JP5314637B2 - ガスエンジン - Google Patents

ガスエンジン Download PDF

Info

Publication number
JP5314637B2
JP5314637B2 JP2010124052A JP2010124052A JP5314637B2 JP 5314637 B2 JP5314637 B2 JP 5314637B2 JP 2010124052 A JP2010124052 A JP 2010124052A JP 2010124052 A JP2010124052 A JP 2010124052A JP 5314637 B2 JP5314637 B2 JP 5314637B2
Authority
JP
Japan
Prior art keywords
gas
intake
supercharger
flow rate
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010124052A
Other languages
English (en)
Other versions
JP2011247238A (ja
Inventor
裕一 清水
鈴木  元
秀樹 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010124052A priority Critical patent/JP5314637B2/ja
Priority to CN201180021954.5A priority patent/CN102884295B/zh
Priority to US13/695,562 priority patent/US9086022B2/en
Priority to EP11789627.4A priority patent/EP2578849B8/en
Priority to KR1020127025920A priority patent/KR101399224B1/ko
Priority to PCT/JP2011/061455 priority patent/WO2011152218A1/ja
Publication of JP2011247238A publication Critical patent/JP2011247238A/ja
Application granted granted Critical
Publication of JP5314637B2 publication Critical patent/JP5314637B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/10Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder
    • F02B19/1004Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder details of combustion chamber, e.g. mounting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/025Failure diagnosis or prevention; Safety measures; Testing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Description

本発明は、天然ガスやバイオガス、又は炭鉱坑内等から排出されるメタン含有ガスを吸気ガスや燃料として有効活用したガスエンジンに関する。
メタンCHやCO等の温室効果ガスの排出規制に対する世論の関心は、年々高まっている。特に、メタンはCOの21倍の温室効果があり、メタンの大気中への排出は無視できない。一方、石炭の採掘時には、炭鉱坑内から石炭1トン当り10〜40Nm(純メタン換算)という多量のメタンが大気に放出されている。
炭鉱坑内から排出されるメタン含有ガスは、石炭層中に混在し、保安のためにガス抜きボーリング穴から真空ポンプで回収する回収メタン含有ガスCMM(Coal Mine Methane。メタン濃度約20〜50重量%)と、坑道及び切羽から換気のために排出される換気メタン含有ガスVAM(Ventilation Air Methane。メタン濃度1重量%未満)とがある。
そのため、炭鉱坑内から大気に放出されるメタン含有ガスを大気に放出することなく有効活用することは、社会的かつ経済的貢献が極めて大きい。
特許文献1には、ごみの埋立処分場で発生するランドフィルガスや、前記炭鉱排出ガス等のように、メタン濃度が可燃限界より低いガスを燃料として利用可能にしたガスタービンが開示されている。
特許文献2には、炭鉱坑内から排出されるメタン含有ガスを燃料として用いる発電用ガスエンジンが開示されている。以下、特許文献2に開示されたガスエンジン発電設備を図7により説明する。図7は、炭鉱CMと炭鉱CMの近傍に設けられたガスエンジン発電設備200を模式的に示す。図7において、炭鉱CMでは、炭層Cと採掘炭層Cとが層状に形成されている。炭鉱坑内と外部とを連通する換気孔206が設けられている。
炭鉱坑内の切羽204で、採掘炭層Cにガス抜きボーリング穴208が穿設され、ボーリング穴208から排出されるCMMガスは、換気孔206内に配置された管路210から真空ポンプ211によってガスエンジン発電設備200に送られる。また、炭鉱坑内から換気孔206を通して排出されたVAMガスbは、管路212を通ってガスエンジン発電設備200に送られる。ガスエンジン発電設備200が稼動して生じた電力E及び蒸気Sは、炭鉱坑内ユーティリティ設備202又はその他の需要先に送られる。
特開2010−19247号公報 米国特許出願公開第2005/0205022号明細書
メタンガスを燃料としたガスエンジンは、環境汚染が極めて少ないという長所をもち、今後広く普及することが期待される内燃機関である。しかし、炭鉱坑内から排出されるメタン含有ガスは、時間によってその排出量の変動が激しいため、ガスエンジンに対して如何に安定した供給量を維持できるかが課題となっている。
また、排ガス中に発生するNO濃度を低減する等の理由で、燃料ガス量と空気量との混合割合を所定の空気過剰率に保持する必要があるが、炭鉱から排出されるメタン含有ガスは、前述のように、排出量が大きく変動するため、所定の空気過剰率に維持するのが容易ではない。
また、ガスエンジンでは、燃焼室に供給される混合ガスの温度を40〜45℃以下の一定範囲の温度にしないと、ノッキング等の異常燃焼が発生するおそれがある。そのため、過給機通過後に高圧高温になった吸気ガスを吸気冷却器(インタークーラ)によって一定範囲の温度に制御しているが、炭鉱から排出されるメタン含有ガスを用いるときは、該メタン含有ガス量の変動が激しく、さらに吸気冷却器の性能にも限界があるため、燃焼室に供給される混合ガスの温度を制御するのは容易ではない。
本発明は、かかる従来技術の課題に鑑み、メタン含有ガスを発電用ガスエンジンの燃料として用いる場合に、最適な空気過剰率に維持してNOの発生量を抑えると共に、メタン含有ガス量の変動に対して最適な空気過剰率の安定的な制御を可能にすることを目的とする。
また、燃焼室に供給される混合ガスの温度を最適に制御して、ノッキング等の異常燃焼の発生を防止すると共に、メタン含有ガス量の変動に対して燃焼室に供給される混合ガスの安定的な温度制御を可能とすることを目的とする。
かかる目的を達成する為、本発明のガスエンジンは、
出力軸に連結された発電機と、炭鉱から排出される空調用の希薄濃度メタン含有ガスが供給される吸気通路と、該吸気通路の途中に高濃度メタン含有ガスを混合するガス混合部とを備え、希薄濃度メタン含有ガスと高濃度メタン含有ガスとを混合して燃焼室に供給し燃焼させるようにしたガスエンジンにおいて、
前記ガス混合部の上流側吸気通路に設けられた過給機と、該過給機の上流側吸気通路に設けられ、希薄濃度メタン含有ガスに大気を混合させる大気混合部と、該大気混合部で希薄濃度メタン含有ガス及び大気の混合割合を調整する混合割合調整装置と、該混合割合調整装置を制御して前記過給機に流入する吸気ガスの温度を一定範囲内に制御する吸気制御手段と、を備え
さらに、排気通路に設けられた前記過給機のタービンと並設され、排気ガスの一部を該タービンからバイパスさせるバイパス路と、該バイパス路の排気ガス流量を調整する排気流量調整弁と、該排気流量調整弁を制御して過給機の動作を制御する過給機制御手段と、を備え、前記燃焼室に供給される混合ガスの空気過剰率が目標空気過剰率になるように、該過給機制御手段によって過給機を通過する吸気ガス流量を制御し、
さらに、前記吸気制御手段には吸気温度制御部を有し、該吸気温度制御部は、前記混合割合調整装置を制御して希薄濃度メタン含有ガスと大気との混合割合を調整し、過給機上流側の吸気通路の吸気ガス温度を、前記過給機制御手段による目標空気過剰率への制御が安定的に行われる一定温度範囲内に制御することを特徴とする
本発明装置により、希薄濃度メタン含有ガスとして炭鉱坑内から排出される空調用のVAMガスを利用し、さらに、高濃度メタン含有ガスとして炭鉱坑内から排出されるCMMガスを利用すれば、温室効果ガスであるメタンガスの炭鉱坑内からの大気放出量を削減できる。さらに、空調用のVAMガスを有効利用することによって、ガスエンジンの燃料ガスの消費量を削減できる。すなわち、高濃度メタン含有ガスの消費量を削減できる。
ガスエンジンに供給される高濃度メタン含有ガスとして、例えば、前記CMMガス、天然ガス、バイオガス、工場等から排出される副生ガス、ランドフィルガス等が利用できる。
また、前記吸気制御手段で前記混合割合調整装置を制御し、希薄濃度メタン含有ガスと大気との混合割合を調整して、過給機に流入する吸気ガスの温度が一定範囲内に制御されるので、過給機による空気過剰率の制御や、過給機の下流側に設けられた吸気冷却器による温度制御を安定的に行うことができ、メタン含有ガス量が変動する場合においても、最適な空気過剰率や混合ガス温度へ迅速かつ精度よく制御でき、安定した燃焼を維持できる。
なお、前記混合割合調整装置は、例えば、大気やVAMガスの導入路に設けられた流量調整弁等で構成し、これらの開度を調整することで、吸気通路における大気とVAMガスとの混合割合を調整できる。
また、本発明装置は、排気通路に設けられた前記過給機のタービンと並設され、排気ガスの一部を該タービンからバイパスさせるバイパス路と、該バイパス路の排気ガス流量を調整する排気流量調整弁と、該排気流量調整弁を制御して過給機の動作を制御する過給機制御手段と、を備え、前記燃焼室に供給される混合ガスの空気過剰率が目標空気過剰率になるように、該過給機制御手段によって過給機を通過する吸気ガス流量を制御することを特徴とする
過給機制御手段により、過給機を通過する吸気ガス流量を制御して、燃焼室に供給される混合ガスを目標空気過剰率に制御する。この際に、吸気制御手段により、過給機に流入する吸気ガスの温度が予め一定範囲内に制御されるため、メタン含有ガス量が変動する場合においても、過給機による空気過剰率の制御や、過給機の下流側に設けられ吸気冷却器による温度制御によって、最適な空気過剰率へ迅速かつ精度よく制御可能となり、安定した燃焼を維持できる。
また、本発明装置、前記吸気制御手段には吸気温度制御部を有し、該吸気温度制御部は、前記混合割合調整装置を制御して希薄濃度メタン含有ガスと大気との混合割合を調整し、過給機上流側の吸気通路の吸気ガス温度を、前記過給機制御手段による目標空気過剰率への制御が安定的に行われる一定温度範囲内に制御することを特徴とする
前記過給機制御手段による目標空気過剰率への制御が安定的に行われる一定温度範囲とは、例えば20〜25℃に制御する。これによって、メタン含有ガス量が変動する場合においても、過給機に流入される吸気ガス温度が安定し、過給機制御手段による空気過剰率制御、および過給機の下流側の吸気冷却器での温度制御が安定化して、排気ガス性能(NO排出量等)を適正化できると共に、ノッキング等の異常燃焼を生じることなく、エンジン性能を最大限に発揮できる。
また、前記構成に加えて、目標空気過剰率を補正する目標空気過剰率補正手段を備え、前記吸気温度制御部によって希薄濃度メタン含有ガスと大気との混合割合を制御しても、過給機に流入する吸気ガスの温度を一定温度範囲内に制御できないとき、この目標空気過剰率補正手段によって目標空気過剰率を変更するとよい。
前記吸気制御手段によって、希薄濃度メタン含有ガスと大気との混合割合を調整しても、VAMガス又は大気の温度状態によっては、吸気ガス温度を設定範囲に制御できないときがある。このようなときに、前記目標空気過剰率補正手段によって、設定範囲から外れた温度領域での運転に適した目標空気過剰率に補正し、補正後の目標空気過剰率となるようにガスエンジンを運転させる。例えば、目標空気過剰率λをλ=2.0から、ガスエンジンが制御可能な目標空気過剰率であるλ=1.9に補正することで、ガスエンジンを安定的に運転することができる。
また、本発明装置において、前記吸気制御手段には吸気流量制御部を有し、該吸気流量制御部は、前記混合割合調整装置を制御して過給機上流側の吸気ガス流量を、前記過給機制御手段による目標空気過剰率への制御が安定的に行われる一定範囲内に制御するとよい。
これによって、メタン含有ガス量が変動する場合においても、過給機に流入する吸気ガス量が安定し、過給機制御手段よる空気過剰率制御によって、早期にかつ精度良く目標空気過剰率に収束させることができる。
また、本発明装置において、前記大気混合部に供給される希薄濃度メタン含有ガスの流量が常に許容最大量となるように前記混合割合制御装置を制御するようにするとよい。
これによって、ガスエンジンの燃料としてVAMガスを最大限に利用できるので、メタンガスの大気放出量を最小限にできる。また、空調用のVAMガスを有効利用することでエンジンの燃料ガスの消費量を削減できる。すなわち、高濃度メタン含有ガスの消費量を削減できる。
また、本発明装置において、高濃度メタン含有ガスの一部を過給機の上流側でかつ大気混合部の下流側の吸気通路に供給するように構成するとよい。
高濃度メタン含有ガスを過給機の下流側の吸気通路と、上流側の吸気通路とに分けて供給するようにしたため、吸気通路の途中に高濃度メタン含有ガスを混合するガス混合部を構成する制御弁等の機器類を分割配置できる。このように分割配置することにより、夫々の機器類を小型軽量化できる。制御弁等の機器類を小型軽量化できるため、設置スペースの問題を解消できると共に、部品コストを節減できる。
本発明装置によれば、出力軸に連結された発電機と、炭鉱から排出される空調用の希薄濃度メタン含有ガスが供給される吸気通路と、該吸気通路の途中に高濃度メタン含有ガスを混合するガス混合部とを備え、希薄濃度メタン含有ガスと高濃度メタン含有ガスとを混合して燃焼室に供給し燃焼させるようにしたガスエンジンにおいて、前記ガス混合部の上流側吸気通路に設けられた過給機と、該過給機の上流側吸気通路に設けられ、希薄濃度メタン含有ガスに大気を混合させる大気混合部と、該大気混合部で希薄濃度メタン含有ガス及び大気の混合割合を調整する混合割合調整装置と、該混合割合調整装置を制御して過給機に流入する吸気ガスの温度を制御する吸気制御手段と、を備えたことにより、希薄濃度メタン含有ガスとして炭鉱坑内から排出される空調用のVAMガスを利用し、さらに、高濃度メタン含有ガスとして炭鉱坑内から排出されるCMMガスを利用すれば、温室効果ガスであるメタンガスの炭鉱坑内からの大気放出量を削減できる。さらに、空調用のVAMガスを有効利用することによって、ガスエンジンの燃料ガスの消費量を削減できる。すなわち、高濃度メタン含有ガスの消費量を削減できる。
また、吸気制御手段で混合割合調整装置を制御し、大気とVAMガスとの混合割合を調整することにより、過給機に流入する吸気ガスの温度を制御できる。
過給機に流入する吸気ガスの温度が予め一定範囲内に制御されるので、過給機による空気過剰率の制御や、過給機の下流側に設置された吸気冷却器による吸気ガス温度の制御を安定的に行うことができ、メタン含有ガス量が変動する場合においても最適な空気過剰率や混合ガス温度へ迅速かつ精度よく制御でき、安定した燃焼を維持できる。
本発明装置の第1実施形態に係る構成図である。 第1実施形態のガスエンジンの燃焼シリンダの断面図である。 第1実施形態のガスエンジンの制御手順を示すフローチャートである。 本発明装置の第2実施形態に係るエンジン制御装置のブロック線図である。 第2実施形態のガスエンジンの制御手順を示すフローチャートである。 本発明装置の第3実施形態に係る構成図である。 炭鉱近傍に設けられたガスエンジン発電設備の模式図である。
以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
(実施形態1)
本発明装置の第1実施形態を図1〜図3に基づいて説明する。本実施形態の発電用ガスエンジンは、炭鉱近傍に配設され、燃料ガス及び吸気ガスとして炭鉱坑内から排出されるメタン含有ガスを用いる。図1において、発電用ガスエンジン10は、内部に燃焼室が形成される複数(図1では4個)の燃焼シリンダを備えた機関本体12を備え、発電機16が機関本体12の出力軸14と連結されている。
機関本体12に接続される吸気管18には、上流側で大気混合室(大気混合部)20が設けられている。大気混合室20には大気導入管22とVAMガス導入管24とが接続されている。大気導入管22には大気aが導入され、VAMガス導入管24には、炭鉱坑内から排出された空調用のVAMガスbが導入される。VAMガスは、炭鉱坑内の坑道及び切羽から換気のために排出されるメタン含有ガスで、メタン濃度が1重量%未満の希薄濃度のメタンガスが含まれている。大気混合室20の内部は、大気aとVAMガスbとが混合された吸気混合ガスdとなる。
大気導入管22及びVAMガス導入管24には、夫々流量調整弁26及び28が介設され、これらの開度はエンジン制御装置(吸気制御手段)90Aによって制御される。流量調整弁26及び28の開度を制御することによって、大気混合室20内の吸気混合ガスdの混合割合が調整される。吸気管18には、大気混合室20の下流側に、過給機30のコンプレッサ32が設けられている。コンプレッサ32は、後述する排気管62に設けられたタービン34と回転軸36で連結され、吸気混合ガスdを加圧して機関本体12の燃焼シリンダに供給している。
過給機30の下流側には、吸気冷却器(インタークーラ)38が設けられている。この吸気冷却器38には冷却水wが導入され、過給機30を通過した吸気ガスはこの冷却水wと熱交換され冷却された後、共通吸気管40及び吸気枝管42a〜dを経て各燃焼シリンダ56a〜dに供給される。吸気冷却器38による吸気ガスの温度制御はエンジン制御装置90Aによって制御される。
一方、炭鉱坑内から排出されるCMMガスcが、燃料ガス供給管44から機関本体12に供給される。CMMガスcは、石炭層中に混在し、図7に示すように、保安のためにガス抜きボーリン穴208から真空ポンプ211で回収する回収メタン含有ガスであり、メタン濃度が約20〜50重量%含有する高濃度メタン含有ガスである。燃料ガス供給管44には、上流側から順に、バッファタンク46、流量調整弁48及びガス圧縮機50が介設されている。流量調整弁48の開度はエンジン制御装置90Aによって制御される。
燃料ガス供給管44は4個の燃料枝管52a〜dに分岐し、各燃料枝管52a〜dは夫々吸気枝管42a〜dに接続されている。
燃料ガス供給管44に送られたCMMガスcは、ガス圧縮機50で圧縮され、燃料枝管52a〜dを経て吸気枝管42a〜dに供給される。該吸気枝管内で吸気混合ガスdとCMMガスcとが予混合され、この混合ガスが燃料ガスgとなって(図2参照)、各燃焼シリンダ56a〜dに供給される。各燃料枝管52a〜dには、夫々流量調整弁54a〜dが設けられ、これら流量調整弁の開度は、エンジン制御装置90Aによって制御される。なお、流量調整弁54a〜dによって吸気枝管42a〜dへの燃料枝管52a〜dの接続部であるガス混合部を構成している。
各燃焼シリンダ56a〜dのヘッド部には、夫々排気枝管58a〜dが接続されている。排気枝管58a〜dは共通排気管60に接続され、共通排気管60はさらに排気管62に接続されている。排気管62には過給機30のタービン34が設けられている。各燃焼シリンダ56a〜dから排出される排気ガスeは、排気枝管58a〜d、共通排気管60及び排気管62を経て排気される。また、タービン34をバイパスするバイパス管64が排気管62に接続され、バイパス管64には流量調整弁66が介設されている。流量調整弁66の開度は、エンジン制御装置90Aによって制御される。
次に、図2により、機関本体12の燃焼シリンダ56a〜dのヘッド部の構成を説明する。図2において、燃焼シリンダ56a〜dの内部でピストン70が往復動する。ピストン70の上面に凹み70aが刻設され、この凹み70aの上方に主燃焼室mが形成される。燃焼シリンダ56a〜dの上面中央には、インジェクタケース72が装着されている。インジェクタケース72の内部には、インジェクタ76が装着されており、インジェクタ76の下方には副室sが形成されている。インジェクタ76には、インジェクタケース72を貫通して導管78が接続されており、導管78を通してインジェクタ76の内部にパイロット燃料pが供給される。
インジェクタケース72の両側の燃焼シリンダ上面には、吸気枝管42a〜dに連通した吸気口と、排気枝管58a〜dに連通した排気口とが設けられている。また、該吸気口を開閉する吸気弁80と、該排気口を開閉する排気弁82とが設けられている。各排気枝管58a〜dには、排気ガスの温度を検出する排気温度センサ84が設けられ、排気温度センサ84の検出値はエンジン制御装置90Aに送られる。
吸気枝管42a〜dを流れる吸気混合ガスdに対して、燃料枝管52a〜dからCMMガスcが供給され、両者は予混合し、燃料ガスgとなって、吸気口から燃焼シリンダ56a〜d内に供給される。該燃焼シリンダ内の燃料ガスgは、ピストン70によって加圧され、高圧高温状態となってインジェクタケース72の下部に穿設された噴孔74から副室sに入る。一方、インジェクタ76から副室sにパイロット燃料pが噴霧され、該パイロット燃料pは、高温高圧状態の燃料ガスgによって着火し、着火した副室s内の火炎は、インジェクタケース72の下部に穿設された孔74から主燃焼室mに伝播し、主燃焼室mで火炎fが広がる。
主燃焼室mで燃料ガスgが膨脹し、ピストン70を下方へ押し下げて出力軸14を回転させる。燃焼した後の排ガスeは、排気枝管58a〜d、共通排気管60及び排気管62を通って排出される。
図1に戻り、出力軸14の回転速度を検出する回転速度センサ85や、各燃焼シリンダ56a〜dの主燃焼室mの圧力を検出する図示省略の筒内圧力センサ等が設けられ、排気温度センサ84を含む前記センサで検出された検出値は、エンジン制御装置90Aに送られる。これらの検出値に基づいて、エンジン出力制御手段92によってガスエンジン10の出力や主燃焼室mでの燃焼状態が制御される。
また、過給機30と大気混合室20との間の吸気管18に、過給機30のコンプレッサ32に流入する吸気混合ガスdの温度を検出する吸気温度センサ87と、吸気ガス圧力を検出する吸気圧力センサ88が設けられている。これらの検出値がエンジン制御装置90Aに送られる。
かかる構成において、エンジン制御装置90Aの過給機制御手段94によって、流量調整弁66の開度が制御され、バイパス管64を流れる排気ガスの流量が制御される。これによって、排気管62を流れる排気ガス流量が制御されて、過給機30のタービン回転数が制御され、吸気管18を流れる吸気ガスの流量が制御される。
このように、過給機30に流入する吸気ガスの流量を制御することによって、前記燃焼室に供給される混合ガスgの空気過剰率λを目標空気過剰率に制御する。
空気過剰率λの算出方法は、吸気温度センサ87及び吸気圧力センサ88で吸気混合ガスdの温度及び圧力を検出し、これらの検出値から吸気混合ガスdの密度を算出する。次に、この密度から流量を算出する。一方、燃料ガス供給管44を流れるCMMガスcの流量を流量調整弁48の開度から算出する。こうして算出された吸気混合ガスdの流量と、CMMガスcの流量とから、空気過剰率近似値λ’を算出する。吸気混合ガスdにはVAMガスbのメタンガスが含まれているため、前記計算方法では空気過剰率λの正確な計算値は出ないが、VAMガスbのメタン濃度は、通常1重量%未満と極めて低いので、吸気管18内の吸気混合ガスdを空気と同等として扱い、λ’≒λと見做して算出する。
図1において、大気導入管22から導入する大気aの温度をTAir、流量をQAirで表し、VAMガス導入管24から導入するVAMガスbの温度をTVAM、流量をQVAMで表し、過給機30に流入する吸気混合ガスdの温度をTV+A、流量をQV+Aで表す。なお、QV+A=QAir+QVAMである。
炭鉱坑内から排出されるVAMガスbの温度は、通常、大気圧下で20〜25℃であるが、吸気管18を流れる吸気混合ガスdは、コンプレッサ32で昇温する。主燃焼室mに供給される燃料ガスgの温度は、主燃焼室mでの燃料ガスgの燃焼状態に影響し、燃料ガスgの温度によっては失火やノッキング等の異常燃焼が生じるおそれがある。また、吸気混合ガスdの密度は温度によって異なるので、吸気混合ガスdの温度は空気過剰率λにも影響する。
そのため、通常、主燃焼室mに供給される燃料ガスgの温度は、40〜45℃以下の所定の範囲内に制御される必要がある。過給機30の下流側の吸気冷却器38によって、吸気混合ガスdは冷却制御されるが、吸気冷却器38の性能の限界、および、安定した空気過剰率制御を行うために、過給機30に流入する吸気混合ガスdの温度を20〜25℃にする必要がある。この吸気温度制御手順を図3により説明する。
本実施形態では、過給機制御手段94によって、過給機30のコンプレッサ32を通過して燃焼室に供給される吸気混合ガスdの流量QV+Aが制御され、目標空気過剰率λとなる流量に制御される。目標空気過剰率λは、例えば、排気ガスe中のNO濃度の低減等の観点から、λ=2.0と設定される。図3は、この目標空気過剰率の過給機30の制御状態において、該吸気混合ガスdの温度TV+Aを設定温度TSUC(TSUC1<TSUC<TSUC2)に制御する制御手順を示すフローチャートである。このTSUCの範囲は、例えば一定温度の範囲としては20℃〜25℃の範囲である。
図3において、ステップS10で制御を開始し、ステップS12でTV+A<TSUC1であるとき、ステップS14に進む。ステップS14でTSUC1<TVAMのとき、吸気温度制御部96で流量調整弁26及び28の開度を制御することによって、VAMガス流量QVAMを増やし、大気流量QAirを減らす。これによって、吸気混合ガスdの温度TV+Aを上昇させ、設定温度範囲になるようにする。なお、VAMガス流量QVAMと大気流量QAirとの合計流量である吸気混合ガスdの流量QV+Aは変更しない。
ステップS14でTSUC1<TVAMでないときはステップS16に進む。ステップS16でTSUC1<TAirであるとき、VAMガス流量QVAMを減らし、大気流量QAirを増やす。これによって、吸気混合ガスdの温度TV+Aを上昇させ、設定温度範囲になるようにする。
ステップS16でTSUC1<TAirでないときは、VAMガス温度TVAM、および大気温度TAirがともにTSUC1より高いため、吸気混合ガスdの温度を設定範囲に制御できないと判断する。そのため、空気過剰率補正手段98で、吸気混合ガスdが外れた温度域である場合の運転に適した目標空気過剰率λ’(例えばλ’=2.0+0.1)に補正する。そして、補正後の目標空気過剰率λ’となるように、吸気混合ガスdの設定流量QSUCを変更し(QSUC→QSUC+i)、過給機制御手段94によって、吸気混合ガスdの流量がQSUC+iとなるように流量調整弁66の開度を制御する。
また、ステップS12でTV+A<TSUC1でないとき、ステップS18に進む。ステップS18でTSUC2<TV+Aでないときは、吸気混合ガス温度TV+Aが設定温度範囲にあるので、ステップS12に戻る。ステップS18でTSUC2<TV+Aであるときは、ステップS20に進む。ステップS20でTVAM<TSUC2であるときは、VAMガス流量QVAMを増やし、大気流量QAirを減らす。これによって、吸気混合ガスdの温度TV+Aを下降させ、設定温度範囲になるようにする。
ステップS20でTVAM<TSUC2でないときは、ステップS22に進む。ステップS22でTAir<TSUC2のときは、VAMガス流量QVAMを減らし、大気流量QAirを増やす。これによって、吸気混合ガスdの温度TV+Aを下降させ、設定範囲になるようにする。
ステップS22でTAir<TSUC2でないときは、VAMガス温度TVAM、および大気温度TAirがともにTSUC2より低いため、吸気混合ガスdの温度を設定範囲に制御できないと判断する。そのため、空気過剰率補正手段98で、混合ガスが外れた温度域である場合の運転に適した目標空気過剰率λ’’(例えばλ’’=2.0−0.1)に補正する。そして、補正後の目標空気過剰率λ’’となるように、吸気混合ガスdの設定流量QSUCを変更し(QSUC→QSUC−i)、過給機制御手段94によって吸気混合ガスdの流量がQSUC−iとなるように流量調整弁66の開度を制御する。
なお、本実施形態では、吸気温度制御部96によって吸気混合ガスdの温度TV+Aを制御するとき、許容範囲内でVAMガスbの流量QVAMが常に最大となるように制御している。これによって、VAMガス量を最大限に利用できるようにしている。
本実施形態によれば、炭鉱坑内から排出されるVAMガスbをガスエンジン10の吸気ガスとして利用すると共に、CMMガスcをガスエンジン10の燃料ガスとして利用するので、温室効果ガスであるメタンガスの炭鉱坑内からの大気放出量を削減できる。
また、過給機制御手段94によって過給機30のタービン34をバイパスする排気ガスeの流量を制御することにより、燃焼シリンダ56a〜dに供給される燃料ガスgの空気過剰率λを目標空気過剰率に制御できる。そのため、排気ガスe中のNO等の発生を抑制できると共に、ノッキング等の異常燃焼を生じることなく、エンジン性能を最大限に発揮できる。
また、大気aとVAMガスbとの吸気混合ガスdを吸気ガスとしているので、VAMガスbの供給量に応じて大気供給量を調整することにより、燃焼シリンダ56a〜dへの吸気ガスの供給を安定化できる。そのため、VAMガスbが大きく変動しても燃焼シリンダ56a〜dへの吸気ガスの供給量を安定化できる。
さらに、吸気ガス中に大気aを導入することで、吸気ガス温度を制御しているので、吸気ガス温度の制御が容易になる。そして、過給機30への流入前の吸気ガス温度を20〜25℃の範囲になるように制御することによって、過給機制御手段94による空気過剰率の制御や、過給機30の下流側に設置された吸気冷却器38による吸気ガス温度の制御を安定的に行うことができ、メタン含有ガス量が変動する場合においても最適な空気過剰率の制御、および燃焼室への最適な混合ガス温度への制御が、迅速かつ精度よく行うことができ、安定した燃焼を維持できる。
また、吸気管18の大気aとVAMガスbとの混合割合を調整しても、吸気混合ガスdの温度を設定範囲に調整できないときは、空気過剰率補正手段98によって、吸気混合ガスdが外れた温度領域で運転される場合に適した目標空気過剰率に変更しているので、ガスエンジンの運転に支障を来たさない。すなわち、目標空気過剰率λが、例えばλ=2.0から1.9に補正した場合には、理論的な空気過剰率からずれるためにNOx等の排ガス性能に悪影響を及ぼすが、ガスエンジンが制御可能な目標空気過剰率とすることでガスエンジンを安定的に運転することができる。
また、大気aとVAMガスbとの混合割合は、空気過剰率λを目標空気過剰率に制御できる範囲で、かつ吸気混合ガスdの温度を設定範囲に制御できる条件の下で、VAMガス流量が最大限となるように調整されている。そのため、VAMガスbの大気放出量を最大限削減できると共に、VAMガスb中に含まれるメタンガスの熱量を最大限利用できるので、高濃度メタン含有ガスのCMMガスの消費量を削減できる。
(実施形態2)
次に、本発明装置の第2実施形態を図4及び図5により説明する。本実施形態は、吸気混合ガスdの温度が既に設定範囲に入っており、このとき、空気過剰率λを目標空気過剰率に制御する場合の例である。図4は、本実施形態のエンジン制御装置90Bを示す。エンジン制御装置90Bは、第1実施形態で用いられるエンジン制御装置90Aと比べて、エンジン制御装置90Aの吸気温度制御部96及びλ補正手段98の代わりに、吸気流量制御部100を設けている。エンジン制御装置90Bのその他の構成は、エンジン制御装置90Aと同一である。また、エンジン制御装置以外の全体構成も第1実施形態と同一である。
吸気流量制御部100は、吸気温度センサ87及び吸気圧力センサ88の検出値に基づいて、流量調整弁26及び28の開度を調整し、これによって、大気aとVAMガスbとの混合割合を調整して、過給機30に流入する吸気混合ガスdの流量を調整可能にしている。以下、本実施形態の吸気混合ガスdの流量調整手順を図5により説明する。
図5では、吸気混合ガスdの流量QV+Aを一定の範囲内(QSUC1<QSUC<QSUC2)に制御するフローチャートである。即ち、設定した目標空気過剰率λに対する
吸気混合ガスdの流量QV+Aの制御範囲の最小値をQSUC1,最大値をQSUC2とし,QV+Aがこの制御範囲に入り、且つVAMガスbの流量QVAMを供給可能な中で最大とする制御を行う例を示す。図中、QVAM2はVAMガスbの最大限界量である。
図5において、ステップとS30で制御を開始する。ステップS32で、QV+A<QSUC1であるときは、ステップS34に進む。ステップS34で、QVAM<QVAM2であるときは、VAMガスbの流量を増やして、吸気混合ガスdの流量を増量し、設定範囲になるようにする。QVAM<QVAM2でないときは、VAMガス流量を減らして、VAMガス流量をQVAM2以下にすると共に、大気aの流量を増やして吸気混合ガスdの流量を増量し、設定範囲になるようにする。
ステップS32で、QV+A<QSUC1でないときは、ステップS36に進む。ステップS36で、QSUC2<QV+Aでないときは、吸気混合ガスdの流量が設定範囲内であるので、ステップS32に戻り、同じ手順を繰り返す。
ステップS36で、QSUC2<QV+Aであるときは、QV+Aが設定範囲を越えており、ステップS38に進む。ステップS38で、0<QAirのときは、大気aの流量を減らして、QV+Aが設定範囲となるようにする。0<QAirでないときは、VAMガスbの流量を減らして、QV+Aが設定範囲になるようにする。
このようにして、過給機30の流入側の吸気混合ガスdの流量を設定範囲に維持する。本実施形態によれば、吸気流量制御部100によって、過給機30の流入側の吸気混合ガス量を制御することによって、過給機制御手段94による空気過剰率の制御を急速かつ精度良く行なうことができる。また、メタン含有ガス量が変動する場合においても、空気過剰率の制御を安定的に行うことができる。
(実施形態3)
次に、本発明装置の第3実施形態を図6により説明する。図6において、バッファタンク46に燃料ガス分岐管110を接続すると共に、コンプレッサ32と大気混合室20との間の吸気管18にガスミキサ112を設けている。そして、燃料ガス分岐管110をガスミキサ112に接続して、CMMガスcの一部をガスミキサ112から吸気管18に供給するようにしている。燃料ガス分岐管110には、フィルタ114と流量調整弁116とが介設されている。流量調整弁116の開度はエンジン制御装置90Aによって制御される。エンジン制御装置90Aを含めて、その他の構成は、前記第1実施形態と同一である。
なお、第3実施形態においては、流量調整弁54a〜dとガスミキサ112とによってガス混合部を構成している。
本実施形態では、第1実施形態と同様の操作で、空気過剰率の制御と吸気混合ガスdの温度制御とが行なわれる。その際、CMMガスcの一部は、燃料ガス分岐管110を通して吸気管18に供給される。
本実施形態では、CMMガスcの一部を吸気管18に供給しているので、第1実施形態の作用効果に加えて、燃料ガス供給管44を通して吸気枝管42a〜dに供給されるCMMガスcの流量を低減できる。そのため、吸気枝管42a〜d及び流量調整弁54a〜d等の機器類を小型化できるので、設置スペースを要さず、設備費が低コストとなる利点がある。
本発明の発電用ガスエンジンによれば、メタン含有ガスを有効利用して温室効果ガスの放出を抑制できると共に、適正空気過剰率の下で安定燃焼を行なうことができる。
10 発電用ガスエンジン
12 機関本体
14 出力軸
16 発電機
18 吸気管
20 混合室(大気混合部)
22 大気導入管
24 VAMガス導入管
26、28 流量調整弁(混合割合調整装置)
48、66、116 流量調整弁
54a〜d 流量調整弁(ガス混合部)
30 過給機
32 コンプレッサ
34 タービン
36 回転軸
38 吸気冷却器
40 共通吸気管
42a〜d 吸気枝管
44 燃料ガス供給管
46 ガスホルダ
50 ガス圧縮機
52a〜d 燃料枝管
56a〜d 燃焼シリンダ
58a〜d 排気枝管
60 共通排気管
62 排気管
64 バイパス管
70 ピストン
72 インジェクタケース
74 孔
76 インジェクタ
78 導管
80 吸気弁
82 排気弁
84 排気温度センサ
85 回転速度センサ
87 吸気温度センサ
88 吸気圧力センサ
90A、90B エンジン制御装置(吸気制御手段)
92 エンジン制御手段
94 過給機制御手段
96 吸気温度制御部
98 λ補正手段
100 吸気流量制御部
110 燃料ガス分岐管
112 ガスミキサ(ガス混合部)
114 フィルタ
200 ガスエンジン発電設備
202 炭鉱坑内ユーティリティー設備
204 切羽
206 換気孔
208 ガス抜きボーリング穴
210,212 管路
211 真空ポンプ
CM 炭鉱
炭層
採掘炭層
a 大気
b VAMガス
c CMMガス
d 吸気混合ガス
e 排気ガス
g 混合ガス(燃料ガス)
p パイロット燃料
w 冷却水

Claims (5)

  1. 出力軸に連結された発電機と、炭鉱から排出される空調用の希薄濃度メタン含有ガスが供給される吸気通路と、該吸気通路の途中に高濃度メタン含有ガスを混合するガス混合部とを備え、希薄濃度メタン含有ガスと高濃度メタン含有ガスとを混合して燃焼室に供給し燃焼させるようにしたガスエンジンにおいて、
    前記ガス混合部の上流側吸気通路に設けられた過給機と、該過給機の上流側吸気通路に設けられ、希薄濃度メタン含有ガスに大気を混合させる大気混合部と、該大気混合部で希薄濃度メタン含有ガス及び大気の混合割合を調整する混合割合調整装置と、該混合割合調整装置を制御して前記過給機に流入する吸気ガスの温度を一定範囲内に制御する吸気制御手段と、を備え
    さらに、排気通路に設けられた前記過給機のタービンと並設され、排気ガスの一部を該タービンからバイパスさせるバイパス路と、該バイパス路の排気ガス流量を調整する排気流量調整弁と、該排気流量調整弁を制御して過給機の動作を制御する過給機制御手段と、を備え、前記燃焼室に供給される混合ガスの空気過剰率が目標空気過剰率になるように、該過給機制御手段によって過給機を通過する吸気ガス流量を制御し、
    さらに、前記吸気制御手段には吸気温度制御部を有し、該吸気温度制御部は、前記混合割合調整装置を制御して希薄濃度メタン含有ガスと大気との混合割合を調整し、過給機上流側の吸気通路の吸気ガス温度を、前記過給機制御手段による目標空気過剰率への制御が安定的に行われる一定温度範囲内に制御することを特徴とするガスエンジン。
  2. 目標空気過剰率を補正する目標空気過剰率補正手段を備え、前記吸気温度制御部によって希薄濃度メタン含有ガスと大気との混合割合を制御しても、過給機に流入する吸気ガスの温度を前記一定温度範囲内に制御できないとき、前記目標空気過剰率補正手段によって目標空気過剰率を変更するようにしたことを特徴とする請求項1に記載のガスエンジン。
  3. 前記吸気制御手段には吸気流量制御部を有し、該吸気流量制御部は、前記混合割合調整装置を制御して過給機上流側の吸気ガス流量を、前記過給機制御手段による目標空気過剰率への制御が安定的に行われる一定範囲内に制御することを特徴とする請求項1に記載のガスエンジン。
  4. 前記大気混合部に供給される希薄濃度メタン含有ガスの流量が常に許容最大量となるように前記混合割合制御装置を制御するようにしたことを特徴とする請求項1〜3いずれかの項に記載のガスエンジン。
  5. 高濃度メタン含有ガスの一部を前記過給機の上流側でかつ前記大気混合部の下流側の吸気通路に供給するように構成したことを特徴とする請求項1〜4のいずれかの項に記載のガスエンジン。
JP2010124052A 2010-05-31 2010-05-31 ガスエンジン Active JP5314637B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010124052A JP5314637B2 (ja) 2010-05-31 2010-05-31 ガスエンジン
CN201180021954.5A CN102884295B (zh) 2010-05-31 2011-05-18 燃气发动机
US13/695,562 US9086022B2 (en) 2010-05-31 2011-05-18 Gas engine
EP11789627.4A EP2578849B8 (en) 2010-05-31 2011-05-18 Gas engine
KR1020127025920A KR101399224B1 (ko) 2010-05-31 2011-05-18 가스 엔진
PCT/JP2011/061455 WO2011152218A1 (ja) 2010-05-31 2011-05-18 ガスエンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010124052A JP5314637B2 (ja) 2010-05-31 2010-05-31 ガスエンジン

Publications (2)

Publication Number Publication Date
JP2011247238A JP2011247238A (ja) 2011-12-08
JP5314637B2 true JP5314637B2 (ja) 2013-10-16

Family

ID=45066597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010124052A Active JP5314637B2 (ja) 2010-05-31 2010-05-31 ガスエンジン

Country Status (6)

Country Link
US (1) US9086022B2 (ja)
EP (1) EP2578849B8 (ja)
JP (1) JP5314637B2 (ja)
KR (1) KR101399224B1 (ja)
CN (1) CN102884295B (ja)
WO (1) WO2011152218A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308466B2 (ja) * 2011-01-31 2013-10-09 三菱重工業株式会社 ガスエンジンの燃料ガス供給方法および装置
JP5314719B2 (ja) * 2011-02-28 2013-10-16 三菱重工業株式会社 ガスエンジンの給気装置
JP5980151B2 (ja) 2013-03-19 2016-08-31 三菱重工業株式会社 ガスエンジンの排ガス制御装置
CH708276A1 (de) * 2013-07-04 2015-01-15 Liebherr Machines Bulle Sa Gasmotor.
KR101653362B1 (ko) * 2014-03-05 2016-09-01 한국기계연구원 막 분리와 엔진 연소기술을 이용한 바이오메탄 및 전기 동시 생산 장치
US9556792B2 (en) 2014-10-17 2017-01-31 Kohler, Co. Dual compressor turbocharger
US10378549B2 (en) 2014-10-17 2019-08-13 Kohler Co. Dual compressor turbocharger
JP5838491B1 (ja) * 2015-02-13 2016-01-06 株式会社フクハラ 高純度加圧窒素ガス生成システム並びに高純度加圧窒素ガス生成方法
AT518584B1 (de) * 2016-05-11 2018-02-15 Ge Jenbacher Gmbh & Co Og Verfahren zum Erkennen der Gasmenge
CN109322751A (zh) * 2018-10-09 2019-02-12 广西玉柴机器股份有限公司 自适应甲烷浓度变化的燃气发动机启动控制方法
CA3060912A1 (en) * 2018-11-02 2020-05-02 Rem Technology Inc. Intake air assessment for industrial engines
KR102289842B1 (ko) 2021-02-09 2021-08-13 김종현 탄소배출권 확보를 위한 rto식 탄광 메탄가스 포괄처리 시스템
CN113175396A (zh) * 2021-06-15 2021-07-27 大连亿斯德特种智能装备有限公司 一种利用高低浓度瓦斯混合燃烧发电系统
CN114576045A (zh) * 2022-05-07 2022-06-03 四川华气动力有限责任公司 一种稀薄燃烧技术发动机的预燃室进混合气系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785975B1 (en) 1994-10-27 2002-07-03 Isentropic Systems Ltd. Improvements in the combustion and utilisation of fuel gases
US5713340A (en) * 1996-06-12 1998-02-03 Cummins Engine Company, Inc. System for fueling an internal combustion engine with low and high pressure gaseous fuel
US7363883B2 (en) * 2004-03-19 2008-04-29 Mitsubishi Heavy Industries, Ltd. Gas engine electric power generating system effectively utilizing greenhouse gas emission credit
JP4247191B2 (ja) * 2005-03-08 2009-04-02 三菱重工業株式会社 ガスエンジンのガス供給装置及び運転方法
US8382469B2 (en) * 2005-03-09 2013-02-26 Rem Technology, Inc. Method and apparatus for utilising fugitive gases as a supplementary fuel source
US7591866B2 (en) 2006-03-31 2009-09-22 Ranendra Bose Methane gas recovery and usage system for coalmines, municipal land fills and oil refinery distillation tower vent stacks
JP4563443B2 (ja) * 2007-12-14 2010-10-13 三菱重工業株式会社 ガスエンジンシステムの制御方法及び該システム
JP4616878B2 (ja) * 2007-12-14 2011-01-19 三菱重工業株式会社 ガスエンジンシステムの制御方法及び該システム
JP4538077B2 (ja) 2008-06-13 2010-09-08 川崎重工業株式会社 希薄燃料吸入ガスタービン
US9118048B2 (en) * 2009-09-04 2015-08-25 Lg Fuel Cell Systems Inc. Engine systems and methods of operating an engine
JP4751950B1 (ja) * 2010-03-24 2011-08-17 川崎重工業株式会社 希薄燃料吸入ガスタービン
JP5449062B2 (ja) * 2010-07-02 2014-03-19 三菱重工業株式会社 排ガスタービン過給機のシールエア供給装置
JP5308466B2 (ja) * 2011-01-31 2013-10-09 三菱重工業株式会社 ガスエンジンの燃料ガス供給方法および装置

Also Published As

Publication number Publication date
EP2578849A1 (en) 2013-04-10
EP2578849B1 (en) 2018-08-08
US9086022B2 (en) 2015-07-21
JP2011247238A (ja) 2011-12-08
US20130055712A1 (en) 2013-03-07
CN102884295B (zh) 2016-11-09
WO2011152218A1 (ja) 2011-12-08
KR101399224B1 (ko) 2014-05-27
KR20120135305A (ko) 2012-12-12
EP2578849A4 (en) 2017-01-11
EP2578849B8 (en) 2018-09-12
CN102884295A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5314637B2 (ja) ガスエンジン
KR101418226B1 (ko) 가스 엔진의 연료 가스 공급 방법 및 장치
US8365537B2 (en) Power plant with CO2 capture
US9828912B2 (en) Combined cycle power plant with flue gas recirculation
US8485158B2 (en) Method to control a gas engine system thereof
US20130269355A1 (en) Method and system for controlling an extraction pressure and temperature of a stoichiometric egr system
JP4247191B2 (ja) ガスエンジンのガス供給装置及び運転方法
US10151487B2 (en) Sequential combustion arrangement with dilution gas
WO2010056789A3 (en) Gaseopus fuel engine charge density control system
US20150337742A1 (en) Gas turbine with fuel composition control
JP2009144628A (ja) ガスエンジンシステムの制御方法及び該システム
AU2016284752B2 (en) Method and equipment for combustion of ammonia
KR20140012042A (ko) 연도 가스 압축을 이용한 산소 연소 설비 및 방법
US8813472B2 (en) System and method for controlling a semi-closed power cycle system
JP4452092B2 (ja) ガスエンジンの燃焼制御方法及びその装置
EP2715208B1 (en) Method and system for treating cargo vapors from crude oil and petroleum products tanks to produce electricity
CN116324141B (zh) 柴油发动机
JP2008196360A (ja) 発電システム
JP2007211729A (ja) 4サイクルエンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R151 Written notification of patent or utility model registration

Ref document number: 5314637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350