WO2011152338A1 - 光触媒材料による分解除去方法 - Google Patents
光触媒材料による分解除去方法 Download PDFInfo
- Publication number
- WO2011152338A1 WO2011152338A1 PCT/JP2011/062337 JP2011062337W WO2011152338A1 WO 2011152338 A1 WO2011152338 A1 WO 2011152338A1 JP 2011062337 W JP2011062337 W JP 2011062337W WO 2011152338 A1 WO2011152338 A1 WO 2011152338A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen peroxide
- titanium
- photocatalytic material
- photocatalyst
- gas
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 66
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 36
- 238000000354 decomposition reaction Methods 0.000 title claims abstract description 21
- 230000008030 elimination Effects 0.000 title 1
- 238000003379 elimination reaction Methods 0.000 title 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 95
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 101
- 239000010936 titanium Substances 0.000 claims description 49
- 239000007789 gas Substances 0.000 claims description 45
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 44
- 229910052719 titanium Inorganic materials 0.000 claims description 44
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 38
- 239000011941 photocatalyst Substances 0.000 claims description 35
- 239000000126 substance Substances 0.000 claims description 33
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 31
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 29
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 28
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 21
- 229910052815 sulfur oxide Inorganic materials 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 238000007743 anodising Methods 0.000 claims description 14
- 239000007864 aqueous solution Substances 0.000 claims description 14
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 13
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 12
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 claims description 12
- -1 amine compound Chemical class 0.000 claims description 11
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 8
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000007788 liquid Substances 0.000 abstract description 7
- 239000000383 hazardous chemical Substances 0.000 abstract description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 19
- 239000012071 phase Substances 0.000 description 19
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 18
- 239000007791 liquid phase Substances 0.000 description 16
- 229910001873 dinitrogen Inorganic materials 0.000 description 15
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 13
- 239000008151 electrolyte solution Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 9
- 239000002803 fossil fuel Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 230000007613 environmental effect Effects 0.000 description 7
- 238000005507 spraying Methods 0.000 description 7
- 150000007522 mineralic acids Chemical class 0.000 description 6
- 150000007524 organic acids Chemical class 0.000 description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 238000003916 acid precipitation Methods 0.000 description 5
- 238000002048 anodisation reaction Methods 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- WJCNZQLZVWNLKY-UHFFFAOYSA-N thiabendazole Chemical compound S1C=NC(C=2NC3=CC=CC=C3N=2)=C1 WJCNZQLZVWNLKY-UHFFFAOYSA-N 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 229960000907 methylthioninium chloride Drugs 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 239000013043 chemical agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000001182 laser chemical vapour deposition Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- CEOCDNVZRAIOQZ-UHFFFAOYSA-N pentachlorobenzene Chemical compound ClC1=CC(Cl)=C(Cl)C(Cl)=C1Cl CEOCDNVZRAIOQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000007613 slurry method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
- B01D53/507—Sulfur oxides by treating the gases with other liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/60—Simultaneously removing sulfur oxides and nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/77—Liquid phase processes
- B01D53/78—Liquid phase processes with gas-liquid contact
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8603—Removing sulfur compounds
- B01D53/8609—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8678—Removing components of undefined structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/12—Oxidising
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/348—Electrochemical processes, e.g. electrochemical deposition or anodisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/10—Oxidants
- B01D2251/106—Peroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20707—Titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/80—Type of catalytic reaction
- B01D2255/802—Photocatalytic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/302—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
Definitions
- the present invention relates to a method for decomposing and removing harmful substances in a gas phase and a liquid phase by using a photocatalytic material.
- Titanium oxide photocatalyst materials that can decompose harmful substances in the atmosphere and water quality only by light irradiation are attracting worldwide attention and are expected to be applied in various fields.
- the crystal structure of this titanium oxide includes rutile type, anatase type, etc., among which the anatase type is known to have high photocatalytic properties.
- this titanium oxide photocatalyst fine particles having a particle size of several to several tens of nanometers are used in order to obtain a large surface area.
- the method of coating is used.
- the material of the present invention shows high activity compared to conventional photocatalyst materials, but has not been able to exert its effect sufficiently in fields where rapid decomposition of harmful substances in the gas phase or liquid phase is required. .
- a technique for decomposing and removing harmful substances using the oxidizing power of hydrogen peroxide is 0.1 to 10% by weight, more preferably, to a gas-permeable porous material such as silica gel, zeolite, activated carbon and the like.
- a technology that contains 1 to 5% by weight of hydrogen peroxide or alkali-containing hydrogen peroxide and oxidizes harmful gases with the oxidizing power of hydrogen peroxide has been disclosed. Therefore, it was necessary to use high-concentration hydrogen peroxide, which is highly toxic and corrosive and has an impact on the environment.
- Japanese Patent Laid-Open No. 2000-70968 discloses a technique for decomposing and removing harmful substances by adding a photocatalyst obtained by conventional coating, ozone, and hydrogen peroxide.
- it is necessary to coexist ozone and hydrogen peroxide because the effect of decomposition and removal by the photocatalyst is insufficient if only hydrogen peroxide is added without adding ozone.
- Japanese Patent Application Laid-Open No. 2006-35140 is based on the fact that contaminants such as fenitrotitanium are not only contaminated with photocatalyst particles and hydrogen peroxide but also irradiated with ultrasonic waves having a frequency of 28 to 45 kHz. A technique for removing the is disclosed.
- JP2010-22958 when degrading a hardly decomposable agricultural chemical component with a photocatalyst, after adjusting the pH to 6 or more, ozone is 10 ppm to 50 ppm, oxygen is 5 ppm to 30 ppm, and hydrogen peroxide is added.
- ozone 10 ppm to 50 ppm
- oxygen is 5 ppm to 30 ppm
- hydrogen peroxide is added.
- sulfur oxides and nitrogen oxides that cause acid rain are generated in large quantities in the process of burning fossil fuels such as coal-fired power plants.
- a technique for removing sulfur oxide a technique in which lime water slurry is used to react with sulfur oxide gas and removed as calcium sulfate (gypsum) is often used.
- gypsum calcium sulfate
- ammonia catalytic reduction techniques for reducing nitrogen oxides using ammonia are employed.
- the lime slurry method and ammonia catalytic reduction method are expensive in removing sulfur oxides and nitrogen oxides that are generated in large amounts in the process of burning fossil fuels such as coal-fired power plants, and the ammonia used is harmful. There was a problem such as.
- an object of the present invention is to decompose and remove a new harmful substance that can be sufficiently dealt with by using a photocatalytic material even in a field where it is required to quickly decompose and remove the harmful substance in the gas phase or liquid phase.
- the goal is to provide new techniques that can be used.
- the goal is to provide a new method for efficiently removing a large amount of sulfur oxides and nitrogen oxides generated in the process of burning fossil fuels such as coal-fired power plants.
- the present inventors have made it possible to promptly remove harmful substances in the gas phase and liquid phase by coexisting a photocatalyst material and a dilute hydrogen peroxide solution with an extremely low environmental load.
- the present inventors have found a technology having decomposability that can be applied even in a field that requires decomposition.
- This technology can also be applied to flue gas desulfurization and denitrification technology for plants that burn fossil fuels such as coal-fired power plants that generate large amounts of nitrogen oxides and sulfur oxides in the gas phase.
- an amine compound specifically an amine compound selected from triethanolamine, methylamine, morpholine, etc., is used in the primary side apparatus that selectively removes extremely high concentration of nitrogen oxides.
- the photocatalytic material is formed of titanium nitride on the surface of titanium metal or titanium alloy and then anodized to form a large amount of crystalline titanium oxide, particularly anatase type titanium oxide having high photocatalytic activity. It has been found that it is preferable to use a photocatalyst with a large amount.
- the present invention has been completed based on such knowledge.
- the present invention is a decomposition technique capable of quickly decomposing harmful substances in the gas phase and liquid phase described below.
- Item 1 A method for decomposing and removing a photocatalyst material, wherein the photocatalyst material and a dilute hydrogen peroxide solution coexist, thereby decomposing harmful substances in the gas phase and liquid phase very efficiently and quickly.
- Item 2. Item 2. The photocatalyst material according to Item 1, wherein the photocatalyst material is a photocatalyst material having a crystalline titanium oxide film obtained by forming titanium nitride on the surface of titanium metal or a titanium alloy and then anodizing the metal catalyst. Decomposition and removal method using photocatalytic material.
- Item 3. Item 3.
- an amine compound aqueous solution is used as an agent for removing nitrogen oxides as a primary side device
- Item 6 The method according to Item 5, wherein the amine compound is a compound selected from triethanolamine, methylamine and morpholine.
- Item 7. The method according to Item 5 or 6, wherein sulfuric acid is produced from sulfur oxide, which is a harmful substance in the gas phase.
- Photocatalytic material As the photocatalytic material used in the present invention, titanium oxide having high activity and stability is preferable. When a titanium oxide photocatalyst is irradiated with near-ultraviolet rays of 400 nm or less, holes are generated in the valence band and electrons are generated in the conduction band, and a redox reaction occurs.
- anatase-type titanium oxide has an energy level in the conduction band that is more precious than the rutile type, so electrons excited in the conduction band contribute to the reaction efficiently. , Higher than the rutile type.
- the conventional photocatalyst technology employs fine particle titanium oxide, it is coated on various substrates using a binder, and there is almost no titanium oxide exposed to the surface, resulting in extremely low photocatalytic activity. It was.
- the inventor of the present invention chemically changed the titanium metal surface and heat-treated the titanium metal in nitrogen gas in order to efficiently produce an anatase-type titanium oxide film having a high photocatalytic activity on the surface.
- titanium nitride After forming titanium nitride on the surface, we succeeded in creating a highly active photocatalytic material by anodizing, but at the industrial level, harmful substances in the gas phase and liquid phase It could not be said that it was still effective enough to quickly decompose.
- the present inventor has made a high degree of research by conducting intensive research and performing anodization after forming titanium nitride on the surface of titanium metal by heat treatment in nitrogen gas. It has been found that when the photocatalytic material having activity is used in the presence of a dilute hydrogen peroxide solution of 1% by weight (10000 ppmW) or less, the decomposition efficiency is remarkably increased.
- an amine compound aqueous solution that removes nitrogen oxides is used as a primary device for removing large amounts of sulfur oxides and nitrogen oxides generated in the process of burning fossil fuels such as coal-fired power plants.
- a photocatalytic material having high activity was prepared by forming titanium nitride on the surface of titanium metal in the presence of a dilute hydrogen peroxide solution as a secondary side device, and then performing anodization. It has been found that by using it, it is possible to efficiently remove sulfur oxides and nitrogen oxides simultaneously at low cost and to produce industrially useful sulfuric acid.
- an amine compound aqueous solution is used as a chemical agent for removing nitrogen oxides in the primary apparatus for removing a large amount of sulfur oxides and nitrogen oxides generated in the process of burning fossil fuels such as coal-fired power plants.
- an aqueous solution of 10% by weight or less selected from triethanolamine, methylamine and morpholine the photocatalyst material and dilute in the secondary side apparatus When treated in the presence of hydrogen peroxide, sulfur oxides and nitrogen oxides were efficiently removed.
- the manufacturing method of an anatase type titanium oxide film includes the following steps (i) and (ii). (i) forming titanium nitride on the surface of titanium or titanium alloy; and (ii) Titanium obtained in the above step (i) in an electrolytic solution containing at least one acid selected from the group consisting of an inorganic acid having an etching action on titanium and an organic acid having the action Or the process of anodizing by immersing a titanium alloy and controlling the electric current which can apply the voltage more than a spark discharge generation voltage.
- the formation of titanium nitride in the step (i) is performed by PVD, CVD, thermal spraying, heating in a nitrogen gas atmosphere, and nitrogen gas in combination with an oxygen trap agent. It is preferably performed by at least one treatment selected from the group consisting of heat treatment under an atmosphere.
- the heat treatment in a nitrogen gas atmosphere is performed by heating titanium or a titanium alloy in a nitrogen gas atmosphere.
- the electrolytic solution contains sulfuric acid and phosphoric acid.
- the electrolytic solution further contains hydrogen peroxide in the anodic oxidation in the first step (ii).
- anodization is performed so as to control a current that can cause a spark discharge generation voltage in the anodic oxidation in the step (ii).
- titanium and a titanium alloy may be simply referred to as a titanium material.
- step (i) titanium nitride is formed on the surface of titanium or titanium alloy.
- the type is not particularly limited.
- the titanium alloy include Ti-6Al-4V and Ti-0.5Pd.
- a titanium nitride layer is usually formed on the surface of the titanium material in the range of 0.1 to 100 ⁇ m, preferably 0.5 to 50 ⁇ m, more preferably about 1 to 30 ⁇ m.
- the means for forming titanium nitride on the surface of the titanium material is not particularly limited.
- a method of physically or chemically attaching titanium nitride to the surface of the titanium material, or titanium on the surface of the titanium material There is a method of forming titanium nitride by reacting with nitrogen.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- thermal spray treatment film formation by spraying
- PVD process examples include ion plating and sputtering.
- CVD treatment examples include thermal CVD, plasma CVD, and laser CVD.
- thermal spraying process examples include thermal spraying processes such as flame spraying, arc spraying, plasma spraying, and laser spraying.
- Specific examples of the heat treatment of the titanium material in a nitrogen gas atmosphere include a method of heating the titanium material to 500 ° C. or higher (preferably 750 ° C. or higher) in a nitrogen gas atmosphere.
- the nitrogen gas atmosphere during the heat treatment is not particularly limited, but the pressure of the nitrogen gas is usually 0.01 to 100 MPa, preferably 0.1 to 10 MPa, more preferably 0.1 to 1 MPa. As long as it is about.
- the heating time of the titanium material in the heat treatment can be usually set to 1 to 12 hours, preferably 2 to 8 hours, and more preferably 3 to 6 hours.
- the type of titanium nitride formed on the surface of the titanium material is not particularly limited.
- the titanium nitride TiN, Ti 2 N, ⁇ -TiN 0.3 , ⁇ -Ti 3 N 2-X , ⁇ -Ti 4 N 3-X (where x is a numerical value from 0 to less than 3)
- x is a numerical value from 0 to less than 3
- TiN, Ti 2 N, and a mixture thereof, more preferably TiN, and a mixture of TiN and Ti 2 N, particularly preferably TiN are exemplified.
- one of the above methods may be performed alone, or two or more methods may be arbitrarily combined.
- heat treatment of the titanium material in a nitrogen gas atmosphere is preferable.
- an electrolyte containing at least one acid selected from the group consisting of an inorganic acid having an etching action on titanium and an organic acid having the action is obtained in the step (i).
- Anodization is performed by immersing the obtained titanium or titanium alloy and applying a voltage higher than the spark discharge generation voltage.
- an aqueous solution containing an inorganic acid having an etching action on titanium and / or an organic acid having the action is used as an electrolytic solution.
- inorganic acids having an etching action on titanium include sulfuric acid, phosphoric acid, hydrofluoric acid, hydrochloric acid, nitric acid, aqua regia and the like.
- examples of the organic acid having an etching action on titanium include oxalic acid, formic acid, citric acid, trichloroacetic acid and the like.
- These acids may be used alone or in combination of two or more of these acids regardless of whether they are organic acids or inorganic acids.
- An example of a preferable embodiment of the electrolytic solution containing two or more acids includes an aqueous solution containing sulfuric acid and phosphoric acid.
- the mixing ratio of the acid in the electrolytic solution varies depending on the type of acid used, anodizing conditions, and the like, but is usually 0.01 to 10M, preferably 0.1 to 10M, more preferably the total amount of the acid. A ratio of 1 to 10M can be mentioned.
- an electrolytic solution containing sulfuric acid and phosphoric acid an electrolytic solution containing sulfuric acid 1 to 8M and phosphoric acid 0.1 to 2M can be exemplified.
- the electrolyte solution preferably contains hydrogen peroxide in addition to the organic acid and / or inorganic acid.
- an anatase-type titanium oxide film By containing hydrogen peroxide in the electrolytic solution, an anatase-type titanium oxide film can be prepared more efficiently.
- the blending ratio is not particularly limited.
- a ratio of 0.01 to 5M, preferably 0.01 to 1M, and more preferably 0.1 to 1M is exemplified. Is done.
- an aqueous solution containing sulfuric acid 1 to 8M, phosphoric acid 0.1 to 2M and hydrogen peroxide 0.1 to 1M can be given.
- anatase-type titanium oxide A film is obtained.
- the current density may be 0.1 A / dm 2 or more, but 1 A / dm 2 to 10 A / dm 2 is preferable from the viewpoint of economy, simplicity, and performance.
- a film having a large amount of anatase-type titanium oxide having high photocatalytic activity can be formed.
- the present inventor formed titanium nitride on the surface of titanium metal in the presence of a dilute hydrogen peroxide solution having a high hydrogen peroxide concentration of 1% by weight or less, without worrying about environmental burdens.
- a photocatalytic material with high activity created by anodizing we found that harmful organic substances and inorganic substances in the gas phase and liquid phase can be efficiently decomposed without giving an environmental load, The present invention has been completed.
- the concentration of hydrogen peroxide in the diluted hydrogen peroxide solution is preferably 0.00001 wt% to 1 wt% (0.1 ppmW to 10000 ppmW), 0.001 wt% to 0.1 wt% (10 ppmW to 1000 ppmW). Is preferred.
- VOC volatile organic compounds
- SOx sulfur oxides
- (3-2) Method for Decomposing and Removing Hazardous Substances in the Gas Phase As a method for decomposing and removing harmful substance gases in the gas phase, a flow system for this harmful gas is constructed, and a diluted hydrogen peroxide solution is showered or sprayed. In this system, a titanium nitride is formed on the surface of titanium metal, and then a highly active photocatalytic material prepared by anodizing is added, and a decomposition treatment is performed by irradiating light of 400 nm or less. .
- the concentration of the amine compound used for showering and spraying in the first apparatus is preferably 0.01% to 10% by weight, more preferably 0.1% to 10% by weight, and 0.5% to 2% by weight. Is particularly preferred.
- a photocatalytic material having high activity for example, titanium on a metal titanium surface in the presence of a 1% by weight or less dilute hydrogen peroxide solution having high safety without worrying about environmental impact.
- a photocatalytic material obtained by anodizing after forming a nitride it is extremely efficient for harmful organic and inorganic substances in the gas phase and liquid phase without causing environmental impact. It can be decomposed and removed quickly.
- an amine compound aqueous solution is used as a chemical agent for removing nitrogen oxides in the primary equipment to remove a large amount of sulfur oxides and nitrogen oxides generated in the process of burning fossil fuels such as coal-fired power plants.
- an aqueous solution of a compound selected from triethanolamine, methylamine, and morpholine there is no concern about the environmental impact, and the safety is less than 1% by weight.
- a photocatalyst material having high activity in the presence of a hydrogen peroxide solution for example, a photocatalyst material obtained by performing anodic oxidation after forming titanium nitride on the surface of titanium metal
- a hydrogen peroxide solution for example, a photocatalyst material obtained by performing anodic oxidation after forming titanium nitride on the surface of titanium metal
- Degradability of methylene blue in a system without hydrogen peroxide Degradability of methylene blue in a system to which 0.001% by weight (10ppmW) of hydrogen peroxide was added
- Example 1 After holding at 950 ° C. for 1 hour under nitrogen gas flow to form titanium nitride on the titanium metal surface, current density using 1.5M sulfuric acid, 0.1M phosphoric acid, 0.3M hydrogen peroxide as the electrolyte A photocatalytic material was obtained by anodizing at 4 A / dm 2 and electrolysis time of 30 minutes. A spectrophotometer (manufactured by Shimadzu Corporation, UVmini 1240) was activated, and methylene blue (manufactured by Wako Pure Chemical Industries, Ltd.) was diluted by diluting in distilled water to prepare an aqueous solution having an absorbance at 660 nm of 1.000.
- a photocatalyst material with a 50 mm square was covered with a quartz plate and irradiated with a fluorescent lamp (black light, manufactured by Toshiba Lighting & Technology Corp.) that emits near ultraviolet rays of 400 nm or less. At this time, the light intensity was adjusted to 1.0 mW / cm 2 .
- a fluorescent lamp black light, manufactured by Toshiba Lighting & Technology Corp.
- FIG. 1 shows the case where hydrogen peroxide is not added
- FIG. 2 shows the case where a solution prepared by adding hydrogen peroxide to a concentration of 0.001 wt% (10 ppmW) is added.
- Example 2 After holding at 950 ° C. for 1 hour under nitrogen gas flow to form titanium nitride on the titanium metal surface, current density using 1.5M sulfuric acid, 0.1M phosphoric acid, 0.3M hydrogen peroxide as the electrolyte A photocatalytic material was obtained by anodizing at 4 A / dm 2 and electrolysis time of 30 minutes.
- Sulfur dioxide standard gas (manufactured by Sumitomo Seika, concentration 15%) was diluted with air to prepare 500 ppmV sulfur dioxide gas.
- the total area of the photocatalytic material having high activity is obtained by anodizing.
- the sulfur dioxide adjusting gas is passed through the apparatus set to 1 m 2, and light is irradiated with a fluorescent lamp (black light, manufactured by Toshiba Lighting & Technology Corp.) that emits near ultraviolet light of 400 nm or less (light intensity 2.2 mW / cm 2 ), and the sulfur dioxide gas concentration before and after aeration was measured with an exhaust gas analyzer (testo 335, manufactured by Testo).
- Example 3 After holding at 950 ° C. for 1 hour under nitrogen gas flow to form titanium nitride on the titanium metal surface, current density using 1.5M sulfuric acid, 0.1M phosphoric acid, 0.3M hydrogen peroxide as the electrolyte A photocatalytic material was obtained by anodizing at 4 A / dm 2 and electrolysis time of 30 minutes.
- Nitrogen monoxide standard gas (Sumitomo Seika, concentration 10%), which is nitrogen oxide
- sulfur dioxide standard gas (Sumitomo Seika, concentration 15%), which is a sulfur oxide
- a gas having a product gas concentration of 522 ppmV and a sulfur oxide gas concentration of 2690 ppmV was prepared.
- the gas temperature is expected to be high. Therefore, the gas was made 80 ° C. using a hot air heater, and the gas was aerated at a gas flow rate of 3 m 3 / min.
- a primary gas in which a mixed gas of nitrogen oxide gas and sulfur oxide gas is packed into a cylindrical shape (internal volume: 100 L) having a diameter of 400 mm and a height of 800 mm, and a packing material made of Takiron as a filler.
- the air was passed through the side apparatus, and 50 L of a 0.5 wt% triethanolamine aqueous solution was showered at a flow rate of 180 L / min.
- the mixed gas that has passed through the primary side device is used as a secondary side device, and the dimensions of the device are 300 mm width ⁇ 400 mm height ⁇ 1000 mm depth (internal volume 120 L), and titanium nitride is formed on the titanium metal surface.
- Fluorescent lamp that emits near-ultraviolet rays of 400 nm or less black light, Toshiba Lighting & Technology Corporation
- the product was irradiated with light (light intensity 2.2 mW / cm 2 ) and showered with 270 L of 0.1 wt% hydrogen peroxide at a flow rate of 90 L / min.
- the concentration of nitrogen oxides and sulfur oxides after the ventilation of the primary side device and the secondary side device (after treatment) is measured with an exhaust gas analyzer (testo 335, manufactured by Testo).
- sulfite ion concentration for the mixed liquid of the waste liquid from the first apparatus (primary apparatus), the second apparatus (secondary apparatus) and the waste liquid from the first apparatus and the second apparatus ( ppmW) and sulfate ion concentration (ppmW) are shown in Table 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Toxicology (AREA)
- Electrochemistry (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
Abstract
Description
項1.光触媒材料と希薄な過酸化水素溶液を共存させることにて、気相や液相中の有害物質を極めて効率よく速やかに分解させることを特徴とする光触媒材料による分解除去方法。
項2.光触媒材料が、金属チタン又はチタン合金表面にチタン窒化物を形成させた後、陽極酸化処理することにより得られた結晶性酸化チタン皮膜を有する光触媒材料であることを特徴とする項1に記載の光触媒材料による分解除去方法。
項3.結晶性酸化チタンがアナターゼ型酸化チタンであることを特徴とする項2に記載の光触媒材料による分解除去方法。
項4.前記希薄な過酸化水素溶液の過酸化水素濃度が、1重量%(10000ppmW)以下であることを特徴とする項1、2または3記載の光触媒材料による分解除去方法。
項5.気相中の有害物質として、高濃度の窒素酸化物や硫黄酸化物が共存する環境下においては、第1次側の装置として窒素酸化物を除去する薬剤としてアミン化合物水溶液を用いるとともに、第2次側の装置として、項1に記載の光触媒材料と希薄な過酸化水素溶液の共存下で処理する分解方法にて硫黄酸化物を除去する方法。
項6.アミン化合物が、トリエタノールアミン、メチルアミン及びモルホリンから選ばれる化合物であることを特徴とする項5記載の方法。
項7.気相中の有害物質である硫黄酸化物から、硫酸を作製する項5または6記載の方法。
(1)光触媒材料
本発明に用いる光触媒材料としては、高い活性や安定性を有する酸化チタンが好ましい。酸化チタン光触媒は、400nm以下の近紫外線が光照射されると、価電子帯に正孔が伝導帯に電子が生成され、酸化還元反応がおきる。
(i)チタン又はチタン合金の表面にチタン窒化物を形成する工程、及び
(ii)チタンに対してエッチング作用を有する無機酸及び該作用を有する有機酸よりなる群から選択される少なくとも1種の酸を含有する電解液中に、上記工程(i)で得られたチタン又はチタン合金を浸漬し、火花放電発生電圧以上の電圧を印加させることのできる電流を制御することにより陽極酸化を行う工程。
過酸化水素は、それ自体にて強い酸化力を有しており、高濃度の過酸化水素溶液を使用すれば気相中や液相中の有害物質を分解処理することが可能である。しかし、高濃度の過酸化水素溶液は、毒性や腐食性が強く環境負荷の高い材料である。
この気相中や液相中の有害な有機物や無機物としては、トルエン、アセトアルデヒド、イソプロピルアルコール、トリクロロエチレン等のVOC(揮発性有機化合物)やPCB、ダイオキシン等の難分解性有機物質や酸性雨の原因となる硫黄酸化物(S2O、SO、S2O3、SO2、S2O7などのSOx)、大気汚染の原因となる窒素酸化物(NOとNO2などのNOx)等の多くの種類の物質に効果がある。
(3-1)液相における有害物質の分解除去方法
具体的な分解除去手法としては、液相中の有害物質を含む溶液中に過酸化水素溶液を混合したものの中に金属チタン表面にチタン窒化物を形成させた後、陽極酸化を行うことにて作成した高活性を有する光触媒材料を入れ、400nm以下の光を照射することにて分解処理を行う。
(3-2)気相における有害物質の分解除去方法
気相中の有害物質ガスを分解除去する手法として、本有害ガスのフローシステム等を構築し、希薄の過酸化水素溶液をシャワーもしくは噴霧されている系に、金属チタン表面にチタン窒化物を形成させた後、陽極酸化を行うことにて作成した高活性を有する光触媒材料を入れ、400nm以下の光を照射することにて分解処理を行う。
(3-3)高濃度大量の窒素酸化物、硫黄酸化物の分解除去方法
石炭火力発電所等の化石燃料を燃焼する工程において多量に発生する硫黄酸化物や窒素酸化物の除去にも、第1次側の装置中にて窒素酸化物を除去する薬剤としてアミン化合物水溶液、具体的にはトリエタノールアミン、メチルアミン、モルホリンから選ばれた水溶液のシャワーもしくは噴霧にて窒素酸化物を除去した後、第2次側の装置中にて希薄な過酸化水素シャワーもしくは噴霧されている系に、金属チタン表面にチタン窒化物を形成させた後、陽極酸化を行うことにて作成した高活性を有する光触媒材料を入れ、400nm以下の光を照射することにて分解処理を行う。
窒素ガス通気下950℃にて1時間保持し、金属チタン表面にチタン窒化物を形成させた後、電解液として1.5M硫酸、0.1M燐酸、0.3M過酸化水素を用いて電流密度4A/dm2、電解時間30分にて陽極酸化を行うことにて光触媒材料を得た。
分光光度計(島津製作所製、UVmini1240)を起動させ、メチレンブルー(和光純薬製)を蒸留水に希釈して希釈し、660nmの吸光度が1.000の水溶液を調製した。
窒素ガス通気下950℃にて1時間保持し、金属チタン表面にチタン窒化物を形成させた後、電解液として1.5M硫酸、0.1M燐酸、0.3M過酸化水素を用いて電流密度4A/dm2、電解時間30分にて陽極酸化を行うことにて光触媒材料を得た。
窒素ガス通気下950℃にて1時間保持し、金属チタン表面にチタン窒化物を形成させた後、電解液として1.5M硫酸、0.1M燐酸、0.3M過酸化水素を用いて電流密度4A/dm2、電解時間30分にて陽極酸化を行うことにて光触媒材料を得た。
Claims (7)
- 光触媒材料と希薄な過酸化水素溶液の共存下で処理することを特徴とする光触媒材料による分解方法。
- 前記光触媒材料が、金属チタン又はチタン合金表面にチタン窒化物を形成させた後、陽極酸化処理することにより得られた結晶性酸化チタン皮膜を有する光触媒材料であることを特徴とする請求項1に記載の光触媒材料による分解方法。
- 前記結晶性酸化チタンが、アナターゼ型酸化チタンであることを特徴とする請求項2に記載の光触媒材料による分解方法。
- 前記希薄な過酸化水素溶液の過酸化水素濃度が、1重量%以下であることを特徴とする請求項1、2または3に記載の光触媒材料による分解方法。
- 気相中の有害物質として、高濃度の窒素酸化物や硫黄酸化物が共存する環境下においては、第1次側の装置として窒素酸化物を除去する薬剤としてアミン化合物水溶液を用いるとともに、第2次側の装置として、請求項1に記載の光触媒材料と希薄な過酸化水素溶液の共存下で処理する分解方法にて硫黄酸化物を除去する方法。
- 前記アミン化合物が、トリエタノールアミン、メチルアミン及びモルホリンから選ばれる化合物であることを特徴とする請求項5記載の方法。
- 気相中の有害物質である硫黄酸化物から、硫酸を作製する請求項5または6記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/701,920 US8597603B2 (en) | 2010-06-04 | 2011-05-30 | Decomposition/elimination method using a photocatalytic material |
CN201180034185.2A CN102985167B (zh) | 2010-06-04 | 2011-05-30 | 使用光催化材料的分解/去除方法 |
EP11789741.3A EP2578301B1 (en) | 2010-06-04 | 2011-05-30 | Decomposition/elimination method using a photocatalytic material |
KR1020137000219A KR101407444B1 (ko) | 2010-06-04 | 2011-05-30 | 광촉매 재료를 이용하는 분해 제거 방법 |
RU2012157814/05A RU2560429C2 (ru) | 2010-06-04 | 2011-05-30 | Способ разложения/удаления с использованием фотокаталитического материала |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-128977 | 2010-06-04 | ||
JP2010128977 | 2010-06-04 | ||
JP2010269960A JP5436399B2 (ja) | 2010-06-04 | 2010-12-03 | 光触媒材料による分解除去方法 |
JP2010-269960 | 2010-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011152338A1 true WO2011152338A1 (ja) | 2011-12-08 |
Family
ID=45066705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/062337 WO2011152338A1 (ja) | 2010-06-04 | 2011-05-30 | 光触媒材料による分解除去方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8597603B2 (ja) |
EP (1) | EP2578301B1 (ja) |
JP (1) | JP5436399B2 (ja) |
KR (1) | KR101407444B1 (ja) |
CN (1) | CN102985167B (ja) |
RU (1) | RU2560429C2 (ja) |
WO (1) | WO2011152338A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109589767A (zh) * | 2018-12-17 | 2019-04-09 | 郑州大学 | 一种玻璃窑炉烟气中污染物一体化脱除的方法和装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5436399B2 (ja) * | 2010-06-04 | 2014-03-05 | 株式会社昭和 | 光触媒材料による分解除去方法 |
US20140196439A1 (en) * | 2011-06-15 | 2014-07-17 | Henkel Ag & Co.Kgaa | Method and apparatus for reducing emissions and/or reducing friction in an internal combustion engine |
US8722164B2 (en) | 2012-05-11 | 2014-05-13 | Cryovac, Inc. | Polymeric film for use in bioprocessing applications |
KR102036352B1 (ko) * | 2013-06-28 | 2019-10-24 | 가부시키가이샤 쇼와 | 광촉매 재료에 의한 토양 오염수의 처리 방법 |
CN115445406A (zh) * | 2022-09-30 | 2022-12-09 | 广东青扬环保科技有限公司 | 一种除尘脱硫脱硝一体化处理方法以及一体化处理装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50152980A (ja) * | 1974-05-30 | 1975-12-09 | ||
JPH06142440A (ja) | 1992-11-13 | 1994-05-24 | Nippon Steel Corp | 有害ガス含有気体の酸化処理方法及び装置 |
JP2000070968A (ja) | 1998-08-28 | 2000-03-07 | Tadahide Iwashita | 有機物分解光触媒を用いた有機物分解方法 |
JP2000117271A (ja) * | 1998-10-19 | 2000-04-25 | Ngk Insulators Ltd | 水処理装置 |
JP2005082674A (ja) * | 2003-09-08 | 2005-03-31 | Kao Corp | 洗浄剤組成物。 |
JP2005240139A (ja) | 2004-02-27 | 2005-09-08 | Nara Prefecture | 陽極電解酸化処理によるアナターゼ型酸化チタン皮膜の製造方法 |
JP2005288302A (ja) * | 2004-03-31 | 2005-10-20 | Kansai Coke & Chem Co Ltd | 酸化チタン複合木質炭化物を用いた液体の処理方法 |
JP2006035140A (ja) | 2004-07-28 | 2006-02-09 | Maywa Co Ltd | 廃水中の農薬の分解方法 |
JP2010022958A (ja) | 2008-07-22 | 2010-02-04 | Tama Tlo Ltd | 光分解方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1464050A (en) | 1973-11-30 | 1977-02-09 | Idemitsu Kosan Co | Process for removing nitrogen oxides from combustion waste gas |
US4803059A (en) * | 1987-04-15 | 1989-02-07 | Fuel Tech, Inc. | Process for the reduction of nitrogen oxides in an effluent using a hydroxy amino hydrocarbon |
US4861484A (en) * | 1988-03-02 | 1989-08-29 | Synlize, Inc. | Catalytic process for degradation of organic materials in aqueous and organic fluids to produce environmentally compatible products |
US6683023B2 (en) * | 2000-04-21 | 2004-01-27 | Showa Denko K.K. | Photocatalytic powder and polymer composition |
WO2003080244A1 (fr) * | 2002-03-25 | 2003-10-02 | Sumitomo Titanium Corporation | Photocatalyseur oxyde de titane, procede permettant de produire ce photocatalyseur et application |
US7795173B2 (en) * | 2006-06-01 | 2010-09-14 | Carrier Corporation | Long-lived high volumetric activity photocatalysts |
RU2352382C1 (ru) * | 2007-10-22 | 2009-04-20 | Александр Васильевич Загнитько | Способ высокоэффективной очистки воздуха от дисперсных и молекулярных примесей |
MX2010005600A (es) * | 2007-11-23 | 2010-09-07 | Outotec Oyj | Proceso y planta para producir acido sulfurico. |
US8178065B2 (en) * | 2010-03-16 | 2012-05-15 | The National Titanium Dioxide Co. Ltd. (Cristal) | Photocatalyst comprising TiO2 and activated carbon made from date pits |
JP5436399B2 (ja) * | 2010-06-04 | 2014-03-05 | 株式会社昭和 | 光触媒材料による分解除去方法 |
-
2010
- 2010-12-03 JP JP2010269960A patent/JP5436399B2/ja not_active Expired - Fee Related
-
2011
- 2011-05-30 KR KR1020137000219A patent/KR101407444B1/ko active IP Right Grant
- 2011-05-30 RU RU2012157814/05A patent/RU2560429C2/ru not_active IP Right Cessation
- 2011-05-30 WO PCT/JP2011/062337 patent/WO2011152338A1/ja active Application Filing
- 2011-05-30 EP EP11789741.3A patent/EP2578301B1/en not_active Not-in-force
- 2011-05-30 US US13/701,920 patent/US8597603B2/en not_active Expired - Fee Related
- 2011-05-30 CN CN201180034185.2A patent/CN102985167B/zh not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50152980A (ja) * | 1974-05-30 | 1975-12-09 | ||
JPH06142440A (ja) | 1992-11-13 | 1994-05-24 | Nippon Steel Corp | 有害ガス含有気体の酸化処理方法及び装置 |
JP2000070968A (ja) | 1998-08-28 | 2000-03-07 | Tadahide Iwashita | 有機物分解光触媒を用いた有機物分解方法 |
JP2000117271A (ja) * | 1998-10-19 | 2000-04-25 | Ngk Insulators Ltd | 水処理装置 |
JP2005082674A (ja) * | 2003-09-08 | 2005-03-31 | Kao Corp | 洗浄剤組成物。 |
JP2005240139A (ja) | 2004-02-27 | 2005-09-08 | Nara Prefecture | 陽極電解酸化処理によるアナターゼ型酸化チタン皮膜の製造方法 |
JP2005288302A (ja) * | 2004-03-31 | 2005-10-20 | Kansai Coke & Chem Co Ltd | 酸化チタン複合木質炭化物を用いた液体の処理方法 |
JP2006035140A (ja) | 2004-07-28 | 2006-02-09 | Maywa Co Ltd | 廃水中の農薬の分解方法 |
JP2010022958A (ja) | 2008-07-22 | 2010-02-04 | Tama Tlo Ltd | 光分解方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2578301A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109589767A (zh) * | 2018-12-17 | 2019-04-09 | 郑州大学 | 一种玻璃窑炉烟气中污染物一体化脱除的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20130112020A (ko) | 2013-10-11 |
JP5436399B2 (ja) | 2014-03-05 |
US8597603B2 (en) | 2013-12-03 |
CN102985167A (zh) | 2013-03-20 |
CN102985167B (zh) | 2014-10-15 |
EP2578301B1 (en) | 2017-12-27 |
JP2012011372A (ja) | 2012-01-19 |
US20130078174A1 (en) | 2013-03-28 |
KR101407444B1 (ko) | 2014-06-13 |
RU2012157814A (ru) | 2014-07-20 |
EP2578301A4 (en) | 2014-11-05 |
EP2578301A1 (en) | 2013-04-10 |
RU2560429C2 (ru) | 2015-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5436399B2 (ja) | 光触媒材料による分解除去方法 | |
Canela et al. | Gas-phase destruction of H2S using TiO2/UV-VIS | |
US20100239480A1 (en) | Method And Apparatus For The Treatment Of Nitrogen Oxides Using An Ozone And Catalyst Hybrid System | |
CN105536825A (zh) | 空气杀菌消毒净化用催化剂及其制备方法 | |
CN103977678A (zh) | 一种光微波催化氧化处理有机废气的方法 | |
Reddy et al. | A review of photocatalytic treatment for various air pollutants | |
Huang et al. | Mechanistic research on NO removal by K2S2O8 with electrochemical catalysis | |
KR20090090194A (ko) | 광촉매, 이의 제조방법 및 이를 이용한 폐수처리방법 | |
Abedi et al. | Effect of TiO-ZnO/GAC on by-product distribution of CVOCs decomposition in a NTP-assisted catalysis system | |
KR101817907B1 (ko) | 유해 및 악취가스 제거장치 | |
JP2003240226A (ja) | 排煙処理装置及び処理方法 | |
KR102036352B1 (ko) | 광촉매 재료에 의한 토양 오염수의 처리 방법 | |
CN114653172A (zh) | 一种协同脱除VOCs和Hg0的方法 | |
CN110585864B (zh) | 适用于低温等离子协同催化降解VOCs反应工艺及膜催化剂制备工艺 | |
KR20220103410A (ko) | 전기촉매 코팅 탄소필터의 제조방법 및 이를 이용한 휘발성 유기화합물 제거방법 | |
JP2003112010A (ja) | 脱臭装置 | |
JP2005125236A (ja) | ダイオキシンを含む芳香族ハロゲン化合物、一酸化炭素及び窒素酸化物を除去する触媒及びその用途 | |
KR100655597B1 (ko) | 저온 플라즈마와 TiO2를 이용한 배가스 수은 제거방법 | |
JPS63305922A (ja) | 廃オゾンの処理方法 | |
CN106178872A (zh) | 一种废气处理方法 | |
KR101136572B1 (ko) | 휘발성 유기화합물 제거용 촉매의 제조방법, 휘발성 유기화합물 제거용 촉매 및 휘발성 유기화합물 제거 방법 | |
TWI658242B (zh) | 應用臭氧攔截霧霾前驅物質以抑制霧霾合成之方法 | |
JP5836203B2 (ja) | 光触媒材料による土壌汚染水の処理方法 | |
CN110548392A (zh) | 一种粒子净化组合机 | |
Zhang | Gas Phase Photolysis of Volatile Organic Compounds and Its Photolysis in Metal Ion Solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180034185.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11789741 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13701920 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011789741 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137000219 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2012157814 Country of ref document: RU Kind code of ref document: A |