WO2011152218A1 - ガスエンジン - Google Patents

ガスエンジン Download PDF

Info

Publication number
WO2011152218A1
WO2011152218A1 PCT/JP2011/061455 JP2011061455W WO2011152218A1 WO 2011152218 A1 WO2011152218 A1 WO 2011152218A1 JP 2011061455 W JP2011061455 W JP 2011061455W WO 2011152218 A1 WO2011152218 A1 WO 2011152218A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
intake
flow rate
supercharger
methane
Prior art date
Application number
PCT/JP2011/061455
Other languages
English (en)
French (fr)
Inventor
裕一 清水
鈴木 元
秀樹 西尾
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/695,562 priority Critical patent/US9086022B2/en
Priority to KR1020127025920A priority patent/KR101399224B1/ko
Priority to EP11789627.4A priority patent/EP2578849B8/en
Priority to CN201180021954.5A priority patent/CN102884295B/zh
Publication of WO2011152218A1 publication Critical patent/WO2011152218A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/10Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder
    • F02B19/1004Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder details of combustion chamber, e.g. mounting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/025Failure diagnosis or prevention; Safety measures; Testing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a gas engine that effectively uses natural gas, biogas, or methane-containing gas discharged from a coal mine as an intake gas or fuel.
  • methane CH 4 and CO 2 Public interest in the regulation of greenhouse gas emissions such as methane CH 4 and CO 2 is increasing year by year.
  • methane has a greenhouse effect 21 times that of CO 2 , and emission of methane into the atmosphere cannot be ignored.
  • methane when coal is mined, a large amount of methane of 10 to 40 Nm 3 (equivalent to pure methane) per ton of coal is released into the atmosphere from the coal mine.
  • Methane-containing gas discharged from the coal mine mine is mixed in the coal seam, and recovered methane-containing gas CMM (Coal Mine Methane, methane concentration of about 20 to 50% by weight, which is recovered by a vacuum pump from the vent hole for safety. ) And ventilated methane-containing gas VAM (Ventilation Air Methane, methane concentration of less than 1% by weight) discharged from the tunnel and face for ventilation.
  • CMM Coal Mine Methane, methane concentration of about 20 to 50% by weight, which is recovered by a vacuum pump from the vent hole for safety.
  • VAM Vententilation Air Methane, methane concentration of less than 1% by weight
  • Patent Document 1 discloses a gas turbine in which a gas having a methane concentration lower than a flammable limit can be used as fuel, such as landfill gas generated at a landfill site for garbage, coal mine exhaust gas, and the like. .
  • Patent Document 2 discloses a power generation gas engine that uses a methane-containing gas discharged from a coal mine as a fuel.
  • the gas engine power generation facility disclosed in Patent Document 2 will be described with reference to FIG.
  • FIG. 7 schematically illustrates a coal mine CM and a gas engine power generation facility 200 provided in the vicinity of the coal mine CM. 7, the coal mine CM, the coal seams C 0 and mining coal seams C 1 are formed in layers.
  • a ventilation hole 206 is provided to communicate the inside of the coal mine mine with the outside.
  • a degassing boring hole 208 is formed in the mined coal bed C 1 at the face 204 in the coal mine mine, and the CMM gas discharged from the boring hole 208 is gasified by a vacuum pump 211 from a pipe line 210 disposed in the ventilation hole 206. It is sent to the engine power generation facility 200.
  • the VAM gas b discharged from the coal mine through the ventilation hole 206 is sent to the gas engine power generation facility 200 through the pipe line 212.
  • Electric power E and steam S generated by the operation of the gas engine power generation facility 200 are sent to the coal mine utility facility 202 or other demand destinations.
  • a gas engine using methane gas as a fuel is an internal combustion engine that has the advantage of extremely low environmental pollution and is expected to be widely used in the future.
  • methane-containing gas discharged from the coal mine underground since violent fluctuations in its emissions over time, or the supply amount can be maintained is a challenge that how stable against gas engine.
  • the intake gas that has become high pressure and high temperature after passing through the supercharger is controlled to a certain range of temperature by the intake air cooler (intercooler), but when using the methane-containing gas discharged from the coal mine, It is not easy to control the temperature of the mixed gas supplied to the combustion chamber because the amount of gas varies greatly and the performance of the intake air cooler is limited.
  • the object is to enable stable control of the optimum excess air ratio even for fluctuations.
  • the temperature of the mixed gas supplied to the combustion chamber is optimally controlled to prevent abnormal combustion such as knocking, and the stability of the mixed gas supplied to the combustion chamber against fluctuations in the amount of methane-containing gas.
  • the purpose is to enable efficient temperature control.
  • the gas engine of the present invention provides: A generator connected to the output shaft, an intake passage to which a lean-concentrated methane-containing gas for air conditioning discharged from a coal mine is supplied, and a gas mixing unit for mixing the high-concentration methane-containing gas in the middle of the intake passage
  • a supercharger provided in the upstream intake passage of the gas mixing unit
  • an air mixing unit provided in the upstream intake passage of the supercharger for mixing the atmosphere with the lean-concentrated methane-containing gas
  • the air mixing unit A mixture ratio adjusting device that adjusts the mixing ratio of the gas containing lean methane and the atmosphere, and an intake control that controls the temperature or flow rate of the intake gas flowing into the supercharger by controlling the mixing ratio adjusting device Means.
  • the apparatus of the present invention By using the VAM gas for air conditioning discharged from the coal mine mine as a lean-concentrated methane-containing gas and further using the CMM gas discharged from the coal mine mine as a high-concentration methane-containing gas by the apparatus of the present invention, greenhouse gas The amount of methane gas released into the atmosphere from the coal mine can be reduced. Furthermore, by effectively using the VAM gas for air conditioning, the amount of fuel gas consumed by the gas engine can be reduced. That is, the consumption of high-concentration methane-containing gas can be reduced.
  • the high-concentration methane-containing gas supplied to the gas engine for example, the CMM gas, natural gas, biogas, by-product gas discharged from a factory, landfill gas, or the like can be used.
  • the mixing ratio adjusting device is controlled by the intake air control means, and the mixing ratio of the lean methane-containing gas and the atmosphere is adjusted so that the temperature or flow rate of the intake gas flowing into the supercharger is controlled within a certain range. Therefore, the control of the excess air ratio by the supercharger and the temperature control by the intake air cooler provided downstream of the supercharger can be performed stably, even when the amount of methane-containing gas varies It is possible to quickly and accurately control the optimum excess air ratio and mixed gas temperature and maintain stable combustion.
  • the mixing ratio adjusting device is constituted by, for example, a flow rate adjusting valve or the like provided in the introduction path of the atmosphere or VAM gas, and mixing the atmosphere and VAM gas in the intake passage by adjusting the opening degree thereof.
  • the ratio can be adjusted.
  • a bypass passage that is provided in parallel with the turbine of the supercharger provided in the exhaust passage and bypasses a part of the exhaust gas from the turbine, and an exhaust flow rate adjustment that adjusts an exhaust gas flow rate of the bypass passage
  • a supercharger control means for controlling the operation of the supercharger by controlling the exhaust flow rate adjusting valve, and the excess air ratio of the mixed gas supplied to the combustion chamber becomes the target excess air ratio
  • the intake gas flow rate passing through the supercharger may be controlled by the supercharger control means.
  • the supercharger control means controls the flow rate of the intake gas passing through the supercharger to control the mixed gas supplied to the combustion chamber to the target excess air ratio.
  • the temperature or flow rate or the temperature and flow rate of the intake gas flowing into the supercharger is controlled in advance within a certain range by the intake air control means, so even if the amount of methane-containing gas varies, the supercharger
  • the intake air control means includes an intake air temperature controller, and the intake air temperature controller controls the mixing ratio adjusting device to adjust the mixing ratio of the gas containing lean methane and the atmosphere.
  • the intake gas temperature in the intake passage upstream of the supercharger may be controlled within a certain temperature range in which the control to the target excess air ratio is stably performed by the supercharger control means.
  • the constant temperature range in which the control to the target excess air ratio by the supercharger control means is performed stably is controlled to 20 to 25 ° C., for example.
  • a target excess air ratio correcting means for correcting a target excess air ratio is provided, and a supercharger is provided even if the mixing ratio of the lean-concentrated methane-containing gas and the atmosphere is controlled by the intake air temperature control unit.
  • the target excess air ratio correction means may be used to change the target excess air ratio.
  • the target excess air ratio correction means corrects the target excess air ratio suitable for operation in a temperature region outside the set range, and adjusts the gas engine so that the corrected target excess air ratio is obtained. Let it run.
  • the intake air control unit includes an intake air flow rate control unit, and the intake air flow rate control unit controls the mixing ratio adjusting device to control the intake gas flow rate upstream of the supercharger. It is good to control within the fixed range where control to the target excess air ratio by a feeder control means is performed stably. As a result, even when the amount of methane-containing gas fluctuates, the amount of intake gas flowing into the turbocharger stabilizes and converges to the target excess air ratio quickly and accurately by controlling the excess air ratio by the turbocharger control means. Can be made.
  • the mixing ratio control device may be controlled so that the flow rate of the lean-concentrated methane-containing gas supplied to the atmospheric mixing unit is always an allowable maximum amount.
  • the VAM gas can be used to the maximum extent as the fuel for the gas engine, so that the amount of methane gas released to the atmosphere can be minimized.
  • the fuel gas consumption of the engine can be reduced by effectively using the VAM gas for air conditioning. That is, the consumption of high-concentration methane-containing gas can be reduced.
  • apparatus it is good to comprise so that a part of high concentration methane containing gas may be supplied to the intake passage of the upstream of a supercharger and the downstream of an air
  • the high-concentration methane-containing gas is supplied separately to the intake passage on the downstream side of the turbocharger and the intake passage on the upstream side, so a gas mixing unit that mixes the high-concentration methane-containing gas in the intake passage is configured.
  • Equipment such as control valves can be divided and arranged. By dividing and arranging in this way, each device can be reduced in size and weight. Since devices such as control valves can be reduced in size and weight, the problem of installation space can be solved and the cost of parts can be reduced.
  • the generator connected to the output shaft, the intake passage to which the lean-concentrated methane-containing gas for air conditioning discharged from the coal mine is supplied, and the high-concentration methane-containing gas is placed in the middle of the intake passage.
  • a gas engine comprising a gas mixing unit for mixing, mixing a lean-concentrated methane-containing gas and a high-concentrated methane-containing gas, supplying the gas to the combustion chamber, and combusting it, provided in an upstream intake passage of the gas mixing unit Provided in the upstream intake passage of the supercharger and mixing the atmosphere with the lean methane-containing gas, and the mixture ratio of the lean methane-containing gas and the atmosphere in the atmosphere mixer
  • the mixture ratio adjusting device for adjusting the mixing ratio adjusting device, and the intake control means for controlling the temperature or flow rate of the intake gas flowing into the supercharger by controlling the mixing ratio adjusting device, thereby providing the lean methane-containing gas.
  • VAM gas for air conditioning discharged from the coal mine and further using CMM gas discharged from the coal mine as a high-concentration methane-containing gas, the amount of greenhouse gas methane gas released from the coal mine to the atmosphere Can be reduced. Furthermore, by effectively using the VAM gas for air conditioning, the amount of fuel gas consumed by the gas engine can be reduced. That is, the consumption of high-concentration methane-containing gas can be reduced.
  • a power generation gas engine 10 includes an engine body 12 including a plurality of (four in FIG. 1) combustion cylinders in which combustion chambers are formed, and a generator 16 is an output shaft 14 of the engine body 12. It is connected with.
  • the intake pipe 18 connected to the engine body 12 is provided with an air mixing chamber (atmosphere mixing portion) 20 on the upstream side.
  • An atmospheric introduction pipe 22 and a VAM gas introduction pipe 24 are connected to the atmospheric mixing chamber 20.
  • the atmosphere a is introduced into the atmosphere introduction pipe 22, and the VAM gas b for air conditioning discharged from the coal mine mine is introduced into the VAM gas introduction pipe 24.
  • VAM gas is a methane-containing gas discharged for ventilation from a mine shaft and face in a coal mine mine, and contains a methane gas having a methane concentration of less than 1% by weight.
  • the inside of the air mixing chamber 20 becomes an intake air mixed gas d in which the air a and the VAM gas b are mixed.
  • the air introduction pipe 22 and the VAM gas introduction pipe 24 are provided with flow rate adjusting valves 26 and 28, respectively, and their opening degrees are controlled by an engine control device (intake control means) 90A. By controlling the opening degree of the flow rate adjusting valves 26 and 28, the mixing ratio of the intake gas mixture d in the air mixing chamber 20 is adjusted.
  • the intake pipe 18 is provided with a compressor 32 of the supercharger 30 on the downstream side of the air mixing chamber 20.
  • the compressor 32 is connected to a turbine 34 provided in an exhaust pipe 62, which will be described later, by a rotary shaft 36, pressurizes the intake mixed gas d, and supplies it to the combustion cylinder of the engine body 12.
  • An intake air cooler (intercooler) 38 is provided on the downstream side of the supercharger 30. Cooling water w is introduced into the intake air cooler 38, and the intake gas that has passed through the supercharger 30 is heat-exchanged with the cooling water w and cooled, and then passes through the common intake pipe 40 and the intake branch pipes 42a to 42d. It is supplied to each combustion cylinder 56a-d.
  • the temperature control of the intake gas by the intake cooler 38 is controlled by the engine control device 90A.
  • the CMM gas c discharged from the coal mine is supplied from the fuel gas supply pipe 44 to the engine body 12.
  • the CMM gas c is mixed in the coal seam and, as shown in FIG. 7, is a recovered methane-containing gas recovered by the vacuum pump 211 from the degassing borehole 208 for safety, and has a methane concentration of about 20 to 50 weight. High concentration methane containing gas.
  • a buffer tank 46, a flow rate adjusting valve 48, and a gas compressor 50 are provided in this order from the upstream side.
  • the opening degree of the flow rate adjusting valve 48 is controlled by the engine control device 90A.
  • the fuel gas supply pipe 44 is branched into four fuel branch pipes 52a to 52d, and the fuel branch pipes 52a to 52d are connected to the intake branch pipes 42a to 42d, respectively.
  • the CMM gas c sent to the fuel gas supply pipe 44 is compressed by the gas compressor 50 and supplied to the intake branch pipes 42a to 42d via the fuel branch pipes 52a to 52d.
  • the intake mixed gas d and the CMM gas c are premixed in the intake branch pipe, and this mixed gas becomes the fuel gas g (see FIG. 2) and is supplied to the combustion cylinders 56a to 56d.
  • the fuel branch pipes 52a to 52d are provided with flow rate adjusting valves 54a to 54d, respectively, and the opening degree of these flow rate adjusting valves is controlled by the engine control device 90A.
  • the flow rate adjusting valves 54a to 54d constitute a gas mixing section which is a connection portion of the fuel branch pipes 52a to 52d to the intake branch pipes 42a to 42d.
  • the exhaust branch pipes 58a to 58d are connected to the head portions of the combustion cylinders 56a to 56d, respectively.
  • the exhaust branch pipes 58a to 58d are connected to a common exhaust pipe 60, and the common exhaust pipe 60 is further connected to an exhaust pipe 62.
  • the exhaust pipe 62 is provided with the turbine 34 of the supercharger 30.
  • Exhaust gas e exhausted from each combustion cylinder 56a-d is exhausted through exhaust branch pipes 58a-d, common exhaust pipe 60 and exhaust pipe 62.
  • a bypass pipe 64 that bypasses the turbine 34 is connected to the exhaust pipe 62, and a flow rate adjusting valve 66 is interposed in the bypass pipe 64.
  • the opening degree of the flow regulating valve 66 is controlled by the engine control device 90A.
  • the piston 70 reciprocates inside the combustion cylinders 56a to 56d.
  • a recess 70a is formed on the upper surface of the piston 70, and a main combustion chamber m is formed above the recess 70a.
  • An injector case 72 is attached to the center of the upper surface of the combustion cylinders 56a to 56d.
  • An injector 76 is mounted inside the injector case 72, and a sub chamber s is formed below the injector 76.
  • a conduit 78 is connected to the injector 76 through the injector case 72, and the pilot fuel p is supplied into the injector 76 through the conduit 78.
  • an intake port that communicates with the intake branch pipes 42a to 42d and an exhaust port that communicates with the exhaust branch pipes 58a to 58d.
  • An intake valve 80 for opening and closing the intake port and an exhaust valve 82 for opening and closing the exhaust port are provided.
  • Each exhaust branch pipe 58a-d is provided with an exhaust temperature sensor 84 for detecting the temperature of the exhaust gas, and the detected value of the exhaust temperature sensor 84 is sent to the engine control device 90A.
  • the CMM gas c is supplied from the fuel branch pipes 52a to 52d to the intake gas mixture d flowing through the intake branch pipes 42a to 42d, and the two are premixed to become the fuel gas g, and from the intake port to the combustion cylinders 56a to 56a. d is supplied.
  • the fuel gas g in the combustion cylinder is pressurized by the piston 70 and enters a sub chamber s through an injection hole 74 formed in a lower portion of the injector case 72 in a high pressure and high temperature state.
  • the pilot fuel p is sprayed from the injector 76 to the sub chamber s, and the pilot fuel p is ignited by the fuel gas g in a high temperature and high pressure state.
  • the ignited flame in the sub chamber s is pierced in the lower part of the injector case 72. It propagates from the provided hole 74 to the main combustion chamber m, and the flame f spreads in the main combustion chamber m.
  • the fuel gas g expands in the main combustion chamber m, and the piston 70 is pushed downward to rotate the output shaft 14.
  • the exhaust gas e after combustion is discharged through the exhaust branch pipes 58a to 58d, the common exhaust pipe 60, and the exhaust pipe 62.
  • a rotational speed sensor 85 for detecting the rotational speed of the output shaft 14, an in-cylinder pressure sensor (not shown) for detecting the pressure in the main combustion chamber m of each combustion cylinder 56a to 56d, and the like are provided. Detection values detected by the sensors including the sensor 84 are sent to the engine control device 90A. Based on these detected values, the engine output control means 92 controls the output of the gas engine 10 and the combustion state in the main combustion chamber m. Further, an intake air temperature sensor 87 for detecting the temperature of the intake gas mixture d flowing into the compressor 32 of the supercharger 30 and an intake gas pressure are detected in the intake pipe 18 between the supercharger 30 and the air mixing chamber 20. An intake pressure sensor 88 is provided. These detection values are sent to the engine control device 90A.
  • the opening degree of the flow rate adjusting valve 66 is controlled by the supercharger control means 94 of the engine control device 90A, and the flow rate of the exhaust gas flowing through the bypass pipe 64 is controlled.
  • the flow rate of the exhaust gas flowing through the exhaust pipe 62 is controlled, the turbine speed of the supercharger 30 is controlled, and the flow rate of the intake gas flowing through the intake pipe 18 is controlled.
  • the excess air ratio ⁇ of the mixed gas g supplied to the combustion chamber is controlled to the target excess air ratio.
  • the calculation method of the excess air ratio ⁇ detects the temperature and pressure of the intake gas mixture d with the intake air temperature sensor 87 and the intake air pressure sensor 88, and calculates the density of the intake gas mixture d from these detected values. Next, the flow rate is calculated from this density. On the other hand, the flow rate of the CMM gas c flowing through the fuel gas supply pipe 44 is calculated from the opening degree of the flow rate adjustment valve 48. The excess air ratio approximate value ⁇ ′ is calculated from the flow rate of the intake gas mixture d and the flow rate of the CMM gas c thus calculated.
  • the intake gas mixture d contains the methane gas of the VAM gas b
  • the above calculation method does not give an accurate calculated value of the excess air ratio ⁇ , but the methane concentration of the VAM gas b is usually less than 1% by weight. Since it is extremely low, the intake mixed gas d in the intake pipe 18 is treated as equivalent to air, and the calculation is performed assuming that ⁇ ′ ⁇ .
  • the temperature of the atmosphere a introduced from the atmosphere introduction pipe 22 is represented by T Air
  • the flow rate is represented by Q Air
  • the temperature of the VAM gas b introduced from the VAM gas introduction pipe 24 is represented by T VAM
  • the flow rate is represented by Q VAM
  • the temperature of the VAM gas b discharged from the coal mine mine is normally 20 to 25 ° C. under atmospheric pressure, but the intake mixed gas d flowing through the intake pipe 18 is heated by the compressor 32.
  • the temperature of the fuel gas g supplied to the main combustion chamber m affects the combustion state of the fuel gas g in the main combustion chamber m, and abnormal combustion such as misfire or knocking may occur depending on the temperature of the fuel gas g. . Further, since the density of the intake gas mixture d varies depending on the temperature, the temperature of the intake gas mixture d also affects the excess air ratio ⁇ .
  • the temperature of the fuel gas g supplied to the main combustion chamber m needs to be controlled within a predetermined range of 40 to 45 ° C. or less.
  • the intake mixed gas d is cooled by the intake air cooler 38 on the downstream side of the supercharger 30.
  • the supercharger The temperature of the intake gas mixture d flowing into the gas 30 needs to be 20 to 25 ° C. This intake air temperature control procedure will be described with reference to FIG.
  • the supercharger control means 94 controls the flow rate Q V + A of the intake mixed gas d that passes through the compressor 32 of the supercharger 30 and is supplied to the combustion chamber, so that the target excess air ratio ⁇ 0 is obtained. Controlled by flow rate.
  • FIG. 3 shows a control procedure for controlling the temperature T V + A of the intake gas mixture d to the set temperature T SUC (T SUC1 ⁇ T SUC ⁇ T SUC2 ) in the control state of the turbocharger 30 with the target excess air ratio. It is a flowchart.
  • This T SUC range is, for example, a range of 20 ° C. to 25 ° C. as a constant temperature range.
  • step S10 control is started in step S10, and when T V + A ⁇ T SUC1 in step S12, the process proceeds to step S14.
  • the intake temperature control unit 96 controls the opening degree of the flow rate adjusting valves 26 and 28, thereby increasing the VAM gas flow rate Q VAM and decreasing the atmospheric flow rate Q Air .
  • the temperature TV + A of the intake gas mixture d is raised so as to be within the set temperature range.
  • the flow rate Q V + A of the intake gas mixture d which is the total flow rate of the VAM gas flow rate Q VAM and the atmospheric flow rate Q Air , is not changed.
  • step S16 If T SUC1 ⁇ T VAM is not satisfied in step S14, the process proceeds to step S16.
  • T SUC1 ⁇ T Air in step S16 the VAM gas flow rate Q VAM is decreased and the atmospheric flow rate Q Air is increased. As a result, the temperature TV + A of the intake gas mixture d is raised so as to be within the set temperature range. If T SUC1 ⁇ T Air is not satisfied in step S16, it is determined that the temperature of the intake mixed gas d cannot be controlled within the set range because both the VAM gas temperature T VAM and the atmospheric temperature T Air are higher than T SUC1 .
  • step S18 If T V + A ⁇ T SUC1 is not satisfied in step S12, the process proceeds to step S18.
  • T SUC2 ⁇ T V + A is not satisfied in step S18, the intake mixed gas temperature T V + A is within the set temperature range, and the process returns to step S12.
  • T SUC2 ⁇ T V + A in step S18 the process proceeds to step S20. If T VAM ⁇ T SUC2 in step S20, the VAM gas flow rate Q VAM is increased and the atmospheric flow rate Q Air is decreased. As a result, the temperature T V + A of the intake gas mixture d is lowered so as to fall within the set temperature range.
  • step S22 If T VAM ⁇ T SUC2 is not satisfied in step S20, the process proceeds to step S22.
  • T Air ⁇ T SUC2 in step S22 the VAM gas flow rate Q VAM is decreased and the atmospheric flow rate Q Air is increased. As a result, the temperature TV + A of the intake gas mixture d is lowered so as to be within the set range.
  • the flow rate Q VAM of the VAM gas b is always controlled to be maximum within the allowable range.
  • the VAM gas amount can be utilized to the maximum.
  • the methane gas that is a greenhouse gas is used.
  • the amount of air released from the coal mine can be reduced.
  • the excess air ratio ⁇ of the fuel gas g supplied to the combustion cylinders 56a to 56d is set to the target air. The excess rate can be controlled. Therefore, generation of NO X and the like in the exhaust gas e can be suppressed, and engine performance can be maximized without causing abnormal combustion such as knocking.
  • the intake gas mixture d of the atmosphere a and the VAM gas b is used as the intake gas
  • the supply of the intake gas to the combustion cylinders 56a to 56d is achieved by adjusting the air supply amount according to the supply amount of the VAM gas b. Can be stabilized. Therefore, the supply amount of the intake gas to the combustion cylinders 56a to 56d can be stabilized even if the VAM gas b varies greatly.
  • the intake gas temperature is controlled by introducing the atmosphere a into the intake gas, the intake gas temperature can be easily controlled. Then, by controlling the intake gas temperature before flowing into the supercharger 30 to be in the range of 20 to 25 ° C., the control of the excess air rate by the supercharger control means 94 and the downstream of the supercharger 30 are performed.
  • the intake air temperature can be stably controlled by the intake air cooler 38 installed on the side, the optimal excess air ratio is controlled even when the amount of methane-containing gas fluctuates, and the optimal mixing into the combustion chamber Control to the gas temperature can be performed quickly and accurately, and stable combustion can be maintained.
  • the gas engine can be stably operated by setting the controllable target excess air ratio.
  • the mixing ratio of the atmosphere a and the VAM gas b is within a range where the excess air ratio ⁇ can be controlled to the target excess air ratio and the temperature of the intake gas mixture d can be controlled within a set range. Has been adjusted to maximize. As a result, the amount of VAM gas b released into the atmosphere can be reduced to the maximum, and the amount of heat of the methane gas contained in the VAM gas b can be maximized, so that the consumption of the CMM gas in the high-concentration methane-containing gas can be reduced.
  • FIG. 4 shows an engine control device 90B of the present embodiment.
  • the engine control device 90B is provided with an intake air flow rate control unit 100 instead of the intake air temperature control unit 96 and the ⁇ correction means 98 of the engine control device 90A, as compared with the engine control device 90A used in the first embodiment.
  • Other configurations of the engine control device 90B are the same as those of the engine control device 90A.
  • the overall configuration other than the engine control device is the same as that of the first embodiment.
  • the intake air flow rate control unit 100 adjusts the opening degree of the flow rate adjusting valves 26 and 28 based on the detected values of the intake air temperature sensor 87 and the intake pressure sensor 88, thereby changing the mixing ratio of the atmosphere a and the VAM gas b. By adjusting, the flow rate of the intake mixed gas d flowing into the supercharger 30 can be adjusted.
  • the flow rate adjustment procedure of the intake gas mixture d of the present embodiment will be described with reference to FIG.
  • FIG. 5 is a flowchart for controlling the flow rate Q V + A of the intake gas mixture d within a certain range (Q SUC1 ⁇ Q SUC ⁇ Q SUC2 ). That is, the minimum value of the control range of the flow rate Q V + A of the intake gas mixture d with respect to the set target excess air ratio ⁇ is Q SUC1 , the maximum value is Q SUC2 , Q V + A is in this control range, and the flow rate of the VAM gas b An example is shown in which control is performed to maximize the Q VAM supply. In the figure, Q VAM2 is the maximum limit amount of the VAM gas b.
  • step S30 control is started in step S30. If Q V + A ⁇ Q SUC1 in step S32, the process proceeds to step S34. If Q VAM ⁇ Q VAM2 in step S34, the flow rate of the VAM gas b is increased, and the flow rate of the intake gas mixture d is increased so as to be within the set range. When Q VAM ⁇ Q VAM2 is not satisfied, the VAM gas flow rate is decreased so that the VAM gas flow rate is equal to or lower than Q VAM2, and the flow rate of the intake gas mixture d is increased by increasing the flow rate of the atmosphere a so as to be within the set range. To do.
  • step S36 If Q V + A ⁇ Q SUC1 is not satisfied in step S32, the process proceeds to step S36. If Q SUC2 ⁇ Q V + A is not satisfied in step S36, the flow rate of the intake gas mixture d is within the set range, so the process returns to step S32 and the same procedure is repeated. If Q SUC2 ⁇ Q V + A in step S36, Q V + A exceeds the set range, and the process proceeds to step S38. In step S38, if 0 ⁇ Q Air , the flow rate of the atmosphere a is reduced so that Q V + A falls within the set range. When 0 ⁇ Q Air is not satisfied, the flow rate of the VAM gas b is decreased so that Q V + A falls within the set range.
  • a fuel gas branch pipe 110 is connected to the buffer tank 46, and a gas mixer 112 is provided in the intake pipe 18 between the compressor 32 and the atmospheric mixing chamber 20.
  • the fuel gas branch pipe 110 is connected to the gas mixer 112 so that a part of the CMM gas c is supplied from the gas mixer 112 to the intake pipe 18.
  • a filter 114 and a flow rate adjusting valve 116 are interposed in the fuel gas branch pipe 110.
  • the opening degree of the flow regulating valve 116 is controlled by the engine control device 90A.
  • Other configurations including the engine control device 90A are the same as those in the first embodiment.
  • the gas mixing section is configured by the flow rate adjusting valves 54a to 54d and the gas mixer 112.
  • the control of the excess air ratio and the temperature control of the intake gas mixture d are performed by the same operation as in the first embodiment.
  • a part of the CMM gas c is supplied to the intake pipe 18 through the fuel gas branch pipe 110.
  • the CMM supplied to the intake branch pipes 42a to 42d through the fuel gas supply pipe 44.
  • the flow rate of the gas c can be reduced. For this reason, since the devices such as the intake branch pipes 42a to 42d and the flow rate adjusting valves 54a to 54d can be reduced in size, there is an advantage that an installation space is not required and the equipment cost is low.
  • the methane-containing gas can be effectively used to suppress the release of greenhouse gases, and stable combustion can be performed under an appropriate excess air ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)

Abstract

 出力軸に連結された発電機(16)と、炭鉱から排出される空調用の希薄濃度メタン含有ガス(VAMガス)が供給される吸気通路(18)と、該吸気通路(18)の途中に高濃度メタン含有ガス(CMMガス)を混合するガス混合部(54a~d)とを備え、希薄濃度メタン含有ガスと高濃度メタン含有ガスとを混合して燃焼室に供給し燃焼させるようにしたガスエンジン(10)において、ガス混合部の上流側吸気通路に設けられた過給機(30)の上流側吸気通路に、希薄濃度メタン含有ガス及び大気の混合割合を調整する混合割合調整装置(26、28)を設けて、過給機(30)に流入する吸気ガスの温度又は流量を吸気制御手段(90A)によって一定範囲内に制御することを特徴とする。

Description

ガスエンジン
 本発明は、天然ガスやバイオガス、又は炭鉱坑内等から排出されるメタン含有ガスを吸気ガスや燃料として有効活用したガスエンジンに関する。
 メタンCHやCO等の温室効果ガスの排出規制に対する世論の関心は、年々高まっている。特に、メタンはCOの21倍の温室効果があり、メタンの大気中への排出は無視できない。一方、石炭の採掘時には、炭鉱坑内から石炭1トン当り10~40Nm(純メタン換算)という多量のメタンが大気に放出されている。
 炭鉱坑内から排出されるメタン含有ガスは、石炭層中に混在し、保安のためにガス抜きボーリング穴から真空ポンプで回収する回収メタン含有ガスCMM(Coal Mine Methane。メタン濃度約20~50重量%)と、坑道及び切羽から換気のために排出される換気メタン含有ガスVAM(Ventilation Air Methane。メタン濃度1重量%未満)とがある。
 そのため、炭鉱坑内から大気に放出されるメタン含有ガスを大気に放出することなく有効活用することは、社会的かつ経済的貢献が極めて大きい。
 特許文献1には、ごみの埋立処分場で発生するランドフィルガスや、前記炭鉱排出ガス等のように、メタン濃度が可燃限界より低いガスを燃料として利用可能にしたガスタービンが開示されている。
 特許文献2には、炭鉱坑内から排出されるメタン含有ガスを燃料として用いる発電用ガスエンジンが開示されている。以下、特許文献2に開示されたガスエンジン発電設備を図7により説明する。図7は、炭鉱CMと炭鉱CMの近傍に設けられたガスエンジン発電設備200を模式的に示す。図7において、炭鉱CMでは、炭層Cと採掘炭層Cとが層状に形成されている。炭鉱坑内と外部とを連通する換気孔206が設けられている。
 炭鉱坑内の切羽204で、採掘炭層Cにガス抜きボーリング穴208が穿設され、ボーリング穴208から排出されるCMMガスは、換気孔206内に配置された管路210から真空ポンプ211によってガスエンジン発電設備200に送られる。また、炭鉱坑内から換気孔206を通して排出されたVAMガスbは、管路212を通ってガスエンジン発電設備200に送られる。ガスエンジン発電設備200が稼動して生じた電力E及び蒸気Sは、炭鉱坑内ユーティリティ設備202又はその他の需要先に送られる。
特開2010-19247号公報 米国特許出願公開第2005/0205022号明細書
メタンガスを燃料としたガスエンジンは、環境汚染が極めて少ないという長所をもち、今後広く普及することが期待される内燃機関である。しかし、炭鉱坑内から排出されるメタン含有ガスは、時間によってその排出量変動が激しいため、ガスエンジンに対して如何に安定した供給量を維持できるかが課題となっている。
 また、排ガス中に発生するNO濃度を低減する等の理由で、燃料ガス量と空気量との混合割合を所定の最適空気過剰率に保持する必要があるが、炭鉱から排出されるメタン含有ガスは、前述のように、排出量が大きく変動するため、所定の空気過剰率に維持するのが容易ではない。
 また、ガスエンジンでは、燃焼室に供給される混合ガスの温度を40~45℃以下の一定範囲の温度にしないと、ノッキング等の異常燃焼が発生するおそれがある。そのため、過給機通過後に高圧高温になった吸気ガスを吸気冷却器(インタークーラ)によって一定範囲の温度に制御しているが、炭鉱から排出されるメタン含有ガスを用いるときは、該メタン含有ガス量の変動が激しく、さらに吸気冷却器の性能にも限界があるため、燃焼室に供給される混合ガスの温度を制御するのは容易ではない。
 本発明は、かかる従来技術の課題に鑑み、メタン含有ガスを発電用ガスエンジンの燃料として用いる場合に、最適な空気過剰率に維持してNOの発生量を抑えると共に、メタン含有ガス量の変動に対しても最適な空気過剰率の安定的な制御を可能にすることを目的とする。
 また、燃焼室に供給される混合ガスの温度を最適に制御して、ノッキング等の異常燃焼の発生を防止すると共に、メタン含有ガス量の変動に対して燃焼室に供給される混合ガスの安定的な温度制御を可能とすることを目的とする。
 かかる目的を達成する為、本発明のガスエンジンは、
 出力軸に連結された発電機と、炭鉱から排出される空調用の希薄濃度メタン含有ガスが供給される吸気通路と、該吸気通路の途中に高濃度メタン含有ガスを混合するガス混合部とを備え、希薄濃度メタン含有ガスと高濃度メタン含有ガスとを混合して燃焼室に供給し燃焼させるようにしたガスエンジンにおいて、
 前記ガス混合部の上流側吸気通路に設けられた過給機と、該過給機の上流側吸気通路に設けられ、希薄濃度メタン含有ガスに大気を混合させる大気混合部と、該大気混合部で希薄濃度メタン含有ガス及び大気の混合割合を調整する混合割合調整装置と、該混合割合調整装置を制御して過給機に流入する吸気ガスの温度又は流量を一定範囲内に制御する吸気制御手段と、を備えたものである。
 本発明装置により、希薄濃度メタン含有ガスとして炭鉱坑内から排出される空調用のVAMガスを利用し、さらに、高濃度メタン含有ガスとして炭鉱坑内から排出されるCMMガスを利用すれば、温室効果ガスであるメタンガスの炭鉱坑内からの大気放出量を削減できる。さらに、空調用のVAMガスを有効利用することによって、ガスエンジンの燃料ガスの消費量を削減できる。すなわち、高濃度メタン含有ガスの消費量を削減できる。
 ガスエンジンに供給される高濃度メタン含有ガスとして、例えば、前記CMMガス、天然ガス、バイオガス、工場等から排出される副生ガス、ランドフィルガス等が利用できる。
 また、前記吸気制御手段で前記混合割合調整装置を制御し、希薄濃度メタン含有ガスと大気との混合割合を調整して、過給機に流入する吸気ガスの温度又は流量が一定範囲内に制御されるので、過給機による空気過剰率の制御や、過給機の下流側に設けられた吸気冷却器による温度制御を安定的に行うことができ、メタン含有ガス量が変動する場合においても、最適な空気過剰率や混合ガス温度へ迅速かつ精度よく制御でき、安定した燃焼を維持できる。
 なお、前記混合割合調整装置は、例えば、大気やVAMガスの導入路に設けられた流量調整弁等で構成し、これらの開度を調整することで、吸気通路における大気とVAMガスとの混合割合を調整できる。
 本発明装置において、排気通路に設けられた前記過給機のタービンと並設され、排気ガスの一部を該タービンからバイパスさせるバイパス路と、該バイパス路の排気ガス流量を調整する排気流量調整弁と、該排気流量調整弁を制御して過給機の動作を制御する過給機制御手段と、を備え、前記燃焼室に供給される混合ガスの空気過剰率が目標空気過剰率になるように、該過給機制御手段によって過給機を通過する吸気ガス流量を制御するとよい。
 過給機制御手段により、過給機を通過する吸気ガス流量を制御して、燃焼室に供給される混合ガスを目標空気過剰率に制御する。この際に、吸気制御手段により、過給機に流入する吸気ガスの温度又は流量若しくは温度流量が予め一定範囲内に制御されるため、メタン含有ガス量が変動する場合においても、過給機による空気過剰率の制御や、過給機の下流側に設けられ吸気冷却器による温度制御によって、最適な空気過剰率へ迅速かつ精度よく制御可能となり、安定した燃焼を維持できる。
 また、本発明装置において、前記吸気制御手段には吸気温度制御部を有し、該吸気温度制御部は、前記混合割合調整装置を制御して希薄濃度メタン含有ガスと大気との混合割合を調整し、過給機上流側の吸気通路の吸気ガス温度を、前記過給機制御手段による目標空気過剰率への制御が安定的に行われる一定温度範囲内に制御するとよい。
 前記過給機制御手段による目標空気過剰率への制御が安定的に行われる一定温度範囲とは、例えば20~25℃に制御する。これによって、メタン含有ガス量が変動する場合においても、過給機に流入される吸気ガス温度が安定し、過給機制御手段による空気過剰率制御、および過給機の下流側の吸気冷却器での温度制御が安定化して、排気ガス性能(NO排出量等)を適正化できると共に、ノッキング等の異常燃焼を生じることなく、エンジン性能を最大限に発揮できる。
 また、前記構成に加えて、目標空気過剰率を補正する目標空気過剰率補正手段を備え、前記吸気温度制御部によって希薄濃度メタン含有ガスと大気との混合割合を制御しても、過給機に流入する吸気ガスの温度を一定温度範囲内に制御できないとき、この目標空気過剰率補正手段によって目標空気過剰率を変更するとよい。
 前記吸気制御手段によって、希薄濃度メタン含有ガスと大気との混合割合を調整しても、VAMガス又は大気の温度状態によっては、吸気ガス温度を設定範囲に制御できないときがある。このようなときに、前記目標空気過剰率補正手段によって、設定範囲から外れた温度領域での運転に適した目標空気過剰率に補正し、補正後の目標空気過剰率となるようにガスエンジンを運転させる。例えば、目標空気過剰率λをλ=2.0から、ガスエンジンが制御可能な目標空気過剰率であるλ=1.9に補正することで、ガスエンジンを安定的に運転することができる。
 また、本発明装置において、前記吸気制御手段には吸気流量制御部を有し、該吸気流量制御部は、前記混合割合調整装置を制御して過給機上流側の吸気ガス流量を、前記過給機制御手段による目標空気過剰率への制御が安定的に行われる一定範囲内に制御するとよい。
 これによって、メタン含有ガス量が変動する場合においても、過給機に流入する吸気ガス量が安定し、過給機制御手段よる空気過剰率制御によって、早期にかつ精度良く目標空気過剰率に収束させることができる。
 また、本発明装置において、前記大気混合部に供給される希薄濃度メタン含有ガスの流量が常に許容最大量となるように前記混合割合制御装置を制御するようにするとよい。
 これによって、ガスエンジンの燃料としてVAMガスを最大限に利用できるので、メタンガスの大気放出量を最小限にできる。また、空調用のVAMガスを有効利用することでエンジンの燃料ガスの消費量を削減できる。すなわち、高濃度メタン含有ガスの消費量を削減できる。
 また、本発明装置において、高濃度メタン含有ガスの一部を過給機の上流側でかつ大気混合部の下流側の吸気通路に供給するように構成するとよい。
 高濃度メタン含有ガスを過給機の下流側の吸気通路と、上流側の吸気通路とに分けて供給するようにしたため、吸気通路の途中に高濃度メタン含有ガスを混合するガス混合部を構成する制御弁等の機器類を分割配置できる。このように分割配置することにより、夫々の機器類を小型軽量化できる。制御弁等の機器類を小型軽量化できるため、設置スペースの問題を解消できると共に、部品コストを節減できる。
 本発明装置によれば、出力軸に連結された発電機と、炭鉱から排出される空調用の希薄濃度メタン含有ガスが供給される吸気通路と、該吸気通路の途中に高濃度メタン含有ガスを混合するガス混合部とを備え、希薄濃度メタン含有ガスと高濃度メタン含有ガスとを混合して燃焼室に供給し燃焼させるようにしたガスエンジンにおいて、前記ガス混合部の上流側吸気通路に設けられた過給機と、該過給機の上流側吸気通路に設けられ、希薄濃度メタン含有ガスに大気を混合させる大気混合部と、該大気混合部で希薄濃度メタン含有ガス及び大気の混合割合を調整する混合割合調整装置と、該混合割合調整装置を制御して過給機に流入する吸気ガスの温度又は流量を制御する吸気制御手段と、を備えたことにより、希薄濃度メタン含有ガスとして炭鉱坑内から排出される空調用のVAMガスを利用し、さらに、高濃度メタン含有ガスとして炭鉱坑内から排出されるCMMガスを利用すれば、温室効果ガスであるメタンガスの炭鉱坑内からの大気放出量を削減できる。さらに、空調用のVAMガスを有効利用することによって、ガスエンジンの燃料ガスの消費量を削減できる。すなわち、高濃度メタン含有ガスの消費量を削減できる。
 また、吸気制御手段で混合割合調整装置を制御し、大気とVAMガスとの混合割合を調整することにより、過給機に流入する吸気ガスの温度又は流量を制御できる。
 過給機に流入する吸気ガスの温度又は流量が予め一定範囲内に制御されるので、過給機による空気過剰率の制御や、過給機の下流側に設置された吸気冷却器による吸気ガス温度の制御を安定的に行うことができ、メタン含有ガス量が変動する場合においても最適な空気過剰率や混合ガス温度へ迅速かつ精度よく制御でき、安定した燃焼を維持できる。
本発明装置の第1実施形態に係る構成図である。 第1実施形態のガスエンジンの燃焼シリンダの断面図である。 第1実施形態のガスエンジンの制御手順を示すフローチャートである。 本発明装置の第2実施形態に係るエンジン制御装置のブロック線図である。 第2実施形態のガスエンジンの制御手順を示すフローチャートである。 本発明装置の第3実施形態に係る構成図である。 炭鉱近傍に設けられたガスエンジン発電設備の模式図である。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
(実施形態1)
 本発明装置の第1実施形態を図1~図3に基づいて説明する。本実施形態の発電用ガスエンジンは、炭鉱近傍に配設され、燃料ガス及び吸気ガスとして炭鉱坑内から排出されるメタン含有ガスを用いる。図1において、発電用ガスエンジン10は、内部に燃焼室が形成される複数(図1では4個)の燃焼シリンダを備えた機関本体12を備え、発電機16が機関本体12の出力軸14と連結されている。
 機関本体12に接続される吸気管18には、上流側で大気混合室(大気混合部)20が設けられている。大気混合室20には大気導入管22とVAMガス導入管24とが接続されている。大気導入管22には大気aが導入され、VAMガス導入管24には、炭鉱坑内から排出された空調用のVAMガスbが導入される。VAMガスは、炭鉱坑内の坑道及び切羽から換気のために排出されるメタン含有ガスで、メタン濃度が1重量%未満の希薄濃度のメタンガスが含まれている。大気混合室20の内部は、大気aとVAMガスbとが混合された吸気混合ガスdとなる。
 大気導入管22及びVAMガス導入管24には、夫々流量調整弁26及び28が介設され、これらの開度はエンジン制御装置(吸気制御手段)90Aによって制御される。流量調整弁26及び28の開度を制御することによって、大気混合室20内の吸気混合ガスdの混合割合が調整される。吸気管18には、大気混合室20の下流側に、過給機30のコンプレッサ32が設けられている。コンプレッサ32は、後述する排気管62に設けられたタービン34と回転軸36で連結され、吸気混合ガスdを加圧して機関本体12の燃焼シリンダに供給している。
 過給機30の下流側には、吸気冷却器(インタークーラ)38が設けられている。この吸気冷却器38には冷却水wが導入され、過給機30を通過した吸気ガスはこの冷却水wと熱交換され冷却された後、共通吸気管40及び吸気枝管42a~dを経て各燃焼シリンダ56a~dに供給される。吸気冷却器38による吸気ガスの温度制御はエンジン制御装置90Aによって制御される。
 一方、炭鉱坑内から排出されるCMMガスcが、燃料ガス供給管44から機関本体12に供給される。CMMガスcは、石炭層中に混在し、図7に示すように、保安のためにガス抜きボーリン穴208から真空ポンプ211で回収する回収メタン含有ガスであり、メタン濃度が約20~50重量%含有する高濃度メタン含有ガスである。燃料ガス供給管44には、上流側から順に、バッファタンク46、流量調整弁48及びガス圧縮機50が介設されている。流量調整弁48の開度はエンジン制御装置90Aによって制御される。
 燃料ガス供給管44は4個の燃料枝管52a~dに分岐し、各燃料枝管52a~dは夫々吸気枝管42a~dに接続されている。
 燃料ガス供給管44に送られたCMMガスcは、ガス圧縮機50で圧縮され、燃料枝管52a~dを経て吸気枝管42a~dに供給される。該吸気枝管内で吸気混合ガスdとCMMガスcとが予混合され、この混合ガスが燃料ガスgとなって(図2参照)、各燃焼シリンダ56a~dに供給される。各燃料枝管52a~dには、夫々流量調整弁54a~dが設けられ、これら流量調整弁の開度は、エンジン制御装置90Aによって制御される。なお、流量調整弁54a~dによって吸気枝管42a~dへの燃料枝管52a~dの接続部であるガス混合部を構成している。
 各燃焼シリンダ56a~dのヘッド部には、夫々排気枝管58a~dが接続されている。排気枝管58a~dは共通排気管60に接続され、共通排気管60はさらに排気管62に接続されている。排気管62には過給機30のタービン34が設けられている。各燃焼シリンダ56a~dから排出される排気ガスeは、排気枝管58a~d、共通排気管60及び排気管62を経て排気される。また、タービン34をバイパスするバイパス管64が排気管62に接続され、バイパス管64には流量調整弁66が介設されている。流量調整弁66の開度は、エンジン制御装置90Aによって制御される。
 次に、図2により、機関本体12の燃焼シリンダ56a~dのヘッド部の構成を説明する。図2において、燃焼シリンダ56a~dの内部でピストン70が往復動する。ピストン70の上面に凹み70aが刻設され、この凹み70aの上方に主燃焼室mが形成される。燃焼シリンダ56a~dの上面中央には、インジェクタケース72が装着されている。インジェクタケース72の内部には、インジェクタ76が装着されており、インジェクタ76の下方には副室sが形成されている。インジェクタ76には、インジェクタケース72を貫通して導管78が接続されており、導管78を通してインジェクタ76の内部にパイロット燃料pが供給される。
 インジェクタケース72の両側の燃焼シリンダ上面には、吸気枝管42a~dに連通した吸気口と、排気枝管58a~dに連通した排気口とが設けられている。また、該吸気口を開閉する吸気弁80と、該排気口を開閉する排気弁82とが設けられている。各排気枝管58a~dには、排気ガスの温度を検出する排気温度センサ84が設けられ、排気温度センサ84の検出値はエンジン制御装置90Aに送られる。
 吸気枝管42a~dを流れる吸気混合ガスdに対して、燃料枝管52a~dからCMMガスcが供給され、両者は予混合し、燃料ガスgとなって、吸気口から燃焼シリンダ56a~d内に供給される。該燃焼シリンダ内の燃料ガスgは、ピストン70によって加圧され、高圧高温状態となってインジェクタケース72の下部に穿設された噴孔74から副室sに入る。一方、インジェクタ76から副室sにパイロット燃料pが噴霧され、該パイロット燃料pは、高温高圧状態の燃料ガスgによって着火し、着火した副室s内の火炎は、インジェクタケース72の下部に穿設された孔74から主燃焼室mに伝播し、主燃焼室mで火炎fが広がる。
主燃焼室mで燃料ガスgが膨脹し、ピストン70を下方へ押し下げて出力軸14を回転させる。燃焼した後の排ガスeは、排気枝管58a~d、共通排気管60及び排気管62を通って排出される。
 図1に戻り、出力軸14の回転速度を検出する回転速度センサ85や、各燃焼シリンダ56a~dの主燃焼室mの圧力を検出する図示省略の筒内圧力センサ等が設けられ、排気温度センサ84を含む前記センサで検出された検出値は、エンジン制御装置90Aに送られる。これらの検出値に基づいて、エンジン出力制御手段92によってガスエンジン10の出力や主燃焼室mでの燃焼状態が制御される。
 また、過給機30と大気混合室20との間の吸気管18に、過給機30のコンプレッサ32に流入する吸気混合ガスdの温度を検出する吸気温度センサ87と、吸気ガス圧力を検出する吸気圧力センサ88が設けられている。これらの検出値がエンジン制御装置90Aに送られる。
 かかる構成において、エンジン制御装置90Aの過給機制御手段94によって、流量調整弁66の開度が制御され、バイパス管64を流れる排気ガスの流量が制御される。これによって、排気管62を流れる排気ガス流量が制御されて、過給機30のタービン回転数が制御され、吸気管18を流れる吸気ガスの流量が制御される。
 このように、過給機30に流入する吸気ガスの流量を制御することによって、前記燃焼室に供給される混合ガスgの空気過剰率λを目標空気過剰率に制御する。
 空気過剰率λの算出方法は、吸気温度センサ87及び吸気圧力センサ88で吸気混合ガスdの温度及び圧力を検出し、これらの検出値から吸気混合ガスdの密度を算出する。次に、この密度から流量を算出する。一方、燃料ガス供給管44を流れるCMMガスcの流量を流量調整弁48の開度から算出する。こうして算出された吸気混合ガスdの流量と、CMMガスcの流量とから、空気過剰率近似値λ’を算出する。吸気混合ガスdにはVAMガスbのメタンガスが含まれているため、前記計算方法では空気過剰率λの正確な計算値は出ないが、VAMガスbのメタン濃度は、通常1重量%未満と極めて低いので、吸気管18内の吸気混合ガスdを空気と同等として扱い、λ’≒λと見做して算出する。
 図1において、大気導入管22から導入する大気aの温度をTAir、流量をQAirで表し、VAMガス導入管24から導入するVAMガスbの温度をTVAM、流量をQVAMで表し、過給機30に流入する吸気混合ガスdの温度をTV+A、流量をQV+Aで表す。なお、QV+A=QAir+QVAMである。
 炭鉱坑内から排出されるVAMガスbの温度は、通常、大気圧下で20~25℃であるが、吸気管18を流れる吸気混合ガスdは、コンプレッサ32で昇温する。主燃焼室mに供給される燃料ガスgの温度は、主燃焼室mでの燃料ガスgの燃焼状態に影響し、燃料ガスgの温度によっては失火やノッキング等の異常燃焼が生じるおそれがある。また、吸気混合ガスdの密度は温度によって異なるので、吸気混合ガスdの温度は空気過剰率λにも影響する。
 そのため、通常、主燃焼室mに供給される燃料ガスgの温度は、40~45℃以下の所定の範囲内に制御される必要がある。過給機30の下流側の吸気冷却器38によって、吸気混合ガスdは冷却制御されるが、吸気冷却器38の性能の限界、および、安定した空気過剰率制御を行うために、過給機30に流入する吸気混合ガスdの温度を20~25℃にする必要がある。この吸気温度制御手順を図3により説明する。
 本実施形態では、過給機制御手段94によって、過給機30のコンプレッサ32を通過して燃焼室に供給される吸気混合ガスdの流量QV+Aが制御され、目標空気過剰率λとなる流量に制御される。目標空気過剰率λは、例えば、排気ガスe中のNO濃度の低減等の観点から、λ=2.0と設定される。図3は、この目標空気過剰率の過給機30の制御状態において、該吸気混合ガスdの温度TV+Aを設定温度TSUC(TSUC1<TSUC<TSUC2)に制御する制御手順を示すフローチャートである。このTSUCの範囲は、例えば一定温度の範囲としては20℃~25℃の範囲である。
 図3において、ステップS10で制御を開始し、ステップS12でTV+A<TSUC1であるとき、ステップS14に進む。ステップS14でTSUC1<TVAMのとき、吸気温度制御部96で流量調整弁26及び28の開度を制御することによって、VAMガス流量QVAMを増やし、大気流量QAirを減らす。これによって、吸気混合ガスdの温度TV+Aを上昇させ、設定温度範囲になるようにする。なお、VAMガス流量QVAMと大気流量QAirとの合計流量である吸気混合ガスdの流量QV+Aは変更しない。
 ステップS14でTSUC1<TVAMでないときはステップS16に進む。ステップS16でTSUC1<TAirであるとき、VAMガス流量QVAMを減らし、大気流量QAirを増やす。これによって、吸気混合ガスdの温度TV+Aを上昇させ、設定温度範囲になるようにする。
 ステップS16でTSUC1<TAirでないときは、VAMガス温度TVAM、および大気温度TAirがともにTSUC1より高いため、吸気混合ガスdの温度を設定範囲に制御できないと判断する。そのため、空気過剰率補正手段98で、吸気混合ガスdが外れた温度域である場合の運転に適した目標空気過剰率λ’(例えばλ’=2.0+0.1)に補正する。そして、補正後の目標空気過剰率λ’となるように、吸気混合ガスdの設定流量QSUCを変更し(QSUC→QSUC+i)、過給機制御手段94によって、吸気混合ガスdの流量がQSUC+iとなるように流量調整弁66の開度を制御する。
 また、ステップS12でTV+A<TSUC1でないとき、ステップS18に進む。ステップS18でTSUC2<TV+Aでないときは、吸気混合ガス温度TV+Aが設定温度範囲にあるので、ステップS12に戻る。ステップS18でTSUC2<TV+Aであるときは、ステップS20に進む。ステップS20でTVAM<TSUC2であるときは、VAMガス流量QVAMを増やし、大気流量QAirを減らす。これによって、吸気混合ガスdの温度TV+Aを下降させ、設定温度範囲になるようにする。
 ステップS20でTVAM<TSUC2でないときは、ステップS22に進む。ステップS22でTAir<TSUC2のときは、VAMガス流量QVAMを減らし、大気流量QAirを増やす。これによって、吸気混合ガスdの温度TV+Aを下降させ、設定範囲になるようにする。
 ステップS22でTAir<TSUC2でないときは、VAMガス温度TVAM、および大気温度TAirがともにTSUC2より低いため、吸気混合ガスdの温度を設定範囲に制御できないと判断する。そのため、空気過剰率補正手段98で、混合ガスが外れた温度域である場合の運転に適した目標空気過剰率λ’’(例えばλ’’=2.0-0.1)に補正する。そして、補正後の目標空気過剰率λ’’となるように、吸気混合ガスdの設定流量QSUCを変更し(QSUC→QSUC-i)、過給機制御手段94によって吸気混合ガスdの流量がQSUC-iとなるように流量調整弁66の開度を制御する。
 なお、本実施形態では、吸気温度制御部96によって吸気混合ガスdの温度TV+Aを制御するとき、許容範囲内でVAMガスbの流量QVAMが常に最大となるように制御している。これによって、VAMガス量を最大限に利用できるようにしている。
 本実施形態によれば、炭鉱坑内から排出されるVAMガスbをガスエンジン10の吸気ガスとして利用すると共に、CMMガスcをガスエンジン10の燃料ガスとして利用するので、温室効果ガスであるメタンガスの炭鉱坑内からの大気放出量を削減できる。
 また、過給機制御手段94によって過給機30のタービン34をバイパスする排気ガスeの流量を制御することにより、燃焼シリンダ56a~dに供給される燃料ガスgの空気過剰率λを目標空気過剰率に制御できる。そのため、排気ガスe中のNO等の発生を抑制できると共に、ノッキング等の異常燃焼を生じることなく、エンジン性能を最大限に発揮できる。
 また、大気aとVAMガスbとの吸気混合ガスdを吸気ガスとしているので、VAMガスbの供給量に応じて大気供給量を調整することにより、燃焼シリンダ56a~dへの吸気ガスの供給を安定化できる。そのため、VAMガスbが大きく変動しても燃焼シリンダ56a~dへの吸気ガスの供給量を安定化できる。
 さらに、吸気ガス中に大気aを導入することで、吸気ガス温度を制御しているので、吸気ガス温度の制御が容易になる。そして、過給機30への流入前の吸気ガス温度を20~25℃の範囲になるように制御することによって、過給機制御手段94による空気過剰率の制御や、過給機30の下流側に設置された吸気冷却器38による吸気ガス温度の制御を安定的に行うことができ、メタン含有ガス量が変動する場合においても最適な空気過剰率の制御、および燃焼室への最適な混合ガス温度への制御が、迅速かつ精度よく行うことができ、安定した燃焼を維持できる。
 また、吸気管18の大気aとVAMガスbとの混合割合を調整しても、吸気混合ガスdの温度を設定範囲に調整できないときは、空気過剰率補正手段98によって、吸気混合ガスdが外れた温度領域で運転される場合に適した目標空気過剰率に変更しているので、ガスエンジンの運転に支障を来たさない。すなわち、目標空気過剰率λが、例えばλ=2.0から1.9に補正した場合には、理論的な空気過剰率からずれるためにNOx等の排ガス性能に悪影響を及ぼすが、ガスエンジンが制御可能な目標空気過剰率とすることでガスエンジンを安定的に運転することができる。
 また、大気aとVAMガスbとの混合割合は、空気過剰率λを目標空気過剰率に制御できる範囲で、かつ吸気混合ガスdの温度を設定範囲に制御できる条件の下で、VAMガス流量が最大限となるように調整されている。そのため、VAMガスbの大気放出量を最大限削減できると共に、VAMガスb中に含まれるメタンガスの熱量を最大限利用できるので、高濃度メタン含有ガスのCMMガスの消費量を削減できる。
(実施形態2)
 次に、本発明装置の第2実施形態を図4及び図5により説明する。本実施形態は、吸気混合ガスdの温度が既に設定範囲に入っており、このとき、空気過剰率λを目標空気過剰率に制御する場合の例である。図4は、本実施形態のエンジン制御装置90Bを示す。エンジン制御装置90Bは、第1実施形態で用いられるエンジン制御装置90Aと比べて、エンジン制御装置90Aの吸気温度制御部96及びλ補正手段98の代わりに、吸気流量制御部100を設けている。エンジン制御装置90Bのその他の構成は、エンジン制御装置90Aと同一である。また、エンジン制御装置以外の全体構成も第1実施形態と同一である。
 吸気流量制御部100は、吸気温度センサ87及び吸気圧力センサ88の検出値に基づいて、流量調整弁26及び28の開度を調整し、これによって、大気aとVAMガスbとの混合割合を調整して、過給機30に流入する吸気混合ガスdの流量を調整可能にしている。以下、本実施形態の吸気混合ガスdの流量調整手順を図5により説明する。
 図5では、吸気混合ガスdの流量QV+Aを一定の範囲内(QSUC1<QSUC<QSUC2)に制御するフローチャートである。即ち、設定した目標空気過剰率λに対する
吸気混合ガスdの流量QV+Aの制御範囲の最小値をQSUC1,最大値をQSUC2とし,QV+Aがこの制御範囲に入り、且つVAMガスbの流量QVAMを供給可能な中で最大とする制御を行う例を示す。図中、QVAM2はVAMガスbの最大限界量である。
 図5において、ステップとS30で制御を開始する。ステップS32で、QV+A<QSUC1であるときは、ステップS34に進む。ステップS34で、QVAM<QVAM2であるときは、VAMガスbの流量を増やして、吸気混合ガスdの流量を増量し、設定範囲になるようにする。QVAM<QVAM2でないときは、VAMガス流量を減らして、VAMガス流量をQVAM2以下にすると共に、大気aの流量を増やして吸気混合ガスdの流量を増量し、設定範囲になるようにする。
 ステップS32で、QV+A<QSUC1でないときは、ステップS36に進む。ステップS36で、QSUC2<QV+Aでないときは、吸気混合ガスdの流量が設定範囲内であるので、ステップS32に戻り、同じ手順を繰り返す。
 ステップS36で、QSUC2<QV+Aであるときは、QV+Aが設定範囲を越えており、ステップS38に進む。ステップS38で、0<QAirのときは、大気aの流量を減らして、QV+Aが設定範囲となるようにする。0<QAirでないときは、VAMガスbの流量を減らして、QV+Aが設定範囲になるようにする。
 このようにして、過給機30の流入側の吸気混合ガスdの流量を設定範囲に維持する。本実施形態によれば、吸気流量制御部100によって、過給機30の流入側の吸気混合ガス量を制御することによって、過給機制御手段94による空気過剰率の制御を急速かつ精度良く行なうことができる。また、メタン含有ガス量が変動する場合においても、空気過剰率の制御を安定的に行うことができる。
(実施形態3)
 次に、本発明装置の第3実施形態を図6により説明する。図6において、バッファタンク46に燃料ガス分岐管110を接続すると共に、コンプレッサ32と大気混合室20との間の吸気管18にガスミキサ112を設けている。そして、燃料ガス分岐管110をガスミキサ112に接続して、CMMガスcの一部をガスミキサ112から吸気管18に供給するようにしている。燃料ガス分岐管110には、フィルタ114と流量調整弁116とが介設されている。流量調整弁116の開度はエンジン制御装置90Aによって制御される。エンジン制御装置90Aを含めて、その他の構成は、前記第1実施形態と同一である。
 なお、第3実施形態においては、流量調整弁54a~dとガスミキサ112とによってガス混合部を構成している。
 本実施形態では、第1実施形態と同様の操作で、空気過剰率の制御と吸気混合ガスdの温度制御とが行なわれる。その際、CMMガスcの一部は、燃料ガス分岐管110を通して吸気管18に供給される。
 本実施形態では、CMMガスcの一部を吸気管18に供給しているので、第1実施形態の作用効果に加えて、燃料ガス供給管44を通して吸気枝管42a~dに供給されるCMMガスcの流量を低減できる。そのため、吸気枝管42a~d及び流量調整弁54a~d等の機器類を小型化できるので、設置スペースを要さず、設備費が低コストとなる利点がある。
 本発明の発電用ガスエンジンによれば、メタン含有ガスを有効利用して温室効果ガスの放出を抑制できると共に、適正空気過剰率の下で安定燃焼を行なうことができる。

Claims (7)

  1.  出力軸に連結された発電機と、炭鉱から排出される空調用の希薄濃度メタン含有ガスが供給される吸気通路と、該吸気通路の途中に高濃度メタン含有ガスを混合するガス混合部とを備え、希薄濃度メタン含有ガスと高濃度メタン含有ガスとを混合して燃焼室に供給し燃焼させるようにしたガスエンジンにおいて、
     前記ガス混合部の上流側吸気通路に設けられた過給機と、該過給機の上流側吸気通路に設けられ、希薄濃度メタン含有ガスに大気を混合させる大気混合部と、該大気混合部で希薄濃度メタン含有ガス及び大気の混合割合を調整する混合割合調整装置と、該混合割合調整装置を制御して前記過給機に流入する吸気ガスの温度又は流量を一定範囲内に制御する吸気制御手段と、を備えたことを特徴とするガスエンジン。
  2.  排気通路に設けられた前記過給機のタービンと並設され、排気ガスの一部を該タービンからバイパスさせるバイパス路と、該バイパス路の排気ガス流量を調整する排気流量調整弁と、該排気流量調整弁を制御して過給機の動作を制御する過給機制御手段と、を備え、前記燃焼室に供給される混合ガスの空気過剰率が目標空気過剰率になるように、該過給機制御手段によって過給機を通過する吸気ガス流量を制御することを特徴とする請求項1に記載のガスエンジン。
  3.  前記吸気制御手段には吸気温度制御部を有し、該吸気温度制御部は、前記混合割合調整装置を制御して希薄濃度メタン含有ガスと大気との混合割合を調整し、過給機上流側の吸気通路の吸気ガス温度を、前記過給機制御手段による目標空気過剰率への制御が安定的に行われる一定温度範囲内に制御することを特徴とする請求項2に記載のガスエンジン。
  4.  目標空気過剰率を補正する目標空気過剰率補正手段を備え、前記吸気温度制御部によって希薄濃度メタン含有ガスと大気との混合割合を制御しても、過給機に流入する吸気ガスの温度を前記一定温度範囲内に制御できないとき、前記目標空気過剰率補正手段によって目標空気過剰率を変更するようにしたことを特徴とする請求項3に記載のガスエンジン。
  5.  前記吸気制御手段には吸気流量制御部を有し、該吸気流量制御部は、前記混合割合調整装置を制御して過給機上流側の吸気ガス流量を、前記過給機制御手段による目標空気過剰率への制御が安定的に行われる一定範囲内に制御することを特徴とする請求項2に記載のガスエンジン。
  6.  前記大気混合部に供給される希薄濃度メタン含有ガスの流量が常に許容最大量となるように前記混合割合制御装置を制御するようにしたことを特徴とする請求項1~5のいずれかの項に記載のガスエンジン。
  7.  高濃度メタン含有ガスの一部を前記過給機の上流側でかつ前記大気混合部の下流側の吸気通路に供給するように構成したことを特徴とする請求項1~6のいずれかの項に記載のガスエンジン。
PCT/JP2011/061455 2010-05-31 2011-05-18 ガスエンジン WO2011152218A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/695,562 US9086022B2 (en) 2010-05-31 2011-05-18 Gas engine
KR1020127025920A KR101399224B1 (ko) 2010-05-31 2011-05-18 가스 엔진
EP11789627.4A EP2578849B8 (en) 2010-05-31 2011-05-18 Gas engine
CN201180021954.5A CN102884295B (zh) 2010-05-31 2011-05-18 燃气发动机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010124052A JP5314637B2 (ja) 2010-05-31 2010-05-31 ガスエンジン
JP2010-124052 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011152218A1 true WO2011152218A1 (ja) 2011-12-08

Family

ID=45066597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061455 WO2011152218A1 (ja) 2010-05-31 2011-05-18 ガスエンジン

Country Status (6)

Country Link
US (1) US9086022B2 (ja)
EP (1) EP2578849B8 (ja)
JP (1) JP5314637B2 (ja)
KR (1) KR101399224B1 (ja)
CN (1) CN102884295B (ja)
WO (1) WO2011152218A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838491B1 (ja) * 2015-02-13 2016-01-06 株式会社フクハラ 高純度加圧窒素ガス生成システム並びに高純度加圧窒素ガス生成方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308466B2 (ja) * 2011-01-31 2013-10-09 三菱重工業株式会社 ガスエンジンの燃料ガス供給方法および装置
JP5314719B2 (ja) * 2011-02-28 2013-10-16 三菱重工業株式会社 ガスエンジンの給気装置
JP5980151B2 (ja) 2013-03-19 2016-08-31 三菱重工業株式会社 ガスエンジンの排ガス制御装置
CH708276A1 (de) * 2013-07-04 2015-01-15 Liebherr Machines Bulle Sa Gasmotor.
KR101653362B1 (ko) * 2014-03-05 2016-09-01 한국기계연구원 막 분리와 엔진 연소기술을 이용한 바이오메탄 및 전기 동시 생산 장치
US9556792B2 (en) 2014-10-17 2017-01-31 Kohler, Co. Dual compressor turbocharger
US10378549B2 (en) 2014-10-17 2019-08-13 Kohler Co. Dual compressor turbocharger
AT518584B1 (de) * 2016-05-11 2018-02-15 Ge Jenbacher Gmbh & Co Og Verfahren zum Erkennen der Gasmenge
CN109322751A (zh) * 2018-10-09 2019-02-12 广西玉柴机器股份有限公司 自适应甲烷浓度变化的燃气发动机启动控制方法
CA3060912A1 (en) * 2018-11-02 2020-05-02 Rem Technology Inc. Intake air assessment for industrial engines
KR102289842B1 (ko) 2021-02-09 2021-08-13 김종현 탄소배출권 확보를 위한 rto식 탄광 메탄가스 포괄처리 시스템
CN113175396A (zh) * 2021-06-15 2021-07-27 大连亿斯德特种智能装备有限公司 一种利用高低浓度瓦斯混合燃烧发电系统
CN114576045A (zh) * 2022-05-07 2022-06-03 四川华气动力有限责任公司 一种稀薄燃烧技术发动机的预燃室进混合气系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508683A (ja) * 1994-10-27 1998-08-25 アイセントロピック・システムズ・リミテッド 燃料ガスの燃焼および利用における改善
US20050205022A1 (en) * 2004-03-19 2005-09-22 Kuninori Ito Gas engine electric power generating system effectively utilizing greenhouse gas emission credit
JP2006249954A (ja) * 2005-03-08 2006-09-21 Mitsubishi Heavy Ind Ltd ガスエンジンのガス供給装置及び運転方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713340A (en) * 1996-06-12 1998-02-03 Cummins Engine Company, Inc. System for fueling an internal combustion engine with low and high pressure gaseous fuel
US8382469B2 (en) * 2005-03-09 2013-02-26 Rem Technology, Inc. Method and apparatus for utilising fugitive gases as a supplementary fuel source
US7591866B2 (en) * 2006-03-31 2009-09-22 Ranendra Bose Methane gas recovery and usage system for coalmines, municipal land fills and oil refinery distillation tower vent stacks
JP4563443B2 (ja) * 2007-12-14 2010-10-13 三菱重工業株式会社 ガスエンジンシステムの制御方法及び該システム
JP4616878B2 (ja) * 2007-12-14 2011-01-19 三菱重工業株式会社 ガスエンジンシステムの制御方法及び該システム
JP4538077B2 (ja) 2008-06-13 2010-09-08 川崎重工業株式会社 希薄燃料吸入ガスタービン
US9118048B2 (en) * 2009-09-04 2015-08-25 Lg Fuel Cell Systems Inc. Engine systems and methods of operating an engine
JP4751950B1 (ja) * 2010-03-24 2011-08-17 川崎重工業株式会社 希薄燃料吸入ガスタービン
JP5449062B2 (ja) * 2010-07-02 2014-03-19 三菱重工業株式会社 排ガスタービン過給機のシールエア供給装置
JP5308466B2 (ja) * 2011-01-31 2013-10-09 三菱重工業株式会社 ガスエンジンの燃料ガス供給方法および装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508683A (ja) * 1994-10-27 1998-08-25 アイセントロピック・システムズ・リミテッド 燃料ガスの燃焼および利用における改善
US20050205022A1 (en) * 2004-03-19 2005-09-22 Kuninori Ito Gas engine electric power generating system effectively utilizing greenhouse gas emission credit
JP2006249954A (ja) * 2005-03-08 2006-09-21 Mitsubishi Heavy Ind Ltd ガスエンジンのガス供給装置及び運転方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838491B1 (ja) * 2015-02-13 2016-01-06 株式会社フクハラ 高純度加圧窒素ガス生成システム並びに高純度加圧窒素ガス生成方法

Also Published As

Publication number Publication date
EP2578849B1 (en) 2018-08-08
US9086022B2 (en) 2015-07-21
JP2011247238A (ja) 2011-12-08
EP2578849B8 (en) 2018-09-12
CN102884295A (zh) 2013-01-16
CN102884295B (zh) 2016-11-09
KR101399224B1 (ko) 2014-05-27
EP2578849A4 (en) 2017-01-11
EP2578849A1 (en) 2013-04-10
US20130055712A1 (en) 2013-03-07
KR20120135305A (ko) 2012-12-12
JP5314637B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5314637B2 (ja) ガスエンジン
KR101418226B1 (ko) 가스 엔진의 연료 가스 공급 방법 및 장치
CN103672967B (zh) 燃气涡轮燃烧器
US8365537B2 (en) Power plant with CO2 capture
US9828912B2 (en) Combined cycle power plant with flue gas recirculation
US8485158B2 (en) Method to control a gas engine system thereof
JP4247191B2 (ja) ガスエンジンのガス供給装置及び運転方法
WO2010056789A3 (en) Gaseopus fuel engine charge density control system
US10151487B2 (en) Sequential combustion arrangement with dilution gas
US20150337742A1 (en) Gas turbine with fuel composition control
JP2009144628A (ja) ガスエンジンシステムの制御方法及び該システム
JP5314717B2 (ja) 副室式火花点火ガスエンジン
JP2012159017A5 (ja)
KR20140012042A (ko) 연도 가스 압축을 이용한 산소 연소 설비 및 방법
JP4452092B2 (ja) ガスエンジンの燃焼制御方法及びその装置
US20140305128A1 (en) Method for operating a combustion chamber and combustion chamber
KR20180037036A (ko) 내연 기관을 제어하기 위한 방법 및 장치
EP2715208B1 (en) Method and system for treating cargo vapors from crude oil and petroleum products tanks to produce electricity
JP2008196360A (ja) 発電システム
KR20240091272A (ko) 예비 챔버 연소 시스템 및 방법
CN116324141A (zh) 柴油发动机
JP2007211729A (ja) 4サイクルエンジン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021954.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127025920

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011789627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13695562

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE