WO2011152211A1 - イオンセンサ、表示装置、イオンセンサの駆動方法、及び、イオン濃度の算出方法 - Google Patents

イオンセンサ、表示装置、イオンセンサの駆動方法、及び、イオン濃度の算出方法 Download PDF

Info

Publication number
WO2011152211A1
WO2011152211A1 PCT/JP2011/061385 JP2011061385W WO2011152211A1 WO 2011152211 A1 WO2011152211 A1 WO 2011152211A1 JP 2011061385 W JP2011061385 W JP 2011061385W WO 2011152211 A1 WO2011152211 A1 WO 2011152211A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
field effect
effect transistor
sensor
ions
Prior art date
Application number
PCT/JP2011/061385
Other languages
English (en)
French (fr)
Inventor
村井 淳人
片岡 義晴
卓哉 渡部
祐子 久田
智 堀内
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2012518319A priority Critical patent/JP5426766B2/ja
Priority to CN2011800274171A priority patent/CN102933960A/zh
Priority to US13/701,129 priority patent/US20130069121A1/en
Publication of WO2011152211A1 publication Critical patent/WO2011152211A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4148Integrated circuits therefor, e.g. fabricated by CMOS processing

Definitions

  • the present invention relates to an ion sensor, a display device, an ion sensor driving method, and an ion concentration calculating method. More specifically, an ion sensor suitable for an ion sensor including a field effect transistor (hereinafter also referred to as “FET”), a display device including the ion sensor, a driving method of the ion sensor, The present invention relates to an ion concentration calculation method using an ion sensor.
  • FET field effect transistor
  • both ions and negative ions generated in the air have been found to sterilize bacteria floating in the air and purify the air.
  • ions positive ions and negative ions generated in the air
  • ion generators such as air purifiers that apply this technology are attracting a great deal of attention in the era of comfort and health.
  • an air conditioner including an ion sensor including an FET and a display unit that displays an ion concentration measured by the ion sensor, a field effect biosensor (for example, a patent) Document 2), a field effect transistor type ion sensor (for example, refer to Patent Document 3), and the like.
  • an ion sensor including an FET can be easily downsized, standardized, and easily mass-produced.
  • an ion generating element including an ion sensor unit that quantifies positive ions and negative ions generated from an ion generating unit, and a display unit that displays a quantified amount of ions (for example, see Patent Document 4).
  • a remote controller for home appliances with a built-in ion sensor that includes an ion sensor that measures the ion concentration in the atmosphere and a display unit that displays the current state of the home appliance (for example, patents). Reference 5).
  • FIG. 22 is an equivalent circuit illustrating an ion sensor having an N-channel thin film transistor (Thin Film Transistor, hereinafter also referred to as “TFT”) as an FET.
  • An input wiring 27 is connected to the drain electrode of the TFT 50.
  • a high voltage (+10 V) or a low voltage (0 V) is applied to the input wiring 27, and the voltage of the input wiring 27 is set to Vdd.
  • An output wiring 21c is connected to the source electrode. The voltage of the output wiring 21c is set to Vout.
  • the ion sensor antenna 41c is connected to the gate electrode of the TFT 50 through the connection wiring 22c.
  • the reset wiring 2i is connected to the connection wiring 22c.
  • An intersection (node) between the wirings 22c and 2i is referred to as node-Z.
  • the reset wiring 2i is a node-Z, that is, a wiring for resetting the voltage between the gate of the TFT 50 and the antenna 41c.
  • a high voltage (+ 20V) or a low voltage ( ⁇ 10V) is applied to the reset wiring 2i, and the voltage of the reset wiring 2i is set to Vrst.
  • a ground (GND) is connected to the connection wiring 2i via a storage capacitor 43c.
  • Vrst is set to the low voltage ( ⁇ 10V)
  • Vdd is set to the low voltage (0V).
  • a high voltage (+ 20V) is first applied to the reset wiring 2i, and the voltage of the antenna 41c (node-Z voltage) is reset to + 20V.
  • the reset wiring 2i is kept in a high impedance state.
  • a high voltage (+10 V) is temporarily applied to the input wiring 27. That is, a pulse voltage of +10 V is applied to the input wiring 27.
  • a pulse voltage of +10 V is applied to the input wiring 27.
  • the current Id of the output wiring 21c changes according to the degree of opening of the gate of the sensor TFT 50, that is, the voltage difference of node-Z.
  • the negative ion concentration is calculated based on the current Id of the output wiring 21c.
  • FIG. 23 is a graph showing the result of measuring the negative ion concentration of the specimens having different mixing ratios of both ions with the ion sensor shown in FIG.
  • DA dry air
  • 1400 ⁇ five gas of air containing 10 3 / cm 3 of negative ions and 600 ⁇ 10 3 / cm 3 plus ions was measured.
  • the sensor output (sensitivity curve) varies greatly depending on the total amount of both ions and the balance (abundance ratio) of both ions.
  • the negative ion concentrations of the four specimens excluding DA were all 1400 ⁇ 10 3 ions / cm 3
  • Id at time t was a different value for the four specimens.
  • the decrease in Id was suppressed. This is presumably because the larger the amount of positive ions, the more the negative ions adsorbed on the ion sensor antenna 41c were inhibited by the positive ions.
  • the reaction between the ion sensor antenna and the ion to be measured is hindered by ions having a polarity opposite to that of the ion to be measured.
  • the concentration of ions to be measured cannot be measured with high accuracy.
  • a high voltage for example, a voltage exceeding 1000 V
  • thin-film devices such as FETs and TFTs have a low withstand voltage of several tens of volts, and in an ion sensor having a general FET, a high voltage is applied to the ion sensor antenna to prevent inhibition by ions having reverse polarity. I can't do it.
  • the present invention has been made in view of the above-described situation, and an ion sensor, a display device, an ion sensor driving method, and an ion capable of measuring an ion concentration with high accuracy in a sample in which both ions are mixed.
  • the object is to provide a method for calculating the concentration.
  • the inventors of the present invention have studied various ion sensors that can measure the ion concentration with high accuracy for a specimen containing both positive ions and negative ions. There is a correlation between the sensor output when ions are detected, and the concentration of positive and / or negative ions is accurately determined from the sensor output when positive ions are detected and the sensor output when negative ions are detected. It was found that it can be calculated. In addition, after detecting one of the negative ions and the positive ions using the FET, the other one of the negative ions and the positive ions is subsequently detected using the FET, or the negative ions are detected using the first FET.
  • the positive ion detection result and the negative ion detection result can be obtained, and as a result, the ion concentration can be accurately determined.
  • the present inventors have found that it is possible to measure and have conceived that the above problem can be solved brilliantly, and have reached the present invention.
  • one aspect of the present invention is an ion sensor including a field effect transistor, wherein the ion sensor detects one of negative ions and positive ions using the field effect transistor and then continues the field effect. It is an ion sensor that detects the other of negative ions and positive ions using a transistor (hereinafter also referred to as “first invention”).
  • the configuration of the first aspect of the present invention is not particularly limited by other components as long as such components are essential.
  • the present invention is also an ion sensor including a first field effect transistor and a second field effect transistor, wherein the ion sensor detects negative ions using the first field effect transistor, and the second field effect transistor.
  • an ion sensor hereinafter, also referred to as “second aspect of the present invention” that detects positive ions by using.
  • the configuration of the second aspect of the present invention is not particularly limited by other components as long as such components are essential.
  • the present invention is also a driving method of an ion sensor including a field effect transistor, wherein the driving method detects one of negative ions and positive ions using the field effect transistor and then continues the field effect transistor.
  • an ion sensor driving method for detecting the other of negative ions and positive ions hereinafter also referred to as “third invention”.
  • the configuration of the third aspect of the present invention is not particularly limited by other components as long as such components are essential.
  • the present invention is also a driving method of an ion sensor including a first field effect transistor and a second field effect transistor, wherein the driving method detects negative ions using the first field effect transistor, and It also has an aspect of an ion sensor driving method (hereinafter also referred to as “fourth aspect of the present invention”) that detects positive ions using a field effect transistor.
  • the configuration of the fourth aspect of the present invention is not particularly limited by other components as long as such components are essential.
  • the present invention is also a method for calculating an ion concentration using an ion sensor including a field effect transistor, the calculation method including a first step of detecting one of negative ions and positive ions using the field effect transistor; And a second step of detecting the other of negative ions and positive ions using the field effect transistor after the first step (hereinafter referred to as "fifth invention"). Say).
  • the configuration of the fifth aspect of the present invention is not particularly limited by the other components and steps as long as such components and steps are essential.
  • the present invention further relates to an ion concentration calculation method using an ion sensor including a first field effect transistor and a second field effect transistor, wherein the calculation method detects negative ions using the first field effect transistor. And a second step of detecting positive ions using the second field effect transistor (hereinafter also referred to as “sixth aspect of the present invention”).
  • the configuration of the sixth aspect of the present invention is not particularly limited by other components and steps as long as such components and steps are essential.
  • the present invention is also a method for calculating an ion concentration using an ion sensor including at least one field effect transistor, the calculation method including a negative ion detection result obtained by the at least one field effect transistor and a positive ion.
  • an ion concentration calculation method (hereinafter also referred to as “seventh aspect of the present invention”) including a step of determining at least one of a negative ion concentration and a positive ion concentration using the detection result of ions.
  • the configuration of the seventh aspect of the present invention is not particularly limited by the other components and steps as long as such components and steps are essential.
  • the ion concentration can be measured using a single ion sensor circuit including only one FET, so the second, fourth and sixth.
  • the ion sensor can be downsized.
  • the negative ion detection sensor circuit including the first FET and the second FET are provided. It is possible to appropriately design a sensor circuit for detecting positive ions that includes the positive ion. Further, as will be described later, negative ions and positive ions can be detected at the same timing. Therefore, according to the second, fourth, and sixth present inventions, the ion concentration can be measured with higher accuracy than the first, third, and fifth present inventions.
  • the present invention will be described in detail.
  • the ion sensor includes at least one FET, and the electrical resistance of the channel of the FET changes according to the concentration of ions to be sensed. It is detected as a current or voltage change between.
  • each FET is not particularly limited, but a TFT and a MOSFET (Metal Oxide Semiconductor FET) are preferable.
  • the TFT is suitably used for an active matrix drive type liquid crystal display device and an organic EL (Organic Electro-Luminescence) display device.
  • MOSFET is suitably used for semiconductor chips such as LSI and IC.
  • the types of the first FET and the second FET may be the same or different.
  • the types of the FETs may be the same or different.
  • the semiconductor material of the TFT is not particularly limited.
  • amorphous silicon a-Si
  • polysilicon p-Si
  • microcrystalline silicon ⁇ c-Si
  • continuous grain boundary crystalline silicon CG-Si
  • oxide semiconductors examples include oxide semiconductors.
  • the semiconductor material of MOSFET is not specifically limited, For example, silicon is mentioned. Preferred embodiments in the first to seventh aspects of the present invention will be described in detail below.
  • the ion sensor preferably calculates at least one of a negative ion concentration and a positive ion concentration using a negative ion detection result and a positive ion detection result. This makes it possible to calculate the ion concentration of the measurement object with high accuracy even when there is an inhibition by the ion having the opposite polarity to the ion of the measurement object.
  • the sixth aspect of the present invention preferably includes a third step of calculating at least one of the negative ion concentration and the positive ion concentration using the negative ion detection result and the positive ion detection result.
  • ions to be measured are not particularly limited, and may be appropriately set depending on the application. That is, the concentration of only positive or negative ions may be measured, or the concentration of both ions may be measured.
  • At least one of the negative ion concentration and the positive ion concentration is determined using a calibration curve or a lookup table (LUT: Look Up Table) prepared in advance.
  • LUT Look Up Table
  • the ion sensor further includes a capacitor, one terminal of the capacitor is connected to the gate electrode of the field effect transistor, and the other terminal of the capacitor is connected to the other terminal.
  • a voltage is preferably applied.
  • the type of the capacitor is not particularly limited, but is preferably a capacitor having a single plate type structure.
  • the capacitor can be formed at the same time as the electrode and wiring of the FET, and the cost can be reduced.
  • the voltage applied to the other terminal of the capacitor is preferably variable.
  • the push-up or push-down amount can be adjusted as appropriate, so that the gate potential can be easily moved to the optimum voltage region.
  • each FET preferably contains amorphous silicon or microcrystalline silicon.
  • the negative ion detection timing and the positive ion detection timing may be different from each other as long as the ion concentration with acceptable accuracy can be measured.
  • the ion sensor detects the negative ions using the first field effect transistor, and at the same time, the second field effect. It is preferable to detect positive ions using a transistor.
  • the fourth aspect of the present invention preferably detects negative ions using the first field effect transistor and simultaneously detects positive ions using the second field effect transistor.
  • the first step and the second step are preferably performed simultaneously.
  • the ion sensor further includes an ion sensor antenna (hereinafter also simply referred to as “antenna”), and the ion sensor antenna is connected to a gate electrode of the field effect transistor. It is preferable to be connected.
  • the antenna is a conductive member that senses (collects) ions in the air. Therefore, according to the said form, an ion sensor can be functioned effectively. More specifically, when ions arrive at the antenna, the surface of the antenna is charged by the ions, and the potential of the gate electrode of the FET connected to the antenna changes, and as a result, the electrical resistance of the channel of the FET changes. .
  • the ion sensor further includes a first ion sensor antenna and a second ion sensor antenna, and the first ion sensor antenna is the first ion sensor antenna.
  • the second ion sensor antenna is connected to the gate electrode of the second field effect transistor.
  • the ion sensor further includes at least one ion sensor antenna, and each ion sensor antenna is connected to a gate electrode of the at least one field effect transistor.
  • the surface of the ion sensor antenna is preferably covered with a transparent conductive film. This prevents the antenna from being exposed to the external environment and corroding.
  • the surface of the first ion sensor antenna is covered with a first transparent conductive film
  • the surface of the second ion sensor antenna is It is preferable to be covered with a transparent conductive film.
  • each ion sensor antenna is preferably covered with a transparent conductive film.
  • the first FET preferably includes a semiconductor whose characteristics are changed by light, and the semiconductor is preferably shielded from light by a light shielding film.
  • the semiconductor whose characteristics are changed by light include a-Si and ⁇ c-Si. Therefore, in order to use these semiconductors for an ion sensor, it is preferable that the characteristics are not changed by shielding light. Therefore, by shielding a semiconductor whose characteristics are changed by light, a semiconductor whose characteristics are changed by light can be suitably used in the ion sensor.
  • the first FET includes a first semiconductor whose characteristics are changed by light, and the first semiconductor is shielded by the first light shielding film.
  • the second FET preferably includes a second semiconductor whose characteristics are changed by light, and the second semiconductor is preferably shielded from light by a second light shielding film.
  • the at least one field effect transistor includes a semiconductor whose characteristics are changed by light, and the semiconductor is shielded by a light shielding film.
  • the ion sensor antenna may or may not overlap with the channel region of the FET.
  • the antenna does not need to be shielded from light because it usually does not include a semiconductor whose characteristics change due to light. That is, even if the FET needs to be shielded from light, it is not necessary to provide a light shielding film around the antenna. Therefore, if the antenna is provided outside the channel region as in the former form, the antenna placement location can be freely determined without being restricted by the placement location of the FET. Therefore, it is possible to easily form the antenna at a place where ions can be detected more effectively, for example, a flow path for guiding the atmosphere to the antenna or a place near the fan. On the other hand, if the antenna is provided in the channel region as in the latter form, the gate electrode of the FET itself can function as an antenna. Therefore, the ion sensor element can be further downsized.
  • the first ion sensor antenna may or may not be provided on the channel region of the first FET.
  • the second ion sensor antenna may or may not be provided on the channel region of the second FET.
  • the at least one ion sensor antenna may or may not be provided on the channel region of the at least one FET.
  • the present invention is also a display device including the first invention and a display unit including a display unit driving circuit, the display device including a substrate, the field effect transistor, and the display unit driving At least part of the circuit also includes a side surface of a display device (hereinafter also referred to as “eighth aspect of the present invention”) formed on the same main surface of the substrate.
  • the configuration of the eighth aspect of the present invention is not particularly limited by other components as long as such components are essential.
  • the present invention further includes a display device comprising the second invention and a display unit including a display unit driving circuit, wherein the display device includes a substrate, the first field effect transistor, and the first device.
  • the two field effect transistor and at least a part of the display driver circuit also have a side surface of a display device (hereinafter also referred to as “ninth invention”) formed on the same main surface of the substrate.
  • the configuration of the ninth aspect of the present invention is not particularly limited by other components as long as such components are essential.
  • the ion sensor can be provided in a vacant space such as a frame region of the substrate, and the ion sensor can be formed by using the process of forming the display unit driving circuit.
  • the ion sensor can be provided in a vacant space such as a frame region of the substrate, and the ion sensor can be formed by using the process of forming the display unit driving circuit.
  • the types of the eighth and ninth aspects of the present invention are not particularly limited, but a flat panel display (FPD) is preferable.
  • the FPD include a liquid crystal display device, an organic EL display, a plasma display, and the like.
  • the display unit includes an element for exhibiting a display function, and includes, for example, a display element, an optical film, and the like in addition to the display unit driving circuit.
  • the display unit driving circuit is a circuit for driving a display element, and includes circuits such as a TFT array, a gate driver, and a source driver. Particularly, at least a part of the display unit driving circuit is preferably a TFT array.
  • a display element is an element having a light emitting function or a dimming function (light shutter function), and is provided for each pixel or sub-pixel of the display device.
  • a liquid crystal display device generally includes a pair of substrates facing each other and a display element having a dimming function between both substrates. More specifically, a display element of a liquid crystal display device usually includes a pair of electrodes and a liquid crystal sandwiched between both substrates.
  • An organic EL display usually includes a display element having a light emitting function on a substrate. More specifically, the display element of an organic EL display usually includes a structure in which an anode, an organic light emitting layer, and a cathode are laminated.
  • a plasma display usually includes a pair of substrates facing each other and a display element having a light emitting function between both the substrates. More specifically, a light-emitting element of a plasma display usually includes a pair of electrodes, a phosphor formed on one substrate, and a rare gas sealed between the two substrates. Preferred embodiments of the eighth and ninth aspects of the present invention will be described in detail below.
  • the FET is a first FET
  • the display unit driving circuit includes a second FET
  • the first FET and the second FET are formed on the same main surface of the substrate. It is preferred that This makes it possible to share the same materials and processes for forming the first and second FETs, and to reduce the cost required for forming the first and second FETs.
  • the parallel plate type electrode was common for the ion sensor.
  • the ion sensor described in Patent Document 4 includes a flat plate-type acceleration electrode and a collecting electrode that face each other.
  • Such a parallel plate ion sensor is difficult to process on the order of ⁇ m due to the limit of manufacturing accuracy in manufacturing, and thus it is difficult to reduce the size.
  • a parallel plate electrode made up of a pair of ion accelerating electrode and ion collecting electrode is used for the ion sensor, which is also difficult to downsize. .
  • the gap between electrodes is generally about 3 to 5 ⁇ m, and electrodes are provided on the TFT array substrate and the counter substrate, respectively. Even if the sensor is formed, it is considered difficult to introduce ions into the gap.
  • an ion sensor element using an FET and an antenna as in the above embodiment does not require a counter substrate, so that a display device including an ion sensor can be downsized.
  • the display unit driving circuit includes a third FET, and the first FET, the second FET, and the third FET are on the same main surface of the substrate. Preferably it is formed.
  • the ion sensor element is a minimum necessary element for converting the ion concentration in the air into an electrical physical quantity.
  • the types of the second FET in the eighth invention and the third FET in the ninth invention are not particularly limited, but are preferably TFTs.
  • the TFT is suitably used for an active matrix liquid crystal display device or an organic EL display device.
  • the semiconductor material in the case where the second FET in the eighth invention and the third FET in the ninth invention are TFTs is not particularly limited.
  • the ion sensor antenna preferably has a surface (exposed portion) including a first transparent conductive film, and the display portion has a second transparent conductive film.
  • the surface of the ion sensor antenna is covered with the first transparent conductive film, and the display unit has the second transparent conductive film.
  • the transparent conductive film has both conductivity and optical transparency
  • the second transparent conductive film can be suitably used as the transparent electrode of the display unit according to the above embodiment.
  • the materials and processes for forming the first transparent conductive film and the second transparent conductive film can be made the same as each other, the first transparent conductive film can be formed at low cost. It becomes.
  • the antenna can be prevented from being exposed to the external environment and corroded.
  • the first transparent conductive film and the second transparent conductive film preferably include the same material, and more preferably include only the same material. Thereby, the first transparent conductive film can be formed at a lower cost.
  • the first ion sensor antenna has a surface (exposed portion) including a first transparent conductive film
  • the second ion sensor antenna is a second transparent conductive film.
  • the display part has a third transparent conductive film.
  • the surface of the first ion sensor antenna is covered with a first transparent conductive film
  • the surface of the second ion sensor antenna is covered with a second transparent conductive film
  • the display unit is a third transparent conductive film. It is preferable to have a conductive film.
  • the material of the first, second, and third transparent conductive films is not particularly limited.
  • indium tin oxide ITO: Indium Tin Oxide
  • indium zinc oxide IZO
  • Zinc oxide ZnO
  • fluorine-doped tin oxide FTO: Fluorine-doped TinOxide
  • the first FET includes a semiconductor whose characteristics are changed by light
  • the semiconductor is shielded from light by a first light shielding film
  • the display unit includes a second light shielding film.
  • a second light shielding film is provided at the boundary of each pixel or sub-pixel of the display unit for the purpose of suppressing color mixing. it can.
  • at least a part of the materials and processes for forming the first light shielding film and the second light shielding film can be made the same, and the first light shielding film can be formed at low cost.
  • the first light-shielding film and the second light-shielding film preferably include the same material, and more preferably include only the same material. Thereby, the first light shielding film can be formed at a lower cost.
  • the first light shielding film shields the first FET from light outside the display device (external light) and / or light inside the display device.
  • Examples of light inside the display device include reflected light generated inside the display device.
  • the display device is a self-luminous type such as an organic EL or a plasma display
  • light from a light emitting element included in the display device can be used.
  • a liquid crystal display device that is a non-self-luminous type light from a backlight can be used. Reflected light or the like generated inside the display device is about several tens of Lx, and the influence on the first FET is relatively small.
  • As external light sunlight, indoor lighting (for example, a fluorescent lamp), etc. are mentioned.
  • the first light-shielding film preferably shields the first FET from at least external light, and more preferably blocks both external light and light inside the display device.
  • the first FET includes a first semiconductor whose characteristics are changed by light, the first semiconductor is shielded by a first light shielding film, and the second FET is It is preferable that a second semiconductor whose characteristics are changed by light is included, the second semiconductor is shielded by a second light shielding film, and the display unit has a third light shielding film.
  • the first light-shielding film preferably shields the first FET from at least external light, and more preferably blocks both external light and light inside the display device.
  • the second light shielding film preferably shields the second FET from at least external light, and more preferably blocks both external light and light inside the display device.
  • the ion sensor and the display unit driving circuit are connected to a common power source.
  • the ion sensor and the display unit can reduce the cost for forming the power source and the space for arranging the power source, rather than those having separate power sources. it can.
  • the source or drain of the FET and the gate of the TFT of the TFT array are connected to a common power source.
  • the source or drain of the first FET, the source or drain of the second FET, and the gate of the TFT of the TFT array are connected to a common power source.
  • the products according to the eighth and ninth aspects of the present invention are not particularly limited, and preferred examples include stationary displays such as televisions and personal computer displays.
  • the ion concentration in the indoor environment where the stationary display is placed can be displayed on the display.
  • mobile devices such as mobile phones and PDAs (Personal Digital Assistants) are also preferable examples. This makes it possible to easily measure the ion concentration at various locations.
  • an ion generator provided with a display unit can be cited as a suitable example, whereby the concentration of ions released from the ion generator can be displayed on the display unit.
  • an ion sensor a display device, an ion sensor driving method, and an ion concentration calculation method capable of measuring an ion concentration with high accuracy in a sample in which both ions are mixed. it can.
  • FIG. 5 is a block diagram of an ion sensor and a display device according to Embodiments 1 to 4.
  • FIG. 5 is a schematic cross-sectional view showing a cross section of an ion sensor and a display device according to Embodiments 1 to 4.
  • FIG. It is a cross-sectional schematic diagram which shows the cross section of the ion sensor which concerns on Embodiment 1, and a display apparatus.
  • 3 is an equivalent circuit showing the ion sensor circuit and a part of the TFT array according to the first embodiment. 3 is a timing chart of the ion sensor circuit according to the first embodiment.
  • 5 is a schematic cross-sectional view showing a cross section of an ion sensor and a display device according to Embodiments 2 to 4.
  • FIG. 5 is a schematic cross-sectional view showing a cross section of an ion sensor and a display device according to Embodiments 2 to 4.
  • 5 is an equivalent circuit showing an ion sensor circuit according to Embodiment 2 and a part of a TFT array.
  • 6 is a timing chart of the ion sensor circuit according to the second embodiment.
  • 6 is a timing chart of the ion sensor circuit according to the second embodiment.
  • 10 is an equivalent circuit illustrating an ion sensor circuit according to Embodiment 3 and a part of a TFT array.
  • 10 is a timing chart of the ion sensor circuit according to the third embodiment.
  • 10 is a timing chart of the ion sensor circuit according to the third embodiment. It is a curve (calibration curve) showing the relationship between Id ( ⁇ ) and negative ion concentration. It is a curve (calibration curve) showing the relationship between Id (+) and positive ion concentration.
  • 3 is an equivalent circuit showing an ion sensor having an N-channel TFT. It is a graph which shows the result of having measured the negative ion density
  • 3 is an equivalent circuit illustrating a part of the ion sensor circuit according to the first embodiment.
  • 3 is an equivalent circuit illustrating a part of another ion sensor circuit according to the first embodiment.
  • 4 is an LUT according to the first to fourth embodiments.
  • FIG. 1 is a block diagram of an ion sensor and a display device according to this embodiment.
  • the display device 110 is a liquid crystal display device, and includes an ion sensor 120 (ion sensor unit) for measuring ion concentration in the air and a display unit 130 for displaying various images.
  • the display unit 130 includes a display unit driving TFT array 101, a gate driver (display scanning signal line driving circuit) 103, and a source driver (display video signal line driving circuit) 104 as the display unit driving circuit 115.
  • the ion sensor 120 includes an ion sensor driving / reading circuit 105, an arithmetic processing LSI 106, and an ion sensor circuit 107.
  • the power supply circuit 109 is shared by the ion sensor 120 and the display unit 130.
  • the ion sensor circuit 107 is a circuit including at least elements (preferably FET and ion sensor antenna) necessary for converting the ion concentration in the air into an electrical physical quantity, and has a function of detecting (collecting) ions. Including.
  • the display unit 130 has a circuit configuration similar to that of an active matrix display device such as a conventional liquid crystal display device. That is, an image is displayed by line sequential driving in an area where the TFT array 101 is formed, that is, a display area.
  • the ion sensor circuit 107 detects (collects) ions in the air, and generates a voltage value corresponding to the detected amount of ions. This voltage value is sent to the driving / reading circuit 105 where it is converted into a digital signal. This signal is sent to the LSI 106, where the ion concentration is calculated based on a predetermined calculation method, and display data for displaying the calculation result in the display area is generated. This display data is transmitted to the TFT array 101 via the source driver 104, and the ion concentration corresponding to the display data is finally displayed.
  • the power supply circuit 109 supplies power to the TFT array 101, the gate driver 103, the source driver 104, and the drive / read circuit 105.
  • the driving / reading circuit 105 controls a push-up / push-down wiring, a reset wiring, and an input wiring, which will be described later, and supplies predetermined power to each wiring at a desired timing.
  • the driving / reading circuit 105 may be included in other circuits such as the ion sensor circuit 107, the gate driver 103, and the source driver 104, or may be included in the LSI 106.
  • the arithmetic processing may be performed using software that functions on a personal computer (PC) instead of the LSI 106.
  • PC personal computer
  • FIG. 2 is a schematic cross-sectional view of the ion sensor and the display device in a state cut along line A1-A2 shown in FIG.
  • the ion sensor 120 includes an ion sensor circuit 107, an air ion introduction / derivation path 42, a fan (not shown), and a light shielding film 12a.
  • the ion sensor circuit 107 includes a sensor TFT 30 and an ion sensor antenna 41 which are ion sensor elements.
  • the display unit 130 includes a TFT array 101 including pixel TFTs 40, a light shielding film 12b, a color filter 13 including colors such as RGB and RGBY, a liquid crystal 32, and polarizing plates 31a and 31b.
  • the antenna 41 is a conductive member that detects (collects) ions in the air, and is connected to the gate of the sensor TFT 30.
  • the antenna 41 includes a portion exposed to the external environment (exposed portion). When ions adhere to the surface (exposed portion) of the antenna 41, the potential of the antenna 41 changes, and the potential of the gate of the sensor TFT 30 also changes accordingly. To do. As a result, the current and / or voltage between the source and drain of the sensor TFT 30 changes.
  • the ion sensor element is formed of the antenna 41 and the sensor TFT 30, and thus can be made smaller than the conventional parallel plate ion sensor.
  • the introduction / extraction path 42 is a path for efficiently ventilating the antenna 41, and air flows from the front of FIG. 2 to the back or from the back to the front of FIG. 2 by a fan.
  • the display device 110 includes two insulating substrates 1a and 1b, most of which face each other, and a liquid crystal 32 is sandwiched between the substrates 1a and 1b.
  • the sensor TFT 30 and the TFT array 101 are provided on the main surface on the liquid crystal side of the substrate 1a (TFT array substrate) at a position where the substrates 1a and 1b face each other.
  • a large number of pixel TFTs 40 are arranged in a matrix.
  • the antenna 41, the introduction / extraction path 42, and the fan are provided on the main surface of the substrate 1a on the liquid crystal side at a position where the substrates 1a and 1b do not face each other.
  • the antenna 41 is provided outside the channel region of the sensor TFT 30.
  • the antenna 41 can be easily arranged near the introduction / extraction path 42 and the fan, so that the atmosphere can be efficiently sent to the antenna 41.
  • the sensor TFT 30 and the light shielding film 12a are provided at an end portion (frame region) of the display unit 130. This makes it possible to effectively use the space in the frame area, so that the ion sensor circuit 107 can be formed without changing the size of the display device 110.
  • the sensor TFT 30 and the ion sensor antenna 41 included in the ion sensor circuit 107 and the TFT array 101 included in the display unit driving circuit 115 are formed on the same main surface of the substrate 1a. Thereby, the sensor TFT 30 and the ion sensor antenna 41 can be formed by using the process of forming the TFT array 101.
  • the light shielding films 12a and 12b and the color filter 13 are provided on the liquid crystal side main surface of the substrate 1b (counter substrate) at a position where the substrates 1a and 1b face each other.
  • the light shielding film 12 a is provided at a position facing the sensor TFT 30, and the light shielding film 12 b and the color filter 13 are provided at a position facing the TFT array 101.
  • the sensor TFT 30 includes a-Si, which is a semiconductor whose characteristics with respect to light change.
  • the sensor TFT 30 is shielded from light by the light shielding film 12a, it is possible to suppress the change of the a-Si characteristics, that is, the output characteristics of the sensor TFT 30, so that the ion concentration can be measured with higher accuracy. it can.
  • the polarizing plates 31a and 31b are provided on the main surfaces on the opposite side (outside) of the substrates 1a and 1b, respectively.
  • FIG. 3 is a schematic cross-sectional view of the ion sensor and display device according to the present embodiment.
  • a first conductive layer On the main surface of the insulating substrate 1a on the liquid crystal side, there are a first conductive layer, an insulating film 3, a hydrogenated a-Si layer, an n + a-Si layer, a second conductive layer, a passivation film 9 and a third conductive layer. They are stacked in order.
  • an ion sensor antenna electrode 2a, a reset wiring 2b, a connection wiring 22, which will be described later, a capacitance electrode 2c, and gate electrodes 2d and 2e are formed. These electrodes are formed on the first conductive layer, and can be formed from the same material and in the same process by, for example, sputtering and photolithography.
  • the first conductive layer is formed from a single layer or a stacked metal layer. Specifically, a single layer of aluminum (Al), a lower layer of Al / an upper layer of titanium (Ti), a lower layer of Al / an upper layer of molybdenum (Mo), and the like.
  • the reset wiring 2b, the connection wiring 22, and the capacitor electrode 2c will be described in detail later with reference to FIG.
  • the insulating film 3 is provided on the substrate 1a so as to cover the ion sensor antenna electrode 2a, the reset wiring 2b, the connection wiring 22, the capacitor electrode 2c, and the gate electrodes 2d and 2e.
  • the source electrodes 6a and 6b, the drain electrodes 7a and 7b, and the capacitor electrode 8 are formed in the second conductive layer, and can be formed from the same material and in the same process by, for example, sputtering and photolithography. .
  • the second conductive layer is formed from a single layer or a stacked metal layer. Specifically, aluminum (Al) single layer, lower layer Al / upper layer Ti stack, lower layer Ti / upper layer Al stack, and the like.
  • the hydrogenated a-Si layers 4a and 4b can be formed from the same material and in the same process by, for example, a chemical vapor deposition (CVD) method and a photolithography method, and n + a
  • the -Si layers 5a and 5b can also be formed from the same material in the same process by, for example, the CVD method and the photolithography method.
  • CVD chemical vapor deposition
  • the passivation film 9 is provided on the insulating film 3 so as to cover the hydrogenated a-Si layers 4a and 4b, the n + a-Si layers 5a and 5b, the source electrodes 6a and 6b, the drain electrodes 7a and 7b, and the capacitor electrode 8. .
  • a transparent conductive film 11a and a transparent conductive film 11b are formed on the passivation film 9.
  • the transparent conductive film 11 a is connected to the antenna electrode 2 a through a contact hole 10 a that penetrates the insulating film 3 and the passivation film 9.
  • the transparent conductive film 11a is connected to the drain electrode 7b through a contact hole 10b that penetrates the passivation film 9.
  • the transparent conductive films 11a and 11b are formed in the third conductive layer, and can be formed from the same material and in the same process by, for example, sputtering and photolithography.
  • the third conductive layer is formed of a single layer or a laminated transparent conductive film. Specific examples include an ITO film and an IZO film.
  • the transparent conductive film 11a and 11b it is not necessary that all the materials constituting the transparent conductive films 11a and 11b be completely the same, and that all the steps for forming the transparent conductive films 11a and 11b are not necessarily the same.
  • the transparent conductive film 11a and / or the transparent conductive film 11b has a multilayer structure, it is also possible to form only the layers common to the two transparent conductive films from the same material by the same process.
  • the transparent conductive film 11a can be formed at low cost by diverting at least a part of the material and process for forming the transparent conductive film 11b to the formation of the transparent conductive film 11a.
  • the light shielding film 12a and the light shielding film 12b can also be formed from the same material and in the same process.
  • the light shielding films 12a and 12b are formed of an opaque metal film such as chromium (Cr), an opaque resin film, or the like.
  • the resin film include an acrylic resin containing carbon.
  • the sensor TFT 30 is formed of a gate electrode 2d, an insulating film 3, a hydrogenated a-Si layer 4a, an n + a-Si layer 5a, a source electrode 6a, and a drain electrode 7a.
  • the pixel TFT 40 is formed of a gate electrode 2e, an insulating film 3, a hydrogenated a-Si layer 4b, an n + a-Si layer 5b, a source electrode 6b, and a drain electrode 7b.
  • the insulating film 3 functions as a gate insulating film in the sensor TFT 30 and the pixel TFT 40.
  • the TFTs 30 and 40 are bottom gate type TFTs.
  • the n + a-Si layers 5a and 5b are doped with a group V element such as phosphorus (P). That is, the sensor TFT 30 and the pixel TFT 40 are N-channel TFTs.
  • the antenna 41 is formed from the transparent conductive film 11a and the antenna electrode 2a.
  • a capacitor (capacitor) 43 is formed from the capacitor electrodes 2 c and 8 and the insulating film 3 functioning as a dielectric.
  • the capacitor electrode 2 c is connected to the gate electrode 2 d and the antenna electrode 2 a, and the capacitor electrode 8 is connected to the push-up / push-down wiring 23.
  • FIG. 4 is an equivalent circuit showing the ion sensor circuit 107 and a part of the TFT array 101 according to this embodiment.
  • the gate electrode 2d of the pixel TFT 40 is connected to the gate driver 103 via the gate bus lines Gn, Gn + 1,..., And the source electrode 6b is connected to the source driver via the source bus lines Sm, Sm + 1,. 104 is connected.
  • the drain electrode 7b of the pixel TFT 40 is connected to a transparent conductive film 11b that functions as a pixel electrode.
  • the pixel TFT 40 is provided for each sub-pixel and functions as a switching element.
  • a scanning pulse (scanning signal) is supplied from the gate driver 103 to the gate bus lines Gn, Gn + 1,... At a predetermined timing, and the scanning pulse is applied to each pixel TFT 40 in a line sequential manner.
  • An arbitrary video signal generated by the source driver 104 and / or display data calculated based on the negative ion concentration is supplied. Then, a video signal and / or display data is supplied at a predetermined timing to the pixel electrode (transparent conductive film 11b) connected to the pixel TFT 40 which has been turned on for a certain period by the input of the scan pulse.
  • a video signal and / or display data of a predetermined level written in the liquid crystal is between a pixel electrode to which these signals and / or data are applied and a counter electrode (not shown) facing the pixel electrode. Hold for a certain period.
  • a liquid crystal storage capacitor (Cs) 36 is formed in parallel with the liquid crystal capacitor formed between the pixel electrode and the counter electrode.
  • the liquid crystal storage capacitor 36 is formed between the drain electrode 7a and the liquid crystal storage capacitor lines Csn, Csn + 1,.
  • the capacitance lines Csn, Csn + 1,... Are formed in the first conductive layer and are provided in parallel with the gate wirings Gn, Gn + 1,.
  • the ion sensor circuit 107 detects positive and negative ions.
  • the input wiring 20 is connected to the drain electrode 7 a of the sensor TFT 30.
  • a high voltage (+10 V) or a low voltage (0 V) is applied to the input wiring 20, and the voltage of the input wiring 20 is set to Vdd.
  • An output wiring 21 is connected to the source electrode 6a.
  • the voltage of the output wiring 21 is Vout.
  • the antenna 41 is connected to the gate electrode 2d of the sensor TFT 30 via the connection wiring 22.
  • the reset wiring 2 b is connected to the connection wiring 22. An intersection (node) between the wirings 22 and 2b is referred to as node-Z.
  • the reset wiring 2b is a node-Z, that is, a wiring for resetting the voltage between the gate of the sensor TFT 30 and the antenna 41.
  • a high voltage (+ 20V) or a low voltage ( ⁇ 20V) is applied to the reset wiring 2b, and the voltage of the reset wiring 2b is set to Vrst.
  • a push-up / push-down wiring 23 is connected to the connection wiring 22 via a capacitor 43.
  • a high voltage or a low voltage (for example, ⁇ 10 V) is applied to the push-up / push-down wiring 23, and the voltage of the push-up / push-down wiring 23 is set to Vrw.
  • the high voltage and low voltage of Vrw that is, the waveform of Vrw can be adjusted to a desired value by changing the value of the power source that supplies the high voltage and low voltage, respectively.
  • a method of changing the value of a power supply the following method (1) or (2) is mentioned.
  • (1) A method of preparing a plurality of power supplies and switching the power supplies connected to the wiring 23 by switches (for example, semiconductor switches, transistors, etc.).
  • the power source to be connected, that is, the connection destination of the switch is controlled by a signal from the host side. More specifically, as shown in FIG. 24, there is a method in which power supplies 62 and 63 having different power supply values are prepared and the power supply connected to the wiring 23 is switched by switches 65 and 66.
  • a method of selecting a voltage (resistance) to be output by connecting a ladder resistor to one power source. Which voltage (resistance) is connected is controlled by a signal from the host side. More specifically, as shown in FIG. 25, there is a method in which a ladder resistor is connected to the power source 64 and a voltage (resistance) to be output is selected by turning on / off switches 67, 68, and 69.
  • a constant current circuit 25 and an analog-digital conversion circuit (ADC) 26 are connected to the output wiring 21.
  • the constant current circuit 25 is composed of an N-channel TFT (constant current TFT), and the drain of the constant current TFT is connected to the output wiring 21.
  • the source of the constant current TFT is connected to a constant current source, and its voltage Vss is fixed at a voltage lower than the high voltage of Vdd.
  • the gate of the constant current TFT is connected to a constant voltage source.
  • the voltage Vbais at the gate of the constant current TFT is fixed to a predetermined value so that a constant current (for example, 1 ⁇ A) flows between the source and drain of the constant current TFT.
  • the constant current circuit 25 and the ADC 26 are formed in the drive / read circuit 105.
  • the antenna 41, the gate of the sensor TFT 30, the reset wiring 2b, the connection wiring 22, and the capacitor 43 are integrated with the antenna electrode 2a, the gate electrode 2d, the reset wiring 2b, the capacitance electrode 2c, and the connection wiring 22 in the first conductive layer. By being formed, they are connected to each other.
  • the driving / reading circuit 105, the gate driver 103, and the source driver 104 are not formed directly on the substrate 1a, but are formed on a semiconductor chip such as an LSI chip, and the semiconductor chip is mounted on the substrate 1a.
  • FIG. 5 is a timing chart of the ion sensor circuit according to the present embodiment.
  • the ion sensor circuit 107 first detects negative ions and then detects positive ions. That is, driving for detecting negative ions and driving for detecting positive ions are alternately performed.
  • Vrst is set to a low voltage ( ⁇ 10 V).
  • a power source for setting Vrst to the Low voltage ( ⁇ 10 V) a power source for applying the Low voltage ( ⁇ 10 V) to the gate electrode 2 e of the pixel TFT 40 can be used.
  • Vdd is set to a low voltage (0 V).
  • a high voltage (+ 20V) is first applied to the reset wiring 2b, and the voltage of the antenna 41 (node-Z voltage) is reset to + 20V.
  • a power source for setting the High voltage (+ 20V) to the reset wiring 2b a power source for applying the High voltage (+ 20V) to the gate electrode 2e of the pixel TFT 40 can be used.
  • the reset wiring 2b is kept in a high impedance state. Then, when the negative ion detection operation is started and negative ions are collected by the antenna 41, the voltage of the node-Z that is reset to + 20V, that is, charged positively, is neutralized and decreased by the negative ions. (Sensing operation). The higher the negative ion concentration, the faster the voltage decreases.
  • a high voltage (+10 V) is temporarily applied to the input wiring 20. That is, a pulse voltage of +10 V is applied to the input wiring 20.
  • an arbitrary positive pulse voltage (High voltage) is applied to the push-up / push-down wiring 23, and the node-Z voltage is pushed up through the capacitor 43.
  • the output wiring 21 is connected to the constant current circuit 25. Therefore, when a +10 V pulse voltage is applied to the input wiring 20, a constant current flows through the input wiring 20 and the output wiring 21. However, the voltage Vout ( ⁇ ) of the output wiring 21 changes according to the degree of opening of the gate of the sensor TFT 30, that is, the difference in the raised node-Z voltage.
  • This voltage Vout ( ⁇ ) is detected by the ADC 26 as a numerical value for calculating the ion concentration. It is also possible to detect the current Id ( ⁇ ) of the output wiring 21 that changes according to the voltage difference of node ⁇ Z without providing the constant current circuit 25.
  • the positive voltage applied to the push-up / push-down wiring 23 is set so that the gate potential enters a voltage region suitable for detecting negative ions with high accuracy. Therefore, even if the node-Z voltage is not increased, it is not necessary to increase the node-Z voltage as long as the gate potential is in a voltage region suitable for detecting the negative ion concentration.
  • the Low voltage ( ⁇ 10V) is applied to the reset wiring 2b, and the voltage of the antenna 41 (the voltage of node-Z) is reset to ⁇ 10V.
  • a power source for applying a low voltage ( ⁇ 10 V) to the gate electrode 2 e of the pixel TFT 40 can be used as a power source for setting the low voltage ( ⁇ 10 V) to the reset wiring 2 b.
  • the reset wiring 2b is kept in a high impedance state.
  • the voltage Vout (+) of the output wiring 21 changes depending on the degree of opening of the gate of the sensor TFT 30, that is, the difference in the raised node-Z voltage.
  • This voltage Vout (+) is detected by the ADC 26 as a numerical value for calculating the ion concentration. It is also possible to detect the current Id (+) of the output wiring 21 that changes according to the voltage difference of node ⁇ Z without providing the constant current circuit 25.
  • the positive voltage applied to the push-up / push-down wiring 23 is set so that the potential of the gate enters a voltage region suitable for detecting positive ions with high accuracy.
  • Vout (or Id) may be 0, or conversely, a very high value.
  • an appropriate Vout (or Id) can be obtained by adjusting the time t from the introduction of ions to the detection of Vout (or Id).
  • the time (interval) between negative ion detection and positive ion detection that is, the time from the negative ion detection read operation (pulse application to Vrw) to the positive ion detection reset operation (-10 V application to Vrst) is as follows: (1) and (2).
  • (1) When ions are continuously introduced, that is, when ion introduction is not stopped at the time of switching between negative ion detection and positive ion detection operation, the Vrw wiring and Vout wiring after the read operation have a predetermined potential (see FIG. 5, it is only necessary to leave intervals of time until reaching ⁇ 10 V and 0 V, respectively. Specifically, a time of 10 microseconds or more is required.
  • (2) When ion introduction is stopped at the time of switching between negative ion detection / plus ion detection operations, it takes time until the ion concentration is stabilized, and therefore, a longer time than (1) is required.
  • the High voltage of Vdd is not particularly limited to +10 V, and may be +20 V which is the same as the High voltage applied to the reset wiring 2 b, that is, the High voltage applied to the gate electrode 2 e of the pixel TFT 40.
  • a power source for applying a high voltage to the gate electrode 2e of the pixel TFT 40 can be used as a power source for applying a high voltage of Vdd.
  • the voltage of the push-up / push-down wiring 23 (Vrw low voltage) when the voltage of the node-Z is not pushed up is set to ⁇ 10 V which is the same as the low voltage applied to the gate electrode 2e of the pixel TFT 40. Good.
  • a power source for applying a low voltage to the gate electrode 2e of the pixel TFT 40 can be used as a power source for applying a low voltage of Vrw.
  • the ion concentration can be calculated easily and with high accuracy using the detection result of positive ions and negative ions.
  • the calculation method is common to each embodiment, and will be described in detail in a third embodiment.
  • both ions can be detected using one sensor TFT 30, it is possible to reduce the size of the apparatus and reduce the manufacturing cost.
  • the N-channel sensor TFT 30 and the pixel TFT 40 are used.
  • a P-channel TFT may be used.
  • the detection order of negative ions and positive ions is not particularly limited. After positive ions are detected, negative ions may be subsequently detected.
  • the display device has the same configuration as that of Embodiment 1 except for the following points. That is, the ion sensor circuit 207 of the second embodiment includes a negative ion detection sensor circuit 201 and a positive ion detection sensor circuit 202, and the negative ion detection sensor circuit 201 is an N-channel type sensor described in the first embodiment.
  • the sensor circuit for positive ion detection 202 includes a sensor TFT 30 and an antenna 41.
  • the positive ion detection sensor circuit 202 includes a P-channel sensor TFT 30b and an antenna 41b.
  • FIG. 6 is a schematic cross-sectional view of the ion sensor and display device according to this embodiment, and includes a part of a sensor circuit for detecting positive ions. Descriptions of components common to those of the display device according to Embodiment 1 are omitted here.
  • the sensor circuit 202 includes a sensor TFT 30b and an ion sensor antenna 41b, which are ion sensor elements.
  • the antenna 41b is a conductive member that detects (collects) ions in the air, and is connected to the gate of the sensor TFT 30b.
  • the potential of the antenna 41b changes, and the potential of the gate of the sensor TFT 30b also changes accordingly.
  • the current and / or voltage between the source and drain of the sensor TFT 30b changes.
  • the sensor TFT 30b is provided on the main surface on the liquid crystal side of the substrate 1a (TFT array substrate) at a position where the substrates 1a and 1b face each other.
  • the antenna 41b is provided outside the channel region of the sensor TFT 30.
  • the sensor TFT 30b and the light shielding film 12c facing the sensor TFT 30b are provided at an end (frame region) of the display unit 130.
  • the sensor TFT 30 and the ion sensor antenna 41 included in the sensor circuit 201, the sensor TFT 30b and the ion sensor antenna 41b included in the sensor circuit 202, and the TFT array 101 of the display unit driving circuit are provided. Is formed at least.
  • the light shielding film 12c is provided on the main surface on the liquid crystal side of the substrate 1b (counter substrate) at a position where the substrates 1a and 1b face each other.
  • the light shielding film 12c is provided at a position facing the sensor TFT 30b.
  • the sensor TFT 30b includes a-Si which is a semiconductor whose characteristics with respect to light change. As described above, since the sensor TFT 30b is shielded from light by the light shielding film 12c, it is possible to suppress the change in the a-Si characteristics, that is, the output characteristics of the sensor TFT 30b, so that the ion concentration can be measured with higher accuracy. it can.
  • an ion sensor antenna electrode 2c In the first conductive layer of the sensor circuit 202, an ion sensor antenna electrode 2c, a reset wiring 2h, a connection wiring 22b described later, a capacitance electrode 2f, and a gate electrode 2g are formed.
  • the reset wiring 2h, the connection wiring 22b, and the capacitor electrode 2f will be described in detail later with reference to FIG.
  • hydrogenated a-Si layers 4c and 4b, an n + a-Si layer 5c, a source electrode 6c, a drain electrode 7c, and a capacitor electrode 8b are formed on the insulating film 3.
  • the source electrode 6c, the drain electrode 7c, and the capacitor electrode 8b are formed in the second conductive layer.
  • the passivation film 9 is provided on the insulating film 3 so as to cover the hydrogenated a-Si layer 4c, the n + a-Si layer 5c, the source electrode 6c, the drain electrode 7c, and the capacitor electrode 8b.
  • a transparent conductive film 11 c is formed on the passivation film 9.
  • the transparent conductive film 11 c is connected to the antenna electrode 2 c through a contact hole 10 c that penetrates the insulating film 3 and the passivation film 9.
  • the transparent conductive film 11c is formed on the third conductive layer.
  • the light shielding film 12c is formed of an opaque metal film such as chromium (Cr), an opaque resin film, or the like.
  • the resin film include an acrylic resin containing carbon.
  • the sensor TFT 30b is formed of a gate electrode 2g, an insulating film 3, a hydrogenated a-Si layer 4c, an n + a-Si layer 5c, a source electrode 6c, and a drain electrode 7c.
  • the insulating film 3 functions as a gate insulating film in the sensor TFT 30b.
  • the TFT 30b is a bottom gate type TFT.
  • the p + a-Si layer 5c is doped with a group III element such as boron (B). That is, the sensor TFT 30b is a P-channel TFT.
  • the antenna 41b is formed from the transparent conductive film 11c and the antenna electrode 2c.
  • a capacitor (capacitor) 43b is formed from the capacitor electrodes 2f and 8b and the insulating film 3 functioning as a dielectric.
  • the capacitive electrode 2f is connected to the gate electrode 2g and the antenna electrode 2c, and the capacitive electrode 8b is grounded. Since the capacitance of the gate electrode 2g and the antenna 41b can be increased by providing the capacitor 43b, the influence of external noise during the measurement of the ion concentration can be suppressed. Therefore, the sensor operation can be made more stable and the accuracy can be further increased.
  • the capacitor electrode 8 of the capacitor 43 of the sensor circuit 201 is also grounded without being connected to the push-up / push-down wiring 23.
  • FIG. 7 is an equivalent circuit showing the ion sensor circuit 207 and a part of the TFT array 101 according to the present embodiment. Since the display device according to this embodiment includes the same TFT array 101 as that of Embodiment 1, the description thereof is omitted here.
  • the ion sensor circuit 207 includes a negative ion detection sensor circuit 201 and a positive ion detection sensor circuit 202.
  • the sensor circuit 201 has the same configuration as that of the ion sensor circuit 107 except that the connection wiring 22 is connected to the ground (GND) via the capacitor 43.
  • a high voltage (+10 V) or a low voltage (0 V) is applied to the input wiring 20, and the voltage of the input wiring 20 is set to Vdd.
  • the voltage of the output wiring 21 is Vout ( ⁇ ).
  • An intersection (node) between the wirings 22 and 2b is referred to as node-Z ( ⁇ ).
  • a high voltage (+ 20V) or a low voltage ( ⁇ 10V) is applied to the reset wiring 2b, and the voltage of the reset wiring 2b is set to Vrst ( ⁇ ).
  • the input wiring 20 is connected to the drain electrode 7c of the sensor TFT 30b.
  • An output wiring 21b is connected to the source electrode 6c.
  • the voltage of the output wiring 21b is set to Vout (+).
  • the antenna 41b is connected to the gate electrode 2g of the sensor TFT 30b through the connection wiring 22b.
  • the reset wiring 2h is connected to the connection wiring 22b.
  • An intersection (node) between the wirings 22b and 2h is assumed to be node-Z (+).
  • the reset wiring 2h is node-Z (+), that is, a wiring for resetting the voltage between the gate of the sensor TFT 30b and the antenna 41b.
  • a high voltage (+ 20V) or a low voltage ( ⁇ 10V) is applied to the reset wiring 2h, and the voltage of the reset wiring 2h is set to Vrst (+). Further, a ground (GND) is connected to the connection wiring 22b via a capacitor 43b.
  • a constant current circuit 25b and an analog-digital conversion circuit (ADC) 26b are connected to the output wiring 21b. Since the configuration of the constant current circuit 25b is the same as that of the constant current circuit 25, a detailed description thereof is omitted.
  • the antenna 41b, the gate of the sensor TFT 30b, the reset wiring 2h, the connection wiring 22b, and the capacitor 43b are integrated with the antenna electrode 2c, the gate electrode 2g, the reset wiring 2h, the capacitance electrode 2f, and the connection wiring 22b integrally with the first conductive layer. By being formed, they are connected to each other.
  • FIG. 8 is a timing chart of the negative ion detection sensor circuit according to the present embodiment
  • FIG. 9 is a timing chart of the positive ion detection sensor circuit according to the present embodiment.
  • the ion sensor circuit 207 simultaneously detects negative ions by the negative ion detection sensor circuit 201 and positive ions by the positive ion detection sensor circuit 202. First, detection of negative ions will be described.
  • Vrst ( ⁇ ) is set to the Low voltage ( ⁇ 10V).
  • a power source for setting Vrst ( ⁇ ) to the Low voltage ( ⁇ 10V) a power source for applying the Low voltage ( ⁇ 10V) to the gate electrode 2e of the pixel TFT 40 can be used.
  • Vdd is set to a low voltage (0 V).
  • the High voltage (+ 20V) is applied to the reset wiring 2b, and the voltage of the antenna 41 (the voltage of node ⁇ Z ( ⁇ )) is reset to + 20V.
  • a power source for applying Vrst ( ⁇ ) a power source for applying a High voltage (+20 V) to the gate electrode 2e of the pixel TFT 40 can be used.
  • the reset wiring 2b is kept in a high impedance state.
  • the voltage of the node-Z ( ⁇ ) reset to +20 V, that is, positively charged, is neutralized by the negative ions. Decrease (sensing operation). The higher the negative ion concentration, the faster the voltage decreases.
  • a high voltage (+10 V) is temporarily applied to the input wiring 20 at time t2. That is, a pulse voltage of +10 V is applied to the input wiring 20.
  • the output wiring 21 is connected to the constant current circuit 25. Therefore, when a +10 V pulse voltage is applied to the input wiring 20, a constant current flows through the input wiring 20 and the output wiring 21.
  • the voltage Vout ( ⁇ ) of the output wiring 21 changes according to the degree of opening of the gate of the sensor TFT 30, that is, the voltage difference of node ⁇ Z ( ⁇ ).
  • This voltage Vout ( ⁇ ) is detected by the ADC 26 as a numerical value for calculating the ion concentration. It is also possible to detect the current Id ( ⁇ ) of the output wiring 21 that changes according to the voltage difference of node ⁇ Z ( ⁇ ) without providing the constant current circuit 25.
  • Vrst (+) is set to the high voltage (+ 20V).
  • a power source for setting Vrst (+) to the High voltage (+ 20V) a power source for applying the High voltage (+ 20V) to the gate electrode 2e of the pixel TFT 40 can be used.
  • Vdd is set to a low voltage (0 V).
  • the Low voltage ( ⁇ 20V) is applied to the reset wiring 2h, and the voltage of the antenna 41b (the voltage of node ⁇ Z (+)) is reset to ⁇ 20V.
  • the reset wiring 2h is kept in a high impedance state.
  • the voltage Vout (+) of the output wiring 21b changes depending on the degree of opening of the gate of the sensor TFT 30b, that is, the voltage difference of node ⁇ Z (+).
  • This voltage Vout (+) is detected by the ADC 26b as a numerical value for calculating the ion concentration. It is also possible to detect the current Id (+) of the output wiring 21b that changes in accordance with the voltage difference of node ⁇ Z (+) without providing the constant current circuit 25b.
  • the high voltage of Vdd is not particularly limited to +10 V, and may be +20 V that is the same as the high voltage applied to the reset wirings 2 b and 2 h, that is, the high voltage applied to the gate electrode 2 e of the pixel TFT 40. .
  • a power source for applying a high voltage to the gate electrode 2e of the pixel TFT 40 can be used as a power source for applying a high voltage of Vdd.
  • the Low voltage applied to the reset wiring 2h is not particularly limited to ⁇ 20V, and may be ⁇ 10V which is the same as the Low voltage applied to the gate electrode 2e of the pixel TFT 40.
  • a power source for applying a low voltage applied to the reset wiring 2h a power source for applying a low voltage to the gate electrode 2e of the pixel TFT 40 can be used.
  • the ion concentration can be calculated easily and with high accuracy using the detection result of positive ions and negative ions.
  • the calculation method will be described in detail in the third embodiment.
  • the ion concentration is measured with higher accuracy than in the first embodiment in which one of the ions is measured and then the other ion is measured. Can be measured.
  • the display device has the same configuration as that of Embodiment 2 except for the following points. That is, the ion sensor circuit 307 of the third embodiment includes a negative ion detection sensor circuit 301 and a positive ion detection sensor circuit 302. The sensor circuits 301 and 302 each have a push-up / push-down wiring, and the sensor circuit 302 includes an N-channel type sensor TFT 30c instead of the P-channel type sensor TFT 30b.
  • FIG. 10 is an equivalent circuit showing the ion sensor circuit 307 and a part of the TFT array 101 according to this embodiment. Since the display device according to this embodiment includes the same TFT array 101 as that of Embodiment 1, the description thereof is omitted here.
  • the ion sensor circuit 307 includes a negative ion detection sensor circuit 301 and a positive ion detection sensor circuit 302.
  • the sensor circuit 301 has the same configuration as the ion sensor circuit 107.
  • a high voltage (+10 V) or a low voltage (0 V) is applied to the input wiring 20, and the voltage of the input wiring 20 is set to Vdd.
  • the voltage of the output wiring 21a is Vout ( ⁇ ).
  • An intersection (node) between the wirings 22a and 2b is referred to as node-Z ( ⁇ ).
  • a high voltage (+ 20V) or a low voltage ( ⁇ 10V) is applied to the reset wiring 2b, and the voltage of the reset wiring 2b is set to Vrst ( ⁇ ).
  • a high voltage or a low voltage (for example, ⁇ 10 V) is applied to the push-up / push-down wiring 23, and the voltage of the push-up / push-down wiring 23 is set to Vrw ( ⁇ ).
  • the High voltage of Vrw ( ⁇ ) can be adjusted to a desired value. Note that as a method of adjusting the Vrw ( ⁇ ) High voltage to a desired value, the method of changing the value of the power source described in the first embodiment can be used.
  • the sensor circuit 302 is a sensor circuit except that the connection wiring 22b is connected to the push-up / push-down wiring 23b via the capacitor 43b and includes an N-channel sensor TFT 30c instead of the P-channel sensor TFT 30b.
  • the structure is similar to that of the circuit 202.
  • the voltage of the output wiring 21b is set to Vout (+).
  • An intersection (node) between the wirings 22b and 2h is assumed to be node-Z (+).
  • a high voltage (+ 20V) or a low voltage ( ⁇ 10V) is applied to the reset wiring 2h, and the voltage of the reset wiring 2h is set to Vrst (+).
  • a high voltage or low voltage (for example, ⁇ 10 V) is applied to the push-up / push-down wiring 23b, and the voltage of the push-up / push-down wiring 23b is set to Vrw (+).
  • the High voltage of Vrw (+) can be adjusted to a desired value.
  • FIG. 11 is a timing chart of the negative ion detection sensor circuit according to the present embodiment
  • FIG. 12 is a timing chart of the positive ion detection sensor circuit according to the present embodiment.
  • the ion sensor circuit 307 simultaneously detects negative ions by the negative ion detection sensor circuit 301 and detects positive ions by the positive ion detection sensor circuit 302. First, detection of negative ions will be described.
  • Vrst ( ⁇ ) is set to the Low voltage ( ⁇ 10V).
  • a power source for setting Vrst ( ⁇ ) to the Low voltage ( ⁇ 10V) a power source for applying the Low voltage ( ⁇ 10V) to the gate electrode 2e of the pixel TFT 40 can be used.
  • Vdd is set to a low voltage (0 V).
  • the High voltage (+ 20V) is applied to the reset wiring 2b, and the voltage of the antenna 41 (the voltage of node ⁇ Z ( ⁇ )) is reset to + 20V.
  • a power source for setting the High voltage (+ 20V) to the reset wiring 2b a power source for applying the High voltage (+ 20V) to the gate electrode 2e of the pixel TFT 40 can be used.
  • the reset wiring 2b is kept in a high impedance state.
  • the voltage of the node-Z ( ⁇ ) reset to +20 V, that is, positively charged, is neutralized by the negative ions. Decrease (sensing operation). The higher the negative ion concentration, the faster the voltage decreases.
  • a high voltage (+10 V) is temporarily applied to the input wiring 20 at time t2. That is, a pulse voltage of +10 V is applied to the input wiring 20.
  • an arbitrary positive pulse voltage (High voltage) is applied to the push-up / push-down wiring 23, and the voltage of node-Z ( ⁇ ) is pushed up through the capacitor 43.
  • the output wiring 21 is connected to the constant current circuit 25. Therefore, when a +10 V pulse voltage is applied to the input wiring 20, a constant current flows through the input wiring 20 and the output wiring 21.
  • the voltage Vout ( ⁇ ) of the output wiring 21 changes in accordance with the degree of opening of the gate of the sensor TFT 30, that is, the voltage difference of the pushed-up node ⁇ Z ( ⁇ ).
  • This voltage Vout ( ⁇ ) is detected by the ADC 26 as a numerical value for calculating the ion concentration. It is also possible to detect the current Id ( ⁇ ) of the output wiring 21 that changes according to the voltage difference of node ⁇ Z ( ⁇ ) without providing the constant current circuit 25.
  • the positive voltage applied to the push-up / push-down wiring 23 is set to a gate voltage region suitable for detecting negative ions with high accuracy. Therefore, even if the voltage of node-Z ( ⁇ ) is not pushed up, it is necessary to push up the voltage of node-Z ( ⁇ ) as long as the gate potential is in a voltage region suitable for detection of negative ion concentration. Absent.
  • Vrst (+) is set to the high voltage (+ 20V).
  • a power source for setting Vrst (+) to the High voltage (+ 20V) a power source for applying the High voltage (+ 20V) to the gate electrode 2e of the pixel TFT 40 can be used.
  • Vdd is set to a low voltage (0 V).
  • the Low voltage ( ⁇ 10V) is applied to the reset wiring 2h, and the voltage of the antenna 41b (the voltage of node-Z) is reset to ⁇ 10V.
  • a power source for setting the low voltage ( ⁇ 10V) to the reset wiring 2h a power source for applying the low voltage ( ⁇ 10V) to the gate electrode 2e of the pixel TFT 40 can be used.
  • the reset wiring 2h is kept in a high impedance state.
  • the voltage of the node-Z (+) reset to ⁇ 10 V, that is, negatively charged, is neutralized by the positive ions.
  • a high voltage (+10 V) is temporarily applied to the input wiring 20 at time t2. That is, a pulse voltage of +10 V is applied to the input wiring 20.
  • an arbitrary positive pulse voltage (High voltage) is applied to the push-up / push-down wiring 23b, and the voltage of node-Z (+) is pushed up through the capacitor 43b.
  • the output wiring 21b is connected to the constant current circuit 25b. Therefore, when a pulse voltage of +10 V is applied to the input wiring 20, a constant current flows through the input wiring 20 and the output wiring 21b.
  • the voltage Vout (+) of the output wiring 21b changes according to the degree of opening of the gate of the sensor TFT 30c, that is, the voltage difference of the pushed-up node-Z (+).
  • This voltage Vout (+) is detected by the ADC 26b as a numerical value for calculating the ion concentration. It is also possible to detect the current Id (+) of the output wiring 21b that changes in accordance with the voltage difference of node ⁇ Z (+) without providing the constant current circuit 25b.
  • the positive voltage applied to the push-up / push-down wiring 23b is set to a gate voltage region suitable for detecting positive ions with high accuracy.
  • FIGS. 13 and 15 show examples of curves (calibration curves) showing the relationship between Id ( ⁇ ) and negative ion concentration
  • FIGS. 14 and 16 show curves showing the relationship between Id (+) and positive ion concentration.
  • An example of (calibration curve) is shown. These calibration curves are obtained by measuring a sample containing almost equal amounts of positive ions and negative ions with known concentrations using the ion sensor of the present embodiment, and the relationship between the ion concentration and Id ( ⁇ ) or Id (+). Was created by plotting. Further, Id ( ⁇ ) and Id (+) in each figure are outputs after a certain time t (time from time t1 to time t2) has elapsed since the start of ion detection.
  • the sensor TFTs 30 and 30c each have a channel length of 4 ⁇ m and a channel width of 100 ⁇ m.
  • the high voltage of Vdd was + 10V.
  • the High voltage of Vrst ( ⁇ ) was + 20V.
  • the Low voltage of Vrst (+) was ⁇ 20V.
  • the sizes of the capacitors 43 and 43b were 10 pF, respectively.
  • the areas of the antennas 41 and 41b were 4000 ⁇ m ⁇ 4000 ⁇ m, respectively.
  • the output Id may become 0 or may be saturated depending on the ion concentration ratio.
  • Id ( ⁇ ) and Id (+) are What is necessary is just to change time t to measure.
  • the reason why the Id value between the calibration curve is obtained by calculation is as follows. As is apparent from the measurement result graphs of FIGS. 13 to 16, all the calibration curves are linear expressions, and the slope changes when the ion concentration ratio changes. Therefore, if the relationship between the ion concentration ratio and the slope is obtained, a calibration curve with an ion concentration ratio other than the calibration curve (primary equation) acquired in advance is estimated, and as a result, the concentration of both ions is obtained. Can do.
  • the calculation can be performed using, for example, software that functions on the LSI 106 or a personal computer (PC).
  • the ion ratio is 2: 1, the actual concentration ratio is 500 ⁇ 10 3 pieces / cm 3 : 250 ⁇ 10 3 pieces / cm 3 , and if the ion ratio is 1: 1, the actual concentration is The ratio is 1000 ⁇ 10 3 pieces / cm 3 : 1000 ⁇ 10 3 pieces / cm 3. If the ion ratio is 2: 1, the actual concentration ratio is 2300 ⁇ 10 3 pieces / cm 3 : 4600 ⁇ . It should be 10 3 pieces / cm 3 .
  • the intersection with the calibration curve is determined by Id (+) obtained by the plus ion detection operation (a ′, b ′ or c ′). That is, the concentration ratio is determined, and as a result, the concentration of both ions is obtained.
  • the ion ratio is found to be 2: 1, so the negative ion concentration is 500 ⁇ 10 3 pieces / cm 3 , and the positive ion concentration is 250 ⁇ 10 3 pieces / cm 3. 3 is calculated. Further, if Id (+) is 10 ⁇ A, it can be seen that the ion ratio is 1: 1. Therefore, the negative ion concentration is 1000 ⁇ 10 3 pieces / cm 3 , and the positive ion concentration is 1000 ⁇ 10 3 pieces / cm 3. 3 is calculated.
  • Id (+) is 42 ⁇ A
  • the ion ratio is found to be 1: 2, so the negative ion concentration is 2300 ⁇ 10 3 ions / cm 3 , and the positive ion concentration is 4600 ⁇ 10 3 ions / cm 3 . 3 is calculated.
  • the ion concentration can be calculated easily and with high accuracy using the detection result of positive ions and negative ions.
  • both ions can be measured simultaneously, the concentration of both ions can be measured with higher accuracy than in the first embodiment in which either one is measured and then the other ion is measured. Can be measured.
  • the two sensor TFTs 30 and 30c are both N-channel type, the sensor TFTs 30 and 30c can be formed at the same time, and an embodiment using the N-channel type sensor TFT 30 and the P-channel type sensor TFT 30b.
  • the manufacturing cost can be reduced more than 2.
  • the N-channel type sensor TFTs 30 and 30c are used.
  • P-channel type TFTs may be used.
  • node-Z ( ⁇ ) and node-Z (+) may be pushed down (stepped down) by the push-up / push-down wirings 23 and 23b.
  • the node-Z push-up or drop-down voltage is determined by an equation of (capacity) / (node-Z total capacity) ⁇ ⁇ Vpp.
  • ⁇ Vpp is a difference between the high voltage of Vrw and the low voltage of Vrw. Therefore, in this embodiment, the step-up / step-down widths of the node-Z ( ⁇ ) and node-Z (+) by the push-up / push-down wirings 23 and 23b can be adjusted by the following two types of parameters. One is ⁇ Vpp of each of Vrw ( ⁇ ) and Vrw (+), and the other is the size of each of capacitors 43 and 43b.
  • node-Z ( ⁇ ) and node-Z (+) can be easily adjusted to voltages at which the Id ratio can be high.
  • the sizes of Vrw ( ⁇ ) and Vrw (+) can be made common. That is, the size of the capacitor 43 (C1) and the size of the capacitor 43b (C2) are set to different values, C1 is set to an optimum value for detecting negative ions, and positive ions are detected. C2 can be set to an optimum value.
  • the pulse voltage waveform (Vrw ( ⁇ ) waveform) applied to the capacitor 43 is made the same as the pulse voltage waveform (Vrw (+) waveform) applied to the capacitor 43b, and Vrw ( ⁇ ) and Vrw A power source for applying (+) can be shared.
  • the waveforms of Vrw ( ⁇ ) and Vrw (+) are made different from each other, and the boost voltages of node-Z ( ⁇ ) and node-Z (+) are adjusted appropriately. May be.
  • Embodiment 4 The display device according to Embodiment 4 has the same configuration as that of Embodiment 3 except for the following points. That is, the ion sensor circuit 407 of the fourth embodiment includes a negative ion detection sensor circuit 401 and a positive ion detection sensor circuit 402, and the sensor circuit 401 does not have push-up / push-down wiring.
  • FIG. 19 is an equivalent circuit showing the ion sensor circuit 407 and a part of the TFT array 101 according to this embodiment. Since the display device according to this embodiment includes the same TFT array 101 as that of Embodiment 1, the description thereof is omitted here.
  • the ion sensor circuit 407 includes a negative ion detection sensor circuit 401 and a positive ion detection sensor circuit 402.
  • the sensor circuit 401 has the same configuration as the sensor circuit 201 of the second embodiment.
  • a high voltage (+10 V) or a low voltage (0 V) is applied to the input wiring 20, and the voltage of the input wiring 20 is set to Vdd.
  • the voltage of the output wiring 21 is Vout ( ⁇ ).
  • An intersection (node) between the wirings 22 and 2b is referred to as node-Z ( ⁇ ).
  • a high voltage (+ 20V) or a low voltage ( ⁇ 10V) is applied to the reset wiring 2b, and the voltage of the reset wiring 2b is set to Vrst ( ⁇ ).
  • a ground (GND) is connected to the connection wiring 22 via a capacitor 43.
  • the sensor circuit 402 has the same configuration as the sensor circuit 302 of the third embodiment.
  • the voltage of the output wiring 21b is set to Vout (+).
  • An intersection (node) between the wirings 22b and 2h is assumed to be node-Z (+).
  • a high voltage (+ 20V) or a low voltage ( ⁇ 10V) is applied to the reset wiring 2b, and the voltage of the reset wiring 2h is set to Vrst (+).
  • a high voltage or low voltage (for example, ⁇ 10 V) is applied to the push-up / push-down wiring 23b, and the voltage of the push-up / push-down wiring 23b is set to Vrw (+).
  • the High voltage of Vrw (+) can be adjusted to a desired value. Note that as a method of adjusting the high voltage of Vrw (+) to a desired value, the method of changing the power supply value described in the first embodiment can be used.
  • FIG. 20 is a timing chart of the negative ion detection sensor circuit according to the present embodiment when negative ions are detected
  • FIG. 21 is a timing chart of the positive ion detection sensor circuit according to the present embodiment.
  • the ion sensor circuit 407 simultaneously detects negative ions by the negative ion detection sensor circuit 401 and positive ions by the positive ion detection sensor circuit 402. First, detection of negative ions will be described.
  • Vrst ( ⁇ ) is set to the Low voltage ( ⁇ 10V).
  • a power source for setting Vrst ( ⁇ ) to the Low voltage ( ⁇ 10V) a power source for applying the Low voltage ( ⁇ 10V) to the gate electrode 2e of the pixel TFT 40 can be used.
  • Vdd is set to a low voltage (0 V).
  • the High voltage (+ 20V) is applied to the reset wiring 2b, and the voltage of the antenna 41a (the voltage of node-Z ( ⁇ )) is reset to + 20V.
  • a power source for applying Vrst ( ⁇ ) a power source for applying a High voltage (+20 V) to the gate electrode 2e of the pixel TFT 40 can be used.
  • the reset wiring 2b is kept in a high impedance state.
  • the voltage of the node-Z ( ⁇ ) reset to +20 V, that is, positively charged, is neutralized by the negative ions. Decrease (sensing operation). The higher the negative ion concentration, the faster the voltage decreases.
  • a high voltage (+10 V) is temporarily applied to the input wiring 20 at time t2. That is, a pulse voltage of +10 V is applied to the input wiring 20.
  • the output wiring 21 a is connected to the constant current circuit 25. Therefore, when a pulse voltage of +10 V is applied to the input wiring 20, a constant current flows through the input wiring 20 and the output wiring 21a.
  • the voltage Vout ( ⁇ ) of the output wiring 21a changes according to the degree of opening of the gate of the sensor TFT 30, that is, the voltage difference of node ⁇ Z ( ⁇ ).
  • This voltage Vout ( ⁇ ) is detected by the ADC 26 as a numerical value for calculating the ion concentration. It is also possible to detect the current Id ( ⁇ ) of the output wiring 21a that changes according to the voltage difference of node ⁇ Z ( ⁇ ) without providing the constant current circuit 25.
  • Vrst (+) is set to the high voltage (+ 20V).
  • a power source for setting Vrst (+) to the High voltage (+ 20V) a power source for applying the High voltage (+ 20V) to the gate electrode 2e of the pixel TFT 40 can be used.
  • Vdd is set to a low voltage (0 V).
  • the Low voltage ( ⁇ 10V) is applied to the reset wiring 2h, and the voltage of the antenna 41b (the voltage of node ⁇ Z (+)) is reset to ⁇ 10V.
  • a power source for setting the low voltage ( ⁇ 10V) to the reset wiring 2h a power source for applying the low voltage ( ⁇ 10V) to the gate electrode 2e of the pixel TFT 40 can be used.
  • the reset wiring 2h is kept in a high impedance state.
  • the voltage of the node-Z (+) reset to ⁇ 10 V, that is, negatively charged, is neutralized by the positive ions.
  • a high voltage (+10 V) is temporarily applied to the input wiring 20 at time t2. That is, a pulse voltage of +10 V is applied to the input wiring 20.
  • an arbitrary positive pulse voltage (High voltage) is applied to the push-up / push-down wiring 23b, and the voltage of node-Z (+) is pushed up through the capacitor 43b.
  • the output wiring 21b is connected to the constant current circuit 25b. Therefore, when a pulse voltage of +10 V is applied to the input wiring 20, a constant current flows through the input wiring 20 and the output wiring 21b.
  • the voltage Vout (+) of the output wiring 21b changes according to the degree of opening of the gate of the sensor TFT 30c, that is, the voltage difference of the pushed-up node-Z (+).
  • This voltage Vout (+) is detected by the ADC 26b as a numerical value for calculating the ion concentration. It is also possible to detect the current Id (+) of the output wiring 21b that changes in accordance with the voltage difference of node ⁇ Z (+) without providing the constant current circuit 25b.
  • the positive voltage applied to the push-up / push-down wiring 23b is set to a gate voltage region suitable for detecting positive ions with high accuracy.
  • the high voltage of Vdd is not particularly limited to + 10V, and may be + 20V which is the same as the high voltage applied to the reset wirings 2b and 2h, that is, the high voltage applied to the gate electrode 2e of the pixel TFT 40. .
  • a power source for applying a high voltage to the gate electrode 2e of the pixel TFT 40 can be used as a power source for applying a high voltage of Vdd.
  • the ion concentration can be calculated easily and with high accuracy using the detection results of positive ions and negative ions.
  • the calculation method is as described in the third embodiment.
  • both ions can be measured simultaneously, the concentration of both ions can be measured with higher accuracy than in the first embodiment in which one of the ions is measured and then the other ion is measured. Can be measured.
  • the two sensor TFTs 30 and 30c are both N-channel type, it is possible to form the sensor TFTs 30 and 30c at the same time, and an embodiment using the N-channel type sensor TFT 330 and the P-channel type sensor TFT 30b. According to 2, it is possible to reduce the manufacturing cost.
  • the voltage of the node-Z ( ⁇ ) is not adjusted by the push-up / push-down wiring, the voltage of the node-Z ( ⁇ ) is adjusted by the push-up / push-down wiring 23. Thus, it is possible to reduce the manufacturing cost.
  • the N-channel sensor TFT 30 and the sensor TFT 30c are used.
  • a P-channel TFT may be used.
  • the push-up / push-down wiring may be provided in the negative ion detection sensor circuit 401 without providing the push-up / push-down wiring in the positive ion detection sensor circuit 402.
  • the liquid crystal display device has been described as an example.
  • the display device of each embodiment may be an FPD such as an organic EL display or a plasma display.
  • the ion concentration is calculated using a calibration curve indicating the relationship between Id and ion concentration.
  • the ion concentration may be calculated with reference to an LUT as shown in FIG. FIG. 26 shows an LUT that is referred to when Id ( ⁇ ) is 15 ⁇ A.
  • the LUT is, for example, “When Id ( ⁇ ) is 15 ⁇ A and Id (+) is 10 ⁇ A, the ion ratio is 1: 1, the negative ion concentration is 1000 ⁇ 10 3 ions / cm 3 , and the positive ion concentration is 1000 ⁇ 10.
  • the constant current circuit may not be provided. That is, the ion concentration may be calculated by measuring the current between the source and drain of the sensor TFT.
  • the conductivity type of the TFT formed in the ion sensor 120 and the conductivity type of the TFT formed in the display unit 130 may be different from each other.
  • a ⁇ c-Si layer, a p-Si layer, a CG-Si layer, or an oxide semiconductor layer may be used instead of the hydrogenated a-Si layer.
  • a ⁇ c-Si layer, a p-Si layer, a CG-Si layer, or an oxide semiconductor layer may be used.
  • the TFT including the ⁇ c-Si layer is preferably shielded from light.
  • p-Si, CG-Si, and an oxide semiconductor have low sensitivity to light, a TFT including a p-Si layer, a CG-Si layer, or an oxide semiconductor layer may not be shielded from light.
  • the type of TFT formed on the substrate 1a is not limited to the bottom gate type, and may be a top gate type, a planar type, or the like.
  • the antenna may be formed on the channel region of the sensor TFT. That is, the gate electrode of the sensor TFT may be exposed and the gate electrode itself may function as an ion sensor antenna.
  • the type of TFT formed in the ion sensor 120 and the type of TFT formed in the display unit 130 may be different from each other.
  • the type of semiconductor included in the TFT formed in the ion sensor 120 and the type of semiconductor of the TFT formed in the display unit 130 may be different from each other. From the viewpoint of simplifying the process, the same is preferable.
  • the gate driver 103, the source driver 104, and the driving / reading circuit 105 may be monolithically formed and directly formed on the substrate 1a.
  • Insulating substrate 2a Ion sensor antenna electrodes 2b, 2h, 2i: Reset wiring 2c, 2f, 8, 8b: Capacitance electrodes 2d, 2e, 2g: Gate electrodes 3, 52, 57: Insulating films 4a, 4b 4c: hydrogenated a-Si layers 5a, 5b, 5c: n + a-Si layers 6a, 6b, 6c: source electrodes 7a, 7b, 7c: drain electrodes 9: passivation films 10a, 10b, 10c: contact holes 11a, 11b 11c: transparent conductive films 12a, 12b, 12c: first light shielding film 13: color filter 20, 27: input wirings 21, 21b, 21c: output wirings 22, 22b, 22c: connection wirings 23, 23b: push-up / protrusion Lower wiring 25, 25b: constant current circuit 26, 26b: analog-digital conversion circuit (ADC) 30, 30b, 30c: sensor TFT 31a, 31b: Polarizing plate 32: Li

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Thin Film Transistor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本発明は、両イオンが混在する検体において、イオン濃度を高精度に測定することが可能なイオンセンサ、表示装置、イオンセンサの駆動方法、及び、イオン濃度の算出方法を提供する。本発明は、電界効果トランジスタを含むイオンセンサであって、前記イオンセンサは、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの一方を検出した後、続けて、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの他方を検出する。

Description

イオンセンサ、表示装置、イオンセンサの駆動方法、及び、イオン濃度の算出方法
本発明は、イオンセンサ、表示装置、イオンセンサの駆動方法、及び、イオン濃度の算出方法に関する。より詳しくは、電界効果トランジスタ(Field Effect Transistor、以下、「FET」とも言う。)を含むイオンセンサに好適なイオンセンサと、該イオンセンサを備える表示装置と、該イオンセンサの駆動方法と、該イオンセンサを用いたイオン濃度の算出方法とに関するものである。
近年、空気中に発生させたプラスイオン及びマイナスイオン(以下、「両イオン」又は単に「イオン」とも言う。)によって空気中に浮遊する細菌を殺菌して、空気を清浄にする作用が見出され、この技術を応用した空気清浄機等のイオン発生装置が、快適性と健康志向の時代にもマッチして大きな注目を集めている。
ところが、イオンは目に見えないので、直接見て確認することはできない。その一方、空気清浄機等の使用者にしてみれば、イオンが正常に発生しているかどうかや、所望の濃度のイオンが実際に発生しているかどうかを知りたいと思うのが自然である。
この点に関して、FETを含むイオンセンサを備え、該イオンセンサで計測したイオン濃度を表示する表示部を備えた空気調和機(例えば、特許文献1参照。)、電界効果型バイオセンサ(例えば、特許文献2参照。)、電界効果トランジスタ型イオンセンサ(例えば、特許文献3参照。)等が開示されている。
FETは、半導体集積回路製造工程により製造されることから、FETを含むイオンセンサは、小型化、規格化が容易でかつ量産化も容易である。
また、イオン発生部から発生した正イオン及び負イオンを定量するイオンセンサ部と、定量されたイオン量を表示する表示部とを備えたイオン発生素子が知られている(例えば、特許文献4参照。)。更に、大気中のイオン濃度を計測するイオンセンサと、家電製品が現在どのような状態にあるのかを表示する表示部とを備えたイオンセンサ内蔵家電製品用リモコンが知られている(例えば、特許文献5参照。)。
特開平10-332164号公報 特開2002-296229号公報 特開2008-215974号公報 特開2003-336872号公報 特開2004-156855号公報
本発明者らは、耐圧の低い薄膜デバイスを含むイオンセンサを用いて、両イオンが混在する検体に対して片方のイオンを測定し続けた場合、精度良く片方のイオンの濃度を測定できないことがあることを見出した。
例えば、両イオンが混在する検体では、FETを含むイオンセンサを用いてマイナスイオンのみを測定し続けた場合、プラスイオンによって阻害され、精度良くマイナスイオン濃度が測定できないことがあった。ここで、図22及び図23を用いて、その現象及び原因について説明する。
まず、本発明者らが用いたFETを含むイオンセンサの構成について説明する。図22は、FETとして、Nチャネル型の薄膜トランジスタ(Thin Film Transistor、以下「TFT」とも言う。)を有するイオンセンサを示す等価回路である。TFT50のドレイン電極には、入力配線27が接続される。入力配線27には、High電圧(+10V)又はLow電圧(0V)が印加され、入力配線27の電圧をVddとする。ソース電極には、出力配線21cが接続される。出力配線21cの電圧をVoutとする。また、TFT50のゲート電極には、接続配線22cを介してイオンセンサアンテナ41cが接続される。更に、接続配線22cには、リセット配線2iが接続される。配線22c、2i同士の交点(ノード)をnode-Zとする。リセット配線2iは、node-Z、すなわちTFT50のゲートとアンテナ41cとの電圧をリセットするための配線である。リセット配線2iには、High電圧(+20V)又はLow電圧(-10V)が印加され、リセット配線2iの電圧をVrstとする。更に、接続配線2iには、保持容量43cを介してアース(GND)が接続される。
次に、上記イオンセンサの動作機構について説明する。初期状態において、Vrstは、Low電圧(-10V)に設定され、Vddは、Low電圧(0V)に設定されている。マイナスイオン濃度の測定が開始される前に、まず、リセット配線2iにHigh電圧(+20V)が印加され、アンテナ41cの電圧(node-Zの電圧)が+20Vにリセットされる。node-Zの電圧がリセットされた後、リセット配線2iは、ハイインピーダンス状態に保たれる。そして、イオンの導入が開始され、アンテナ41cにマイナスイオンが捕集されると、+20Vにリセットされた、すなわち、プラスにチャージされたnode-Zの電圧は、マイナスイオンによって中和され低下する(センシング動作)。マイナスイオン濃度が高いほど、電圧が低下するスピードは速くなる。イオンを導入してから所定の時間が経過した後、入力配線27にHigh電圧(+10V)を一時的に印加する。すなわち、入力配線27に+10Vのパルス電圧を印加する。入力配線27に+10Vのパルス電圧を印加すると、センサTFT50のゲートの開き具合、すなわち、node-Zの電圧の差に応じて、出力配線21cの電流Idは変化することとなる。この出力配線21cの電流Idに基づいてマイナスイオン濃度を算出する。
次に、測定結果を示す。図23は、図22に示したイオンセンサで両イオンの混成比が異なる検体のマイナスイオン濃度を測定した結果を示すグラフである。
検体として、両イオンを含まないドライエアー(DA)と、1400×10個/cmのマイナスイオン及び2000×10個/cmのプラスイオンを含むエアーと、1400×10個/cmのマイナスイオン及び1300×10個/cmのプラスイオンを含むエアーと、1400×10個/cmのマイナスイオン及び800×10個/cmのプラスイオンを含むエアーと、1400×10個/cmのマイナスイオン及び600×10個/cmのプラスイオンを含むエアーとの5種の気体を測定した。
その結果、図23に示されるように、センサ出力(感度曲線)は、両イオンの総量と、両イオンのバランス(存在比)とに依存して、大きく変化することがわかった。DAを除く4種の検体のマイナスイオン濃度は、いずれも1400×10個/cmであるにもかかわらず、時間tにおけるIdは、4種の検体で異なる値となった。そして、プラスイオン量が多い検体ほど、Idの低下が抑えられた。これは、プラスイオン量が多い程、イオンセンサアンテナ41cへのマイナスイオンの吸着がプラスイオンによって阻害されたためと考えられる。
このように、イオンセンサアンテナと測定対象のイオンとの反応が、測定対象のイオンと逆極性を有するイオンによって阻害されるため、両イオンが存在する検体、特に、測定対象のイオンと逆極性を有するイオンが相対的に多く存在する検体において、測定対象のイオンの濃度を高精度に測定できなくなる。
逆極性を有するイオンによる阻害を防止するために、イオンセンサアンテナに高電圧(例えば、1000Vを超える電圧)を印加することが考えられる。しかし、FETやTFTをはじめとする薄膜デバイスは、耐圧が数10Vと低く、一般的なFETを有するイオンセンサにおいて、逆極性を有するイオンによる阻害を防止できるほどの高電圧をイオンセンサアンテナに印加することはできない。
本発明は、上記現状に鑑みてなされたものであり、両イオンが混在する検体において、イオン濃度を高精度に測定することが可能なイオンセンサ、表示装置、イオンセンサの駆動方法、及び、イオン濃度の算出方法を提供することを目的とするものである。
本発明者らは、プラスイオン及びマイナスイオンが混在する検体に対して、イオン濃度を高精度に測定することが可能なイオンセンサについて種々検討したところ、両イオンの濃度比と、プラスイオン又はマイナスイオンを検出したときのセンサ出力との間に相関関係があり、プラスイオンを検出したときのセンサ出力とマイナスイオンを検出したときのセンサ出力とからプラス及び/又はマイナスイオンの濃度を高精度に算出できることを見出した。また、FETを用いてマイナスイオン及びプラスイオンの一方を検出した後、続けて、該FETを用いてマイナスイオン及びプラスイオンの他方を検出するか、又は、第一のFETを用いてマイナスイオンを検出し、第二のFETを用いてプラスイオンを検出することにより、上述のように、プラスイオンの検出結果とマイナスイオンの検出結果とを得ることができ、その結果、イオン濃度を高精度に測定できることを見出し、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一側面は、電界効果トランジスタを含むイオンセンサであって、前記イオンセンサは、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの一方を検出した後、続けて、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの他方を検出するイオンセンサ(以下、「第1の本発明」とも言う。)である。
第1の本発明の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
本発明はまた、第一電界効果トランジスタ及び第二電界効果トランジスタを含むイオンセンサであって、前記イオンセンサは、前記第一電界効果トランジスタを用いてマイナスイオンを検出し、前記第二電界効果トランジスタを用いてプラスイオンを検出するイオンセンサ(以下、「第2の本発明」とも言う。)という側面も有する。
第2の本発明の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
本発明はまた、電界効果トランジスタを含むイオンセンサの駆動方法であって、前記駆動方法は、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの一方を検出した後、続けて、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの他方を検出するイオンセンサの駆動方法(以下、「第3の本発明」とも言う。)という側面も有する。
第3の本発明の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
本発明はまた、第一電界効果トランジスタ及び第二電界効果トランジスタを含むイオンセンサの駆動方法であって、前記駆動方法は、前記第一電界効果トランジスタを用いてマイナスイオンを検出し、前記第二電界効果トランジスタを用いてプラスイオンを検出するイオンセンサの駆動方法(以下、「第4の本発明」とも言う。)という側面も有する。
第4の本発明の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
本発明はまた、電界効果トランジスタを含むイオンセンサを用いたイオン濃度の算出方法であって、前記算出方法は、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの一方を検出する第一ステップと、前記第一ステップの後、続けて、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの他方を検出する第二ステップとを含むイオン濃度の算出方法(以下、「第5の本発明」とも言う。)という側面も有する。
第5の本発明の構成としては、このような構成要素及びステップを必須として形成されるものである限り、その他の構成要素及びステップにより特に限定されるものではない。
本発明は更に、第一電界効果トランジスタ及び第二電界効果トランジスタを含むイオンセンサを用いたイオン濃度の算出方法であって、前記算出方法は、前記第一電界効果トランジスタを用いてマイナスイオンを検出する第一ステップと、前記第二電界効果トランジスタを用いてプラスイオンを検出する第二ステップとを含むイオン濃度の算出方法(以下、「第6の本発明」とも言う。)という側面も有する。
第6の本発明の構成としては、このような構成要素及びステップを必須として形成されるものである限り、その他の構成要素及びステップにより特に限定されるものではない。
本発明はそして、少なくとも一つの電界効果トランジスタを含むイオンセンサを用いたイオン濃度の算出方法であって、前記算出方法は、前記少なくとも一つの電界効果トランジスタによって得られたマイナスイオンの検出結果及びプラスイオンの検出結果を用いて、マイナスイオン濃度及びプラスイオン濃度の少なくとも一方を決定するステップを含むイオン濃度の算出方法(以下、「第7の本発明」とも言う。)という側面も有する。
第7の本発明の構成としては、このような構成要素及びステップを必須として形成されるものである限り、その他の構成要素及びステップにより特に限定されるものではない。
また、第1、第3及び第5の本発明によれば、一つのFETのみを含む単一のイオンセンサ回路を用いてイオン濃度を測定することができるので、第2、第4及び第6の本発明に比べて、イオンセンサの小型化が可能である。
また、第2、第4及び第6の本発明によれば、それぞれのFETの測定対象となるイオンの種類を考慮して、第一FETを含むマイナスイオン検知用センサ回路と、第二FETを含むプラスイオン検知用センサ回路とを適宜設計することができる。また、後述するように、マイナスイオン及びプラスイオンを同じタイミングで検出することができる。したがって、第2、第4及び第6の本発明によれば、第1、第3及び第5の本発明に比べて、より高精度にイオン濃度を測定することができる。
以下、本発明について詳述する。
第1~第7の本発明において、前記イオンセンサは、少なくとも一つのFETを含み、感知するイオンの濃度に応じて該FETのチャネルの電気抵抗が変化し、この変化を該FETのソース及びドレイン間の電流又は電圧変化として検出する。
第1~第7の本発明において、各FETの種類は特に限定されるものではないが、TFT及びMOSFET(Metal Oxide Semiconductor FET)が好ましい。TFTは、アクティブマトリクス駆動方式の液晶表示装置や有機EL(Organic Electro-Luminescence)表示装置に好適に用いられる。MOSFETは、LSIやIC等の半導体チップに好適に用いられる。
なお、第2、第4及び第6の本発明において、第一FET及び第二FETの種類は互いに同じでもよいし、異なっていてもよい。また、第7の本発明において、前記イオンセンサが複数のFETを含む場合、各FETの種類は互いに同じでもよいし、異なっていてもよい。
なお、TFTの半導体材料は特に限定されず、例えば、アモルファスシリコン(a-Si)、ポリシリコン(p-Si)、微結晶シリコン(μc-Si)、連続粒界結晶シリコン(CG-Si)、酸化物半導体等が挙げられる。また、MOSFETの半導体材料は特に限定されず、例えば、シリコンが挙げられる。
第1~第7の本発明における好ましい形態について以下に詳しく説明する。
第1及び第2の本発明において、前記イオンセンサは、マイナスイオンの検出結果及びプラスイオンの検出結果を用いて、マイナスイオン濃度及びプラスイオン濃度の少なくとも一方を算出することが好ましい。これにより、測定対象のイオンと逆極性を有するイオンによる阻害があっても、測定対象のイオン濃度を高精度に算出することが可能となる。
同様の観点からは、第3及び第4の本発明は、マイナスイオンの検出結果及びプラスイオンの検出結果を用いて、マイナスイオン濃度及びプラスイオン濃度の少なくとも一方を算出することが好ましく、第5及び第6の本発明は、マイナスイオンの検出結果及びプラスイオンの検出結果を用いて、マイナスイオン濃度及びプラスイオン濃度の少なくとも一方を算出する第三ステップを含むことが好ましい。
なお、第1~第7の本発明において、測定対象のイオンは特に限定されず、用途によって適宜設定すればよい。すなわち、プラス又はマイナスイオンのみの濃度を測定してもよいし、両イオンの濃度を測定してもよい。
第1~第7の本発明において、前記マイナスイオン濃度及びプラスイオン濃度の少なくとも一方は、予め作成された検量線又はルックアップテーブル(LUT:Look Up Table)を用いて決定されることが好ましい。これにより、両イオンの測定結果から、両イオン濃度を簡便に算出することが可能となる。
第1、第3及び第5の本発明において、前記イオンセンサは、キャパシタを更に含み、前記キャパシタの一方の端子は、前記電界効果トランジスタのゲート電極に接続され、前記キャパシタの他方の端子には、電圧が印加されることが好ましい。これにより、FETのソース及びドレイン間の電流又は電圧値を測定する時、FETの導電型がNチャネル型の場合はFETのゲートの電位をプラスに突上げ、FETの導電型がPチャネル型の場合はFETのゲートの電位をマイナスに突下げることができる。そのため、Nチャネル型又はPチャネル型において、高精度にイオンを検知するのに適した電圧領域にゲートの電位をシフトすることができる。その結果、Nチャネル型又はPチャネル型のいずれかの導電型のFETのみを用いて、プラスイオン及びマイナスイオンの両方を高精度に検出することが可能となる。また、Nチャネル型又はPチャネル型のいずれかの導電型のFETを形成するだけでよいので、製造コストを削減することができる。
前記キャパシタの種類は特に限定されるものではないが、単板型の構造を有するキャパシタであることが好ましい。該キャパシタは、FETの電極や配線と同時に形成されることが可能であり、低コスト化が可能である。
第1、第3及び第5の本発明において、前記キャパシタの他方の端子に印加される電圧は、可変であることが好ましい。これにより、突上げ又は突下げ量を適宜調整することができるので、ゲートの電位を最適な電圧領域に容易に移動させることができる。
第1~第7の本発明において、各FETは、アモルファスシリコン又は微結晶シリコンを含むことが好ましい。比較的安価なa-Si又はμc-Siを用いることで、低コストでありながら高精度に両イオンを検出することが可能なイオンセンサを提供することが可能となる。
第2、第4及び第6の本発明において、許容できる精度のイオン濃度が測定できる範囲であれば、マイナスイオンの検出のタイミングと、プラスイオンの検出のタイミングとは、互いにずれていてもよい。しかしながら、イオン濃度をより高精度に測定する観点からは、第2の本発明において、前記イオンセンサは、前記第一電界効果トランジスタを用いてマイナスイオンを検出するのと同時に、前記第二電界効果トランジスタを用いてプラスイオンを検出することが好ましい。同様の観点からは、第4の本発明は、前記第一電界効果トランジスタを用いてマイナスイオンを検出するのと同時に、前記第二電界効果トランジスタを用いてプラスイオンを検出することが好ましく、第6の本発明において、前記第一ステップ及び第二ステップは、同時に行われるが好ましい。
なお、同時とは、所望の精度のイオン濃度が測定できる範囲であれば、必ずしも厳密に同じである必要はなく、実質的に同時であってもよい。
第1、第3及び第5の本発明において、前記イオンセンサは、イオンセンサアンテナ(以下、単に「アンテナ」とも言う。)を更に含み、前記イオンセンサアンテナは、前記電界効果トランジスタのゲート電極に接続されることが好ましい。アンテナは、空気中のイオンを感知(捕集)する導電部材である。したがって、上記形態によれば、イオンセンサを効果的に機能させることができる。より詳細には、アンテナにイオンが到来するとそのイオンによってアンテナの表面が帯電し、そして、アンテナに接続されたFETのゲート電極の電位が変化し、その結果、FETのチャネルの電気抵抗が変化する。
同様の観点からは、第2、第4及び第6の本発明において、前記イオンセンサは、第一イオンセンサアンテナ及び第二イオンセンサアンテナを更に含み、前記第一イオンセンサアンテナは、前記第一電界効果トランジスタのゲート電極に接続され、前記第二イオンセンサアンテナは、前記第二電界効果トランジスタのゲート電極に接続されることが好ましい。また、第7の本発明において、前記イオンセンサは、少なくとも一つのイオンセンサアンテナを更に含み、各イオンセンサアンテナは、前記少なくとも一つの電界効果トランジスタのゲート電極に接続されることが好ましい。
第1、第3及び第5の本発明において、前記イオンセンサアンテナの表面は、透明導電膜によって覆われることが好ましい。これにより、アンテナが外部環境に曝露され、腐食するのを防ぐことができる。
同様の観点からは、第2、第4及び第6の本発明において、前記第一イオンセンサアンテナの表面は、第一透明導電膜によって覆われ、前記第二イオンセンサアンテナの表面は、第二透明導電膜によって覆われることが好ましい。また、第7の本発明において、各イオンセンサアンテナは、透明導電膜によって覆われることが好ましい。
第1、第3及び第5の本発明において、前記第一FETは、光により特性が変化する半導体を含み、前記半導体は、遮光膜によって遮光されることが好ましい。光により特性が変化する半導体としては、例えば、a-Siやμc-Si等が挙げられる。したがって、これらの半導体をイオンセンサに用いるためには、遮光して特性が変化しないようにすることが好ましい。そのため、光により特性が変化する半導体を遮光することにより、光により特性が変化する半導体をイオンセンサにおいて好適に用いることが可能となる。
同様の観点からは、第2、第4及び第6の本発明において、前記第一FETは、光により特性が変化する第一半導体を含み、前記第一半導体は、第一遮光膜によって遮光され、前記第二FETは、光により特性が変化する第二半導体を含み、前記第二半導体は、第二遮光膜によって遮光されることが好ましい。また、第7の本発明において、前記少なくとも一つの電界効果トランジスタは、光により特性が変化する半導体を含み、前記半導体は、遮光膜によって遮光されることが好ましい。
第1、第3及び第5の本発明において、前記イオンセンサアンテナは、前記FETのチャネル領域と重ならなくてもよいし、重なってもよい。アンテナは、通常、光により特性が変化する半導体を含まないため、遮光される必要はない。すなわち、例えFETを遮光する必要が生じたとしても、アンテナの周辺に遮光膜が配されている必要はない。したがって、前者の形態のように、アンテナをチャネル領域外に設ければ、FETの配置場所の制約を受けることなく、アンテナの配置場所を自由に決定することができる。そのため、イオンをより効果的に検出できる場所、例えば、大気をアンテナに導くための流路やファンの近くの場所等にアンテナを容易に形成することが可能となる。他方、後者の形態のように、アンテナをチャネル領域内に設ければ、FETのゲート電極そのものをアンテナとして機能させることができる。したがって、イオンセンサ素子をより小型化することが可能となる。
同様の観点からは、第2、第4及び第6の本発明において、前記第一イオンセンサアンテナは、前記第一FETのチャネル領域上に設けられてもよいし、設けられなくてもよく、前記第二イオンセンサアンテナは、前記第二FETのチャネル領域上に設けられてもよいし、設けられなくてもよい。また、第7の本発明において、前記少なくとも一つのイオンセンサアンテナは、前記少なくとも一つのFETのチャネル領域上に設けられてもよいし、設けられなくてもよい。
本発明はまた、第1の本発明と、表示部駆動回路を含む表示部とを備えた表示装置であって、前記表示装置は、基板を有し、前記電界効果トランジスタと、前記表示部駆動回路の少なくとも一部とは、前記基板の同一主面上に形成される表示装置(以下、「第8の本発明」とも言う。)という側面も有する。
第8の本発明の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
本発明は更に、第2の本発明と、表示部駆動回路を含む表示部とを備えた表示装置であって、前記表示装置は、基板を有し、前記第一電界効果トランジスタと、前記第二電界効果トランジスタと、前記表示部駆動回路の少なくとも一部とは、前記基板の同一主面上に形成される表示装置(以下、「第9の本発明」とも言う。)という側面も有する。
第9の本発明の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
第8及び第9の本発明によれば、イオンセンサを基板の額縁領域等の空いたスペースに設けることができ、また、表示部駆動回路を形成する工程を援用してイオンセンサを形成できる。その結果、本発明のイオンセンサ及び表示部を備えた、低コストでかつ小型化が可能な表示装置を提供することが可能となる。
第8及び第9の本発明の種類は特に限定されないが、好適には、フラットパネルディスプレイ(FPD)が挙げられる。FPDとしては、例えば、液晶表示装置、有機ELディスプレイ、プラズマディスプレイ等が挙げられる。
前記表示部は、表示機能を発揮させるための要素を含むものであり、表示部駆動回路の他に、例えば、表示素子、光学フィルム等を含む。前記表示部駆動回路は、表示素子を駆動するための回路であり、例えば、TFTアレイ、ゲートドライバ、ソースドライバ等の回路を含む。なかでも、前記表示部駆動回路の少なくとも一部は、TFTアレイであることが好ましい。
なお、表示素子とは、発光機能又は調光機能(光のシャッター機能)を有する素子であり、表示装置の画素又はサブ画素毎に設けられる。
例えば、液晶表示装置は、通常、対向する一対の基板と、両基板の間に調光機能を有する表示素子とを備える。より具体的には、液晶表示装置の表示素子は、通常、一対の電極と、両基板の間に狭持された液晶とを含む。
また、有機ELディスプレイは、通常、発光機能を有する表示素子を基板上に備える。より具体的には、有機ELディスプレイの表示素子は、通常、陽極、有機発光層及び陰極が積層された構造を含む。
また、プラズマディスプレイは、通常、対向する一対の基板と、両基板の間に発光機能を有する表示素子とを備える。より具体的には、プラズマディスプレイの発光素子は、通常、一対の電極と、一方の基板に形成された蛍光体と、両基板の間に封入された希ガスとを含む。
第8及び第9の本発明における好ましい形態について以下に詳しく説明する。
第8の本発明において、前記FETは、第一FETであり、前記表示部駆動回路は、第二FETを含み、前記第一FET及び前記第二FETは、前記基板の同一主面上に形成されることが好ましい。これにより、第一及び第二FETを形成するための材料や工程の少なくとも一部を同じくすることが可能となり、第一及び第二FETの形成に必要なコストを削減することが可能となる。
また、従来のイオンセンサと表示部とを備えた装置においては、イオンセンサは平行平板型の電極を利用したものが一般的であった。例えば、特許文献4に記載のイオンセンサは、対向する平板型の加速電極及び捕集電極を備えている。このような平行平板型のイオンセンサは、製造上の加工精度の限界から、μmオーダーでの加工は困難であるため、小型化が困難である。特許文献5に記載のイオンセンサ内蔵家電製品用リモコンにおいても、イオンセンサには、一組のイオン加速電極とイオン捕集電極からなる並行平板電極が用いられており、やはり小型化が困難である。一方、上記形態のように、イオンセンサ素子として、FET及びアンテナを利用することにより、フォトリソ法によってイオンセンサ素子の製造が可能となるため、μmオーダーでの加工が可能となり、平行平板型のイオンセンサよりも小型化することが可能である。また、液晶表示パネルにおいては電極間ギャップ(TFTアレイ基板と対向基板とのギャップ)は一般的には3~5μm程度であり、TFTアレイ基板及び対向基板にそれぞれ電極を設け、平行平板型のイオンセンサを形成しても、ギャップにイオンを導入することが困難と考えられる。一方、上記形態のように、FET及びアンテナを利用するイオンセンサ素子は、対向基板を必要としないため、イオンセンサを備えた表示装置を小型化することが可能である。
同様の観点からは、第9の本発明において、前記表示部駆動回路は、第三FETを含み、前記第一FET、前記第二FET及び前記第三FETは、前記基板の同一主面上に形成されることが好ましい。
なお、イオンセンサ素子とは、空気中のイオン濃度を電気的な物理量に変換するための必要最低限の素子である。
第8の本発明における第二FETと、第9の本発明における第三FETとの種類はそれぞれ特に限定されるものではないが、TFTであることが好ましい。TFTは、アクティブマトリクス駆動方式の液晶表示装置や有機EL表示装置に好適に用いられる。
なお、第8の本発明における第二FETと、第9の本発明における第三FETとをTFTとした場合の半導体材料は特に限定されず、例えば、a-Si、p-Si、μc-Si、CG-Si、酸化物半導体等が挙げられるが、なかでも、a-Si及びμc-Siが好適である。
第8の本発明において、前記イオンセンサアンテナは、第一透明導電膜を含む表面(露出部)を有し、前記表示部は、第二透明導電膜を有することが好ましい。換言すれば、前記イオンセンサアンテナの表面は、第一透明導電膜によって覆われ、前記表示部は、第二透明導電膜を有することが好ましい。透明導電膜は、導電性と光学的な透明性とを合わせ持つことから、上記形態により、第二透明導電膜を表示部の透明電極として好適に用いることができる。また、第一透明導電膜及び第二透明導電膜を形成するための材料や工程の少なくとも一部を互いに同じくすることが可能となるので、第一透明導電膜を低コストで形成することが可能となる。また、アンテナが外部環境に曝露され、腐食するのを防ぐことができる。
前記第一透明導電膜及び第二透明導電膜は、同一の材料を含むことが好ましく、同一の材料のみからなることがより好ましい。これにより、第一透明導電膜をより低コストで形成することが可能となる。
同様の観点からは、第9の本発明において、前記第一イオンセンサアンテナは、第一透明導電膜を含む表面(露出部)を有し、前記第二イオンセンサアンテナは、第二透明導電膜を含む表面(露出部)を有し、前記表示部は、第三透明導電膜を有することが好ましい。換言すれば、前記第一イオンセンサアンテナの表面は、第一透明導電膜によって覆われ、前記第二イオンセンサアンテナの表面は、第二透明導電膜によって覆われ、前記表示部は、第三透明導電膜を有することが好ましい。
前記第一、第二及び第三透明導電膜の材質としては、特に限定されるものではないが、例えば、インジウム酸化スズ(ITO:Indium Tin Oxide)、酸化インジウム亜鉛(IZO:Indium Zinc Oxide)、酸化亜鉛(ZnO)、フッ素ドープ酸化スズ(FTO:Fluorine-doped TinOxide)等が好適に用いられる。
第8の本発明において、前記第一FETは、光により特性が変化する半導体を含み、前記半導体は、第一遮光膜によって遮光され、前記表示部は、第二遮光膜を有することが好ましい。これにより、本発明の表示装置として例えば液晶表示装置や有機ELディスプレイを適用した場合、混色を抑制することを目的として、表示部の各画素又はサブ画素の境界に第二遮光膜を設けることができる。また、第一遮光膜及び第二遮光膜を形成するための材料や工程の少なくとも一部を互いに同じくすることが可能となり、第一遮光膜を低コストで形成することが可能となる。また、光により特性が変化する半導体を表示部だけでなくイオンセンサにおいても好適に用いることが可能となる。
前記第一遮光膜及び第二遮光膜は、同一の材料を含むことが好ましく、同一の材料のみからなることがより好ましい。これにより、第一遮光膜をより低コストで形成することが可能となる。
前記第一遮光膜は、前記第一FETを表示装置外部の光(外光)及び/又は表示装置内部の光から遮光するものである。表示装置内部の光としては、例えば、表示装置内部で生じた反射光等が挙げられる。また、表示装置が有機ELやプラズマディスプレイ等、自発光型であるときは、それらの表示装置が備える発光素子からの光が挙げられる。一方、非自発光型である液晶表示装置のときは、バックライトの光が挙げられる。表示装置内部で生じた反射光等は、数10Lx程度であり、第一FETに与える影響は比較的小さい。一方、外光としては、太陽光、室内照明(例えば蛍光灯)等が挙げられる。太陽光は、3000~100000Lxであり、実使用時(暗室での使用は除く。)の室内の蛍光灯は、100~3000Lxであり、いずれも第一FETに与える影響は大きい。したがって、前記第一遮光膜は、好適には前記第一FETを少なくとも外光から遮断するものであり、より好適には外光と表示装置内部の光との両方を遮断するものである。
同様の観点からは、第9の本発明において、前記第一FETは、光により特性が変化する第一半導体を含み、前記第一半導体は、第一遮光膜によって遮光され、前記第二FETは、光により特性が変化する第二半導体を含み、前記第二半導体は、第二遮光膜によって遮光され、前記表示部は、第三遮光膜を有することが好ましい。また、前記第一遮光膜は、好適には前記第一FETを少なくとも外光から遮断するものであり、より好適には外光と表示装置内部の光との両方を遮断するものであり、前記第二遮光膜は、好適には前記第二FETを少なくとも外光から遮断するものであり、より好適には外光と表示装置内部の光との両方を遮断するものである。
第8及び第9の本発明において、前記イオンセンサの少なくとも一部と、前記表示部駆動回路の少なくとも一部とは、共通の電源に接続されることが好ましい。共通の電源を用いることで、イオンセンサと表示部とが、別々の電源を有しているものよりも、電源を形成するためのコスト、及び、電源を配置するためのスペースを削減することができる。より具体的には、第8の本発明において、少なくとも、FETのソース又はドレインと、TFTアレイのTFTのゲートとが共通の電源に接続されることが好ましい。第9の本発明において、第一FETのソース又はドレインと、第二FETのソース又はドレインと、TFTアレイのTFTのゲートとが共通の電源に接続されることが好ましい。
第8及び第9の本発明に係る製品は、特に限定されないが、好適には、テレビ、パーソナルコンピュータ用ディスプレイ等の据え置き型ディスプレイが挙げられる。これにより、据え置き型ディスプレイが置かれた室内環境におけるイオン濃度を該ディスプレイに表示させることが可能となる。また、携帯電話機、PDA(Personal Digital Assistants)等の携帯機器も好適な例として挙げられる。これにより、様々な場所のイオン濃度を手軽に計測することが可能となる。更に、表示部を備えたイオン発生装置も好適な例として挙げられ、これにより、イオン発生装置から放出されるイオンの濃度を表示部に表示させることが可能となる。
本発明によれば、両イオンが混在する検体において、イオン濃度を高精度に測定することが可能なイオンセンサ、表示装置、イオンセンサの駆動方法、及び、イオン濃度の算出方法を提供することができる。
実施形態1~4に係るイオンセンサ及び表示装置のブロック図である。 実施形態1~4に係るイオンセンサ及び表示装置の断面を示す断面模式図である。 実施形態1に係るイオンセンサ及び表示装置の断面を示す断面模式図である。 実施形態1に係るイオンセンサ回路とTFTアレイの一部とを示す等価回路である。 実施形態1に係るイオンセンサ回路のタイミングチャートである。 実施形態2~4に係るイオンセンサ及び表示装置の断面を示す断面模式図である。 実施形態2に係るイオンセンサ回路とTFTアレイの一部とを示す等価回路である。 実施形態2に係るイオンセンサ回路のタイミングチャートである。 実施形態2に係るイオンセンサ回路のタイミングチャートである。 実施形態3に係るイオンセンサ回路とTFTアレイの一部とを示す等価回路である。 実施形態3に係るイオンセンサ回路のタイミングチャートである。 実施形態3に係るイオンセンサ回路のタイミングチャートである。 Id(-)及びマイナスイオン濃度の関係を示す曲線(検量線)である。 Id(+)及びプラスイオン濃度の関係を示す曲線(検量線)である。 Id(-)及びマイナスイオン濃度の関係を示す曲線(検量線)である。 Id(+)及びプラスイオン濃度の関係を示す曲線(検量線)である。 Id(-)及びマイナスイオン濃度の関係を示す曲線(検量線)である。 Id(+)及びプラスイオン濃度の関係を示す曲線(検量線)である。 実施形態4に係るイオンセンサ回路とTFTアレイの一部とを示す等価回路である。 実施形態4に係るイオンセンサ回路のタイミングチャートである。 実施形態4に係るイオンセンサ回路のタイミングチャートである。 Nチャネル型のTFTを有するイオンセンサを示す等価回路である。 Nチャネル型のTFTを有するイオンセンサで両イオンの混成比が異なる検体のマイナスイオン濃度を測定した結果を示すグラフである。 実施形態1に係るイオンセンサ回路の一部を示す等価回路である。 実施形態1に係る別のイオンセンサ回路の一部を示す等価回路である。 実施形態1~4に係るLUTである。
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
(実施形態1)
本実施形態では、Nチャネル型のTFTを含み、検知対象が空気中のイオンであるイオンセンサと、該イオンセンサを備えた液晶表示装置とを例に挙げて説明する。図1は、本実施形態に係るイオンセンサ及び表示装置のブロック図である。
本実施形態に係る表示装置110は、液晶表示装置であり、空気中のイオン濃度を測定するためのイオンセンサ120(イオンセンサ部)と、種々の映像を表示するための表示部130とを備える。表示部130は、表示部駆動回路115として、表示部駆動用TFTアレイ101、ゲートドライバ(表示用走査信号線駆動回路)103及びソースドライバ(表示用映像信号線駆動回路)104を含む。イオンセンサ120は、イオンセンサ駆動/読出し回路105、演算処理LSI106及びイオンセンサ回路107を含む。電源回路109は、イオンセンサ120及び表示部130に共用される。イオンセンサ回路107は、空気中のイオン濃度を電気的な物理量に変換するために必要な素子(好ましくは、FET及びイオンセンサアンテナ)を少なくとも含む回路であり、イオンを検知(捕集)する機能も含む。
表示部130は、従来の液晶表示装置等のアクティブマトリクス型の表示装置と同様の回路構成を有する。すなわち、TFTアレイ101が形成された領域、すなわち表示領域に、線順次駆動により映像が表示される。
イオンセンサ120の機能について概略すると以下の通りである。まず、イオンセンサ回路107において、空気中のイオンを検知(捕集)し、検知されたイオンの量に応じた電圧値を生成する。この電圧値は駆動/読出し回路105に送られ、ここでデジタル信号に変換される。この信号は、LSI106に送られ、ここで所定の計算方法に基づきイオン濃度が演算されるとともに、該演算結果を表示領域に表示するための表示用データが生成される。この表示用データは、ソースドライバ104を介してTFTアレイ101に送信され、表示データに応じたイオン濃度が最終的に表示される。電源回路109は、TFTアレイ101、ゲートドライバ103、ソースドライバ104、及び、駆動/読出し回路105に電源を供給する。駆動/読出し回路105は、上記機能の他、後述する突上げ/突下げ配線、リセット配線及び入力配線を制御し、それぞれの配線に所望のタイミングで所定の電源を供給する。
なお、駆動/読出し回路105は、イオンセンサ回路107、ゲートドライバ103、ソースドライバ104等の他の回路に含まれてもよく、LSI106に含まれてもよい。
また、本実施形態においては、LSI106の代わりに、パーソナルコンピュータ(PC)上で機能するソフトウェアを用いて演算処理を行ってもよい。
図2を用いて、表示装置110の構造について説明する。図2は、図1に示す線分A1-A2にて切断した状態におけるイオンセンサ及び表示装置の断面模式図である。イオンセンサ120は、イオンセンサ回路107と、空気イオン導入/導出路42と、ファン(図示せず)と、遮光膜12aとを備える。イオンセンサ回路107は、イオンセンサ素子である、センサTFT30及びイオンセンサアンテナ41を含む。一方、表示部130は、ピクセルTFT40を含むTFTアレイ101と、遮光膜12bと、RGB、RGBY等の色を含むカラーフィルタ13と、液晶32と、偏光板31a、31bとを備える。
アンテナ41は、空気中のイオンを検知(捕集)する導電部材であり、センサTFT30のゲートに接続されている。アンテナ41は、外部環境に曝露される部分(露出部)を含み、アンテナ41の表面(露出部)にイオンが付着するとアンテナ41の電位が変化し、それに応じてセンサTFT30のゲートの電位も変化する。その結果、センサTFT30のソース及びドレイン間の電流及び/又は電圧が変化する。このように、イオンセンサ素子が、アンテナ41と、センサTFT30とから形成されることにより、従来の平行平板型のイオンセンサよりも小型化することが可能である。
導入/導出路42は、アンテナ41上を効率的に通気させるための経路であり、ファンによって、図2の手前から奥、又は、奥から手前に空気が流れる。
また、表示装置110は、大部分が対向する二枚の絶縁性基板1a、1bを備え、基板1a、1bの間には液晶32が狭持されている。センサTFT30及びTFTアレイ101は、基板1a、1bが対向する位置において、基板1a(TFTアレイ基板)の液晶側の主面上に設けられる。TFTアレイ101には、ピクセルTFT40がマトリクス状に多数配されている。アンテナ41、導入/導出路42及びファンは、基板1a、1bが対向しない位置において、基板1aの液晶側の主面上に設けられる。このように、アンテナ41は、センサTFT30のチャネル領域外に設けられる。これにより、導入/導出路42及びファンの近くにアンテナ41を容易に配置することができるので、アンテナ41に効率よく大気を送り込むことが可能となる。また、センサTFT30及び遮光膜12aは、表示部130の端部(額縁領域)に設けられる。これにより、額縁領域の空いたスペースを有効活用することができるので、表示装置110のサイズを変更することなく、イオンセンサ回路107を形成することが可能となる。
このように、基板1aの同一主面上には、イオンセンサ回路107に含まれるセンサTFT30及びイオンセンサアンテナ41と、表示部駆動回路115に含まれるTFTアレイ101とが少なくとも形成される。これにより、TFTアレイ101を形成する工程を援用してセンサTFT30及びイオンセンサアンテナ41を形成できる。
他方、遮光膜12a、12b及びカラーフィルタ13は、基板1a、1bが対向する位置において、基板1b(対向基板)の液晶側の主面上に設けられる。遮光膜12aは、センサTFT30と対向する位置に設けられ、遮光膜12b及びカラーフィルタ13は、TFTアレイ101と対向する位置に設けられる。後に詳述するが、センサTFT30は、光に対する特性が変化する半導体であるa-Siを含む。上記の通り、センサTFT30が、遮光膜12aによって遮光されることで、a-Siの特性、すなわちセンサTFT30の出力特性が変化するのを抑制できるので、イオン濃度をより高精度に測定することができる。
偏光板31a、31bは、基板1a、1bの液晶とは反対側(外側)の主面上にそれぞれ設けられる。
図3を用いて、表示装置110の構造について更に詳述する。図3は、本実施形態に係るイオンセンサ及び表示装置の断面模式図である。
絶縁性基板1aの液晶側の主面上には、第一導電層、絶縁膜3、水素化a-Si層、n+a-Si層、第二導電層、パッシベーション膜9及び第三導電層がこの順に積層されている。
第一導電層には、イオンセンサアンテナ電極2a、リセット配線2b、後述する接続配線22、容量電極2c及びゲート電極2d、2eが形成される。これらの電極は、第一導電層に形成され、例えば、スパッタ法及びフォトリソ法により、同一の材料から同一の工程により形成されることが可能である。第一導電層は、単層又は積層の金属層から形成される。具体的には、アルミニウム(Al)の単層、下層のAl/上層のチタン(Ti)の積層、下層のAl/上層のモリブデン(Mo)の積層等が挙げられる。リセット配線2b、接続配線22及び容量電極2cについては、図4を用いて後に詳述する。
絶縁膜3は、イオンセンサアンテナ電極2a、リセット配線2b、接続配線22、容量電極2c及びゲート電極2d、2eを覆うように、基板1a上に設けられる。絶縁膜3上には、水素化a-Si層4a、4b、n+a-Si層5a、5b、ソース電極6a、6b、ドレイン電極7a、7b及び容量電極8が形成される。ソース電極6a、6b、ドレイン電極7a、7b及び容量電極8は、第二導電層に形成され、例えば、スパッタ法及びフォトリソ法により、同一の材料から同一の工程により形成されることが可能である。第二導電層は、単層又は積層の金属層から形成される。具体的には、アルミニウム(Al)の単層、下層のAl/上層のTiの積層、下層のTi/上層のAlの積層等が挙げられる。また、水素化a-Si層4a、4bは、例えば、化学気相成長(CVD:Chemical Vapor Deposition)法及びフォトリソ法により、同一の材料から同一の工程により形成されることが可能であり、n+a-Si層5a、5bも、例えば、CVD法及びフォトリソ法により、同一の材料から同一の工程により形成されることが可能である。上記の通り、各種電極や半導体を形成するにあたり、材料や工程の少なくとも一部を同じくすることが可能である。これにより、各種電極や半導体から構成されるセンサTFT30及びピクセルTFT40の形成に必要なコストを削減することが可能となる。TFT30、40の構成要素については、後に更に詳述する。
パッシベーション膜9は、水素化a-Si層4a、4b、n+a-Si層5a、5b、ソース電極6a、6b、ドレイン電極7a、7b及び容量電極8を覆うように、絶縁膜3上に設けられる。パッシベーション膜9上には、透明導電膜11a及び透明導電膜11bが形成される。透明導電膜11aは、絶縁膜3及びパッシベーション膜9を貫通するコンタクトホール10aを介してアンテナ電極2aと接続される。コンタクトホール10aによってアンテナ電極2aが剥き出しとならないように透明導電膜11aが配されることで、アンテナ電極2aが外部環境に曝露され腐食するのを防ぐことができる。透明導電膜11bは、パッシベーション膜9を貫通するコンタクトホール10bを介してドレイン電極7bと接続される。透明導電膜11a、11bは、第三導電層に形成され、例えば、スパッタ法及びフォトリソ法により、同一の材料から同一の工程により形成されることが可能である。第三導電層は、単層又は積層の透明導電膜から形成される。具体的には、ITO膜、IZO膜等が挙げられる。なお、透明導電膜11a、11bを構成する全ての材料が互いに完全に同一である必要はなく、また、透明導電膜11a、11bを形成するための全ての工程が完全に同一である必要はない。例えば、透明導電膜11a及び/又は透明導電膜11bが多層構造を有しているとき、二つの透明導電膜に共通する層のみを同一の材料から同一の工程により形成することも可能である。上記の通り、透明導電膜11bを形成するための材料や工程の少なくとも一部を透明導電膜11aの形成に流用することで、透明導電膜11aを低コストで形成することが可能となる。
また、遮光膜12a及び遮光膜12bも同一の材料から同一の工程により形成されることが可能である。具体的には、遮光膜12a、12bは、クロム(Cr)等の不透明な金属膜、不透明な樹脂膜等から形成される。該樹脂膜としては、炭素を含有するアクリル樹脂等が挙げられる。上記の通り、遮光膜12bを形成するための材料や工程の少なくとも一部を遮光膜12aの形成に流用することで、遮光膜12aを低コストで形成することが可能となる。
TFT30、40の構成要素について更に詳述する。センサTFT30は、ゲート電極2d、絶縁膜3、水素化a-Si層4a、n+a-Si層5a、ソース電極6a及びドレイン電極7aから形成される。ピクセルTFT40は、ゲート電極2e、絶縁膜3、水素化a-Si層4b、n+a-Si層5b、ソース電極6b及びドレイン電極7bから形成される。絶縁膜3は、センサTFT30及びピクセルTFT40において、ゲート絶縁膜として機能する。TFT30、40は、ボトムゲート型のTFTである。n+a-Si層5a、5bには、リン(P)等のV族元素がドーピングされる。すなわち、センサTFT30及びピクセルTFT40は、Nチャネル型TFTである。
アンテナ41は、透明導電膜11a及びアンテナ電極2aから形成される。また、容量電極2c、8と、誘電体として機能する絶縁膜3とから、容量(キャパシタ)43が形成される。容量電極2cは、ゲート電極2d及びアンテナ電極2aに接続され、容量電極8は、突上げ/突下げ配線23に接続されている。これにより、ゲート電極2d及びアンテナ41の容量を大きくすることができるので、イオン濃度の測定中における外来ノイズの影響を抑えることができる。したがって、センサ動作をより安定にでき、精度をより高くすることができる。また、両イオンを高精度に検出することができるが、その詳細は後述する。
次に、図4を用いて、イオンセンサ回路107及びTFTアレイ101の回路構成について説明する。図4は、本実施形態に係るイオンセンサ回路107とTFTアレイ101の一部とを示す等価回路である。
まず、TFTアレイ101について説明する。ピクセルTFT40のゲート電極2dは、ゲートバスラインGn、Gn+1、・・・を介して、ゲートドライバ103と接続され、ソース電極6bは、ソースバスラインSm、Sm+1、・・・を介して、ソースドライバ104と接続される。ピクセルTFT40のドレイン電極7bは、画素電極として機能する透明導電膜11bと接続される。ピクセルTFT40は、サブ画素毎に設けられ、スイッチング素子として機能する。ゲートバスラインGn、Gn+1、・・・には、ゲートドライバ103から所定のタイミングで走査パルス(走査信号)が供給され、該走査パルスは、線順次方式で各ピクセルTFT40に印加される。ソースバスラインSm、Sm+1、・・・には、ソースドライバ104で生成された任意の映像信号、及び/又は、マイナスイオン濃度に基づき算出された表示用データが供給される。そして、走査パルスの入力により一定期間だけオン状態とされたピクセルTFT40に接続された画素電極(透明導電膜11b)に、映像信号及び/又は表示用データが所定のタイミングで供給される。液晶に書き込まれた所定レベルの映像信号及び/又は表示用データは、これらの信号及び/又はデータが印加された画素電極と、この画素電極に対向する対向電極(図示せず)との間で一定期間保持される。ここで、これらの画素電極及び対向電極の間に形成される液晶容量と並列に液晶補助容量(Cs)36が形成される。液晶補助容量36は、各サブ画素において、ドレイン電極7a及び液晶補助容量線Csn、Csn+1、・・・の間に形成される。なお、容量線Csn、Csn+1、・・・は、第一導電層に形成され、ゲート配線Gn、Gn+1、・・・と平行に設けられる。
次に、イオンセンサ回路107の回路構成について説明する。イオンセンサ回路107は、プラス及びマイナスの両極性のイオンを検出する。センサTFT30のドレイン電極7aには、入力配線20が接続される。入力配線20には、High電圧(+10V)又はLow電圧(0V)が印加され、入力配線20の電圧をVddとする。ソース電極6aには、出力配線21が接続される。出力配線21の電圧をVoutとする。また、センサTFT30のゲート電極2dには、接続配線22を介してアンテナ41が接続される。更に、接続配線22には、リセット配線2bが接続される。配線22、2b同士の交点(ノード)をnode-Zとする。リセット配線2bは、node-Z、すなわちセンサTFT30のゲートとアンテナ41との電圧をリセットするための配線である。リセット配線2bには、High電圧(+20V)又はLow電圧(-20V)が印加され、リセット配線2bの電圧をVrstとする。更に、接続配線22には、容量43を介して突上げ/突下げ配線23が接続される。突上げ/突下げ配線23には、High電圧又はLow電圧(例えば-10V)が印加され、突上げ/突下げ配線23の電圧をVrwとする。VrwのHigh電圧及びLow電圧、すなわちVrwの波形は、High電圧及びLow電圧それぞれを供給する電源の値を変化させることによって、所望の値に調整することが可能である。なお、電源の値を変化させる方法としては、下記(1)又は(2)の方法が挙げられる。(1)複数の電源を用意し、スイッチ(例えば、半導体スイッチ、トランジスタ等)によって配線23に接続される電源を切り替える方法。どの電源に接続するか、すなわち該スイッチの接続先は、ホスト側からの信号により制御される。より具体的には、図24に示すように、電源の値が互いに異なる電源62、63を用意し、スイッチ65、66によって配線23に接続される電源を切り替える方法が挙げられる。(2)一つの電源にラダー抵抗を接続し、出力したい電圧(抵抗)を選択する方法。どの電圧(抵抗)に接続するかは、ホスト側からの信号により制御される。より具体的には、図25に示すように、電源64にラダー抵抗を接続し、出力したい電圧(抵抗)をスイッチ67、68、69のオンオフにより選択する方法が挙げられる。出力配線21には、定電流回路25及びアナログ-デジタル変換回路(ADC)26が接続される。定電流回路25は、Nチャネル型のTFT(定電流TFT)から構成され、定電流TFTのドレインは、出力配線21に接続される。定電流TFTのソースは、定電流源に接続され、その電圧Vssは、VddのHigh電圧よりも低電圧に固定される。定電流TFTのゲートは、定電圧源に接続される。定電流TFTのゲートの電圧Vbaisは、定電流TFTのソース及びドレインの間に一定の電流(例えば、1μA)が流れるように、所定の値に固定される。定電流回路25及びADC26は、駆動/読出し回路105内に形成される。
なお、アンテナ41、センサTFT30のゲート、リセット配線2b、接続配線22及び容量43は、アンテナ電極2a、ゲート電極2d、リセット配線2b、容量電極2c及び接続配線22が第一導電層に一体的に形成されることによって、互いに接続される。他方、駆動/読出し回路105、ゲートドライバ103及びソースドライバ104はそれぞれ、基板1a上には直接形成されず、LSIチップ等の半導体チップに形成され、半導体チップは、基板1a上に実装される。
続いて、図5を用いてイオンセンサ回路の動作機構について詳細に説明する。図5は、本実施形態に係るイオンセンサ回路のタイミングチャートである。図5に示すように、イオンセンサ回路107は、まずマイナスイオンを検出した後、続いて、プラスイオンを検出する。すなわち、マイナスイオン検出用の駆動と、プラスイオン検出用の駆動とを交互に行う。
初期状態において、Vrstは、Low電圧(-10V)に設定される。このとき、VrstをLow電圧(-10V)に設定するための電源として、ピクセルTFT40のゲート電極2eにLow電圧(-10V)を印加するための電源を流用することができる。また、初期状態において、Vddは、Low電圧(0V)に設定されている。イオン濃度の測定が開始される前に、まず、リセット配線2bにHigh電圧(+20V)が印加され、アンテナ41の電圧(node-Zの電圧)が+20Vにリセットされる。このとき、リセット配線2bにHigh電圧(+20V)に設定するための電源として、ピクセルTFT40のゲート電極2eにHigh電圧(+20V)を印加するための電源を流用することができる。node-Zの電圧がリセットされた後、リセット配線2bは、ハイインピーダンス状態に保たれる。そして、マイナスイオン検知動作が開始され、アンテナ41にマイナスイオンが捕集されると、+20Vにリセットされた、すなわち、プラスにチャージされたnode-Zの電圧は、マイナスイオンによって中和され低下する(センシング動作)。マイナスイオン濃度が高いほど、電圧が低下するスピードは速くなる。イオンを導入してから所定の時間が経過した後、入力配線20にHigh電圧(+10V)を一時的に印加する。すなわち、入力配線20に+10Vのパルス電圧を印加する。同時に、突上げ/突下げ配線23に任意のプラスのパルス電圧(High電圧)を印加し、容量43を介してnode-Zの電圧を突上げる。また、出力配線21は、定電流回路25に接続されている。したがって、入力配線20に+10Vのパルス電圧を印加すると、入力配線20及び出力配線21には一定の電流が流れる。ただし、センサTFT30のゲートの開き具合、すなわち、突上げられたnode-Zの電圧の差に応じて、出力配線21の電圧Vout(-)は変化することとなる。この電圧Vout(-)は、イオン濃度を算出するための数値としてADC26で検出される。なお、定電流回路25を設けず、node-Zの電圧の差に応じて変化する出力配線21の電流Id(-)を検出することも可能である。突上げ/突下げ配線23に印加するプラスの電圧は、高精度にマイナスイオンを検知するのに適した電圧領域にゲートの電位が入るように設定される。よって、node-Zの電圧を突き上げなくとも、ゲートの電位がマイナスイオン濃度の検出に適した電圧領域に入っているのであれば、node-Zの電圧を突上げる必要はない。
マイナスイオンの検出後、続いて、リセット配線2bにLow電圧(-10V)が印加され、アンテナ41の電圧(node-Zの電圧)が-10Vにリセットされる。このとき、リセット配線2bにLow電圧(-10V)に設定するための電源として、ピクセルTFT40のゲート電極2eにLow電圧(-10V)を印加するための電源を流用することができる。node-Zの電圧がリセットされた後、リセット配線2bは、ハイインピーダンス状態に保たれる。そして、プラスイオン検知動作が開始され、アンテナ41にプラスイオンが捕集されると、-10Vにリセットされた、すなわち、マイナスにチャージされたnode-Zの電圧は、プラスイオンによって中和され上昇する(センシング動作)。プラスイオン濃度が高いほど、電圧が上昇するスピードは速くなる。イオンを導入してから所定の時間が経過した後、入力配線20にHigh電圧(+10V)を一時的に印加する。すなわち、入力配線20に+10Vのパルス電圧を印加する。同時に、突上げ/突下げ配線23に任意のプラスのパルス電圧(High電圧)を印加し、容量43を介してnode-Zの電圧を突上げる。また、出力配線21は、定電流回路25に接続されている。したがって、入力配線20に+10Vのパルス電圧を印加すると、入力配線20及び出力配線21には一定の電流が流れる。ただし、センサTFT30のゲートの開き具合、すなわち、突上げられたnode-Zの電圧の差に応じて、出力配線21の電圧Vout(+)は変化することとなる。この電圧Vout(+)は、イオン濃度を算出するための数値としてADC26で検出される。なお、定電流回路25を設けず、node-Zの電圧の差に応じて変化する出力配線21の電流Id(+)を検出することも可能である。突上げ/突下げ配線23に印加するプラスの電圧は、高精度にプラスイオンを検知するのに適した電圧領域にゲートの電位が入るように設定される。
なお、両イオンの比率によっては、Vout(又はId)が0となったり、逆に非常に高い値となったりする。このときは、イオンを導入してから、Vout(又はId)を検出するまでの時間tを調整することで、適切なVout(又はId)を得ることが可能となる。
マイナスイオン検出とプラスイオン検出との時間(インターバル)、すなわちマイナスイオン検出の読み出し動作後(Vrwへのパルス印加)からプラスイオン検出のリセット動作(Vrstへの-10V印加)までの時間は、以下の(1)、(2)の通りである。(1)連続的にイオン導入している場合、すなわちマイナスイオン検知/プラスイオン検知動作の切り替え時にイオン導入を止めない場合には、読み出し動作後のVrw配線とVout配線とが所定の電位(図5ではそれぞれ-10V、0V)まで到達するまでの時間分インターバルを空ければよく、具体的には、10マイクロ秒以上の時間を空ければよい。(2)マイナスイオン検知/プラスイオン検知動作の切り替え時にイオン導入を止める場合には、イオン濃度が安定化するまでの時間が必要であるため、(1)より長い時間が必要となる。
本実施形態では、VddのHigh電圧は+10Vに特に限定されず、リセット配線2bに印加されるHigh電圧、すなわちピクセルTFT40のゲート電極2eに印加されるHigh電圧と同じ+20Vとしてもよい。これにより、VddのHigh電圧を印加するための電源として、ピクセルTFT40のゲート電極2eにHigh電圧を印加するための電源を流用することができる。また、node-Zの電圧を突上げしない状態のときの突上げ/突下げ配線23の電圧(VrwのLow電圧)は、ピクセルTFT40のゲート電極2eに印加されるLow電圧と同じ-10Vとしてもよい。これにより、VrwのLow電圧を印加するための電源として、ピクセルTFT40のゲート電極2eにLow電圧を印加するための電源を流用することができる。
以上、実施形態1によれば、両イオンが混在する検体において、プラスイオン及びマイナスイオンの検出結果を用いて、イオン濃度を簡便かつ高精度に算出することが可能となる。なお、その算出方法は、各実施形態で共通であり、実施形態3で詳述する。
また、実施形態1によれば、一つのセンサTFT30を用いて両イオンを検出することが可能であることから、装置の小型化と、製造コストを削減とが可能となる。
なお、実施形態1においては、Nチャネル型のセンサTFT30及びピクセルTFT40を用いたが、Pチャネル型のTFTを用いてもよい。
また、マイナスイオン及びプラスイオンの検出順序は特に限定されず、プラスイオンを検出した後、続いて、マイナスオンを検出してもよい。
(実施形態2)
実施形態2に係る表示装置は、以下の点以外は、実施形態1と同様の構成を有する。すなわち、実施形態2のイオンセンサ回路207は、マイナスイオン検知用センサ回路201及びプラスイオン検知用センサ回路202を含み、マイナスイオン検知用センサ回路201は、実施形態1で説明した、Nチャネル型のセンサTFT30と、アンテナ41とを含み、プラスイオン検知用センサ回路202は、Pチャネル型のセンサTFT30bとアンテナ41bとを含む。
図6を用いて、プラスイオン検知用センサ回路202の構造について更に詳述する。図6は、本実施形態に係るイオンセンサ及び表示装置の断面模式図であり、プラスイオン検知用センサ回路の一部を含む。実施形態1に係る表示装置と共通の構成要素については、ここでの説明は省略する。
図6に示すように、センサ回路202は、イオンセンサ素子である、センサTFT30b及びイオンセンサアンテナ41bを含む。
アンテナ41bは、空気中のイオンを検知(捕集)する導電部材であり、センサTFT30bのゲートに接続されている。アンテナ41bの表面にイオンが付着するとアンテナ41bの電位が変化し、それに応じてセンサTFT30bのゲートの電位も変化する。その結果、センサTFT30bのソース及びドレイン間の電流及び/又は電圧が変化する。
センサTFT30bは、基板1a、1bが対向する位置において、基板1a(TFTアレイ基板)の液晶側の主面上に設けられる。アンテナ41bは、センサTFT30のチャネル領域外に設けられる。また、センサTFT30bと、それに対向する遮光膜12cとは、表示部130の端部(額縁領域)に設けられる。
本実施形態では、基板1a上には、センサ回路201に含まれるセンサTFT30及びイオンセンサアンテナ41と、センサ回路202に含まれるセンサTFT30b及びイオンセンサアンテナ41bと、表示部駆動回路のTFTアレイ101とが少なくとも形成される。
遮光膜12cは、基板1a、1bが対向する位置において、基板1b(対向基板)の液晶側の主面上に設けられる。遮光膜12cは、センサTFT30bと対向する位置に設けられる。後に詳述するが、センサTFT30bは、光に対する特性が変化する半導体であるa-Siを含む。上記の通り、センサTFT30bが、遮光膜12cによって遮光されることで、a-Siの特性、すなわちセンサTFT30bの出力特性が変化するのを抑制できるので、イオン濃度をより高精度に測定することができる。
センサ回路202の第一導電層には、イオンセンサアンテナ電極2c、リセット配線2h、後述する接続配線22b、容量電極2f及びゲート電極2gが形成される。リセット配線2h、接続配線22b及び容量電極2fについては、図7を用いて後に詳述する。
センサ回路202において、絶縁膜3上には、水素化a-Si層4c、4b、n+a-Si層5c、ソース電極6c、ドレイン電極7c及び容量電極8bが形成される。ソース電極6c、ドレイン電極7c及び容量電極8bは、第二導電層に形成される。
センサ回路202において、パッシベーション膜9は、水素化a-Si層4c、n+a-Si層5c、ソース電極6c、ドレイン電極7c及び容量電極8bを覆うように、絶縁膜3上に設けられる。
センサ回路202において、パッシベーション膜9上には、透明導電膜11cが形成される。透明導電膜11cは、絶縁膜3及びパッシベーション膜9を貫通するコンタクトホール10cを介してアンテナ電極2cと接続される。コンタクトホール10cによってアンテナ電極2cが剥き出しとならないように透明導電膜11cが配されることで、アンテナ電極2cが外部環境に曝露され腐食するのを防ぐことができる。透明導電膜11cは、第三導電層に形成される。
遮光膜12cは、クロム(Cr)等の不透明な金属膜、不透明な樹脂膜等から形成される。該樹脂膜としては、炭素を含有するアクリル樹脂等が挙げられる。
TFT30bの構成要素について更に詳述する。センサTFT30bは、ゲート電極2g、絶縁膜3、水素化a-Si層4c、n+a-Si層5c、ソース電極6c及びドレイン電極7cから形成される。絶縁膜3は、センサTFT30bにおいて、ゲート絶縁膜として機能する。TFT30bは、ボトムゲート型のTFTである。p+a-Si層5cには、ホウ素(B)等のIII族元素がドーピングされる。すなわち、センサTFT30bは、Pチャネル型TFTである。
アンテナ41bは、透明導電膜11c及びアンテナ電極2cから形成される。また、容量電極2f、8bと、誘電体として機能する絶縁膜3とから、容量(キャパシタ)43bが形成される。容量電極2fは、ゲート電極2g及びアンテナ電極2cに接続され、容量電極8bは、接地されている。容量43bを設けることによって、ゲート電極2g及びアンテナ41bの容量を大きくすることができるので、イオン濃度の測定中における外来ノイズの影響を抑えることができる。したがって、センサ動作をより安定にでき、精度をより高くすることができる。また同様に、本実施形態では、センサ回路201の容量43の容量電極8も、突上げ/突下げ配線23に接続されずに接地されている。
図7を用いて、本実施形態に係るイオンセンサ回路207の回路構成について説明する。図7は、本実施形態に係るイオンセンサ回路207とTFTアレイ101の一部とを示す等価回路である。本実施形態に係る表示装置は、実施形態1と同じTFTアレイ101を有するため、ここでのその説明は省略する。
イオンセンサ回路207は、マイナスイオン検知用センサ回路201、及び、プラスイオン検知用センサ回路202を含む。
まず、マイナスイオン検知用センサ回路201について説明する。センサ回路201は、接続配線22が容量43を介してアース(GND)が接続されていることを除いて、イオンセンサ回路107と同様の構成を有する。入力配線20には、High電圧(+10V)又はLow電圧(0V)が印加され、入力配線20の電圧をVddとする。出力配線21の電圧をVout(-)とする。配線22、2b同士の交点(ノード)をnode-Z(-)とする。リセット配線2bには、High電圧(+20V)又はLow電圧(-10V)が印加され、リセット配線2bの電圧をVrst(-)とする。
続いて、プラスイオン検知用センサ回路202について説明する。センサTFT30bのドレイン電極7cには、入力配線20が接続される。ソース電極6cには、出力配線21bが接続される。出力配線21bの電圧をVout(+)とする。また、センサTFT30bのゲート電極2gには、接続配線22bを介してアンテナ41bが接続される。更に、接続配線22bには、リセット配線2hが接続される。配線22b、2h同士の交点(ノード)をnode-Z(+)とする。リセット配線2hは、node-Z(+)、すなわちセンサTFT30bのゲートとアンテナ41bとの電圧をリセットするための配線である。リセット配線2hには、High電圧(+20V)又はLow電圧(-10V)が印加され、リセット配線2hの電圧をVrst(+)とする。更に、接続配線22bには、容量43bを介してアース(GND)が接続される。出力配線21bには、定電流回路25b及びアナログ-デジタル変換回路(ADC)26bが接続される。定電流回路25bの構成は、定電流回路25の構成と同様であるので、その詳細な説明は省略する。
なお、アンテナ41b、センサTFT30bのゲート、リセット配線2h、接続配線22b及び容量43bは、アンテナ電極2c、ゲート電極2g、リセット配線2h、容量電極2f及び接続配線22bが第一導電層に一体的に形成されることによって、互いに接続される。
続いて、図8及び図9を用いてイオンセンサ回路の動作機構について詳細に説明する。図8は、本実施形態に係るマイナスイオン検知用センサ回路のタイミングチャートであり、図9は、本実施形態に係るプラスイオン検知用センサ回路のタイミングチャートである。図8及び9に示すように、イオンセンサ回路207は、マイナスイオン検知用センサ回路201によるマイナスイオンの検出と、プラスイオン検知用センサ回路202によるプラスイオンの検出とを同時に行う。まずマイナスイオンの検出について説明する。
初期状態において、Vrst(-)は、Low電圧(-10V)に設定される。このとき、Vrst(-)をLow電圧(-10V)に設定するための電源として、ピクセルTFT40のゲート電極2eにLow電圧(-10V)を印加するための電源を流用することができる。また、初期状態において、Vddは、Low電圧(0V)に設定されている。イオン濃度の測定が開始される前、時刻t1において、まず、リセット配線2bにHigh電圧(+20V)が印加され、アンテナ41の電圧(node-Z(-)の電圧)が+20Vにリセットされる。このとき、Vrst(-)を印加するための電源として、ピクセルTFT40のゲート電極2eにHigh電圧(+20V)を印加するための電源を流用することができる。node-Z(-)の電圧がリセットされた後、リセット配線2bは、ハイインピーダンス状態に保たれる。そして、イオンの導入が開始され、アンテナ41にマイナスイオンが捕集されると、+20Vにリセットされた、すなわち、プラスにチャージされたnode-Z(-)の電圧は、マイナスイオンによって中和され低下する(センシング動作)。マイナスイオン濃度が高いほど、電圧が低下するスピードは速くなる。イオンを導入してから所定の時間が経過した後、時刻t2において、入力配線20にHigh電圧(+10V)を一時的に印加する。すなわち、入力配線20に+10Vのパルス電圧を印加する。また、出力配線21は、定電流回路25に接続されている。したがって、入力配線20に+10Vのパルス電圧を印加すると、入力配線20及び出力配線21には一定の電流が流れる。ただし、センサTFT30のゲートの開き具合、すなわち、node-Z(-)の電圧の差に応じて、出力配線21の電圧Vout(-)は変化することとなる。この電圧Vout(-)は、イオン濃度を算出するための数値としてADC26で検出される。なお、定電流回路25を設けず、node-Z(-)の電圧の差に応じて変化する出力配線21の電流Id(-)を検出することも可能である。
続いて、プラスイオンの検出について説明する。
初期状態において、Vrst(+)は、High電圧(+20V)に設定される。このとき、Vrst(+)をHigh電圧(+20V)に設定するための電源として、ピクセルTFT40のゲート電極2eにHigh電圧(+20V)を印加するための電源を流用することができる。また、初期状態において、Vddは、Low電圧(0V)に設定されている。イオン濃度の測定が開始される前、時刻t1において、まず、リセット配線2hにLow電圧(-20V)が印加され、アンテナ41bの電圧(node-Z(+)の電圧)が-20Vにリセットされる。node-Z(+)の電圧がリセットされた後、リセット配線2hは、ハイインピーダンス状態に保たれる。そして、イオンの導入が開始され、アンテナ41bにプラスイオンが捕集されると、-20Vにリセットされた、すなわち、マイナスにチャージされたnode-Z(+)の電圧は、プラスイオンによって中和され上昇する(センシング動作)。プラスイオン濃度が高いほど、電圧が上昇するスピードは速くなる。イオンを導入してから所定の時間が経過した後、時刻t2において、入力配線20にHigh電圧(+10V)を一時的に印加する。すなわち、入力配線20に+10Vのパルス電圧を印加する。また、出力配線21bは、定電流回路25bに接続されている。したがって、入力配線20に+10Vのパルス電圧を印加すると、入力配線20及び出力配線21bには一定の電流が流れる。ただし、センサTFT30bのゲートの開き具合、すなわち、node-Z(+)の電圧の差に応じて、出力配線21bの電圧Vout(+)は変化することとなる。この電圧Vout(+)は、イオン濃度を算出するための数値としてADC26bで検出される。なお、定電流回路25bを設けず、node-Z(+)の電圧の差に応じて変化する出力配線21bの電流Id(+)を検出することも可能である。
また、本実施形態では、VddのHigh電圧は+10Vに特に限定されず、リセット配線2b及び2hに印加されるHigh電圧、すなわちピクセルTFT40のゲート電極2eに印加されるHigh電圧と同じ+20Vとしてもよい。これにより、VddのHigh電圧を印加するための電源として、ピクセルTFT40のゲート電極2eにHigh電圧を印加するための電源を流用することができる。
また、本実施形態では、リセット配線2hに印加されるLow電圧は-20Vに特に限定されず、ピクセルTFT40のゲート電極2eに印加されるLow電圧と同じ-10Vとしてもよい。これにより、リセット配線2hに印加されるLow電圧を印加するための電源として、ピクセルTFT40のゲート電極2eにLow電圧を印加するための電源を流用することができる。
以上、実施形態2によれば、両イオンが混在する検体において、プラスイオン及びマイナスイオンの検出結果を用いて、イオン濃度を簡便かつ高精度に算出することが可能となる。なお、その算出方法は、実施形態3で詳述する。
また、実施形態2によれば、両イオンを同時に測定することが可能であるため、どちらか一方のイオンを測定した後に他方のイオンを測定する実施形態1に比べて、より高精度にイオン濃度を測定することが可能となる。
(実施形態3)
実施形態3に係る表示装置は、以下の点以外は、実施形態2と同様の構成を有する。すなわち、実施形態3のイオンセンサ回路307は、マイナスイオン検知用センサ回路301及びプラスイオン検知用センサ回路302を含み、センサ回路301及び302はそれぞれ、突上げ/突下げ配線を有し、センサ回路302は、Pチャネル型のセンサTFT30bの代わりにNチャネル型のセンサTFT30cを含む。
図10を用いて、本実施形態に係るイオンセンサ回路307の回路構成について説明する。図10は、本実施形態に係るイオンセンサ回路307とTFTアレイ101の一部とを示す等価回路である。本実施形態に係る表示装置は、実施形態1と同じTFTアレイ101を有するため、ここでのその説明は省略する。
イオンセンサ回路307は、マイナスイオン検知用センサ回路301、及び、プラスイオン検知用センサ回路302を含む。
まず、マイナスイオン検知用センサ回路301について説明する。センサ回路301は、イオンセンサ回路107と同様の構成を有する。入力配線20には、High電圧(+10V)又はLow電圧(0V)が印加され、入力配線20の電圧をVddとする。出力配線21aの電圧をVout(-)とする。配線22a、2b同士の交点(ノード)をnode-Z(-)とする。リセット配線2bには、High電圧(+20V)又はLow電圧(-10V)が印加され、リセット配線2bの電圧をVrst(-)とする。突上げ/突下げ配線23には、High電圧又はLow電圧(例えば-10V)が印加され、突上げ/突下げ配線23の電圧をVrw(-)とする。Vrw(-)のHigh電圧は、所望の値に調整することが可能である。なお、Vrw(-)のHigh電圧を所望の値に調整する方法としては、実施形態1で説明した電源の値を変化させる方法を用いることができる。
続いて、プラスイオン検知用センサ回路302について説明する。センサ回路302は、接続配線22bが容量43bを介して突上げ/突下げ配線23bが接続されること、Pチャネル型のセンサTFT30bの代わりにNチャネル型のセンサTFT30cを含むことを除いて、センサ回路202と同様の構成を有する。出力配線21bの電圧をVout(+)とする。配線22b、2h同士の交点(ノード)をnode-Z(+)とする。リセット配線2hには、High電圧(+20V)又はLow電圧(-10V)が印加され、リセット配線2hの電圧をVrst(+)とする。突上げ/突下げ配線23bには、High電圧又はLow電圧(例えば-10V)が印加され、突上げ/突下げ配線23bの電圧をVrw(+)とする。Vrw(+)のHigh電圧は、所望の値に調整することが可能である。
続いて、図11及び図12を用いてイオンセンサ回路の動作機構について詳細に説明する。図11は、本実施形態に係るマイナスイオン検知用センサ回路のタイミングチャートであり、図12は、本実施形態に係るプラスイオン検知用センサ回路のタイミングチャートである。図11及び12に示すように、イオンセンサ回路307は、マイナスイオン検知用センサ回路301によるマイナスイオンの検出と、プラスイオン検知用センサ回路302によるプラスイオンの検出とを同時に行う。まずマイナスイオンの検出について説明する。
初期状態において、Vrst(-)は、Low電圧(-10V)に設定される。このとき、Vrst(-)をLow電圧(-10V)に設定するための電源として、ピクセルTFT40のゲート電極2eにLow電圧(-10V)を印加するための電源を流用することができる。また、初期状態において、Vddは、Low電圧(0V)に設定されている。イオン濃度の測定が開始される前、時刻t1において、まず、リセット配線2bにHigh電圧(+20V)が印加され、アンテナ41の電圧(node-Z(-)の電圧)が+20Vにリセットされる。このとき、リセット配線2bにHigh電圧(+20V)に設定するための電源として、ピクセルTFT40のゲート電極2eにHigh電圧(+20V)を印加するための電源を流用することができる。node-Z(-)の電圧がリセットされた後、リセット配線2bは、ハイインピーダンス状態に保たれる。そして、イオンの導入が開始され、アンテナ41にマイナスイオンが捕集されると、+20Vにリセットされた、すなわち、プラスにチャージされたnode-Z(-)の電圧は、マイナスイオンによって中和され低下する(センシング動作)。マイナスイオン濃度が高いほど、電圧が低下するスピードは速くなる。イオンを導入してから所定の時間が経過した後、時刻t2において、入力配線20にHigh電圧(+10V)を一時的に印加する。すなわち、入力配線20に+10Vのパルス電圧を印加する。同時に、突上げ/突下げ配線23に任意のプラスのパルス電圧(High電圧)を印加し、容量43を介してnode-Z(-)の電圧を突上げる。また、出力配線21は、定電流回路25に接続されている。したがって、入力配線20に+10Vのパルス電圧を印加すると、入力配線20及び出力配線21には一定の電流が流れる。ただし、センサTFT30のゲートの開き具合、すなわち、突上げられたnode-Z(-)の電圧の差に応じて、出力配線21の電圧Vout(-)は変化することとなる。この電圧Vout(-)は、イオン濃度を算出するための数値としてADC26で検出される。なお、定電流回路25を設けず、node-Z(-)の電圧の差に応じて変化する出力配線21の電流Id(-)を検出することも可能である。突上げ/突下げ配線23に印加するプラスの電圧は、高精度にマイナスイオンを検知するのに適したゲートの電圧領域に設定される。よって、node-Z(-)の電圧を突き上げなくとも、ゲートの電位がマイナスイオン濃度の検出に適した電圧領域に入っているのであれば、node-Z(-)の電圧を突上げる必要はない。
続いて、プラスイオンの検出について説明する。
初期状態において、Vrst(+)は、High電圧(+20V)に設定される。このとき、Vrst(+)をHigh電圧(+20V)に設定するための電源として、ピクセルTFT40のゲート電極2eにHigh電圧(+20V)を印加するための電源を流用することができる。また、初期状態において、Vddは、Low電圧(0V)に設定されている。イオン濃度の測定が開始される前、時刻t1において、まず、リセット配線2hにLow電圧(-10V)が印加され、アンテナ41bの電圧(node-Zの電圧)が-10Vにリセットされる。このとき、リセット配線2hにLow電圧(-10V)に設定するための電源として、ピクセルTFT40のゲート電極2eにLow電圧(-10V)を印加するための電源を流用することができる。node-Z(+)の電圧がリセットされた後、リセット配線2hは、ハイインピーダンス状態に保たれる。そして、イオンの導入が開始され、アンテナ41bにプラスイオンが捕集されると、-10Vにリセットされた、すなわち、マイナスにチャージされたnode-Z(+)の電圧は、プラスイオンによって中和され上昇する(センシング動作)。プラスイオン濃度が高いほど、電圧が上昇するスピードは速くなる。イオンを導入してから所定の時間が経過した後、時刻t2において、入力配線20にHigh電圧(+10V)を一時的に印加する。すなわち、入力配線20に+10Vのパルス電圧を印加する。同時に、突上げ/突下げ配線23bに任意のプラスのパルス電圧(High電圧)を印加し、容量43bを介してnode-Z(+)の電圧を突上げる。また、出力配線21bは、定電流回路25bに接続されている。したがって、入力配線20に+10Vのパルス電圧を印加すると、入力配線20及び出力配線21bには一定の電流が流れる。ただし、センサTFT30cのゲートの開き具合、すなわち、突上げられたnode-Z(+)の電圧の差に応じて、出力配線21bの電圧Vout(+)は変化することとなる。この電圧Vout(+)は、イオン濃度を算出するための数値としてADC26bで検出される。なお、定電流回路25bを設けず、node-Z(+)の電圧の差に応じて変化する出力配線21bの電流Id(+)を検出することも可能である。突上げ/突下げ配線23bに印加するプラスの電圧は、高精度にプラスイオンを検知するのに適したゲートの電圧領域に設定される。
次に、イオン濃度の算出方法について説明する。なお、以下では、例えば、マイナスイオン濃度:プラスイオン濃度=X:Yであることを「イオン比がX:Y」とも言う。
まず、図13及び図15に、Id(-)及びマイナスイオン濃度の関係を示す曲線(検量線)の一例を、図14及び図16に、Id(+)及びプラスイオン濃度の関係を示す曲線(検量線)の一例を示す。これらの検量線は、濃度既知のプラスイオン及びマイナスイオンがほぼ等量含まれる検体を、本実施形態のイオンセンサを用いて測定し、イオン濃度とId(-)又はId(+)との関係をプロットすることによって作成した。また、各図のId(-)及びId(+)は、イオン検知開始からある時間t(時刻t1からt2までの時間)経過後の出力である。
なお、センサTFT30及び30cのチャネル長はそれぞれ、4μmとし、チャネル幅はそれぞれ、100μmとした。VddのHigh電圧は、+10Vとした。Vrst(-)のHigh電圧は、+20Vとした。Vrst(+)のLow電圧は、-20Vとした。容量43及び43bの大きさはそれぞれ、10pFとした。Vrw(-)は、Low電圧=-10V、High電圧=+20Vのパルス電圧とした。Vrw(+)は、Low電圧=-10V、High電圧=+20Vのパルス電圧とした。アンテナ41及び41bの面積はそれぞれ、4000μm×4000μmとした。
この結果、図13及び図14に示す例では、Id(-)及びId(+)がそれぞれ、図13の検量線及び図14の検量線上に存在する場合、プラスイオン濃度及びマイナスイオン濃度はそれぞれ、例えば、500個/cm及び500個/cmとなることがわかる。
すなわち、図15及び図16に示すように、Id(-)及びId(+)用の検量線をそれぞれ少なくとも2本得ておけば、センサ回路から得られるId(-)及びId(+)の組み合わせと、各検量線との比較により、両イオンの濃度比を推定でき、その結果、両イオンの濃度を得ることができる。
なお、図15には、マイナスイオン濃度<プラスイオン濃度(例えば、イオン比=1:2)の場合の検量線A(-)と、マイナスイオン濃度=プラスイオン濃度(イオン比=1:1)の場合の検量線B(-)と、マイナスイオン濃度>プラスイオン濃度(例えば、イオン比=2:1)の場合の検量線C(-)とを示し、図16には、マイナスイオン濃度<プラスイオン濃度(例えば、イオン比=1:2)の場合の検量線A(+)と、マイナスイオン濃度=プラスイオン濃度(イオン比=1:1)の場合の検量線B(+)と、マイナスイオン濃度>プラスイオン濃度(例えば、イオン比=2:1)の場合の検量線C(+)とを示する。
また、図15及び図16中の楕円で示すように、イオン濃度比よっては、出力Idが0になるか、飽和する場合があるが、この場合は、Id(-)及びId(+)を測定する時間tを変更すればよい。
また、Id(-)及びId(+)の全ての組み合わせの検量線を事前に取得しておくことは非現実的であるため、検量線と検量線との間のId値に関しては演算(補完)で求めることが好ましい。これにより、メモリ(図示せず)の削減及び簡素化が可能である。
なお、検量線と検量線との間のId値を演算で求められる理由は、以下に示すとおりである。図13~16の測定結果グラフからも明らかな通り、いずれの検量線も1次式となっており、イオン濃度比が変化すれば、その傾きが変化することとなる。したがって、イオン濃度比と傾きの関係を得ておけば、事前に取得している検量線(1次式)以外のイオン濃度比の検量線が推測され、その結果、両イオンの濃度を得ることができる。なお、演算は、例えば、LSI106、又は、パーソナルコンピュータ(PC)上で機能するソフトウェアを用いて行うことができる。
図17及び図18を用いて、両イオンの濃度の算出方法をより具体的に説明する。
図17に示すように、マイナスイオン検知動作によって得られたId(-)が15μAであった場合、検量線との交点は複数存在する(a、b、c)。
仮にイオン比が2:1であれば、実際の濃度比は、500×10個/cm:250×10個/cmとなり、仮にイオン比が1:1であれば、実際の濃度比は、1000×10個/cm:1000×10個/cmとなり、仮にイオン比が2:1であれば、実際の濃度比は、2300×10個/cm:4600×10個/cmとなるはずである。
そして、図18に示すように、プラスイオン検知動作によって得られたId(+)によって検量線との交点が確定する(a’、b’又はc’)。すなわち、濃度比が確定し、その結果、両イオンの濃度が求まる。
例えば、Id(+)が4μAであれば、イオン比が2:1であると分かるため、マイナスイオン濃度は、500×10個/cm、プラスイオン濃度は、250×10個/cmと算出される。また、Id(+)が10μAであれば、イオン比が1:1であると分かるため、マイナスイオン濃度は、1000×10個/cm、プラスイオン濃度は、1000×10個/cmと算出される。そして、Id(+)が42μAであれば、イオン比が1:2であると分かるため、マイナスイオン濃度は、2300×10個/cm、プラスイオン濃度は、4600×10個/cmと算出される。
以上、実施形態3によれば、両イオンが混在する検体において、プラスイオン及びマイナスイオンの検出結果を用いて、イオン濃度を簡便かつ高精度に算出することが可能となる。
また、実施形態3によれば、両イオンを同時に測定することが可能であるため、どちらか一方のイオンを測定した後に他方のイオンを測定する実施形態1よりも、より高精度に両イオン濃度を測定することが可能となる。
更に、二つのセンサTFT30及び30cがいずれもNチャネル型であるため、センサTFT30及び30cを同時に形成することが可能であり、Nチャネル型のセンサTFT30と、Pチャネル型センサTFT30bとを用いる実施形態2よりも製造コストを削減することが可能となる。
なお、実施形態3においては、Nチャネル型のセンサTFT30及び30cを用いたが、Pチャネル型のTFTを用いてもよい。この場合は、突上げ/突下げ配線23及び23bによって、node-Z(-)及びnode-Z(+)をそれぞれ突き下げ(降圧)すればよい。
また、node-Zの突上げ又は突下げ電圧は、(容量の大きさ)/(node-Zのトータル容量の大きさ)×ΔVppの式によって決定される。式中、ΔVppは、VrwのHigh電圧と、VrwのLow電圧との差である。したがって、本実施形態では、突上げ/突下げ配線23及び23bによるnode-Z(-)及びnode-Z(+)の昇圧又は降圧幅は、下記2種類のパラメータによって調節が可能である。1つは、Vrw(-)及びVrw(+)それぞれのΔVppであり、もう一つは、容量43及び43bそれぞれの大きさである。これにより、Id比が高く取れる電圧にnode-Z(-)及びnode-Z(+)をそれぞれ容易に調整することができる。また、容量43及び43bの大きさをそれぞれ調整することによって、Vrw(-)及びVrw(+)の大きさを共通にすることができる。すなわち、容量43の大きさ(C1)及び容量43bの大きさ(C2)を互いに異なる値に設定し、マイナスイオンを検知するのに最適な値にC1を設定し、プラスイオンを検知するのに最適な値にC2を設定することができる。そして、容量43に印加されるパルス電圧の波形(Vrw(-)の波形)を、容量43bに印加されるパルス電圧の波形(Vrw(+)の波形)と同じにし、Vrw(-)及びVrw(+)を印加するための電源を共通化することができる。もちろん、C1及びC2を互いに異ならせる場合も、Vrw(-)及びVrw(+)の波形を互いに異ならせ、node-Z(-)及びnode-Z(+)の突上げ電圧をそれぞれ適宜調整してもよい。
(実施形態4)
実施形態4に係る表示装置は、以下の点以外は、実施形態3と同様の構成を有する。すなわち、実施形態4のイオンセンサ回路407は、マイナスイオン検知用センサ回路401及びプラスイオン検知用センサ回路402を含み、センサ回路401は、突上げ/突下げ配線を有さない。
図19を用いて、本実施形態に係るイオンセンサ回路407の回路構成について説明する。図19は、本実施形態に係るイオンセンサ回路407とTFTアレイ101の一部とを示す等価回路である。本実施形態に係る表示装置は、実施形態1と同じTFTアレイ101を有するため、ここでのその説明は省略する。
イオンセンサ回路407は、マイナスイオン検知用センサ回路401、及び、プラスイオン検知用センサ回路402を含む。
まず、マイナスイオン検知用センサ回路401について説明する。センサ回路401は、実施形態2のセンサ回路201と同様の構成を有する。入力配線20には、High電圧(+10V)又はLow電圧(0V)が印加され、入力配線20の電圧をVddとする。出力配線21の電圧をVout(-)とする。配線22、2b同士の交点(ノード)をnode-Z(-)とする。リセット配線2bには、High電圧(+20V)又はLow電圧(-10V)が印加され、リセット配線2bの電圧をVrst(-)とする。接続配線22には、容量43を介してアース(GND)が接続される。
続いて、プラスイオン検知用センサ回路402について説明する。センサ回路402は、実施形態3のセンサ回路302と同様の構成を有する。出力配線21bの電圧をVout(+)とする。配線22b、2h同士の交点(ノード)をnode-Z(+)とする。リセット配線2bには、High電圧(+20V)又はLow電圧(-10V)が印加され、リセット配線2hの電圧をVrst(+)とする。突上げ/突下げ配線23bには、High電圧又はLow電圧(例えば-10V)が印加され、突上げ/突下げ配線23bの電圧をVrw(+)とする。Vrw(+)のHigh電圧は、所望の値に調整することが可能である。なお、Vrw(+)のHigh電圧を所望の値に調整する方法としては、実施形態1で説明した電源の値を変化させる方法を用いることができる。
続いて、図20及び図21を用いてイオンセンサ回路の動作機構について詳細に説明する。図20は、マイナスイオンを検知する場合の本実施形態に係るマイナスイオン検知用センサ回路のタイミングチャートであり、図21は、本実施形態に係るプラスイオン検知用センサ回路のタイミングチャートである。図20及び図21に示すように、イオンセンサ回路407は、マイナスイオン検知用センサ回路401によるマイナスイオンの検出と、プラスイオン検知用センサ回路402によるプラスイオンの検出とを同時に行う。まずマイナスイオンの検出について説明する。
初期状態において、Vrst(-)は、Low電圧(-10V)に設定される。このとき、Vrst(-)をLow電圧(-10V)に設定するための電源として、ピクセルTFT40のゲート電極2eにLow電圧(-10V)を印加するための電源を流用することができる。また、初期状態において、Vddは、Low電圧(0V)に設定されている。イオン濃度の測定が開始される前、時刻t1において、まず、リセット配線2bにHigh電圧(+20V)が印加され、アンテナ41aの電圧(node-Z(-)の電圧)が+20Vにリセットされる。このとき、Vrst(-)を印加するための電源として、ピクセルTFT40のゲート電極2eにHigh電圧(+20V)を印加するための電源を流用することができる。node-Z(-)の電圧がリセットされた後、リセット配線2bは、ハイインピーダンス状態に保たれる。そして、イオンの導入が開始され、アンテナ41aにマイナスイオンが捕集されると、+20Vにリセットされた、すなわち、プラスにチャージされたnode-Z(-)の電圧は、マイナスイオンによって中和され低下する(センシング動作)。マイナスイオン濃度が高いほど、電圧が低下するスピードは速くなる。イオンを導入してから所定の時間が経過した後、時刻t2において、入力配線20にHigh電圧(+10V)を一時的に印加する。すなわち、入力配線20に+10Vのパルス電圧を印加する。また、出力配線21aは、定電流回路25に接続されている。したがって、入力配線20に+10Vのパルス電圧を印加すると、入力配線20及び出力配線21aには一定の電流が流れる。ただし、センサTFT30のゲートの開き具合、すなわち、node-Z(-)の電圧の差に応じて、出力配線21aの電圧Vout(-)は変化することとなる。この電圧Vout(-)は、イオン濃度を算出するための数値としてADC26で検出される。なお、定電流回路25を設けず、node-Z(-)の電圧の差に応じて変化する出力配線21aの電流Id(-)を検出することも可能である。
続いて、プラスイオンの検出について説明する。
初期状態において、Vrst(+)は、High電圧(+20V)に設定される。このとき、Vrst(+)をHigh電圧(+20V)に設定するための電源として、ピクセルTFT40のゲート電極2eにHigh電圧(+20V)を印加するための電源を流用することができる。また、初期状態において、Vddは、Low電圧(0V)に設定されている。イオン濃度の測定が開始される前、時刻t1において、まず、リセット配線2hにLow電圧(-10V)が印加され、アンテナ41bの電圧(node-Z(+)の電圧)が-10Vにリセットされる。このとき、リセット配線2hにLow電圧(-10V)に設定するための電源として、ピクセルTFT40のゲート電極2eにLow電圧(-10V)を印加するための電源を流用することができる。node-Z(+)の電圧がリセットされた後、リセット配線2hは、ハイインピーダンス状態に保たれる。そして、イオンの導入が開始され、アンテナ41bにプラスイオンが捕集されると、-10Vにリセットされた、すなわち、マイナスにチャージされたnode-Z(+)の電圧は、プラスイオンによって中和され上昇する(センシング動作)。プラスイオン濃度が高いほど、電圧が上昇するスピードは速くなる。イオンを導入してから所定の時間が経過した後、時刻t2において、入力配線20にHigh電圧(+10V)を一時的に印加する。すなわち、入力配線20に+10Vのパルス電圧を印加する。同時に、突上げ/突下げ配線23bに任意のプラスのパルス電圧(High電圧)を印加し、容量43bを介してnode-Z(+)の電圧を突上げる。また、出力配線21bは、定電流回路25bに接続されている。したがって、入力配線20に+10Vのパルス電圧を印加すると、入力配線20及び出力配線21bには一定の電流が流れる。ただし、センサTFT30cのゲートの開き具合、すなわち、突上げられたnode-Z(+)の電圧の差に応じて、出力配線21bの電圧Vout(+)は変化することとなる。この電圧Vout(+)は、イオン濃度を算出するための数値としてADC26bで検出される。なお、定電流回路25bを設けず、node-Z(+)の電圧の差に応じて変化する出力配線21bの電流Id(+)を検出することも可能である。突上げ/突下げ配線23bに印加するプラスの電圧は、高精度にプラスイオンを検知するのに適したゲートの電圧領域に設定される。
なお、本実施形態では、VddのHigh電圧は+10Vに特に限定されず、リセット配線2b及び2hに印加されるHigh電圧、すなわちピクセルTFT40のゲート電極2eに印加されるHigh電圧と同じ+20Vとしてもよい。これにより、VddのHigh電圧を印加するための電源として、ピクセルTFT40のゲート電極2eにHigh電圧を印加するための電源を流用することができる。
以上、実施形態4によれば、両イオンが混在する検体において、プラスイオン及びマイナスイオンの検出結果を用いて、イオン濃度を簡便かつ高精度に算出することが可能となる。なお、その算出方法は、実施形態3で説明した通りである。
また、実施形態4によれば、両イオンを同時に測定することが可能であるため、どちらか一方のイオンを測定した後に他方のイオンを測定する実施形態1よりも、より高精度に両イオン濃度を測定することが可能となる。
更に、二つのセンサTFT30及び30cがいずれもNチャネル型であるため、センサTFT30及び30cを同時に形成することが可能であり、Nチャネル型のセンサTFT330と、Pチャネル型センサTFT30bとを用いる実施形態2によりも製造コストを削減することが可能となる。
そして、実施形態4においては、突上げ/突下げ配線によってnode-Z(-)の電圧を調整しないため、突上げ/突下げ配線23によってnode-Z(-)の電圧を調整する実施形態3よりも製造コストを抑えることが可能となる。
なお、実施形態4においては、Nチャネル型のセンサTFT30及びセンサTFT30cを用いたが、Pチャネル型のTFTを用いてもよい。この場合は、プラスイオン検知用センサ回路402に突上げ/突下げ配線を設けず、マイナスイオン検知用センサ回路401に突上げ/突下げ配線23を設ければよい。
以下に、実施形態1~4の変形例を示す。
実施形態1~4では、液晶表示装置を例に用いて説明したが、各実施形態の表示装置は、有機ELディスプレイ、プラズマディスプレイ等のFPDであってもよい。
実施形態1~4では、Idとイオン濃度との関係を示す検量線を用いてイオン濃度を算出したが、例えば図26に示すようなLUTを参照してイオン濃度を算出してもよい。図26は、Id(-)が15μAのときに参照されるLUTである。LUTは、例えば、「Id(-)が15μA、Id(+)が10μAのとき、イオン比は1:1、マイナスイオン濃度は1000×10個/cm、プラスイオン濃度は、1000×10個/cm」というように、Id(-)及びId(+)の種々の組み合わせと、それに対応するイオン比、マイナスイオン濃度及びプラスイオン濃度の解の組み合わせとを含む一覧表であり、メモリ(図示せず)に記憶される。なお、イオン比はLUT内に含まれなくてもよい。また、マイナス又はプラスイオンの濃度のみを算出すればよい場合は、マイナス又はプラスイオンの濃度はLUT内に含まれなくてもよい。
また、検量線を用いる場合と同様に、Id(-)及びId(+)の全ての組み合わせのLUTを事前に取得しておくことは非現実的であるため、各組み合わせ間のId値に関しては演算(補完)で求めることが好ましい。これにより、メモリの削減及び簡素化が可能である。
定電流回路は、設けられなくてもよい。すなわち、センサTFTのソース及びドレイン間の電流を測定することでイオン濃度を算出してもよい。
イオンセンサ120に形成されるTFTの導電型と、表示部130に形成されるTFTの導電型とは、互いに異なっていてもよい。
水素化a-Si層の代わりに、μc-Si層、p-Si層、CG-Si層、酸化物半導体層を用いてもよい。ただし、μc-Siは、a-Si同様、光に対する感度が高いので、μc-Si層を含むTFTは、遮光されることが好ましい。一方、p-Si、CG-Si及び酸化物半導体は、光に対する感度が低いので、p-Si層、CG-Si層、又は、酸化物半導体層を含むTFTは、遮光されなくてもよい。
基板1a上に形成されるTFTの種類は、ボトムゲート型に限定されず、トップゲート型、プレーナ型等であってもよい。また、例えば、センサTFTをプレーナ型とした場合、アンテナは、センサTFTのチャネル領域上に形成されてもよい。すなわち、センサTFTのゲート電極を露出させ、ゲート電極自体をイオンセンサアンテナとして機能させてもよい。
なお、イオンセンサ120に形成されるTFTの種類と、表示部130に形成されるTFTの種類とは、互いに異なっていてもよい。
また、実施形態1~4においては、イオンセンサ120に形成されるTFTに含まれる半導体の種類と、表示部130に形成されるTFTの半導体の種類とは、互いに異なっていてもよいが、製造工程を簡略化する観点からは、同じであることが好ましい。
ゲートドライバ103、ソースドライバ104及び駆動/読出し回路105は、モノリシック化され、基板1a上に直接形成されてもよい。
上述した実施形態は、本発明の要旨を逸脱しない範囲において、適宜組み合わされてもよい。
なお、本願は、2010年6月3日に出願された日本国特許出願2010-128169号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
1a、1b:絶縁性基板
2a:イオンセンサアンテナ電極
2b、2h、2i:リセット配線
2c、2f、8、8b:容量電極
2d、2e、2g:ゲート電極
3、52、57:絶縁膜
4a、4b、4c:水素化a-Si層
5a、5b、5c:n+a-Si層
6a、6b、6c:ソース電極
7a、7b、7c:ドレイン電極
9:パッシベーション膜
10a、10b、10c:コンタクトホール
11a、11b、11c:透明導電膜
12a、12b、12c:第一遮光膜
13:カラーフィルタ
20、27:入力配線
21、21b、21c:出力配線
22、22b、22c:接続配線
23、23b:突上げ/突下げ配線
25、25b:定電流回路
26、26b:アナログ-デジタル変換回路(ADC)
30、30b、30c:センサTFT
31a、31b:偏光板
32:液晶
36:液晶補助容量(Cs)
40:ピクセルTFT
41、41b、41c:イオンセンサアンテナ
42:空気イオン導入/導出路
43、43b、43c:容量
50:TFT
62、63、64:電源
65、66、67、68、69:スイッチ
101:表示部駆動用TFTアレイ
103:ゲートドライバ(表示用走査信号線駆動回路)
104:ソースドライバ(表示用映像信号線駆動回路)
105:イオンセンサ駆動/読出し回路
106:演算処理LSI
107、207、307、407:イオンセンサ回路
109:電源回路
110:表示装置
120、125:イオンセンサ
130、135:表示部
201、301、401:マイナスイオン検知用センサ回路
202、302、402:プラスイオン検知用センサ回路
 

Claims (15)

  1. 電界効果トランジスタを含むイオンセンサであって、
    前記イオンセンサは、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの一方を検出した後、続けて、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの他方を検出する
    ことを特徴とするイオンセンサ。
  2. 前記イオンセンサは、マイナスイオンの検出結果及びプラスイオンの検出結果を用いて、マイナスイオン濃度及びプラスイオン濃度の少なくとも一方を算出する
    ことを特徴とする請求項1記載のイオンセンサ。
  3. 前記マイナスイオン濃度及びプラスイオン濃度の少なくとも一方は、予め作成された検量線又はルックアップテーブルを用いて決定される
    ことを特徴とする請求項2記載のイオンセンサ。
  4. 前記イオンセンサは、キャパシタを更に含み、
    前記キャパシタの一方の端子は、前記電界効果トランジスタのゲート電極に接続され、前記キャパシタの他方の端子には、電圧が印加される
    ことを特徴とする請求項1~3のいずれかに記載のイオンセンサ。
  5. 前記電圧は、可変である
    ことを特徴とする請求項4記載のイオンセンサ。
  6. 前記電界効果トランジスタは、アモルファスシリコン又は微結晶シリコンを含む
    ことを特徴とする請求項1~5のいずれかに記載のイオンセンサ。
  7. 請求項1~6のいずれかに記載のイオンセンサと、表示部駆動回路を含む表示部とを備えた表示装置であって、
    前記表示装置は、基板を有し、
    前記電界効果トランジスタと、前記表示部駆動回路の少なくとも一部とは、前記基板の同一主面上に形成される
    ことを特徴とする表示装置。
  8. 第一電界効果トランジスタ及び第二電界効果トランジスタを含むイオンセンサであって、
    前記イオンセンサは、前記第一電界効果トランジスタを用いてマイナスイオンを検出し、前記第二電界効果トランジスタを用いてプラスイオンを検出する
    ことを特徴とするイオンセンサ。
  9. 前記イオンセンサは、前記第一電界効果トランジスタを用いてマイナスイオンを検出するのと同時に、前記第二電界効果トランジスタを用いてプラスイオンを検出する
    ことを特徴とする請求項8記載のイオンセンサ。
  10. 請求項8又は9記載のイオンセンサと、表示部駆動回路を含む表示部とを備えた表示装置であって、
    前記表示装置は、基板を有し、
    前記第一電界効果トランジスタと、前記第二電界効果トランジスタと、前記表示部駆動回路の少なくとも一部とは、前記基板の同一主面上に形成される
    ことを特徴とする表示装置。
  11. 電界効果トランジスタを含むイオンセンサの駆動方法であって、
    前記駆動方法は、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの一方を検出した後、続けて、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの他方を検出する
    ことを特徴とするイオンセンサの駆動方法。
  12. 第一電界効果トランジスタ及び第二電界効果トランジスタを含むイオンセンサの駆動方法であって、
    前記駆動方法は、前記第一電界効果トランジスタを用いてマイナスイオンを検出し、前記第二電界効果トランジスタを用いてプラスイオンを検出する
    ことを特徴とするイオンセンサの駆動方法。
  13. 電界効果トランジスタを含むイオンセンサを用いたイオン濃度の算出方法であって、
    前記算出方法は、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの一方を検出する第一ステップと、
    前記第一ステップの後、続けて、前記電界効果トランジスタを用いてマイナスイオン及びプラスイオンの他方を検出する第二ステップとを含む
    ことを特徴とするイオン濃度の算出方法。
  14. 第一電界効果トランジスタ及び第二電界効果トランジスタを含むイオンセンサを用いたイオン濃度の算出方法であって、
    前記算出方法は、前記第一電界効果トランジスタを用いてマイナスイオンを検出する第一ステップと、
    前記第二電界効果トランジスタを用いてプラスイオンを検出する第二ステップとを含む
    ことを特徴とするイオン濃度の算出方法。
  15. 少なくとも一つの電界効果トランジスタを含むイオンセンサを用いたイオン濃度の算出方法であって、
    前記算出方法は、前記少なくとも一つの電界効果トランジスタによって得られたマイナスイオンの検出結果及びプラスイオンの検出結果を用いて、マイナスイオン濃度及びプラスイオン濃度の少なくとも一方を決定するステップを含む
    ことを特徴とするイオン濃度の算出方法。
PCT/JP2011/061385 2010-06-03 2011-05-18 イオンセンサ、表示装置、イオンセンサの駆動方法、及び、イオン濃度の算出方法 WO2011152211A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012518319A JP5426766B2 (ja) 2010-06-03 2011-05-18 イオンセンサ、表示装置、イオンセンサの駆動方法、及び、イオン濃度の算出方法
CN2011800274171A CN102933960A (zh) 2010-06-03 2011-05-18 离子传感器、显示装置、离子传感器驱动方法和离子浓度计算方法
US13/701,129 US20130069121A1 (en) 2010-06-03 2011-05-18 Ion sensor, display device, method for driving ion sensor, and method for calculating ion concentration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-128169 2010-06-03
JP2010128169 2010-06-03

Publications (1)

Publication Number Publication Date
WO2011152211A1 true WO2011152211A1 (ja) 2011-12-08

Family

ID=45066590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061385 WO2011152211A1 (ja) 2010-06-03 2011-05-18 イオンセンサ、表示装置、イオンセンサの駆動方法、及び、イオン濃度の算出方法

Country Status (4)

Country Link
US (1) US20130069121A1 (ja)
JP (1) JP5426766B2 (ja)
CN (1) CN102933960A (ja)
WO (1) WO2011152211A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004326A1 (ja) * 2020-07-03 2022-01-06 株式会社村田製作所 半導体センサ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130240746A1 (en) * 2010-06-03 2013-09-19 Atsuhito Murai Ion sensor and display device
US8716709B2 (en) * 2010-06-03 2014-05-06 Sharp Kabushiki Kaisha Display device
WO2015156773A1 (en) * 2014-04-08 2015-10-15 Schneider Electric It Corporation Analysis of airflow using ionization
CN108593757A (zh) * 2018-06-29 2018-09-28 北京沃斯彤科技有限公司 一种自诊断式均值离子检测仪及故障诊断方法
CN108744006A (zh) * 2018-08-13 2018-11-06 李险峰 正离子浓度监控装置
KR102295099B1 (ko) * 2019-10-04 2021-08-31 한국전자기술연구원 이온밸런스 측정센서 및 그 측정방법, 이온밸런스 측정센서를 이용한 이온밸런스 조절장치 및 그 조절방법
WO2022092376A1 (ko) * 2020-11-02 2022-05-05 한국전자기술연구원 이온밸런스 측정센서 및 그 측정방법, 이온밸런스 측정센서를 이용한 이온밸런스 조절장치 및 그 조절방법
CN112786670B (zh) * 2021-01-11 2022-07-29 武汉华星光电半导体显示技术有限公司 一种阵列基板、显示面板及阵列基板的制作方法
JP2022163267A (ja) * 2021-04-14 2022-10-26 シャープディスプレイテクノロジー株式会社 発光装置、表示装置、およびled表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113692A (en) * 1975-03-06 1976-10-06 Berckheim Graf Von Ion detector
JPS61160051A (ja) * 1985-01-07 1986-07-19 Mikuni Kiden Kogyo Kk 陰陽イオン検出器
JP2002296229A (ja) * 2001-03-30 2002-10-09 Seiko Epson Corp バイオセンサ
JP2003215100A (ja) * 2002-01-23 2003-07-30 Meiko Sangyo Kk 空間イオン測定装置及びその方法
JP2004053555A (ja) * 2002-07-24 2004-02-19 Daitoo Kk イオン検出およびその測定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI258173B (en) * 2004-10-08 2006-07-11 Ind Tech Res Inst Polysilicon thin-film ion sensitive FET device and fabrication method thereof
KR100922931B1 (ko) * 2006-12-27 2009-10-22 동부일렉트로닉스 주식회사 씨모스 이미지 센서 및 그 제조 방법
JP4297965B1 (ja) * 2008-07-22 2009-07-15 一雄 岡野 イオン濃度測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113692A (en) * 1975-03-06 1976-10-06 Berckheim Graf Von Ion detector
JPS61160051A (ja) * 1985-01-07 1986-07-19 Mikuni Kiden Kogyo Kk 陰陽イオン検出器
JP2002296229A (ja) * 2001-03-30 2002-10-09 Seiko Epson Corp バイオセンサ
JP2003215100A (ja) * 2002-01-23 2003-07-30 Meiko Sangyo Kk 空間イオン測定装置及びその方法
JP2004053555A (ja) * 2002-07-24 2004-02-19 Daitoo Kk イオン検出およびその測定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004326A1 (ja) * 2020-07-03 2022-01-06 株式会社村田製作所 半導体センサ
JPWO2022004326A1 (ja) * 2020-07-03 2022-01-06
JP7334862B2 (ja) 2020-07-03 2023-08-29 株式会社村田製作所 半導体センサ

Also Published As

Publication number Publication date
JPWO2011152211A1 (ja) 2013-07-25
CN102933960A (zh) 2013-02-13
JP5426766B2 (ja) 2014-02-26
US20130069121A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5426766B2 (ja) イオンセンサ、表示装置、イオンセンサの駆動方法、及び、イオン濃度の算出方法
US8436835B2 (en) Touch device, display substrate, liquid crystal display and operation method for photo sensor
US11024229B2 (en) Display panel and detection method thereof, and display device
US8368677B2 (en) Optical sensor device, display apparatus, and method for driving optical sensor device
US9972248B2 (en) Pixel structure and driving method thereof, and display apparatus
US8749528B2 (en) Display device
US20170162121A1 (en) Pixel circuit and driving method thereof, array substrate and display apparatus
JP5330600B2 (ja) イオンセンサ及び表示装置
CN103258501B (zh) 一种像素电路及其驱动方法
US20080204642A1 (en) Electro-optical device, semiconductor device, display device, and electronic apparatus having the same
CN109147693B (zh) 具有红外识别的发光二极管显示装置
WO2017000405A1 (zh) 基于ltps的掌纹识别电路、掌纹识别方法以及显示屏
KR20090009387A (ko) 유기전계발광패널 및 이를 포함하는 터치 스크린 시스템
US20110310061A1 (en) Method for Driving Input-Output Device, and Input-Output Device
JP5410605B2 (ja) 表示装置
JP2006253236A (ja) 表示装置
US9459719B2 (en) Input-output device and method for driving the same
US7029934B2 (en) Method and apparatus for testing TFT array
WO2011152209A1 (ja) イオンセンサ及び表示装置
WO2022094839A1 (zh) 显示基板及其检测方法、制备方法、显示装置
JP5275652B2 (ja) 光量検出回路及び電気光学装置
KR20070016685A (ko) 센싱회로 및 이를 갖는 표시장치
WO2022266884A1 (zh) 显示基板、显示装置及其补偿方法
KR20090071113A (ko) 센싱 소자 및 센싱 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027417.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789620

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518319

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13701129

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11789620

Country of ref document: EP

Kind code of ref document: A1