WO2011150592A1 - Lte系统中的链路自适应方法、基站和终端 - Google Patents

Lte系统中的链路自适应方法、基站和终端 Download PDF

Info

Publication number
WO2011150592A1
WO2011150592A1 PCT/CN2010/076060 CN2010076060W WO2011150592A1 WO 2011150592 A1 WO2011150592 A1 WO 2011150592A1 CN 2010076060 W CN2010076060 W CN 2010076060W WO 2011150592 A1 WO2011150592 A1 WO 2011150592A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
mcs
code rate
transmit power
Prior art date
Application number
PCT/CN2010/076060
Other languages
English (en)
French (fr)
Inventor
田丰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10844961.2A priority Critical patent/EP2568677B1/en
Priority to RU2011133703/07A priority patent/RU2486708C2/ru
Priority to US13/201,405 priority patent/US9020545B2/en
Priority to JP2013512720A priority patent/JP5657787B2/ja
Publication of WO2011150592A1 publication Critical patent/WO2011150592A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme

Definitions

  • the present invention relates to communication or, in particular, to a link adaptation method, a base station, and a terminal in an LTE (Long Term Evolution) system.
  • LTE Long Term Evolution
  • BACKGROUND Link adaptation technology is a technology generated by effectively utilizing system resources in order to overcome the time variation of a wireless channel. Its main advantages are the ability to improve communication reliability, increase power resources and frequency utilization, and increase system throughput.
  • Link adaptation in LTE systems mainly includes AMC and power control.
  • AMC Adaptive Modulation and Coding refers to determining the capacity of a channel according to the channel condition, and dynamically adjusting the modulation and coding mode according to the capacity of the channel, which can transmit information to a maximum and achieve a higher data rate.
  • the link adaptation technology in the downlink direction is based on the CQI (Channel Quality Indicator) fed back by the user terminal (UE), and specifically corresponds to the modulation and coding mode from the predefined CQI table.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • it can be divided into periodic feedback and aperiodic feedback in time; feedback can be
  • a PUSCH Physical Uplink Shared Channel
  • a PUSCH Physical Uplink Shared Channel
  • the link adaptation technique in the uplink direction directly determines the specific modulation and coding mode based on the uplink channel quality measured by the base station.
  • Adaptive power control technology mainly has two general uplink power control methods: The first is to make full use of the user's power headroom, improve the signal quality of the user by increasing the transmit power, and select a high-order MCS (Modulation and Coding Scheme). , modulation coding mode), to maximize 'J, area throughput; the second is to try to control the power density of the user received by the base station to a certain level to suppress the cell interference, improve the robustness of the cell signal environment and the entire network performance.
  • MCS Modulation and Coding Scheme
  • a primary object of the present invention is to provide a link adaptation method, a base station, and a terminal in an LTE system to solve at least the above problems.
  • a link adaptation method in an LTE system including: a terminal separately calculating a difference between a measured RSRP of a home serving cell and an RSRP of multiple neighboring cells; The value is reported to the base station; the base station determines the MCS of the terminal according to the maximum difference. Further, the base station determines the MCS of the terminal, and also determines the code rate corresponding to the MCS of the terminal. Further, the determining, by the base station, the MCS of the terminal and the corresponding code rate according to the maximum difference, the base station, in the pre-established correspondence table, finding the MCS corresponding to the largest difference and the code rate thereof, where The correspondence table stores the MCS corresponding to each difference and its code rate.
  • the base station further includes: the base station determines the transmit power of the terminal by using the MCS and its corresponding code rate, and the current power reservation report PHR of the terminal.
  • the change value where the transmit power change value is used by the terminal to adjust the current transmit power.
  • the base station determines, by using the MCS and its corresponding code rate, the current PHR of the terminal, the change value of the transmit power of the terminal, where the base station uses the MCS and its corresponding code rate to determine the minimum transmit power required by the terminal to reach the code rate,
  • the base station uses: the base station uses the MCS and its corresponding code rate to determine the minimum signal to noise ratio SNR required to reach the code rate; determines the minimum transmit power required for the terminal to reach the minimum SNR; and the base station determines the terminal by using the current PHR and the minimum transmit power of the terminal.
  • the value of the transmit power change is used.
  • a base station including: a receiving module, configured to receive a maximum difference reported by a terminal, where a maximum difference is that the terminal separately calculates the measured home service The maximum value of the difference between the RSRP of the cell and the RSRP of the plurality of neighboring cells; the MCS determining module is configured to determine the MCS of the terminal. Further, the MCS determining module is further configured to determine a code rate corresponding to the MCS of the terminal while determining the MCS of the terminal. Further, the method further includes: a change value determining module, configured by using the MCS determining module
  • a terminal including: a calculating module, configured to separately calculate a difference between a measured RSRP of a home serving cell and an RSRP of multiple neighboring cells; and a sending module, configured to be the largest The difference is reported to the base station to cause the base station to determine the MCS of the terminal and its code rate, and the transmit power change value according to the maximum difference.
  • the existing measurement parameters (RSRP of the serving cell and the neighboring cell) are directly utilized, only the terminal needs to perform normal measurement, and the required parameters can be obtained, and the measurement process must be performed by the terminal. No additional measurement of CQI is required, so new system overhead is not introduced, and the AMC process is simplified, making the system more spectrally efficient.
  • FIG. 1 is a flowchart of a link adaptation method in an LTE system according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a link adaptation method in an LTE system according to Embodiment 1 of the present invention
  • Figure 3 is a diagram showing a distribution of cells in a preferred embodiment of the present invention
  • Figure 4 is a schematic diagram of a base station according to an embodiment of the present invention
  • Figure 5 is a schematic diagram of a terminal in an embodiment of the present invention.
  • the UE and the base station are included, and the UE and the base station use link adaptation technology (including AMC and power control) to overcome the time variation of the wireless channel and effectively utilize system resources.
  • link adaptation technology including AMC and power control
  • Step S102 The terminal separately calculates a measured RSRP of a home serving cell (Reference Signal Received Power, reference) The difference between the received signal power and the RSRP of multiple neighboring cells; for example, since the terminal needs to constantly measure the RSRP value of the serving cell and the neighboring cell after accessing the cell (referred to as the home serving cell or the serving cell of the terminal), The terminal can process these known RSRP values.
  • Step 1 The terminal performs measurement according to the pre-configured number of neighbor cells N (which can be configured when the initialization parameter of the system is configured), measures the RSRP values of each neighboring cell, and saves the values.
  • the RSRP values of the N neighboring cells may be respectively recorded as RSRP1, RSRP2, ...RSRFN;
  • Step 2 The terminal measures the RSRP value of the service, j, and the area, and saves the value. You can use the service, j, and district RSRP as RSRPQ;
  • Step 3 Calculate the difference between RSR 0 and « ? ⁇ 1, « ? ⁇ 2, ... « ? ⁇ , respectively, as RSRP1, RSRP2, ... RSRPn.
  • Step S104 The terminal sends the maximum difference to the base station; for example, in the RP ⁇ , ARSRP2, ... ARSRP calculated in step S102, a maximum leg x ⁇ RSRP, -ARSRPn ⁇ is selected.
  • Step S106 The base station is at the maximum difference, and determines the MCS of the terminal.
  • the base station can basically determine the location of the terminal in the serving cell according to the maximum difference. Location, the greater the difference, indicating that the closer the terminal is to the center of the serving cell, the better the channel quality, the larger the MCS can be used; conversely, the terminal may be at the edge of the serving cell, and the smaller the MCS can be used.
  • the difference may be mapped to a modulation coding mode and a code rate by using a pre-established correspondence table, and the correspondence table may be obtained through simulation or trial-risk.
  • the terminal in order to implement link adaptation, the terminal needs to additionally measure CQI, which results in a complicated implementation process and increases system overhead.
  • the terminal After the terminal accesses the serving cell, the terminal continuously measures the RSRP of the serving cell and the neighboring cell.
  • the terminal directly uses the measurement information to separately calculate the difference between the RSRP of the monthly service cell and the RSRP of multiple neighboring cells.
  • the difference with the maximum value (that is, the maximum value can indicate the location of the terminal in the serving cell) is reported to the base station, so that the base station can use the maximum difference to determine the appropriate MCS allocation to the terminal, and implement LTE.
  • AMC method in the link adaptation technology of the system is described in order to implement link adaptation.
  • the base station determines the MCS of the terminal, and also determines the code rate corresponding to the MCS of the terminal.
  • the size of the largest difference in step S104 may indicate the approximate location of the terminal in the serving cell. Therefore, the base station may basically determine the location of the terminal in the monthly cell according to the maximum difference, the difference.
  • the base station selects a suitable modulation and coding mode for the terminal according to the maximum ARSRP indicating the location of the terminal in the cell, and corresponds to a specific code rate packet, so that the corresponding code rate can be used.
  • the packet obtains the minimum transmit power required by the terminal to reach the code rate, thereby providing a basis for subsequent power control.
  • the base station determines the MCS of the terminal and the corresponding code rate according to the maximum difference.
  • the base station finds the MCS corresponding to the maximum difference and the code rate in the pre-established correspondence table. It is a code rate group, where the correspondence table holds the MCS corresponding to each difference and its code rate.
  • the preferred embodiment provides a specific implementation of the base station's maximum difference on the terminal, determining the appropriate MCS for the terminal, and corresponding different code rates.
  • the correspondence table can be simulated True or trial-risk way to get it in advance. In this way, the base station can more easily determine a reasonable MCS and its corresponding code rate for the terminal. Obviously, in the correspondence table, the larger difference corresponds to the higher order MCS and the larger code rate.
  • the difference intervals having different interval segments may correspond to different MCSs, that is, one difference interval corresponds to one MCS.
  • the base station further includes: the base station uses the MCS and its corresponding code rate, and the current PHR of the terminal (Power Headroom Report, power reserve 4 ⁇ ) And determining a change value of the transmit power of the terminal, where the change value of the transmit power is used by the terminal to adjust the current transmit power.
  • the base station determines the transmit power change value (the required transmit power value or the reduced transmit power value) that needs to be adjusted by the terminal at the code rate of the modulation and coding mode in combination with the PHR of the terminal at the modulation and coding mode, and the terminal can appropriately adjust.
  • the transmission power of the self realizes the power control in the link adaptation technology, which not only ensures the throughput rate, but also reduces the transmission power, suppresses the cell interference and reduces the power consumption of the terminal.
  • the base station determines, by using the MCS and its corresponding code rate, the current PHR of the terminal, the change value of the transmit power of the terminal includes: Step 1: The base station determines the terminal to achieve the code rate by using the determined MCS and the corresponding code rate.
  • the minimum required transmit power including: the base station uses the MCS and its corresponding code rate to determine the minimum signal to noise ratio SNR required to achieve the code rate; determine the minimum transmit power required for the terminal to reach the minimum SNR; Step 2, The base station determines the change value of the transmit power of the terminal by using the current PHR and the minimum transmit power of the terminal.
  • the preferred embodiment provides that the base station obtains the minimum transmit power that can be used by the terminal according to the determined MCS of the terminal and its code rate, and then obtains the transmit power value that the terminal can adjust according to the current PHR of the terminal (ie, the above-mentioned change of the transmit power). Value) specific implementation.
  • the method further includes: the base station transmitting, by using a TPC (Transmit Power Control) command, a transmit power change value to the terminal. Therefore, the base station can notify the terminal of the power value that can be raised or decreased by the TPC command, so that the terminal adjusts its own transmit power by using the transmit power change value.
  • TPC Transmit Power Control
  • the existing TPC commands are still used to implement power control, which does not increase the overhead of the system and is easier to implement.
  • the terminal sends the maximum difference to the base station by measuring 4 ⁇ .
  • the UE continuously measures the RSRP of the serving cell and the neighboring cell, and continuously performs step S102 to step S104, so that the base station can calculate the new maximum difference of 4 ⁇ on the UE.
  • the base station can calculate the new maximum difference of 4 ⁇ on the UE.
  • the minimum power value required to meet the requirement can be known, and the PHR reported by the terminal can be notified by the TPC command.
  • the adjustment value of the terminal power allows the terminal to transmit at the minimum power required to achieve the code rate. This can not only ensure the throughput of the system, but also reduce the energy consumption of the terminal as much as possible, and reduce the interference between users.
  • the base station can reasonably allocate the modulation coding mode and the adjustment power value to the terminals in different locations.
  • the specific processing procedure of the link adaptation method in the LTE system according to the embodiment of the present invention includes the following steps: Step S202: The base station configures the neighbor cells to be measured by the UE.
  • Step S204 the UE measures the value of the RSRP of the serving cell (denoted as RSRP0) and the value of the RSRP of the neighboring cells (respectively referred to as RSRP ⁇ , RSRP2, ...: RSRPn)
  • the UE calculates the difference between RSR O and RSRP ⁇ , RSRP2, ...: RSRPn, respectively, as MISRP ⁇ , MiSRP1 RPn
  • Step S206 the UE selects a maximum value among the plurality of differences calculated in step S204, and records for ARSRP max, the t ⁇ RSRP max is reported to the base station (can be carried in the measurement report for reporting);
  • Step S208 the correspondence between the difference obtained by the simulation and the MCS and its code rate is obtained corresponding to the ARSRP x
  • Step S210 for the MCS and the code rate configuration, There is also a corresponding suitable SNR and power value, and the base station obtains the minimum SNR required to reach the code rate according to the MCS and the code rate group obtained in step S208, and further determines the minimum transmit power required for the terminal to reach the minimum SNR, thereby The transmission power of the terminal can be appropriately reduced or increased.
  • the second embodiment there are two UEs in one cell, which are UE1 and UE2, respectively. According to the processing manner of the method according to the embodiment of the present invention, they need to measure the RSRP value of the serving cell, that is, the 1-cell, and the RSRP values of the other three neighboring cells (2 cells, 3 cells, and 4 cells). Since the location of UE1 is closer to the center of the cell, the maximum difference between the RSRP of the serving cell and the neighboring cell is definitely greater than that of UE2.
  • the base station can allocate the MCS and the code rate to UE1 to be greater than that of UE2. It can ensure that higher-order MCS is allocated to UE1 with better channel quality, and the data transmission rate is improved. For UE2 with relatively poor channel quality, lower-order MCS and lower code rate are allocated, which can improve system transmission reliability. Sex. In this way, the throughput of the system can also be guaranteed under the corresponding selected MCS.
  • the base station in the process of UE mobility, since the UE periodically measures the RSRP of the local cell (ie, the serving cell) and the neighboring cell, the base station can dynamically obtain the largest position reflecting the location of the UE. The difference allows flexible MCS configuration and power control.
  • FIG. 4 is a schematic diagram of a base station and a terminal according to an embodiment of the present invention.
  • the base station 10 includes: a receiving module 102, configured to receive a maximum difference reported by the terminal 20, where the maximum difference is calculated by the terminal separately. The difference between the RSRP of the home serving cell and the RSRP of multiple neighboring cells is obtained. The maximum of the plurality of differences; the MCS determining module 104 is configured to determine the MCS of the terminal 20 based on the maximum difference. Preferably, the MCS determining module 104 is further configured to determine a code rate corresponding to the MCS of the terminal while determining the MCS of the terminal 20.
  • the manner in which the MCS determining module 104 determines the MCS of the terminal and the corresponding code rate according to the maximum difference is: in the pre-established correspondence table, finding the MCS corresponding to the maximum difference and The code rate, where the correspondence table holds the MCS corresponding to each difference and its code rate.
  • the foregoing base station further includes: a change value determining module 106, configured to determine, by using an MCS determined by the MCS determining module 104, a corresponding code rate, and a current PHR of the terminal 20, determining a transmit power change value of the terminal, where the transmitting The power change value is used by the terminal to adjust the current transmit power.
  • the change value determining module 106 includes: a minimum transmit power determining module and a transmit power change value determining module, where: a minimum transmit power determining module, configured to determine the terminal by using the MCS determined by the MCS determining module 104 and its corresponding code rate
  • the minimum transmit power required to reach the code rate comprising: a first determining module, configured to determine, by using the MCS determined by the MCS determining module 104 and its corresponding code rate, a minimum SNR required to reach a code rate; a module, configured to determine a minimum transmit power required by the terminal 20 to reach the minimum SNR; a transmit power change value determining module, configured to determine a transmit power change value of the terminal by using a current PHR and a minimum transmit power of the terminal.
  • the base station 10 further includes: a sending module, configured to send the transmit power change value to the terminal 20 by using a TPC command after the change value determining module 106 determines the transmit power change value of the terminal.
  • FIG. 5 is a schematic diagram of a terminal according to an embodiment of the present invention.
  • the terminal 20 includes: a calculation module 202, configured to separately calculate a difference between a measured RSRP of a home serving cell and an RSRP of multiple neighboring cells; and a sending module 204.
  • the maximum difference among the plurality of differences calculated by the calculation module 202 is reported to the base station 10 to cause the base station 10 to occupy the maximum difference, and the modulation coding mode MCS of the terminal 20 and its code rate, and the transmission power change value are determined.
  • the sending module 204 reports the maximum difference to the base station 10 by using a measurement report. From the above description, it can be seen that the present invention achieves the following technical effects:
  • the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种LTE系统中的链路自适应方法、基站和终端,其中,方法包括:终端分别计算测量到的归属服务小区的参考信号接收功率RSRP与多个邻区的RSRP的差值;终端将最大的差值上报给基站;基站根据最大的差值,确定终端的调制编码方式MCS。本发明不会引入新的系统开销,简化了AMC的流程,使得系统的频谱效率更高。

Description

LTE系统中的链路自适应方法、 基站和终端
技术领域 本发明涉及通信领 i或, 具体而言, 涉及一种 LTE ( Long Term Evolution, 长期演进) 系统中的链路自适应方法、 基站和终端。 背景技术 链路自适应技术是为了克服无线信道的时变性, 有效地利用系统资源而 产生的技术。 其主要优点是能够提高通信的可靠性、 提高功率资源和频率利 用率、 以及提高系统吞吐量。 LTE系统中的链路自适应主要有 AMC和功率 控制两种方式。 其中, AMC ( Adaptive Modulation and Coding , 自适应调制 编码) 是指根据信道情况确定信道的容量, 并根据信道的容量动态地调整调 制编码方式, 它可以最大限度地发送信息, 实现较高的数据速率, 提高链路 的频谱效率, 从而提高系统整体吞吐量。 下行方向的链路自适应技术基于用户终端 ( UE ) 反馈的 CQI ( Channel Quality Indicator, 信道质量指示), 从预定义的 CQI表格中具体对应调制编 码方式; 为了节省上行控制信道的开销, CQI 反馈与其他上行反馈量 PMI ( Precoding Matrix Indicator, 预编码头巨阵 4旨示 ) 以及 RI ( Rank Indication, 秩指示) 组合起来反馈; 从时间上可分为周期性反馈和非周期性反馈; 反馈 可以使用 PUCCH ( Physical Uplink Control channel, 物理上行控制信道;), 也 可以使用 PUSCH ( Physical Uplink Shared channel, 物理上行共享信道)。 上 行方向的链路自适应技术基于基站测量的上行信道质量, 直接确定具体的调 制编码方式。 自适应功率控制技术主要有两种通用的上行功率控制方法: 第一种是充 分利用用户的功率余量, 通过提高发射功率提高用户的信号质量, 尽可能选 择高阶的 MCS ( Modulation and Coding Scheme , 调制编码方式), 最大化 'J、 区吞吐量; 第二种则尽量将基站接收到用户的功率密度控制在一定的水平来 抑制小区千扰, 提高小区信号环境的稳健性和整个网络的性能。 但是, 现有的自适应调制编码技术应用中, 为了实现链路自适应, 终端 需要额外测量下行信道质量(CQI ), 在上行传输中上报该测量的下行信道质 量给基站, 基站使用该 CQI在对应的查找表中查找到 MCS , 这样, 流程较 为复杂, 并且终端需要专门额外测量 CQI, 增加了系统的开销。 发明内容 本发明的主要目的在于提供一种 LTE系统中的链路自适应方法、基站和 终端, 以至少解决上述的问题。 根据本发明的一个方面, 提供了一种 LTE系统中的链路自适应方法, 包 括: 终端分别计算测量到的归属服务小区的 RSRP与多个邻区的 RSRP的差 值; 终端将最大的差值上报给基站;基站根据最大的差值,确定终端的 MCS。 进一步地, 基站确定终端的 MCS的同时, 还确定终端的 MCS对应的码 率。 进一步地, 基站 -据最大的差值, 确定终端的 MCS 及其对应的码率包 括: 基站在预先建立的对应关系表中, 查找到与最大的差值对应的 MCS 及 其码率, 其中, 对应关系表保存了各个差值对应的 MCS及其码率。 进一步地, 在基站根据最大的差值, 确定终端的 MCS 及其对应的码率 之后, 还包括: 基站使用 MCS 及其对应的码率、 终端当前的功率预留报告 PHR, 确定终端的发射功率变化值, 其中, 发射功率变化值用于终端调整当 前的发射功率。 进一步地, 基站使用 MCS及其对应的码率、 终端当前的 PHR, 确定终 端的发射功率变化值包括: 基站使用 MCS 及其对应的码率, 确定终端达到 码率所需的最小发射功率, 其包括: 基站使用 MCS 及其对应的码率, 确定 达到码率所需的最小信噪比 SNR; 确定终端达到最小 SNR所需的最小发射 功率; 基站使用终端当前的 PHR和最小发射功率, 确定终端的发射功率变化 值。 进一步地, 在基站确定终端的发射功率变化值之后, 还包括: 基站通过 发射功率控制 TPC命令将发射功率变化值发送给终端。 进一步地, 终端通过测量~¾告将最大的差值上 给基站。 根据本发明的另一方面, 提供了一种基站, 包括: 接收模块, 用于接收 终端上报的最大的差值, 其中, 最大的差值为终端分别计算测量到的归属服 务小区的 RSRP 与多个邻区的 RSRP 的差值得到的多个差值中的最大值; MCS确定模块, 用于 居最大的差值, 确定终端的 MCS。 进一步地, MCS确定模块还用于在确定终端的 MCS的同时, 确定终端 的 MCS对应的码率。 进一步地, 还包括: 变化值确定模块, 用于使用 MCS 确定模块确定的
MCS 及其对应的码率、 终端当前的 PHR, 确定终端的发射功率变化值, 其 中, 发射功率变化值用于终端调整当前的发射功率。 根据本发明的另一方面, 提供了一种终端, 包括: 计算模块, 用于分别 计算测量到的归属服务小区的 RSRP与多个邻区的 RSRP的差值;发送模块, 用于将最大的差值上报给基站以使得基站根据最大的差值,确定终端的 MCS 及其码率、 以及发射功率变化值。 通过本发明,由于直接利用现有的测量参数(服务小区和邻区的 RSRP ), 只需要终端进行正常的测量, 就可以获取所需的参数, 而测量这一过程, 是 终端必须执行的, 无需额外测量 CQI, 从而不会引入新的系统开销, 简化了 AMC的流程, 使得系统的频谱效率更高。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是才艮据本发明实施例的 LTE系统中的链路自适应方法的流程图; 图 2是根据本发明实施例一的 LTE系统中的链路自适应方法的流程图; 图 3是 居本发明优选实施例的小区的分布示例图; 图 4是根据本发明实施例的基站的示意图; 图 5是 居本发明实施例的终端的示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在 LTE系统中包括 UE和基站, UE和基站会釆用链路自适应技术 (包 括 AMC和功率控制) 以克服无线信道的时变性, 有效地利用系统资源。 本 发明以下实施例在 jtb系统中实现。 图 1是根据本发明实施例的 LTE系统中的链路自适应方法的流程图, 包 括以下步 4聚: 步骤 S 102 , 终端分别计算测量到的归属服务小区的 RSRP ( Reference Signal Received Power, 参考信号接收功率 ) 与多个邻区的 RSRP的差值; 例如, 由于终端在接入小区 (称为终端的归属服务小区或者服务小区) 后, 需要不断测量服务小区和邻小区的 RSRP值, 所以终端可以对这些已知 的 RSRP值进行处理。 步骤 1 : 终端根据预先配置的所需要测量的邻小区的个数 N (可以在配 置系统的初始化参数时配置 N ) 进行测量, 测得各个邻小区的 RSRP值, 并 保存这些值。 可以将这 N 个邻 小 区 的 RSRP 的值分别 记为 RSRPl, RSRP2, ...RSRFN; 步骤 2: 终端测量服务, j、区的 RSRP值, 并保存该值。 可以将服务 ,j、区 的 RSRP ΐ己为 RSRPQ; 步骤 3 : 分别计算 RSR 0与 « ?Ρ1, « ?Ρ2, ... « ?ΡΝ的差值, 分别记为 RSRPl, RSRP2, ... RSRPn。 步骤 S 104 , 终端将最大的差值上 4艮给基站; 例如, 在步骤 S 102计算得到的 RP\, ARSRP2, ...ARSRP 中, 选出一个最 大值腿 x^RSRP , —ARSRPn} , 例如最大值记为最大 ARSR , 则将该最 大 上报给基站。 步骤 S 106 , 基站 居该最大的差值, 确定终端的 MCS。 例如, 基站根据该最大的差值, 可以基本确定终端在服务小区中所处的 位置, 该差值越大, 表明终端离服务小区的中心越近, 信道质量越好, 可以 使用越大的 MCS ; 反之, 则表明终端可能处在服务小区的边缘, 可以使用越 小的 MCS。 在具体确定时, 可以利用一个预先建立的对应关系表将该差值映 射到一个调制编码方式及码率, 该对应关系表可以通过仿真或试-险获取。 相关技术中为了实现链路自适应, 终端需要专门额外测量 CQI, 从而导 致实现流程较为复杂, 并且增加了系统的开销。 由于终端在接入服务小区后, 会不断测量服务小区和邻区的 RSRP , 本实施例中终端直接利用这些测量信 息, 分别计算月艮务小区的 RSRP与多个邻区的 RSRP的差值, 并将具有最大 值的差值 (即, 最大 该值可以表明终端在服务小区中所处的位置) 上报给基站, 从而基站可以利用该最大的差值确定合适的 MCS分配给终端, 实现了 LTE系统的链路自适应技术中的 AMC方法。 本实施例由于直接利用 现有的测量参数(服务小区和邻区的 RSRP ), 只需要终端进行正常的测量, 就可以获取所需的参数, 而测量这一过程, 是终端必须执行的, 无需额外测 量 CQI, 从而不会引入新的系统开销, 简化了流程, 使得系统的频谱效率更 高。 优选地, 在步骤 S 106中, 基站确定终端的 MCS的同时, 还确定终端的 MCS对应的码率。 步骤 S 104 中的最大的差值的大小可以表明终端在服务小区中的大概位 置, 因此, 基站可以才艮据该最大的差值基本确定终端在月艮务小区中所处的位 置, 该差值越大, 表明终端离服务小区的中心越近, 信道质量越好, 可以使 用越大的 MCS ; 反之, 则表明终端可能处在服务小区的边缘, 可以使用越小 的 MCS。 该优选实施例中基站才艮据表明终端在小区中所处的位置的最大 ARSRP , 来为终端选择合适的调制编码方式, 并对应到具体的码率分组中, 从而可以使用该对应的码率分组获得终端达到该码率所需使用的最小发射功 率, 从而为后续的功率控制提供基础。 优选地, 基站才艮据最大的差值, 确定终端的 MCS及其对应的码率包括: 基站在预先建立的对应关系表中, 查找到与最大的差值对应的 MCS 及其码 率 (具体为一个码率组), 其中, 该对应关系表保存了各个差值对应的 MCS 及其码率。 该优选实施例提供了基站 居终端上 ·ί艮的最大的差值, 为终端确定合适 的 MCS 以及对应的不同的码率的具体实施方案。 该对应关系表可以通过仿 真或者试-险的方式预先获得。 这样, 基站可以较容易地为终端确定合理的 MCS及其对应的码率。 显然, 在该对应关系表中, 越大的差值对应越高阶的 MCS和越大的码率。由于终端上 4艮的最大的差值反映了终端当前在月艮务小区 的位置, 该差值最大, 表明终端距离服务小区的中心越近, 信道质量越好, 则根据对应关系表为其选择的 MCS 越高阶、 码率越大, 从而可以提高数据 传输速率, 反之, 表明终端距离服务小区的边缘越近, 信道质量越差, 则为 终端选择的 MCS越低阶、 码率越小, 从而可以提高系统数据传输的可靠性。 此外, 还可以增加系统吞吐量。 实际实施时, 在上述的对应关系表中, 可以是具有不同区间段的差值区 间对应不同的 MCS , 即一个差值区间对应一个 MCS。 优选地, 在基站根据最大的差值, 确定终端的 MCS 及其对应的码率之 后, 还包括: 基站使用 MCS 及其对应的码率、 终端当前的 PHR ( Power Headroom Report, 功率预留 4艮告), 确定终端的发射功率变化值, 其中, 发 射功率变化值用于终端调整当前的发射功率。 该优选实施例中基站结合终端上 4艮的 PHR确定该调制编码方式的码率 下终端需要调整的发射功率变化值 (需要升高的发射功率值或者降低的发射 功率值), 终端可以适当调整自己的发射功率,从而实现了链路自适应技术中 的功率控制, 既保证了吞吐率, 同时可以降低发送功率, 抑制小区千扰及减 小终端的能耗。 优选地, 基站使用 MCS及其对应的码率、 终端当前的 PHR, 确定终端 的发射功率变化值包括: 步一骤 1 , 基站使用上述确定的 MCS及其对应的码率, 确定终端达到码率 所需的最小发射功率, 其包括: 基站使用 MCS 及其对应的码率, 确定达到 码率所需的最小信噪比 SNR; 确定终端达到该最小 SNR所需使用的最小发 射功率; 步骤 2, 基站使用终端当前的 PHR和最小发射功率, 确定终端的发射功 率变化值。 该优选实施例提供了基站才艮据确定的终端的 MCS 及其码率, 得到终端 可以使用的最小发射功率,进而结合终端当前的 PHR得到终端可以调整的发 射功率值 (即上述的发射功率变化值) 的具体实施方案。 本优选实施例只需 要对终端测量的 RSRP的值进行处理来获得合适的 MCS ,就能满足系统吞吐 率, 改善小区内用户的千扰并能节约终端能耗。 优选地,在基站确定终端的发射功率变化值之后,还包括:基站通过 TPC ( Transmit Power Control, 发射功率控制)命令将发射功率变化值发送给终 端。 从而, 基站可以通过 TPC命令通知终端可以升高或降低的功率值, 以使 得终端使用该发射功率变化值调整自己的发射功率。仍然使用已有的 TPC命 令来实现功率控制, 不会增加系统的开销, 较容易实现。 优选地, 步骤 S 104 中, 终端通过测量 4艮告将最大的差值上 4艮给基站。 这样, 使用已有的测量报告进行最大的差值的上报, 可以节省上行控制信道 的开销'。 显然, 利用上述的方法, UE会不断地测量服务小区和邻区的 RSRP , 并 不断地执行步骤 S 102至步骤 S 104 , 因此, 基站可以才艮据 UE上 4艮的新的最 大的差值, 获得 UE的移动和最新的位置的测量结果的更新, 在确定了调制 编码方式和码率之后, 可以知道满足该要求所需的最小功率值, 结合终端上 报的 PHR, 就可以通过 TPC命令告知终端功率的调整值, 让终端以达到该 码率要求的最小功率进行发送。 这样既可以保证系统的吞吐率, 同时也尽可 能地减低了终端的能耗, 并减小用户间的千扰。 通过上述流程, 可以让基站给处于不同位置的终端合理分配其调制编码 方式和调整功率值。 实施例一 如图 2所示,根据本发明实施例的 LTE系统中的链路自适应方法的具体 处理流程包括以下几个步 4聚: 步骤 S202 , 基站配置 UE所需测量的邻小区的个数为 n , UE获取该个 数"; 步骤 S204 , UE测量服务小区的 RSRP的值 (记为 RSRP0 ) 以及这《个 邻小区的 RSRP的值(分别记为 RSRP\, RSRP2,…: RSRPn ), UE分别计算 RSR O 与 RSRP\, RSRP2,…: RSRPn的差值, 分别 ΐ己为 MISRP\, MiSRPl RPn; 步骤 S206 , UE在步骤 S204计算出的多个差值中选择一个最大值,记为 ARSRP max , 将 t^RSRP max上报给基站 (可以携带在测量报告中进行上报); 步骤 S208 , 在仿真获得的差值与 MCS及其码率的对应关系表中得到对 应该 ARSRP x的适合该 UE位置所取的 MCS值及相应的码率。 仿真得到的 仿真曲线(以 ARSR max为横轴坐标) 中, ARSR max值越大, 表明 UE距离 服务小区的中心越近, 对应得到的 MCS越高阶、 码率越高。 这样, 如果 UE 在服务小区的中心时, 就可以被分配越高阶的 MCS 和越高的码率, 这样, 可以获得更大的吞吐率; 步骤 S210 , 对于该 MCS和码率的配置下, 也有对应的适合的 SNR和功 率值, 基站根据步骤 S208中得到的 MCS和码率组得到达到该码率所需的最 小 SNR, 并进而确定终端达到该最小 SNR所需使用的最小发射功率, 从而 可以适当降低或提高终端的发射功率。 即保证了系统的吞吐量, 又可以抑制 小区千扰。 实施例二 如图 3所示, 在 1小区内有两个 UE, 分别是 UE1和 UE2。 按照本发明 实施例的方法的处理方式, 它们需要测量服务小区, 即 1小区的 RSRP值, 以及其他三个邻小区 (2小区、 3小区、 和 4小区) 的 RSRP值。 由于 UE1的位置离小区中心较近,所以其服务小区和邻小区的 RSRP的 最大的差值肯定比 UE2大。 这样根据对应的仿真曲线或对应关系表, 基站可 以给 UE1分配的 MCS和码率肯定大于 UE2的。可以保证给信道质量较好的 UE1 分配较高阶的 MCS , 提高数据传输速率, 而对信道质量相对差一些的 UE2 ,分配较低阶的 MCS和较低的码率,可以提高系统传输的可靠性。这样, 同时也能够在相应选择好的 MCS下, 保证系统的吞吐量。 实施例三 如图 3所示, 在 UE移动的过程中, 由于 UE会周期地对本小区 (即服 务小区) 和邻小区的 RSRP进行测量, 所以基站可以动态地获取到反映 UE 的位置的最大的差值, 可以灵活地进行 MCS的配置以及功率控制。 图 4是根据本发明实施例的基站和终端的示意图, 该基站 10 包括: 接 收模块 102 , 用于接收终端 20上报的最大的差值, 其中, 该最大的差值为终 端分别计算测量到的归属服务小区的 RSRP与多个邻区的 RSRP的差值得到 的多个差值中的最大值; MCS确定模块 104 , 用于根据该最大的差值, 确定 终端 20的 MCS。 优选地, MCS确定模块 104还用于在确定终端 20的 MCS的同时, 确 定终端的 MCS对应的码率。 优选地, MCS确定模块 104根据该最大的差值, 确定终端的 MCS及其 对应的码率的方式为: 在预先建立的对应关系表中, 查找到与该最大的差值 对应的 MCS及其码率, 其中, 该对应关系表保存了各个差值对应的 MCS及 其码率。 优选地, 上述的基站还包括: 变化值确定模块 106 , 用于使用 MCS确定 模块 104确定的 MCS及其对应的码率、 终端 20当前的 PHR, 确定终端的发 射功率变化值, 其中, 该发射功率变化值用于终端调整当前的发射功率。 优选地, 变化值确定模块 106包括: 最小发射功率确定模块和发射功率 变化值确定模块, 其中: 最小发射功率确定模块, 用于使用 MCS 确定模块 104确定的 MCS及其对应的码率, 确定终端 20达到该码率所需的最小发射 功率, 其包括: 第一确定模块, 用于使用 MCS确定模块 104确定的 MCS及 其对应的码率, 确定达到码率所需的最小 SNR; 第二确定模块, 用于确定终 端 20达到该最小 SNR所需的最小发射功率; 发射功率变化值确定模块, 用 于使用终端当前的 PHR和最小发射功率, 确定终端的发射功率变化值。 优选地, 基站 10还包括: 发送模块, 用于在变化值确定模块 106确定 了终端的发射功率变化值之后 ,通过 TPC命令将该发射功率变化值发送给终 端 20。 图 5是根据本发明实施例的终端的示意图, 该终端 20 包括: 计算模块 202 ,用于分别计算测量到的归属服务小区的 RSRP与多个邻区的 RSRP的差 值; 发送模块 204 , 用于将计算模块 202算得的多个差值中最大的差值上报 给基站 10以使得基站 10 居该最大的差值, 确定终端 20的调制编码方式 MCS及其码率、 以及发射功率变化值。 优选地, 发送模块 204通过测量报告将该最大的差值上报给基站 10。 从以上的描述中, 可以看出, 本发明实现了如下技术效果:
( 1 ) 实现了 LTE系统的链路自适应技术中的 AMC方法和功率控制; ( 2 ) 由于直接利用现有的测量参数 (服务小区和邻区的 RSRP ), 只需 要终端进行正常的测量, 就可以获取所需的参数, 而测量这一过程, 是终端 必须执行的, 无需额外测量 CQI, 从而不会引入新的系统开销, 简化了 AMC 的流程, 使得系统的频谱效率更高; ( 3 ) 既可以保证系统的吞吐率, 同时也尽可能的减低了终端的能耗, 并减小用户间的千扰。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种 LTE系统中的链路自适应方法, 其特征在于, 包括: 终端分别计算测量到的归属服务小区的参考信号接收功率 RSRP与 多个邻区的 RSRP的差值;
所述终端将最大的所述差值上 4艮给基站;
所述基站才艮据所述最大的差值, 确定所述终端的调制编码方式 MCS。
2. 根据权利要求 1 所述的方法, 其特征在于, 所述基站确定所述终端的 MCS的同时, 还确定所述终端的所述 MCS对应的码率。
3. 根据权利要求 2所述的方法, 其特征在于, 所述基站根据所述最大的差 值, 确定所述终端的 MCS及其对应的码率包括:
所述基站在预先建立的对应关系表中, 查找到与所述最大的差值对 应的 MCS及其码率,其中,所述对应关系表保存了各个差值对应的 MCS 及其码率。
4. 根据权利要求 2所述的方法, 其特征在于, 在所述基站根据所述最大的 差值, 确定所述终端的 MCS及其对应的码率之后, 还包括:
所述基站使用所述 MCS 及其对应的码率、 所述终端当前的功率预 留 4艮告 PHR, 确定所述终端的发射功率变化值, 其中, 所述发射功率变 化值用于所述终端调整当前的发射功率。
5. 根据权利要求 4所述的方法, 其特征在于, 所述基站使用所述 MCS及 其对应的码率、 所述终端当前的 PHR, 确定所述终端的发射功率变化值 包括:
所述基站使用所述 MCS 及其对应的码率, 确定所述终端达到所述 码率所需的最小发射功率, 其包括: 所述基站使用所述 MCS 及其对应 的码率, 确定达到所述码率所需的最小信噪比 SNR; 确定所述终端达到 所述最小 SNR所需的所述最小发射功率;
所述基站使用所述终端当前的 PHR和所述最小发射功率,确定所述 终端的发射功率变化值。
6. 根据权利要求 4所述的方法, 其特征在于, 在所述基站确定所述终端的 发射功率变化值之后, 还包括: 所述基站通过发射功率控制 TPC命令将 所述发射功率变化值发送给所述终端。
7. 根据权利要求 1所述的方法, 其特征在于, 所述终端通过测量报告将所 述最大的差值上报给所述基站。
8. —种基站, 其特征在于, 包括:
接收模块, 用于接收终端上报的最大的差值, 其中, 所述最大的差 值为所述终端分别计算测量到的归属服务小区的参考信号接收功率 RSRP与多个邻区的 RSRP的差值得到的多个差值中的最大值;
MCS确定模块, 用于 居所述最大的差值, 确定所述终端的调制编 码方式 MCS。
9. 根据权利要求 8所述的基站, 其特征在于, 所述 MCS确定模块还用于 在确定所述终端的 MCS的同时,确定所述终端的所述 MCS对应的码率。
10. 根据权利要求 9所述的基站, 其特征在于, 还包括:
变化值确定模块, 用于使用所述 MCS确定模块确定的所述 MCS及 其对应的码率、所述终端当前的 PHR,确定所述终端的发射功率变化值, 其中, 所述发射功率变化值用于所述终端调整当前的发射功率。
11. 一种终端, 其特征在于, 包括:
计算模块, 用于分别计算测量到的归属服务小区的参考信号接收功 率 RSRP与多个邻区的 RSRP的差值;
发送模块, 用于将最大的所述差值上报给基站以使得所述基站根据 所述最大的差值, 确定所述终端的调制编码方式 MCS 及其码率、 以及 发射功率变化值。
PCT/CN2010/076060 2010-06-02 2010-08-17 Lte系统中的链路自适应方法、基站和终端 WO2011150592A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10844961.2A EP2568677B1 (en) 2010-06-02 2010-08-17 Link adaptation method, base station and terminal in long term evolution (lte) system
RU2011133703/07A RU2486708C2 (ru) 2010-06-02 2010-08-17 Способ адаптации канала, базовая станция и терминал в lte системе
US13/201,405 US9020545B2 (en) 2010-06-02 2010-08-17 Link adaptation method, base station and terminal in LTE system
JP2013512720A JP5657787B2 (ja) 2010-06-02 2010-08-17 Lteシステムにおけるリンク適応方法、基地局および端末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010196425.6 2010-06-02
CN2010101964256A CN102271354A (zh) 2010-06-02 2010-06-02 Lte系统中的链路自适应方法、基站和终端

Publications (1)

Publication Number Publication Date
WO2011150592A1 true WO2011150592A1 (zh) 2011-12-08

Family

ID=45053480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076060 WO2011150592A1 (zh) 2010-06-02 2010-08-17 Lte系统中的链路自适应方法、基站和终端

Country Status (6)

Country Link
US (1) US9020545B2 (zh)
EP (1) EP2568677B1 (zh)
JP (1) JP5657787B2 (zh)
CN (1) CN102271354A (zh)
RU (1) RU2486708C2 (zh)
WO (1) WO2011150592A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498588A (en) * 2012-01-20 2013-07-24 Toshiba Res Europ Ltd Identifying interference in a heterogeneous wireless network
US8699340B2 (en) 2012-06-01 2014-04-15 Telefonaktiebolaget L M Ericsson (Publ) Table-based link adaptation for wireless communication network transmissions
JPWO2015015678A1 (ja) * 2013-07-30 2017-03-02 日本電気株式会社 無線通信装置、無線通信システム及び無線通信方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013064271A1 (en) * 2011-11-04 2013-05-10 Telefonaktiebolaget L M Ericsson (Publ) Method and device for transmission power control
US9271244B2 (en) * 2012-03-16 2016-02-23 Nec (China) Co., Ltd. Method and apparatus for performing D2D communication
US9532371B2 (en) 2012-03-23 2016-12-27 Nec (China) Co., Ltd. Method and apparatus for scheduling user equipment
US9014040B1 (en) * 2013-02-06 2015-04-21 Sprint Spectrum L.P. Selection of wireless devices for measurement reports
US8988978B2 (en) * 2013-02-25 2015-03-24 Apple Inc. System and method for improved connectivity in GPRS/EGPRS mobile environment for streaming service
RU2633154C2 (ru) 2013-03-22 2017-10-11 Фудзицу Лимитед Способ и устройство для конфигурирования индикатора качества канала, а также способ и устройство для конфигурирования схемы модуляции и кодирования
KR102039343B1 (ko) * 2013-03-26 2019-11-01 삼성전자주식회사 무선 이동 통신 시스템에서 mcs 레벨 결정 방법 및 장치
US10135759B2 (en) 2013-06-12 2018-11-20 Convida Wireless, Llc Context and power control information management for proximity services
US10230790B2 (en) 2013-06-21 2019-03-12 Convida Wireless, Llc Context management
CN104254101B (zh) * 2013-06-28 2017-12-08 普天信息技术研究院有限公司 一种邻区参考信号接收功率测量方法
CN105409299B (zh) * 2013-07-05 2019-01-25 Lg电子株式会社 用于在无线通信系统中获取控制信息的方法和装置
JP6285549B2 (ja) 2013-07-10 2018-02-28 コンヴィーダ ワイヤレス, エルエルシー コンテキスト認識近接サービス
CN103688482A (zh) * 2013-09-06 2014-03-26 华为技术有限公司 数据发送方法、装置及设备
CN104980247B (zh) * 2014-04-04 2019-11-22 北京三星通信技术研究有限公司 自适应调整调制编码方式和参考信号图样的方法、基站、终端和系统
CN107005973B (zh) * 2014-12-05 2021-02-02 瑞典爱立信有限公司 执行链接自适应的方法和通信设备
US10075187B2 (en) * 2015-03-15 2018-09-11 Qualcomm Incorporated MCS/PMI/RI selection and coding/interleaving mechanism for bursty interference and puncturing handling
US10499351B2 (en) * 2015-03-17 2019-12-03 Huawei Technologies Co., Ltd. Controller directives to enable multipoint reception via MCS and power constraints masks
CN107567096B (zh) * 2016-06-30 2021-01-22 中兴通讯股份有限公司 消除同频干扰的方法及装置
WO2018110620A1 (ja) * 2016-12-15 2018-06-21 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN108288982B (zh) * 2017-01-10 2019-07-23 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置
CN107332645B (zh) * 2017-06-29 2020-03-27 湖南基石通信技术有限公司 基于自适应学习机制的无线通信设备速率调制方法及装置
CN107360621B (zh) * 2017-07-31 2021-01-15 天津大学 一种基于rsrp测量值的lte-a上行功率控制方法
CN113891393B (zh) * 2021-09-24 2023-05-05 北京升哲科技有限公司 链路自适应传输方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046152A1 (ja) * 2003-11-07 2005-05-19 Matsushita Electric Industrial Co., Ltd. 無線通信装置及びmcs決定方法
CN101087287A (zh) * 2006-06-05 2007-12-12 中兴通讯股份有限公司 一种正交频分复用系统自适应调制和编码方法
CN101278533A (zh) * 2005-09-30 2008-10-01 松下电器产业株式会社 无线发送装置及无线发送方法
CN101534518A (zh) * 2008-03-10 2009-09-16 华为技术有限公司 一种测量信息的上报方法、系统和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168074A (ja) * 1994-12-15 1996-06-25 Nec Corp 移動体通信における位置管理方式
AU712633B2 (en) * 1995-08-31 1999-11-11 Nokia Telecommunications Oy A method for selecting the way to perform a handover, and a cellular radio system
JP4167485B2 (ja) * 2002-12-26 2008-10-15 松下電器産業株式会社 無線通信システム、通信端末装置、および基地局装置
RU2282315C2 (ru) * 2004-11-22 2006-08-20 Закрытое акционерное общество "Кодофон" Способ передачи обслуживания абонентской станции с исходной базовой станции на соседнюю базовую станцию при пересечении абонентской станцией границы сот в системе радиосвязи
CN101218763B (zh) * 2005-06-14 2012-02-15 株式会社Ntt都科摩 基站、移动台以及功率控制方法
JP4569768B2 (ja) * 2005-06-17 2010-10-27 日本電気株式会社 移動通信システム、移動端末及び移動端末送信スケジューリング方法
JP2008042547A (ja) * 2006-08-07 2008-02-21 Fujitsu Ltd 移動通信システム,基地局,端末装置及び送信制御方法
US8274952B2 (en) * 2006-10-10 2012-09-25 Alcatel Lucent Transmission power management
JP5418495B2 (ja) * 2008-03-31 2014-02-19 日本電気株式会社 無線通信システム、基地局、移動局及び送信パラメータの決定方法
JP4920010B2 (ja) * 2008-05-28 2012-04-18 京セラ株式会社 受信装置および適応変調方法
JP5103323B2 (ja) * 2008-08-11 2012-12-19 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置及び移動端末装置
US8054808B2 (en) * 2009-03-06 2011-11-08 Motorola Mobility, Inc. Controlling interference in a wireless communication system
WO2010124724A1 (en) * 2009-04-28 2010-11-04 Nokia Siemens Networks Oy Self-optimization of cell overlap

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046152A1 (ja) * 2003-11-07 2005-05-19 Matsushita Electric Industrial Co., Ltd. 無線通信装置及びmcs決定方法
CN101278533A (zh) * 2005-09-30 2008-10-01 松下电器产业株式会社 无线发送装置及无线发送方法
CN101087287A (zh) * 2006-06-05 2007-12-12 中兴通讯股份有限公司 一种正交频分复用系统自适应调制和编码方法
CN101534518A (zh) * 2008-03-10 2009-09-16 华为技术有限公司 一种测量信息的上报方法、系统和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498588A (en) * 2012-01-20 2013-07-24 Toshiba Res Europ Ltd Identifying interference in a heterogeneous wireless network
GB2498588B (en) * 2012-01-20 2014-08-20 Toshiba Res Europ Ltd Wireless communication methods and apparatus
US9380468B2 (en) 2012-01-20 2016-06-28 Kabushiki Kaisha Toshiba Wireless communication methods and apparatus
US8699340B2 (en) 2012-06-01 2014-04-15 Telefonaktiebolaget L M Ericsson (Publ) Table-based link adaptation for wireless communication network transmissions
JPWO2015015678A1 (ja) * 2013-07-30 2017-03-02 日本電気株式会社 無線通信装置、無線通信システム及び無線通信方法

Also Published As

Publication number Publication date
JP5657787B2 (ja) 2015-01-21
RU2011133703A (ru) 2013-04-10
EP2568677B1 (en) 2018-12-12
US20120135778A1 (en) 2012-05-31
JP2013531421A (ja) 2013-08-01
CN102271354A (zh) 2011-12-07
EP2568677A4 (en) 2015-03-11
EP2568677A1 (en) 2013-03-13
RU2486708C2 (ru) 2013-06-27
US9020545B2 (en) 2015-04-28

Similar Documents

Publication Publication Date Title
WO2011150592A1 (zh) Lte系统中的链路自适应方法、基站和终端
JP5351776B2 (ja) 通信システムにおけるリソース割り付け
JP7308858B2 (ja) 伝送モード決定方法及び機器
US20220183017A1 (en) Power control method, device and storage medium for sidelink communication system
WO2012113183A1 (zh) 上行资源配置方法及装置
JP2013527723A (ja) アップリンクパワー制御方法及びシステム
KR20170080565A (ko) 전력 제어, 보고 및 상향링크 전송을 위한 장치 및 방법
JP2017503396A (ja) スケジューリング方法、装置、及びシステム
KR20090040480A (ko) 무선 자원 활용 최적화 및 데이터 레이트 조정 방법, 와이어리스 디지털 통신 시스템 및 무선 자원 활용 최적화 시스템
WO2012089172A1 (zh) 信干噪比的反馈方法和设备
CN110351001B (zh) 一种信道质量指示的发送方法、数据发送方法及装置
JPWO2013146273A1 (ja) 通信路品質推定方法、無線通信システム、基地局及びプログラム
US8923156B1 (en) Quality of service aware channel quality indicator
WO2016209135A1 (en) Method and base station for selecting a transport format
JP6386073B2 (ja) 低コストマシン型通信のための方法および装置
US20220132469A1 (en) Receiver assisted sidelink resource allocation using an adaptive threshold
CN101841843A (zh) 连续性分组连接技术的下行传输方法、装置和系统
US11943026B2 (en) Method for obtaining channel state information, apparatus, and computer storage medium
CN113170402A (zh) 用于phr的方法、节点和计算机可读介质
WO2015027469A1 (zh) 下行信道聚合级别的确定方法、设备和系统
WO2018127100A1 (zh) 上行功率控制的方法和通信设备
CN110461048B (zh) 一种调整通信处理能力的方法及用户设备
JP2011527154A (ja) 制御情報に使用する共有チャネル部分の割当制御を行うための方法、移動局及び基地局
WO2015058725A1 (zh) 控制上行发送功率的方法及装置
WO2016161616A1 (zh) 一种分配网络资源的方法、装置和基站

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 6068/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010844961

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13201405

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011133703

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013512720

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE