WO2021192136A1 - Hydrogen generation system and hydrogen generation method - Google Patents

Hydrogen generation system and hydrogen generation method Download PDF

Info

Publication number
WO2021192136A1
WO2021192136A1 PCT/JP2020/013589 JP2020013589W WO2021192136A1 WO 2021192136 A1 WO2021192136 A1 WO 2021192136A1 JP 2020013589 W JP2020013589 W JP 2020013589W WO 2021192136 A1 WO2021192136 A1 WO 2021192136A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
unit
catalyst
dehydrogenation reaction
generation system
Prior art date
Application number
PCT/JP2020/013589
Other languages
French (fr)
Japanese (ja)
Inventor
石川 敬郎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2022510255A priority Critical patent/JPWO2021192136A1/ja
Priority to PCT/JP2020/013589 priority patent/WO2021192136A1/en
Publication of WO2021192136A1 publication Critical patent/WO2021192136A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen

Definitions

  • This embodiment relates to a hydrogen generation system that produces hydrogen from a hydrogen reservoir.
  • the present embodiment also relates to a hydrogen generation method for producing hydrogen from a hydrogen reservoir.
  • Patent Document 1 hydrogen and a dehydrogenated product of the hydrogen reservoir are produced by contacting a hydrogen reservoir capable of chemically storing hydrogen with a catalyst to cause a dehydrogenation reaction, and the produced hydrogen is used.
  • the hydrogen and the dehydrogenate are generated by contacting with the catalyst to carry out the dehydrogenation reaction, and the generated hydrogen and the generated dehydrogenate are unreacted in the dehydrogenation reaction.
  • Patent Document 1 aims to efficiently carry out a dehydrogenation reaction even at a low temperature.
  • the realization of a dehydrogenation reaction at a low temperature is desirable from the viewpoint of energy efficiency and energy saving.
  • the catalyst can be heated to a temperature sufficient for the reaction even if factory waste heat, hot water waste heat, solar heat, etc., which are relatively low temperatures, are used. Therefore, the development of a new hydrogen generation system capable of performing a dehydrogenation reaction at a low temperature is required.
  • an object of the present disclosure is to provide a hydrogen generation system or a hydrogen generation method capable of carrying out a dehydrogenation reaction at a low temperature.
  • This embodiment can be expressed as follows, for example.
  • a hydrogen generation system that produces hydrogen by dehydrogenating a hydrogen reservoir with a catalyst.
  • a supply unit that intermittently supplies hydrogen storage and A vaporizer that vaporizes the hydrogen reservoir supplied from the supply unit,
  • a dehydrogenation reaction section that brings the hydrogen reservoir from the vaporization section into contact with a catalyst to perform a dehydrogenation reaction and converts it into hydrogen and a dehydrogenated product.
  • a suction part that decompresses the atmosphere inside the dehydrogenation reaction part by suction,
  • a gas-liquid separator that separates a mixture containing hydrogen gas and dehydrogenated material sucked by the suction unit into a gas that mainly contains hydrogen and a liquid that mainly contains dehydrogenated material.
  • a hydrogen generation system characterized by being equipped with.
  • a method of producing hydrogen by dehydrogenating a hydrogen reservoir with a catalyst The process of supplying hydrogen storage and The process of vaporizing the supplied hydrogen reservoir and A step of bringing a vaporized hydrogen reservoir into contact with a catalyst to carry out a dehydrogenation reaction to convert hydrogen into a dehydrogenated product, which is a step of carrying out the dehydrogenation reaction under reduced pressure by suction. A step of separating the suctioned mixture containing hydrogen and dehydrogenated product into a gas containing mainly hydrogen and a liquid containing mainly dehydrogenated product.
  • a process of executing a program may be described, but the program is executed by a processor (for example, a CPU) which is a central processing unit, so that a predetermined process can be appropriately performed. Since it is performed while using a storage resource (for example, memory) and / or an interface device (for example, a communication port), the main body of processing is a processor, but a program that facilitates understanding of the invention may be explained as a subject.
  • a processor for example, a CPU
  • a storage resource for example, memory
  • an interface device for example, a communication port
  • the program may be installed from the program source on a device such as a calculator.
  • the program source may be, for example, a program distribution server or a computer-readable storage medium.
  • the program distribution server includes a processor and a storage resource for storing the program to be distributed, and the processor of the program distribution server may distribute the program to be distributed to other computers.
  • two or more programs may be realized as one program, or one program may be realized as two or more programs.
  • the hydrogen generation system is A hydrogen generation system that produces hydrogen by dehydrogenating a hydrogen reservoir with a catalyst.
  • a supply unit that intermittently supplies hydrogen storage and A vaporizer that vaporizes the hydrogen reservoir supplied from the supply unit,
  • a dehydrogenation reaction section that brings the hydrogen reservoir from the vaporization section into contact with a catalyst to perform a dehydrogenation reaction and converts it into hydrogen and a dehydrogenated product.
  • a suction part that decompresses the atmosphere inside the dehydrogenation reaction part by suction,
  • a gas-liquid separator that separates a mixture containing hydrogen gas and dehydrogenated material sucked by the suction unit into a gas that mainly contains hydrogen and a liquid that mainly contains dehydrogenated material. It is characterized by having.
  • the hydrogen generation method is A method of producing hydrogen by dehydrogenating a hydrogen reservoir with a catalyst.
  • the vaporized hydrogen reservoir is dehydrogenated in the dehydrogenation reaction section to generate hydrogen. Further, in the present embodiment, the dehydrogenation reaction of the vaporized hydrogen reservoir is carried out under reduced pressure by suction.
  • the dehydrogenation reaction of hydrogen in a hydrogen reservoir to hydrogen and a dehydrogenated product multiple moles of hydrogen molecules are generated from one mol of hydrogen reservoir, and since the reaction is an equilibrium reaction, dehydration is performed by lowering the pressure. The elementary reaction can proceed.
  • the dehydrogenation reaction can proceed at a temperature lower than the high temperature (for example, 350 to 400 ° C.) conventionally required for the dehydrogenation reaction (for example, 200 ° C. or lower).
  • the mixture containing the produced hydrogen and dehydrogenated product is also discharged from the dehydrogenation reaction section and sent to the next step.
  • the mixture discharged from the dehydrogenation reaction section is separated into a gas and a liquid at the gas-liquid separation section.
  • the hydrogen generation system according to this embodiment will be described below.
  • the hydrogen generation system according to the present embodiment is a system that realizes the hydrogen generation method according to the present embodiment.
  • the hydrogen generation method according to the present embodiment can be clarified by the description of the hydrogen generation system.
  • the hydrogen generation system 1 includes a supply unit 11, a vaporization unit 12, a dehydrogenation reaction unit 13, a suction unit 14, and a gas-liquid separation unit 15.
  • the supply unit 11 intermittently supplies the raw material containing the hydrogen storage to the vaporization unit 12.
  • reference numeral 20 indicates a supply control unit.
  • the vaporization unit 12 vaporizes a raw material containing a hydrogen storage body such as an organic hydride supplied from the supply unit 11.
  • One batch (one supply amount) of the hydrogen reservoir from the vaporization unit 12 comes into contact with the catalyst at the dehydrogenation reaction unit 13 and is dehydrogenated.
  • the atmosphere of the dehydrogenation reaction unit 13 is depressurized by suction by the suction unit 14.
  • the pressure of the dehydrogenation reaction unit 13 is reduced to, for example, 30 kPa or less.
  • the reaction equilibrium can be greatly tilted toward the dehydrogenation side, and the dehydrogenation reaction can proceed.
  • the dehydrogenation reaction can be carried out at a low temperature.
  • the gas-liquid separation unit 15 performs a gas-liquid separation treatment on the mixture discharged from the dehydrogenation reaction unit 13 to separate the mixture into a gas mainly containing hydrogen and a liquid mainly containing a dehydrogenated product.
  • a hydrogen storage body is a material capable of storing hydrogen and producing hydrogen by a dehydrogenation reaction.
  • the hydrogen storage include organic hydride (for example, chain saturated hydrocarbon, cyclic saturated hydrocarbon, heterocyclic saturated hydrocarbon), ammonia, hydrazine, sodium borate, or a mixture thereof. Ammonia, hydrazine and sodium borate can also use their respective aqueous solutions as hydrogen stores.
  • the aqueous solution may optionally contain hydrogen peroxide.
  • the hydrogen storage is preferably in a liquid state at normal temperature and pressure, and has a boiling point of 250 ° C. or lower (preferably 200 ° C. or lower) at normal temperature and pressure.
  • Organic hydride is a hydride of an organic compound having an unsaturated bond.
  • the organic hydride can be converted into a dehydrogenation reaction product containing hydrogen and a dehydrogenated product (organic compound having an unsaturated bond) using a dehydrogenation catalyst.
  • a dehydrogenation reaction product containing hydrogen
  • a dehydrogenated product organic compound having an unsaturated bond
  • MCH methylcyclohexane
  • the organic compound having an unsaturated bond is an organic compound having one or more double bonds or triple bonds in the molecule.
  • Examples of the triple bond include a carbon-carbon triple bond and a carbon-nitrogen triple bond.
  • the organic compound having an unsaturated bond is preferably a liquid organic compound under normal temperature and pressure from the viewpoint of storability and transportability.
  • Examples of the organic hydride include chain saturated hydrocarbons, cyclic saturated hydrocarbons, and heterocyclic saturated hydrocarbons. As the organic hydride, one type may be used alone, or two or more types may be used in combination.
  • Chain saturated hydrocarbons include, for example, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, structural isomers thereof, or substitutions thereof.
  • Cyclic saturated hydrocarbons include, for example, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane, or alkyl substituents thereof.
  • Examples of the alkyl substituent of the cyclic saturated hydrocarbon include methylcyclohexane. Further, as the cyclic saturated hydrocarbon, a plurality of single bonds thereof can also be used. Examples of such a compound include biphenyl. Examples of heterocyclic saturated hydrocarbons include decalin, tetralin, and alkyl substituents thereof. Examples of the alkyl substituent of the heterocyclic saturated hydrocarbon include methyldecalin. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the hydrogen storage may contain additives, if necessary.
  • the additive include a stabilizer.
  • the supply unit 11 intermittently supplies the hydrogen storage body to the vaporization unit 12.
  • the supply unit 11 intermittently supplies the hydrogen storage as a raw material to the vaporization unit 12 for each batch of a predetermined amount.
  • the supply unit 11 intermittently uses the dehydrogenated product of the previously supplied hydrogen storage unit (the hydrogen storage unit introduced as the previous batch) at intervals of time when the dehydrogenated product is discharged from the dehydrogenation reaction unit 13. It is supplied to the dehydrogenation reaction unit 13.
  • the supply unit 11 is, for example, a pressure applicator (for example, a booster pump) that applies pressure to the vaporized hydrogen storage body in order to supply the hydrogen storage body to the vaporization unit 12, and a control valve that adjusts the flow rate of the hydrogen storage body. And can also include a supply control unit 20 (FIG. 1) that controls a pressure feeder and a control valve to adjust the time interval and amount of supply of the hydrogen reservoir.
  • the supply unit 11 is provided with a pressure applicator such as a booster pump and a control valve to apply an appropriate pressure to the hydrogen reservoir and supply the appropriate amount to the vaporization unit 12 and the dehydrogenation reaction unit 13. can.
  • the control valve 20 transmits a signal to open the control valve for a predetermined time
  • the control valve is opened for a predetermined time
  • the pressure-applied hydrogen reservoir is vaporized. It can be supplied to 12 and the dehydrogenation reaction unit 13.
  • the booster pump include, but are not limited to, a plunger type or a piston type.
  • the control valve include, but are not limited to, commonly used valves such as an air valve or a solenoid valve, an injection valve, and the like.
  • the supply method include a method in which pressure is applied by a pump to intermittently inject a raw material (for example, a liquid raw material) with an on-off valve, an injector, or the like. The jetted liquid is vaporized by the vaporizer.
  • the supply control unit 20 is a CPU capable of executing a program capable of controlling the pressure applyer and the control valve.
  • the program can be stored in, for example, a ROM or a RAM.
  • Control methods for operating the pressure applyer at an appropriate timing include, for example, (1) control based on the supply time and supply suspension interval specified by the temperature and pressure conditions in the operating environment of the pressure applyer, (2). ) Control by a predetermined time interval, (3) Feedback control by signals detected by various sensors, and the like can be mentioned. These methods may be used alone or in combination.
  • the control of (1) above is realized by, for example, having a temperature sensor for detecting the temperature in the operating environment of the pressure applicator and a pressure sensor for detecting the pressure, and executing a program based on the detected temperature and pressure.
  • the control of (2) above can be realized by grasping the temperature and pressure of the dehydrogenation reaction unit 13 and the performance of the catalyst in advance and executing the program at a specified time.
  • the control of (3) above detects a pressure sensor that detects the pressure of the dehydrogenation reaction unit 13, a temperature sensor that detects the temperature, a flow sensor that detects the flow rate of the vaporized hydrogen reservoir, or a concentration of generated hydrogen. It can be realized by providing a hydrogen sensor or a combination thereof, calculating the reaction conversion rate from the information obtained from these sensors, and controlling so as to minimize the fluctuation of the reaction conversion rate.
  • the vaporization unit 12 is provided between the supply unit 11 and the dehydrogenation reaction unit 13, and includes a vaporizer that vaporizes the hydrogen storage.
  • the vaporizer include a carburetor or a spray gun.
  • the vaporizer for example, one having a heat exchange type flow path structure capable of utilizing the residual heat of an electric heater or another reactor can be mentioned. Further, from the viewpoint of vaporization, it is preferable that the vaporized portion is depressurized.
  • the dehydrogenation reaction unit 13 converts the hydrogen reservoir from the vaporization unit 12 into hydrogen and a dehydrogenated product by a dehydrogenation reaction.
  • FIG. 2 shows a configuration example of the dehydrogenation reaction unit 13.
  • the dehydrogenation reaction unit 13 shown in FIG. 2 includes a catalyst unit 31, a distribution unit 34, an aggregation unit 37, and a heat medium flow unit 40.
  • the catalyst unit 31 includes a dehydrogenation catalyst 32, and the catalyst 32 is arranged inside, for example, a reaction tube constituting the outer periphery of the catalyst unit 31.
  • the catalyst unit 31 is configured such that the hydrogen storage and their reactants flow from the upstream (distribution unit 34) to the downstream (aggregation unit 37).
  • the catalyst unit 31 is configured to include a plurality of reaction tubes arranged in parallel, but the present embodiment is not limited to such a configuration.
  • the shape of the reaction tube shown in FIG. 2 is cylindrical, but is not limited to this shape, and may be, for example, a double tubular shape, a box shape, or a honeycomb shape.
  • the dehydrogenation catalyst 32 has a function of converting a hydrogen reservoir such as an organic hydride into hydrogen and a dehydrogenated product by a dehydrogenation reaction.
  • the dehydrogenation catalyst is arranged inside each reaction tube.
  • the distribution unit 34 is located upstream of each reaction tube and has a function of distributing the hydrogen storage body supplied from the vaporization unit 12 through the supply port 36 to each reaction tube.
  • the aggregation unit 37 is located downstream of each reaction tube and has a function of aggregating dehydrogenation reactants (gas mainly containing hydrogen and dehydrogenated products) coming out of each reaction tube.
  • a discharge port 38 is arranged downstream of the aggregation part 37, and a suction part 14 is arranged downstream of the discharge port 38.
  • the heat medium flow unit 40 is configured so that the heat medium flows around each reaction tube, and has a function of heating each reaction tube.
  • the heating of the catalyst unit 31 can be controlled based on a control signal from the control unit (not shown).
  • the temperature of the heat medium can also be lowered.
  • the heat medium may be a gas or a liquid.
  • a configuration in which a reaction tube in which a catalyst is arranged is heated using a heat medium is illustrated, but the present embodiment is not limited to this configuration.
  • the reaction tube in which the catalyst is arranged may be directly heated by using an electric heater, a heater that burns flammable fuel, or the like.
  • the heat of a cooling medium that cools a power generation device that converts heat energy into electricity or a heat engine that converts heat energy into mechanical energy may be used.
  • the power generation device that converts thermal energy into electricity include a generator and a nuclear reactor.
  • a heat engine that converts thermal energy into mechanical energy for example, an engine can be mentioned.
  • the dehydrogenation reaction unit 13 is heated by a cooling medium for cooling these heat generating devices. May be good.
  • a cooling medium include cooling water for cooling the engine, exhaust gas discharged from the engine, secondary cooling water for a nuclear reactor, and the like.
  • the heat medium flow unit 40 is located so as to surround the reaction tube in which the dehydrogenation catalyst is arranged, and communicates with the inflow port 44 and the discharge port 46 for the heat medium.
  • the inflow port 44 is for allowing the supplied heat medium to flow into the heat medium flow section 40, and is located near the downstream end of the catalyst section 31.
  • the discharge port 46 is for discharging the heat medium from the heat medium flow unit 40, and is located near the upstream end of the catalyst unit 31.
  • the dehydrogenation reaction unit 13 is depressurized by the suction unit 14.
  • the dehydrogenation reaction is carried out under the reduced pressure.
  • the dehydrogenation reaction since the dehydrogenation reaction is an equilibrium reaction, the dehydrogenation reaction can proceed by lowering the pressure.
  • the dehydrogenation reaction can be carried out at a temperature lower than the high temperature (for example, 350 to 400 ° C.) conventionally required for the dehydrogenation reaction.
  • the temperature of the dehydrogenation reaction is, for example, 200 ° C. or lower, preferably 180 ° C. or lower or 150 ° C. or lower.
  • the pressure in the dehydrogenation reaction unit 13 is, for example, 30 kPa or less. Further, the vaporization unit 12 may be depressurized together with the dehydrogenation reaction unit 13. By reducing the pressure in the vaporization section 12, the vaporization of the hydrogen reservoir is promoted.
  • the reactants (hydrogen and dehydrogenated material) generated by the dehydrogenation reaction are discharged from the dehydrogenation reaction unit 13 by suction by the suction unit 14 and sent downstream. Further, the hydrogen storage as an unreacted product may also be mixed with the reaction product and discharged from the dehydrogenation reaction unit 13.
  • the catalyst is not particularly limited, and includes, for example, a catalyst metal and a carrier that supports the catalyst metal.
  • the catalyst metal is not particularly limited, and examples thereof include Ni, Pd, Pt, Rh, Ir, Re, Ru, Mo, W, V, Os, Cr, Co, Fe, and alloys thereof. ..
  • As the catalyst metal one type may be used alone, or two or more types may be used in combination.
  • the carrier is not particularly limited, and examples thereof include activated carbon, carbon nanotubes, silica, alumina, alumina silicate, porous polyimide, zinc oxide, zirconium oxide, diatomaceous earth, niobium oxide, vanadium oxide, or a mixture thereof. Be done.
  • the carrier one type may be used alone, or two or more types may be used in combination.
  • the catalyst include those in which a catalyst metal such as platinum, ruthenium, palladium, rhodium, tin, rhenium or germanium is supported on a porous carrier such as alumina.
  • the dehydrogenation catalyst usually has different adsorption powers for hydrogen storage, dehydrogenated products and hydrogen, and has the weakest adsorption power for hydrogen.
  • the hydrogen reservoir introduced into the dehydrogenation reaction unit 13 is converted into hydrogen and a dehydrogenated product by the dehydrogenation reaction, but the adsorption power of the dehydrogenation catalyst for hydrogen is larger than the adsorption power of the dehydrogenation catalyst for the dehydrogenated product. Since it is weak, the generated hydrogen is preferentially released from the catalyst and discharged from the dehydrogenation reaction unit 13.
  • the adsorption force of the catalyst for hydrogen, hydrogen reservoir or dehydrogenate has a relationship of adsorption force for hydrogen ⁇ adsorption force for hydrogen reservoir ⁇ adsorption force for dehydrogenate.
  • the difference in the adsorptive power of the catalyst to hydrogen, hydrogen reservoir or dehydrogenated product is mainly caused by the adsorptive power and polarity of the carrier used for the catalyst.
  • hydrogen since hydrogen is not usually adsorbed on the carrier, when selecting the carrier, attention should be paid to the difference in the adsorptive power to the dehydrogenated product and the hydrogen reservoir. Since the adsorption power may differ depending on the hydrogen storage body used, it is desirable to conduct an experiment in advance and select a carrier suitable for the hydrogen storage body to be used.
  • Examples of the carrier having a relationship of adsorption power for hydrogen ⁇ adsorption power for hydrogen storage ⁇ adsorption power for dehydrogenated product include silica when an organic hydride such as methylcyclohexane is used as the hydrogen storage. Silica has a lower adsorption power for hydrogen storage than for dehydrogenated products, and by using a carrier containing silica, the displacement between hydrogen and dehydrogenated products in the catalyst section can be increased, and hydrogen can be increased. The hydrogenation reaction between dehydrogenation and dehydrogenation (reaction in the opposite direction to the dehydrogenation reaction) can be reduced.
  • the positions of hydrogen and toluene as a dehydrogenated product in the catalyst portion can be shifted, and the rebonding of hydrogen to toluene can be reduced. Can be done.
  • the dehydrogenation reaction unit 13 As a configuration of the dehydrogenation reaction unit 13, for example, as shown in FIG. 2, a type in which a catalyst is filled and fixed inside a tube-shaped container or a box-shaped container can be mentioned.
  • the form of the catalyst can be a porous body, a honeycomb body or a particle body.
  • the catalyst When the catalyst is formed as a porous body or a honeycomb body, it can be formed by supporting a catalyst metal in the pores of alumina, zeolite, porous polyimide or the like.
  • a type in which the catalyst is fixed to the inner surface of the thin tube or the inner surface of the housing can be mentioned.
  • the catalyst can be provided so as to cover the inner surface of the thin tube or the inner surface of the housing.
  • a type in which a flow path or unevenness for allowing the hydrogen storage to flow is provided on the surface of the flat plate and the catalyst is fixed on the flow path or unevenness can be mentioned.
  • Such flow paths and recesses can be formed by using, for example, machining such as cutting or pressing the surface of a flat plate, or techniques such as etching, plating process, nanoprinting, vapor deposition, and sputtering.
  • the catalyst can be provided so as to cover the surface of the flat plate provided with the flow path and the unevenness.
  • the catalyst containing the catalyst metal and the carrier can be formed by, for example, the following method.
  • the catalyst metal can be supported on a carrier and fixed.
  • a catalyst can be obtained by a coprecipitation method or a thermal decomposition method by a conventional method.
  • a carrier layer is formed by a sol-gel method or a CVD method, and a catalyst is formed on this carrier layer.
  • the catalyst By supporting the metal, the catalyst can be formed as a catalyst layer.
  • the dehydrogenation reaction unit 13 is of a type in which the catalyst is fixed to the inner surface of the thin tube or the housing, an oxide-based carrier layer is directly formed on the inner surface of the thin tube by anodizing the inner surface of the thin tube. Then, the catalyst can be formed as a catalyst layer by supporting the catalyst metal on the carrier layer.
  • the dehydrogenation reaction unit 13 is preferably of a type in which the catalyst is fixed in a robust housing in order to prevent the catalyst from being destroyed by an external stimulus.
  • Examples of the material of such a housing include metal, ceramics, glass and plastic.
  • the suction unit 14 decompresses the dehydrogenation reaction unit 13 by suction. As described above, by carrying out the dehydrogenation reaction under reduced pressure, the dehydrogenation reaction can be promoted, and as a result, the temperature required for the dehydrogenation reaction can be lowered. Along with the suction by the suction unit 14, a mixture mainly containing hydrogen gas and a dehydrogenated product is discharged from the dehydrogenation reaction unit 13 and sent to the gas-liquid separation unit 15.
  • a suction pump can be used as the suction unit 14.
  • Suction pumps include, for example, pistons, turbines, air pumps, vacuum pumps, microturbines, or combinations thereof.
  • a turbine for over-intake of an automobile may be used.
  • the power of the engine may be used as the power source of the pump.
  • the power of the axle of the automobile can be used as the power of the pump.
  • the gas-liquid separation unit 15 performs a gas-liquid separation treatment on the mixture discharged from the dehydrogenation reaction unit 13 to separate the mixture into a gas mainly containing hydrogen and a liquid mainly containing a dehydrogenated product.
  • the configuration of the gas-liquid separation unit 15 is not limited, and can be appropriately configured by using, for example, a cooler, a separation membrane, a pressure regulating valve, or a combination thereof.
  • the gas-liquid separation unit 15 has at least a container to which the mixture discharged by suction from the dehydrogenation reaction unit 13 is sent and a pressure adjusting valve for adjusting the pressure in the container.
  • the suction force of the suction unit 14 is used to improve the pressure of the mixture in the gas-liquid separation unit 15, and the mixture mainly contains a gas containing mainly hydrogen and a dehydrogenated product. It can be easily separated from the liquid.
  • the suction unit 14 is operated with the pressure adjusting valve 52 closed to increase the pressure in the container 51.
  • the pressure in the container 51 is controlled within a range in which the mixture can be separated into a gas mainly containing hydrogen and a liquid mainly containing dehydrogenated products.
  • a gas mainly containing hydrogen a gas mainly containing hydrogen
  • a liquid mainly containing dehydrogenated products a gas mainly containing hydrogen
  • the pressure inside the container is preferably adjusted to about 1.2 atm.
  • the pressure in the container 51 can be adjusted by appropriately controlling the pressure adjusting valve 52. In FIG. 3, it is possible to recover the gas from the pressure regulating valve 52, and a liquid feeding port for recovering the liquid may be separately provided.
  • the configuration of the gas-liquid separation unit 15 can be simplified, and the gas-liquid separation process can be performed by utilizing the suction force of the suction unit 14, so that the gas-liquid separation process can be performed from the viewpoint of energy. Is also advantageous.
  • the hydrogen generation system may include a plurality of gas-liquid separation units. Since the discharge timing of hydrogen as a reactant, dehydrogenated product, and hydrogen storage as an unreacted product may differ depending on the adsorption power of the catalyst, the valve is switched according to each discharge time and sent to separate gas-liquid separators. Thereby, each component can be recovered more effectively.
  • two gas-liquid separation units first gas-liquid separation unit 151 and second gas-liquid separation unit 152 are provided and discharged from the dehydrogenation reaction unit 13 in an early time zone. A gas containing a relatively large amount of hydrogen can be sent to the first gas-liquid separation unit 151, and subsequent gases can be sent to the second gas-liquid separation unit 152.
  • first gas-liquid separation unit As a result, hydrogen gas having a higher purity can be easily obtained in the first gas-liquid separation unit 151.
  • three gas-liquid separation units (first gas-liquid separation unit, second gas-liquid separation unit, and third gas-liquid separation unit) are provided, and hydrogen discharged from the dehydrogenation reaction unit 13 in an early time zone.
  • the gas containing a large amount of gas is sent to the first gas-liquid separation unit, the gas containing a large amount of the next discharged substance (for example, a hydrogen reservoir) is sent to the second gas-liquid separation unit, and the last discharged substance (for example) is sent.
  • a gas containing a large amount of dehydrogenate) can also be sent to the third gas-liquid separation section.
  • the gas can be delivered to each gas-liquid separation unit by operating a valve (actuating valve) according to the timing.
  • the hydrogen generation system may further include a hydrogen purification unit.
  • the hydrogen purification unit has a function of purifying hydrogen from the hydrogen-containing gas obtained in the gas-liquid separation unit 15.
  • the hydrogen purification unit can have a function of increasing hydrogen purity by further removing dehydrogenated substances, unreacted hydrogen reservoirs, and the like from the hydrogen-containing gas supplied from the gas-liquid separation unit 15.
  • a membrane separator containing a hydrogen separation membrane an adsorption remover using a PSA (Pressure swing attachment) method or a TSA (Temperature swing advertisement) method can be used.
  • the hydrogen generation system may further include a compression unit.
  • the compression unit has a function of increasing the pressure (for example, 20 MPa to 90 MPa) of the high-purity hydrogen gas obtained in the hydrogen purification unit.
  • the high-purity hydrogen (purified gas) obtained by the hydrogen purification unit is directly or indirectly supplied to the compression unit.
  • indirect means, for example, temporarily storing high-purity hydrogen in a tank or the like.
  • the hydrogen generation system may further include a pressure accumulator.
  • the pressure accumulator has a function of storing high-purity hydrogen while maintaining it in a high-pressure state.
  • the high-purity hydrogen stored in the pressure accumulator in a high-pressure state can be supplied to the FCV or the like by a dispenser. Further, in the present embodiment, for example, high-purity hydrogen in a high-pressure state may be directly supplied to the dispenser without going through the accumulator.
  • the hydrogen generation system according to the present embodiment may further include a recovery unit.
  • the recovery unit has a function of storing the dehydrogenated product (for example, toluene) and the hydrogen storage body (for example, MCH) separated by the gas-liquid separation unit 15.
  • the dehydrogenated product recovered in the recovery unit is transported to a refinery or the like by a tank truck, for example, and is rehydrogenated to be converted into a hydrogen storage body.
  • the operating temperature of PEFCs (solid polymer fuel cells) and DMFCs (direct methanol fuel cells) that use hydrogen as fuel is about 70 to 100 ° C.
  • the operating temperature of the PAFC (phosphoric acid fuel cell) is about 200 ° C. Therefore, when the hydrogen generation system according to the present embodiment is used in combination with these fuel cells, they can be used as a heat source by providing them adjacent to or close to these fuel cells. Further, when the hydrogen generation system according to the present embodiment and the hydrogen fuel engine are used in combination, the heat of the exhaust gas discharged from the hydrogen fuel engine can be used as a heat source.
  • the power generation system 100 includes the hydrogen generation system 1 of the present embodiment. Further, in the power generation system 100, at least one of the supply unit 11, the vaporization unit 12, and the dehydrogenation reaction unit 13 is arranged so as to be in contact with or close to the polymer electrolyte fuel cell 101. In this way, at least one of the supply unit 11, the vaporization unit 12, and the dehydrogenation reaction unit 13 can be heated by utilizing the operating temperature (for example, 80 to 100 ° C.) of the polymer electrolyte fuel cell 101. ..
  • the power generation system 100 includes a storage tank 102 for storing the hydrogen storage body, a liquid feeding line 104 for sending the hydrogen storage body stored in the storage tank 102 to the hydrogen generation system 1, and a liquid feeding line.
  • a liquid feed pump 105 which is provided on the 104 and generates a pressure to send a hydrogen storage body from the storage tank 102 to the hydrogen generation system 1, and hydrogen generated by the hydrogen generation system 1 to the solid polymer fuel cell 101.
  • the hydrogen supply line 108 for supply, the waste liquid recovery line 106 for liquefying and recovering the dehydrogenated product and the hydrogen storage as an unreacted product produced in the hydrogen generation system 1, and the waste liquid recovery line 106 are used for feeding.
  • a hydrogen supply pump 107 for sucking the hydrogen generated by the hydrogen generation system 1 and supplying it to the polymer electrolyte fuel cell 101 is provided on the hydrogen supply line 108.
  • the hydrogen supply pump 107 can forcibly supply the hydrogen generated by the hydrogen generation system 1 to the polymer electrolyte fuel cell 101.
  • a turbine type exhaust pump can be used as the hydrogen supply pump 107.
  • a heating unit (not shown) for heating the vaporization unit 12 and the dehydrogenation reaction unit 13 may be provided.
  • the heating unit can quickly heat the vaporization unit 12 and / or the dehydrogenation reaction unit 13 to a temperature at which the dehydrogenation reaction can be suitably performed.
  • the fuel in the heating section can be stored in, for example, a tank (not shown). Examples of the fuel for the heating unit include city gas, kerosene, heavy oil, and the like.
  • the polymer electrolyte fuel cell 101 includes a cell stack (not shown) composed of a plurality of single cells S formed by an electrolyte membrane E and an anode A and a cathode C sandwiching the electrolyte membrane E.
  • the hydrogen generated by the hydrogen generation system 1 is supplied to the anode A via the hydrogen supply line 108.
  • Air is supplied from the air pump 109 to the cathode C.
  • the air may be treated with a humidifier (not shown) if necessary.
  • Electrons (electricity) and water are generated by the reaction between hydrogen at the anode A and oxygen at the cathode C via the electrolyte membrane E.
  • the generated water is discharged to the outside of the power generation system 100, and electricity is supplied to an electric system such as a motor or a secondary battery.
  • the exhaust gas discharged from the polymer electrolyte fuel cell 101 is sucked by the hydrogen supply pump 107 and discharged from the exhaust gas line 110.
  • the power generation system 100 may include a heat exchanger (not shown) between the storage tank 102 and the vaporization unit 12. By subjecting the high-temperature dehydrogenated product recovered from the hydrogen generation system 1 to this heat exchanger before collecting it in the waste liquid tank 103, the hydrogen storage body can be heated by utilizing the heat of the dehydrogenated product.
  • the exhaust gas discharged from the polymer electrolyte fuel cell 101 can be reused as power for the hydrogen supply pump 107 mounted on the power generation system 100 by utilizing the exhaust pressure. By providing such a device, it is possible to improve the energy efficiency of the power generation system 100.
  • the engine system 200 has a storage tank 202, a waste liquid tank 203, a liquid feed line 204, a liquid feed pump 205, and a waste liquid recovery line 206 having the same functions as the power generation system 100 described above. And a hydrogen supply pump 207.
  • the engine system 200 exhausts the hydrogen generation system 1, the engine 201 such as a hydrogen fuel engine, the hydrogen supply line 208 for supplying the hydrogen generated by the hydrogen generation system 1 to the engine 201, and the exhaust gas from the engine 201. It has an exhaust gas line 210 for the purpose, and is configured to come into contact with the hydrogen generation system 1 at the subsequent stage of the exhaust gas line 210.
  • the operating temperature of the engine 201 is higher than that of the polymer electrolyte fuel cell 101, and the exhaust gas temperature is also higher. Therefore, in the engine system 200, the vaporization section 12 and / or the dehydrogenation reaction section of the hydrogen generation system 1 is heated by contacting the hydrogen generation system 1 at the subsequent stage of the exhaust gas line 210.
  • the hydrogen generation system 1 may be designed to be heated by utilizing the waste heat of the cooling water or oil of the engine 201.
  • the major difference between the engine 201 and the polymer electrolyte fuel cell 101 is the purity of the hydrogen gas supplied from the hydrogen generation system 1.
  • the vapor pressure dehydrogenated product may be sucked together with hydrogen.
  • the engine 201 used in the engine system 200 is a hydrogen fuel engine, even if some hydrocarbons, that is, dehydrogenates and hydrogen reservoirs are mixed as impurities, they can be burned. Further, in some cases, if a small amount of hydrocarbon is mixed in the hydrogen gas, control may be facilitated.
  • the structure of the engine system 200 can be simplified as compared with that of the power generation system 100.
  • the dehydrogenated product and the unreacted hydrogen reservoir are collected in the waste liquid tank 203 by the waste liquid recovery line 206.
  • the hydrogen generated in the dehydrogenation reaction unit 13 is sent to the engine 201 by the hydrogen supply pump 207 via the hydrogen supply line 208, and is burned together with the air taken in by the engine 201 to generate a driving force.
  • the exhaust gas generated by combustion in the engine 201 is supplied by the exhaust gas line 210 to the heating unit 14 provided in contact with the hydrogen generation system 1, and then discharged from the exhaust port of the exhaust gas line 210.
  • the hydrogen storage system 300 includes a storage tank 302, a waste liquid tank 303, a liquid feed line 304, a liquid feed pump 305, and a hydrogen supply line 308 having the same functions as the power generation system 100 described above. And a waste liquid recovery line 306.
  • the hydrogen storage system 300 stores the hydrogen generation system 1, the hydrogen supply line 308 that supplies the hydrogen generated by the hydrogen generation system 1 to the compressor 301, the compressor 301 that compresses the supplied hydrogen, and the compressed hydrogen. It has a hydrogen tank 307 and a hydrogen tank 307.
  • the hydrogen tank 307 may store hydrogen in a gas or liquid state under high pressure conditions. Further, the hydrogen tank 307 may contain a hydrogen storage alloy such as AB2 type, AB5 type, iron-titanium type, magnesium type, vanadium type, palladium type, calcium type and the like.
  • the dehydrogenated product and the unreacted hydrogen reservoir are collected in the waste liquid tank 303 by the waste liquid recovery line 306.
  • the hydrogen generated in the dehydrogenation reaction unit 13 is sent to the compressor 301 by the hydrogen supply line 308, compressed, and stored in the hydrogen tank 307.
  • FIG. 8 schematically shows a community using a distributed power source that uses renewable energy such as grid power, wind power, or solar power, and a hydrogen vehicle as an example.
  • the hydrogen community 400 includes a wind power generator 411, a solar cell 412, a grid power 413, an inverter 414 connected to these, and an electric device 416 that consumes electricity. Further, the hydrogen community 400 uses the water electrolyzer 420 that electrolyzes water to generate hydrogen and the hydrogen generated by the water electrolyzer 420 to add hydrogen to the dehydrogenated product of the hydrogen storage and store hydrogen again. Includes a hydrogen reservoir production device 421 for manufacturing the body and a hydrogen reservoir station 423 for storing the hydrogen reservoir produced by the hydrogen reservoir production device 421 and utilizing the existing gasoline infrastructure. ing.
  • the hydrogen community 400 includes a power generation system 100, an engine system 200, and a hydrogen storage system 300 to which a hydrogen storage unit supplied from a hydrogen storage unit station 423 is supplied, and the hydrogen generation system 1 of the present embodiment is the hydrogen. Used as part of Community 400.
  • the hydrogen generation system 1 of the present embodiment is provided and used in the power generation system 100, the engine system 200, and the hydrogen storage system 300.
  • the hydrogen generation system 1 included in the power generation system 100 generates hydrogen using the hydrogen storage unit supplied from the hydrogen storage unit station 423, and uses the generated hydrogen to generate electricity by the polymer electrolyte fuel cell 101. Generate electricity.
  • the hydrogen generation system 1 included in the engine system 200 of the hydrogen vehicle 417 generates hydrogen using the hydrogen storage body supplied from the hydrogen storage body station 423, and the generated hydrogen is directly burned by the engine 201. The driving force is obtained to drive the hydrogen vehicle 417.
  • the hydrogen generation system 1 included in the hydrogen storage system 300 generates hydrogen using the hydrogen storage body supplied from the hydrogen storage body station 423, and the generated hydrogen is put into the hydrogen tank 307 by the compressor 301. Stored at high pressure.
  • DC electricity generated by renewable energy such as wind power generation 411 and solar cell 412 can be converted into AC electricity by an inverter 414.
  • the electricity converted to alternating current is usually used in household electrical appliances 416.
  • the electricity converted into alternating current is supplied to the water electrolyzer 420 to electrolyze water and generate hydrogen and oxygen.
  • the hydrogen generated by the water electrolyzer 420 is supplied to the hydrogen storage body manufacturing device 421, and hydrogen is added to the dehydrogenated product of the hydrogen storage body to make the hydrogen storage body again.
  • Electricity is divided into peak power corresponding to daytime load fluctuations and base power that supplies constant basic power day and night.
  • the power generation system 100 shown in FIG. 5 preferably supplies peak power corresponding to daytime load fluctuations to the household distributed power source 418 and the electric device 416.
  • the power generation system 100 can use the grid power 413 of an electric power company or the like as the base power, and it is preferable that the grid power 413 also uses the above-mentioned renewable energy for CO 2 reduction. Further, it is preferable to operate the water electrolyzer 420 with surplus electric power from the viewpoint of the efficiency of the hydrogen community 400 and the viewpoint of CO 2 reduction.
  • renewable energy in addition to wind power generation 411 and solar cell 412, geothermal energy, ocean thermal energy conversion, tidal power, biomass, etc. can also be used. Since these renewable energies can generate electricity even at night and generate surplus electric power, it is suitable for operating the water electrolyzer 420 to produce a hydrogen reservoir and storing a large amount in the hydrogen reservoir tank 422. .. It is preferable that the power generation by the renewable energy in the daytime is positively supplied as the peak power of the system power 413.
  • the hydrogen vehicle 417 can be equipped with a water electrolyzer (not shown) similar to the water electrolyzer 420. In this way, it becomes possible to run using the hydrogen storage body in the daytime and use the surplus electric power at night to turn the dehydrogenated product recovered as the waste liquid into a hydrogen storage body, which further improves convenience. do.
  • the upper limit value and / or the lower limit value of the numerical range described in the present specification can be arbitrarily combined to specify a preferable range.
  • an upper limit value and a lower limit value of the numerical range can be arbitrarily combined to specify a preferable range
  • an upper limit value of the numerical range can be arbitrarily combined to specify a preferable range
  • a lower limit of the numerical range can be specified.
  • a preferable range can be defined by arbitrarily combining the values.
  • a hydrogen generation system that produces hydrogen by dehydrogenating a hydrogen reservoir with a catalyst.
  • a supply unit that intermittently supplies hydrogen storage and A vaporizer that vaporizes the hydrogen reservoir supplied from the supply unit,
  • a dehydrogenation reaction section that brings the hydrogen reservoir from the vaporization section into contact with a catalyst to perform a dehydrogenation reaction and converts it into hydrogen and a dehydrogenated product.
  • a suction part that decompresses the atmosphere inside the dehydrogenation reaction part by suction,
  • a gas-liquid separator that separates a mixture containing hydrogen gas and dehydrogenated material sucked by the suction unit into a gas that mainly contains hydrogen and a liquid that mainly contains dehydrogenated material.
  • a hydrogen generation system characterized by being equipped with.
  • Appendix 2 The hydrogen generation system according to Appendix 1, wherein the gas-liquid separation unit has at least a container to which the sucked mixture is sent and a pressure regulating valve for adjusting the pressure in the container.
  • Appendix 3 The hydrogen generation system according to Appendix 1 or 2, wherein the supply unit intermittently supplies the hydrogen storage unit to the vaporization unit at time intervals in which the dehydrogenated product of the previously supplied hydrogen storage unit is discharged from the dehydrogenation reaction unit. ..
  • a method characterized by including. (Appendix 8) The method according to Appendix 7, wherein the dehydrogenation reaction is carried out under a pressure of 30 kPa or less.
  • Appendix 9 The method according to Appendix 7 or 8, wherein the mixture is separated into a gas and a liquid by putting the mixture into a container by the suction and increasing the pressure.
  • Appendix 10 The method according to any of Supplementary note 7 to 9, wherein the hydrogen reservoir is intermittently used as a catalyst at time intervals during which the dehydrogenated product of the previously supplied hydrogen reservoir is discharged.

Abstract

The purpose of the present disclosure is to provide a hydrogen generation system or a hydrogen generation method in which a dehydrogenation reaction can be carried out at a low temperature. The present embodiment is a hydrogen generation system for generating hydrogen by subjecting a hydrogen storage material to a dehydrogenation reaction using a catalyst, the hydrogen generation system being characterized by comprising: a feeding unit for feeding the hydrogen storage material intermittently; a vaporization unit for vaporizing the hydrogen storage material fed by the feeding unit; a dehydrogenation reaction unit for bringing the hydrogen storage material from the vaporization unit into contact with a catalyst and performing a dehydrogenation reaction to convert the hydrogen storage material into hydrogen and a dehydrogenated product; a sucking unit for reducing the pressure of the atmosphere in the dehydrogenation reaction unit by sucking; and a gas-liquid separation unit for separating a mixture containing a hydrogen gas and the dehydrogenated product which have been sucked by the sucking unit into a gas mainly containing hydrogen and a liquid mainly containing the dehydrogenated product.

Description

水素生成システム及び水素生成方法Hydrogen generation system and hydrogen generation method
 本実施形態は、水素貯蔵体から水素を生成する水素生成システムに関する。また、本実施形態は、水素貯蔵体から水素を生成する水素生成方法に関する。 This embodiment relates to a hydrogen generation system that produces hydrogen from a hydrogen reservoir. The present embodiment also relates to a hydrogen generation method for producing hydrogen from a hydrogen reservoir.
 二酸化炭素等による地球温暖化が問題になる中で、化石燃料に代わって次世代を担うエネルギー源として水素が注目されている。水素を生成する手段として、水素の貯蔵体としての有機ハイドライド等の水素貯蔵体から脱水素反応により水素を取り出すシステム又は方法が提案されている。 Amid global warming caused by carbon dioxide, hydrogen is attracting attention as an energy source that will carry the next generation in place of fossil fuels. As a means for producing hydrogen, a system or method for extracting hydrogen by a dehydrogenation reaction from a hydrogen storage such as organic hydride as a hydrogen storage has been proposed.
 例えば、特許文献1は、化学的に水素を貯蔵することのできる水素貯蔵体を触媒と接触させて脱水素反応させることにより水素と水素貯蔵体の脱水素体を生成し、前記生成した水素を他の装置に供給する水素供給方法であって、前記水素貯蔵体を気化し、少なくとも前記脱水素体が前記触媒から取り除かれる時間間隔をもって、気化した前記水素貯蔵体を200℃以下に加熱された前記触媒と接触させて前記脱水素反応を行わせることにより前記水素と前記脱水素体を生成させつつ、前記生成された水素と、前記生成された脱水素体と、前記脱水素反応で未反応であった水素貯蔵体と、を前記触媒の作用により異なるタイミングで系外へ送出させることを特徴とする水素供給方法を開示している。特許文献1は、脱水素反応を低温でも効率的に行うことを目的としている。 For example, in Patent Document 1, hydrogen and a dehydrogenated product of the hydrogen reservoir are produced by contacting a hydrogen reservoir capable of chemically storing hydrogen with a catalyst to cause a dehydrogenation reaction, and the produced hydrogen is used. A method of supplying hydrogen to another apparatus, in which the hydrogen reservoir is vaporized, and the vaporized hydrogen reservoir is heated to 200 ° C. or lower at least at intervals at which the dehydrogenated substance is removed from the catalyst. The hydrogen and the dehydrogenate are generated by contacting with the catalyst to carry out the dehydrogenation reaction, and the generated hydrogen and the generated dehydrogenate are unreacted in the dehydrogenation reaction. Disclosed is a hydrogen supply method characterized in that the hydrogen storage body and the hydrogen storage body, which have been used above, are sent out of the system at different timings by the action of the catalyst. Patent Document 1 aims to efficiently carry out a dehydrogenation reaction even at a low temperature.
特開2010-235359号公報Japanese Unexamined Patent Publication No. 2010-235359
 特許文献1のように、低温での脱水素反応の実現は、エネルギー効率及び省エネルギー性の観点からも望ましい。例えば、低温での脱水素反応を実現することにより、比較的低温である工場排熱や温水廃熱、太陽熱等を用いても、反応に十分な温度までに触媒を加熱することができる。そのため、低い温度で脱水素反応を行うことができる新たな水素生成システムの開発が求められている。 As in Patent Document 1, the realization of a dehydrogenation reaction at a low temperature is desirable from the viewpoint of energy efficiency and energy saving. For example, by realizing the dehydrogenation reaction at a low temperature, the catalyst can be heated to a temperature sufficient for the reaction even if factory waste heat, hot water waste heat, solar heat, etc., which are relatively low temperatures, are used. Therefore, the development of a new hydrogen generation system capable of performing a dehydrogenation reaction at a low temperature is required.
 そこで、本開示は、低い温度で脱水素反応を行うことができる水素生成システム又は水素生成方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a hydrogen generation system or a hydrogen generation method capable of carrying out a dehydrogenation reaction at a low temperature.
 本実施形態は、例えば、以下の通りに表現することができる。 This embodiment can be expressed as follows, for example.
 水素貯蔵体を触媒を用いて脱水素反応させることにより水素を生成する水素生成システムであって、
 水素貯蔵体を断続的に供給する供給部と、
 供給部から供給された水素貯蔵体を気化する気化部と、
 気化部からの水素貯蔵体を触媒と接触させて脱水素反応を行い、水素と脱水素化物とに変換する脱水素反応部と、
 脱水素反応部内の雰囲気を吸引により減圧する吸引部と、
 吸引部により吸引された水素ガス及び脱水素化物を含む混合物を、水素を主に含む気体と脱水素化物を主に含む液体とに分離させる気液分離部と、
を備えることを特徴とする水素生成システム。
A hydrogen generation system that produces hydrogen by dehydrogenating a hydrogen reservoir with a catalyst.
A supply unit that intermittently supplies hydrogen storage and
A vaporizer that vaporizes the hydrogen reservoir supplied from the supply unit,
A dehydrogenation reaction section that brings the hydrogen reservoir from the vaporization section into contact with a catalyst to perform a dehydrogenation reaction and converts it into hydrogen and a dehydrogenated product.
A suction part that decompresses the atmosphere inside the dehydrogenation reaction part by suction,
A gas-liquid separator that separates a mixture containing hydrogen gas and dehydrogenated material sucked by the suction unit into a gas that mainly contains hydrogen and a liquid that mainly contains dehydrogenated material.
A hydrogen generation system characterized by being equipped with.
 水素貯蔵体を触媒を用いて脱水素反応させることにより水素を生成する方法であって、
 水素貯蔵体を供給する工程と、
 供給された水素貯蔵体を気化する工程と、
 気化した水素貯蔵体を触媒と接触させて脱水素反応を行い、水素と脱水素化物とに変換させる工程であって、脱水素反応を吸引による減圧下で行う工程と、
 吸引された水素及び脱水素化物を含む混合物を、水素を主に含む気体と脱水素化物を主に含む液体とに分離させる工程と、
を含むことを特徴とする方法。
A method of producing hydrogen by dehydrogenating a hydrogen reservoir with a catalyst.
The process of supplying hydrogen storage and
The process of vaporizing the supplied hydrogen reservoir and
A step of bringing a vaporized hydrogen reservoir into contact with a catalyst to carry out a dehydrogenation reaction to convert hydrogen into a dehydrogenated product, which is a step of carrying out the dehydrogenation reaction under reduced pressure by suction.
A step of separating the suctioned mixture containing hydrogen and dehydrogenated product into a gas containing mainly hydrogen and a liquid containing mainly dehydrogenated product.
A method characterized by including.
 本開示により、低い温度で脱水素反応を行うことができる水素生成システム又は水素生成方法を提供することができる。 According to the present disclosure, it is possible to provide a hydrogen generation system or a hydrogen generation method capable of carrying out a dehydrogenation reaction at a low temperature.
本実施形態に係る水素供給システムの構成例を説明するためのブロック図である。It is a block diagram for demonstrating the configuration example of the hydrogen supply system which concerns on this embodiment. 本実施形態に係る水素供給システムにおける脱水素反応部の構成例を説明するための模式図である。It is a schematic diagram for demonstrating the structural example of the dehydrogenation reaction part in the hydrogen supply system which concerns on this embodiment. 本実施形態に係る水素供給システムにおける気液分離部の構成例を説明する模式図である。It is a schematic diagram explaining the structural example of the gas-liquid separation part in the hydrogen supply system which concerns on this embodiment. 本実施形態に係る水素供給システムの構成例を説明するためのブロック図である。It is a block diagram for demonstrating the configuration example of the hydrogen supply system which concerns on this embodiment. 本実施形態に係る水素供給システムと固体高分子形燃料電池を組み合わせた発電システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the power generation system which combined the hydrogen supply system and the polymer electrolyte fuel cell which concerns on this Embodiment. 本実施形態に係る水素供給システムとエンジンを組み合わせたエンジンシステムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the engine system which combined the hydrogen supply system and the engine which concerns on this embodiment. 本実施形態に係る水素供給システムと圧縮機を組み合わせた水素貯蔵システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the hydrogen storage system which combined the hydrogen supply system and the compressor which concerns on this embodiment. 本実施形態に係る水素供給システムを使用した水素コミュニティの構成例を示すブロック図である。It is a block diagram which shows the composition example of the hydrogen community using the hydrogen supply system which concerns on this embodiment.
 以下、図面を参照して本実施形態を説明する。以下の記載および図面は、本実施形態を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本実施形態は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 Hereinafter, this embodiment will be described with reference to the drawings. The following description and drawings are examples for explaining the present embodiment, and are appropriately omitted and simplified for clarification of the description. This embodiment can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
 同一あるいは同様な機能を有する構成要素が複数ある場合には、基本的に同一の符号を付して説明するが、機能が同じであっても機能を実現するための手段が異なる場合がある。 When there are a plurality of components having the same or similar functions, they are basically given the same reference numerals, but even if the functions are the same, the means for realizing the functions may be different.
 また、以下の説明では、プログラムを実行して行う処理を説明する場合があるが、プログラムは、中央処理部であるプロセッサ(例えばCPU)によって実行されることで、定められた処理を、適宜に記憶資源(例えばメモリ)および/またはインターフェースデバイス(例えば通信ポート)等を用いながら行うため、処理の主体はプロセッサであるが、発明の理解を容易にするプログラムを主語として説明される場合がある。 Further, in the following description, a process of executing a program may be described, but the program is executed by a processor (for example, a CPU) which is a central processing unit, so that a predetermined process can be appropriately performed. Since it is performed while using a storage resource (for example, memory) and / or an interface device (for example, a communication port), the main body of processing is a processor, but a program that facilitates understanding of the invention may be explained as a subject.
 プログラムは、プログラムソースから計算機のような装置にインストールされてもよい。プログラムソースは、例えば、プログラム配布サーバまたは計算機が読み取り可能な記憶メディアであってもよい。プログラムソースがプログラム配布サーバの場合、プログラム配布サーバはプロセッサと配布対象のプログラムを記憶する記憶資源を含み、プログラム配布サーバのプロセッサが配布対象のプログラムを他の計算機に配布してもよい。また、以下の説明において、2以上のプログラムが1つのプログラムとして実現されてもよいし、1つのプログラムが2以上のプログラムとして実現されてもよい。 The program may be installed from the program source on a device such as a calculator. The program source may be, for example, a program distribution server or a computer-readable storage medium. When the program source is a program distribution server, the program distribution server includes a processor and a storage resource for storing the program to be distributed, and the processor of the program distribution server may distribute the program to be distributed to other computers. Further, in the following description, two or more programs may be realized as one program, or one program may be realized as two or more programs.
 本実施形態に係る水素生成システムは、
 水素貯蔵体を触媒を用いて脱水素反応させることにより水素を生成する水素生成システムであって、
 水素貯蔵体を断続的に供給する供給部と、
 供給部から供給された水素貯蔵体を気化する気化部と、
 気化部からの水素貯蔵体を触媒と接触させて脱水素反応を行い、水素と脱水素化物とに変換する脱水素反応部と、
 脱水素反応部内の雰囲気を吸引により減圧する吸引部と、
 吸引部により吸引された水素ガス及び脱水素化物を含む混合物を、水素を主に含む気体と脱水素化物を主に含む液体とに分離させる気液分離部と、
を備えることを特徴とする。
The hydrogen generation system according to this embodiment is
A hydrogen generation system that produces hydrogen by dehydrogenating a hydrogen reservoir with a catalyst.
A supply unit that intermittently supplies hydrogen storage and
A vaporizer that vaporizes the hydrogen reservoir supplied from the supply unit,
A dehydrogenation reaction section that brings the hydrogen reservoir from the vaporization section into contact with a catalyst to perform a dehydrogenation reaction and converts it into hydrogen and a dehydrogenated product.
A suction part that decompresses the atmosphere inside the dehydrogenation reaction part by suction,
A gas-liquid separator that separates a mixture containing hydrogen gas and dehydrogenated material sucked by the suction unit into a gas that mainly contains hydrogen and a liquid that mainly contains dehydrogenated material.
It is characterized by having.
 本実施形態に係る水素生成方法は、
 水素貯蔵体を触媒を用いて脱水素反応させることにより水素を生成する方法であって、
 水素貯蔵体を供給する工程と、
 供給された水素貯蔵体を気化する工程と、
 気化した水素貯蔵体を触媒と接触させて脱水素反応を行い、水素と脱水素化物とに変換させる工程であって、脱水素反応を吸引による減圧下で行う工程と、
 吸引された水素及び脱水素化物を含む混合物を、水素を主に含む気体と脱水素化物を主に含む液体とに分離させる工程と、
を含むことを特徴とする。
The hydrogen generation method according to this embodiment is
A method of producing hydrogen by dehydrogenating a hydrogen reservoir with a catalyst.
The process of supplying hydrogen storage and
The process of vaporizing the supplied hydrogen reservoir and
A step of bringing a vaporized hydrogen reservoir into contact with a catalyst to carry out a dehydrogenation reaction to convert hydrogen into a dehydrogenated product, which is a step of carrying out the dehydrogenation reaction under reduced pressure by suction.
A step of separating the suctioned mixture containing hydrogen and dehydrogenated product into a gas containing mainly hydrogen and a liquid containing mainly dehydrogenated product.
It is characterized by including.
 本実施形態により、低い温度で脱水素反応を行うことができる水素生成システム又は水素生成方法を提供することができる。 According to this embodiment, it is possible to provide a hydrogen generation system or a hydrogen generation method capable of carrying out a dehydrogenation reaction at a low temperature.
 本実施形態において、供給部から供給された水素貯蔵体を気化部で気化した後、当該気化した水素貯蔵体を脱水素反応部で脱水素反応させて水素を生成する。また、本実施形態において、気化した水素貯蔵体の脱水素反応を吸引による減圧下で行う。水素貯蔵体の水素と脱水素化物への脱水素反応は、1モルの水素貯蔵体から複数モルの水素分子が生成し、また、その反応は平衡反応であるため、圧力を低くすることにより脱水素反応を進行させることができる。その結果、脱水素反応に従来必要とされていた高い温度(例えば、350~400℃)よりも低い温度(例えば200℃以下)で脱水素反応を進行させることができる。減圧のための吸引により、生成した水素及び脱水素化物等を含む混合物も脱水素反応部から排出され、次の工程に送られる。脱水素反応部から排出された混合物は、気液分離部で気体と液体に分離される。 In the present embodiment, after the hydrogen reservoir supplied from the supply section is vaporized in the vaporization section, the vaporized hydrogen reservoir is dehydrogenated in the dehydrogenation reaction section to generate hydrogen. Further, in the present embodiment, the dehydrogenation reaction of the vaporized hydrogen reservoir is carried out under reduced pressure by suction. In the dehydrogenation reaction of hydrogen in a hydrogen reservoir to hydrogen and a dehydrogenated product, multiple moles of hydrogen molecules are generated from one mol of hydrogen reservoir, and since the reaction is an equilibrium reaction, dehydration is performed by lowering the pressure. The elementary reaction can proceed. As a result, the dehydrogenation reaction can proceed at a temperature lower than the high temperature (for example, 350 to 400 ° C.) conventionally required for the dehydrogenation reaction (for example, 200 ° C. or lower). By suction for depressurization, the mixture containing the produced hydrogen and dehydrogenated product is also discharged from the dehydrogenation reaction section and sent to the next step. The mixture discharged from the dehydrogenation reaction section is separated into a gas and a liquid at the gas-liquid separation section.
 本実施形態に係る水素生成システムについて、以下に説明する。本実施形態に係る水素生成システムは、本実施形態に係る水素生成方法を実現するシステムである。本実施形態に係る水素生成方法は、水素生成システムの説明によって明らかにすることができる。 The hydrogen generation system according to this embodiment will be described below. The hydrogen generation system according to the present embodiment is a system that realizes the hydrogen generation method according to the present embodiment. The hydrogen generation method according to the present embodiment can be clarified by the description of the hydrogen generation system.
 図1に示すように、本実施形態に係る水素生成システム1は、供給部11、気化部12、脱水素反応部13、吸引部14、及び気液分離部15を備える。供給部11は、水素貯蔵体を含む原料を気化部12に断続的に供給する。図1において、符号20は、供給制御部を示す。気化部12は、供給部11から供給された有機ハイドライド等の水素貯蔵体を含む原料を気化する。気化部12からの水素貯蔵体の1バッチ(1回の供給量)は、脱水素反応部13で触媒に接触し、脱水素化される。この脱水素反応の際、脱水素反応部13の雰囲気は、吸引部14による吸引により減圧される。脱水素反応部13の圧力は、例えば、30kPa以下に低減される。脱水素反応を減圧下で行うことにより、反応平衡を脱水素側に大きく傾けることができ、脱水素反応を進行させることができる。その結果、脱水素反応を低温で行うことができる。吸引部14による吸引に伴い、水素ガス及び脱水素化物を主に含む混合物が脱水素反応部13から排出される。気液分離部15は、脱水素反応部13から排出された混合物に気液分離処理を施し、水素を主に含む気体と脱水素化物を主に含む液体とに分離する。 As shown in FIG. 1, the hydrogen generation system 1 according to the present embodiment includes a supply unit 11, a vaporization unit 12, a dehydrogenation reaction unit 13, a suction unit 14, and a gas-liquid separation unit 15. The supply unit 11 intermittently supplies the raw material containing the hydrogen storage to the vaporization unit 12. In FIG. 1, reference numeral 20 indicates a supply control unit. The vaporization unit 12 vaporizes a raw material containing a hydrogen storage body such as an organic hydride supplied from the supply unit 11. One batch (one supply amount) of the hydrogen reservoir from the vaporization unit 12 comes into contact with the catalyst at the dehydrogenation reaction unit 13 and is dehydrogenated. During this dehydrogenation reaction, the atmosphere of the dehydrogenation reaction unit 13 is depressurized by suction by the suction unit 14. The pressure of the dehydrogenation reaction unit 13 is reduced to, for example, 30 kPa or less. By carrying out the dehydrogenation reaction under reduced pressure, the reaction equilibrium can be greatly tilted toward the dehydrogenation side, and the dehydrogenation reaction can proceed. As a result, the dehydrogenation reaction can be carried out at a low temperature. Along with the suction by the suction unit 14, a mixture mainly containing hydrogen gas and a dehydrogenated product is discharged from the dehydrogenation reaction unit 13. The gas-liquid separation unit 15 performs a gas-liquid separation treatment on the mixture discharged from the dehydrogenation reaction unit 13 to separate the mixture into a gas mainly containing hydrogen and a liquid mainly containing a dehydrogenated product.
(水素貯蔵体)
 水素貯蔵体は、水素を貯蔵することができ、脱水素反応によって水素を生成することができる材料である。水素貯蔵体としては、例えば、有機ハイドライド(例えば、鎖式飽和炭化水素、環式飽和炭化水素、複素環式飽和炭化水素)、アンモニア、ヒドラジン、ホウ酸ナトリウム、又はこれらの混合物等が挙げられる。アンモニア、ヒドラジン及びホウ酸ナトリウムは、それぞれの水溶液を水素貯蔵体として用いることもできる。当該水溶液は、場合によって過酸化水素を含んでもよい。
(Hydrogen reservoir)
A hydrogen storage body is a material capable of storing hydrogen and producing hydrogen by a dehydrogenation reaction. Examples of the hydrogen storage include organic hydride (for example, chain saturated hydrocarbon, cyclic saturated hydrocarbon, heterocyclic saturated hydrocarbon), ammonia, hydrazine, sodium borate, or a mixture thereof. Ammonia, hydrazine and sodium borate can also use their respective aqueous solutions as hydrogen stores. The aqueous solution may optionally contain hydrogen peroxide.
 水素貯蔵体は、好ましくは、常温常圧で液体状であり、沸点が常温常圧で250℃以下(好ましくは200℃以下)である。 The hydrogen storage is preferably in a liquid state at normal temperature and pressure, and has a boiling point of 250 ° C. or lower (preferably 200 ° C. or lower) at normal temperature and pressure.
 有機ハイドライドは、不飽和結合を有する有機化合物の水素化物である。有機ハイドライドは、脱水素触媒を用いて、水素と脱水素化物(不飽和結合を有する有機化合物)とを含む脱水素反応物に変換することができる。有機ハイドライドの代表例として、例えば、メチルシクロヘキサン(以下、MCHとも称す)が知られている。不飽和結合を有する有機化合物とは、二重結合又は三重結合を分子内に一つ以上有する有機化合物である。二重結合としては、炭素-炭素二重結合(C=C)、炭素-窒素二重結合(C=N)、炭素-酸素二重結合(C=O)、又は窒素-酸素二重結合(N=O)が例示される。三重結合としては、炭素-炭素三重結合、炭素-窒素三重結合が例示される。不飽和結合を有する有機化合物としては、貯蔵性及び輸送性の観点から、常温常圧下で液体状の有機化合物であることが好ましい。 Organic hydride is a hydride of an organic compound having an unsaturated bond. The organic hydride can be converted into a dehydrogenation reaction product containing hydrogen and a dehydrogenated product (organic compound having an unsaturated bond) using a dehydrogenation catalyst. As a typical example of organic hydride, for example, methylcyclohexane (hereinafter, also referred to as MCH) is known. The organic compound having an unsaturated bond is an organic compound having one or more double bonds or triple bonds in the molecule. The double bond includes a carbon-carbon double bond (C = C), a carbon-nitrogen double bond (C = N), a carbon-oxygen double bond (C = O), or a nitrogen-oxygen double bond ( N = O) is illustrated. Examples of the triple bond include a carbon-carbon triple bond and a carbon-nitrogen triple bond. The organic compound having an unsaturated bond is preferably a liquid organic compound under normal temperature and pressure from the viewpoint of storability and transportability.
 有機ハイドライドとしては、例えば、鎖式飽和炭化水素、環式飽和炭化水素、又は複素環式飽和炭化水素が挙げられる。有機ハイドライドは、1種を単独で用いてもよく、2種以上を組合せて用いてもよい。鎖式飽和炭化水素としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、或いはこれらの構造異性体又はこれらの置換体が挙げられる。環式飽和炭化水素としては、例えば、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、又はこれらのアルキル置換体が挙げられる。環式飽和炭化水素のアルキル置換体としては、例えば、メチルシクロヘキサンが挙げられる。また、環式飽和炭化水素は、これを複数個単結合したものも用いることができる。このような化合物としては、例えば、ビフェニルが挙げられる。複素環式飽和炭化水素としては、例えば、デカリン、テトラリン、又はこれらのアルキル置換体が挙げられる。複素環式飽和炭化水素のアルキル置換体としては、例えば、メチルデカリンが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the organic hydride include chain saturated hydrocarbons, cyclic saturated hydrocarbons, and heterocyclic saturated hydrocarbons. As the organic hydride, one type may be used alone, or two or more types may be used in combination. Chain saturated hydrocarbons include, for example, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, structural isomers thereof, or substitutions thereof. Cyclic saturated hydrocarbons include, for example, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane, or alkyl substituents thereof. Examples of the alkyl substituent of the cyclic saturated hydrocarbon include methylcyclohexane. Further, as the cyclic saturated hydrocarbon, a plurality of single bonds thereof can also be used. Examples of such a compound include biphenyl. Examples of heterocyclic saturated hydrocarbons include decalin, tetralin, and alkyl substituents thereof. Examples of the alkyl substituent of the heterocyclic saturated hydrocarbon include methyldecalin. These may be used individually by 1 type, and may be used in combination of 2 or more type.
 水素貯蔵体は、必要に応じて、添加剤を含んでもよい。添加剤としては、例えば、安定化剤が挙げられる。 The hydrogen storage may contain additives, if necessary. Examples of the additive include a stabilizer.
(供給部)
 供給部11は、水素貯蔵体を気化部12に断続的に供給する。供給部11は、所定量の1バッチ分毎に原料としての水素貯蔵体を気化部12に断続的に供給する。好ましくは、供給部11は、前に供給した水素貯蔵体(前のバッチとして投入した水素貯蔵体)の脱水素化物が脱水素反応部13から排出される時間間隔で断続的に水素貯蔵体を脱水素反応部13に供給する。
(Supply section)
The supply unit 11 intermittently supplies the hydrogen storage body to the vaporization unit 12. The supply unit 11 intermittently supplies the hydrogen storage as a raw material to the vaporization unit 12 for each batch of a predetermined amount. Preferably, the supply unit 11 intermittently uses the dehydrogenated product of the previously supplied hydrogen storage unit (the hydrogen storage unit introduced as the previous batch) at intervals of time when the dehydrogenated product is discharged from the dehydrogenation reaction unit 13. It is supplied to the dehydrogenation reaction unit 13.
 供給部11は、例えば、水素貯蔵体を気化部12に供給するために、気化した水素貯蔵体に圧力を付与する圧力付与器(例えば昇圧ポンプ)と、水素貯蔵体の流量を調整する制御バルブとを含むことができ、また、水素貯蔵体を供給する時間間隔や量を調整するために圧力付与器及び制御バルブを制御する供給制御部20(図1)も含むことができる。供給部11が、昇圧ポンプ等の圧力付与器及び制御バルブを備えることにより、水素貯蔵体に適切な圧力を付与し、その適切な量を気化部12及び脱水素反応部13に供給することができる。例えば、供給制御部20によって、所定の時間だけ制御バルブを開状態とする旨の信号が送信されると、制御バルブは所定の時間だけ開状態となり、圧力が付与された水素貯蔵体を気化部12及び脱水素反応部13に供給することができる。昇圧ポンプとしては、例えば、プランジャータイプ又はピストンタイプ等が挙げられるが、これらに限定されるものではない。制御バルブとしては、例えば、空気弁若しくは電磁弁等の一般的に用いられているバルブや、インジェクションバルブ等が挙げられるが、これらに限定されるものではない。供給方法としては、ポンプで圧力をかけて開閉弁やインジェクタ等で原料(例えば液体状の原料)を間欠噴射させる方法が挙げられる。噴射された液体は気化器で気化される。 The supply unit 11 is, for example, a pressure applicator (for example, a booster pump) that applies pressure to the vaporized hydrogen storage body in order to supply the hydrogen storage body to the vaporization unit 12, and a control valve that adjusts the flow rate of the hydrogen storage body. And can also include a supply control unit 20 (FIG. 1) that controls a pressure feeder and a control valve to adjust the time interval and amount of supply of the hydrogen reservoir. The supply unit 11 is provided with a pressure applicator such as a booster pump and a control valve to apply an appropriate pressure to the hydrogen reservoir and supply the appropriate amount to the vaporization unit 12 and the dehydrogenation reaction unit 13. can. For example, when the supply control unit 20 transmits a signal to open the control valve for a predetermined time, the control valve is opened for a predetermined time, and the pressure-applied hydrogen reservoir is vaporized. It can be supplied to 12 and the dehydrogenation reaction unit 13. Examples of the booster pump include, but are not limited to, a plunger type or a piston type. Examples of the control valve include, but are not limited to, commonly used valves such as an air valve or a solenoid valve, an injection valve, and the like. Examples of the supply method include a method in which pressure is applied by a pump to intermittently inject a raw material (for example, a liquid raw material) with an on-off valve, an injector, or the like. The jetted liquid is vaporized by the vaporizer.
 供給制御部20は、圧力付与器及び制御バルブを制御することができるプログラムを実行可能なCPUである。なお、プログラムは、例えばROMやRAM等に記憶させておくことができる。圧力付与器を適切なタイミングで作動させるための制御手法としては、例えば、(1)圧力付与器の運転環境における温度と圧力の条件で規定される供給時間及び供給休止間隔に基づく制御、(2)予め指定した時間間隔による制御、或いは、(3)各種センサで検知した信号によるフィードバック制御等が挙げられる。これらの手法は、単独で用いてもよく、又は組み合わせて用いてもよい。上記(1)の制御は、例えば、圧力付与器の運転環境における温度を検知する温度センサと、圧力を検知する圧力センサとを備え、検知した温度及び圧力に基づいてプログラムを実行させることにより具現できる。上記(2)の制御は、脱水素反応部13の温度や圧力と触媒の性能を予め把握しておき、指定した時間でプログラムを実行させることにより具現できる。上記(3)の制御は、脱水素反応部13の圧力を検知する圧力センサ、温度を検知する温度センサ、気化した水素貯蔵体の流量を検知する流量センサ、又は生成した水素の濃度を検知する水素センサ、或いはこれらの組み合わせを備え、これらのセンサから得られた情報から反応転化率を算出し、反応転化率の変動を最小限にするように制御することにより具現できる。 The supply control unit 20 is a CPU capable of executing a program capable of controlling the pressure applyer and the control valve. The program can be stored in, for example, a ROM or a RAM. Control methods for operating the pressure applyer at an appropriate timing include, for example, (1) control based on the supply time and supply suspension interval specified by the temperature and pressure conditions in the operating environment of the pressure applyer, (2). ) Control by a predetermined time interval, (3) Feedback control by signals detected by various sensors, and the like can be mentioned. These methods may be used alone or in combination. The control of (1) above is realized by, for example, having a temperature sensor for detecting the temperature in the operating environment of the pressure applicator and a pressure sensor for detecting the pressure, and executing a program based on the detected temperature and pressure. can. The control of (2) above can be realized by grasping the temperature and pressure of the dehydrogenation reaction unit 13 and the performance of the catalyst in advance and executing the program at a specified time. The control of (3) above detects a pressure sensor that detects the pressure of the dehydrogenation reaction unit 13, a temperature sensor that detects the temperature, a flow sensor that detects the flow rate of the vaporized hydrogen reservoir, or a concentration of generated hydrogen. It can be realized by providing a hydrogen sensor or a combination thereof, calculating the reaction conversion rate from the information obtained from these sensors, and controlling so as to minimize the fluctuation of the reaction conversion rate.
(気化部)
 気化部12は、供給部11と脱水素反応部13の間に設けられ、水素貯蔵体を気化する気化器を含む。気化器としては、例えば、キャブレター又はスプレーガンが挙げられる。また、気化器としては、例えば、電気ヒータや他の反応器の余熱を利用できる、熱交換型の流路構造を有するものが挙げられる。また、気化の観点から、気化部は減圧されていることが好ましい。
(Vaporization department)
The vaporization unit 12 is provided between the supply unit 11 and the dehydrogenation reaction unit 13, and includes a vaporizer that vaporizes the hydrogen storage. Examples of the vaporizer include a carburetor or a spray gun. Further, as the vaporizer, for example, one having a heat exchange type flow path structure capable of utilizing the residual heat of an electric heater or another reactor can be mentioned. Further, from the viewpoint of vaporization, it is preferable that the vaporized portion is depressurized.
(脱水素反応部)
 脱水素反応部13は、気化部12からの水素貯蔵体を脱水素反応により水素と脱水素化物に変換する。
(Dehydrogenation reaction part)
The dehydrogenation reaction unit 13 converts the hydrogen reservoir from the vaporization unit 12 into hydrogen and a dehydrogenated product by a dehydrogenation reaction.
 図2に脱水素反応部13の構成例を示す。図2に示される脱水素反応部13は、触媒部31と、分配部34と、集約部37と、熱媒体流動部40とを備える。 FIG. 2 shows a configuration example of the dehydrogenation reaction unit 13. The dehydrogenation reaction unit 13 shown in FIG. 2 includes a catalyst unit 31, a distribution unit 34, an aggregation unit 37, and a heat medium flow unit 40.
 触媒部31は、脱水素触媒32を含み、触媒32は、例えば、触媒部31の外周を構成する反応管の内部に配置される。触媒部31は、水素貯蔵体及びそれらの反応物が上流(分配部34)から下流(集約部37)に向かって流れるように構成されている。図2において、触媒部31は、並列配置された複数の反応管を含んで構成されているが、本実施形態はこのような構成には限定されるものではない。また、図2に示される反応管の形状は円筒状であるが、この形状に限られるものではなく、例えば二重管状、箱型状、ハニカム状でもよい。 The catalyst unit 31 includes a dehydrogenation catalyst 32, and the catalyst 32 is arranged inside, for example, a reaction tube constituting the outer periphery of the catalyst unit 31. The catalyst unit 31 is configured such that the hydrogen storage and their reactants flow from the upstream (distribution unit 34) to the downstream (aggregation unit 37). In FIG. 2, the catalyst unit 31 is configured to include a plurality of reaction tubes arranged in parallel, but the present embodiment is not limited to such a configuration. The shape of the reaction tube shown in FIG. 2 is cylindrical, but is not limited to this shape, and may be, for example, a double tubular shape, a box shape, or a honeycomb shape.
 脱水素触媒32は、有機ハイドライド等の水素貯蔵体を脱水素反応によって水素と脱水素化物とに変換する機能を有する。図2において、脱水素化触媒は、各反応管の内部に配置されている。 The dehydrogenation catalyst 32 has a function of converting a hydrogen reservoir such as an organic hydride into hydrogen and a dehydrogenated product by a dehydrogenation reaction. In FIG. 2, the dehydrogenation catalyst is arranged inside each reaction tube.
 分配部34は、各反応管の上流に位置し、気化部12から供給口36を介して供給された水素貯蔵体を各反応管に分配する機能を有する。 The distribution unit 34 is located upstream of each reaction tube and has a function of distributing the hydrogen storage body supplied from the vaporization unit 12 through the supply port 36 to each reaction tube.
 集約部37は、各反応管の下流に位置し、各反応管から出てくる脱水素反応物(水素及び脱水素化物を主に含むガス)を集約する機能を有する。集約部37の下流には、排出口38が配置され、排出口38の下流には吸引部14が配置される。 The aggregation unit 37 is located downstream of each reaction tube and has a function of aggregating dehydrogenation reactants (gas mainly containing hydrogen and dehydrogenated products) coming out of each reaction tube. A discharge port 38 is arranged downstream of the aggregation part 37, and a suction part 14 is arranged downstream of the discharge port 38.
 熱媒体流動部40は、各反応管の周囲に熱媒体が流れるように構成され、各反応管を加熱する機能を有する。触媒部31の加熱は、制御部(不図示)からの制御信号に基づいて制御することができる。なお、本実施形態では、低温で脱水素反応を行うことができるため、熱媒体の温度も低くすることができる。なお、熱媒体は、気体であってもよく、液体であってもよい。なお、この実施形態では、熱媒体を用いて触媒が配置される反応管を加熱する構成を例示しているが、本実施形態はこの構成に限定されるものではない。例えば、一実施形態において、触媒が配置される反応管を、電熱ヒータ又は可燃性燃料を燃焼させて加熱するヒータ等を用いて直接加熱する構成としてもよい。また、脱水素反応部13の加熱には、熱エネルギーを電気に変換する発電装置又は熱エネルギーを機械的エネルギーに変換する熱機関を冷却する冷却媒体の熱を利用してもよい。熱エネルギーを電気に変換する発電装置としては、例えば、発電機や原子炉等が挙げられる。また、熱エネルギーを機械的エネルギーに変換する熱機関としては、例えば、エンジンが挙げられる。このような熱を発する装置(発熱装置)と本実施形態の水素生成システム1とを併用する場合は、これらの発熱装置を冷却するための冷却媒体によって脱水素反応部13を加熱するようにしてもよい。かかる冷却媒体としては、例えば、エンジンを冷却するための冷却水やエンジンから排出された排ガス、原子炉の二次冷却水等を挙げることができる。 The heat medium flow unit 40 is configured so that the heat medium flows around each reaction tube, and has a function of heating each reaction tube. The heating of the catalyst unit 31 can be controlled based on a control signal from the control unit (not shown). In this embodiment, since the dehydrogenation reaction can be carried out at a low temperature, the temperature of the heat medium can also be lowered. The heat medium may be a gas or a liquid. In this embodiment, a configuration in which a reaction tube in which a catalyst is arranged is heated using a heat medium is illustrated, but the present embodiment is not limited to this configuration. For example, in one embodiment, the reaction tube in which the catalyst is arranged may be directly heated by using an electric heater, a heater that burns flammable fuel, or the like. Further, for heating the dehydrogenation reaction unit 13, the heat of a cooling medium that cools a power generation device that converts heat energy into electricity or a heat engine that converts heat energy into mechanical energy may be used. Examples of the power generation device that converts thermal energy into electricity include a generator and a nuclear reactor. Further, as a heat engine that converts thermal energy into mechanical energy, for example, an engine can be mentioned. When such a device (heating device) that generates heat is used in combination with the hydrogen generation system 1 of the present embodiment, the dehydrogenation reaction unit 13 is heated by a cooling medium for cooling these heat generating devices. May be good. Examples of such a cooling medium include cooling water for cooling the engine, exhaust gas discharged from the engine, secondary cooling water for a nuclear reactor, and the like.
 熱媒体流動部40は、脱水素触媒が配置される反応管を取り囲むように位置しており、熱媒体のための流入口44及び排出口46に連通している。流入口44は、供給される熱媒体を熱媒体流動部40内に流入させるためのものであり、触媒部31の下流側の端部付近に位置している。排出口46は、熱媒体を熱媒体流動部40から排出させるためのものであり、触媒部31の上流側の端部付近に位置している。このように水素貯蔵体が流れる方向と熱媒体が流れる方向が互いに反対向きになるように構成することにより、触媒部31の上流側に比べて下流側の温度を相対的に高い状態とすることができるため、水素貯蔵体の転化率を高めるうえで好適である。 The heat medium flow unit 40 is located so as to surround the reaction tube in which the dehydrogenation catalyst is arranged, and communicates with the inflow port 44 and the discharge port 46 for the heat medium. The inflow port 44 is for allowing the supplied heat medium to flow into the heat medium flow section 40, and is located near the downstream end of the catalyst section 31. The discharge port 46 is for discharging the heat medium from the heat medium flow unit 40, and is located near the upstream end of the catalyst unit 31. By configuring the hydrogen storage body to flow and the heat medium to flow in opposite directions in this way, the temperature on the downstream side is relatively higher than that on the upstream side of the catalyst unit 31. Therefore, it is suitable for increasing the conversion rate of the hydrogen storage.
 本実施形態において、脱水素反応部13に水素貯蔵体が供給された後、吸引部14により脱水素反応部13を減圧する。脱水素反応は、その減圧下により行われる。上述の通り、脱水素反応は平衡反応であるため、圧力を低くすることにより脱水素反応を進行させることができる。その結果、脱水素反応に従来必要とされていた高い温度(例えば、350~400℃)よりも低い温度で脱水素反応を行うことができる。脱水素反応の温度としては、例えば、200℃以下であり、好ましくは、180℃以下又は150℃以下である。脱水素反応部13内の圧力は、例えば、30kPa以下である。また、脱水素反応部13と共に気化部12も減圧されてもよい。気化部12を減圧することにより、水素貯蔵体の気化が促進される。 In the present embodiment, after the hydrogen storage is supplied to the dehydrogenation reaction unit 13, the dehydrogenation reaction unit 13 is depressurized by the suction unit 14. The dehydrogenation reaction is carried out under the reduced pressure. As described above, since the dehydrogenation reaction is an equilibrium reaction, the dehydrogenation reaction can proceed by lowering the pressure. As a result, the dehydrogenation reaction can be carried out at a temperature lower than the high temperature (for example, 350 to 400 ° C.) conventionally required for the dehydrogenation reaction. The temperature of the dehydrogenation reaction is, for example, 200 ° C. or lower, preferably 180 ° C. or lower or 150 ° C. or lower. The pressure in the dehydrogenation reaction unit 13 is, for example, 30 kPa or less. Further, the vaporization unit 12 may be depressurized together with the dehydrogenation reaction unit 13. By reducing the pressure in the vaporization section 12, the vaporization of the hydrogen reservoir is promoted.
 具体的には、図2に示す実施形態において、気化部12から水素貯蔵体が分配部34に供給された後、排出口38の下流に配置されている吸引部14により触媒部を含む脱水素反応部13の雰囲気を吸引し、減圧する。この際、供給部11の制御バルブは閉じられた状態で吸引されることが好ましい。吸引部14による吸引により脱水素反応部13内の圧力は低下し、脱水素反応が促進する。また、この際、気化部12内の圧力も低下し得る。脱水素反応により生じた反応物(水素及び脱水素体)は、吸引部14による吸引により脱水素反応部13から排出され、下流に送られる。また、未反応物としての水素貯蔵体も、反応物に混ぜって脱水素反応部13から排出されてもよい。 Specifically, in the embodiment shown in FIG. 2, after the hydrogen storage body is supplied from the vaporization unit 12 to the distribution unit 34, dehydrogenation including the catalyst unit is performed by the suction unit 14 arranged downstream of the discharge port 38. The atmosphere of the reaction section 13 is sucked and the pressure is reduced. At this time, it is preferable that the control valve of the supply unit 11 is sucked in a closed state. By suction by the suction unit 14, the pressure inside the dehydrogenation reaction unit 13 decreases, and the dehydrogenation reaction is promoted. At this time, the pressure inside the vaporization unit 12 may also decrease. The reactants (hydrogen and dehydrogenated material) generated by the dehydrogenation reaction are discharged from the dehydrogenation reaction unit 13 by suction by the suction unit 14 and sent downstream. Further, the hydrogen storage as an unreacted product may also be mixed with the reaction product and discharged from the dehydrogenation reaction unit 13.
 触媒は、特に制限されるものではなく、例えば、触媒金属と、触媒金属を担持する担体とを含む。触媒金属としては、特に制限されるものではなく、例えば、Ni、Pd、Pt、Rh、Ir、Re、Ru、Mo、W、V、Os、Cr、Co、Fe、又はこれらの合金が挙げられる。触媒金属は、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。担体としては、特に制限されるものではなく、例えば、活性炭、カーボンナノチューブ、シリカ、アルミナ、アルミナシリケート、多孔質ポリイミド、酸化亜鉛、酸化ジルコニウム、珪藻土、酸化ニオブ、酸化バナジウム、又はこれらの混合物が挙げられる。担体は、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。具体的には、触媒としては、アルミナ等の多孔質担体に、例えば、白金、ルテニウム、パラジウム、ロジウム、スズ、レニウム又はゲルマニウム等の触媒金属を担持したものが挙げられる。 The catalyst is not particularly limited, and includes, for example, a catalyst metal and a carrier that supports the catalyst metal. The catalyst metal is not particularly limited, and examples thereof include Ni, Pd, Pt, Rh, Ir, Re, Ru, Mo, W, V, Os, Cr, Co, Fe, and alloys thereof. .. As the catalyst metal, one type may be used alone, or two or more types may be used in combination. The carrier is not particularly limited, and examples thereof include activated carbon, carbon nanotubes, silica, alumina, alumina silicate, porous polyimide, zinc oxide, zirconium oxide, diatomaceous earth, niobium oxide, vanadium oxide, or a mixture thereof. Be done. As the carrier, one type may be used alone, or two or more types may be used in combination. Specifically, examples of the catalyst include those in which a catalyst metal such as platinum, ruthenium, palladium, rhodium, tin, rhenium or germanium is supported on a porous carrier such as alumina.
 脱水素触媒は、通常、水素貯蔵体、脱水素化物及び水素に対して、それぞれ異なる吸着力を有し、水素に対する吸着力が最も弱い。脱水素反応部13に導入された水素貯蔵体は、脱水素反応により水素及び脱水素化物に変換されるが、脱水素触媒の水素に対する吸着力が脱水素触媒の脱水素化物に対する吸着力よりも弱いため、生成した水素が優先的に触媒から離脱し、脱水素反応部13から排出される。 The dehydrogenation catalyst usually has different adsorption powers for hydrogen storage, dehydrogenated products and hydrogen, and has the weakest adsorption power for hydrogen. The hydrogen reservoir introduced into the dehydrogenation reaction unit 13 is converted into hydrogen and a dehydrogenated product by the dehydrogenation reaction, but the adsorption power of the dehydrogenation catalyst for hydrogen is larger than the adsorption power of the dehydrogenation catalyst for the dehydrogenated product. Since it is weak, the generated hydrogen is preferentially released from the catalyst and discharged from the dehydrogenation reaction unit 13.
 本実施形態では、触媒の水素、水素貯蔵体又は脱水素化物に対する吸着力が、水素に対する吸着力<水素貯蔵体に対する吸着力<脱水素化物に対する吸着力の関係を有することが好ましい。このような吸着力を有する触媒を用いることにより、触媒部における水素と脱水素化物との位置のずれを大きくすることができ、水素と脱水素化物との水素化反応(脱水素反応とは反対方向の反応)を低減することができる。 In the present embodiment, it is preferable that the adsorption force of the catalyst for hydrogen, hydrogen reservoir or dehydrogenate has a relationship of adsorption force for hydrogen <adsorption force for hydrogen reservoir <adsorption force for dehydrogenate. By using a catalyst having such an adsorptive power, the displacement between hydrogen and dehydrogenation in the catalyst section can be increased, and the hydrogenation reaction between hydrogen and dehydrogenation (opposite to the dehydrogenation reaction). Directional reaction) can be reduced.
 触媒の水素、水素貯蔵体又は脱水素化物に対する吸着力の違いは、主に、触媒に用いられる担体が有する吸着力や極性によって生じる。もっとも、通常、水素は担体に吸着しないので、担体を選択する際は、脱水素化物及び水素貯蔵体に対する吸着力の違いに注目すればよい。なお、用いる水素貯蔵体によって吸着力が違い得るため、予め実験を行って用いる水素貯蔵体に適する担体を選択することが望ましい。 The difference in the adsorptive power of the catalyst to hydrogen, hydrogen reservoir or dehydrogenated product is mainly caused by the adsorptive power and polarity of the carrier used for the catalyst. However, since hydrogen is not usually adsorbed on the carrier, when selecting the carrier, attention should be paid to the difference in the adsorptive power to the dehydrogenated product and the hydrogen reservoir. Since the adsorption power may differ depending on the hydrogen storage body used, it is desirable to conduct an experiment in advance and select a carrier suitable for the hydrogen storage body to be used.
 水素に対する吸着力<水素貯蔵体に対する吸着力<脱水素化物に対する吸着力の関係を有する担体としては、例えば、水素貯蔵体としてメチルシクロヘキサン等の有機ハイドライドを用いた場合、シリカが挙げられる。シリカは、水素貯蔵体に対する吸着力が脱水素化物に対する吸着力よりも低く、シリカを含む担体を用いることにより、触媒部における水素と脱水素化物との位置のずれを大きくすることができ、水素と脱水素化物との水素化反応(脱水素反応とは反対方向の反応)を低減することができる。具体的には、例えば、水素貯蔵体としてメチルシクロヘキサンを用いた場合、水素と脱水素化物としてのトルエンとの触媒部における位置をずらすことができ、水素がトルエンに再び結合することを低減することができる。 Examples of the carrier having a relationship of adsorption power for hydrogen <adsorption power for hydrogen storage <adsorption power for dehydrogenated product include silica when an organic hydride such as methylcyclohexane is used as the hydrogen storage. Silica has a lower adsorption power for hydrogen storage than for dehydrogenated products, and by using a carrier containing silica, the displacement between hydrogen and dehydrogenated products in the catalyst section can be increased, and hydrogen can be increased. The hydrogenation reaction between dehydrogenation and dehydrogenation (reaction in the opposite direction to the dehydrogenation reaction) can be reduced. Specifically, for example, when methylcyclohexane is used as the hydrogen storage, the positions of hydrogen and toluene as a dehydrogenated product in the catalyst portion can be shifted, and the rebonding of hydrogen to toluene can be reduced. Can be done.
 脱水素反応部13の構成としては、例えば、図2に示すように、管型の容器や箱型の容器の内部に触媒を充填して固定するタイプのものが挙げられる。このような形態の場合、触媒の形態を多孔質体、ハニカム体又は粒子体とすることができる。触媒を多孔質体又はハニカム体として形成する場合は、アルミナ、ゼオライト、多孔質ポリイミド等が有する空孔内に触媒金属を担持させることで形成することができる。また、脱水素反応部13の構成としては、例えば、細管の内面や筐体の内面に触媒を固定するタイプのものが挙げられる。このような形態の場合は、細管の内面や筐体の内面を被覆するように触媒を設けることができる。また、脱水素反応部13の構成としては、例えば、平板の表面に水素貯蔵体を通流させるための流路や凹凸を設け、これらの上に触媒を固定するタイプのものが挙げられる。このような流路や凹部は、例えば、平板の表面を切削加工又はプレス加工等の機械加工や、エッチング、めっきプロセス、ナノプリント、蒸着、スパッタ等の技術を用いて形成することができる。このような形態の場合、流路や凹凸を設けた平板の表面を被覆するように触媒を設けることができる。 As a configuration of the dehydrogenation reaction unit 13, for example, as shown in FIG. 2, a type in which a catalyst is filled and fixed inside a tube-shaped container or a box-shaped container can be mentioned. In the case of such a form, the form of the catalyst can be a porous body, a honeycomb body or a particle body. When the catalyst is formed as a porous body or a honeycomb body, it can be formed by supporting a catalyst metal in the pores of alumina, zeolite, porous polyimide or the like. Further, as the configuration of the dehydrogenation reaction unit 13, for example, a type in which the catalyst is fixed to the inner surface of the thin tube or the inner surface of the housing can be mentioned. In the case of such a form, the catalyst can be provided so as to cover the inner surface of the thin tube or the inner surface of the housing. Further, as the configuration of the dehydrogenation reaction unit 13, for example, a type in which a flow path or unevenness for allowing the hydrogen storage to flow is provided on the surface of the flat plate and the catalyst is fixed on the flow path or unevenness can be mentioned. Such flow paths and recesses can be formed by using, for example, machining such as cutting or pressing the surface of a flat plate, or techniques such as etching, plating process, nanoprinting, vapor deposition, and sputtering. In the case of such a form, the catalyst can be provided so as to cover the surface of the flat plate provided with the flow path and the unevenness.
 触媒金属と担体を含む触媒は、例えば、以下の方法により形成することができる。脱水素反応部13が、内部に触媒を充填して固定するタイプのものである場合は、触媒金属を担体に担持させて固定することができる。例えば、触媒金属と担体を用いて、常法により共沈法や熱分解法によって触媒を得ることができる。また、脱水素反応部13が、流路や凹凸を設けた平板の表面を被覆するように触媒を設けたタイプの場合は、ゾルゲル法やCVD法により担体層を形成し、この担体層に触媒金属を担持させることによって触媒を触媒層として形成することができる。また、脱水素反応部13が、細管や筐体の内面に触媒を固定するタイプのものである場合は、細管の内面を陽極酸化することによって細管の内面に酸化物系の担体層を直接形成し、該担体層に触媒金属を担持させることによって触媒を触媒層として形成することができる。 The catalyst containing the catalyst metal and the carrier can be formed by, for example, the following method. When the dehydrogenation reaction unit 13 is of a type in which a catalyst is filled and fixed, the catalyst metal can be supported on a carrier and fixed. For example, using a catalyst metal and a carrier, a catalyst can be obtained by a coprecipitation method or a thermal decomposition method by a conventional method. Further, in the case where the dehydrogenation reaction unit 13 is of a type in which a catalyst is provided so as to cover the surface of a flat plate provided with a flow path or unevenness, a carrier layer is formed by a sol-gel method or a CVD method, and a catalyst is formed on this carrier layer. By supporting the metal, the catalyst can be formed as a catalyst layer. When the dehydrogenation reaction unit 13 is of a type in which the catalyst is fixed to the inner surface of the thin tube or the housing, an oxide-based carrier layer is directly formed on the inner surface of the thin tube by anodizing the inner surface of the thin tube. Then, the catalyst can be formed as a catalyst layer by supporting the catalyst metal on the carrier layer.
 脱水素反応部13は、外部刺激による触媒の破壊防止のため、堅牢な筐体内に触媒を固定するタイプのものが好ましい。このような筐体の材料としては、例えば、金属、セラミックス、ガラス又はプラスチックが挙げられる。 The dehydrogenation reaction unit 13 is preferably of a type in which the catalyst is fixed in a robust housing in order to prevent the catalyst from being destroyed by an external stimulus. Examples of the material of such a housing include metal, ceramics, glass and plastic.
(吸引部)
 上述の通り、吸引部14は、脱水素反応部13を吸引により減圧する。上述の通り、脱水素反応を減圧下で行うことにより、脱水素反応を促進することができ、その結果、脱水素反応に必要な温度を低下させることができる。吸引部14による吸引に伴い、水素ガス及び脱水素化物を主に含む混合物が脱水素反応部13から排出され、気液分離部15に送られる。
(Suction part)
As described above, the suction unit 14 decompresses the dehydrogenation reaction unit 13 by suction. As described above, by carrying out the dehydrogenation reaction under reduced pressure, the dehydrogenation reaction can be promoted, and as a result, the temperature required for the dehydrogenation reaction can be lowered. Along with the suction by the suction unit 14, a mixture mainly containing hydrogen gas and a dehydrogenated product is discharged from the dehydrogenation reaction unit 13 and sent to the gas-liquid separation unit 15.
 吸引部14としては、例えば、吸引ポンプを用いることができる。吸引ポンプは、例えば、ピストン、タービン、空気ポンプ、真空ポンプ、マイクロタービン、又はこれらの組み合わせが挙げられる。また、自動車の過吸気用のタービンを利用してもよい。また、エンジンの動力をポンプの動力源に利用してもよい。自動車に適用した場合は、自動車の車軸の動力をポンプの動力として利用することができる。 As the suction unit 14, for example, a suction pump can be used. Suction pumps include, for example, pistons, turbines, air pumps, vacuum pumps, microturbines, or combinations thereof. Further, a turbine for over-intake of an automobile may be used. Further, the power of the engine may be used as the power source of the pump. When applied to an automobile, the power of the axle of the automobile can be used as the power of the pump.
(気液分離部)
 気液分離部15は、脱水素反応部13から排出された混合物に気液分離処理を施し、水素を主に含む気体と脱水素化物を主に含む液体とに分離する。気液分離部15の構成は、制限されるものではなく、例えば、冷却器、分離膜、圧力調整弁、又はそれらの組み合わせを用いて、適宜構成することができる。
(Gas-liquid separation part)
The gas-liquid separation unit 15 performs a gas-liquid separation treatment on the mixture discharged from the dehydrogenation reaction unit 13 to separate the mixture into a gas mainly containing hydrogen and a liquid mainly containing a dehydrogenated product. The configuration of the gas-liquid separation unit 15 is not limited, and can be appropriately configured by using, for example, a cooler, a separation membrane, a pressure regulating valve, or a combination thereof.
 気液分離部15は、脱水素反応部13から吸引により排出された混合物が送られる容器と、該容器内の圧力を調整する圧力調整弁と、を少なくとも有する構成とすることが好ましい。このような構成を採用することにより、吸引部14による吸引力を利用して、気液分離部15で混合物の圧力を向上させ、混合物を水素を主に含む気体と脱水素化物を主に含む液体とに容易に分離することができる。例えば、図3に示す気液分離部15のように、圧力調整弁52を閉じた状態で、吸引部14を作動させ、容器51内の圧力を増加させる。容器51内の圧力は、水素を主に含む気体と脱水素化物を主に含む液体とに混合物を分離可能な範囲に制御される。例えば水素貯蔵体としてメチルシクロヘキサン(MCH)を用いた場合、容器内の圧力は1.2気圧程度に調整することが好ましい。容器51内の圧力は、圧力調整弁52を適宜制御して調整することができる。図3において、圧力調整弁52から気体を回収することも可能であり、液体を回収するための送液口も別途設けてもよい。このような構成とすることにより、気液分離部15の構成を簡便なものとすることができ、また、吸引部14の吸引力を利用して気液分離処理を行えるため、エネルギーの観点からも有利である。 It is preferable that the gas-liquid separation unit 15 has at least a container to which the mixture discharged by suction from the dehydrogenation reaction unit 13 is sent and a pressure adjusting valve for adjusting the pressure in the container. By adopting such a configuration, the suction force of the suction unit 14 is used to improve the pressure of the mixture in the gas-liquid separation unit 15, and the mixture mainly contains a gas containing mainly hydrogen and a dehydrogenated product. It can be easily separated from the liquid. For example, as in the gas-liquid separation unit 15 shown in FIG. 3, the suction unit 14 is operated with the pressure adjusting valve 52 closed to increase the pressure in the container 51. The pressure in the container 51 is controlled within a range in which the mixture can be separated into a gas mainly containing hydrogen and a liquid mainly containing dehydrogenated products. For example, when methylcyclohexane (MCH) is used as the hydrogen storage, the pressure inside the container is preferably adjusted to about 1.2 atm. The pressure in the container 51 can be adjusted by appropriately controlling the pressure adjusting valve 52. In FIG. 3, it is possible to recover the gas from the pressure regulating valve 52, and a liquid feeding port for recovering the liquid may be separately provided. With such a configuration, the configuration of the gas-liquid separation unit 15 can be simplified, and the gas-liquid separation process can be performed by utilizing the suction force of the suction unit 14, so that the gas-liquid separation process can be performed from the viewpoint of energy. Is also advantageous.
 本実施形態に係る水素生成システムは、複数の気液分離部を備えてもよい。触媒の吸着力によって反応物としての水素、脱水素化物及び未反応物としての水素貯蔵体の排出タイミングが異なり得るため、それぞれの排出時間に応じてバルブを切り替え、別々の気液分離部に送ることにより、それぞれの成分をより効果的に回収することができる。例えば、図4に示すように、2つの気液分離部(第一の気液分離部151及び第二の気液分離部152)を設け、脱水素反応部13から早い時間帯で排出される水素を比較的多く含むガスを第一の気液分離部151に送り、それ以降のガスを第二の気液分離部152を送ることができる。これにより、第一の気液分離部151においてより高い純度の水素ガスを容易に得ることができる。また、3つの気液分離部(第一の気液分離部、第二の気液分離部及び第三の気液分離部)を設け、脱水素反応部13から早い時間帯で排出される水素を多く含むガスを第一の気液分離部に送り、次に排出される物質(例えば水素貯蔵体)を多く含むガスを第二の気液分離部に送り、最後に排出される物質(例えば脱水素化物)を多く含むガスを第三の気液分離部に送ることもできる。各気液分離部へのガスの送出は、タイミングに応じてバルブ(作動弁)を作動させることにより行うことができる。 The hydrogen generation system according to this embodiment may include a plurality of gas-liquid separation units. Since the discharge timing of hydrogen as a reactant, dehydrogenated product, and hydrogen storage as an unreacted product may differ depending on the adsorption power of the catalyst, the valve is switched according to each discharge time and sent to separate gas-liquid separators. Thereby, each component can be recovered more effectively. For example, as shown in FIG. 4, two gas-liquid separation units (first gas-liquid separation unit 151 and second gas-liquid separation unit 152) are provided and discharged from the dehydrogenation reaction unit 13 in an early time zone. A gas containing a relatively large amount of hydrogen can be sent to the first gas-liquid separation unit 151, and subsequent gases can be sent to the second gas-liquid separation unit 152. As a result, hydrogen gas having a higher purity can be easily obtained in the first gas-liquid separation unit 151. In addition, three gas-liquid separation units (first gas-liquid separation unit, second gas-liquid separation unit, and third gas-liquid separation unit) are provided, and hydrogen discharged from the dehydrogenation reaction unit 13 in an early time zone. The gas containing a large amount of gas is sent to the first gas-liquid separation unit, the gas containing a large amount of the next discharged substance (for example, a hydrogen reservoir) is sent to the second gas-liquid separation unit, and the last discharged substance (for example) is sent. A gas containing a large amount of dehydrogenate) can also be sent to the third gas-liquid separation section. The gas can be delivered to each gas-liquid separation unit by operating a valve (actuating valve) according to the timing.
 本実施形態に係る水素生成システムは、さらに、水素精製部を備えてもよい。水素精製部は、気液分離部15で得られた水素含有ガスから水素を精製する機能を有する。水素精製部は、気液分離部15から供給される水素含有ガスから、さらに脱水素化物や未反応物である水素貯蔵体等を除去し、水素純度を高める機能を有することができる。水素精製部としては、例えば、水素分離膜を含む膜分離器、PSA(Pressure swing  adsorption)法又はTSA(Temperature  swing adsorption)法を用いる吸着除去器等を用いることができる。 The hydrogen generation system according to the present embodiment may further include a hydrogen purification unit. The hydrogen purification unit has a function of purifying hydrogen from the hydrogen-containing gas obtained in the gas-liquid separation unit 15. The hydrogen purification unit can have a function of increasing hydrogen purity by further removing dehydrogenated substances, unreacted hydrogen reservoirs, and the like from the hydrogen-containing gas supplied from the gas-liquid separation unit 15. As the hydrogen purification unit, for example, a membrane separator containing a hydrogen separation membrane, an adsorption remover using a PSA (Pressure swing attachment) method or a TSA (Temperature swing advertisement) method can be used.
 本実施形態に係る水素生成システムは、さらに、圧縮部を備えてもよい。圧縮部は、水素精製部で得られた高純度水素ガスをより高圧(例えば20MPa~90MPa)にする機能を有する。水素精製部によって得られた高純度水素(精製ガス)は、直接的或いは間接的に圧縮部へ供給される。ここで、間接的とは、例えば高純度水素をタンク等に一旦貯留することなどを意味する。 The hydrogen generation system according to the present embodiment may further include a compression unit. The compression unit has a function of increasing the pressure (for example, 20 MPa to 90 MPa) of the high-purity hydrogen gas obtained in the hydrogen purification unit. The high-purity hydrogen (purified gas) obtained by the hydrogen purification unit is directly or indirectly supplied to the compression unit. Here, indirect means, for example, temporarily storing high-purity hydrogen in a tank or the like.
 本実施形態に係る水素生成システムは、さらに、蓄圧部を備えてもよい。蓄圧部は、高純度水素を高圧状態に維持しつつ蓄える機能を有する。蓄圧部で高圧状態で蓄えられた高純度水素は、ディスペンサによってのFCV等に供給することができる。また、本実施形態では、例えば、高圧状態の高純度水素を蓄圧部を介さずに直接的にディスペンサに供給してもよい。 The hydrogen generation system according to the present embodiment may further include a pressure accumulator. The pressure accumulator has a function of storing high-purity hydrogen while maintaining it in a high-pressure state. The high-purity hydrogen stored in the pressure accumulator in a high-pressure state can be supplied to the FCV or the like by a dispenser. Further, in the present embodiment, for example, high-purity hydrogen in a high-pressure state may be directly supplied to the dispenser without going through the accumulator.
 本実施形態に係る水素生成システムは、さらに、回収部を備えてもよい。回収部は、気液分離部15で分離された脱水素化物(例えばトルエン)や水素貯蔵体(例えばMCH)を貯留する機能を有する。回収部に回収された脱水素化物は、例えばタンクローリーで製油所等に輸送し、再度水素化して水素貯蔵体に変換される。 The hydrogen generation system according to the present embodiment may further include a recovery unit. The recovery unit has a function of storing the dehydrogenated product (for example, toluene) and the hydrogen storage body (for example, MCH) separated by the gas-liquid separation unit 15. The dehydrogenated product recovered in the recovery unit is transported to a refinery or the like by a tank truck, for example, and is rehydrogenated to be converted into a hydrogen storage body.
 水素を燃料として用いるPEFC(固体高分子形燃料電池)やDMFC(ダイレクトメタノール型燃料電池)の運転温度は70~100℃程度である。また、PAFC(りん酸形燃料電池)の運転温度は約200℃程度である。そのため、本実施形態に係る水素生成システムとこれらの燃料電池とを組み合わせて使用する場合は、これらの燃料電池と隣接又は近接して設けることによりこれらを熱源として利用することができる。また、本実施形態に係る水素生成システムと水素燃料エンジンを組み合わせて使用する場合も、当該水素燃料エンジンから排出される排ガスの熱を熱源として利用することができる。 The operating temperature of PEFCs (solid polymer fuel cells) and DMFCs (direct methanol fuel cells) that use hydrogen as fuel is about 70 to 100 ° C. The operating temperature of the PAFC (phosphoric acid fuel cell) is about 200 ° C. Therefore, when the hydrogen generation system according to the present embodiment is used in combination with these fuel cells, they can be used as a heat source by providing them adjacent to or close to these fuel cells. Further, when the hydrogen generation system according to the present embodiment and the hydrogen fuel engine are used in combination, the heat of the exhaust gas discharged from the hydrogen fuel engine can be used as a heat source.
 以下に、本実施形態に係る水素生成システムを用いた例について説明する。 An example using the hydrogen generation system according to the present embodiment will be described below.
 まず、図5を参照して、本実施形態の水素生成システム1と固体高分子形燃料電池101を組み合わせて一体化した発電システム100について説明する。 First, with reference to FIG. 5, a power generation system 100 in which the hydrogen generation system 1 of the present embodiment and the polymer electrolyte fuel cell 101 are combined and integrated will be described.
 図5に示すとおり、発電システム100は、本実施形態の水素生成システム1を含む。また、発電システム100において、固体高分子形燃料電池101と当接するように又は近接するように、供給部11、気化部12及び脱水素反応部13の少なくとも1つが配置されている。このようにすれば、固体高分子形燃料電池101の運転温度(例えば80~100℃)を利用して供給部11、気化部12及び脱水素反応部13の少なくとも1つを加熱することができる。 As shown in FIG. 5, the power generation system 100 includes the hydrogen generation system 1 of the present embodiment. Further, in the power generation system 100, at least one of the supply unit 11, the vaporization unit 12, and the dehydrogenation reaction unit 13 is arranged so as to be in contact with or close to the polymer electrolyte fuel cell 101. In this way, at least one of the supply unit 11, the vaporization unit 12, and the dehydrogenation reaction unit 13 can be heated by utilizing the operating temperature (for example, 80 to 100 ° C.) of the polymer electrolyte fuel cell 101. ..
 発電システム100は、水素貯蔵体を貯蔵しておくための貯蔵タンク102と、貯蔵タンク102に貯蔵された水素貯蔵体を水素生成システム1に送液するための送液ライン104と、送液ライン104上に設けられ、貯蔵タンク102から水素貯蔵体を水素生成システム1に送液する圧力を発生する送液ポンプ105と、水素生成システム1で生成された水素を固体高分子形燃料電池101に供給するための水素供給ライン108と、水素生成システム1で生成された脱水素化物及び未反応物としての水素貯蔵体を冷却により液化して回収する廃液回収ライン106と、廃液回収ライン106で送液された脱水素化物と水素貯蔵体を廃液として回収する廃液タンク103と、を備えている。なお、水素供給ライン108上には、水素生成システム1で生成した水素を吸引して固体高分子形燃料電池101に供給するための水素供給ポンプ107が設けられている。水素供給ポンプ107により、水素生成システム1で生成された水素を強制的に固体高分子形燃料電池101に供給できる。水素供給ポンプ107としては、例えば、タービン型排気ポンプを用いることができる。 The power generation system 100 includes a storage tank 102 for storing the hydrogen storage body, a liquid feeding line 104 for sending the hydrogen storage body stored in the storage tank 102 to the hydrogen generation system 1, and a liquid feeding line. A liquid feed pump 105, which is provided on the 104 and generates a pressure to send a hydrogen storage body from the storage tank 102 to the hydrogen generation system 1, and hydrogen generated by the hydrogen generation system 1 to the solid polymer fuel cell 101. The hydrogen supply line 108 for supply, the waste liquid recovery line 106 for liquefying and recovering the dehydrogenated product and the hydrogen storage as an unreacted product produced in the hydrogen generation system 1, and the waste liquid recovery line 106 are used for feeding. It is provided with a effluent tank 103 for recovering the liquefied dehydrogenated product and the hydrogen storage as waste liquor. A hydrogen supply pump 107 for sucking the hydrogen generated by the hydrogen generation system 1 and supplying it to the polymer electrolyte fuel cell 101 is provided on the hydrogen supply line 108. The hydrogen supply pump 107 can forcibly supply the hydrogen generated by the hydrogen generation system 1 to the polymer electrolyte fuel cell 101. As the hydrogen supply pump 107, for example, a turbine type exhaust pump can be used.
 水素生成システム1の気化部12及び脱水素反応部13の温度が低いと水素貯蔵体の脱水素反応が進み難く、水素を好適に生成できないおそれがある。そのため、図5に示すように、例えば、気化部12及び脱水素反応部13を加熱する加熱部(不図示)を設けてもよい。加熱部により、迅速に気化部12及び/又は脱水素反応部13を加熱することができ、脱水素反応を好適に行える温度までに迅速に加熱することができる。加熱部の燃料は、例えば、不図示のタンク等に貯蔵することができる。加熱部の燃料としては、都市ガス、灯油又は重油等が挙げられる。 If the temperatures of the vaporization unit 12 and the dehydrogenation reaction unit 13 of the hydrogen generation system 1 are low, the dehydrogenation reaction of the hydrogen reservoir is difficult to proceed, and hydrogen may not be produced suitably. Therefore, as shown in FIG. 5, for example, a heating unit (not shown) for heating the vaporization unit 12 and the dehydrogenation reaction unit 13 may be provided. The heating unit can quickly heat the vaporization unit 12 and / or the dehydrogenation reaction unit 13 to a temperature at which the dehydrogenation reaction can be suitably performed. The fuel in the heating section can be stored in, for example, a tank (not shown). Examples of the fuel for the heating unit include city gas, kerosene, heavy oil, and the like.
 固体高分子形燃料電池101は、電解質膜Eとこれを挟み込むアノードA及びカソードCで形成された単セルSを複数スタックして構成されるセルスタック(図示せず)を備える。水素生成システム1で生成した水素は、水素供給ライン108を介してアノードAに供給される。空気は、空気ポンプ109からカソードCに供給される。空気は、必要に応じて加湿器(不図示)で処理してもよい。アノードAの水素とカソードCの酸素とが電解質膜Eを介して反応することで電子(電気)と水が生成される。生成した水は発電システム100外に排出され、電気はモータや二次電池等の電気システムに供給される。なお、固体高分子形燃料電池101が排出する排ガスは、水素供給ポンプ107で吸引され、排ガスライン110から排出される。 The polymer electrolyte fuel cell 101 includes a cell stack (not shown) composed of a plurality of single cells S formed by an electrolyte membrane E and an anode A and a cathode C sandwiching the electrolyte membrane E. The hydrogen generated by the hydrogen generation system 1 is supplied to the anode A via the hydrogen supply line 108. Air is supplied from the air pump 109 to the cathode C. The air may be treated with a humidifier (not shown) if necessary. Electrons (electricity) and water are generated by the reaction between hydrogen at the anode A and oxygen at the cathode C via the electrolyte membrane E. The generated water is discharged to the outside of the power generation system 100, and electricity is supplied to an electric system such as a motor or a secondary battery. The exhaust gas discharged from the polymer electrolyte fuel cell 101 is sucked by the hydrogen supply pump 107 and discharged from the exhaust gas line 110.
 発電システム100は、貯蔵タンク102と気化部12の間に熱交換器(不図示)を備えてもよい。水素生成システム1から回収した高温の脱水素化物を廃液タンクに103に回収する前にこの熱交換器に供すことにより、脱水素化物の熱を利用して水素貯蔵体を加熱することができる。 The power generation system 100 may include a heat exchanger (not shown) between the storage tank 102 and the vaporization unit 12. By subjecting the high-temperature dehydrogenated product recovered from the hydrogen generation system 1 to this heat exchanger before collecting it in the waste liquid tank 103, the hydrogen storage body can be heated by utilizing the heat of the dehydrogenated product.
 固体高分子形燃料電池101から排出された排気ガスは、その排気圧を利用することで発電システム100に装着した水素供給ポンプ107の動力として再利用することが可能である。このような装置を設けることで、発電システム100のエネルギー効率を向上させることが可能である。 The exhaust gas discharged from the polymer electrolyte fuel cell 101 can be reused as power for the hydrogen supply pump 107 mounted on the power generation system 100 by utilizing the exhaust pressure. By providing such a device, it is possible to improve the energy efficiency of the power generation system 100.
 次に、図6を参照して、本実施形態に係る水素生成システム1とエンジン201を組み合わせたエンジンシステム200について説明する。 Next, with reference to FIG. 6, the engine system 200 in which the hydrogen generation system 1 and the engine 201 according to the present embodiment are combined will be described.
 図6に示すように、エンジンシステム200は、前記した発電システム100と同様の機能を有する、貯蔵タンク202と、廃液タンク203と、送液ライン204と、送液ポンプ205と、廃液回収ライン206と、水素供給ポンプ207とを有している。 As shown in FIG. 6, the engine system 200 has a storage tank 202, a waste liquid tank 203, a liquid feed line 204, a liquid feed pump 205, and a waste liquid recovery line 206 having the same functions as the power generation system 100 described above. And a hydrogen supply pump 207.
 エンジンシステム200は、水素生成システム1と、水素燃料エンジン等のエンジン201と、水素生成システム1で生成した水素をエンジン201に供給するための水素供給ライン208と、エンジン201からの排ガスを排気するための排ガスライン210とを有しており、この排ガスライン210の後段で水素生成システム1と当接するように構成されている。固体高分子形燃料電池101と比較してエンジン201の方が運転温度が高く、排ガス温度も高い。そのため、エンジンシステム200では、排ガスライン210の後段で水素生成システム1と当接させることによって、水素生成システム1の気化部12及び/又は脱水素反応部を加熱している。なお、エンジン201の冷却水やオイルの廃熱を利用して水素生成システム1を加熱するように設計してもよい。 The engine system 200 exhausts the hydrogen generation system 1, the engine 201 such as a hydrogen fuel engine, the hydrogen supply line 208 for supplying the hydrogen generated by the hydrogen generation system 1 to the engine 201, and the exhaust gas from the engine 201. It has an exhaust gas line 210 for the purpose, and is configured to come into contact with the hydrogen generation system 1 at the subsequent stage of the exhaust gas line 210. The operating temperature of the engine 201 is higher than that of the polymer electrolyte fuel cell 101, and the exhaust gas temperature is also higher. Therefore, in the engine system 200, the vaporization section 12 and / or the dehydrogenation reaction section of the hydrogen generation system 1 is heated by contacting the hydrogen generation system 1 at the subsequent stage of the exhaust gas line 210. The hydrogen generation system 1 may be designed to be heated by utilizing the waste heat of the cooling water or oil of the engine 201.
 エンジン201と固体高分子形燃料電池101とで大きく異なるのが、水素生成システム1から供給される水素ガスの純度である。水素生成システム1から水素供給ポンプ207で吸引するときに、蒸気圧分の脱水素化物が水素と共に吸引される可能性がある。しかし、そのような場合であっても次の理由により特に問題なくこれを燃焼することができる。エンジンシステム200で用いるエンジン201は水素燃料エンジンであるため、不純物として若干の炭化水素、つまり脱水素化物や水素貯蔵体が混入していたとしても、これを燃焼することができる。また、場合によっては、水素ガスに若干の炭化水素が混入すると制御が容易になり得る。したがって、水素生成システム1で生成された水素と脱水素化物を分離する際に、水素中に若干の脱水素化物や水素貯蔵体が混入してもよい。このように、水素ガスに高い純度が求められないため、エンジンスステム200は発電システム100よりも構成の簡素化を図ることができる。 The major difference between the engine 201 and the polymer electrolyte fuel cell 101 is the purity of the hydrogen gas supplied from the hydrogen generation system 1. When sucking from the hydrogen generation system 1 with the hydrogen supply pump 207, the vapor pressure dehydrogenated product may be sucked together with hydrogen. However, even in such a case, it can be burned without any particular problem for the following reasons. Since the engine 201 used in the engine system 200 is a hydrogen fuel engine, even if some hydrocarbons, that is, dehydrogenates and hydrogen reservoirs are mixed as impurities, they can be burned. Further, in some cases, if a small amount of hydrocarbon is mixed in the hydrogen gas, control may be facilitated. Therefore, when separating the hydrogen produced by the hydrogen generation system 1 from the dehydrogenated product, some dehydrogenated product or hydrogen reservoir may be mixed in the hydrogen. As described above, since high purity of hydrogen gas is not required, the structure of the engine system 200 can be simplified as compared with that of the power generation system 100.
 図6に示すように、エンジンシステム200において、脱水素化物と未反応の水素貯蔵体は、廃液回収ライン206によって廃液タンク203に回収される。そして、脱水素反応部13で生成された水素は、水素供給ライン208を介して水素供給ポンプ207によってエンジン201に送られ、エンジン201が吸気した空気とともに燃焼されて駆動力を生ずる。エンジン201における燃焼で生じた排気ガスは、排ガスライン210によって水素生成システム1に当接して設けられた加熱部14に供給され、その後、排ガスライン210の排出口から排出される。 As shown in FIG. 6, in the engine system 200, the dehydrogenated product and the unreacted hydrogen reservoir are collected in the waste liquid tank 203 by the waste liquid recovery line 206. Then, the hydrogen generated in the dehydrogenation reaction unit 13 is sent to the engine 201 by the hydrogen supply pump 207 via the hydrogen supply line 208, and is burned together with the air taken in by the engine 201 to generate a driving force. The exhaust gas generated by combustion in the engine 201 is supplied by the exhaust gas line 210 to the heating unit 14 provided in contact with the hydrogen generation system 1, and then discharged from the exhaust port of the exhaust gas line 210.
 次に、図7を参照して、本実施形態に係る水素生成システム1と圧縮機301を組み合わせた水素貯蔵システム300について説明する。 Next, with reference to FIG. 7, a hydrogen storage system 300 that combines the hydrogen generation system 1 and the compressor 301 according to the present embodiment will be described.
 図7に示すように、水素貯蔵システム300は、前記した発電システム100と同様の機能を有する貯蔵タンク302と、廃液タンク303と、送液ライン304と、送液ポンプ305と、水素供給ライン308と、廃液回収ライン306とを有している。 As shown in FIG. 7, the hydrogen storage system 300 includes a storage tank 302, a waste liquid tank 303, a liquid feed line 304, a liquid feed pump 305, and a hydrogen supply line 308 having the same functions as the power generation system 100 described above. And a waste liquid recovery line 306.
 水素貯蔵システム300は、水素生成システム1と、水素生成システム1で生成した水素を圧縮機301に供給する水素供給ライン308と、供給された水素を圧縮する圧縮機301と、圧縮した水素を貯蔵する水素タンク307とを有している。水素タンク307は、高圧条件下で水素を気体又は液体の状態で貯蔵するものであってもよい。また、水素タンク307は、AB2型やAB5型、鉄-チタン系、マグネシウム系、バナジウム系、パラジウム系、カルシウム系等の水素吸蔵合金を内蔵したものであってもよい。 The hydrogen storage system 300 stores the hydrogen generation system 1, the hydrogen supply line 308 that supplies the hydrogen generated by the hydrogen generation system 1 to the compressor 301, the compressor 301 that compresses the supplied hydrogen, and the compressed hydrogen. It has a hydrogen tank 307 and a hydrogen tank 307. The hydrogen tank 307 may store hydrogen in a gas or liquid state under high pressure conditions. Further, the hydrogen tank 307 may contain a hydrogen storage alloy such as AB2 type, AB5 type, iron-titanium type, magnesium type, vanadium type, palladium type, calcium type and the like.
 図7に示すように、水素貯蔵システム300において、脱水素化物と未反応の水素貯蔵体は、廃液回収ライン306によって廃液タンク303に回収される。脱水素反応部13で生成された水素は、水素供給ライン308によって圧縮機301に送られて圧縮され、水素タンク307に貯蔵される。 As shown in FIG. 7, in the hydrogen storage system 300, the dehydrogenated product and the unreacted hydrogen reservoir are collected in the waste liquid tank 303 by the waste liquid recovery line 306. The hydrogen generated in the dehydrogenation reaction unit 13 is sent to the compressor 301 by the hydrogen supply line 308, compressed, and stored in the hydrogen tank 307.
 次に、図8を参照して、本実施形態に係る水素生成システム1を使用した水素コミュニティ400について説明する。 Next, with reference to FIG. 8, the hydrogen community 400 using the hydrogen generation system 1 according to the present embodiment will be described.
 図8は、系統電力、風力又は太陽光等の再生可能エネルギーを利用する分散電源、及び水素自動車を例にしたコミュニティを模式的に示している。 FIG. 8 schematically shows a community using a distributed power source that uses renewable energy such as grid power, wind power, or solar power, and a hydrogen vehicle as an example.
 図8に示すように、この水素コミュニティ400には風力発電411、太陽電池412、系統電力413、及びこれらと接続されたインバータ414と、電気を消費する電気機器416とが含まれている。また、水素コミュニティ400は、水を電気分解して水素を生成する水電解装置420と、水電解装置420で生成した水素を用いて水素貯蔵体の脱水素化物に水素を付加して再度水素貯蔵体を製造する水素貯蔵体製造装置421と、水素貯蔵体製造装置421で製造した水素貯蔵体を貯蔵する水素貯蔵体タンク422を備え、既存のガソリンインフラを利用した水素貯蔵体ステーション423が含まれている。 As shown in FIG. 8, the hydrogen community 400 includes a wind power generator 411, a solar cell 412, a grid power 413, an inverter 414 connected to these, and an electric device 416 that consumes electricity. Further, the hydrogen community 400 uses the water electrolyzer 420 that electrolyzes water to generate hydrogen and the hydrogen generated by the water electrolyzer 420 to add hydrogen to the dehydrogenated product of the hydrogen storage and store hydrogen again. Includes a hydrogen reservoir production device 421 for manufacturing the body and a hydrogen reservoir station 423 for storing the hydrogen reservoir produced by the hydrogen reservoir production device 421 and utilizing the existing gasoline infrastructure. ing.
 水素コミュニティ400は、水素貯蔵体ステーション423から供給される水素貯蔵体が供給される発電システム100、エンジンシステム200及び水素貯蔵システム300を含んでおり、本実施形態の水素生成システム1は、この水素コミュニティ400の一部として使用される。 The hydrogen community 400 includes a power generation system 100, an engine system 200, and a hydrogen storage system 300 to which a hydrogen storage unit supplied from a hydrogen storage unit station 423 is supplied, and the hydrogen generation system 1 of the present embodiment is the hydrogen. Used as part of Community 400.
 具体的には、本実施形態の水素生成システム1は、発電システム100、エンジンシステム200及び水素貯蔵システム300内に設けられて使用される。 Specifically, the hydrogen generation system 1 of the present embodiment is provided and used in the power generation system 100, the engine system 200, and the hydrogen storage system 300.
 例えば、発電システム100に含まれる水素生成システム1は、水素貯蔵体ステーション423から供給された水素貯蔵体を用いて水素を生成し、生成した水素を用いて固体高分子形燃料電池101により電気を発電する。また、例えば、水素自動車417のエンジンシステム200に含まれる水素生成システム1は、水素貯蔵体ステーション423から供給された水素貯蔵体を用いて水素を生成し、生成した水素をエンジン201で直接燃焼して駆動力を得て、当該水素自動車417を走行させる。さらに、例えば、水素貯蔵システム300に含まれる水素生成システム1は、水素貯蔵体ステーション423から供給された水素貯蔵体を用いて水素を生成し、生成した水素を圧縮機301によって水素タンク307内に高圧で貯蔵される。 For example, the hydrogen generation system 1 included in the power generation system 100 generates hydrogen using the hydrogen storage unit supplied from the hydrogen storage unit station 423, and uses the generated hydrogen to generate electricity by the polymer electrolyte fuel cell 101. Generate electricity. Further, for example, the hydrogen generation system 1 included in the engine system 200 of the hydrogen vehicle 417 generates hydrogen using the hydrogen storage body supplied from the hydrogen storage body station 423, and the generated hydrogen is directly burned by the engine 201. The driving force is obtained to drive the hydrogen vehicle 417. Further, for example, the hydrogen generation system 1 included in the hydrogen storage system 300 generates hydrogen using the hydrogen storage body supplied from the hydrogen storage body station 423, and the generated hydrogen is put into the hydrogen tank 307 by the compressor 301. Stored at high pressure.
 水素コミュニティ400において、例えば、風力発電411や太陽電池412のような再生可能エネルギーによって発電された直流の電気は、インバータ414によって交流の電気に変換することができる。交流に変換された電気は、通常、家庭用の電気機器416に使用される。また、交流に変換された電気は、水電解装置420に供給されることによって水を電気分解し、水素と酸素を生成する。そして、水電解装置420で生成した水素を水素貯蔵体製造装置421に供給して水素貯蔵体の脱水素化物に水素を付加することによって再び水素貯蔵体とする。 In the hydrogen community 400, for example, DC electricity generated by renewable energy such as wind power generation 411 and solar cell 412 can be converted into AC electricity by an inverter 414. The electricity converted to alternating current is usually used in household electrical appliances 416. Further, the electricity converted into alternating current is supplied to the water electrolyzer 420 to electrolyze water and generate hydrogen and oxygen. Then, the hydrogen generated by the water electrolyzer 420 is supplied to the hydrogen storage body manufacturing device 421, and hydrogen is added to the dehydrogenated product of the hydrogen storage body to make the hydrogen storage body again.
 電気(電力)は昼間の負荷変動に対応したピーク電力と昼夜一定の基本電力を供給するベース電力に分けられる。図5に示した発電システム100は、昼間の負荷変動に対応したピーク電力を家庭用分散電源418や電気機器416に供給するようにすることが好ましい。発電システム100は、ベース電力として電力会社等の系統電力413を利用し得るが、この系統電力413もCO削減のためには前記した再生可能エネルギーを利用することが好ましい。また、水電解装置420も余剰電力で稼動させることが、水素コミュニティ400の効率の観点及びCO削減の観点から好ましい。 Electricity (electric power) is divided into peak power corresponding to daytime load fluctuations and base power that supplies constant basic power day and night. The power generation system 100 shown in FIG. 5 preferably supplies peak power corresponding to daytime load fluctuations to the household distributed power source 418 and the electric device 416. The power generation system 100 can use the grid power 413 of an electric power company or the like as the base power, and it is preferable that the grid power 413 also uses the above-mentioned renewable energy for CO 2 reduction. Further, it is preferable to operate the water electrolyzer 420 with surplus electric power from the viewpoint of the efficiency of the hydrogen community 400 and the viewpoint of CO 2 reduction.
 再生可能エネルギーとしては、風力発電411や太陽電池412の他、地熱、海洋温度差、潮力、バイオマス等を用いることもできる。なお、これらの再生可能エネルギーは、夜間も発電でき、余剰電力を生み出せるため、水電解装置420を稼動させて水素貯蔵体を製造し、水素貯蔵体タンク422に大量に貯蔵させるのに好適である。昼間の再生可能エネルギーによる発電は積極的に系統電力413のピーク電力として供給するようにすることが好ましい。 As renewable energy, in addition to wind power generation 411 and solar cell 412, geothermal energy, ocean thermal energy conversion, tidal power, biomass, etc. can also be used. Since these renewable energies can generate electricity even at night and generate surplus electric power, it is suitable for operating the water electrolyzer 420 to produce a hydrogen reservoir and storing a large amount in the hydrogen reservoir tank 422. .. It is preferable that the power generation by the renewable energy in the daytime is positively supplied as the peak power of the system power 413.
 なお、水素自動車417に水電解装置420と同様の水電解装置(図示せず)を備えさせることもできる。このようにすれば、昼間水素貯蔵体を使用して走行し、廃液として回収された脱水素化物を、夜間の余剰電力を利用して水素貯蔵体にすることが可能となり、より利便性が向上する。 It should be noted that the hydrogen vehicle 417 can be equipped with a water electrolyzer (not shown) similar to the water electrolyzer 420. In this way, it becomes possible to run using the hydrogen storage body in the daytime and use the surplus electric power at night to turn the dehydrogenated product recovered as the waste liquid into a hydrogen storage body, which further improves convenience. do.
 本明細書中に記載した数値範囲の上限値及び/又は下限値は、それぞれ任意に組み合わせて好ましい範囲を規定することができる。例えば、数値範囲の上限値及び下限値を任意に組み合わせて好ましい範囲を規定することができ、数値範囲の上限値同士を任意に組み合わせて好ましい範囲を規定することができ、また、数値範囲の下限値同士を任意に組み合わせて好ましい範囲を規定することができる。 The upper limit value and / or the lower limit value of the numerical range described in the present specification can be arbitrarily combined to specify a preferable range. For example, an upper limit value and a lower limit value of the numerical range can be arbitrarily combined to specify a preferable range, an upper limit value of the numerical range can be arbitrarily combined to specify a preferable range, and a lower limit of the numerical range can be specified. A preferable range can be defined by arbitrarily combining the values.
 この記載した開示に続く特許請求の範囲は、本明細書においてこの記載した開示に明示的に組み込まれ、各請求項は個別の実施形態として独立している。本開示は独立請求項をその従属請求項によって置き換えたもの全てを含む。さらに、独立請求項及びそれに続く従属請求項から誘導される追加的な実施形態も、この記載した明細書に明示的に組み込まれる。 The scope of claims following this stated disclosure is expressly incorporated herein by this stated disclosure, and each claim is independent as a separate embodiment. The present disclosure includes all independent claims replaced by their dependent claims. In addition, additional embodiments derived from the independent claims and subsequent dependent claims are also expressly incorporated herein by this description.
 当業者であれば本開示を最大限に利用するために上記の説明を用いることができる。本明細書に開示した特許請求の範囲及び実施形態は、単に説明的及び例示的なものであり、いかなる意味でも本開示の範囲を限定しないと解釈すべきである。本開示の助けを借りて、本開示の基本原理から逸脱することなく上記の実施形態の詳細に変更を加えることができる。換言すれば、上記の明細書に具体的に開示した実施形態の種々の改変及び改善は、本開示の範囲内である。 Those skilled in the art can use the above description to make the best use of this disclosure. The claims and embodiments disclosed herein are merely explanatory and exemplary and should be construed as not limiting the scope of the present disclosure in any way. With the help of the present disclosure, changes can be made to the details of the above embodiments without departing from the basic principles of the present disclosure. In other words, the various modifications and improvements of the embodiments specifically disclosed herein are within the scope of this disclosure.
(付記)
(付記1)
 水素貯蔵体を触媒を用いて脱水素反応させることにより水素を生成する水素生成システムであって、
 水素貯蔵体を断続的に供給する供給部と、
 供給部から供給された水素貯蔵体を気化する気化部と、
 気化部からの水素貯蔵体を触媒と接触させて脱水素反応を行い、水素と脱水素化物とに変換する脱水素反応部と、
 脱水素反応部内の雰囲気を吸引により減圧する吸引部と、
 吸引部により吸引された水素ガス及び脱水素化物を含む混合物を、水素を主に含む気体と脱水素化物を主に含む液体とに分離させる気液分離部と、
を備えることを特徴とする水素生成システム。
(付記2)
 気液分離部が、吸引された前記混合物が送られる容器と、該容器内の圧力を調整する圧力調整弁と、を少なくとも有する、付記1に記載の水素生成システム。
(付記3)
 供給部は、前に供給した水素貯蔵体の脱水素化物が脱水素反応部から排出される時間間隔で断続的に水素貯蔵体を気化部に供給する、付記1又は2に記載の水素生成システム。
(付記4)
 触媒の水素、水素貯蔵体又は脱水素化物に対する吸着力が、水素に対する吸着力<水素貯蔵体に対する吸着力<脱水素化物に対する吸着力の関係を有する、付記1~3のいずれかに記載の水素生成システム。
(付記5)
 触媒が、触媒金属及び該触媒金属を担持する担体を含み、担体がシリカを含む、付記4に記載の水素生成システム。
(付記6)
 脱水素反応部が、熱エネルギーを電気に変換する発電装置又は熱エネルギーを機械的エネルギーに変換する熱機関を冷却する冷却媒体によって加熱される、付記1~5のいずれかに記載の水素生成システム。
(付記7)
 水素貯蔵体を触媒を用いて脱水素反応させることにより水素を生成する方法であって、
 水素貯蔵体を供給する工程と、
 供給された水素貯蔵体を気化する工程と、
 気化した水素貯蔵体を触媒と接触させて脱水素反応を行い、水素と脱水素化物とに変換させる工程であって、脱水素反応を吸引による減圧下で行う工程と、
 吸引された水素及び脱水素化物を含む混合物を、水素を主に含む気体と脱水素化物を主に含む液体とに分離させる工程と、
を含むことを特徴とする方法。
(付記8)
 30kPa以下の圧力下で脱水素反応を行う、付記7に記載の方法。
(付記9)
 前記混合物を、前記吸引により容器内に入れて圧力を上昇させることにより、気体と液体とに分離する、付記7又は8に記載の方法。
(付記10)
 前に供給した水素貯蔵体の脱水素化物が排出される時間間隔で断続的に水素貯蔵体を触媒に供する、付記7~9のいずれかに記載の方法。
(付記11)
 触媒の水素、水素貯蔵体又は脱水素化物に対する吸着力が、水素に対する吸着力<水素貯蔵体に対する吸着力<脱水素化物に対する吸着力の関係を有する、付記7~10のいずれかに記載の方法。
(付記12)
 触媒が、触媒金属及び該触媒金属を担持する担体を含み、担体がシリカを含む、付記11に記載の方法。
(付記13)
 脱水素反応の環境を、熱エネルギーを電気に変換する発電装置又は熱エネルギーを機械的エネルギーに変換する熱機関を冷却する冷却媒体によって加熱する、付記7~12のいずれかに記載の方法。
(Additional note)
(Appendix 1)
A hydrogen generation system that produces hydrogen by dehydrogenating a hydrogen reservoir with a catalyst.
A supply unit that intermittently supplies hydrogen storage and
A vaporizer that vaporizes the hydrogen reservoir supplied from the supply unit,
A dehydrogenation reaction section that brings the hydrogen reservoir from the vaporization section into contact with a catalyst to perform a dehydrogenation reaction and converts it into hydrogen and a dehydrogenated product.
A suction part that decompresses the atmosphere inside the dehydrogenation reaction part by suction,
A gas-liquid separator that separates a mixture containing hydrogen gas and dehydrogenated material sucked by the suction unit into a gas that mainly contains hydrogen and a liquid that mainly contains dehydrogenated material.
A hydrogen generation system characterized by being equipped with.
(Appendix 2)
The hydrogen generation system according to Appendix 1, wherein the gas-liquid separation unit has at least a container to which the sucked mixture is sent and a pressure regulating valve for adjusting the pressure in the container.
(Appendix 3)
The hydrogen generation system according to Appendix 1 or 2, wherein the supply unit intermittently supplies the hydrogen storage unit to the vaporization unit at time intervals in which the dehydrogenated product of the previously supplied hydrogen storage unit is discharged from the dehydrogenation reaction unit. ..
(Appendix 4)
The hydrogen according to any one of Supplementary note 1 to 3, wherein the adsorption force of the catalyst for hydrogen, a hydrogen reservoir or a dehydrogenate has a relationship of an adsorption force for hydrogen <adsorption force for a hydrogen reservoir <adsorption force for a dehydrogenate. Generation system.
(Appendix 5)
The hydrogen generation system according to Appendix 4, wherein the catalyst comprises a catalyst metal and a carrier carrying the catalyst metal, and the carrier comprises silica.
(Appendix 6)
The hydrogen generation system according to any one of Supplementary note 1 to 5, wherein the dehydrogenation reaction unit is heated by a cooling medium that cools a power generation device that converts heat energy into electricity or a heat engine that converts heat energy into mechanical energy. ..
(Appendix 7)
A method of producing hydrogen by dehydrogenating a hydrogen reservoir with a catalyst.
The process of supplying hydrogen storage and
The process of vaporizing the supplied hydrogen reservoir and
A step of bringing a vaporized hydrogen reservoir into contact with a catalyst to carry out a dehydrogenation reaction to convert hydrogen into a dehydrogenated product, which is a step of carrying out the dehydrogenation reaction under reduced pressure by suction.
A step of separating the suctioned mixture containing hydrogen and dehydrogenated product into a gas containing mainly hydrogen and a liquid containing mainly dehydrogenated product.
A method characterized by including.
(Appendix 8)
The method according to Appendix 7, wherein the dehydrogenation reaction is carried out under a pressure of 30 kPa or less.
(Appendix 9)
The method according to Appendix 7 or 8, wherein the mixture is separated into a gas and a liquid by putting the mixture into a container by the suction and increasing the pressure.
(Appendix 10)
The method according to any of Supplementary note 7 to 9, wherein the hydrogen reservoir is intermittently used as a catalyst at time intervals during which the dehydrogenated product of the previously supplied hydrogen reservoir is discharged.
(Appendix 11)
The method according to any one of Supplementary note 7 to 10, wherein the adsorption force of the catalyst for hydrogen, a hydrogen reservoir or a dehydrogenate has a relationship of adsorption force for hydrogen <adsorption force for hydrogen reservoir <adsorption force for dehydrogenate. ..
(Appendix 12)
11. The method of Appendix 11, wherein the catalyst comprises a catalyst metal and a carrier carrying the catalyst metal, and the carrier comprises silica.
(Appendix 13)
The method according to any one of Supplementary note 7 to 12, wherein the environment of the dehydrogenation reaction is heated by a cooling medium that cools a power generation device that converts heat energy into electricity or a heat engine that converts heat energy into mechanical energy.
 1      水素生成システム
 11    供給部
 12    気化部
 13    脱水素反応部
 14    吸引部
 15    気液分離部
 20    供給制御部
 31    触媒部
 32    脱水素触媒
 34    分配部
 36    供給口
 37    集約部
 38    排出口
 40    熱媒体流動部
 44    流入口
 46    排出口
 51    容器
 52    圧力調整弁
 151  第一の気液分離部
 152  第二の気液分離部
 100  発電システム
 101  固体高分子形燃料電池
 102  貯蔵タンク
 103  廃液タンク
 104  送液ライン
 105  送液ポンプ
 106  廃液回収ライン
 107  水素供給ポンプ
 108  水素供給ライン
 109  空気ポンプ
 110  排ガスライン
 121  圧力付与器
 122  制御バルブ
 123  供給制御部
 200  エンジンシステム
 201  エンジン
 202  貯蔵タンク
 203  廃液タンク
 204  送液ライン
 205  送液ポンプ
 206  廃液回収ライン
 207  水素供給ポンプ
 208  水素供給ライン
 210  排ガスライン
 300  水素貯蔵システム
 301  圧縮機
 302  貯蔵タンク
 303  廃液タンク
 304  送液ライン
 305  送液ポンプ
 306  廃液回収ライン
 307  水素タンク
 308  水素供給ライン
 400  水素コミュニティ
 411  風力発電
 412  太陽電池
 413  系統電力
 414  インバータ
 416  電気機器
 417  水素自動車
 418  家庭用分散電源
 420  水電解装置
 421  水素貯蔵体製造装置
 422  水素貯蔵体タンク
 423  水素貯蔵体ステーション
 A      アノード
 C      カソード
 E      電解質膜
1 Hydrogen generation system 11 Supply part 12 Vaporization part 13 Dehydrogenation reaction part 14 Suction part 15 Gas-liquid separation part 20 Supply control part 31 Catalyst part 32 Dehydrogenation catalyst 34 Distribution part 36 Supply port 37 Consolidation part 38 Discharge port 40 Heat medium flow Part 44 Inflow port 46 Outlet 51 Container 52 Pressure control valve 151 First gas-liquid separation part 152 Second gas-liquid separation part 100 Power generation system 101 Solid polymer fuel cell 102 Storage tank 103 Waste liquid tank 104 Liquid supply line 105 Liquid feed pump 106 Waste liquid recovery line 107 Hydrogen supply pump 108 Hydrogen supply line 109 Air pump 110 Exhaust gas line 121 Pressure applyer 122 Control valve 123 Supply control unit 200 Engine system 201 Engine 202 Storage tank 203 Waste liquid tank 204 Liquid feed line 205 Pump 206 Waste liquid recovery line 207 Hydrogen supply pump 208 Hydrogen supply line 210 Exhaust gas line 300 Hydrogen storage system 301 Compressor 302 Storage tank 303 Waste liquid tank 304 Liquid feed line 305 Liquid feed pump 306 Waste liquid recovery line 307 Hydrogen tank 308 Hydrogen supply line 400 Hydrogen Community 411 Wind power generation 412 Solar cell 413 System power 414 Inverter 416 Electric equipment 417 Hydrogen car 418 Household distributed power supply 420 Water electrolysis device 421 Hydrogen storage storage equipment 422 Hydrogen storage tank 423 Hydrogen storage station A Anode C Cathode E Electrolyte membrane

Claims (13)

  1.  水素貯蔵体を触媒を用いて脱水素反応させることにより水素を生成する水素生成システムであって、
     水素貯蔵体を断続的に供給する供給部と、
     供給部から供給された水素貯蔵体を気化する気化部と、
     気化部からの水素貯蔵体を触媒と接触させて脱水素反応を行い、水素と脱水素化物とに変換する脱水素反応部と、
     脱水素反応部内の雰囲気を吸引により減圧する吸引部と、
     吸引部により吸引された水素ガス及び脱水素化物を含む混合物を、水素を主に含む気体と脱水素化物を主に含む液体とに分離させる気液分離部と、
    を備えることを特徴とする水素生成システム。
    A hydrogen generation system that produces hydrogen by dehydrogenating a hydrogen reservoir with a catalyst.
    A supply unit that intermittently supplies hydrogen storage and
    A vaporizer that vaporizes the hydrogen reservoir supplied from the supply unit,
    A dehydrogenation reaction section that brings the hydrogen reservoir from the vaporization section into contact with a catalyst to perform a dehydrogenation reaction and converts it into hydrogen and a dehydrogenated product.
    A suction part that decompresses the atmosphere inside the dehydrogenation reaction part by suction,
    A gas-liquid separator that separates a mixture containing hydrogen gas and dehydrogenated material sucked by the suction unit into a gas that mainly contains hydrogen and a liquid that mainly contains dehydrogenated material.
    A hydrogen generation system characterized by being equipped with.
  2.  気液分離部が、吸引された前記混合物が送られる容器と、該容器内の圧力を調整する圧力調整弁と、を少なくとも有する、請求項1に記載の水素生成システム。 The hydrogen generation system according to claim 1, wherein the gas-liquid separation unit has at least a container to which the sucked mixture is sent and a pressure adjusting valve for adjusting the pressure in the container.
  3.  供給部は、前に供給した水素貯蔵体の脱水素化物が脱水素反応部から排出される時間間隔で断続的に水素貯蔵体を気化部に供給する、請求項1に記載の水素生成システム。 The hydrogen generation system according to claim 1, wherein the supply unit intermittently supplies the hydrogen storage unit to the vaporization unit at time intervals in which the dehydrogenated product of the previously supplied hydrogen storage unit is discharged from the dehydrogenation reaction unit.
  4.  触媒の水素、水素貯蔵体又は脱水素化物に対する吸着力が、水素に対する吸着力<水素貯蔵体に対する吸着力<脱水素化物に対する吸着力の関係を有する、請求項1に記載の水素生成システム。 The hydrogen generation system according to claim 1, wherein the adsorptive power of the catalyst to hydrogen, a hydrogen reservoir or a dehydrogenated product has a relationship of adsorption power to hydrogen <adsorbent power to hydrogen reservoir <adsorbent power to dehydrogenated product.
  5.  触媒が、触媒金属及び該触媒金属を担持する担体を含み、担体がシリカを含む、請求項4に記載の水素生成システム。 The hydrogen generation system according to claim 4, wherein the catalyst contains a catalyst metal and a carrier supporting the catalyst metal, and the carrier contains silica.
  6.  脱水素反応部が、熱エネルギーを電気に変換する発電装置又は熱エネルギーを機械的エネルギーに変換する熱機関を冷却する冷却媒体によって加熱される、請求項1に記載の水素生成システム。 The hydrogen generation system according to claim 1, wherein the dehydrogenation reaction unit is heated by a cooling medium that cools a power generation device that converts heat energy into electricity or a heat engine that converts heat energy into mechanical energy.
  7.  水素貯蔵体を触媒を用いて脱水素反応させることにより水素を生成する方法であって、
     水素貯蔵体を供給する工程と、
     供給された水素貯蔵体を気化する工程と、
     気化した水素貯蔵体を触媒と接触させて脱水素反応を行い、水素と脱水素化物とに変換させる工程であって、脱水素反応を吸引による減圧下で行う工程と、
     吸引された水素及び脱水素化物を含む混合物を、水素を主に含む気体と脱水素化物を主に含む液体とに分離させる工程と、
    を含むことを特徴とする方法。
    A method of producing hydrogen by dehydrogenating a hydrogen reservoir with a catalyst.
    The process of supplying hydrogen storage and
    The process of vaporizing the supplied hydrogen reservoir and
    A step of bringing a vaporized hydrogen reservoir into contact with a catalyst to carry out a dehydrogenation reaction to convert hydrogen into a dehydrogenated product, which is a step of carrying out the dehydrogenation reaction under reduced pressure by suction.
    A step of separating the suctioned mixture containing hydrogen and dehydrogenated product into a gas containing mainly hydrogen and a liquid containing mainly dehydrogenated product.
    A method characterized by including.
  8.  30kPa以下の圧力下で脱水素反応を行う、請求項7に記載の方法。 The method according to claim 7, wherein the dehydrogenation reaction is carried out under a pressure of 30 kPa or less.
  9.  前記混合物を、前記吸引により容器内に入れて圧力を上昇させることにより、気体と液体とに分離する、請求項7に記載の方法。 The method according to claim 7, wherein the mixture is put into a container by the suction and the pressure is increased to separate the mixture into a gas and a liquid.
  10.  前に供給した水素貯蔵体の脱水素化物が排出される時間間隔で断続的に水素貯蔵体を触媒に供する、請求項7に記載の方法。 The method according to claim 7, wherein the hydrogen reservoir is intermittently used as a catalyst at time intervals during which the dehydrogenated product of the previously supplied hydrogen reservoir is discharged.
  11.  触媒の水素、水素貯蔵体又は脱水素化物に対する吸着力が、水素に対する吸着力<水素貯蔵体に対する吸着力<脱水素化物に対する吸着力の関係を有する、請求項7に記載の方法。 The method according to claim 7, wherein the adsorptive force of the catalyst to hydrogen, a hydrogen reservoir or a dehydrogenated product has a relationship of an adsorbing force to hydrogen <an adsorbing force to a hydrogen reservoir <an adsorbing force to a dehydrogenated product.
  12.  触媒が、触媒金属及び該触媒金属を担持する担体を含み、担体がシリカを含む、請求項11に記載の方法。 The method according to claim 11, wherein the catalyst contains a catalyst metal and a carrier supporting the catalyst metal, and the carrier contains silica.
  13.  脱水素反応の環境を、熱エネルギーを電気に変換する発電装置又は熱エネルギーを機械的エネルギーに変換する熱機関を冷却する冷却媒体によって加熱する、請求項7に記載の方法。 The method according to claim 7, wherein the environment of the dehydrogenation reaction is heated by a cooling medium that cools a power generation device that converts heat energy into electricity or a heat engine that converts heat energy into mechanical energy.
PCT/JP2020/013589 2020-03-26 2020-03-26 Hydrogen generation system and hydrogen generation method WO2021192136A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022510255A JPWO2021192136A1 (en) 2020-03-26 2020-03-26
PCT/JP2020/013589 WO2021192136A1 (en) 2020-03-26 2020-03-26 Hydrogen generation system and hydrogen generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013589 WO2021192136A1 (en) 2020-03-26 2020-03-26 Hydrogen generation system and hydrogen generation method

Publications (1)

Publication Number Publication Date
WO2021192136A1 true WO2021192136A1 (en) 2021-09-30

Family

ID=77891255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013589 WO2021192136A1 (en) 2020-03-26 2020-03-26 Hydrogen generation system and hydrogen generation method

Country Status (2)

Country Link
JP (1) JPWO2021192136A1 (en)
WO (1) WO2021192136A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315310A (en) * 2003-04-17 2004-11-11 Sekisui Chem Co Ltd Hydrogen supply apparatus
JP2005154204A (en) * 2003-11-26 2005-06-16 Sekisui Chem Co Ltd Hydrogen supply apparatus
JP2010235359A (en) * 2009-03-30 2010-10-21 Hitachi Ltd Hydrogen supply method and hydrogen supply apparatus
JP2015226872A (en) * 2014-05-30 2015-12-17 日本板硝子株式会社 Catalyst for hydrogen gas production, and method for producing hydrogen gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315310A (en) * 2003-04-17 2004-11-11 Sekisui Chem Co Ltd Hydrogen supply apparatus
JP2005154204A (en) * 2003-11-26 2005-06-16 Sekisui Chem Co Ltd Hydrogen supply apparatus
JP2010235359A (en) * 2009-03-30 2010-10-21 Hitachi Ltd Hydrogen supply method and hydrogen supply apparatus
JP2015226872A (en) * 2014-05-30 2015-12-17 日本板硝子株式会社 Catalyst for hydrogen gas production, and method for producing hydrogen gas

Also Published As

Publication number Publication date
JPWO2021192136A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
CN105084311B (en) The methanol-water hydrogen production system employing reforming technology and its application and hydrogen production process of a kind of zero carbon emission
EP2905359B1 (en) Renewable energy storage system
JP2006248814A (en) Apparatus and method for feeding hydrogen
CN104555921B (en) A kind of fuel cell car
JP5653452B2 (en) Natural energy storage system
CN101849036A (en) Produce hydrocarbon by carbon source and hydrogen source
CN111212810A (en) System and method for supplying and further using hydrogen
US20140356744A1 (en) Energy storage and conversion with hot carbon deposition
KR20140016049A (en) Hybrid-type hydrogen generator and the hydrogen production method by using the same
Soloveichik Future of ammonia production: improvement of Haber-Bosch process or electrochemical synthesis
JP5297251B2 (en) Hydrogen supply method and hydrogen supply apparatus
WO2011152366A1 (en) Energy-generating system
JP7316309B2 (en) Carbon dioxide treatment device, carbon dioxide treatment method, and method for producing carbon compound
JP2010163358A (en) Hydrogen supply apparatus and method for supplying hydrogen
WO2021192136A1 (en) Hydrogen generation system and hydrogen generation method
EP3394922B1 (en) Process and an apparatus for the production of compressed hydrogen
CN112713284B (en) Hydrogen supply system of hydrogen fuel cell and heat utilization method
CN204400604U (en) A kind of fuel cell car
JP2015227257A (en) Hydrogen supply system
JP5641814B2 (en) HYDROGEN GENERATOR AND AUTOMOBILE FUEL POWER GENERATOR USING THE DEVICE
WO2021192156A1 (en) Fuel production device
CN112467178A (en) Vehicle-mounted fuel cell hydrogen supply system taking iron powder as fuel
CN111807366B (en) Device and method for preparing synthesis gas by assistance of high-temperature electrochemical device
JP2004315310A (en) Hydrogen supply apparatus
WO2015184368A9 (en) Carbon fuel cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927994

Country of ref document: EP

Kind code of ref document: A1