed at 10B. "Green sheet 10A provided with first gap filler precursor (51A, 51B)" and "Green sheet 10B provided with second gap filler precursor (52A, 52B)" The chip-type electronic components are disposed directly opposite to each other with a chip-type electronic component interposed therebetween. In that respect, the first gap filler precursor (51A, 51B) and the second gap filler precursor (52A, 52B) are disposed in the peripheral region of the electrode portion 42 of the chip-type electronic component 40 when the green sheets are stacked. They are positioned so as to be arranged (see FIG. 8). For example, as shown in FIG. 8, the first gap filler precursor (51A, 51B) and the second gap filler precursor (52A, 52B) are arranged along the outer peripheral edge of the electrode portion (see FIG. It is formed in the shape of a letter “)”. As shown in FIGS. 7 and 8, the second gap filler precursor (52A, 52B) is at least partially in contact with the “internal wiring portion precursor 17 ′” formed in advance on the green sheet. As such, it may be formed on its precursor 17 '.
 工程(i)に引き続いて工程(ii)を実施する。つまり、複数のグリーンシートを積層してグリーンシート積層体を形成する(図9および図10参照)。特に、図10(b)に示すように、第1隙間充填材前駆体(51A,51B)と第2隙間充填材前駆体(52A,52B)とが相互に直接的に対向するような状態でグリーンシート10Aとグリーンシート10Bとの間にチップ型電子部品40を挟み込んで積層させる。 Next to step (i), step (ii) is performed. That is, a plurality of green sheets are stacked to form a green sheet stack (see FIGS. 9 and 10). In particular, as shown in FIG. 10B, the first gap filler precursor (51A, 51B) and the second gap filler precursor (52A, 52B) are directly opposed to each other. The chip-type electronic component 40 is sandwiched and laminated between the green sheet 10A and the green sheet 10B.
 チップ型電子部品の挟み込みに際しては、図11に示されるように、チップ型電子部品40の電極部42(42A,42B)の周辺領域において、第1隙間充填材前駆体(51A,51B)と第2隙間充填材前駆体(52A,52B)とを相互に接触させる。これにより、第1隙間充填材前駆体(51A,51B)と第2隙間充填材前駆体(52A,52B)とを一体化させた隙間充填材前駆体を形成する。特に、チップ型電子部品40の2つの電極部(42A,42B)の各々の周辺領域において、第1隙間充填材前駆体(51A,51B)と第2隙間充填材前駆体(52A,52B)とを相互に一体化させることが好ましい。 When sandwiching the chip-type electronic component, as shown in FIG. 11, in the peripheral region of the electrode part 42 (42A, 42B) of the chip-type electronic component 40, the first gap filler precursor (51A, 51B) and the first Two gap filler precursors (52A, 52B) are brought into contact with each other. Thereby, a gap filler precursor in which the first gap filler precursor (51A, 51B) and the second gap filler precursor (52A, 52B) are integrated is formed. In particular, in each peripheral region of the two electrode portions (42A, 42B) of the chip-type electronic component 40, the first gap filler precursor (51A, 51B) and the second gap filler precursor (52A, 52B) Are preferably integrated with each other.
 グリーンシート積層体におけるグリーンシート枚数は特に制限はなく、例えば総計で3~50枚程度であってよく、好ましくは3~15枚程度である。 The number of green sheets in the green sheet laminate is not particularly limited, and may be, for example, about 3 to 50 in total, preferably about 3 to 15 sheets.
 工程(ii)に引き続いて工程(iii)を実施する。つまり、グリーンシート積層体を焼成に付してセラミック基板部10を得る。特に本発明においては、焼成に際して又はそれに先立って、外側から内側へとグリーンシート積層体をその厚み方向に押圧し、一体化した隙間充填材前駆体からフィレット状の隙間充填材50を形成する(図11および図12(a)参照)。 Next to step (ii), step (iii) is performed. That is, the ceramic laminate 10 is obtained by firing the green sheet laminate. In particular, in the present invention, prior to firing or prior to firing, the green sheet laminate is pressed in the thickness direction from the outside to the inside, and the fillet-like gap filler 50 is formed from the integrated gap filler precursor ( FIG. 11 and FIG. 12 (a)).
 グリーンシート積層体は、焼成に先立って、脱バインダ工程などの有機物の分解脱離処理(バインダのバーンアウト処理)に付すことが好ましい。例えば、脱バインダ工程として、500℃~700℃の温度条件で20~50時間の加熱処理に付してよい。 The green sheet laminate is preferably subjected to an organic substance decomposition / desorption treatment (binder burnout treatment) such as a binder removal step prior to firing. For example, as the binder removal step, heat treatment may be performed for 20 to 50 hours under a temperature condition of 500 ° C. to 700 ° C.
 焼成に際しては、例えば800℃~1000℃(好ましくは850℃~950℃)の温度条件で0.1時間~3時間ほどグリーンシート積層体を加熱処理することが好ましく、また、積層体の加圧の条件は、0.2~2.0MPa(例えば0.3~1.0MPa)であることが好ましい。加熱処理自体は、グリーンシート積層体をメッシュベルト炉などの焼成炉に供することによって行ってよい。一方、加圧処理は、常套のプレス部材などを用いて行ってよい。 In firing, the green sheet laminate is preferably heat-treated at a temperature of 800 ° C. to 1000 ° C. (preferably 850 ° C. to 950 ° C.) for about 0.1 hours to 3 hours. The condition is preferably 0.2 to 2.0 MPa (for example, 0.3 to 1.0 MPa). The heat treatment itself may be performed by subjecting the green sheet laminate to a firing furnace such as a mesh belt furnace. On the other hand, the pressure treatment may be performed using a conventional press member or the like.
 尚、工程(iii)の実施に際しては“拘束層”を用いることが好ましい。具体的には、図9~図11に示されるように、グリーンシート積層体の外側に拘束層60を設け、その拘束層60を介して外側から内側へとグリーンシート積層体を厚み方向に押圧することが好ましい。 In addition, it is preferable to use a “constraint layer” when carrying out the step (iii). Specifically, as shown in FIGS. 9 to 11, a constraining layer 60 is provided on the outside of the green sheet laminate, and the green sheet laminate is pressed in the thickness direction from the outside to the inside via the constraining layer 60. It is preferable to do.
 拘束層60を設けることによって、焼成時にグリーンシート積層体(10A,10B,10C,・・・)が水平方向に収縮せず、垂直方向にのみ収縮することになる。換言すれば、グリーンシート積層体(10A,10B,10C,・・・)は、グリーンシート主面に平行な方向に沿って収縮せず、その主面と直交する方向に沿ってのみ収縮し得る。それゆえ、拘束層60は、グリーンシートの水平方向の収縮を抑制し、厚さ方向にのみ収縮させてセラミック基板部を得るために使用できるといえる。 By providing the constraining layer 60, the green sheet laminate (10A, 10B, 10C,...) Does not shrink in the horizontal direction during firing, but shrinks only in the vertical direction. In other words, the green sheet laminate (10A, 10B, 10C,...) Does not contract along a direction parallel to the main surface of the green sheet, and can contract only along a direction orthogonal to the main surface. . Therefore, it can be said that the constraining layer 60 can be used for suppressing the horizontal contraction of the green sheet and contracting only in the thickness direction to obtain the ceramic substrate portion.
 例えば、拘束層60はアルミナ粉末をグリーンシートと同じ有機材料とを混合してシート状にしたもので、グリーンシートと同じ外形サイズが好ましい。また、拘束層60の厚さ寸法は100~350μm程度であることが好ましい。 For example, the constraining layer 60 is a sheet formed by mixing alumina powder with the same organic material as the green sheet, and preferably has the same outer size as the green sheet. The thickness dimension of the constraining layer 60 is preferably about 100 to 350 μm.
 加熱押圧後に拘束層60を除去する際、吹き付け処理を実施してよい。例えば水とアルミナ粉末とから成る混合物を拘束層60に吹き付けて拘束層60を除去することができる。1つ例示すると、約96gの水と平均粒径0~10μmのアルミナ約4gとから成る混合物を約0.4MPaの圧力の圧縮空気で拘束層60に吹き付けることによって、拘束層60の除去処理を行うことができる。 When the constraining layer 60 is removed after heating and pressing, a spraying process may be performed. For example, the constraining layer 60 can be removed by spraying a mixture of water and alumina powder onto the constraining layer 60. As an example, the removal process of the constraining layer 60 is performed by spraying a mixture of about 96 g of water and about 4 g of alumina having an average particle diameter of 0 to 10 μm on the constraining layer 60 with compressed air having a pressure of about 0.4 MPa. It can be carried out.
 工程(iii)が終了すれば、図12(a)に示すようにセラミック基板部10、そのセラミック基板部の内部に配されたチップ型電子部品40およびフィレット状隙間充填材50を有して成るセラミック基板100が得られることになる。 When the step (iii) is completed, as shown in FIG. 12 (a), the ceramic substrate portion 10, the chip-type electronic component 40 and the fillet-like gap filler 50 disposed inside the ceramic substrate portion are provided. A ceramic substrate 100 is obtained.
 尚、図12(a)または図1などに示されるように、フィレット状の隙間充填材50は、チップ型電子部品の電極部42と接触すると共に、内部配線部17とも接触した状態で得られる。従って、フィレット状の隙間充填材50が導電性を有していれば、内部配線部17とチップ型電子部品の電極部42との相互の電気的な接続が強固となり、結果的にそれらの接続信頼性が向上し得る。 As shown in FIG. 12A, FIG. 1 or the like, the fillet-like gap filling material 50 is obtained in contact with the electrode part 42 of the chip-type electronic component and also with the internal wiring part 17. . Therefore, if the fillet-like gap filler 50 has conductivity, the electrical connection between the internal wiring part 17 and the electrode part 42 of the chip-type electronic component is strengthened, and as a result, the connection between them. Reliability can be improved.
 得られたセラミック基板100に対しては、図12(b)に示すように、必要に応じて外部電極部19や電子回路パターン配線部20などを形成してよい。例えば、スクリーン印刷法によって、所望パターンとなるように導体ペーストを印刷し、次いで、「印刷された導体ペーストが十分に焼成される温度」かつ「グリーンシート積層体の焼成温度よりも低い温度」の条件の熱処理に付すことによって外部電極部19や電子回路パターン配線部20などを形成できる。外部電極部19や電子回路パターン配線部20などの形成に用いる導電性ペーストとしては、焼成可能温度が680~720℃程度の銀ペースト(例えばAg粒子およびガラス成分を含んで成る導電性ペースト)を用いてよく、かかる場合、熱処理を730~770℃程度の温度条件で行ってよい。尚、フォトリソとウェットエッチングなどを利用して外部電極部19や電子回路パターン配線部20を形成してもよい。例えば、湿式めっき法(無電界めっき法または電界めっき法など)によって銅薄膜を形成し、その後、フォトレジストを用いて銅薄膜上をパターニングし、次いで、エッチングを行うことによって、外部電極19や電子回路パターン配線部20などを形成することができる。かかる場合、チップ型電子部品を内蔵したグリーンシート積層体を焼成した後において更なる熱処理を必要とせず、より高密度化された(即ち、配線間隔のより狭い)電子回路パターンや外部電極を作成できる。つまり、高密度実装が求められる電子回路用セラミック基板の製造にとって特に好適となる。 For the obtained ceramic substrate 100, as shown in FIG. 12B, an external electrode portion 19 and an electronic circuit pattern wiring portion 20 may be formed as necessary. For example, the conductor paste is printed so as to have a desired pattern by a screen printing method, and then “temperature at which the printed conductor paste is sufficiently fired” and “temperature lower than the firing temperature of the green sheet laminate” The external electrode portion 19 and the electronic circuit pattern wiring portion 20 can be formed by subjecting to a heat treatment under conditions. As a conductive paste used for forming the external electrode portion 19 and the electronic circuit pattern wiring portion 20, a silver paste (for example, a conductive paste containing Ag particles and a glass component) having a firing temperature of about 680 to 720 ° C. is used. In such a case, the heat treatment may be performed under a temperature condition of about 730 to 770 ° C. The external electrode portion 19 and the electronic circuit pattern wiring portion 20 may be formed by using photolithography and wet etching. For example, a copper thin film is formed by a wet plating method (such as an electroless plating method or an electroplating method), followed by patterning on the copper thin film using a photoresist, and then performing etching, whereby the external electrodes 19 and the electrons are formed. The circuit pattern wiring part 20 and the like can be formed. In such a case, after firing the green sheet laminate containing the chip-type electronic component, no further heat treatment is required, and a higher-density electronic circuit pattern (ie, a narrower wiring interval) and external electrodes are created. it can. That is, it is particularly suitable for the production of a ceramic substrate for electronic circuits that requires high-density mounting.
 以上のようなプロセスを経ることによって、図12(b)ないしは図5に示されるようなセラミック基板100を得ることができる。 Through the above process, a ceramic substrate 100 as shown in FIG. 12B or FIG. 5 can be obtained.
(隙間充填材原料/隙間充填材前駆体)
 次に、本発明の製造プロセスで用いる“隙間充填材原料/隙間充填材前駆体”について詳述しておく。
(Gap filler material / Gap filler precursor)
Next, the “gap filler material / gap filler precursor” used in the production process of the present invention will be described in detail.
 本発明の製造方法で用いられる第1隙間充填材原料および第2隙間充填材原料は、銀粒子とガラス成分とを含有した銀ペーストであってよい。かかる銀ペーストは、製造プロセス時の加熱押圧処理に際して外力により変形し得るので、“チップ型電子部品の電極近傍に生じ得る空隙部”を好適に埋めることができる。つまり、銀ペーストを用いると電極部の周辺領域において所望のフィレット状の隙間充填材を形成できる。銀ペースト自体は、比較的安価に手に入れることができ、かつ、基板製造の材料点数を増加させないので、セラミック基板の低コスト製造につながる。 The first gap filler material and the second gap filler material used in the production method of the present invention may be a silver paste containing silver particles and a glass component. Such a silver paste can be deformed by an external force during the heat-pressing process during the manufacturing process, so that “a void portion that can be generated in the vicinity of an electrode of a chip-type electronic component” can be suitably filled. That is, when a silver paste is used, a desired fillet-like gap filler can be formed in the peripheral region of the electrode portion. Since the silver paste itself can be obtained relatively inexpensively and does not increase the number of materials for manufacturing the substrate, it leads to low-cost manufacturing of the ceramic substrate.
 また、第1隙間充填材原料および第2隙間充填材原料は、パラジウムを含有する導電性ペーストであってもよい。かかるパラジウム含有ペーストは、製造プロセス時の加熱押圧処理に際して、パラジウムの酸化により体積が増加し、結果として、隙間を埋める効果を向上させることができる。つまり、パラジウム含有ペーストを用いた場合、チップ型電子部品の電極部の周辺領域において所望のフィレット状の隙間充填材を形成することができる。 Further, the first gap filler material and the second gap filler material may be a conductive paste containing palladium. Such a palladium-containing paste increases in volume due to oxidation of palladium during the heat-pressing process during the manufacturing process, and as a result, the effect of filling the gap can be improved. That is, when a palladium-containing paste is used, a desired fillet-like gap filler can be formed in the peripheral region of the electrode part of the chip-type electronic component.
 また、第1隙間充填材原料および第2隙間充填材原料は、グリーンシートと同一の無機成分(例えば、アルミナ粉末およびガラス成分)を含有するペーストから形成されたものであってもよい。“グリーンシートと同一の無機成分を含有したペースト”を用いると、製造プロセス時の焼成に際してグリーンシートの収縮率と隙間充填材ペーストの収縮率とを略同じにすることができるので、積層体の安定した焼成が可能となる。それゆえ結果的に、“グリーンシートと同一の無機成分を含有したペースト”を用いた場合、チップ型電子部品の電極部の周辺領域において所望のフィレット状の隙間充填材を形成することができる。尚、かかるペースト自体は、グリーンシートの調製に際して得ることができるので、基板製造の材料点数を増加させず、セラミック基板の低コスト製造につながる。 Further, the first gap filler material and the second gap filler material may be formed from a paste containing the same inorganic components (for example, alumina powder and glass component) as the green sheet. When the “paste containing the same inorganic components as the green sheet” is used, the shrinkage ratio of the green sheet and the shrinkage ratio of the gap filler paste can be made substantially the same during firing during the manufacturing process. Stable firing is possible. Therefore, as a result, when “a paste containing the same inorganic component as the green sheet” is used, a desired fillet-like gap filler can be formed in the peripheral region of the electrode part of the chip-type electronic component. In addition, since such paste itself can be obtained at the time of preparation of a green sheet, it does not increase the number of materials for substrate production, and leads to low-cost production of a ceramic substrate.
 更にいえば、第1隙間充填材原料および第2隙間充填材原料には、付加的に銅成分が含まれていてよい。なぜなら、銅成分によって隙間充填材の熱伝導性を向上させることができ、放熱特性が特に優れた基板を得ることができるからである。 Furthermore, the first gap filler material and the second gap filler material may additionally contain a copper component. This is because the thermal conductivity of the gap filler can be improved by the copper component, and a substrate with particularly excellent heat dissipation characteristics can be obtained.
 図10に示すように、「第1隙間充填材原料が塗布された一方のグリーンシート10A」を垂直上方(垂直上側)に配置する一方、「第2隙間充填材原料が塗布された他方のグリーンシート10B」を垂直下方(垂直下側)に配置する場合では、第2隙間充填材原料の塗布量を第1隙間充填材原料の塗布量よりも多くすることが好ましく、これによって、電極部の周辺領域においてフィレット状の隙間充填材を好適に形成できる。例えば、第2隙間充填材原料の塗布量を第1隙間充填材原料の塗布量よりも好ましくは3重量%~60重量%多く、より好ましくは5重量%~40重量%多く、更に好ましくは10重量%~30重量%多くする。 As shown in FIG. 10, “one green sheet 10A coated with the first gap filler material” is arranged vertically upward (vertically upper side), while “the other green sheet coated with the second gap filler material”. In the case where the sheet 10B "is arranged vertically downward (vertically below), it is preferable that the application amount of the second gap filler material is larger than the application amount of the first gap filler material. A fillet-like gap filler can be suitably formed in the peripheral region. For example, the coating amount of the second gap filler material is preferably 3% to 60% by weight, more preferably 5% to 40% by weight, and even more preferably 10%, more than the coating amount of the first gap filler material. Increase by weight percent to 30 weight percent.
 また、チップ型電子部品の2つの電極部の対向方向に沿ってみた場合に第2隙間充填材前駆体(52A,52B)の塗布膜(垂直下方に配置される前駆体)の内側端部がチップ型電子部品の中央部から0.2~0.5mm離れた位置となるように、チップ型電子部品の挟み込みを行うことが好ましい(図13参照)。つまり、図13に示される離隔距離Lが0.2~0.5mmとなるように、チップ型電子部品40の挟み込みを行うことが好ましい。このようなプロセス条件も、所望のフィレット状隙間充填材の形成につながる。 Further, when viewed along the opposing direction of the two electrode portions of the chip-type electronic component, the inner end portion of the coating film (precursor disposed vertically below) of the second gap filler precursor (52A, 52B) is It is preferable to sandwich the chip-type electronic component so that it is positioned 0.2 to 0.5 mm away from the center of the chip-type electronic component (see FIG. 13). That is, it is preferable to sandwich the chip-type electronic component 40 so that the separation distance L shown in FIG. 13 is 0.2 to 0.5 mm. Such process conditions also lead to the formation of the desired fillet-like gap filler.
 また、第2隙間充填材前駆体(52A,52B)の塗布膜については、その厚さ寸法を60~150μmとすることが好ましく、より好ましくは80μm~130μmとする(図13参照)。つまり、図13に示される厚み寸法Tを好ましくは60~150μm、より好ましくは80μm~130μmとした条件でもってチップ型電子部品の挟み込みを行うことが好ましい。このようなプロセス条件もまた、所望のフィレット状隙間充填材の形成につながる。 Further, the thickness of the coating film of the second gap filler precursor (52A, 52B) is preferably 60 to 150 μm, more preferably 80 to 130 μm (see FIG. 13). That is, it is preferable to sandwich the chip-type electronic component under the condition that the thickness dimension T shown in FIG. 13 is preferably 60 to 150 μm, more preferably 80 μm to 130 μm. Such process conditions also lead to the formation of the desired fillet-like gap filler.
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の態様が考えられる。 As mentioned above, although the embodiment of the present invention has been described, a typical example is merely illustrated. Therefore, the present invention is not limited to this, and various modes are conceivable.
 最後に、本発明は下記の態様を有するものであることを確認的に付言しておく。
第1態様:複数枚のグリーンシートの積層体の焼成(焼結)により形成されたセラミック基板部、および、セラミック基板部の内部に配されたチップ型電子部品を有して成り、チップ型電子部品の電極部の周辺領域においてはフィレット状に形成された隙間充填材(隙間充填部)が設けられているセラミック基板(セラミック多層基板)。
第2態様:上記第1態様において、チップ型電子部品の位置を基点にその外側へと向かう方向に沿って、隙間充填材の厚みが漸次減少していることを特徴とするセラミック基板。
第3態様:上記第1態様または第2態様において、フィレット状の隙間充填材がチップ型電子部品の電極部と部分的に接触していることを特徴とするセラミック基板。
第4態様:上記第1態様~第3態様のいずれかにおいて、セラミック基板部の内部にて内部配線部を更に有して成り、フィレット状の隙間充填材が内部配線部と部分的に接触していることを特徴とするセラミック基板(特に上記第3態様に従属する場合では、フィレット状の隙間充填材がチップ型電子部品の電極部と内部配線部との双方に接触しているセラミック基板)。
第5態様:上記第1態様~第4態様のいずれかにおいて、フィレット状の隙間充填材について最大厚さ寸法Tmaxに対する最大幅寸法Wmaxの比(Wmax/Tmax)が3~15であることを特徴とするセラミック基板。
第6態様:上記第1態様~第5態様のいずれかにおいて、チップ型電子部品が対向する2つの電極部を有しており、その2つの電極部の各々の周辺領域において隙間充填材がフィレット状に設けられていることを特徴とするセラミック基板。
第7態様:上記第1態様~第6態様のいずれかにおいて、フィレット状の隙間充填材が銀成分を含有して成ることを特徴とするセラミック基板。
第8態様:上記第1態様~第7態様のいずれかにおいて、フィレット状の隙間充填材がパラジウム成分を含有して成ることを特徴とするセラミック基板。
第9態様:上記第1態様~第8態様のいずれかにおいて、フィレット状の隙間充填材がグリーンシートと同一の無機成分を含有して成ることを特徴とするセラミック基板。
第10態様:セラミック基板部およびそのセラミック基板部の内部に配されたチップ型電子部品を有して成るセラミック基板を製造する方法であって、
 (i)複数のグリーンシートから選択される2枚のグリーンシートにつき、一方のグリーンシートに第1隙間充填材原料を塗布して第1隙間充填材前駆体を形成し、他方のグリーンシートに第2隙間充填材原料を塗布して第2隙間充填材前駆体を形成する工程、
 (ii)複数のグリーンシートを積層してグリーンシート積層体を形成する工程であって、前記一方のグリーンシートおよび前記他方のグリーンシートの積層に際して、第1隙間充填材前駆体と第2隙間充填材前駆体とが直接的に向き合うような状態で該一方のグリーンシートと該他方のグリーンシートとの間にチップ型電子部品を挟み込むことを行う工程、ならびに
 (iii)グリーンシート積層体を焼成に付してセラミック基板部を得る工程を含んで成り、
 チップ型電子部品の挟み込みに際しては、チップ型電子部品の電極部の周辺領域において、第1隙間充填材前駆体と第2隙間充填材前駆体とを相互に合せて、それらを一体化させた隙間充填材前駆体を形成し、また
 焼成に際しては、外側から内側へとグリーンシート積層体をその厚み方向に押圧し、それによって、フィレット状の隙間充填材を“一体化した隙間充填材前駆体”から形成する、セラミック基板の製造方法。
第11態様:上記第10態様において、チップ型電子部品の挟み込みに際しては、第1隙間充填材原料が塗布された前記一方のグリーンシートを垂直上方に配置する一方、第2隙間充填材原料が塗布された前記他方のグリーンシートを垂直下方に配置し、
 第2隙間充填材原料の塗布量が第1隙間充填材原料の塗布量よりも多いことを特徴とするセラミック基板の製造方法。
第12態様:上記第11態様において、第2隙間充填材前駆体(塗布膜)につき、その厚さ寸法を60~150μmとすることを特徴とするセラミック基板の製造方法。
第13態様:上記第10態様~第12態様のいずれかにおいて、チップ電子部品が対向する2つの電極部を有しており、
 チップ型電子部品の挟み込みに際しては、2つの電極部の各々の周辺領域において、第1隙間充填材前駆体と第2隙間充填材前駆体とを相互に合せて一体化させることを特徴とするセラミック基板の製造方法。
第14態様:上記第13態様において、2つの電極部の対向方向に沿ってみた場合に第2隙間充填材前駆体(塗布膜)の内側端部がチップ型電子部品の中央部から0.2~0.5mm離れた位置となるように、チップ型電子部品の挟み込みを行うことを特徴とするセラミック基板の製造方法。
第15態様:上記第10態様~第14態様のいずれかにおいて、グリーンシート積層体の対向する外側主面に拘束層を形成し、その拘束層を介して外側から内側へとグリーンシート積層体を厚み方向に押圧することを特徴とするセラミック基板の製造方法。
Finally, it should be confirmed that the present invention has the following aspects.
1st aspect : It has a ceramic substrate part formed by baking (sintering) of the laminated body of several green sheets, and the chip type electronic component distribute | arranged inside the ceramic substrate part, Chip type | mold electronic A ceramic substrate (ceramic multilayer substrate) provided with a gap filling material (gap filling portion) formed in a fillet shape in the peripheral region of the electrode portion of the component.
Second aspect : The ceramic substrate according to the first aspect, wherein the thickness of the gap filler gradually decreases along the direction from the position of the chip-type electronic component toward the outside.
Third aspect : The ceramic substrate according to the first aspect or the second aspect, wherein the fillet-shaped gap filler is in partial contact with the electrode portion of the chip-type electronic component.
Fourth aspect : In any one of the first to third aspects, the ceramic substrate portion further includes an internal wiring portion, and the fillet-like gap filler partially contacts the internal wiring portion. A ceramic substrate (particularly in the case of being subordinate to the third aspect, a ceramic substrate in which a fillet-like gap filler is in contact with both the electrode part and the internal wiring part of the chip-type electronic component) .
Fifth aspect : In any one of the first to fourth aspects, the fillet-shaped gap filler has a ratio of the maximum width dimension Wmax to the maximum thickness dimension Tmax (Wmax / Tmax) of 3 to 15. Ceramic substrate.
Sixth aspect : In any one of the first to fifth aspects, the chip-type electronic component has two electrode portions facing each other, and the gap filler is a fillet in the peripheral region of each of the two electrode portions. A ceramic substrate provided in a shape.
Seventh aspect : The ceramic substrate according to any one of the first to sixth aspects, wherein the fillet-like gap filler contains a silver component.
Eighth aspect : The ceramic substrate according to any one of the first to seventh aspects, wherein the fillet-like gap filler contains a palladium component.
Ninth aspect : The ceramic substrate according to any one of the first to eighth aspects, wherein the fillet-like gap filler contains the same inorganic component as the green sheet.
A tenth aspect : a method of manufacturing a ceramic substrate comprising a ceramic substrate portion and chip-type electronic components disposed inside the ceramic substrate portion,
(I) For two green sheets selected from a plurality of green sheets, a first gap filler material is applied to one green sheet to form a first gap filler precursor, and Applying a two-gap filler material to form a second gap-filler precursor;
(Ii) A step of laminating a plurality of green sheets to form a green sheet laminate, wherein the first gap filler precursor and the second gap filling when the one green sheet and the other green sheet are laminated A step of sandwiching a chip-type electronic component between the one green sheet and the other green sheet in a state where the material precursor faces directly, and (iii) firing the green sheet laminate And a step of obtaining a ceramic substrate portion,
When sandwiching the chip-type electronic component, in the peripheral region of the electrode portion of the chip-type electronic component, the first gap filler precursor and the second gap filler precursor are aligned with each other and integrated with each other. The filler precursor is formed, and when firing, the green sheet laminate is pressed in the thickness direction from the outside to the inside, thereby “filling the gap filler into an integrated gap”. A method for producing a ceramic substrate, comprising:
Eleventh aspect : In the tenth aspect, when the chip-type electronic component is sandwiched, the one green sheet coated with the first gap filler material is disposed vertically upward, while the second gap filler material is coated. The other green sheet is placed vertically downward,
A method for producing a ceramic substrate, wherein the amount of application of the second gap filler material is greater than the amount of application of the first gap filler material.
Twelfth aspect : A method for producing a ceramic substrate according to the eleventh aspect, wherein the thickness of the second gap filler precursor (coating film) is 60 to 150 μm.
Thirteenth aspect : In any one of the tenth to twelfth aspects, the chip electronic component has two electrode portions facing each other,
When sandwiching a chip-type electronic component, the first gap filler precursor and the second gap filler precursor are integrated with each other in the peripheral region of each of the two electrode portions, and the ceramic A method for manufacturing a substrate.
14th aspect : In said 13th aspect, when it sees along the opposing direction of two electrode parts, the inner side edge part of a 2nd clearance gap material precursor (coating film) is 0.2 from the center part of a chip-type electronic component. A method of manufacturing a ceramic substrate, wherein a chip-type electronic component is sandwiched so as to be positioned at a distance of ~ 0.5 mm.
Fifteenth aspect : In any one of the tenth to fourteenth aspects, a constraining layer is formed on the opposing outer main surface of the green sheet laminate, and the green sheet laminate is formed from the outside to the inside through the constraining layer. A method of manufacturing a ceramic substrate, characterized by pressing in the thickness direction.
 本発明に関連する事項について各種試験を実施した。 Various tests were conducted on matters related to the present invention.
 具体敵には、本発明に従って図14に示されるようなセラミック基板をテスト作製し、「吸湿リフロー試験」、「高温放置試験」および「温度サイクル試験」を実施した(表1参照)。
Figure JPOXMLDOC01-appb-T000001
Specifically, a ceramic substrate as shown in FIG. 14 was prepared by test according to the present invention, and a “moisture absorption reflow test”, a “high temperature storage test”, and a “temperature cycle test” were performed (see Table 1).
Figure JPOXMLDOC01-appb-T000001
 結果を図15に示す。図15に示すグラフ図から分かるように、本発明に従って作製されたセラミック基板は、満足のいく品質特性を有していることを確認できた。 The results are shown in FIG. As can be seen from the graph shown in FIG. 15, it was confirmed that the ceramic substrate produced according to the present invention had satisfactory quality characteristics.
 次に、「隙間充填材前駆体の配置効果についての確認試験」を実施した。特に、図16に示されるように、下側に配置される隙間充填材前駆体の配置効果について試験を実施した。具体的には、第2隙間充填材前駆体とチップ型電子部品との水平離隔距離を変化させてその効果を調べた。その結果、図16に示されるように、水平離隔距離が0.2~0.5mm程度であると、“フィレット状の隙間充填材”を好適に形成することができ(特に“ショート”の可能性をより減じることができ)、満足のいく品質特性を備えたセラミック基板が得られることを確認できた。 Next, a “confirmation test on the arrangement effect of the gap filler precursor” was performed. In particular, as shown in FIG. 16, a test was conducted on the arrangement effect of the gap filler precursor arranged on the lower side. Specifically, the effect was examined by changing the horizontal separation distance between the second gap filler precursor and the chip-type electronic component. As a result, as shown in FIG. 16, when the horizontal separation distance is about 0.2 to 0.5 mm, a “fillet-like gap filling material” can be suitably formed (particularly, “short” is possible). It has been confirmed that a ceramic substrate with satisfactory quality characteristics can be obtained.
 次に、「隙間充填材前駆体の厚さ効果についての確認試験」を実施した。特に、図17に示されるように、下側に配置される隙間充填材前駆体の厚さ効果について試験を実施した。具体的には、第2隙間充填材前駆体の厚さ寸法を変化させてその効果を調べた。その結果、図17に示されるように、第2隙間充填材前駆体の厚さが60~150μm程度(特に80μm~130μm程度)であると、“フィレット状の隙間充填材”を好適に形成することができ(特に導体厚みが増して電子部品と導体との接続が強固となり)、満足のいく品質特性を備えたセラミック基板が得られることを確認できた。 Next, a “confirmation test on the thickness effect of the gap filler precursor” was performed. In particular, as shown in FIG. 17, a test was conducted for the thickness effect of the gap filler precursor disposed on the lower side. Specifically, the effect was investigated by changing the thickness dimension of the second gap filler precursor. As a result, as shown in FIG. 17, when the thickness of the second gap filler precursor is about 60 to 150 μm (particularly about 80 μm to 130 μm), a “fillet-like gap filler” is suitably formed. It was confirmed that a ceramic substrate having satisfactory quality characteristics could be obtained (especially, the conductor thickness was increased and the connection between the electronic component and the conductor was strengthened).
 本発明に係るセラミック基板は、モバイル機器のRFモジュールや放熱性を利用したパワーLED用の基板や液晶のバックライト向けLED用の基板として好適に用いられると共に、電子部品が高密度実装された電子機器の基板などとしても好適に用いられる。 The ceramic substrate according to the present invention is suitably used as an RF module of a mobile device, a power LED substrate using heat dissipation, or an LED substrate for a liquid crystal backlight, and an electronic component mounted with high density. It is also suitably used as a substrate for equipment.
 特に本発明は、チップ型電子部品を内蔵したセラミック多層基板の製造工程の歩留まり向上を図る事ができるので、最近普及の進んでいる液晶テレビや携帯電話の液晶画面用のバックライト向けLED用の基板としての活用に大いに期待される。
関連出願の相互参照
In particular, the present invention can improve the yield of the manufacturing process of the ceramic multilayer substrate with the built-in chip type electronic components, so that the backlight LED for LCD screens of liquid crystal televisions and mobile phones, which have recently been widely used, is used. Highly expected to be used as a substrate.
Cross-reference of related applications
 本出願は、日本国特許出願第2010−123984号(出願日:2010年5月31日、発明の名称「セラミック多層基板とセラミック多層基板の製造方法」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるとする。 This application claims priority under the Paris Convention based on Japanese Patent Application No. 2010-123984 (filing date: May 31, 2010, title of the invention "ceramic multilayer substrate and method for producing ceramic multilayer substrate") To do. All the contents disclosed in the application are incorporated herein by this reference.

Claims (15)

  1.  セラミック基板であって、
     複数枚のグリーンシートの積層体の焼成により形成されたセラミック基板部、および
     前記セラミック基板部の内部に配されたチップ型電子部品
    を有して成り、
     前記チップ型電子部品の電極部の周辺領域においてフィレット状に形成された隙間充填材を更に有して成る、セラミック基板。
    A ceramic substrate,
    A ceramic substrate portion formed by firing a laminate of a plurality of green sheets, and a chip-type electronic component disposed inside the ceramic substrate portion,
    A ceramic substrate, further comprising a gap filler formed in a fillet shape in a peripheral region of the electrode portion of the chip-type electronic component.
  2.  前記チップ型電子部品からその外側へと向かう方向に沿って、前記隙間充填材の厚みが漸次減少していることを特徴とする、請求項1に記載のセラミック基板。 2. The ceramic substrate according to claim 1, wherein the thickness of the gap filler gradually decreases along the direction from the chip-type electronic component toward the outside.
  3.  前記隙間充填材が前記チップ型電子部品の前記電極部と部分的に接触していることを特徴とする、請求項1に記載のセラミック基板。 The ceramic substrate according to claim 1, wherein the gap filling material is in partial contact with the electrode portion of the chip-type electronic component.
  4.  セラミック基板部の内部において内部配線部を有して成り、
     前記隙間充填材が前記内部配線部と部分的に接触していることを特徴とする、請求項1に記載のセラミック基板
    It has an internal wiring part inside the ceramic substrate part,
    The ceramic substrate according to claim 1, wherein the gap filler is in partial contact with the internal wiring portion.
  5.  前記隙間充填材について最大厚さ寸法Tmaxに対する最大幅寸法Wmaxの比(Wmax/Tmax)が3~15であることを特徴とする、請求項1に記載のセラミック基板。 2. The ceramic substrate according to claim 1, wherein a ratio (Wmax / Tmax) of a maximum width dimension Wmax to a maximum thickness dimension Tmax of the gap filler is 3 to 15.
  6.  前記チップ型電子部品が対向する2つの電極部を有しており、該2つの電極部の各々の周辺領域において前記隙間充填材がフィレット状に設けられていることを特徴とする、請求項1に記載のセラミック基板。 The chip-type electronic component has two electrode portions facing each other, and the gap filler is provided in a fillet shape in a peripheral region of each of the two electrode portions. A ceramic substrate as described in 1.
  7.  前記隙間充填材が銀成分を含有して成ることを特徴とする、請求項1に記載のセラミック基板。 The ceramic substrate according to claim 1, wherein the gap filler contains a silver component.
  8.  前記隙間充填材がパラジウム成分を含有して成ることを特徴とする、請求項1に記載のセラミック基板。 The ceramic substrate according to claim 1, wherein the gap filler contains a palladium component.
  9.  前記隙間充填材が前記グリーンシートと同一の無機成分を含有して成ることを特徴とする、請求項1に記載のセラミック基板。 The ceramic substrate according to claim 1, wherein the gap filling material contains the same inorganic component as the green sheet.
  10.  セラミック基板部および該セラミック基板部の内部に配されたチップ型電子部品を有して成るセラミック基板を製造する方法であって、
     (i)複数のグリーンシートから選択される2枚のグリーンシートにつき、一方のグリーンシート上に第1隙間充填材原料を塗布して第1隙間充填材前駆体を形成し、他方のグリーンシート上に第2隙間充填材原料を塗布して第2隙間充填材前駆体を形成する工程、
     (ii)前記複数のグリーンシートを積層してグリーンシート積層体を形成する工程であって、前記一方のグリーンシートおよび前記他方のグリーンシートの積層に際しては、前記第1隙間充填材前駆体と前記第2隙間充填材前駆体とを相互に対向させた状態で該一方のグリーンシートと該他方のグリーンシートとの間にチップ型電子部品を挟み込むことを行う工程、ならびに
     (iii)前記グリーンシート積層体を焼成に付してセラミック基板部を得る工程
    を含んで成り、
     前記チップ型電子部品の挟み込みに際しては、該チップ型電子部品の電極部の周辺領域において、前記第1隙間充填材前駆体と前記第2隙間充填材前駆体とを相互に合わせ、それらを一体化させた隙間充填材前駆体を形成し、また
     前記焼成に際しては、外側から内側へと前記グリーンシート積層体をその厚み方向に押圧し、それによって、前記一体化した隙間充填材前駆体からフィレット状の隙間充填材を形成する、セラミック基板の製造方法。
    A method of manufacturing a ceramic substrate having a ceramic substrate portion and chip-type electronic components disposed inside the ceramic substrate portion,
    (I) For two green sheets selected from a plurality of green sheets, a first gap filler material is applied on one green sheet to form a first gap filler precursor, and on the other green sheet Applying a second gap filler material to the second gap filler precursor,
    (Ii) a step of laminating the plurality of green sheets to form a green sheet laminate, wherein the first gap filler precursor and the first green sheet and the other green sheet are laminated, A step of sandwiching a chip-type electronic component between the one green sheet and the other green sheet with the second gap filler precursor facing each other; and (iii) the green sheet lamination Comprising subjecting the body to firing to obtain a ceramic substrate portion,
    When sandwiching the chip-type electronic component, the first gap filler precursor and the second gap filler precursor are aligned with each other in the peripheral region of the electrode portion of the chip-type electronic component, and they are integrated. Forming the gap filler precursor, and during the firing, the green sheet laminate is pressed in the thickness direction from the outside to the inside, thereby forming a fillet shape from the integrated gap filler precursor. A method for producing a ceramic substrate, wherein the gap filler is formed.
  11.  前記チップ型電子部品の前記挟み込みに際して前記一方のグリーンシートを垂直上方に配置する一方、前記他方のグリーンシートを垂直下方に配置する場合において、前記第2隙間充填材原料の塗布量を前記第1隙間充填材原料の塗布量よりも多くすることを特徴とする、請求項10に記載のセラミック基板の製造方法。 In the case where the one green sheet is disposed vertically upward while the other green sheet is disposed vertically downward when the chip-type electronic component is sandwiched, the coating amount of the second gap filler material is set to the first amount. The method for producing a ceramic substrate according to claim 10, wherein the amount is larger than a coating amount of the gap filler material.
  12.  前記第2隙間充填材前駆体の厚さ寸法を60~150μmとすることを特徴とする、請求項11に記載のセラミック基板の製造方法。 12. The method for manufacturing a ceramic substrate according to claim 11, wherein a thickness dimension of the second gap filler precursor is 60 to 150 μm.
  13.  前記チップ電子部品が対向する2つの電極部を有しており、
     該チップ型電子部品の挟み込みに際しては、前記2つの電極部の各々の周辺領域において、前記第1隙間充填材前駆体と前記第2隙間充填材前駆体とを相互に合わせて一体化させることを特徴とする、請求項10に記載のセラミック基板の製造方法。
    The chip electronic component has two electrode portions facing each other,
    When sandwiching the chip-type electronic component, the first gap filler precursor and the second gap filler precursor are integrated and integrated with each other in the peripheral region of each of the two electrode portions. The method for manufacturing a ceramic substrate according to claim 10, wherein the method is characterized in that:
  14.  前記2つの電極部の対向方向に沿って前記第2隙間充填材前駆体の内側端部が前記チップ型電子部品の中央部から0.2~0.5mm離れた位置となるように、前記チップ型電子部品の挟み込みを行うことを特徴とする、請求項13に記載のセラミック基板の製造方法。 The chip is arranged such that the inner end of the second gap filler precursor is positioned 0.2 to 0.5 mm away from the center of the chip-type electronic component along the opposing direction of the two electrode parts. The method for manufacturing a ceramic substrate according to claim 13, wherein the mold electronic component is sandwiched.
  15.  前記グリーンシート積層体の外面に拘束層を設け、前記工程(iii)において該拘束層を介して外側から内側へと該グリーンシート積層体を厚み方向に押圧することを特徴とする、請求項10に記載のセラミック基板の製造方法。 The constraining layer is provided on the outer surface of the green sheet laminate, and the green sheet laminate is pressed in the thickness direction from outside to inside through the constraining layer in the step (iii). A method for producing a ceramic substrate as described in 1.
PCT/JP2011/062861 2010-05-31 2011-05-30 Ceramic substrate and method for manufacturing same WO2011152544A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-123984 2010-05-31
JP2010123984A JP2013165086A (en) 2010-05-31 2010-05-31 Ceramic multilayer substrate and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2011152544A1 true WO2011152544A1 (en) 2011-12-08

Family

ID=45066898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062861 WO2011152544A1 (en) 2010-05-31 2011-05-30 Ceramic substrate and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2013165086A (en)
WO (1) WO2011152544A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741313B1 (en) 2019-02-06 2020-08-11 Eaton Intelligent Power Limited Bus bar assembly with integrated surge arrestor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056112A (en) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd Circuit component, unit packaged with circuit component, module containing circuit component, and method of manufacturing the same
JP2006135110A (en) * 2004-11-05 2006-05-25 Murata Mfg Co Ltd Ceramic multilayer substrate and its production process
JP2008159682A (en) * 2006-12-21 2008-07-10 Fujikura Ltd Multilayer printed wiring board and its manufacturing method
WO2009014017A1 (en) * 2007-07-26 2009-01-29 Murata Manufacturing Co., Ltd. Multilayer ceramic board and process for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056112A (en) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd Circuit component, unit packaged with circuit component, module containing circuit component, and method of manufacturing the same
JP2006135110A (en) * 2004-11-05 2006-05-25 Murata Mfg Co Ltd Ceramic multilayer substrate and its production process
JP2008159682A (en) * 2006-12-21 2008-07-10 Fujikura Ltd Multilayer printed wiring board and its manufacturing method
WO2009014017A1 (en) * 2007-07-26 2009-01-29 Murata Manufacturing Co., Ltd. Multilayer ceramic board and process for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741313B1 (en) 2019-02-06 2020-08-11 Eaton Intelligent Power Limited Bus bar assembly with integrated surge arrestor
WO2020160845A1 (en) * 2019-02-06 2020-08-13 Eaton Intelligent Power Limited Bus bar assembly with integrated surge arrestor
US11373786B2 (en) 2019-02-06 2022-06-28 Eaton Intelligent Power Limited Bus bar assembly with integrated surge arrestor

Also Published As

Publication number Publication date
JP2013165086A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP4409209B2 (en) Manufacturing method of circuit component built-in module
US7833370B2 (en) Method for manufacturing a ceramic multi-layered substrate
JP4597585B2 (en) Multilayer electronic component and manufacturing method thereof
US20130223038A1 (en) Module substrate and method for manufacturing module substrate
KR100462499B1 (en) Multilayer ceramic substrate and method for manufacturing the same, non-sintered ceramic laminate and electronic device
JP2006140537A (en) Wiring substrate and method of producing the same
WO2018030192A1 (en) Ceramic electronic component
KR100748238B1 (en) Non-shrinkage ceramic substrate and method of manufacturing the same
EP2120522A1 (en) Method for the production of laminated ceramic electronic parts
WO2012014692A1 (en) Ceramic multilayer substrate and method for producing same
JP4826253B2 (en) Method for manufacturing ceramic multilayer substrate and ceramic multilayer substrate
WO2011152544A1 (en) Ceramic substrate and method for manufacturing same
JP5723577B2 (en) Manufacturing method of electronic parts
JP2006216709A (en) Multilayered wiring board with built-in multilayered electronic component, and multilayered electronic component
US20090230596A1 (en) Method of manufacturing multi-layered ceramic substrate
KR100956212B1 (en) Manufacturing method of multi-layer substrate
JP4900227B2 (en) Multilayer ceramic substrate manufacturing method, multilayer ceramic substrate, and electronic component using the same
JP4826348B2 (en) Method for producing multilayer ceramic electronic component with protruding electrodes
JP5457207B2 (en) Board built-in component, method for manufacturing the same, and wiring board
JP2006032747A (en) Laminated electronic component and its manufacturing method
JP2004186342A (en) Ceramic laminate and its manufacturing method
KR20140148157A (en) Fabricating method of multilayered ceramic electronic component and multilayered ceramic electronic component by fabricating the same
JP2004186343A (en) Ceramic laminate and its manufacturing method
JP3898653B2 (en) Manufacturing method of glass ceramic multilayer wiring board
JP2004165343A (en) Laminated ceramic electronic component and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP