WO2011148820A1 - 無線通信装置および無線通信方法 - Google Patents

無線通信装置および無線通信方法 Download PDF

Info

Publication number
WO2011148820A1
WO2011148820A1 PCT/JP2011/061254 JP2011061254W WO2011148820A1 WO 2011148820 A1 WO2011148820 A1 WO 2011148820A1 JP 2011061254 W JP2011061254 W JP 2011061254W WO 2011148820 A1 WO2011148820 A1 WO 2011148820A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
resource block
mtc
reference signal
transmission area
Prior art date
Application number
PCT/JP2011/061254
Other languages
English (en)
French (fr)
Inventor
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to BR112012029460A priority Critical patent/BR112012029460A2/pt
Priority to RU2012149195/07A priority patent/RU2572096C2/ru
Priority to US13/641,633 priority patent/US9301255B2/en
Priority to CN201180024314.XA priority patent/CN102907149B/zh
Priority to KR1020127029835A priority patent/KR20130093503A/ko
Priority to EP11786519.6A priority patent/EP2579656A4/en
Publication of WO2011148820A1 publication Critical patent/WO2011148820A1/ja
Priority to US15/055,309 priority patent/US9629086B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a wireless communication device and a wireless communication method.
  • eNodeB macrocell base station
  • HeNodeB Home eNodeB, femtocell base station, mobile phone small base station
  • RHH remote radio head
  • the user terminal synchronizes the frame with the base station based on a synchronization signal transmitted from the base station, and then the oscillator inside the user terminal is connected to the oscillator of the base station with high accuracy. Synchronize. And a user terminal receives the signal transmitted from a base station periodically, and makes the oscillator of the base station of the oscillator inside a user terminal track.
  • each user terminal performs time adjustment according to the distance between the base station and the user terminal, which is called Timing Advance. Do. Specifically, Timing Advance is performed during a random access procedure in which a user terminal transmits a preamble toward a random access window. The Timing Advance value can be obtained from the relationship between the arrival time of the preamble at the base station and the random access window.
  • MTC Machine Type Communications
  • the MTC terminal has characteristics such as Time Controlled, Online Small Data Transmissions, and the like. That is, the MTC terminal is expected to spend a lot of time in the idle mode and receive signals from the base station in bursts or transmit a small amount of information to the base station. Also, since MTC terminals are required to have low power consumption, it is desirable to shorten the burst transmission / reception time as much as possible. Further, this bursty transmission / reception is considered to be performed in a very long cycle of once per several hours or once every few days, not in the order of several ms or several tens of ms when the current LTE terminal receives the paging channel. It is done.
  • the present disclosure is to propose a new and improved wireless communication apparatus and wireless communication method capable of reducing power consumption and suppressing a decrease in communication accuracy.
  • a non-transmission area set at a boundary in the time direction or frequency direction with an adjacent resource block there is provided a wireless communication apparatus including a wireless communication unit that does not perform transmission but performs transmission in another area in the resource block.
  • the wireless communication apparatus may further include a control unit that sets the non-transmission area in the resource block.
  • the control unit sets the non-transmission area on the boundary with at least one of the adjacent resource blocks on the time axis and the adjacent resource block on the upper or lower side on the frequency axis. It may be set.
  • the control unit may set the non-transmission area wider in the resource block as the elapsed time from the synchronization process with the communication partner is longer.
  • the radio communication unit may make the length of the guard interval part for the data part in each Ofdm symbol constituting the resource block longer than the length defined by LTE.
  • the wireless communication unit may make the guard interval part in each Ofdm symbol longer than the data part.
  • the wireless communication unit may use a plurality of Ofdm symbol transmission areas as one guard interval part and one data part.
  • the wireless communication unit may make the guard interval part longer than the data part.
  • resource blocks allocated from a plurality of resource blocks arranged in a grid pattern on the time axis and the frequency axis there is nothing set at the boundary in the time direction or the frequency direction with an adjacent resource block.
  • a wireless communication method in which transmission is not performed in a transmission area but transmission is performed in another area in the resource block.
  • the radio communication unit includes a radio communication unit that transmits a radio signal in a resource block allocated from a plurality of resource blocks arranged in a grid on the time axis and the frequency axis, and the radio communication unit includes the radio communication unit,
  • a radio communication apparatus is provided that transmits a reference signal at the head of the resource block at a frequency used for transmitting a reference signal in the resource block, and transmits another radio signal after transmitting the reference signal.
  • the wireless communication unit may transmit a reference signal at all frequencies used for transmission in the resource block.
  • the resource block is allocated from a plurality of resource blocks arranged in a lattice pattern on the time axis and the frequency axis, and the frequency used for transmitting the reference signal in the resource block,
  • a wireless communication method including transmitting a reference signal at the head of a resource block and transmitting another wireless signal after transmitting the reference signal.
  • the wireless communication device and the wireless communication method according to the present disclosure it is possible to suppress a decrease in communication accuracy while reducing power consumption.
  • 6 is an explanatory diagram illustrating an arrangement example of reference signals according to an embodiment of the present disclosure. It is explanatory drawing which showed an example of the guard interval. It is explanatory drawing which showed an example of the guard interval. It is explanatory drawing which showed an example of the guard interval. 5 is a flowchart illustrating an operation of an eNodeB according to an embodiment of the present disclosure. It is explanatory drawing which showed the structure of the MTC terminal by embodiment of this indication.
  • a plurality of constituent elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numeral.
  • a plurality of configurations having substantially the same functional configuration are distinguished as necessary as MTC terminals 20A, 20B, and 20C.
  • MTC terminals 20A, 20B, and 20C are simply referred to as the MTC terminal 20.
  • FIG. 1 is an explanatory diagram showing a configuration example of the wireless communication system 1.
  • the radio communication system 1 includes an eNodeB 10, a core management network including an MME (Mobility Management Entity) 12, an S-GW (Serving Gateway) 14, and a PDN (Packet Data Network) -GW 16, and an MTC.
  • the terminal 20 and the MTC server 30 are provided.
  • the embodiment of the present disclosure can be applied to wireless communication apparatuses such as the eNodeB 10 and the MTC terminal 20 illustrated in FIG.
  • the eNodeB 10 and the MTC terminal 20 are only examples of wireless communication devices, and the embodiments of the present disclosure can be applied to various other wireless communication devices.
  • Examples of other wireless communication devices include a user terminal (UE: User Equipment), a relay node that relays communication between the user terminal (MTC terminal 20) and the eNodeB 10, and a Home eNodeB that is a small home base station. .
  • the eNodeB 10 is a radio base station that communicates with the MTC terminal 20. Although only one eNodeB 10 is shown in FIG. 1, a large number of eNodeBs are actually connected to the core network. Moreover, although description is abbreviate
  • the MME 12 is a device that controls the setting, release, and handover of a data communication session.
  • the MME 12 is connected to the eNodeB 10 via an interface called X2.
  • the S-GW 14 is a device that performs routing and transfer of user data.
  • the PDN-GW 16 functions as a connection point with the IP service network, and transfers user data to and from the IP service network.
  • the MTC terminal 20 is a terminal specialized for an application for MTC being studied in 3GPP, and performs radio communication with the eNodeB 10 according to the application. Further, the MTC terminal 20 performs bidirectional communication with the MTC server 30 via the core network. The user executes a predetermined application by accessing the MTC server 30. The user basically does not access the MTC terminal 20 directly.
  • the MTC terminal 20 will be described in detail in “1-4. MTC terminal”.
  • FIG. 2 is an explanatory diagram showing a 4G frame format.
  • a 10 ms radio frame is composed of ten 1 ms subframes # 0 to # 9.
  • Each subframe of 1 ms is composed of two 0.5 ms slots.
  • each 0.5 ms slot is composed of 7 Ofdm symbols.
  • a synchronization signal used for frame synchronization by the user terminal is transmitted using the Ofdm symbol shaded in FIG. More specifically, the secondary synchronization signal is used for the fifth Ofdm symbol of subframe # 0, the primary synchronization signal is used for the sixth Ofdm symbol of subframe # 0, the secondary synchronization signal is used for the fifth Ofdm symbol of subframe # 5, and the fifth synchronization symbol of subframe # 5 is used. In 6Ofdm symbols, a primary synchronization signal is transmitted.
  • the user terminal acquires a 5 ms period using the primary synchronization signal and simultaneously detects a cell number group corresponding to the current location from the three cell number groups. Thereafter, the user terminal acquires a radio frame period (10 ms period) using the secondary synchronization signal.
  • a ZadoffChu sequence is used as the code sequence of the synchronization signal. Since 168 types of encoded sequences are used for the cell numbers in the cell number group and two types of encoded sequences are used to obtain a radio frame period, 336 types of encoded sequences are prepared. Based on the combination of the secondary synchronization signal transmitted in subframe # 0 and the secondary synchronization signal transmitted in subframe # 5, the user terminal determines whether the received subframe is subframe # 0 or subframe # 5 Can be judged.
  • the user terminal After performing the frame synchronization as described above, the user terminal synchronizes the oscillator inside the user terminal with the oscillator of the eNodeB 10 with high accuracy. And a user terminal receives the signal transmitted from a base station periodically, and makes the oscillator of the base station of the oscillator inside a user terminal track. If there is a difference between the oscillator inside the user terminal and the oscillator of the base station, it becomes impossible to receive and transmit at an accurate frequency and time. Therefore, the accuracy of the oscillator inside the user terminal is important.
  • Timing Advance The 4G user terminal performs time adjustment according to the distance between the eNodeB 10 and the user terminal, called Timing Advance, so that the radio signals transmitted from the plurality of user terminals are simultaneously received by the eNodeB 10. Specifically, Timing Advance is performed during a random access procedure in which a user terminal transmits a preamble toward a random access window. The Timing Advance value can be acquired from the relationship between the arrival time of the preamble to the eNodeB 10 and the random access window.
  • the MTC terminal 20 performs the same Timing Advance as that of the user terminal and acquires the Timing Advance value.
  • the MTC terminal 20 is a terminal specialized for an application for MTC which is being studied in 3GPP.
  • An example of an application for MTC is shown below.
  • the MTC terminal 20 may be an electrocardiogram measuring device corresponding to the above “4. Health”.
  • the MTC server 30 requests the report of the electrocardiogram measurement result from the MTC terminal 20, and the measurement result of the electrocardiogram is received from the MTC terminal 20. Reported to the MTC server 30.
  • the MTC terminal 20 may be a vending machine corresponding to the above “3. Payment”.
  • the MTC server 30 requests the MTC terminal 20 to report the sales status, and the MTC terminal 20 reports the sales status to the MTC server 30.
  • MTC terminal 20 The characteristics of such an MTC terminal 20 are shown below. Note that the MTC terminal 20 need not have all the following features.
  • the MTC terminal 20 moves less, connects to the eNodeB 10 at a low frequency, performs a small amount of data communication, and returns to the idle mode again. In addition, a certain amount of delay is allowed for data communication. Further, the MTC terminal 20 is required to have ultra-low power consumption (13. Extra Low Power Consumption).
  • the number of MTC terminals 20 existing in the future is predicted.
  • about 2.7 billion people use cellular in the world population of over 6 billion.
  • about 50 million machines use cellular as the MTC terminal 20.
  • the MTC terminal 20 is not widespread at the present time, there is a possibility that the MTC terminal 20 of the order of 100 trillion will be accommodated by cellular in the world in the future. As a result, an enormous number of MTC terminals 20 are expected to be accommodated in each eNodeB 10.
  • the MTC terminal 20 having characteristics such as Time Controlled and Online Small Data Transmissions.
  • Such an MTC terminal 20 is expected to spend a lot of time in the idle mode, receive signals from the eNodeB 10 in a burst manner, or transmit a small amount of information to the eNodeB 10. Further, since the MTC terminal 20 is required to have low power consumption, it is desired to shorten the burst transmission / reception time as much as possible.
  • this bursty transmission / reception is considered to be performed in a very long cycle of once per several hours or once every few days, not in the order of several ms or several tens of ms when the current LTE terminal receives the paging channel. It is done.
  • FIG. 3 is an explanatory diagram showing resource blocks. As shown in FIG. 3, the resource blocks are arranged in a lattice shape in the frequency direction and the time direction. Each resource block is composed of 12 subcarriers ⁇ 7Ofdm symbols. Further, a guard interval is added to the head of each resource element composed of 1 subcarrier ⁇ 1Ofdm symbol.
  • the eNodeB 10 can perform resource allocation in units of this resource block.
  • FIG. 4 is an explanatory diagram showing a problem based on errors such as an oscillator inside the MTC terminal 20 and frame synchronization. For example, consider a case where resource blocks RB1 to RB3 are allocated for the uplink of MTC terminal 20A and resource block RB4 is allocated for the uplink of MTC terminal 20B. Furthermore, it is assumed that the oscillator inside the MTC terminal 20B has an error.
  • the radio signal transmitted from the MTC terminal 20B to the eNodeB 10 in the resource block RB4 reaches the eNodeB 10 at a time and frequency that do not match the original resource block RB4, as shown in FIG.
  • the radio signal transmitted from the MTC terminal 20B interferes with the radio signal transmitted from the MTC terminal 20A in the resource blocks RB1 to RB3 at the eNodeB 10.
  • Such interference between resource blocks causes reception failure. Similar problems occur in the downlink.
  • the embodiment of the present disclosure has been created with the above circumstances in mind. According to the embodiment of the present disclosure, it is possible to suppress the interference between resource blocks and the accompanying decrease in communication accuracy while reducing power consumption. Hereinafter, such an embodiment of the present disclosure will be described in detail.
  • FIG. 5 is an explanatory diagram illustrating a configuration of the eNodeB 10 according to the embodiment of the present disclosure. As illustrated in FIG. 5, the eNodeB 10 includes a wireless communication unit 110, a control unit 120, and an upper layer 130.
  • the wireless communication unit 110 has a function as a reception unit that receives control signals and data from the MTC terminal 20 and a transmission unit that transmits control signals and data to the MTC terminal 20.
  • the wireless communication unit 210 performs wireless signal processing such as modulation / demodulation, signal mapping, demapping, and interleaving, and antenna signal processing. Normal data transmitted / received between the wireless communication unit 110 and the user terminal and MTC data transmitted / received between the wireless communication unit 110 and the MTC terminal 20 are input / output between the wireless communication unit 110 and the upper layer 130. .
  • the wireless communication unit 110 also includes an MTC reference signal insertion unit 112, an MTC guard processing unit 114, and a channel estimation unit 116.
  • the channel estimation unit 116 estimates the channel condition between the eNodeB 10 and the MTC terminal 20 based on the reference signal received from the MTC terminal 20.
  • the MTC reference signal insertion unit 112 and the MTC guard processing unit 114 add the MTC reference signal and the MTC guard interval when the communication partner is the MTC terminal 20.
  • the MTC reference signal and the MTC guard interval will be described in detail later.
  • the control unit 120 is configured to control the overall communication of the eNodeB 10.
  • the control unit 120 includes a scheduler 122 and a non-transmission area setting unit 124.
  • the scheduler 122 allocates resource blocks to the MTC terminals 20 belonging to the eNodeB 10.
  • the MTC terminal 20 performs uplink communication or downlink communication using the resource block allocated by the scheduler 122.
  • the non-transmission area setting unit 124 sets the non-transmission area in the resource block allocated for downlink by the scheduler 122.
  • the wireless communication unit 110 does not transmit a radio signal in the non-transmission area set by the non-transmission area setting unit 124, and transmits a radio signal only in other areas.
  • the non-transmission area will be specifically described.
  • Non-transmission area setting As described above with reference to FIG. 4, in both downlink communication and uplink communication, interference between resource blocks occurs due to errors such as an oscillator inside the MTC terminal 20 and frame synchronization. . Therefore, the non-transmission area setting unit 124 sets the non-transmission area at the boundary of at least one of the time direction and the frequency direction with the adjacent resource block in the resource block allocated for the downlink by the scheduler 122.
  • FIG. 6 is an explanatory diagram showing an example of setting a non-transmission area.
  • a non-transmission area is set at the boundary between each resource block and the adjacent resource block on the front side on the time axis and the boundary between the adjacent resource block on the lower side on the frequency axis.
  • the resource block 3 includes one resource element at the boundary with the previous adjacent resource block RB1 on the time axis and the lower adjacent resource block RB4 on the frequency axis.
  • the transmission area is set.
  • the MTC terminal 20 receives only the radio signal transmitted from the eNodeB 10 in the resource block RB2. Can do.
  • the resource elements set in the non-transmission area by the non-transmission area setting unit 124 are not limited to the example shown in FIG.
  • the non-transmission area setting unit 124 may set a non-transmission area at the boundary between all resource blocks in the resource block.
  • the non-transmission area setting unit 124 may set a plurality of resource elements at each boundary as a non-transmission area.
  • the non-transmission area setting unit 124 may set different non-transmission areas for each resource block or for each MTC terminal 20 as a transmission destination.
  • FIG. 7 is an explanatory diagram showing another setting example of the non-transmission area.
  • the resource block RB1 shown in FIG. 7 includes two resource elements at the boundary with the adjacent resource block on the front side in the time direction, one resource element at the boundary with the adjacent resource block RB3 on the rear side, and the lower side in the frequency direction.
  • a non-transmission area for one resource element is set at the boundary with the adjacent resource block RB2.
  • the resource block RB2 has one resource element at the boundary with the previous adjacent resource block in the time direction, four resource elements at the boundary with the lower adjacent resource block RB in the frequency direction, and the upper adjacent in the frequency direction.
  • a non-transmission area for three resource elements is set at the boundary with the resource block RB1.
  • the non-transmission area setting unit 124 can set a different non-transmission area for each resource block or for each MTC terminal 20 as a transmission destination.
  • it is effective to set the non-transmission area widely in the MTC terminal 20 having a large error such as an oscillator or frame synchronization. Therefore, the non-transmission area setting unit 124 may estimate the magnitude of the error of the MTC terminal 20 and set the non-transmission area according to the magnitude of the error. With this configuration, it is possible to prevent throughput from being lowered by setting a non-transmission area that is larger than necessary.
  • the non-transmission area setting unit 124 may estimate the magnitude of the error of the MTC terminal 20 from, for example, the elapsed time from frame synchronization by the MTC terminal 20, the elapsed time from Timing Advance, the reception success rate, and the like. .
  • the MTC reference signal insertion unit 112 inserts a reference signal into a resource block allocated for downlink to the MTC terminal 20.
  • a reference signal Prior to a detailed description of the MTC reference signal insertion unit 112, an arrangement position of a normal reference signal having a user terminal as a transmission destination will be described with reference to FIG.
  • FIG. 8 is an explanatory diagram showing a normal arrangement position of the reference signal.
  • reference signals are inserted in a distributed manner into a plurality of resource elements in a resource block.
  • the user terminal obtains channel information for receiving data by receiving this reference signal over one or more resource blocks and performing interpolation in the frequency direction and the time direction.
  • a reference signal is similarly inserted in the uplink.
  • each MTC terminal 20 uses a resource block having an error in the frequency direction and the time direction, so it is difficult for the eNodeB 10 to acquire channel information over a sufficient time based on the reference signal. is there.
  • the MTC reference signal insertion unit 112 intensively inserts reference signals at the head of resource blocks allocated for downlink to the MTC terminal 20.
  • a specific description will be given with reference to FIG.
  • FIG. 9 is an explanatory diagram illustrating an arrangement example of reference signals according to an embodiment of the present disclosure.
  • the MTC reference signal insertion unit 112 inserts a reference signal at the head of all frequencies used for transmission in each resource block.
  • the MTC reference signal insertion unit 112 inserts a reference signal immediately after the non-transmission area, and the non-transmission area is not set. The reference signal is inserted at the head of the resource block.
  • the MTC reference signal insertion unit 112 inserts the reference signal at all frequencies at all frequencies.
  • the reference signal may be inserted at a part of the frequency instead of the entire frequency.
  • the MTC guard processing unit 114 adds a guard interval to an Ofdm symbol whose destination is the MTC terminal 20 and cuts out data from the Ofdm symbol received from the MTC terminal 20.
  • a normal Ofdm symbol guard interval with the user terminal as the transmission destination will be described.
  • the Ofdm symbol is composed of a guard interval and data, as shown in FIG.
  • the normal guard interval is designed to be longer than the delay time of the reflected wave with the latest arrival time in order to suppress the influence of multipath. It is known that data can be correctly decoded if a signal of a predetermined length can be extracted from the Ofdm symbol comprising the guard interval and data.
  • both the eNodeB 10 and the MTC terminal 20 accurately extract a signal from the received Ofdm symbol in a normal guard interval. It is difficult to do.
  • the MTC guard processing unit 114 makes the guard interval longer than the normal length defined in LTE. For example, as shown in the lower part of FIG. 10, the MTC guard processing unit 114 makes the length of the guard interval longer than the data. With such a configuration, since the allowable amount of error related to the signal cut-out position in the MTC terminal 20 is greatly increased, it is possible to improve the reception success rate.
  • the ratio between the guard interval length and the data length may be set to 80%: 20%.
  • the MTC terminal 20 cuts out a signal from the center of the Ofdm symbol as shown in FIG. 11, so that the frame synchronization error of the MTC terminal 20 is ⁇ 40% to 40% of the Ofdm symbol length. If it is within the range, it is possible to correctly decode the data. In this way, in addition to setting the non-transmission area, by extending the guard interval, interference between resource blocks and interference between Ofdm symbols can be prevented.
  • the MTC guard processing unit 114 may estimate the size of the error of the MTC terminal 20 and set the length of the guard interval according to the size of the error, similarly to the width of the non-transmission area. . With this configuration, it is possible to prevent throughput from being lowered by making the guard interval longer than necessary. Further, as in the modification shown in FIG. 12, the transmission areas of a plurality of Ofdm symbols may be used as one guard interval part and one data part. According to such a configuration, the guard interval can be further increased.
  • FIG. 13 is a flowchart illustrating an operation of the eNodeB 10 according to the embodiment of the present disclosure.
  • the scheduler 122 of the eNodeB 10 performs resource block scheduling for each MTC terminal 20 (S310).
  • the non-transmission area setting unit 124 sets a non-transmission area in the resource block allocated for downlink by the scheduler 122 (S320).
  • the non-transmission area setting unit 124 sets a non-transmission area at the boundary of at least one of the time direction and the frequency direction with the adjacent resource block in the resource block allocated for downlink by the scheduler 122.
  • the MTC reference signal insertion unit 112 inserts a reference signal at the head of the resource block, and the MTC guard processing unit 114 adds a longer guard interval defined in LTE to each Ofdm symbol (S330). Thereafter, the wireless communication unit 110 transmits the signal obtained in S330 in an area other than the non-transmission area (S340).
  • Configuration of MTC terminal> The configuration and operation of the eNodeB 10 according to the embodiment of the present disclosure have been described above. Next, the MTC terminal 20 according to the embodiment of the present disclosure will be described. Similar to the eNodeB 10, the MTC terminal 20 according to the embodiment of the present disclosure does not transmit in the non-transmission area, transmits the reference signal at the head of the resource block, and lengthens the guard interval, thereby interfering between resource blocks. And preventing interference between Ofdm. Hereinafter, the configuration of the MTC terminal 20 will be specifically described.
  • FIG. 14 is an explanatory diagram showing a configuration of the MTC terminal 20 according to the embodiment of the present disclosure.
  • the MTC terminal 20 according to the embodiment of the present disclosure includes a wireless communication unit 210, a control unit 220, and an upper layer 230.
  • the wireless communication unit 210 has a function as a receiving unit that receives control signals and data from the eNodeB 10 and a transmitting unit that transmits control signals and data to the eNodeB 10. Specifically, the wireless communication unit 210 performs wireless signal processing such as modulation / demodulation, signal mapping, demapping, and interleaving, and antenna signal processing. MTC data transmitted and received between the radio communication unit 210 and the eNodeB 10 is input / output between the radio communication unit 210 and the upper layer 230.
  • the wireless communication unit 210 includes an MTC reference signal insertion unit 212, an MTC guard processing unit 214, and a channel estimation unit 216.
  • the channel estimation unit 216 estimates the channel condition between the eNodeB 10 and the MTC terminal 20 based on the reference signal received from the eNodeB 10.
  • the MTC reference signal insertion unit 112 has substantially the same configuration as the MTC reference signal insertion unit 212 of the eNodeB 10. For example, the MTC reference signal insertion unit 112 inserts a reference signal at the beginning of all or some of the frequencies of the uplink resource block as shown in FIG. According to such a configuration, it is expected that the time required for the eNodeB 10 on the uplink receiving side to acquire the channel information is shortened.
  • the MTC guard processing unit 214 has substantially the same configuration as the MTC guard processing unit 114 of the eNodeB 10. For example, the MTC guard processing unit 214 makes the length of the guard interval longer than the data as shown in FIG. With such a configuration, the tolerance for frame synchronization errors of the MTC terminal 20 is greatly increased, so that the reception success rate by the eNodeB 10 can be improved.
  • the control unit 220 is configured to control the overall communication of the MTC terminal 20.
  • the control unit 220 controls uplink communication and downlink communication by the MTC terminal 20 according to scheduling information received from the eNodeB 10, for example.
  • control unit 220 causes the radio communication unit 210 to transmit a radio signal in an area other than the non-transmission area. Control. Note that the radio communication unit 210 performs reception processing on the entire allocated resource block in the downlink.
  • control unit 220 may have substantially the same function as the non-transmission area setting unit 124 of the eNodeB 10. That is, the control unit 220 may set a non-transmission area in the uplink resource block allocated by the eNodeB 10.
  • the control unit 220 may estimate the magnitude of an error such as the frequency or time of the MTC terminal 20 and set a non-transmission area according to the magnitude of the error. For example, the control unit 220 may set a wider non-transmission area as the error of the MTC terminal 20 is larger, and may set a smaller non-transmission area as the error of the MTC terminal 20 is smaller. With this configuration, it is possible to prevent throughput from being lowered by setting a non-transmission area that is larger than necessary.
  • the control unit 120 may estimate the magnitude of the error of the MTC terminal 20 from, for example, the elapsed time from frame synchronization by the MTC terminal 20, the elapsed time from Timing Advance, the reception success rate, and the like.
  • interference between resource blocks can be prevented by setting a non-transmission area even when there is an error in frame synchronization or frequency of the MTC terminal 20. .
  • it is expected that the time required for the reception side apparatus to acquire the channel information is shortened by intensively inserting the reference signal at the head of the resource block.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】無線通信装置および無線通信方法を提供する。 【解決手段】時間軸および周波数軸上に格子状に配置された複数のリソースブロックから割り当てられたリソースブロックにおいて、隣接リソースブロックとの時間方向または周波数方向の境界に設定された無送信領域では送信を行わず、前記リソースブロックにおける他の領域で送信を行う無線通信部、を備える、無線通信装置。

Description

無線通信装置および無線通信方法
 本開示は、無線通信装置および無線通信方法に関する。
 現在、3GPP(Third Generation Partnership Project)において4Gの無線通信システムの規格化が進められている。4Gによれば、リレーやキャリアアグリゲーションなどの技術を用いることにより、最大通信速度の向上やセルエッジでの品質向上を実現することができる。また、HeNodeB(Home eNodeB、フェムトセル基地局、携帯電話用小型基地局)やRHH(リモートラジオヘッド)など、eNodeB(マクロセル基地局)以外の基地局の導入によりカバレッジを向上させることも検討されている。
 このような無線通信システムにおいては、ユーザ端末は、基地局から送信される同期シグナルに基づいて基地局とフレームを同期し、その後、ユーザ端末内部の発振機を基地局の発振機と高い精度で同期させる。そして、ユーザ端末は、基地局から送信される信号を周期的に受信してユーザ端末内部の発振機の基地局の発振機に追従させる。
 このユーザ端末内部の発振機と基地局の発振機とでずれが生じると、正確な周波数および時間で受信および送信できなくなるので、ユーザ端末内部の発振機の精度は重要である。なお、基地局とユーザ端末が共有するフレーム構成については例えば特許文献1に記載されている。
 また、複数のユーザ端末から送信された無線信号が基地局で同時に受信されるようにするために、各ユーザ端末は、Timing Advanceと呼ばれる、基地局およびユーザ端末間の距離に応じた時間調整を行う。具体的には、Timing Advanceは、ユーザ端末がランダムアクセスウィンドウに向けてプリアンブルを送信するランダムアクセスの手続き中に行われる。上記のプリアンブルの基地局への到達時刻と上記ランダムアクセスウィンドウとの関係からTiming Advance値を取得することが可能である。
 一方、3GPPでは、MTC(Machine Type Communications)に関する議論も進められている。MTCのアプリケーションとしては、水道系や電力系の情報を収集するMetering、ヘルスケア用途の機器情報を収集するHealthなど、多様なアプリケーションが検討されている。MTC端末は、これらのアプリケーションに特化した端末である。
 なお、MTC端末は、例えば、Time Controlled、Online Small Data Transmissionsなどの特性を有する。すなわち、MTC端末は、多くの時間をアイドルモードで過ごし、バースト的に基地局から信号を受信する、または基地局に対して少量の情報を送信することが予想される。また、MTC端末には低消費電力が求められるので、上記のバースト的な送受信の時間を極力短くすることが望まれる。さらに、このバースト的な送受信は、現状のLTE端末がページングチャネルを受信する数msや数10msというオーダーでなく、数時間に1回または数日に一回という非常に長い周期で行われると考えられる。
特開2000-13870号公報
 しかし、上記のようにMTC端末が長期間にわたって基地局から信号を受信しないことを考慮すると、MTC端末内部の発振機やフレーム同期などの誤差が増大してしまう。その結果、アップリンクおよびダウンリンクの通信の精度が低下してしまうことが懸念される。
 そこで、本開示では、消費電力を削減しつつ、通信精度の低下を抑制することが可能な、新規かつ改良された無線通信装置および無線通信方法を提案することにある。
 本開示によれば、時間軸および周波数軸上に格子状に配置された複数のリソースブロックから割り当てられたリソースブロックにおいて、隣接リソースブロックとの時間方向または周波数方向の境界に設定された無送信領域では送信を行わず、前記リソースブロックにおける他の領域で送信を行う無線通信部、を備える無線通信装置が提供される。
 前記無線通信装置は、前記リソースブロックにおいて前記無送信領域を設定する制御部をさらに備えてもよい。
 前記制御部は、時間軸上の前側または後側の隣接リソースブロックの少なくとも一方との境界、および、周波数軸上の上側または下側の隣接リソースブロックの少なくとも一方との境界に前記無送信領域を設定してもよい。
 前記制御部は、通信相手との同期処理からの経過時間が長いほど、前記リソースブロックに前記無送信領域を広く設定してもよい。
 前記無線通信部は、前記リソースブロックを構成する各Ofdmシンボルにおけるデータ部分に対するガードインターバル部分の長さを、LTEで定義される長さよりも長くしてもよい。
 前記無線通信部は、前記各Ofdmシンボルにおける前記ガードインターバル部分を、前記データ部分よりも長くしてもよい。
 前記無線通信部は、複数のOfdmシンボルの送信用領域を1のガードインターバル部分および1のデータ部分として利用してもよい。
 前記無線通信部は、前記ガードインターバル部分を前記データ部分より長くしてもよい。
 また、本開示によれば、時間軸および周波数軸上に格子状に配置された複数のリソースブロックから割り当てられたリソースブロックにおいて、隣接リソースブロックとの時間方向または周波数方向の境界に設定された無送信領域では送信を行わず、前記リソースブロックにおける他の領域で送信を行う、無線通信方法が提供される。
 また、本開示によれば、時間軸および周波数軸上に格子状に配置された複数のリソースブロックから割り当てられたリソースブロックにおいて無線信号を送信する無線通信部を備え、前記無線通信部は、前記リソースブロックにおいてリファレンス信号の送信に利用される周波数では、前記リソースブロックの先頭でリファレンス信号を送信し、リファレンス信号の送信後に他の無線信号を送信する、無線通信装置が提供される。
 前記無線通信部は、前記リソースブロックにおいて送信に利用される全周波数でリファレンス信号を送信してもよい。
 また、本開示によれば、時間軸および周波数軸上に格子状に配置された複数のリソースブロックからリソースブロックが割り当てられることと、前記リソースブロックにおいてリファレンス信号の送信に利用される周波数では、前記リソースブロックの先頭でリファレンス信号を送信し、リファレンス信号の送信後に他の無線信号を送信することと、を含む無線通信方法が提供される。
装置が提供される。
 以上説明したように本開示に係る無線通信装置および無線通信方法によれば、消費電力を削減しつつ、通信精度の低下を抑制することが可能である。
無線通信システムの構成例を示した説明図である。 4Gのフレームフォーマットを示した説明図である。 リソースブロックを示した説明図である。 MTC端末内部の発振機やフレーム同期などの誤差に基づく問題を示した説明図である。 本開示の実施形態によるeNodeBの構成を示した説明図である。 無送信領域の設定例を示した説明図である。 無送信領域の他の設定例を示した説明図である。 リファレンス信号の通常の配置位置を示した説明図である。 本開示の実施形態によるリファレンス信号の配置例を示した説明図である。 ガードインターバルの一例を示した説明図である。 ガードインターバルの一例を示した説明図である。 ガードインターバルの一例を示した説明図である。 本開示の実施形態によるeNodeBの動作を示したフローチャートである。 本開示の実施形態によるMTC端末の構成を示した説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成を、必要に応じてMTC端末20A、20Bおよび20Cのように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、MTC端末20A、20Bおよび20Cを特に区別する必要が無い場合には、単にMTC端末20と称する。
 また、以下に示す項目順序に従って当該「発明を実施するための形態」を説明する。
  1.無線通信システムの概略
   1-1.無線通信システムの構成
   1-2.フレーム同期
   1-3.Timing Advance
   1-4.MTC端末
  2.eNodeBの構成
   (無送信領域の設定)
   (MTC用リファレンス信号)
   (MTC用ガードインターバル)
  3.eNodeBの動作
  4.MTC端末の構成
  5.まとめ
  <1.無線通信システムの概略>
 現在、3GPPにおいて4Gの無線通信システムの規格化が進められている。本開示の実施形態は、一例としてこの4Gの無線通信システムに適用することができるので、まず、4Gの無線通信システムの概略を説明する。
   [1-1.無線通信システムの構成]
 図1は、無線通信システム1の構成例を示した説明図である。図1に示したように、無線通信システム1は、eNodeB10と、MME(Mobility Management Entity)12、S-GW(Serving Gateway)14、およびPDN(Packet Data Network)-GW16を含むコアネットワークと、MTC端末20と、MTCサーバ30と、を備える。
 本開示の実施形態は、図1に示したeNodeB10およびMTC端末20などの無線通信装置に適用することができる。ただし、eNodeB10およびMTC端末20は無線通信装置の一例に過ぎず、本開示の実施形態は、他の多様な無線通信装置に適用することができる。他の無線通信装置としては、例えば、ユーザ端末(UE:User Equipment)、ユーザ端末(MTC端末20)およびeNodeB10間の通信を中継するリレーノード、家庭用小型基地局であるHome eNodeBなどが挙げられる。
 eNodeB10は、MTC端末20と通信する無線基地局である。図1においては1台のeNodeB10のみを示しているが、実際には多数のeNodeBがコアネットワークに接続される。また、図1においては記載を省略しているが、eNodeB10は例えばユーザ端末とも通信する。
 MME12は、データ通信用のセッションの設定、開放やハンドオーバーの制御を行う装置である。このMME12は、eNodeB10とX2と呼ばれるインタフェースを介して接続される。
 S-GW14は、ユーザデータのルーティング、転送などを行う装置である。PDN-GW16は、IPサービスネットワークとの接続点として機能し、IPサービスネットワークとの間でユーザデータを転送する。
 MTC端末20は、3GPPにおいて検討されているMTC用のアプリケーションに特化した端末であり、eNodeB10とアプリケーションに応じた無線通信を行う。また、MTC端末20は、コアネットワークを介してMTCサーバ30と双方向通信を行う。ユーザは、MTCサーバ30にアクセスすることにより所定のアプリケーションを実行する。ユーザは、基本的にはMTC端末20に直接アクセスすることはない。このようなMTC端末20については「1-4.MTC端末」において詳細に説明する。
   [1-2.フレーム同期]
 上記のeNodeB10およびMTC端末20は、詳細については決定されていないが、eNodeB10およびユーザ端末間の通信に準ずる形で無線通信を行うことが予想される。そこで、以下では、eNodeB10およびユーザ端末間で共有される無線フレーム、およびフレーム同期について説明する。以下で説明する内容は、eNodeB10およびMTC端末20間の通信に援用可能である。
 図2は、4Gのフレームフォーマットを示した説明図である。図2に示したように、10msの無線フレームは、10個の1msのサブフレーム#0~#9から構成されている。また、1msの各サブフレームは、2つの0.5msスロットで構成されている。さらに、各0.5msスロットは、7Ofdmシンボルで構成されている。
 また、図2において斜線を付したOfdmシンボルで、ユーザ端末がフレーム同期のために用いる同期シグナルが送信される。より詳細には、サブフレーム#0の第5Ofdmシンボルではセカンダリー同期シグナル、サブフレーム#0の第6Ofdmシンボルではプライマリー同期シグナル、サブフレーム#5の第5Ofdmシンボルではセカンダリー同期シグナル、サブフレーム#5の第6Ofdmシンボルではプライマリー同期シグナルが送信される。
 ユーザ端末は、プライマリー同期シグナルを用いて5ms周期を取得すると同時に、3つに分かれているセル番号グループから現在地に対応するセル番号グループを検出する。その後、ユーザ端末は、セカンダリー同期シグナルを用いて無線フレーム周期(10ms周期)を取得する。
 なお、同期シグナルの符号系列にはZadoffChu系列が用いられる。セル番号グループ内のセル番号に168種類の符号化系列が用いられ、無線フレーム周期を得るために2種類の符号化系列が用いられるので、符号化系列は336種類用意される。ユーザ端末は、サブフレーム#0で送信されるセカンダリー同期シグナルとサブフレーム#5で送信されるセカンダリー同期シグナルの組み合わせに基づき、受信サブフレームがサブフレーム#0またはサブフレーム#5のいずれであるかを判断することができる。
 ユーザ端末は、上記のようにしてフレーム同期を行った後、ユーザ端末内部の発振機をeNodeB10の発振機と高い精度で同期させる。そして、ユーザ端末は、基地局から送信される信号を周期的に受信してユーザ端末内部の発振機の基地局の発振機に追従させる。このユーザ端末内部の発振機と基地局の発振機とでずれが生じると、正確な周波数および時間で受信および送信できなくなるので、ユーザ端末内部の発振機の精度は重要である。
   [1-3.Timing Advance]
 4Gのユーザ端末は、複数のユーザ端末から送信された無線信号がeNodeB10で同時に受信されるようにするために、Timing Advanceと呼ばれる、eNodeB10およびユーザ端末間の距離に応じた時間調整を行う。具体的には、Timing Advanceは、ユーザ端末がランダムアクセスウィンドウに向けてプリアンブルを送信するランダムアクセスの手続き中に行われる。上記のプリアンブルのeNodeB10への到達時刻と上記ランダムアクセスウィンドウとの関係からTiming Advance値を取得することが可能である。
 詳細については決定されていないが、MTC端末20もユーザ端末と同様のTiming Advanceを行い、Timing Advance値を取得する場合も考えられる。
   [1-4.MTC端末]
 MTC端末20は、上述したように、3GPPにおいて検討されているMTC用のアプリケーションに特化した端末である。以下に、MTC用のアプリケーションの一例を示す。
 1.Security
 2.Trcking&Tracing
 3.Payment
 4.Health
 5.Remote Maintenace/Control
 6.Metering
 7.Consumer Devices
 一例として、MTC端末20は上記「4.Health」に該当する心電図測定器であってもよい。この場合、ユーザがMTCサーバ30に心電図の測定結果の報告を要求するコマンドを入力すると、MTCサーバ30がMTC端末20に心電図の測定結果の報告を要求し、MTC端末20から心電図の測定結果がMTCサーバ30に報告される。
 他の例として、MTC端末20は上記「3.Payment」に該当する自動販売機であってもよい。この場合、ユーザがMTCサーバ30に販売状況の報告を要求するコマンドを入力すると、MTCサーバ30がMTC端末20に販売状況の報告を要求し、MTC端末20から販売状況がMTCサーバ30に報告される。
 このようなMTC端末20の特徴を以下に示す。なお、MTC端末20は以下の全ての特徴を有する必要はない。
 1.Low Mobility
 2.Time Controlled
 3.Time Tolerant
 4.Packet Switched Only
 5.Online Small Data Transmissions
 6.Offline Small Data Transmission
 7.Mobile Originated Only
 8.Infrequent Mobile Terminated
 9.MTC Monitoring
 10.Offline Indication
 11.Jamming Indication
 12.Priority Alarm Message
 13.Extra Low Power Consumption
 14.Secure Connection
 15.Location Specific Triger
 16.Group based MTC Features
 以上をまとめると、MTC端末20は、移動が少なく、低頻度でeNodeB10に接続して少量のデータ通信を行い、再びアイドルモードに戻る。また、データ通信にはある程度の遅延が許容される。また、MTC端末20は、超低消費電力(13.Extra Low Power Consumption)が求められる。
 ここで、将来的に存在するMTC端末20の数を予想する。現在、60億人を超える世界人口のうち、約27億人がセルラーを使用している。一方、世界に500兆程度の機械が存在する状況で、0.5億程度の機械がMTC端末20としてセルラーを使用している。
 すなわち、現時点ではMTC端末20は普及していないが、将来的には100兆オーダーのMTC端末20を世界のセルラーで収容する可能性がある。その結果、各eNodeB10に膨大な数のMTC端末20が収容されることになると予想される。
  (本開示の実施形態に至る経緯)
 上述したMTC端末20の特徴のうちで、Time Controlled、Online Small Data Transmissionsなどの特性を有するMTC端末20に着目する。このようなMTC端末20は、多くの時間をアイドルモードで過ごし、バースト的にeNodeB10から信号を受信する、またはeNodeB10に対して少量の情報を送信することが予想される。また、MTC端末20には低消費電力が求められるので、上記のバースト的な送受信の時間を極力短くすることが望まれる。さらに、このバースト的な送受信は、現状のLTE端末がページングチャネルを受信する数msや数10msというオーダーでなく、数時間に1回または数日に一回という非常に長い周期で行われると考えられる。
 しかし、上記のようにMTC端末20が長期間にわたって基地局から信号を受信しないことを考慮すると、MTC20端末内部の発振機、フレーム同期およびTiming Advance値などの誤差が増大してしまうという問題がある。その結果、アップリンクおよびダウンリンクの通信の精度が低下してしまうことが懸念される。以下、図3および図4を参照して上記問題を具体的に説明する。
 図3は、リソースブロックを示した説明図である。図3に示したように、リソースブロックは、周波数方向および時間方向上に格子状に配置される。また、各リソースブロックは12サブキャリア×7Ofdmシンボルからなる。また、1サブキャリア×1Ofdmシンボルからなる各リソースエレメントの先頭にはガードインターバルが付加される。eNodeB10は、このリソースブロック単位でリソース割り当てを行うことができる。
 図4は、MTC端末20内部の発振機やフレーム同期などの誤差に基づく問題を示した説明図である。例えば、リソースブロックRB1~RB3がMTC端末20Aのアップリンク用に割り当てられ、リソースブロックRB4がMTC端末20Bのアップリンク用に割り当てられた場合を考える。さらに、MTC端末20B内部の発振機が誤差を有するとする。
 この場合、MTC端末20BがリソースブロックRB4においてeNodeB10に送信した無線信号は、図4に示したように、eNodeB10には本来のリソースブロックRB4と一致しない時間および周波数で到達してしまう。その結果、MTC端末20Bから送信された無線信号は、MTC端末20AからリソースブロックRB1~RB3において送信された無線信号とeNodeB10において干渉する。このようなリソースブロック間の干渉は受信失敗の原因となる。なお、ダウンリンクでも同様の問題が発生する。
 そこで、上記事情を一着眼点にして本開示の実施形態を創作するに至った。本開示の実施形態によれば、消費電力を削減しつつ、リソースブロック間の干渉およびそれに伴う通信精度の低下を抑制することが可能である。以下、このような本開示の実施形態について詳細に説明する。
  <2.eNodeBの構成>
 図5は、本開示の実施形態によるeNodeB10の構成を示した説明図である。図5に示したように、eNodeB10は、無線通信部110と、制御部120と、上位レイヤ130と、を備える。
 無線通信部110は、MTC端末20から制御信号およびデータなどを受信する受信部、MTC端末20へ制御信号およびデータなどを送信する送信部としての機能を有する。具体的には、無線通信部210は、変復調や信号のマッピング、デマッピング、インタリーブなどの無線信号処理とアンテナ信号処理を行う。無線通信部110とユーザ端末との間で送受信される通常データ、無線通信部110とMTC端末20との間で送受信されるMTCデータは、無線通信部110および上位レイヤ130間で入出力される。
 また、無線通信部110は、MTC用リファレンス信号挿入部112、MTC用ガード処理部114、およびチャネル推定部116を有する。チャネル推定部116は、MTC端末20から受信されるリファレンス信号に基づいてeNodeB10およびMTC端末20間のチャネル状況を推定する。MTC用リファレンス信号挿入部112およびMTC用ガード処理部114は、通信相手がMTC端末20である場合にMTC用リファレンス信号およびMTC用ガードインターバルを付加する。これらMTC用リファレンス信号およびMTC用ガードインターバルについては詳細に後述する。
 制御部120は、eNodeB10の通信全般を制御するため構成である。この制御部120は、スケジューラ122および無送信領域設定部124を有する。スケジューラ122は、eNodeB10に属するMTC端末20にリソースブロックを割り当てる。MTC端末20は、このスケジューラ122によって割り当てられたリソースブロックを利用してアップリンク通信、またはダウンリンク通信を行う。
 無送信領域設定部124は、スケジューラ122によりダウンリンク用に割り当てられたリソースブロックにおいて無送信領域を設定する。無線通信部110は、無送信領域設定部124により設定された無送信領域では無線信号を送信せず、他の領域でのみ無線信号を送信する。以下、この無送信領域について具体的に説明する。
   (無送信領域の設定)
 上記で図4を参照して説明したように、ダウンリンク通信およびアップリンク通信のいずれにおいても、MTC端末20内部の発振機やフレーム同期などの誤差に起因してリソースブロック間の干渉が発生する。そこで、無送信領域設定部124は、スケジューラ122によりダウンリンク用に割り当てられたリソースブロックにおいて、隣接リソースブロックとの時間方向または周波数方向の少なくともいずれかの境界に無送信領域を設定する。
 図6は、無送信領域の設定例を示した説明図である。図6に示した例では、各リソースブロックの時間軸上の前側の隣接リソースブロックとの境界、および、周波数軸上の下側の隣接リソースブロックとの境界に無送信領域が設定されている。より具体的には、リソースブロック3には、時間軸上の前側の隣接リソースブロックRB1との境界、および、周波数軸上の下側の隣接リソースブロックRB4との境界に、1リソースエレメント分の無送信領域が設定されている。
 かかる構成により、MTC端末20による受信リソースブロックが周波数方向および時間方向の各々に1リソースエレメントの誤差を有したとしても、リソースブロック間の干渉を防止することができる。
 例えば、リソースブロックRB2を割り当てられたMTC端末20による受信対象の時間周波数領域が、リソースブロックRB2からリソースブロックRB1側に1リソースエレメントずれ、リソースブロックRB4側に1リソースエレメントずれた場合を考える。この場合、受信対象である時間周波数領域に含まれるリソースブロックRB1およびRB4のリソースエレメントは無送信領域であるので、MTC端末20は、eNodeB10からリソースブロックRB2において送信された無線信号のみを受信することができる。
 なお、無送信領域設定部124が無送信領域に設定するリソースエレメントは図6に示した例に限定されない。例えば、無送信領域設定部124は、リソースブロックにおける全ての隣接リソースブロックとの境界に無送信領域を設定してもよい。また、無送信領域設定部124は、各境界の複数のリソースエレメントを無送信領域として設定してもよい。また、無送信領域設定部124は、図7に示すように、リソースブロックごと、または送信先のMTC端末20ごとに異なる無送信領域を設定してもよい。
 図7は、無送信領域の他の設定例を示した説明図である。図7に示したリソースブロックRB1には、時間方向の前側の隣接リソースブロックとの境界に2リソースエレメント分、後ろ側の隣接リソースブロックRB3との境界に1リソースエレメント分、周波数方向の下側の隣接リソースブロックRB2との境界に1リソースエレメント分の無送信領域が設定されている。
 一方、リソースブロックRB2には、時間方向の前側の隣接リソースブロックとの境界に1リソースエレメント分、周波数方向の下側の隣接リソースブロックRBとの境界に4リソースエレメント分、周波数方向の上側の隣接リソースブロックRB1との境界に3リソースエレメント分の無送信領域が設定されている。
 このように、無送信領域設定部124は、リソースブロックごと、または送信先のMTC端末20ごとに異なる無送信領域を設定することができる。ここで、無送信領域は、発振機やフレーム同期などの誤差が大きいMTC端末20に広く設定することが有効である。そこで、無送信領域設定部124は、MTC端末20が有する誤差の大きさを推定し、誤差の大きさに応じて無送信領域を設定してもよい。かかる構成により、必要以上に広い無送信領域を設定することによりスループットが低下してしまうことを防止できる。なお、無送信領域設定部124は、例えば、MTC端末20によるフレーム同期からの経過時間、Timing Advanceからの経過時間、受信成功率などからMTC端末20が有する誤差の大きさを推定してもよい。
   (MTC用リファレンス信号)
 MTC用リファレンス信号挿入部112は、MTC端末20へのダウンリンク用に割り当てられたリソースブロックにリファレンス信号を挿入する。このMTC用リファレンス信号挿入部112の詳細な説明に先立ち、図8を参照してユーザ端末を送信先とする通常のリファレンス信号の配置位置を説明する。
 図8は、リファレンス信号の通常の配置位置を示した説明図である。図8に示したように、通常は、リソースブロック中の複数のリソースエレメントに分散的にリファレンス信号が挿入される。ユーザ端末は、1または2以上のリソースブロックにわたってこのリファレンス信号を受信して周波数方向および時間方向の補完を行うことにより、データを受信するためのチャネル情報を取得する。なお、アップリンクでも同様にリファレンス信号が挿入される。
 しかし、このような通常のリファレンス信号の配置を、MTC端末20を送信先とするリファレンス信号にも適用することは適切でない。なぜならば、ダウンリンクに関し、MTC端末20は、電源を起動してすぐにリソースブロックを受信するので、チャネル情報の補完のためにリファレンス信号を長時間受信することは現実的でない。同様に、アップリンクに関し、各MTC端末20が周波数方向および時間方向に誤差を有するリソースブロックを利用するので、eNodeB10はリファレンス信号に基づいて十分な時間をかけてチャネル情報を取得することは困難である。
 上記事項に鑑み、MTC用リファレンス信号挿入部112は、MTC端末20へのダウンリンク用に割り当てられたリソースブロックの先頭にリファレンス信号を集中的に挿入する。以下、図9を参照して具体的に説明する。
 図9は、本開示の実施形態によるリファレンス信号の配置例を示した説明図である。図9に示したように、MTC用リファレンス信号挿入部112は、各リソースブロックにおいて、送信に利用する全周波数の先頭にリファレンス信号を挿入する。なお、MTC用リファレンス信号挿入部112は、図9に示したように無送信領域が設定されている場合には無送信領域の直後にリファレンス信号を挿入し、無送信領域が設定されていない場合にはリソースブロックの先頭にリファレンス信号を挿入する。
 かかる構成によれば、全周波数のリファレンス信号を早期に受信することができるので、MTC端末20がチャネル情報の取得に要する時間を短縮することが期待される。なお、上記ではMTC用リファレンス信号挿入部112が全周波数にリファレンス信号を挿入する例を説明したが、リファレンス信号の挿入先は全周波数でなく、一部の周波数であってもよい。
   (MTC用ガードインターバル)
 MTC用ガード処理部114は、MTC端末20を送信先とするOfdmシンボルへのガードインターバルの付加、およびMTC端末20から受信されるOfdmシンボルからのデータの切り出しを行う。このMTC用ガード処理部114の詳細な説明に先立ち、ユーザ端末を送信先とする通常のOfdmシンボルのガードインターバルについて説明する。
 Ofdmシンボルは、図3に示したように、ガードインターバルとデータから構成される。通常のガードインターバルは、マルチパスによる影響を抑制するために、到着時間が最も遅い反射波の直接波に対する遅延時間よりも長くなるように設計されている。このガードインターバルとデータからなるOfdmシンボルから所定長の信号を切り出せれば、データを正しく復号できることが知られている。
 しかし、MTC端末20は、時間方向のフレーム同期が不完全であることが予想されるので、通常のガードインターバルでは、eNodeB10およびMTC端末20の双方とも、受信したOfdmシンボルから信号の切り出しを正確に行うことは困難である。
 上記事項に鑑み、MTC用ガード処理部114は、LTEで定義される通常の長さよりもガードインターバルを長くする。例えば、MTC用ガード処理部114は、図10の下段に示したように、ガードインターバルの長さをデータよりも長くする。かかる構成により、MTC端末20における信号の切り出し位置に関する誤差の許容量が大幅に増加するので、受信成功率の向上を図ることができる。
 より具体的には、ガードインターバル長とデータ長の比率を80%:20%に設定してもよい。かかる構成によれば、MTC端末20は、図11に示したようにOfdmシンボルの中央から信号の切り出しを行うことにより、MTC端末20のフレーム同期の誤差がOfdmシンボル長の‐40%~40%の範囲内であればデータを正しく復号することが可能である。このように、無送信領域の設定に加えて、ガードインターバルを長くすることにより、リソースブロック間の干渉およびOfdmシンボル間の干渉を防止することができる。
 なお、MTC用ガード処理部114は、無送信領域の広さと同様に、MTC端末20が有する誤差の大きさを推定し、誤差の大きさに応じてガードインターバルの長さを設定してもよい。かかる構成により、ガードインターバルを必要以上に長くすることによりスループットが低下してしまうことを防止できる。また、図12に示す変形例のように、複数のOfdmシンボルの送信用領域を1のガードインターバル部分および1のデータ部分として利用してもよい。かかる構成によれば、ガードインターバルをさらに長くすることが可能となる。
  <3.eNodeBの動作>
 以上、本開示の実施形態によるeNodeB10の構成を説明した。続いて、図13を参照し、本開示の実施形態によるeNodeB10の動作を説明する。
 図13は、本開示の実施形態によるeNodeB10の動作を示したフローチャートである。図13に示したように、eNodeB10のスケジューラ122は、各MTC端末20に対してリソースブロックのスケジューリングを行う(S310)。そして、無送信領域設定部124は、スケジューラ122によりダウンリンク用に割り当てられたリソースブロックにおいて無送信領域を設定する(S320)。ここで、無送信領域設定部124は、スケジューラ122によりダウンリンク用に割り当てられたリソースブロックにおいて、隣接リソースブロックとの時間方向または周波数方向の少なくともいずれかの境界に無送信領域を設定する。
 さらに、MTC用リファレンス信号挿入部112がリソースブロックの先頭にリファレンス信号を挿入し、MTC用ガード処理部114がLTEで定義されるより長いガードインターバルを各Ofdmシンボルに付加する(S330)。その後、無線通信部110が、無送信領域以外の領域で、S330において得られた信号を送信する(S340)。
  <4.MTC端末の構成>
 以上、本開示の実施形態によるeNodeB10の構成および動作を説明した。次に、本開示の実施形態によるMTC端末20について説明する。本開示の実施形態によるMTC端末20は、eNodeB10と同様に、無送信領域での送信を行わず、リファレンス信号をリソースブロックの先頭で送信し、ガードインターバルを長くすることにより、リソースブロック間の干渉およびOfdm間の干渉を防止する。以下、このようなMTC端末20の構成を具体的に説明する。
 図14は、本開示の実施形態によるMTC端末20の構成を示した説明図である。図14に示したように、本開示の実施形態によるMTC端末20は、無線通信部210と、制御部220と、上位レイヤ230と、を備える。
 無線通信部210は、eNodeB10から制御信号およびデータなどを受信する受信部、eNodeB10へ制御信号およびデータなどを送信する送信部としての機能を有する。具体的には、無線通信部210は、変復調や信号のマッピング、デマッピング、インタリーブなどの無線信号処理とアンテナ信号処理を行う。無線通信部210とeNodeB10との間で送受信されるMTCデータは、無線通信部210および上位レイヤ230間で入出力される。
 また、無線通信部210は、MTC用リファレンス信号挿入部212、MTC用ガード処理部214、およびチャネル推定部216を有する。チャネル推定部216は、eNodeB10から受信されるリファレンス信号に基づいてeNodeB10およびMTC端末20間のチャネル状況を推定する。
 MTC用リファレンス信号挿入部112は、eNodeB10のMTC用リファレンス信号挿入部212と実質的に同一の構成である。例えば、MTC用リファレンス信号挿入部112は、図9に示したようにアップリンク用のリソースブロックの全周波数または一部の周波数の先頭にリファレンス信号を挿入する。かかる構成によれば、アップリンクの受信側であるeNodeB10がチャネル情報の取得に要する時間を短縮することが期待される。
 MTC用ガード処理部214は、eNodeB10のMTC用ガード処理部114と実質的に同一の構成である。例えば、MTC用ガード処理部214は、図10に示したようにガードインターバルの長さをデータよりも長くする。かかる構成により、MTC端末20のフレーム同期の誤差に対する許容量が大幅に増加するので、eNodeB10による受信成功率の向上を図ることができる。
 制御部220は、MTC端末20の通信全般を制御するため構成である。この制御部220は、例えば、eNodeB10から受信されるスケジューリング情報に従ってMTC端末20によるアップリンク通信およびダウンリンク通信を制御する。
 また、制御部220は、eNodeB10により割り当てられたアップリンク用のリソースブロックに、eNodeB10により無送信領域が設定されている場合、無線通信部210が無送信領域以外の領域で無線信号を送信するよう制御する。なお、無線通信部210は、ダウンリンクでは割り当てられたリソースブロック全体で受信処理を行う。
 また、制御部220は、eNodeB10の無送信領域設定部124と実質的に同一な機能を有してもよい。すなわち、制御部220は、eNodeB10により割り当てられたアップリンク用のリソースブロックに無送信領域を設定してもよい。
 このように、アップリンク用のリソースブロックに無送信領域を設定することにより、eNodeB10におけるリソースブロック間の干渉を防止することができる。また、制御部220は、MTC端末20が有する周波数や時間などの誤差の大きさを推定し、誤差の大きさに応じて無送信領域を設定してもよい。例えば、制御部220は、MTC端末20の誤差が大きいほど広い無送信領域を設定し、MTC端末20の誤差が小さいほど狭い無送信領域を設定してもよい。かかる構成により、必要以上に広い無送信領域を設定することによりスループットが低下してしまうことを防止できる。なお、制御部120は、例えば、MTC端末20によるフレーム同期からの経過時間、Timing Advanceからの経過時間、受信成功率などからMTC端末20が有する誤差の大きさを推定してもよい。
   <5.まとめ>
 以上説明したように、本開示の実施形態によれば、MTC端末20のフレーム同期や周波数などに誤差がある場合でも、無送信領域を設定することによりリソースブロック間の干渉を防止することができる。また、本開示の実施形態によれば、ガードインターバルを長くすることにより、Ofdmシンボル間の干渉を防止することも可能である。したがって、フレーム同期や周波数を調整するためにMTC端末20が行う通信の頻度を抑えることにより、MTC端末20の消費電力を削減することができる。また、本開示の実施形態によれば、リファレンス信号をリソースブロックの先頭に集中的に挿入することにより、受信側の装置がチャネル情報の取得に要する時間を短縮することが期待される。
 なお、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示による技術的範囲はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、eNodeB10およびMTC端末20に内蔵されるCPU、ROMおよびRAMなどのハードウェアを、上述したeNodeB10およびMTC端末20の各構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供される。
 10   eNodeB
 12   MME
 14   S-GW
 16   PDN-GW
 20   MTC端末
 30   MTCサーバ
 110、210  無線通信部
 112、212  MTC用リファレンス信号挿入部
 114、214  MTC用ガード処理部
 116、216  チャネル推定部
 120、220  制御部
 122  スケジューラ
 124  無送信領域設定部
 130、230  上位レイヤ
 
 
 
 

Claims (12)

  1.  時間軸および周波数軸上に格子状に配置された複数のリソースブロックから割り当てられたリソースブロックにおいて、隣接リソースブロックとの時間方向または周波数方向の境界に設定された無送信領域では送信を行わず、前記リソースブロックにおける他の領域で送信を行う無線通信部、を備える、無線通信装置。
  2.  前記無線通信装置は、前記リソースブロックにおいて前記無送信領域を設定する制御部をさらに備える、請求項1に記載の無線通信装置。
  3.  前記制御部は、時間軸上の前側または後側の隣接リソースブロックの少なくとも一方との境界、および、周波数軸上の上側または下側の隣接リソースブロックの少なくとも一方との境界に前記無送信領域を設定する、請求項2に記載の無線通信装置。
  4.  前記制御部は、通信相手との同期処理からの経過時間が長いほど、前記リソースブロックに前記無送信領域を広く設定する、請求項3に記載の無線通信装置。
  5.  前記無線通信部は、前記リソースブロックを構成する各Ofdmシンボルにおけるデータ部分に対するガードインターバル部分の長さを、LTEで定義される長さよりも長くする、請求項4に記載の無線通信装置。
  6.  前記無線通信部は、前記各Ofdmシンボルにおける前記ガードインターバル部分を、前記データ部分よりも長くする、請求項5に記載の無線通信装置。
  7.  前記無線通信部は、複数のOfdmシンボルの送信用領域を1のガードインターバル部分および1のデータ部分として利用する、請求項4に記載の無線通信装置。
  8.  前記無線通信部は、前記ガードインターバル部分を前記データ部分より長くする、請求項7に記載の無線通信装置。
  9.  時間軸および周波数軸上に格子状に配置された複数のリソースブロックから割り当てられたリソースブロックにおいて、隣接リソースブロックとの時間方向または周波数方向の境界に設定された無送信領域では送信を行わず、前記リソースブロックにおける他の領域で送信を行う、無線通信方法。
  10.  時間軸および周波数軸上に格子状に配置された複数のリソースブロックから割り当てられたリソースブロックにおいて無線信号を送信する無線通信部を備え、
     前記無線通信部は、前記リソースブロックにおいてリファレンス信号の送信に利用される周波数では、前記リソースブロックの先頭でリファレンス信号を送信し、リファレンス信号の送信後に他の無線信号を送信する、無線通信装置。
  11.  前記無線通信部は、前記リソースブロックにおいて送信に利用される全周波数でリファレンス信号を送信する、請求項10に記載の無線通信装置。
  12.  時間軸および周波数軸上に格子状に配置された複数のリソースブロックからリソースブロックが割り当てられることと;
     前記リソースブロックにおいてリファレンス信号の送信に利用される周波数では、前記リソースブロックの先頭でリファレンス信号を送信し、リファレンス信号の送信後に他の無線信号を送信することと;
    を含む、無線通信方法。
PCT/JP2011/061254 2010-05-26 2011-05-17 無線通信装置および無線通信方法 WO2011148820A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112012029460A BR112012029460A2 (pt) 2010-05-26 2011-05-17 "dispositivo e método de comunicação sem fio"
RU2012149195/07A RU2572096C2 (ru) 2010-05-26 2011-05-17 Устройство беспроводной связи и способ беспроводной связи
US13/641,633 US9301255B2 (en) 2010-05-26 2011-05-17 Wireless communication device and wireless communication method
CN201180024314.XA CN102907149B (zh) 2010-05-26 2011-05-17 无线通信装置和无线通信方法
KR1020127029835A KR20130093503A (ko) 2010-05-26 2011-05-17 무선 통신 장치 및 무선 통신 방법
EP11786519.6A EP2579656A4 (en) 2010-05-26 2011-05-17 WIRELESS COMMUNICATION DEVICE AND WIRELESS COMMUNICATION PROCESS
US15/055,309 US9629086B2 (en) 2010-05-26 2016-02-26 Wireless communication device and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-120633 2010-05-26
JP2010120633A JP5589558B2 (ja) 2010-05-26 2010-05-26 無線通信装置および無線通信方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/641,633 A-371-Of-International US9301255B2 (en) 2010-05-26 2011-05-17 Wireless communication device and wireless communication method
US15/055,309 Continuation US9629086B2 (en) 2010-05-26 2016-02-26 Wireless communication device and wireless communication method

Publications (1)

Publication Number Publication Date
WO2011148820A1 true WO2011148820A1 (ja) 2011-12-01

Family

ID=45003811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061254 WO2011148820A1 (ja) 2010-05-26 2011-05-17 無線通信装置および無線通信方法

Country Status (8)

Country Link
US (2) US9301255B2 (ja)
EP (1) EP2579656A4 (ja)
JP (1) JP5589558B2 (ja)
KR (1) KR20130093503A (ja)
CN (2) CN102907149B (ja)
BR (1) BR112012029460A2 (ja)
RU (1) RU2572096C2 (ja)
WO (1) WO2011148820A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079337A (zh) * 2013-03-27 2014-10-01 上海贝尔股份有限公司 一种机器类型通信的频率分集传输方法
WO2017047325A1 (ja) * 2015-09-17 2017-03-23 株式会社デンソー 通信装置
RU2787853C1 (ru) * 2019-09-02 2023-01-13 Хуавей Текнолоджиз Ко., Лтд. Способ и устройство управления воздействием радиочастотного излучения беспроводного устройства и беспроводное устройство

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2502274B (en) * 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
WO2016055104A1 (en) 2014-10-08 2016-04-14 Telefonaktiebolaget L M Ericsson (Publ) Low latency transmission configuration
CN106797622B (zh) * 2014-10-08 2020-05-12 瑞典爱立信有限公司 随机接入通道配置
EP3251263B1 (en) 2015-01-30 2019-07-17 Telefonaktiebolaget LM Ericsson (publ) Configuring wireless communications resources
US10045334B2 (en) * 2015-02-13 2018-08-07 Qualcomm Incorporated Reference signal design for coverage enhancements
CN109417814B (zh) * 2016-07-25 2020-09-29 华为技术有限公司 一种调度方法、功率控制方法及基站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013870A (ja) 1998-06-25 2000-01-14 Sony Corp 通信方法、基地局及び端末装置
JP2007300507A (ja) * 2006-05-01 2007-11-15 Ntt Docomo Inc 送信装置及び受信装置
WO2009120941A2 (en) * 2008-03-28 2009-10-01 Qualcomm Incorporated Signaling message transmission in a wireless communication network

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7016319B2 (en) 2003-03-24 2006-03-21 Motorola, Inc. Method and apparatus for reducing co-channel interference in a communication system
US9301318B2 (en) * 2006-01-20 2016-03-29 Nokia Technologies Oy Random access procedure with enhanced coverage
JP4476968B2 (ja) * 2006-06-19 2010-06-09 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局、ユーザ装置、送信方法及び受信方法
JP4412505B2 (ja) * 2007-08-08 2010-02-10 日本電気株式会社 無線通信システム
US8537790B2 (en) 2008-03-10 2013-09-17 Motorola Mobility Llc Hierarchical pilot structure in wireless communication systems
US9276787B2 (en) 2008-03-28 2016-03-01 Qualcomm Incorporated Transmission of signaling messages using beacon signals
US8805429B2 (en) * 2009-06-02 2014-08-12 Lg Electronics Inc. Inter-cell interference mitigating method in wireless communication system and apparatus therefor
ES2659886T3 (es) * 2009-10-05 2018-03-19 Telefonaktiebolaget Lm Ericsson (Publ) Asignación de recursos de PUCCH para la agregación de portadoras en LTE-avanzado

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013870A (ja) 1998-06-25 2000-01-14 Sony Corp 通信方法、基地局及び端末装置
JP2007300507A (ja) * 2006-05-01 2007-11-15 Ntt Docomo Inc 送信装置及び受信装置
WO2009120941A2 (en) * 2008-03-28 2009-10-01 Qualcomm Incorporated Signaling message transmission in a wireless communication network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Study on facilitating machine to machine communication in 3GPP systems", 3GPP TR22.868 V8.0.0, March 2007 (2007-03-01), XP050361381 *
GSM: "Service requirements for machine-type communications;Stage1 (release 1)", 3GPP TS22.368 V1.1.1, November 2009 (2009-11-01), XP050400696 *
See also references of EP2579656A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079337A (zh) * 2013-03-27 2014-10-01 上海贝尔股份有限公司 一种机器类型通信的频率分集传输方法
WO2017047325A1 (ja) * 2015-09-17 2017-03-23 株式会社デンソー 通信装置
JP2017060042A (ja) * 2015-09-17 2017-03-23 株式会社デンソー 通信装置
RU2787853C1 (ru) * 2019-09-02 2023-01-13 Хуавей Текнолоджиз Ко., Лтд. Способ и устройство управления воздействием радиочастотного излучения беспроводного устройства и беспроводное устройство

Also Published As

Publication number Publication date
BR112012029460A2 (pt) 2017-03-01
RU2572096C2 (ru) 2015-12-27
JP5589558B2 (ja) 2014-09-17
JP2011250091A (ja) 2011-12-08
EP2579656A4 (en) 2015-10-07
US9301255B2 (en) 2016-03-29
US20130034079A1 (en) 2013-02-07
EP2579656A1 (en) 2013-04-10
KR20130093503A (ko) 2013-08-22
US20160205629A1 (en) 2016-07-14
RU2012149195A (ru) 2014-05-27
CN105101395A (zh) 2015-11-25
US9629086B2 (en) 2017-04-18
CN102907149A (zh) 2013-01-30
CN102907149B (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
US11006427B2 (en) Communication system, base station, and communication terminal for controlling interference from neighboring cells
US9629086B2 (en) Wireless communication device and wireless communication method
EP3427408B1 (en) Relay for enhanced machine type communication and narrow band-internet of things
TWI700913B (zh) 使用者設備及其無線通訊方法
TWI734972B (zh) 使用者設備之無線通訊方法及裝置、電腦可讀介質
CN110073712B (zh) 经由经协调的空闲信道评估和切换信令的频带选择
TW202038659A (zh) 同步上行鏈路傳輸方法、裝置及電腦可讀介質
CN111771418A (zh) 用于由用户设备进行的波束故障恢复请求的系统和方法
JP5732753B2 (ja) 無線通信装置、無線通信システムおよび無線通信方法
CN112913307B (zh) 减少辅小区激活延迟的技术
CN115606109A (zh) 网络辅助侧行链路波束故障恢复
US11812470B2 (en) Receiver feedback about potential collisions
EP3036961A1 (en) Coordination for pbch
JP2022511095A (ja) Cot中で選択されるcoresetのサブセットのシグナリング
CN112806033A (zh) 基于v2x网络的中继
JP7168654B2 (ja) 信頼性能が改善されたnprach
US20140064103A1 (en) Apparatus and Method For Declaring Radio Link Failure (RLF)
CN114223147A (zh) 用于侧链路传输的拥塞控制
CN106664728B (zh) 随机接入信道传输方法和装置
JP2024514131A (ja) 処理能力が制約されたシナリオにおいてマルチrtt測位を改善するためにprsとsrsとの関連付けを定義すること

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024314.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786519

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13641633

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127029835

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012149195

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 9724/CHENP/2012

Country of ref document: IN

Ref document number: 2011786519

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012029460

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012029460

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121119