WO2011150550A1 - 整体螺旋桨加工机床 - Google Patents

整体螺旋桨加工机床 Download PDF

Info

Publication number
WO2011150550A1
WO2011150550A1 PCT/CN2010/073424 CN2010073424W WO2011150550A1 WO 2011150550 A1 WO2011150550 A1 WO 2011150550A1 CN 2010073424 W CN2010073424 W CN 2010073424W WO 2011150550 A1 WO2011150550 A1 WO 2011150550A1
Authority
WO
WIPO (PCT)
Prior art keywords
forearm
machining
arm
frame
machine tool
Prior art date
Application number
PCT/CN2010/073424
Other languages
English (en)
French (fr)
Inventor
孙尚传
王小椿
Original Assignee
配天(安徽)电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 配天(安徽)电子技术有限公司 filed Critical 配天(安徽)电子技术有限公司
Priority to PCT/CN2010/073424 priority Critical patent/WO2011150550A1/zh
Priority to CN201080014446.XA priority patent/CN102405118B/zh
Publication of WO2011150550A1 publication Critical patent/WO2011150550A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/16Working surfaces curved in two directions
    • B23C3/18Working surfaces curved in two directions for shaping screw-propellers, turbine blades, or impellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/48Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs
    • B23Q1/4852Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs a single sliding pair followed perpendicularly by a single rotating pair
    • B23Q1/4857Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs a single sliding pair followed perpendicularly by a single rotating pair followed perpendicularly by a single rotating pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/50Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism
    • B23Q1/54Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only
    • B23Q1/5406Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only a single rotating pair followed perpendicularly by a single rotating pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/14Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding turbine blades, propeller blades or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2215/00Details of workpieces
    • B23C2215/04Aircraft components
    • B23C2215/045Propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2220/00Machine tool components
    • B23Q2220/006Spindle heads

Definitions

  • the invention relates to a propeller processing machine tool, and in particular to an integral propeller machining machine tool. Background technique
  • Marine propellers are the core components of waterborne vehicles such as ships, ships, submarines and aircraft carriers. The performance of propellers has a large impact on propulsion efficiency, noise and longevity. Marine propellers are divided into two types: pitch propellers and integral propellers. The blade of the pitch propeller can be rotated in the hub to change the angle of attack of the blade to adapt to different ship speeds. It is mainly used for ships directly driven by low-speed diesel engines. For ships with transmissions in the transmission chain, the whole Propellers usually get better results.
  • the shape of the overall propeller is very complex, and the surfaces to be machined include the pressure and suction faces of the blade, the hub, the transition fillet between the blade and the hub, and the blade leading and rounded corners. There may also be some overlap between adjacent blades of the large thrust integral propeller.
  • the overall propeller is usually machined on a six-axis five-link or six-axis six-link motive in the form of a five-axis floor boring machine or a vertical turning and milling combined machining center.
  • a six-axis five-link or six-axis six-link motive in the form of a five-axis floor boring machine or a vertical turning and milling combined machining center.
  • such equipment can better process the blade surface of the blade.
  • only one side of the blade can be processed.
  • the workpiece is flipped and repositioned and installed, which is time consuming and laborious, and causes repeated positioning errors.
  • the propeller blade is a thin-walled member, and the rigidity is weak. When it is installed, the portion far from the clamp is likely to sag naturally due to its own gravity.
  • the object of the present invention is to provide an integral propeller processing machine tool, which can avoid the processing error caused by workpiece turning and repeated positioning and the discontinuity of the rounded corners on both sides of the foliar surface, and greatly saves the repeated installation and positioning. Auxiliary working hours, improve the utilization of equipment, reduce the labor intensity of workers, and reduce the operational links that may lead to product quality problems.
  • the invention provides an integral propeller processing machine tool, comprising:
  • the flat turntable can be rotated along a vertical axis
  • a mechanical arm disposed on the frame and capable of swinging up and down in the frame, wherein the mechanical arm is provided with a machining forearm rotatable about an axis of the robot arm, and the machining forearm is provided with a rotatable Spindle head.
  • the frame is a column;
  • the processing forearm includes a root portion and a body arm portion, and the main body arm portion has a flat rectangular shape with rounded corners, and the processing forearm is rearward and forward.
  • the direction width is constant and the thickness is gradually reduced.
  • the mechanical arm of the present invention can swing up and down, so that the workpiece can be first processed at a predetermined angle by one side of the blade at a predetermined angle. After the machining is completed, the mechanical arm is swung to another position to process the other side leaf surface, so that it is not necessary to flip the workpiece for repeated positioning, and there is no machining error caused by repeated positioning and no rounded corners on both sides of the foliar surface.
  • Continuous problems which can greatly save the auxiliary work hours caused by repeated installation and positioning. Increase the utilization rate of equipment, reduce the labor intensity of workers, and reduce the operational links that may lead to product quality problems.
  • the main arm portion of the processing forearm of the present invention has a constant width in the backward and forward direction, a decreasing thickness, and a flat rectangular shape which is gradually thinned, so that it can protrude into the overlapping portion of the adjacent blades and overlap.
  • Part of the foliar surface is machined to handle large thrust overall propellers with large angles of attack and back rake, which can complete the machining of all blades, hubs and all transition fillets in one setup.
  • Figure 1 is a perspective view of the overall propeller processing machine of the present invention.
  • FIG. 2 is a schematic view of a mechanical arm swinging mechanism in the overall propeller processing machine tool of the present invention.
  • 3 is a partial plan view of the machining forearm of the robot arm of the present invention.
  • Figure 4 is a schematic view showing the rotational connection of the machining forearm and the swinging rear arm of the present invention. detailed description
  • the present invention provides an integrated propeller processing machine tool, including:
  • the flat turntable 1 can be rectangular or circular for mounting the workpiece, and a plurality of parallel or radially distributed T-shaped clamping grooves 11 for clamping the end faces of the workpiece are arranged on the work surface of the flat turntable 1, and the flat turntable 1 Can rotate along a vertical axis;
  • the frame 2 preferably in the form of a column, is located on one side of the flat turntable 1 and is displaceable relative to the flat turntable 1; the frame 3 is in the form of a box and is slidably mounted on the upright;
  • the front end is provided with a fork-shaped milling head 42, and the rotatable spindle head 9 is rotatably provided on the fork-shaped milling head 42.
  • the frame 2 may be in the form of a gantry, a derrick frame, a butterfly frame or the like in addition to the column form.
  • the frame 3 mounted on the frame 2 is bulky, in particular for enabling the robot arm 4 to be in the frame 3
  • the frame 3 must have sufficient height, so the frame 2 is in the form of a column, which has considerable advantages.
  • the relative displacement of the column relative to the leveling table 1 is to achieve the desired relative motion between the tool and the workpiece on the spindle head 9.
  • there are various layout forms for relatively displacing the column and the turret 1 For example, one layout is to fix the column, and the turret 1 is placed on the cross slide to move the two horizontal directions. They are all concentrated on the flat table 1; the second layout is to fix the flat table 1 and the column is placed on the cross slide so that the two horizontal movements are concentrated on the column; the third layout is to make The turret 1 and the column are slidably mounted, and the two horizontal movements are respectively distributed on the turret 1 and the column.
  • the layout of the first two moving coordinate sets usually reduces the overall rigidity of the machine tool and makes it difficult to drive the center of gravity unless a costly dual drive structure is used.
  • the third mobile coordinate dispersion layout adopts the origin of the motion coordinate dispersion, which avoids the use of the full-motion column structure, improves the rigidity of the whole machine, and reduces the difficulty of installation and debugging of the device, and is a preferred layout mode of the present invention.
  • the specific structure is:
  • the flat turntable 1 is slidably disposed on the flat turntable bed 5, and the flat turntable 1 is preferably disposed on a sliding saddle 12, and the sliding saddle 12 is slidably disposed on the flat turning table bed 5 via the sliding saddle rails 13.
  • Two sliding saddle rails 13 may be disposed on the turret bed 5, and a plurality of mating saddle rolling blocks 14 are disposed at the lower portion of the saddle 12, and the turret 1 is driven along the saddle rail by, for example, a ball screw 15 driven by a motor. 13 slides in the horizontal left and right direction to form the X-axis coordinates.
  • the column of the frame 2 is slidably disposed on the column bed 6, and the frame 2 is slidably disposed on the column bed 6 through the column guide 61.
  • Two column rails 61 are arranged on the column bed 6, and two corresponding column rolling blocks 62 are arranged at the bottom of the column, and the column rails 61 on the column bed 6 are perpendicular to the sliding saddle rails 13 on the flat bed 5 to ensure
  • the direction in which the column is moved forward and backward is perpendicular to the direction of the left and right movement of the turret 1, and the column is driven by the motor, for example, by the ball screw 63 driven by the motor, and the column is slid in the horizontal front-rear direction along the column guide 61 to constitute the Y-axis coordinate.
  • the frame 3 is slidably disposed on the upright of the frame 2 through two frame rails 31 disposed in front of the column.
  • the corresponding frame rail 31 is provided with a frame rolling block 32, and the frame rails 31 on the column are flat.
  • the vertical axis of rotation of the turntable 1 is parallel, so that the frame rails 31 are perpendicular to the sliding saddle rails 13 on the flat table bed 5 and the pillar rails 61 on the upright bed 6, the ball balls driven by, for example, the motor 33
  • the lever 34 drives the frame 3 to slide in the vertical up and down direction along the frame rail 31 to constitute Z-axis coordinates, and the balance cylinder 36 can be provided to reduce the load on the motor 33 and the ball screw 34.
  • the robot arm 4 has three degrees of freedom of oscillation. As shown in FIGS. 1 and 2, the robot arm 4 is provided by a swinging rear arm 40 that is only engaged in swinging, cannot rotate about its own axis, and is rotatably coupled to the swinging rear arm 40 so as to be rotatable about the axis of the swinging rear arm 40.
  • a fork-shaped milling head 42 that processes the front end of the front arm 41 and two trunnions 43 that are disposed radially on opposite sides of the swinging rear arm 40 are formed.
  • Two corresponding bearing seats 35 are disposed in front of the frame 3, and the trunnion 43 is pivotally connected to the bearing housing 35 through the bearing member to constitute a swinging fulcrum of the robot arm 4. Since the axis of the trunnion 43 is parallel to the X-axis coordinate, the swing is The rear arm 40 swings up and down in the frame 3 about the axis of the trunnion 43 to constitute the A-axis coordinate of the present invention; in view of the fact that the blades of the propeller generally have a large angle of attack and a certain reclining angle, for the fork-shaped milling head 42 The cutter head can contact any position of the blade while avoiding interference between the machining front arm 41 and the non-machined portion of the blade, and the mechanical arm 4 must be able to swing up and down a large amplitude around the axis of the trunnion 43.
  • the swing angle of the up and down swing is plus or minus 30 degrees.
  • the machining forearm 41 of the robot arm 4 and the spindle head 9 at its front end constitute a double-pendulum angle milling head, wherein the machining of the forearm 41 of the robot arm 4 about the axis of the swinging rear arm 40 constitutes the B-axis coordinate of the machine tool of the present invention, in order to The continuous processing of the leading edge and the transitional corner of the edge is performed, and the machining forearm 41 of the robot arm 4 can rotate about 180 degrees around the axis of the swinging rear arm 40 of the robot arm 4; the fork milling head for machining the front end of the forearm 41
  • the spindle head 9 in 42 can be turned around the pivot axis of the fork milling head 42.
  • the pivot axis in the fork milling head 42 is parallel to the X axis when the B-axis angle of the machining forearm 41 is equal to zero, the spindle head 9
  • the swing constitutes the D-axis coordinate of the machine tool of the present invention, and the swing angle of the spindle head 9 ranges from 0 to 180 degrees.
  • the robot arm includes a total of three swing degrees of freedom of the A-axis, the B-axis, and the D-axis. It should be noted that although the A-axis rotation angle of the robot arm 4 swings up and down also participates in the linkage control, the swing angle A of the robot arm 4 is not determined by the posture of the tool, but is caused by the interference of the processing forearm 41 and the blade surface.
  • the degree of freedom of rotation that is actually used to achieve the desired tool attitude is the machining of the forearm 41 around the axis of the arm itself
  • the turret 1 can be rotated by plus or minus n X 360 degrees to form the C-axis coordinates of the machine tool of the present invention.
  • the seven-axis seven-linkage special machine tool having the four degrees of freedom of rotation, the four degrees of freedom of A, B, C, and D, and the seven degrees of freedom of the present invention are constructed.
  • the robot arm 4 can swing up and down around the A axis, and the blade surfaces on both sides of the blade can be processed in one clamping, which avoids the machining error caused by repeated positioning and the discontinuity of the fillet on both sides of the blade surface.
  • the problem is that the auxiliary work hours caused by repeated installation and positioning are greatly saved, the utilization rate of the equipment is improved, the labor intensity of the workers is reduced, and the operation steps which may cause product quality problems are reduced.
  • the robot arm 4 is swung in the frame 3 with two alternative drive means 7.
  • One of them is provided with a torque motor (not shown) on the two trunnions 43 of the swinging rear arm 40 of the swing arm 4, and the mechanical arm 4 is swung by the torque motor.
  • the other is a flat link mechanism that is driven by a servo motor and a ball screw.
  • the advantage of using the torque motor drive is that the control is relatively simple.
  • the disadvantages are large volume, high cost, insufficient driving force during rough machining, and high energy consumption during stalling.
  • the advantage of using a planar linkage mechanism and using a servo motor and a ball screw drive is Small size, light weight, large driving force and low energy consumption, but the shortcoming is that the control algorithm is relatively complicated. Since the robot arm 4 often oscillates continuously at a very low swing speed, it is easy to cause the torque motor to overheat due to excessive energy consumption. Therefore, the preferred solution is to use a planar link mechanism to drive, as
  • the driving device 7 is disposed on the frame 3, and includes: a ball screw 72 hinged to the rear end of the processing rear arm 40 through the lower hinge point 71, and a nut slewing mechanism fitted on the ball screw 72 73.
  • the nut slewing mechanism 73 is hinged to the upper portion of the frame 3 by an upper hinge point 76, wherein the transmission member 74 may be a belt such as The toothed belt has high reliability, and may also be a chain, a transmission gear, etc., and the nut of the nut rotating mechanism 73 can be rotated by the rotation of the servo motor 75 on the ball screw 72, and the nut rotates.
  • the length between the lower hinge points 76, 71 is changed, so that the swing angle of the swinging rear arm 40 can be changed.
  • the driving device 7 drives the swinging rear arm 40 according to the arrow
  • the F1 swings up and down
  • the swinging of the rear arm 40 up and down causes the machining front arm 41 to swing up and down by the arrow F2 to realize the A-axis rotation of the robot arm 4 according to the arrow F.
  • the machining forearm 41 of the robot arm 4 in order to realize the processing of the blade surface and the hub of the adjacent blade overlapping region, the machining forearm 41 of the robot arm 4 must be able to protrude into the overlapping portion of the blade, so the machining of the robot arm 4
  • the forearm should have a small thickness, and the space between the overlapping portions of adjacent blades, although relatively limited in the direction perpendicular to the blade surface, is relatively open along the direction of the chord.
  • the mechanical The machining forearm 41 of the arm 4 includes a root portion 411 and a body arm portion 412.
  • the machining forearm 41 is a variable-sectional structure of a flat rectangular shape which is gradually transitioned from the right circular section of the root portion to the main body arm portion 412 to the beginning of the fork milling head 42 in the longitudinal direction from the rear to the front.
  • the root portion 411 has a right circular cross section, so that the machining front arm 41 of the robot arm 4 can smoothly rotate about the axis of the swing rear arm 40; during the transition from the root portion 411 to the front end of the main body arm portion 412, the width W of the main body arm portion
  • the thickness H is gradually reduced, and the cross-section of the processing forearm 41 gradually evolves into a relatively flat flat rectangle with rounded corners, so that the mechanical arm 4 has good rigidity and can obtain good machining precision and processing efficiency. Therefore, while satisfying the rigidity of the machine tool, the requirement that the spindle head 9 can reach the overlapping portion of the blade is also satisfied.
  • the support structure can be realized by two layout forms: one is to extend the rear portion of the processing front arm 41 backward, and is inserted into the swinging rear arm 40 in a hollow cylindrical shape (not shown); the second is to swing the rear arm
  • the front end of the 40 extends forwardly into the hollow forged processing front arm 41 to provide a front fulcrum for the processing forearm 41, which simultaneously reduces the absolute overhang and overhang ratio of the machined forearm 41.
  • the overhanging degree of the processing forearm 41 is too large, and the dynamic and static rigidity of the processing forearm 41 are not very good. Therefore, the second layout form is preferred in the present invention, and the forearm 41 is processed in the phased arrangement.
  • a rear bearing 81 is disposed between the inner surface and the outer surface of the swinging rear arm 40 as a fulcrum of the rotation of the machining front arm 41.
  • the front end of the swinging rear arm 40 is provided with a reduced diameter extension 401, which is extended.
  • a front bearing 82 is provided at the portion 401 to provide another fulcrum for the machining front arm 41.
  • the distance between the rear bearing 81 and the front bearing 82 preferably accounts for two-thirds of the length of the machining forearm 41, that is, the swinging rear arm 40 is extended. Up to two-thirds of the length of the machining forearm 41, the machining of the forearm 41 has a small absolute overhang and a good dynamic and static rigidity.
  • a control box 8 is disposed on the outer periphery of the rear end of the machining front arm 41, and a worm gear pair 83 is disposed in the control box 8 in conjunction with the machining front arm 41.
  • the end of the extension portion 401 of the swing rear arm 40 is provided with a hollow circular grating 402.
  • the worm wheel pair 83 and the circular grating 40 collectively control the rotation angle of the machining forearm 41.
  • the control box 8 is swung with the swing of the robot arm 4, and the frame 3 is provided with an opening portion 37 for providing space for the control box 8 to oscillate to avoid motion interference, as shown in Fig. 1.

Description

整体螺旋桨加工机床 技术领域
本发明有关于螺旋桨加工机床, 特别有关于一种整体螺旋桨加工机床。 背景技术
船用螺旋桨是轮船、舰艇、潜艇和航母等水上运载工具的核心部件, 螺旋 桨的性能对推进效率、噪声和寿命有很大的影响。船用螺旋桨分为调距螺旋桨 和整体螺旋桨两大类型。其中调距螺旋桨的桨叶可在桨毂中转动, 改变桨叶的 攻角, 以适应不同的船速, 主要用于采用低速柴油机直接驱动的船舶; 对于传 动链中有变速装置的船舶, 整体螺旋桨通常能获得更好的效果。
整体螺旋桨的外形非常复杂, 需要加工的表面包括桨叶的压力面和吸力 面、桨毂、桨叶与桨毂之间的过渡圆角以及桨叶导边和随边的圆角。大推力的 整体螺旋桨的相邻桨叶之间可能还存在一定程度的重叠。
目前,整体螺旋桨通常是在类似五轴落地镗床或立式车铣复合加工中心形 式的六轴五联动或六轴六联动机床上加工,这类设备虽然可以较好地加工桨叶 的叶面,但在一次安装下通常只能加工桨叶的一侧叶面, 加工另一侧叶面时还 需要对工件翻转进行重新定位和安装,不仅费时费力,还会造成重复定位误差。 特别是螺旋桨叶片为薄壁部件, 刚性较弱,在安装时距离夹具较远的部分容易 因自身重力自然下垂, 因此在重新安装定位来加工叶片的另一侧叶面时, 叶片 两侧叶面的圆角将无法接续在一起, 加工桨叶前、 后缘的圆角和桨毂很困难, 局部表面只能采用手工披铲, 严重破坏桨叶的光顺性, 而这些不光顺的部位会 产生空泡, 空泡消失时向心爆炸产生冲击波, 会产生气蚀作用和噪声, 严重的 气蚀作用会破坏桨叶表面, 使桨叶表面的材料剥落, 螺旋桨报废。这种两侧叶 面圆角无法接续的不足,在加工具有较大攻角和一定后倾角的大推力整体螺旋 桨叶片两侧的叶面时, 表现更为突出。
另外, 这类设备的主轴头在加工叶面时无法避开与叶面的干涉问题, 因此 对于加工相邻桨叶重叠部分的叶面无能为力, 加工桨毂和桨叶前、后缘的圆角 也很困难, 局部表面只能采用手工披铲。 发明内容
本发明的目的是提供一种整体螺旋桨加工机床,能避免因工件翻转和重复 定位造成的加工误差和叶面两侧型面圆角的不连续性问题,大幅度节约因重复 安装和定位产生的辅助工时, 提高设备的利用率, 减轻工人的劳动强度, 减少 可能导致产品质量问题的操作环节。
本发明的目的还在于提供一种整体螺旋桨加工机床,能加工相邻桨叶重叠 部分的叶面, 能在一次装夹下能完成全部桨叶、桨毂及全部过渡圆角表面的加 工。
本发明提供的一种整体螺旋桨加工机床, 包括:
平转台, 能沿竖直轴线回转;
机架, 位于所述平转台的一侧, 且能相对所述平转台位移;
框架, 上下滑动地设在所述机架上; 及
机械臂, 设在所述框架上, 且能在所述框架中上下摆动, 在所述机械臂上 设有能绕机械臂自身轴线转动的加工前臂,在所述加工前臂上设有可转动的主 轴头。
优选方案中, 所述机架为一立柱; 所述加工前臂包括根部和主体臂部, 所 述主体臂部的横截面呈带有圆角的扁平矩形,所述加工前臂依由后向前的方向 宽度不变、 厚度渐小。
根据上述方案, 本发明相对于现有技术的效果是显著的: 本发明的机械臂 能上下摆动,因此可使工件在一次装夹下先使主轴头以预定的角度加工叶片的 一侧叶面, 加工完成后再使机械臂摆动至另一位置来加工另一侧叶面, 因此不 必翻转工件进行重复定位,也就不存在重复定位所造成的加工误差和叶面两侧 型面圆角不连续的问题, 可大幅度节约因重复安装和定位产生的辅助工时,提 高了设备的利用率,减轻工人的劳动强度,减少可能导致产品质量问题的操作 环节。
进一歩, 本发明的加工前臂的主体臂部依由后向前的方向宽度不变、厚度 渐小,截面呈逐渐变薄的扁平矩形, 因此能够伸入到相邻叶片的重叠部分中对 重叠部分的叶面进行加工,能胜任于加工例如具有较大攻角和后倾角的大推力 整体螺旋桨, 可在一次装夹下能完成全部桨叶、桨毂及全部过渡圆角表面的加 工。 附图说明
图 1 为本发明的整体螺旋桨加工机床的立体图。
图 2 为本发明的整体螺旋桨加工机床中的机械臂摆动机构的示意图。 图 3 为本发明机械臂的加工前臂的局部俯视图。
图 4 为本发明加工前臂与摆动后臂转动连接的示意图。 具体实施方式
如图 1所示, 本发明提供一种整体螺旋桨加工机床, 包括:
平转台 1, 可呈矩形或圆形, 用于安装工件, 在平转台 1的工作台面上设 有多个平行或放射形分布的用于夹持工件端面的 T型夹槽 11, 平转台 1能沿 竖直轴线回转;
机架 2,优选呈立柱形式,其位于平转台 1的一侧, 能相对平转台 1位移; 框架 3, 呈箱体形式, 上下滑动地设在立柱上; 及
机械臂 4, 设在框架 3上, 沿前后方向穿过框架 3, 能在框架 3中上下摆 动, 在机械臂 4上设有能绕机械臂 4 自身轴线转动的加工前臂 41, 在加工前 臂 41的前端设有叉形铣头 42, 可转动的主轴头 9转动地设在叉形铣头 42上。
在本发明中,机架 2除立柱形式,还可为龙门架、井字架、蝶型架等形式。 考虑到机架 2上安装的框架 3的体积较大, 特别是为使机械臂 4能在框架 3 中有足够的摆动空间,框架 3必须具有足够的高度,因此机架 2采用立柱形式, 会具有相当的优势。
在本发明中, 立柱能相对平转台 1 发生相对位移, 是为了实现主轴头 9 上的刀具与工件之间所需的相对运动。可以想到的, 能使立柱与平转台 1发生 相对位移的布局形式可有多种: 例如一种布局方式是使立柱固定安装, 平转台 1设置在十字滑台上, 使两个水平方向的移动都集中在平转台 1上; 第二种布 局是使平转台 1固定安置, 而将立柱设置在十字滑台上, 使两个水平方向的移 动都集中在立柱上; 第三种布局方式是使平转台 1和立柱均滑动安装, 将两个 水平方向的移动分别分布在平转台 1和立柱上。其中前两种移动坐标集中的布 局方式, 通常会降低机床的整体刚性, 也难以实现重心驱动, 除非采用造价昂 贵的双驱动结构。而第三种移动坐标分散的布局方式采用了运动坐标分散的原 点, 可避免采用全动柱结构, 提高了整机的刚性, 也降低了设备安装调试的难 度, 是本发明优选的布局方式, 具体结构是:
平转台 1滑动地设在平转台床身 5上,优选使平转台 1设在一滑鞍 12上, 滑鞍 12通过滑鞍导轨 13滑动地设在平转台床身 5上。可在平转台床身 5上设 置两根滑鞍导轨 13, 在滑鞍 12下部设置多个配合的滑鞍滚动块 14,通过例如 由电机驱动的滚珠丝杠 15带动平转台 1沿滑鞍导轨 13在水平的左右方向上滑 动, 构成 X轴坐标。
机架 2的立柱滑动地设在立柱床身 6上, 机架 2通过立柱导轨 61滑动地 设在立柱床身 6上。 在立柱床身 6上设置两根立柱导轨 61, 在立柱底部设置 两个对应的立柱滚动块 62, 立柱床身 6上的立柱导轨 61与平转台床身 5上的 滑鞍导轨 13垂直, 保证立柱前后移动方向与平转台 1的左右移动方向相互垂 直,通过例如由电机驱动的滚珠丝杠 63带动立柱沿立柱导轨 61在水平的前后 方向上滑动, 构成 Y轴坐标。
框架 3通过设在立柱前面的两根框架导轨 31滑动地设在机架 2的立柱上, 在框架 3上对应框架导轨 31设有框架滚动块 32, 立柱上的框架导轨 31与平 转台 1的竖直回转轴线是平行的, 因此框架导轨 31与平转台床身 5上的滑鞍 导轨 13和立柱床身 6上的立柱导轨 61都是垂直的, 通过例如电机 33驱动的 滚珠丝杠 34带动框架 3沿框架导轨 31在竖直的上下方向上滑动,构成 Z轴坐 标, 可设置平衡油缸 36, 以减轻电机 33和滚珠丝杠 34的负荷。
本发明中最明显的特色是机械臂 4具有三个摆动自由度。如图 1、 2所示, 机械臂 4 由仅参与摆动、 不能围绕自身轴线转动的摆动后臂 40、 与摆动后臂 40转动连接从而可绕摆动后臂 40的轴线转动的加工前臂 41、设置在加工前臂 41前端的叉形铣头 42、以及设置在摆动后臂 40的对向两侧的径向分布的两个 耳轴 43构成。 在框架 3的前面设置有两个对应的轴承座 35, 耳轴 43通过轴 承元件枢接于轴承座 35内构成机械臂 4的摆动支点, 由于耳轴 43的轴线与 X 轴坐标平行, 其中摆动后臂 40围绕耳轴 43的轴线在框架 3中上下摆动, 构成 本发明的 A轴坐标; 考虑到螺旋桨的叶片通常具有较大的攻角和一定的后倾 角, 为使叉形铣头 42上的刀盘能够接触到叶片的任何位置, 同时又避免加工 前臂 41与叶片非加工部位的干涉,机械臂 4必须能够实现围绕耳轴 43的轴线 作较大幅度的上下摆动, 本发明中机械臂 24 上下摆动的摆角范围为正负 30 度。 机械臂 4的加工前臂 41和其前端的主轴头 9构成了双摆角铣头, 其中机 械臂 4的加工前臂 41绕摆动后臂 40的轴线转动构成了本发明机床的 B轴坐标, 为了能够对导边和随边的过渡圆角进行连续加工, 机械臂 4的加工前臂 41能 够绕机械臂 4的摆动后臂 40的轴线作正负 180度的转动;加工前臂 41前端的 叉形铣头 42中的主轴头 9可以围绕叉形铣头 42的摆动轴线进行翻转,该叉形 铣头 42中的摆动轴线在加工前臂 41的 B轴转角等于 0的时候与 X轴平行,主 轴头 9的摆动构成了本发明机床的 D轴坐标, 主轴头 9的摆动角度范围为 0〜 180度。 这样, 机械臂共包括 A轴、 B轴、 D轴三个摆动自由度。 应该指出, 机械臂 4上下摆动的 A轴回转角度虽然也参与联动控制, 但机械臂 4的摆角 A 并不是由刀具的姿态来确定的, 而是由避让加工前臂 41与叶面的干涉来确定 的, 真正用于实现所需刀具姿态的回转自由度是加工前臂 41绕机械臂自身轴 线的 B轴回转角度和主轴头 42在叉形铣头 43中摆动的 D轴回转角度这两个摆 动自由度。
平转台 1可作正负 n X 360度的回转, 构成本发明机床的 C轴坐标。
这样, 构成了本发明具有 X、 Y、 Ζ 三个方向的平动自由度, A、 B、 C、 D 四个回转自由度, 共 7个自由度的七轴七联动专用机床。在加工过程中, 机械 臂 4能绕 A轴上下摆动, 能在一次装夹下加工叶片的两侧叶面, 可避免重复定 位所造成的加工误差和叶面两侧型面圆角不连续的问题,大幅度节约因重复安 装和定位产生的辅助工时, 提高了设备的利用率, 减轻工人的劳动强度, 减少 可能导致产品质量问题的操作环节。
使机械臂 4在框架 3中摆动有两种可选择的驱动装置 7。其中一种是在摆 动臂 4的摆动后臂 40的两个耳轴 43上分别设置一台力矩电机(图中未示出), 由力矩电机带动机械臂 4摆动。另一种是采用平面连杆机构, 利用伺服电机和 滚珠丝杠来驱动。 采用力矩电机驱动的优点是控制比较简单, 缺点是体积大、 造价高、 粗加工时驱动力不足、 堵转时能耗高; 采用平面连杆机构, 利用伺服 电机和滚珠丝杠驱动的优点是体积小、 重量轻、 驱动力大、 能耗低, 但不足点 是控制算法相对比较复杂。由于机械臂 4经常在极低的摆动速度下作连续的摆 动, 容易使力矩电机因为过大的能耗导致过热, 故优选的方案是采用平面连杆 机构来驱动, 详述如下:
如图 2所示, 驱动装置 7设在框架 3上, 其包括: 通过下铰接点 71与加 工后臂 40的后端相铰接的滚珠丝杠 72、 配合在滚珠丝杠 72上的螺母回转机 构 73、驱动螺母回转机构 73中的螺母转动的传动件 74以及驱动传动件 74转 动的伺服电机 75, 螺母回转机构 73通过上铰接点 76铰接在框架 3的上部, 其中传动件 74可以是皮带例如齿形皮带, 具有较高的可靠性, 也可以是链条、 传动齿轮等等,能由伺服电机 75的转动带动螺母回转机构 73的螺母在滚珠丝 杠 72上转动即可, 随螺母转动, 上、 下铰接点 76、 71之间的长度发生改变, 从而可以改变摆动后臂 40的摆角。这样由驱动装置 7带动摆动后臂 40依箭头 Fl上下摆动, 而摆动后臂 40上下摆动又会带动加工前臂 41依箭头 F2上下摆 动, 实现机械臂 4依箭头 F的 A轴回转度。
如图 2、 3所示, 为了实现相邻叶片重叠区域的叶面和桨毂的加工, 机械 臂 4的加工前臂 41必须要能够伸入到叶片的重叠部分中去, 因此机械臂 4的 加工前臂应该有较小的厚度,相邻叶片重叠部分之间的空间尽管在垂直于叶面 方向比较有限, 沿着叶弦方向还是比较开敞的, 根据叉形铣头 42机械结构的 需要, 机械臂 4的加工前臂 41包括根部 411和主体臂部 412。 该加工前臂 41 沿由后向前的长度方向,为由根部的正圆形截面逐渐过渡到主体臂部 412至叉 形铣头 42起始处的扁平矩形的变截面结构。 根部 411的截面为正圆形, 能够 使机械臂 4的加工前臂 41顺利地绕摆动后臂 40的轴线转动;由根部 411向主 体臂部 412 的前端过渡的过程中, 主体臂部的宽度 W始终保持不变, 厚度 H 逐渐减小,加工前臂 41的断面截形逐渐演变为带圆角的比较扁平的扁平矩形, 使机械臂 4具有很好的刚性, 能获得良好的加工精度和加工效率, 从而在满足 机床刚性的同时, 也满足了主轴头 9能够到达叶片重叠部分的要求。
如图 4所示, 由于加工前臂 41的主体臂部 412的截面不是圆形, 整个加 工前臂 41都要参与绕摆动后臂 40轴线的转动, 否则加工前臂 41的主体臂部 412无法进入两相邻叶片之间倾斜的空间。 考虑到加工前臂 41 的长度很大, 其转动支承不宜采用通常双摆角铣头中的转动支承结构,而必须采用类似车床 主轴的支承结构形式。上述支承结构可以通过两种布局形式来实现: 其一是将 加工前臂 41的后部向后延伸, 插入呈空心筒状的摆动后臂 40中 (未图示); 其二是将摆动后臂 40的前端向前延伸, 插入至呈空心筒状的加工前臂 41内, 为加工前臂 41提供一个前支点,可同时减小加工前臂 41的绝对悬伸长度和悬 伸比。上述第一种布局形式中加工前臂 41的悬伸长度过大,加工前臂 41的动、 静态刚性都不会很好, 故本发明优先选择第二种布局形式,在相套置的加工前 臂 41的内表面和摆动后臂 40的外表面之间设有后轴承 81, 作为加工前臂 41 转动的一个支点, 在摆动后臂 40的前端设有直径缩小的延伸部 401, 在延伸 部 401处设有前轴承 82, 为加工前臂 41提供另一个支点, 后轴承 81和前轴 承 82之间的距离优选占加工前臂 41 的三分之二的长度, 也就是说摆动后臂 40伸入至加工前臂 41长度的三分之二处, 加工前臂 41的绝对悬伸长度小, 动、 静态刚性良好。 在加工前臂 41的后端外围设有控制箱 8, 在控制箱 8内 设有与加工前臂 41连动的蜗轮副 83, 摆动后臂 40的延伸部 401的端部设置 有中空圆光栅 402, 作为加工前臂 41的 B回转度转角的闭环控制反馈元件, 由蜗轮副 83及圆光栅 40共同控制加工前臂 41的转动角度。 控制箱 8会随机 械臂 4的摆动而摆动, 在框架 3上设有为控制箱 8摆动提供空间的开口部 37, 以避免发生动作干涉, 如图 1所示。 但以上所述, 仅为本发明的具体实施方式, 当不能以此限定本发明实施的 范围, 凡依本发明的发明内容所作的等同变化与修饰, 即任何他人将机械臂设 计成能上下摆动, 均应属于本发明的保护范围。

Claims

权 利 要 求 书
1. 一种整体螺旋桨加工机床, 其特征在于, 包括:
平转台, 能沿竖直轴线回转;
机架, 位于所述平转台的一侧, 且能相对所述平转台位移;
框架, 上下滑动地设在所述机架上; 及
机械臂, 设在所述框架上, 且能在所述框架中上下摆动, 在所述机械臂上 设有能绕机械臂自身轴线转动的加工前臂,在所述加工前臂上设有可转动的主 轴头。
2. 根据权利要求 1所述的整体螺旋桨加工机床, 其特征在于, 所述平转 台滑动地设在平转台床身上,所述机架为立柱,所述立柱滑动地设在立柱床身 上, 所述平转台和所述立柱均沿水平方向滑动且二者的滑动方向垂直。
3. 根据权利要求 2所述的整体螺旋桨加工机床, 其特征在于, 所述平转 台设在一滑鞍上, 所述滑鞍通过滑鞍导轨滑动地设在所述平转台床身上; 所述 立柱通过立柱导轨滑动地设在所述立柱床身上; 所述滑鞍导轨和立柱导轨垂 直。
4. 根据权利要求 3所述的整体螺旋桨加工机床, 其特征在于, 所述框架 包括箱体, 所述箱体通过框架导轨滑动地设在所述立柱上,所述框架导轨垂直 于所述滑鞍导轨和立柱导轨。
5. 根据权利要求 1所述的整体螺旋桨加工机床, 其特征在于, 所述加工 前臂的前端设有叉形铣头, 所述主轴头转动地设在所述叉形铣头上。
6. 根据权利要求 1所述的整体螺旋桨加工机床, 其特征在于, 所述机械 臂上下摆动的角度范围为正负 30度;所述加工前臂的转动角度范围为正负 180 度; 所述平转台的回转角度范围为正负 n X 360度; 所述主轴头的摆动角度范 围为 0〜180度。
7. 根据权利要求 1所述的整体螺旋桨加工机床, 其特征在于, 所述机械 臂还包括与所述加工前臂转动连接的摆动后臂,所述机械臂沿前后方向穿过所 述框架,在所述框架上设有一驱动装置, 由所述驱动装置带动摆动后臂上下摆 动, 而摆动后臂上下摆动带动加工前臂上下摆动。
8. 根据权利要求 7所述的整体螺旋桨加工机床, 其特征在于, 在所述摆 动后臂的对向两侧分别设有一个径向延伸的耳轴,在所述框体的前面对应所述 两个耳轴设置两个轴承座,所述摆动后臂的两个耳轴通过轴承枢接在所述两个 轴承座内。
9. 根据权利要求 7所述的整体螺旋桨加工机床, 其特征在于, 所述驱动 装置包括: 通过下铰接点与加工后臂的后端相铰接的丝杠、配合在丝杠上的螺 母回转机构、驱动所述螺母回转机构转动的传动件以及驱动所述传动件转动的 电机, 所述螺母回转机构通过上铰接点铰接在框架的上部, 通过改变上、 下铰 接点之间的长度来改变摆动后臂的摆角。
10. 根据权利要求 7所述的整体螺旋桨加工机床, 其特征在于, 所述加工 前臂呈空心筒状, 所述摆动后臂伸入至所述加工前臂的内部,在相套置的所述 加工前臂的内表面和摆动后臂的外表面之间设有两个相隔一定距离的后轴承 和前承轴。
11. 根据权利要求 10所述的整体螺旋桨加工机床, 其特征在于, 所述摆 动后臂的前端设有直径缩小的延伸部, 所述后轴承设在加工前臂的后端, 前轴 承设在所述延伸部的位置,后轴承和前轴承之间相隔的距离占加工前臂的三分 之二的长度。
12. 根据权利要求 11所述的整体螺旋桨加工机床, 其特征在于, 在所述 加工前臂的外围设有控制箱, 在所述控制箱内设有与加工前臂连动的蜗轮副, 在所述延伸部的前端设有圆光栅,由所述蜗轮副及所述圆光栅控制加工前臂的 转动角度。
13. 根据权利要求 1所述的整体螺旋桨加工机床, 其特征在于, 所述加工 前臂包括根部和主体臂部,所述主体臂部的横截面呈带有圆角的扁平矩形,所 述加工前臂依由后向前的方向宽度不变、 厚度渐小。
14. 根据权利要求 13所述的整体螺旋桨加工机床, 其特征在于, 所述根 部的横截面呈圆形,由根部的圆形截面逐渐过渡到主体臂部的带有圆角的扁平 矩形截面。
PCT/CN2010/073424 2010-06-01 2010-06-01 整体螺旋桨加工机床 WO2011150550A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/073424 WO2011150550A1 (zh) 2010-06-01 2010-06-01 整体螺旋桨加工机床
CN201080014446.XA CN102405118B (zh) 2010-06-01 2010-06-01 整体螺旋桨加工机床

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/073424 WO2011150550A1 (zh) 2010-06-01 2010-06-01 整体螺旋桨加工机床

Publications (1)

Publication Number Publication Date
WO2011150550A1 true WO2011150550A1 (zh) 2011-12-08

Family

ID=45066110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073424 WO2011150550A1 (zh) 2010-06-01 2010-06-01 整体螺旋桨加工机床

Country Status (2)

Country Link
CN (1) CN102405118B (zh)
WO (1) WO2011150550A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102990370A (zh) * 2012-12-19 2013-03-27 南通第五机床有限公司 一种钻床用双工位翻转工作台
CN103506919A (zh) * 2013-09-26 2014-01-15 陕西理工学院 恒定抛光力的涡轮叶片抛光装置
CN107520630A (zh) * 2017-08-31 2017-12-29 江苏科技大学 卧式螺旋桨五轴联动数控加工机床及加工方法
CN108480728A (zh) * 2018-05-18 2018-09-04 东莞市固达机械制造有限公司 一种全自动数控铰耳机

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104191245B (zh) * 2014-08-24 2016-05-18 吉林大学 大型钢结构机器人自动上料焊接磨抛检测系统
CN104384585B (zh) * 2014-09-03 2017-05-03 江苏科技大学 一种用于加工螺旋桨的机床
CN105312983B (zh) * 2014-12-05 2018-07-27 电子科技大学 整体螺旋桨智能磨削加工系统
CN105081437B (zh) * 2015-09-07 2017-09-22 燕山大学 行星齿轮传动式a/c双摆角铣头
CN108393990A (zh) * 2017-02-07 2018-08-14 张聪捷 仿手刮木板的xyz轴浮动位移切削结构
TWI651151B (zh) * 2017-02-24 2019-02-21 陳庭翊 加工機軌道結構
CN109454462A (zh) * 2018-11-19 2019-03-12 重庆大学 一种船用定桨数控铣磨复合机床
CN111958354B (zh) * 2020-08-13 2022-04-19 佛山市耀凯五金机械设备有限公司 一种矩形工件用多面打磨加工装置
CN113146371A (zh) * 2021-03-31 2021-07-23 上海诺倬力机电科技有限公司 冰刀磨床的光栅系统和冰刀磨床
CN114473573A (zh) * 2022-02-28 2022-05-13 武汉志华台禾铝模科技有限公司 一种高精度立式铣槽机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU421437A1 (ru) * 1972-04-13 1974-03-30 Ленинградское специальное конструкторское бюро желых , уникальных станков Фрезерный станок для обработки гребных винтов
SU610618A1 (ru) * 1975-02-14 1978-06-15 Ленинградское Специальное Конструкторское Бюро Тяжелых И Уникальных Станков Станок дл обработки гребных винтов
CN101623821A (zh) * 2009-03-28 2010-01-13 广州市敏嘉制造技术有限公司 六轴五联动螺旋桨加工中心
CN101664897A (zh) * 2009-09-11 2010-03-10 重庆三磨海达磨床有限公司 螺旋桨叶片砂带磨床

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU421437A1 (ru) * 1972-04-13 1974-03-30 Ленинградское специальное конструкторское бюро желых , уникальных станков Фрезерный станок для обработки гребных винтов
SU610618A1 (ru) * 1975-02-14 1978-06-15 Ленинградское Специальное Конструкторское Бюро Тяжелых И Уникальных Станков Станок дл обработки гребных винтов
CN101623821A (zh) * 2009-03-28 2010-01-13 广州市敏嘉制造技术有限公司 六轴五联动螺旋桨加工中心
CN101664897A (zh) * 2009-09-11 2010-03-10 重庆三磨海达磨床有限公司 螺旋桨叶片砂带磨床

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102990370A (zh) * 2012-12-19 2013-03-27 南通第五机床有限公司 一种钻床用双工位翻转工作台
CN103506919A (zh) * 2013-09-26 2014-01-15 陕西理工学院 恒定抛光力的涡轮叶片抛光装置
CN103506919B (zh) * 2013-09-26 2016-05-04 陕西理工学院 恒定抛光力的涡轮叶片抛光装置
CN107520630A (zh) * 2017-08-31 2017-12-29 江苏科技大学 卧式螺旋桨五轴联动数控加工机床及加工方法
CN108480728A (zh) * 2018-05-18 2018-09-04 东莞市固达机械制造有限公司 一种全自动数控铰耳机
CN108480728B (zh) * 2018-05-18 2020-01-17 东莞市固达机械制造有限公司 一种全自动数控铰耳机

Also Published As

Publication number Publication date
CN102405118B (zh) 2013-08-07
CN102405118A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
WO2011150550A1 (zh) 整体螺旋桨加工机床
EP4086034A1 (en) Multi-degree-of-freedom numerical control turntable
CN108237426B (zh) 一种自动上下料轻型五轴设备
JPWO2007148620A1 (ja) 可動部旋回可能な工作機械
WO2021135758A1 (zh) 多轴转台
CN111037295A (zh) 一种车铣复合加工中心
KR101207727B1 (ko) 공작 기계
US7261502B2 (en) Numeric/control machine
JP2004034168A (ja) 門形工作機械
JPH0276689A (ja) 産業用ロボット
JPH0788737A (ja) 5軸加工機
CN110480762B (zh) 一种模组式三自由度加工机器人
WO2023226438A1 (zh) 大型回转类球面薄壁件镜像铣加工装备及方法
JP5891087B2 (ja) 工具位置測定装置およびそれを備えた加工装置
US5893691A (en) Machine tool
CN110722405A (zh) 一种螺旋桨加工专用机床及其加工叶根与桨毂的方法
CN211728296U (zh) 多轴转台
CN214641480U (zh) 一种机械中悬悬架机器人焊接变位机
CN107175513B (zh) 机床的倾斜装置
CN210335258U (zh) 一种多轴联动数控加工中心
CN211728297U (zh) 多自由度数控转台
CN2338125Y (zh) 悬臂仿形自动切割机
CN211939899U (zh) 一种新型夹紧装置
CN208759107U (zh) 一种汽车差速器壳体配件加工定位工装结构
CN212241066U (zh) 一种高刚性五轴机器人

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014446.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852349

Country of ref document: EP

Kind code of ref document: A1