WO2011152366A1 - Energy-generating system - Google Patents

Energy-generating system Download PDF

Info

Publication number
WO2011152366A1
WO2011152366A1 PCT/JP2011/062422 JP2011062422W WO2011152366A1 WO 2011152366 A1 WO2011152366 A1 WO 2011152366A1 JP 2011062422 W JP2011062422 W JP 2011062422W WO 2011152366 A1 WO2011152366 A1 WO 2011152366A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
power
engine
generation system
energy generation
Prior art date
Application number
PCT/JP2011/062422
Other languages
French (fr)
Japanese (ja)
Inventor
雅史 能島
石川 敬郎
島田 敦史
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2011152366A1 publication Critical patent/WO2011152366A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to an energy generation system that generates electric power and hydrogen.
  • Patent Document 1 proposes a “high-pressure hydrogen supply system” that generates hydrogen by dehydrogenating an organic hydride (hydrogen storage medium) that stores hydrogen under a catalyst activated by the heat of exhaust gas. Has been.
  • an object of the present invention is to provide a small-scale energy generation system that generates electric power and hydrogen.
  • the present invention provides an energy generation system that generates electric power and hydrogen, and generates electric power and high-temperature exhaust gas when operated, and high-temperature from the electric power generation means.
  • the power generation means generates electric power and high-temperature exhaust gas as it operates.
  • the hydrogen generation means generates hydrogen by dehydrogenating a hydrogen storage medium that chemically stores hydrogen using the heat of the high-temperature exhaust gas from the power generation means.
  • the electrolysis means electrolyzes water with the electric power from the power generation means to generate hydrogen and oxygen. That is, according to such an energy generation system, since hydrogen can be generated by the hydrogen generation means and the electrolysis means, a large amount of hydrogen can be produced even if the system is configured in a small scale.
  • FIG. 1 is a cross-sectional view of a reactor according to this embodiment
  • (b) is a cross-sectional view of a reaction cell according to this embodiment
  • (c) is a cross-sectional view of a reaction sheet according to this embodiment. It is.
  • the energy generation system (hydrogen station 1) according to the present embodiment is a system that generates electric power and hydrogen (energy).
  • the hydrogen station 1 in the present embodiment is connected to a pipeline, a hydrogen storage tank, and the like, and can be transported to a consumption place, in addition to the purpose of supplying hydrogen as a fuel to a hydrogen automobile.
  • the hydrogen station 1 generates MCH (methylcyclohexane, C 7 H 14 , hydrogen storage medium) using at least the engine 11, a generator 13 that is operated by the power of the engine 11, and the heat of exhaust gas from the engine 11.
  • MCH methylcyclohexane, C 7 H 14 , hydrogen storage medium
  • a distribution device 51 power distribution means
  • an electrolysis device 60 electrolysis means that electrolyzes water using the distributed power to generate hydrogen and oxygen
  • a controller 70 control means that electronically controls the system It is equipped with.
  • a compressor, a hydrogen storage tank, and a filling machine can be arranged on a pipe connecting the compressor 14 and the hydrogen automobile. That is, in the present embodiment, the “power generation means that generates electric power and high-temperature exhaust gas in accordance with the operation” includes the engine 11 and the generator 13.
  • Equation (1) is an endothermic reaction
  • the energy efficiency of the entire system is enhanced by utilizing the heat of the exhaust gas in the reactor 30, that is, by recovering the energy of the exhaust gas.
  • MCH methylcyclohexane
  • the hydrogen storage medium is a fuel that easily adds and generates hydrogen, and is, for example, a hydrocarbon fuel or a mixed fuel thereof.
  • toluene as a combustion fuel
  • other examples include toluene, gasoline, heavy oil, light oil, kerosene, biofuel, alcohol, methane, LPG (Liquefied Petroleum Gas). It is also possible to use at least one selected.
  • the octane number of toluene (about 120) is higher than that of gasoline, which is a normal fuel for spark ignition, knocking is unlikely to occur in the engine 11, and the engine 11 is operated at a high compression ratio and combustion efficiency is increased. It is also possible to increase. Specifically, in the case of a general spark ignition type engine 11, a compression ratio of about 13 is the maximum value, but by using toluene, the compression ratio can be increased to 13 or more (for example, a compression ratio of 15). It becomes. Furthermore, in the case of the spark ignition type engine 11, the theoretical cycle is the Otto cycle, so that the thermal efficiency improves as the compression ratio increases.
  • the engine 11 is a diesel or spark ignition engine and is a four-stroke engine that repeats four cycles (intake, compression, combustion / expansion, and exhaust).
  • the engine 11 includes a plurality of cylinders, a piston that reciprocates in the cylinder, a crankshaft 12 that is connected to the piston via a connecting rod, an intake valve that is linked to the crankshaft 12, and An exhaust valve and a spark plug that is electronically controlled by the controller 70 are provided.
  • the output of the engine 11 (rotation speed, torque, exhaust gas flow rate, etc.) is controlled by a controller 70 that controls the intake amount of fuel / air and the ignition timing.
  • the engine 11 is controlled to operate at a compression ratio of 13 or more.
  • Such an engine 11 has a smaller energy loss due to operation / stop as compared with a turbine, and its size (displacement) can be easily changed in design. Further, the engine displacement, the number of cylinders (2 cylinders, 4 cylinders, 6 cylinders, etc.) and the arrangement (V type, in-line type, etc.) can be changed as appropriate.
  • the generator 13 is a device that operates by the power of the engine 11 to generate electric power. Specifically, the generator 13 is mechanically connected to the crankshaft 12 of the engine 11 via an acceleration or deceleration mechanism and a clutch (not shown). Thereby, the motive power of the engine 11 is transmitted to the generator 13 without loss, and is converted into electric power by the generator 13. Note that the power generated by the generator 13 is supplied to the power distribution device 51. Further, a power storage device that appropriately charges / discharges electric power may be provided between the generator 13 and the power distribution device 51.
  • the compressor 14 is operated by the power of the engine 11 and compresses the hydrogen from the separator 42 and / or the electrolyzer 60 to increase the pressure to a predetermined pressure (for example, several MPa to several tens of MPa). It is a device that pumps toward external hydrogen demanding equipment such as battery cars and hydrogen tanks. Specifically, the compressor 14 is mechanically connected to the crankshaft 12 of the engine 11 via an acceleration or deceleration mechanism and a clutch (not shown). As a result, the power of the engine 11 is transmitted to the compressor 14 without loss and is converted into hydrogen fluid energy by the compressor 14.
  • a predetermined pressure for example, several MPa to several tens of MPa.
  • the compressor 14 includes an electric motor, and the generator 13 It is good also as a structure which the said electric motor rotates and the compressor 14 act
  • a plurality of compressors 14 may be connected in series, and hydrogen compressed by one compressor 14 may be further compressed by another compressor 14 to boost the hydrogen stepwise.
  • a buffer tank may be further provided between one compressor 14 and the other compressor 14 so that a hydrogen storage alloy is incorporated and hydrogen is temporarily stored. If the buffer tank is provided in this way, hydrogen can be supplied to the other compressor 14 described above at a stable rate.
  • a buffer tank is provided with a heater that operates with electric power from the generator 13, and the ON / OFF control of the heater may be performed to control hydrogen storage / release by the hydrogen storage alloy.
  • the pipe 21a includes an air cleaner that removes dust and the like, a throttle valve that controls the flow rate of air, a fuel injector that injects toluene from the tank 43, and an oxygen injector that injects oxygen from the electrolyzer 60 (all not shown). Is provided.
  • oxygen is supplied to the engine 11 by electrolysis of water in the electrolyzer 60 through the pipe 60b and the oxygen injector. That is, in the present embodiment, the “oxygen supply means for supplying oxygen generated by the electrolyzer 60 to the engine 11” includes a pipe 60b and the oxygen injector. Since oxygen is supplied in this way, the output of the engine 11 and the amount of exhaust heat energy are improved, and the amount of power generated by the generator 13 and the amount of hydrogen generated by the reactor 30 can be increased. Become.
  • a hydrogen injector may be attached to the pipe 21b, and the hydrogen separated by the separator 42 may be added (injected) by the hydrogen injector.
  • the supercharger 21 is a device that operates by the exhaust gas discharged from the engine 11, compresses air taken into the engine 11, and supercharges the engine 11.
  • the air is supercharged to the engine 11 by the supercharger 21, that is, the flow rate of the intake air is increased, so that the torque generated by the engine 11 is improved, and the thermal efficiency and output of the engine 11 are improved. It is supposed to be.
  • the exhaust side of the engine 11 will be described.
  • the exhaust gas outlet of the engine 11 is connected to the exhaust gas inlet of the reactor 30 through a pipe 21c, a supercharger 21, and a pipe 21d.
  • the exhaust gas from the engine 11 is led to the reactor 30 after operating (rotating) the supercharger 21.
  • the reactor 30 includes a plurality of reaction cells 31 whose outer shape has a columnar shape, and a cylindrical first casing 32 that houses the plurality of reaction cells 31.
  • MCH methylcyclohexane, hydrogen-containing fuel
  • FIG. 1 only one reaction cell 31 is shown.
  • the first casing 32 and the second casing 34 which will be described later are made of metal (for example, SUS) so as to have high thermal conductivity.
  • the shape of the 1st casing 32 and the 2nd casing 34 is not limited to a cylindrical shape, For example, a square cylinder shape and a polygonal cylinder shape may be sufficient.
  • the reaction cell 31 includes a plurality of stacked reaction sheets 33 and a second casing 34 that accommodates the plurality of reaction sheets 33.
  • each reaction sheet 33 includes a base metal foil 35, a porous layer 36 formed on each surface of the metal foil 35, and a catalyst 37 supported on the porous layer 36. And. That is, each reaction sheet 33 has a three-layer structure in which the porous layer 36 supported by the catalyst 37, the metal foil 35, and the porous layer 36 supported by the catalyst 37 are stacked in this order. In addition, a gap through which MCH, generated hydrogen, and toluene can flow is formed between the reaction sheets 33 adjacent to each other in the thickness direction.
  • reaction sheet 33 is in the form of a sheet, its heat capacity is small, heat is quickly conducted through the reaction sheet 33, and the temperature of the catalyst 37 is quickly raised to a temperature at which the catalyst functions well. Thereby, the efficiency of the decomposition reaction which decomposes
  • each reaction sheet 33 is formed with a plurality of through holes 33a. Thereby, the heat of exhaust gas is conducted well in the thickness direction, and MCH, generated hydrogen, and toluene flow well in the thickness direction.
  • the metal foil 35 is made of, for example, an aluminum foil and has a thickness of about 50 to 200 ⁇ m. However, the metal foil 35 may not be provided, or instead of the metal foil 35, a porous layer serving as a base may be provided, and the entire reaction sheet 33 may have a porous structure.
  • the porous layer 36 is a layer for supporting the catalyst 37 and has a plurality of pores through which MCH, generated hydrogen, and toluene can flow.
  • a porous layer 36 is made of an oxide mainly composed of alumina, for example.
  • Catalyst 37 is a catalyst for decomposing MCH, that is, dehydrogenating to produce hydrogen and toluene (see formula (1)).
  • a catalyst 37 is composed of at least one selected from, for example, platinum, nickel, palladium, rhodium, iridium, ruthenium, molybdenum, rhenium, tungsten, vanadium, osmium, chromium, cobalt, iron and the like.
  • the MCH supply system includes a tank 41 that stores MCH.
  • the tank 41 is a tank that temporarily stores MCH as a raw material for hydrogen generation.
  • the MCH is transported to the tank 41 by, for example, a tank lorry.
  • MCH of the tank 41 is supplied in each reaction cell 31 through the piping 41a.
  • the pipe 41a is provided with a pump that pumps MCH and a flow rate control valve that controls the flow rate of the MCH.
  • the hydrogen / toluene lead-out system includes a separator 42 and a tank 43.
  • the hydrogen (gas) and toluene (gas) produced in each reaction cell 31 are led out to the separator 42 through the pipe 42a while being mixed.
  • the separator 42 is a device that separates hydrogen and toluene.
  • the separator 42 according to the present embodiment cools a mixture of hydrogen and toluene by air cooling so that only toluene (boiling point: 110 ° C.) is liquefied and hydrogen and toluene are separated. . Therefore, for example, on the outer peripheral surface of the separator 42, heat radiating fins (not shown) are provided for promoting air-cooling.
  • the separation method is not limited to this, and other methods such as a pressure swing adsorption device or a hydrogen permeable membrane (such as a Pd membrane) that selectively permeate hydrogen may be used.
  • the hydrogen separated by the separator 42 is supplied to the compressor 14 or the engine 11 (pipe not shown) through the pipe 42b.
  • the structure provided with the pump which pumps hydrogen into the piping 42b may be sufficient.
  • the toluene separated by the separator 42 flows through the pipe 42c extending from the bottom of the separator 42 by its own weight, and is stored in the tank 43.
  • the structure provided with the pump (not shown) which pumps toluene into the piping 42c may be sufficient.
  • the toluene in the tank 43 passes through the pipe 43a and is then injected into the pipe 21b (intake port) by a fuel injector (not shown) controlled by the controller 70.
  • the pipe 43a is provided with a pump (not shown) that pumps toluene.
  • the power distribution device 51 is a device that distributes the power generated by the generator 13 to the electrolyzer 60 and the external power grid 52 in accordance with a command from the controller 70 in accordance with the amount of power required from the outside. There are various electronic circuits.
  • the power distribution device 51 is controlled so that the power distribution amount to the power system network 52 increases.
  • the power distribution device 51 is controlled to supply power only to the power grid 52. Is done.
  • the buffer tank for temporarily storing hydrogen when the buffer tank for temporarily storing hydrogen is provided, for example, the pressure of hydrogen in the buffer tank is detected via a pressure sensor, and the amount of hydrogen stored is calculated based on the detected pressure.
  • the power distribution device 51 may be configured to supply power only to the power system network 52.
  • the electrolyzer 60 operates in accordance with a command from the controller 70, electrolyzes water using the electric power from the power distribution device 51 (the generator 13) (see formula (2)), and generates hydrogen and oxygen. It is a device to do. Therefore, the electrolyzer 60 includes a positive electrode (anode) and a negative electrode (cathode), a container for temporarily storing water to be electrolyzed, a voltage controller for controlling a voltage applied to the positive electrode and the negative electrode, and the like. Moreover, the water to be electrolyzed is appropriately supplied from, for example, tap water.
  • the generated hydrogen is supplied to the compressor 14 through the pipe 60a, or a pipe or other equipment (for example, another compressor connected downstream of the compressor 14) that connects the compressor 14 and the hydrogen automobile. ).
  • the produced oxygen is supplied to the pipe 21b (engine 11) through the pipe 60b.
  • the controller 70 is a control device that electronically controls the hydrogen station 1, and includes a CPU, a ROM, a RAM, various interfaces, an electronic circuit, and the like, and performs various functions according to programs stored therein. In addition, various devices are controlled.
  • the controller 70 is electrically connected to the engine 11, the generator 13, the compressor 14, the power distribution device 51, and the electrolysis device 60, and is connected to sensors and signal input devices provided in each device by wiring. It is preferable. Also, other devices (compressor, filling machine, hydrogen tank, lighting device, etc.) in the hydrogen station 1 are connected in the same manner. Further, the controller 70 is input with a required power amount and a required hydrogen amount from the outside via an operation panel (not shown) or the like.
  • Hydrogen is obtained by electrolysis using the electric power from the reactor 30 that generates hydrogen by dehydrogenating MCH using the heat of the exhaust gas from the engine 11 and the generator 13 linked to the engine 11.
  • a large amount of hydrogen can be produced by the electrolyzer 60 that generates the hydrogen. That is, since hydrogen is generated using the exhaust gas and electric power output from the engine 11 (the generator 13), the engine 11 and the reactor 30 can be downsized, and the hydrogen station 1 can be reduced in scale.
  • the power generation means that generates electric power and high-temperature exhaust gas with the operation is configured to include the engine 11 and the generator 13 is exemplified.
  • the configuration may be a fuel cell or a solid oxide fuel cell. Moreover, it may replace with the engine 11 and the structure provided with a turbine may be sufficient.

Abstract

Disclosed is a small-scale energy-generating system that generates electric power and hydrogen. The disclosed hydrogen station (1), which generates electric power and hydrogen, is provided with: a generator (13) and an engine (11) that generate power and high-temperature exhaust gas along with the operation thereof; a reaction vessel (30) that causes a dehydrogenation reaction of MCH using the heat of high-temperature exhaust gas from the engine (11), thus generating hydrogen; and an electrolysis device (60) that electrolyzes water using the power from the generator (13), producing hydrogen and oxygen.

Description

エネルギー生成システムEnergy generation system
 本発明は、電力及び水素を生成するエネルギー生成システムに関する。 The present invention relates to an energy generation system that generates electric power and hydrogen.
 近年、地球において、資源の枯渇及び環境破壊は大きな問題とされており、再生可能エネルギーによるゼロエミッション型社会の構築が求められている。例えば、風力、太陽光等の自然エネルギーの利用や、自然界に存在するものの、未だ利用されていない未利用エネルギーの活用が勧められている。 In recent years, depletion of resources and destruction of the environment are regarded as major problems on the earth, and there is a demand for the construction of a zero-emission society using renewable energy. For example, it is recommended to use natural energy such as wind power and sunlight, or unused energy that exists in nature but has not been used yet.
 また、自然界に無限に存在し、貯蔵可能なエネルギーである水素に着目され、化石燃料の代替エネルギーとして期待されている。特に、水素を利用した水素自動車、分散電源としての燃料電池、燃料電池自動車等の開発が進められており、これに並行して、水素自動車等に水素を供給する水素ステーション(水素供給インフラ)の開発、整備も進められている。 In addition, it is expected to be an alternative energy for fossil fuels, focusing on hydrogen, which is an infinitely existing and storable energy in nature. In particular, the development of hydrogen vehicles using hydrogen, fuel cells as distributed power sources, fuel cell vehicles, etc. is underway, and in parallel, hydrogen stations (hydrogen supply infrastructure) that supply hydrogen to hydrogen vehicles, etc. Development and maintenance are also underway.
 このうち、水素ステーションについては、(1)水素(気体)を圧縮して、貯蔵・供給する方式、(2)水素を物理的に吸着し、又は化学的(原子的)に吸蔵し、貯蔵・供給する方式、(3)水素(気体)を冷却し、水素(液体)を貯蔵・供給する方式、(4)天然ガス、メタノール等の原燃料を改質することで水素を生成し、水素を貯蔵・供給する方式等が提案されている。 Among these, for the hydrogen station, (1) hydrogen (gas) is compressed, stored and supplied, and (2) hydrogen is physically adsorbed or chemically (atomic) occluded, stored and supplied. (3) Cooling hydrogen (gas), storing and supplying hydrogen (liquid), (4) Producing hydrogen by reforming raw fuel such as natural gas and methanol, A storage and supply system has been proposed.
 例えば、特許文献1には、排気ガスの熱により活性化した触媒下で、水素を貯蔵する有機ハイドライド(水素貯蔵媒体)を脱水素反応させ、水素を生成する「高圧水素の供給システム」が提案されている。 For example, Patent Document 1 proposes a “high-pressure hydrogen supply system” that generates hydrogen by dehydrogenating an organic hydride (hydrogen storage medium) that stores hydrogen under a catalyst activated by the heat of exhaust gas. Has been.
特開2004-197705号公報JP 2004-197705 A
 しかしながら、特許文献1の「高圧水素の供給システム」では、多量の水素を製造する場合、水素を生成する水素製造装置に、多量の排気ガスを供給しなければならず、排気ガス及び電力を生成するエンジン(発電機)が大型化してしまい、システム全体の規模が大きくなってしまうという不都合があった。 However, in the “high pressure hydrogen supply system” of Patent Document 1, when a large amount of hydrogen is produced, a large amount of exhaust gas must be supplied to a hydrogen production apparatus that produces hydrogen, and exhaust gas and electric power are generated. As a result, the size of the engine (generator) increases, and the scale of the entire system increases.
 そこで、本発明は、電力及び水素を生成する小規模なエネルギー生成システムを提供することを課題とする。 Therefore, an object of the present invention is to provide a small-scale energy generation system that generates electric power and hydrogen.
 前記課題を解決するための手段として、本発明は、電力及び水素を生成するエネルギー生成システムであって、作動に伴って電力及び高温の排気ガスを生成する発電手段と、前記発電手段からの高温の排気ガスの熱を利用して、水素貯蔵媒体を脱水素反応させることで水素を生成する水素生成手段と、前記発電手段からの電力によって水を電気分解し、水素及び酸素を生成する電気分解手段と、を備えることを特徴とするエネルギー生成システムである。 As means for solving the above-mentioned problems, the present invention provides an energy generation system that generates electric power and hydrogen, and generates electric power and high-temperature exhaust gas when operated, and high-temperature from the electric power generation means. The hydrogen generating means for generating hydrogen by dehydrogenating the hydrogen storage medium using the heat of the exhaust gas of the gas, and the electrolysis for generating hydrogen and oxygen by electrolyzing water with the electric power from the power generating means Means for generating an energy.
 このようなエネルギー生成システムによれば、発電手段は、その作動に伴って、電力及び高温の排気ガスを生成する。そして、水素生成手段は、発電手段からの高温の排気ガスの熱を利用して、化学的に水素を貯蔵する水素貯蔵媒体を脱水素反応させることで水素を生成する。また、電気分解手段は、発電手段からの電力によって水を電気分解し、水素及び酸素を生成する。
 すなわち、このようなエネルギー生成システムによれば、水素生成手段及び電気分解手段で水素を生成できるので、システムを小規模な構成としても、多量の水素を製造できる。
According to such an energy generation system, the power generation means generates electric power and high-temperature exhaust gas as it operates. The hydrogen generation means generates hydrogen by dehydrogenating a hydrogen storage medium that chemically stores hydrogen using the heat of the high-temperature exhaust gas from the power generation means. The electrolysis means electrolyzes water with the electric power from the power generation means to generate hydrogen and oxygen.
That is, according to such an energy generation system, since hydrogen can be generated by the hydrogen generation means and the electrolysis means, a large amount of hydrogen can be produced even if the system is configured in a small scale.
 本発明によれば、電力及び水素を生成する小規模なエネルギー生成システムを提供することができる。そして、本発明の諸側面および効果、並びに、他の効果およびさらなる特徴は、添付の図面を参照して後述する本発明の例示的かつ非制限的な実施の形態の詳細な説明により、一層明らかとなるであろう。 According to the present invention, a small-scale energy generation system that generates electric power and hydrogen can be provided. Further aspects and advantages of the present invention, as well as other effects and further features, will become more apparent from the detailed description of exemplary and non-limiting embodiments of the present invention described below with reference to the accompanying drawings. It will be.
本実施形態に係る水素ステーションの構成を示す図である。It is a figure which shows the structure of the hydrogen station which concerns on this embodiment. (a)は本実施形態に係る反応器の輪切り断面図であり、(b)は本実施形態に係る反応セルの輪切り断面図であり、(c)は本実施形態に係る反応シートの断面図である。(A) is a cross-sectional view of a reactor according to this embodiment, (b) is a cross-sectional view of a reaction cell according to this embodiment, and (c) is a cross-sectional view of a reaction sheet according to this embodiment. It is.
 以下、本発明の一実施形態について、図1~図2を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
≪エネルギー生成システムの構成≫
 図1に示すように、本実施形態に係るエネルギー生成システム(水素ステーション1)は、電力及び水素(エネルギー)を生成するシステムである。
 本実施形態における水素ステーション1は、水素自動車に燃料である水素を供給することを目的にする以外に、パイプラインや水素貯蔵タンクなどと接続され、消費地に輸送することも可能である。
 水素ステーション1は、少なくともエンジン11と、エンジン11の動力により作動する発電機13と、エンジン11からの排気ガスの熱を利用して、MCH(メチルシクロヘキサン、C14、水素貯蔵媒体)を脱水素反応させることで(式(1)参照)、水素及びトルエン(高オクタン価燃料、脱水素物)を生成する反応器30(水素生成手段)と、発電機13で生成した電力を分配する電力分配装置51(電力分配手段)と、分配された電力によって水を電気分解し、水素及び酸素を生成する電気分解装置60(電気分解手段)と、システムを電子制御するコントローラ70(制御手段)と、を備えている。
 また、エンジン11の動力により作動する圧縮機14と、過給器21(ターボ装置)を備えることも可能となる。また、さらに圧縮機14と水素自動車をつなぐ配管に圧縮機、水素貯蔵タンクや充填機を配置することも可能となる。
 つまり、本実施形態において、「作動に伴って電力及び高温の排気ガスを生成する発電手段」は、エンジン11と発電機13とを備えて構成されている。
≪Energy generation system configuration≫
As shown in FIG. 1, the energy generation system (hydrogen station 1) according to the present embodiment is a system that generates electric power and hydrogen (energy).
The hydrogen station 1 in the present embodiment is connected to a pipeline, a hydrogen storage tank, and the like, and can be transported to a consumption place, in addition to the purpose of supplying hydrogen as a fuel to a hydrogen automobile.
The hydrogen station 1 generates MCH (methylcyclohexane, C 7 H 14 , hydrogen storage medium) using at least the engine 11, a generator 13 that is operated by the power of the engine 11, and the heat of exhaust gas from the engine 11. Electric power that distributes the electric power generated by the reactor 30 (hydrogen generating means) that generates hydrogen and toluene (high-octane fuel, dehydrogenated material) by the dehydrogenation reaction (see formula (1)) and the generator 13 A distribution device 51 (power distribution means), an electrolysis device 60 (electrolysis means) that electrolyzes water using the distributed power to generate hydrogen and oxygen, and a controller 70 (control means) that electronically controls the system It is equipped with.
Moreover, it becomes possible to provide the compressor 14 which act | operates with the motive power of the engine 11, and the supercharger 21 (turbo apparatus). In addition, a compressor, a hydrogen storage tank, and a filling machine can be arranged on a pipe connecting the compressor 14 and the hydrogen automobile.
That is, in the present embodiment, the “power generation means that generates electric power and high-temperature exhaust gas in accordance with the operation” includes the engine 11 and the generator 13.
 C14(MCH)→C14(トルエン)+3H-205kj …(1) C 7 H 14 (MCH) → C 7 H 14 (toluene) + 3H 2 −205 kj (1)
 なお、式(1)は吸熱反応であるから、反応器30において排気ガスの熱を利用することにより、つまり、排気ガスのエネルギーを回収することにより、システム全体のエネルギー効率が高められている。 Note that, since the equation (1) is an endothermic reaction, the energy efficiency of the entire system is enhanced by utilizing the heat of the exhaust gas in the reactor 30, that is, by recovering the energy of the exhaust gas.
<MCH、トルエン>
 すなわち、本実施形態では、水素貯蔵媒体(有機ハイドライド)として、MCH(メチルシクロヘキサン)を使用した構成を例示するが、その他に例えば、シクロヘキサン、デカリン等も使用できる。なお、水素貯蔵媒体とは、水素を容易に添加・生成する燃料であって、例えば、炭化水素系燃料やその混合燃料である。
<MCH, toluene>
That is, in this embodiment, although the structure which uses MCH (methylcyclohexane) is illustrated as a hydrogen storage medium (organic hydride), for example, cyclohexane, decalin, etc. can also be used. The hydrogen storage medium is a fuel that easily adds and generates hydrogen, and is, for example, a hydrocarbon fuel or a mixed fuel thereof.
 また、本実施形態では、燃焼用燃料として、トルエンを使用した構成を例示するが、その他に例えば、トルエン、ガソリン、重油、軽油、灯油、バイオ燃料、アルコール、メタン、LPG(Liquefied Petroleum Gas)から選択された少なくとも1種を使用することもできる。 Further, in the present embodiment, a configuration using toluene as a combustion fuel is exemplified, but other examples include toluene, gasoline, heavy oil, light oil, kerosene, biofuel, alcohol, methane, LPG (Liquefied Petroleum Gas). It is also possible to use at least one selected.
 そして、トルエンのオクタン価(約120)は、通常の火花点火用の燃料であるガソリンに対して高いので、エンジン11でノッキングが発生し難く、また、高圧縮比でエンジン11を作動させ、燃焼効率を高めることも可能となっている。具体的には、一般的な火花点火式のエンジン11の場合、圧縮比13程度が最大値であるが、トルエンを使用することにより、圧縮比13以上(例えば圧縮比15)に高めることも可能となる。さらに、火花点火式のエンジン11の場合、理論サイクルがオットーサイクルであるから、圧縮比が高くなると、熱効率が向上する。 Since the octane number of toluene (about 120) is higher than that of gasoline, which is a normal fuel for spark ignition, knocking is unlikely to occur in the engine 11, and the engine 11 is operated at a high compression ratio and combustion efficiency is increased. It is also possible to increase. Specifically, in the case of a general spark ignition type engine 11, a compression ratio of about 13 is the maximum value, but by using toluene, the compression ratio can be increased to 13 or more (for example, a compression ratio of 15). It becomes. Furthermore, in the case of the spark ignition type engine 11, the theoretical cycle is the Otto cycle, so that the thermal efficiency improves as the compression ratio increases.
<エンジン>
 エンジン11は、ディーゼルまたは火花点火エンジンで、4サイクル(吸気、圧縮、燃焼・膨張、排気)を繰り返す4ストローク機関である。火花点火エンジンの場合、エンジン11は、複数の気筒(シリンダ)と、気筒内を往復運動するピストンと、ピストンにコンロッドを介して接続されたクランク軸12と、クランク軸12に連動する吸気弁及び排気弁と、コントローラ70により電子制御される点火プラグと、を備えている。エンジン11の出力(回転速度、トルク、排気ガスの流量等)は、燃料・空気の吸気量、点火タイミングを制御するコントローラ70で制御される。
 なお、本実施形態において、エンジン11は圧縮比13以上で作動するように制御される。
<Engine>
The engine 11 is a diesel or spark ignition engine and is a four-stroke engine that repeats four cycles (intake, compression, combustion / expansion, and exhaust). In the case of a spark ignition engine, the engine 11 includes a plurality of cylinders, a piston that reciprocates in the cylinder, a crankshaft 12 that is connected to the piston via a connecting rod, an intake valve that is linked to the crankshaft 12, and An exhaust valve and a spark plug that is electronically controlled by the controller 70 are provided. The output of the engine 11 (rotation speed, torque, exhaust gas flow rate, etc.) is controlled by a controller 70 that controls the intake amount of fuel / air and the ignition timing.
In the present embodiment, the engine 11 is controlled to operate at a compression ratio of 13 or more.
 なお、このようなエンジン11は、タービンと比較して、運転・停止に伴うエネルギロスは小さく、その大きさ(排気量)等は設計変更容易である。また、エンジンの排気量や、気筒の数(2気筒、4気筒、6気筒等)及び配列(V型、直列型等)は、適宜変更自由である。 Note that such an engine 11 has a smaller energy loss due to operation / stop as compared with a turbine, and its size (displacement) can be easily changed in design. Further, the engine displacement, the number of cylinders (2 cylinders, 4 cylinders, 6 cylinders, etc.) and the arrangement (V type, in-line type, etc.) can be changed as appropriate.
<発電機>
 発電機13は、エンジン11の動力によって作動し電力を生成する装置ある。具体的には、発電機13は、増速又は減速機構及びクラッチ(図示しない)を介して、エンジン11のクランク軸12と機械的に接続されている。これにより、エンジン11の動力がロス無く発電機13に伝達し、発電機13で電力に変換されるようになっている。
 なお、発電機13で生成した電力は、電力分配装置51に供給されるようになっている。また、発電機13と電力分配装置51との間に、電力を適宜に充電/放電する蓄電装置を設ける構成としてもよい。
<Generator>
The generator 13 is a device that operates by the power of the engine 11 to generate electric power. Specifically, the generator 13 is mechanically connected to the crankshaft 12 of the engine 11 via an acceleration or deceleration mechanism and a clutch (not shown). Thereby, the motive power of the engine 11 is transmitted to the generator 13 without loss, and is converted into electric power by the generator 13.
Note that the power generated by the generator 13 is supplied to the power distribution device 51. Further, a power storage device that appropriately charges / discharges electric power may be provided between the generator 13 and the power distribution device 51.
<圧縮機>
 圧縮機14は、エンジン11の動力によって作動し、分離器42及び/又は電気分解装置60からの水素を圧縮して所定圧力(例えば、数MPa~数十MPa)に昇圧し、水素自動車、燃料電池車、水素タンク等の外部の水素需要機器に向けて圧送する装置である。具体的には、圧縮機14は、増速又は減速機構及びクラッチ(図示しない)を介して、エンジン11のクランク軸12と機械的に接続されている。これにより、エンジン11の動力がロス無く圧縮機14に伝達し、圧縮機14で水素の流体エネルギーに変換されるようになっている。
<Compressor>
The compressor 14 is operated by the power of the engine 11 and compresses the hydrogen from the separator 42 and / or the electrolyzer 60 to increase the pressure to a predetermined pressure (for example, several MPa to several tens of MPa). It is a device that pumps toward external hydrogen demanding equipment such as battery cars and hydrogen tanks. Specifically, the compressor 14 is mechanically connected to the crankshaft 12 of the engine 11 via an acceleration or deceleration mechanism and a clutch (not shown). As a result, the power of the engine 11 is transmitted to the compressor 14 without loss and is converted into hydrogen fluid energy by the compressor 14.
 なお、ここでは、圧縮機14がクランク軸12に接続され、エンジン11を動力源として作動する構成を例示しているが、その他に例えば、圧縮機14が電動モータを内蔵し、発電機13からの電力が供給されると前記電動モータが回転し、圧縮機14が作動する構成としてもよい。この構成の場合も、圧縮機14は、エンジン11の動力によって作動することになる。 Here, a configuration in which the compressor 14 is connected to the crankshaft 12 and operates using the engine 11 as a power source is illustrated. However, for example, the compressor 14 includes an electric motor, and the generator 13 It is good also as a structure which the said electric motor rotates and the compressor 14 act | operates when this electric power is supplied. Also in this configuration, the compressor 14 is operated by the power of the engine 11.
 その他、複数の圧縮機14を直列で接続し、一の圧縮機14で圧縮された水素を、他の圧縮機14でさらに圧縮し、水素を段階的に昇圧する構成としてもよい。
 さらに、この構成の場合、一の圧縮機14と他の圧縮機14との間に、水素吸蔵合金を内蔵し水素を一時的に貯蔵するバッファタンクをさらに設ける構成としてもよい。このようにバッファタンクを設ければ、前記した他の圧縮機14に、水素を安定した速度で供給することが可能となる。そして、バッファタンクに発電機13からの電力で作動するヒータを設け、このヒータをON/OFF制御することで、水素吸蔵合金による水素の吸蔵/放出を制御すればよい。
In addition, a plurality of compressors 14 may be connected in series, and hydrogen compressed by one compressor 14 may be further compressed by another compressor 14 to boost the hydrogen stepwise.
Furthermore, in the case of this configuration, a buffer tank may be further provided between one compressor 14 and the other compressor 14 so that a hydrogen storage alloy is incorporated and hydrogen is temporarily stored. If the buffer tank is provided in this way, hydrogen can be supplied to the other compressor 14 described above at a stable rate. A buffer tank is provided with a heater that operates with electric power from the generator 13, and the ON / OFF control of the heater may be performed to control hydrogen storage / release by the hydrogen storage alloy.
 次に、エンジン11の吸気側を説明する。
 上流端が外部の空気に開口した配管21aから、エンジン11に向かって順に、過給器21、配管21b(吸気ポート)、エンジン11の吸気口の順に接続されている。配管21aには、塵等を除去するエアクリーナ、空気の流量を制御するスロットル弁、タンク43からのトルエンを噴射する燃料インジェクタ、電気分解装置60からの酸素を噴射する酸素インジェクタ(いずれも図示しない)が設けられている。
Next, the intake side of the engine 11 will be described.
From the pipe 21 a whose upstream end is open to the outside air, the turbocharger 21, the pipe 21 b (intake port), and the intake port of the engine 11 are connected in this order from the pipe 21 a toward the engine 11. The pipe 21a includes an air cleaner that removes dust and the like, a throttle valve that controls the flow rate of air, a fuel injector that injects toluene from the tank 43, and an oxygen injector that injects oxygen from the electrolyzer 60 (all not shown). Is provided.
 このようにして高オクタン価のトルエンがエンジン11に供給されるので、エンジン11でノッキングが発生し難くなり、エンジン11を高圧縮比(13以上)で作動させ、燃焼効率を高めることも可能となる。 Since high octane toluene is supplied to the engine 11 in this manner, knocking is less likely to occur in the engine 11, and the engine 11 can be operated at a high compression ratio (13 or more) to increase combustion efficiency. .
 また、電気分解装置60における水の電気分解により酸素が、配管60b、前記酸素インジェクタを介して、エンジン11に供給されるように構成されている。すなわち、本実施形態において、「電気分解装置60で生成した酸素をエンジン11に供給する酸素供給手段」は、配管60bと、前記酸素インジェクタとを備えて構成されている。
 このようにして酸素が供給されるので、エンジン11の出力及び排熱エネルギー量が向上し、発電機13で生成する電力量と、反応器30で生成する水素量とを増加させることが可能となる。
In addition, oxygen is supplied to the engine 11 by electrolysis of water in the electrolyzer 60 through the pipe 60b and the oxygen injector. That is, in the present embodiment, the “oxygen supply means for supplying oxygen generated by the electrolyzer 60 to the engine 11” includes a pipe 60b and the oxygen injector.
Since oxygen is supplied in this way, the output of the engine 11 and the amount of exhaust heat energy are improved, and the amount of power generated by the generator 13 and the amount of hydrogen generated by the reactor 30 can be increased. Become.
 この他、配管60bに、酸素の流量を制御する流量制御弁や、酸素を一時的に貯蔵するバッファタンクを設ける構成としてもよい。
 また、配管21bに水素インジェクタを取り付け、この水素インジェクタにより、分離器42で分離された水素を添加(噴射)する構成としてもよい。
In addition, it is good also as a structure which provides the flow control valve which controls the flow volume of oxygen, and the buffer tank which stores oxygen temporarily in the piping 60b.
Alternatively, a hydrogen injector may be attached to the pipe 21b, and the hydrogen separated by the separator 42 may be added (injected) by the hydrogen injector.
<過給器>
 過給器21は、エンジン11から排出された排気ガスにより作動し、エンジン11に吸気される空気を圧縮しエンジン11に過給する装置である。このように、過給器21によって空気がエンジン11に過給、つまり、吸気される空気の流量が増加するので、エンジン11で生成するトルクが向上し、また、エンジン11の熱効率及び出力が向上するようになっている。
<Supercharger>
The supercharger 21 is a device that operates by the exhaust gas discharged from the engine 11, compresses air taken into the engine 11, and supercharges the engine 11. Thus, the air is supercharged to the engine 11 by the supercharger 21, that is, the flow rate of the intake air is increased, so that the torque generated by the engine 11 is improved, and the thermal efficiency and output of the engine 11 are improved. It is supposed to be.
 次に、エンジン11の排気側を説明する。
 エンジン11の排気ガス出口は、配管21c、過給器21、配管21dを介して、反応器30の排気ガス入口に接続されている。そして、エンジン11からの排気ガスは、過給器21を作動(回転)させた後、反応器30に導かれるようになっている。
Next, the exhaust side of the engine 11 will be described.
The exhaust gas outlet of the engine 11 is connected to the exhaust gas inlet of the reactor 30 through a pipe 21c, a supercharger 21, and a pipe 21d. The exhaust gas from the engine 11 is led to the reactor 30 after operating (rotating) the supercharger 21.
<反応器>
 反応器30は、図2(a)に示すように、外形が円柱状を呈する複数本の反応セル31と、複数の反応セル31を収容した円筒状の第1ケーシング32と、を備えている。そして、MCH(メチルシクロヘキサン、水素含有燃料)が各反応セル31内を通流し、高温の排気ガスが反応セル31の外であって第1ケーシング32内を通流するようになっている。なお、図1では、反応セル31を1本のみ記載している。
<Reactor>
As shown in FIG. 2A, the reactor 30 includes a plurality of reaction cells 31 whose outer shape has a columnar shape, and a cylindrical first casing 32 that houses the plurality of reaction cells 31. . MCH (methylcyclohexane, hydrogen-containing fuel) flows through each reaction cell 31, and high-temperature exhaust gas flows outside the reaction cell 31 and through the first casing 32. In FIG. 1, only one reaction cell 31 is shown.
 第1ケーシング32及び後記する第2ケーシング34は、熱伝導率が高くなるように金属製(例えば、SUS)で形成されている。なお、第1ケーシング32、第2ケーシング34の形状は、円筒状に限定されず、その他に例えば、四角形筒状、多角形筒状でもよい。 The first casing 32 and the second casing 34 which will be described later are made of metal (for example, SUS) so as to have high thermal conductivity. In addition, the shape of the 1st casing 32 and the 2nd casing 34 is not limited to a cylindrical shape, For example, a square cylinder shape and a polygonal cylinder shape may be sufficient.
<反応セル>
 反応セル31は、図2(b)に示すように、積層された複数枚の反応シート33と、複数枚の反応シート33を収容した第2ケーシング34と、を備えている。
<Reaction cell>
As shown in FIG. 2B, the reaction cell 31 includes a plurality of stacked reaction sheets 33 and a second casing 34 that accommodates the plurality of reaction sheets 33.
 各反応シート33は、図2(c)に示すように、ベースとなる金属箔35と、金属箔35の両面にそれぞれ形成された多孔質層36と、多孔質層36に担持された触媒37と、を備えている。つまり、各反応シート33は、触媒37が担持した多孔質層36、金属箔35、触媒37が担持した多孔質層36の順で積層した三層構造である。
 なお、厚さ方向において隣り合う反応シート33、33間には、MCH、生成した水素及びトルエンが通流可能な隙間が形成されている。
As shown in FIG. 2 (c), each reaction sheet 33 includes a base metal foil 35, a porous layer 36 formed on each surface of the metal foil 35, and a catalyst 37 supported on the porous layer 36. And. That is, each reaction sheet 33 has a three-layer structure in which the porous layer 36 supported by the catalyst 37, the metal foil 35, and the porous layer 36 supported by the catalyst 37 are stacked in this order.
In addition, a gap through which MCH, generated hydrogen, and toluene can flow is formed between the reaction sheets 33 adjacent to each other in the thickness direction.
 また、反応シート33はシート状であるから、その熱容量が小さく、熱が反応シート33を速やかに伝導し、触媒37がその触媒機能を良好に発揮する温度に速やかに昇温する。これにより、MCHを水素とトルエンとに分解する分解反応の効率は、高くなっている。 Also, since the reaction sheet 33 is in the form of a sheet, its heat capacity is small, heat is quickly conducted through the reaction sheet 33, and the temperature of the catalyst 37 is quickly raised to a temperature at which the catalyst functions well. Thereby, the efficiency of the decomposition reaction which decomposes | disassembles MCH into hydrogen and toluene is high.
 さらに、各反応シート33には、複数の貫通孔33aが形成されている。これにより、排気ガスの熱が厚さ方向に良好に伝導し、また、MCH、生成した水素及びトルエンが、厚さ方向にも良好に通流するようになっている。 Furthermore, each reaction sheet 33 is formed with a plurality of through holes 33a. Thereby, the heat of exhaust gas is conducted well in the thickness direction, and MCH, generated hydrogen, and toluene flow well in the thickness direction.
 金属箔35は、例えばアルミニウム箔で構成され、その厚さは50~200μm程度とされる。
 ただし、金属箔35を備えず、又は、金属箔35に代えて、ベースとなる多孔質層を備え、反応シート33全体を多孔質構造としてもよい。
The metal foil 35 is made of, for example, an aluminum foil and has a thickness of about 50 to 200 μm.
However, the metal foil 35 may not be provided, or instead of the metal foil 35, a porous layer serving as a base may be provided, and the entire reaction sheet 33 may have a porous structure.
 多孔質層36は、触媒37を担持するための層であって、MCH、生成した水素及びトルエンが通流可能な複数の細孔を有している。このような多孔質層36は、例えば、アルミナを主体とした酸化物で構成される。 The porous layer 36 is a layer for supporting the catalyst 37 and has a plurality of pores through which MCH, generated hydrogen, and toluene can flow. Such a porous layer 36 is made of an oxide mainly composed of alumina, for example.
 触媒37は、MCHを分解、つまり、脱水素反応させ、水素及びトルエンを生成させるための触媒である(式(1)参照)。このような触媒37は、例えば、白金、ニッケル、パラジウム、ロジウム、イリジウム、ルテニウム、モリブデン、レニウム、タングステン、バナジウム、オスミウム、クロム、コバルト、鉄等から選択された少なくとも1種で構成される。 Catalyst 37 is a catalyst for decomposing MCH, that is, dehydrogenating to produce hydrogen and toluene (see formula (1)). Such a catalyst 37 is composed of at least one selected from, for example, platinum, nickel, palladium, rhodium, iridium, ruthenium, molybdenum, rhenium, tungsten, vanadium, osmium, chromium, cobalt, iron and the like.
 なお、反応器30を通流した排気ガスは、配管21eを通って外部に排出されるようになっている(図1参照)。 Note that the exhaust gas flowing through the reactor 30 is discharged to the outside through the pipe 21e (see FIG. 1).
<MCH供給系>
 次に、図1を参照して、反応器30に、MCHを供給するMCH供給系について説明する。MCH供給系は、MCHを貯溜するタンク41を備えている。
<MCH supply system>
Next, an MCH supply system for supplying MCH to the reactor 30 will be described with reference to FIG. The MCH supply system includes a tank 41 that stores MCH.
 タンク41は、水素生成の原料となるMCHを一時的に蓄えるタンクである。なお、MCHは、例えば、タンクローリー等によって、タンク41に運搬される。
 そして、タンク41のMCHは、配管41aを通って、各反応セル31内に供給されるようになっている。配管41aには、MCHを圧送するポンプ、MCHの流量を制御する流量制御弁が設けられている。
The tank 41 is a tank that temporarily stores MCH as a raw material for hydrogen generation. The MCH is transported to the tank 41 by, for example, a tank lorry.
And MCH of the tank 41 is supplied in each reaction cell 31 through the piping 41a. The pipe 41a is provided with a pump that pumps MCH and a flow rate control valve that controls the flow rate of the MCH.
<水素・トルエン導出系>
 次に、反応器30で生成した水素及びトルエンを導出する水素・トルエン導出系を説明する。水素・トルエン導出系は、分離器42と、タンク43と、を備えている。
<Hydrogen / toluene derivation system>
Next, a hydrogen / toluene derivation system for deriving hydrogen and toluene produced in the reactor 30 will be described. The hydrogen / toluene lead-out system includes a separator 42 and a tank 43.
 各反応セル31で生成した水素(気体)及びトルエン(気体)は、混在したまま、配管42aを通って、分離器42に導出されるようになっている。 The hydrogen (gas) and toluene (gas) produced in each reaction cell 31 are led out to the separator 42 through the pipe 42a while being mixed.
 分離器42は、水素とトルエンとを分離する装置である。
 本実施形態に係る分離器42は、水素及びトルエンが混在したものを空冷式で冷却することで、トルエン(沸点:110℃)のみを液化させ、水素とトルエンとを分離するようになっている。よって、例えば、分離器42の外周面には、空冷式による冷却を促進するための放熱フィン(図示しない)が設けられている。
 なお、分離方式はこれに限定されず、その他に例えば、圧力スイング吸着装置、水素を選択的に透過する水素透過膜(Pd膜等)によって水素を分離する方式でもよい。
The separator 42 is a device that separates hydrogen and toluene.
The separator 42 according to the present embodiment cools a mixture of hydrogen and toluene by air cooling so that only toluene (boiling point: 110 ° C.) is liquefied and hydrogen and toluene are separated. . Therefore, for example, on the outer peripheral surface of the separator 42, heat radiating fins (not shown) are provided for promoting air-cooling.
The separation method is not limited to this, and other methods such as a pressure swing adsorption device or a hydrogen permeable membrane (such as a Pd membrane) that selectively permeate hydrogen may be used.
 そして、分離器42で分離された水素は、配管42bを通って、圧縮機14ないしはエンジン11(配管は図示しない)に供給されるようになっている。なお、配管42bに水素を圧送するポンプが設けられた構成でもよい。 The hydrogen separated by the separator 42 is supplied to the compressor 14 or the engine 11 (pipe not shown) through the pipe 42b. In addition, the structure provided with the pump which pumps hydrogen into the piping 42b may be sufficient.
 一方、分離器42で分離されたトルエンは、分離器42の底部から延びる配管42cを自重により通流し、タンク43で貯溜されるようになっている。なお、配管42cにトルエンを圧送するポンプ(図示しない)が設けられた構成でもよい。 On the other hand, the toluene separated by the separator 42 flows through the pipe 42c extending from the bottom of the separator 42 by its own weight, and is stored in the tank 43. In addition, the structure provided with the pump (not shown) which pumps toluene into the piping 42c may be sufficient.
 タンク43のトルエンは、配管43aを通った後、コントローラ70に制御される燃料インジェクタ(図示しない)によって、配管21b(吸気ポート)内に噴射されるようになっている。なお、配管43aには、トルエンを圧送するポンプ(図示しない)が設けられている。 The toluene in the tank 43 passes through the pipe 43a and is then injected into the pipe 21b (intake port) by a fuel injector (not shown) controlled by the controller 70. The pipe 43a is provided with a pump (not shown) that pumps toluene.
<電力分配装置>
 電力分配装置51は、外部からの要求電力量に対応して、コントローラ70からの指令に従って、発電機13で生成した電力を、電気分解装置60と外部の電力系統網52とに分配する装置であり、各種電子回路を備えて構成される。
<Power distribution device>
The power distribution device 51 is a device that distributes the power generated by the generator 13 to the electrolyzer 60 and the external power grid 52 in accordance with a command from the controller 70 in accordance with the amount of power required from the outside. There are various electronic circuits.
 例えば、コントローラ70に入力された要求電力量が大きくなると、電力分配装置51は、電力系統網52への電力の分配量が多くなるように制御される。また、コントローラ70に入力された要求水素量が、0である、又は、反応器30で生成可能な程度である場合、電力分配装置51は、電力系統網52のみに電力を供給するように制御される。 For example, when the required power amount input to the controller 70 increases, the power distribution device 51 is controlled so that the power distribution amount to the power system network 52 increases. In addition, when the required hydrogen amount input to the controller 70 is zero or can be generated by the reactor 30, the power distribution device 51 is controlled to supply power only to the power grid 52. Is done.
 さらに、前記した水素を一時的に貯蔵するバッファタンクを備える場合、例えば、圧力センサを介してバッファタンク内の水素の圧力を検出し、検出された圧力に基づいて貯蔵されている水素量を算出し、バッファタンクが満タンであるとき、電力分配装置51は、電力系統網52のみに電力を供給するように構成してもよい。 Further, when the buffer tank for temporarily storing hydrogen is provided, for example, the pressure of hydrogen in the buffer tank is detected via a pressure sensor, and the amount of hydrogen stored is calculated based on the detected pressure. However, when the buffer tank is full, the power distribution device 51 may be configured to supply power only to the power system network 52.
<電気分解装置>
 電気分解装置60は、コントローラ70からの指令に従って作動し、電力分配装置51(発電機13)からの電力を利用して、水を電気分解し(式(2)参照)、水素及び酸素を生成する装置である。したがって、電気分解装置60は、正極(陽極)及び負極(陰極)、電気分解する水を一時的に貯溜する容器、正極及び負極に印加する電圧を制御する電圧コントローラ等を備えている。また、電気分解される水は、例えば、水道水等から適宜に給水されるようになっている。
<Electrolysis device>
The electrolyzer 60 operates in accordance with a command from the controller 70, electrolyzes water using the electric power from the power distribution device 51 (the generator 13) (see formula (2)), and generates hydrogen and oxygen. It is a device to do. Therefore, the electrolyzer 60 includes a positive electrode (anode) and a negative electrode (cathode), a container for temporarily storing water to be electrolyzed, a voltage controller for controlling a voltage applied to the positive electrode and the negative electrode, and the like. Moreover, the water to be electrolyzed is appropriately supplied from, for example, tap water.
 2HO→2H+O …(2) 2H 2 O → 2H 2 + O 2 (2)
 そして、生成した水素は、配管60aを通って、圧縮機14に供給されるか、圧縮機14と水素自動車をつなぐ配管やそのほかの機器(例えば圧縮機14の下流に接続された別の圧縮機)に供給される。一方、生成した酸素は、配管60bを通って、配管21b(エンジン11)に供給されるようになっている。 Then, the generated hydrogen is supplied to the compressor 14 through the pipe 60a, or a pipe or other equipment (for example, another compressor connected downstream of the compressor 14) that connects the compressor 14 and the hydrogen automobile. ). On the other hand, the produced oxygen is supplied to the pipe 21b (engine 11) through the pipe 60b.
<コントローラ>
 コントローラ70は、水素ステーション1を電子制御する制御装置であり、CPU、ROM、RAM、各種インタフェイス、電子回路などを含んで構成されており、その内部に記憶されたプログラムに従って、各種機能を発揮し、各種機器を制御するようになっている。
 コントローラ70は、エンジン11、発電機13、圧縮機14、電力分配装置51、電気分解装置60と電気的に接続されており、各機器に具備されたセンサと信号入力装置と配線にて接続されていることが好ましい。また、水素ステーション1内のその他の機器(圧縮機、充填機、水素タンク、照明機器など)とも同様に接続されている。
 また、コントローラ70には、外部から操作パネル(図示しない)等を介して、要求電力量及び要求水素量が入力されるようになっている。
<Controller>
The controller 70 is a control device that electronically controls the hydrogen station 1, and includes a CPU, a ROM, a RAM, various interfaces, an electronic circuit, and the like, and performs various functions according to programs stored therein. In addition, various devices are controlled.
The controller 70 is electrically connected to the engine 11, the generator 13, the compressor 14, the power distribution device 51, and the electrolysis device 60, and is connected to sensors and signal input devices provided in each device by wiring. It is preferable. Also, other devices (compressor, filling machine, hydrogen tank, lighting device, etc.) in the hydrogen station 1 are connected in the same manner.
Further, the controller 70 is input with a required power amount and a required hydrogen amount from the outside via an operation panel (not shown) or the like.
≪水素ステーションの作用・効果≫
 このような水素ステーション1によれば、次の作用・効果を得る。
 エンジン11からの排気ガスの熱を利用して、MCHを脱水素反応させ水素を生成する反応器30と、エンジン11に連動する発電機13からの電力を利用して、電気分解することで水素を生成する電気分解装置60とによって、多量の水素を製造できる。
 すなわち、エンジン11(発電機13)から出力される排気ガスと電力とをそれぞれ利用して、水素を生成するので、エンジン11および反応器30を小型化し、水素ステーション1を小規模にできる。
≪Operation and effect of hydrogen station≫
According to such a hydrogen station 1, the following operations and effects are obtained.
Hydrogen is obtained by electrolysis using the electric power from the reactor 30 that generates hydrogen by dehydrogenating MCH using the heat of the exhaust gas from the engine 11 and the generator 13 linked to the engine 11. A large amount of hydrogen can be produced by the electrolyzer 60 that generates the hydrogen.
That is, since hydrogen is generated using the exhaust gas and electric power output from the engine 11 (the generator 13), the engine 11 and the reactor 30 can be downsized, and the hydrogen station 1 can be reduced in scale.
 これに対して、電気分解装置60を備えない場合、反応器30で全水素を生成することになるから、反応器30及びこれに排気ガスを供給するエンジン11を大型化する必要があり、その結果、水素ステーションが大規模になってしまう。 On the other hand, when the electrolyzer 60 is not provided, all the hydrogen is generated in the reactor 30. Therefore, it is necessary to enlarge the reactor 30 and the engine 11 for supplying exhaust gas to the reactor 30, As a result, the hydrogen station becomes large.
≪変形例≫
 以上、本発明の一実施形態について説明したが、本発明はこれに限定されず、例えば次のように変更できる。
≪Modification≫
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, For example, it can change as follows.
 前記した実施形態では、作動に伴って電力及び高温の排気ガスを生成する発電手段が、エンジン11と発電機13とを備えて構成された場合を例示したが、その他に例えば、固体高分子型燃料電池や、固体酸化物型燃料電池である構成でもよい。また、エンジン11に代えてタービンを備える構成でもよい。 In the above-described embodiment, the case where the power generation means that generates electric power and high-temperature exhaust gas with the operation is configured to include the engine 11 and the generator 13 is exemplified. The configuration may be a fuel cell or a solid oxide fuel cell. Moreover, it may replace with the engine 11 and the structure provided with a turbine may be sufficient.
 1   水素ステーション(エネルギー生成システム)
 11  エンジン(発電手段)
 13  発電機(発電手段)
 30  反応器(水素生成手段)
 51  電力分配装置(電力分配手段)
 52  電力系統網
 60  電気分解装置(電気分解手段)
 60b 配管(酸素供給手段)
 70  コントローラ(制御手段)
1 Hydrogen station (energy generation system)
11 Engine (power generation means)
13 Generator (power generation means)
30 reactor (hydrogen generation means)
51 Power distribution device (power distribution means)
52 Electric power system network 60 Electrolysis device (electrolysis means)
60b Piping (oxygen supply means)
70 controller (control means)

Claims (7)

  1.  電力及び水素を生成するエネルギー生成システムであって、
     作動に伴って電力及び高温の排気ガスを生成する発電手段と、
     前記発電手段からの高温の排気ガスの熱を利用して、水素貯蔵媒体を脱水素反応させることで水素を生成する水素生成手段と、
     前記発電手段からの電力によって水を電気分解し、水素及び酸素を生成する電気分解手段と、
     を備える
     ことを特徴とするエネルギー生成システム。
    An energy generation system for generating electricity and hydrogen,
    Power generation means for generating electric power and high-temperature exhaust gas in operation,
    Hydrogen generation means for generating hydrogen by dehydrogenating the hydrogen storage medium using heat of the high-temperature exhaust gas from the power generation means,
    Electrolysis means for electrolyzing water with electric power from the power generation means to generate hydrogen and oxygen;
    An energy generation system comprising:
  2.  前記発電手段は、燃焼用燃料を燃焼し動力及び排気ガスを生成するエンジンと、前記エンジンで発生した動力により作動し電力を生成する発電機と、を備える
     ことを特徴とする請求の範囲第1項に記載のエネルギー生成システム。
    The power generation means includes: an engine that burns combustion fuel to generate power and exhaust gas; and a generator that operates by the power generated by the engine to generate electric power. The energy generation system according to item.
  3.  前記水素生成手段は、水素貯蔵体を脱水素反応させることで、水素と、高オクタン価燃料と、を生成する
     ことを特徴とする請求の範囲第2項に記載のエネルギー生成システム。
    The said hydrogen production | generation means produces | generates hydrogen and a high octane number fuel by carrying out the dehydrogenation reaction of the hydrogen storage body. The energy generation system of Claim 2 characterized by the above-mentioned.
  4.  前記エンジンで燃焼される燃焼用燃料は、ガソリン、軽油、灯油、重油、バイオ燃料、アルコール、都市ガス、天然ガス、LPG、前記水素生成手段で生成された前記高オクタン価燃料から選択された少なくとも1種である
     ことを特徴とする請求の範囲第3項に記載のエネルギー生成システム。
    The combustion fuel combusted by the engine is at least one selected from gasoline, light oil, kerosene, heavy oil, biofuel, alcohol, city gas, natural gas, LPG, and the high octane fuel generated by the hydrogen generating means. It is a seed | species. The energy generation system of Claim 3 characterized by the above-mentioned.
  5.  前記エンジンは、圧縮比13以上で作動する
     ことを特徴とする請求の範囲第2項に記載のエネルギー生成システム。
    The energy generation system according to claim 2, wherein the engine operates at a compression ratio of 13 or more.
  6.  前記電気分解手段で生成した酸素を前記エンジンに供給する酸素供給手段を備える
     ことを特徴とする請求の範囲第2項に記載のエネルギー生成システム。
    The energy generation system according to claim 2, further comprising oxygen supply means for supplying oxygen generated by the electrolysis means to the engine.
  7.  要求電力量及び要求水素量に基づいて、前記発電手段で生成した電力を、前記電気分解手段と電力系統網とに分配する電力分配手段を備える
     ことを特徴とする請求の範囲第1項に記載のエネルギー生成システム。
    The power distribution unit that distributes the electric power generated by the power generation unit to the electrolysis unit and a power grid based on a required power amount and a required hydrogen amount. Energy generation system.
PCT/JP2011/062422 2010-05-31 2011-05-30 Energy-generating system WO2011152366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-124006 2010-05-31
JP2010124006A JP5575549B2 (en) 2010-05-31 2010-05-31 Energy generation system

Publications (1)

Publication Number Publication Date
WO2011152366A1 true WO2011152366A1 (en) 2011-12-08

Family

ID=45066732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062422 WO2011152366A1 (en) 2010-05-31 2011-05-30 Energy-generating system

Country Status (2)

Country Link
JP (1) JP5575549B2 (en)
WO (1) WO2011152366A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200132254A1 (en) * 2017-07-12 2020-04-30 Airbus Defence and Space GmbH System For Producing And Dispensing Pressurized Hydrogen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548032B2 (en) * 2010-05-31 2014-07-16 株式会社日立製作所 Organic hydride dehydrogenation system
JP2013087820A (en) * 2011-10-14 2013-05-13 Jx Nippon Oil & Energy Corp Hydrogen station
JP2015120617A (en) * 2013-12-24 2015-07-02 エイディシーテクノロジー株式会社 Hydrogen supply apparatus
JP6288506B2 (en) * 2014-04-24 2018-03-07 Jfeエンジニアリング株式会社 Method and apparatus for producing hydrogen / carbon material
JP2016146679A (en) * 2015-02-06 2016-08-12 株式会社日立製作所 Electric power supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938505A (en) * 1995-05-25 1997-02-10 Nippon Oil Co Ltd Catalyst for conversion of aromatic hydrocarbon compound and its conversion process
JP2004189585A (en) * 2002-11-26 2004-07-08 Toyota Motor Corp Gaseous hydrogen producing system
JP2004197705A (en) * 2002-12-20 2004-07-15 Chiyoda Corp High pressure hydrogen supply system
JP2006248814A (en) * 2005-03-09 2006-09-21 Hitachi Ltd Apparatus and method for feeding hydrogen
JP2009215608A (en) * 2008-03-10 2009-09-24 Institute Of National Colleges Of Technology Japan Hydrogen production plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938505A (en) * 1995-05-25 1997-02-10 Nippon Oil Co Ltd Catalyst for conversion of aromatic hydrocarbon compound and its conversion process
JP2004189585A (en) * 2002-11-26 2004-07-08 Toyota Motor Corp Gaseous hydrogen producing system
JP2004197705A (en) * 2002-12-20 2004-07-15 Chiyoda Corp High pressure hydrogen supply system
JP2006248814A (en) * 2005-03-09 2006-09-21 Hitachi Ltd Apparatus and method for feeding hydrogen
JP2009215608A (en) * 2008-03-10 2009-09-24 Institute Of National Colleges Of Technology Japan Hydrogen production plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200132254A1 (en) * 2017-07-12 2020-04-30 Airbus Defence and Space GmbH System For Producing And Dispensing Pressurized Hydrogen

Also Published As

Publication number Publication date
JP2011247235A (en) 2011-12-08
JP5575549B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
Tashie-Lewis et al. Hydrogen production, distribution, storage and power conversion in a hydrogen economy-a technology review
Sherif et al. Wind energy and the hydrogen economy—review of the technology
Corbo et al. Hydrogen fuel cells for road vehicles
JP5575549B2 (en) Energy generation system
JP4039383B2 (en) Internal combustion engine using hydrogen
US9255560B2 (en) Regenerative intensifier and associated systems and methods
JP6072491B2 (en) Renewable energy storage system
US20110086280A1 (en) Systems for the on-demand production of power as a sole source or aiding other power sources, in the transportation and housing field.
JP2009007647A (en) Organic hydride manufacturing apparatus and distributed power supply and automobile using the same
CN104986733B (en) A kind of electronic marine equipment of alcohol hydrogen
CN201525892U (en) Hydrogen and oxygen generator for burning aid
Krewitt et al. WP 1.5 Common Information Database D 1.1 Fuel Cell Technologies and Hydrogen Production/Distribution Options
Pant et al. Fundamentals and use of hydrogen as a fuel
WO2012147157A1 (en) Energy storage/supply apparatus
JP5548032B2 (en) Organic hydride dehydrogenation system
JP5602698B2 (en) Power conversion system
CN101481803B (en) Water electrolysis apparatus for producing hydrogen gas as auxiliary fuel for engine by low current
CN104986050B (en) A kind of biogas electric transportation instrument
JP2014084792A (en) Cogeneration system
TWM296307U (en) Energy supply system for internal combustion engine
JP5696215B2 (en) Engine system
JP5508146B2 (en) Engine system and hydrogen station
US11732624B2 (en) Fuel production device
WO2021192136A1 (en) Hydrogen generation system and hydrogen generation method
CN215479718U (en) Plasma fuel reforming hydrogen production device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789769

Country of ref document: EP

Kind code of ref document: A1