WO2011148501A1 - ステータ - Google Patents

ステータ Download PDF

Info

Publication number
WO2011148501A1
WO2011148501A1 PCT/JP2010/059094 JP2010059094W WO2011148501A1 WO 2011148501 A1 WO2011148501 A1 WO 2011148501A1 JP 2010059094 W JP2010059094 W JP 2010059094W WO 2011148501 A1 WO2011148501 A1 WO 2011148501A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
wire group
phase
slot
coil wire
Prior art date
Application number
PCT/JP2010/059094
Other languages
English (en)
French (fr)
Inventor
明秀 竹原
利典 大河内
嘉栄 北川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/059094 priority Critical patent/WO2011148501A1/ja
Publication of WO2011148501A1 publication Critical patent/WO2011148501A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation

Definitions

  • the present invention relates to a stator, and more particularly, to a stator including a coil wire having a distributed winding structure.
  • stator capable of reducing the size of the coil end portion has been proposed in recent years.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2009-291050
  • the slot conductor portions are arranged in the radial direction in the slot, and the rising conductor portion branches in the circumferential direction of the stator core.
  • a stator including a set of two coil conductors arranged adjacent to each other arranged in an axially arranged state.
  • the conventional stator described above three-phase coil conductors of U phase, V phase and W phase are alternately arranged in the radial direction on the coil end. It is necessary to insulate between coil conductors of different phases. Therefore, the conventional stator has a problem that the number of inter-phase insulation points increases, the insulation points become complicated, and the insulation becomes difficult.
  • the present invention has been made in view of the above-mentioned problems, and its main purpose is to provide a stator that can reduce the number of inter-phase insulation points and can easily insulate the phases.
  • the stator according to the present invention includes a stator core that is formed in an annular shape and has a plurality of slots formed on an inner peripheral surface thereof, and a plurality of coils that are inserted into the slots.
  • Each phase coil includes a coil wire.
  • the coil wires of the same phase are arranged adjacent to each other in the axial direction and the radial direction of the stator core.
  • the coil includes a first coil wire group and a second coil wire group each having a part of a coil wire inserted into the first slot, the first coil wire group and the second coil wire group, May be arranged in the radial direction in the first slot, arranged in the circumferential direction of the stator core at the slot outlet portion where the coil extends in the axial direction to the outside of the stator core, and arranged in the axial direction in the coil end portion.
  • the first coil wire group has half of the coil wires inserted into the first slot
  • the second coil wire group has half of the coil wires inserted into the first slot. Also good.
  • the coil wires may be arranged in the radial direction at the coil end portion.
  • the coil includes a third coil wire group and a fourth coil wire group each having a part of a coil wire inserted into a second slot adjacent to the first slot, and the third coil wire group,
  • the fourth coil wire group is arranged in the radial direction in the second slot, and arranged in the circumferential direction at the slot outlet, and the first coil wire group, the second coil wire group, the third coil wire group, and the fourth coil.
  • the wire group may be arranged in the axial direction at the coil end portion.
  • the coil includes a first coil conductor having a first phase, a second coil conductor having a second phase different from the first phase, and a third coil conductor having a third phase different from the first phase and the second phase.
  • the first coil conductor and the second coil conductor may be arranged in the radial direction
  • the second coil conductor and the third coil conductor may be arranged in the radial direction.
  • the first coil conductor may extend in the circumferential direction at the coil end portion.
  • the third coil conductor may extend in the circumferential direction at the coil end portion.
  • the second coil conductor may extend in the circumferential direction at the coil end portion.
  • the second coil conductor has a diameter between the first coil conductor and a first coil conductor that extends in the circumferential direction by forming a radial gap between the second coil conductor and the first coil conductor.
  • the first coil wire group and the second coil wire group are formed by one continuous first electric wire, and the third coil wire group and the fourth coil wire group are different from the first electric wire. It may be formed by one second electric wire.
  • the first coil wire group and the second coil wire group are arranged radially in the first slot, and the third coil wire group and the fourth coil wire group are radially arranged in the second slot.
  • the first coil wire group and the second coil wire group are formed by different electric wires, and the third coil wire group and the fourth coil wire group may be formed by different electric wires.
  • the first coil wire group is disposed radially inside in the first slot
  • the second coil wire group is disposed radially outside
  • the third coil wire group is radially disposed in the second slot.
  • the fourth coil wire group is disposed on the inner side, the first coil wire group and the third coil wire group are formed by one continuous first electric wire, and the second coil wire group.
  • the group and the fourth coil wire group may be formed by one continuous second electric wire different from the first electric wire.
  • the first coil wire group is disposed radially inside in the first slot
  • the second coil wire group is disposed radially outside
  • the third coil wire group is radially disposed in the second slot.
  • the fourth coil wire group is arranged on the radially outer side, the first coil wire group and the fourth coil wire group are formed by one continuous first electric wire, and the second coil wire
  • the group and the third coil wire group may be formed by one continuous second electric wire different from the first electric wire.
  • the coil wire is formed by a rectangular wire having a substantially rectangular cross section having an insulating coating, and the insulating coating of the coil wire inserted into the first slot is the most on the surface facing the second slot.
  • the insulating film of the coil that is formed thick and is inserted into the second slot may be formed thickest on the surface facing the first slot.
  • stator capable of easily insulating between phases by reducing the number of interphase insulating portions.
  • FIG. 4 is a cross-sectional view of the stator core and the coil along the line VII-VII in FIG. 3.
  • FIG. 4 is a cross-sectional view of the stator core and the coil along the line VII-VII in FIG. 3.
  • FIG. 4 is a cross-sectional view of the stator core and the coil along the line VIII-VIII in FIG. 3. It is a schematic diagram which shows the interphase insulation location of the coil of each phase. It is a schematic diagram which shows the 1st example of arrangement
  • FIG. 10 is a perspective view showing the arrangement of coils viewed from the center side of the stator core according to the second embodiment.
  • FIG. 6 is a schematic diagram showing interphase insulation locations of coils of each phase according to the second embodiment. 6 is a perspective view showing an example of an interphase insulating material according to Embodiment 2.
  • FIG. 1 is a cross-sectional view of a rotating electrical machine 100 including a stator 140 according to Embodiment 1 of the present invention.
  • the rotating electrical machine 100 includes a rotating shaft 110 that is rotatably provided around a rotation center axis O, and a rotor 120 that is fixed to the rotating shaft 110 and is rotatably provided with the rotating shaft 110.
  • an annular stator 140 provided so as to surround the outer periphery of the rotor 120.
  • the rotating electrical machine 100 is typically mounted on a hybrid vehicle, and functions as a generator that generates electricity by using a power source such as a drive source for driving wheels or an engine. Furthermore, it can be mounted on an electric vehicle or the like, and is also used as a drive source for driving wheels.
  • the rotor 120 is provided on a rotor core 125 formed by laminating a plurality of electromagnetic steel plates, a plurality of permanent magnets 123 inserted into magnet insertion holes 126 formed in the rotor core 125, and an end surface of the rotor core 125. And an end plate 122.
  • the permanent magnet 123 is fixed by a resin 124 filled in the magnet insertion hole 126.
  • the stator 140 includes a stator core 141 formed in an annular shape around the rotation center axis O so as to surround the rotor 120.
  • a plurality of coils 180 are mounted on the axial end surfaces 177 and 178 of the stator 140.
  • Coil 180 attached to stator core 141 includes U-phase coil 181, V-phase coil 182, and W-phase coil 183.
  • U-phase coil 181, V-phase coil 182, and W-phase coil 183 are attached to stator core 141.
  • the mold resin 172 is formed on the axial end faces 177 and 178 of the stator 140 (stator core 141).
  • the mold resin 172 is made of, for example, thermosetting resin such as BMC (bulk molding compound) or epoxy resin, or thermoplastic resin such as PPS (polyphenylene sulfide) or PBT (polybutylene terephthalate).
  • the stator core 141 includes a divided stator core arranged in an annular shape, and an annular fixing member provided on the outer periphery of the divided stator core.
  • Each divided stator core includes a divided yoke portion extending in the circumferential direction and a stator tooth 171 formed so as to protrude from the divided yoke portion.
  • An annular yoke portion 170 is formed by arranging a plurality of divided stator cores in an annular shape, and each stator tooth 171 is disposed so as to protrude radially inward from the inner peripheral surface of the yoke portion 170.
  • FIG. 2 is a plan view of the stator core 141 viewed from the axial direction DR3.
  • the stator core 141 is formed in a substantially cylindrical shape.
  • the stator core 141 has a yoke portion 170 having a ring shape in plan view in the axial direction of the stator core 141 (the direction perpendicular to the paper surface in FIG. 2), and a plurality of stator teeth extending from the yoke portion 170 toward the inside in the radial direction DR2 of the stator core 141. 171.
  • the tip surface of the stator teeth 171 forms an inner peripheral surface 142 of the stator core 141.
  • a plurality of slots 191, 191 a, 192, 192 a, 193, and 193 a provided between the stator teeth 171 are formed on the inner peripheral surface 142 of the annular stator core 141.
  • FIG. 3 and 4 are plan views of the stator core 141 in a state where the coil 180 is mounted.
  • FIG. 5 is a perspective view showing the arrangement of U-phase coils 181 and 181a.
  • FIG. 6 is a schematic view of the U-phase coils 181 and 181a viewed in the direction of arrow VI in FIG.
  • FIG. 7 is a perspective view showing the arrangement of the coils 180 viewed from the center side of the stator core 141.
  • FIG. 8 is a cross-sectional view of stator core 141 and coil 180 taken along line VIII-VIII in FIG.
  • FIG. 9 is a cross-sectional view of stator core 141 and coil 180 taken along line IX-IX in FIG.
  • Coil 180 includes a U-phase coil 181 as a first coil conductor, a V-phase coil 182 as a second coil conductor, and a W-phase coil 183 as a third coil conductor.
  • a U-phase current as a first phase is supplied to the U-phase coil 181.
  • V-phase coil 182 is supplied with a V-phase current as a second phase different from the first phase.
  • W-phase coil 183 is supplied with a W-phase current as a third phase different from the first phase and the second phase.
  • the stator 140 has a distributed winding structure in which windings of respective phases are wound in a number of slots.
  • the U-phase coil 181 is inserted into a slot 191 as a first slot formed in the stator core 141.
  • the V-phase coil 182 is inserted into a slot 192 as a third slot formed in the stator core 141.
  • W-phase coil 183 is inserted into slot 193 as a fifth slot formed in stator core 141.
  • a U-phase coil 181a serving as a fourth coil conductor to which a U-phase current in phase with the U-phase coil 181 is supplied is inserted into a slot 191a serving as a second slot adjacent to the slot 191.
  • a V-phase coil 182a serving as a fifth coil conductor to which a V-phase current in phase with the V-phase coil 182 is supplied is inserted into a slot 192a serving as a fourth slot adjacent to the slot 192.
  • a W-phase coil 183a serving as a sixth coil conductor to which a W-phase current in phase with the W-phase coil 183 is supplied is inserted into a slot 193a serving as a sixth slot adjacent to the slot 193.
  • the U-phase coils 181 and 181a are inserted into the U-phase slots 191 and 191a, respectively.
  • the V-phase coils 182 and 182a are inserted into the V-phase slots 192 and 192a, respectively.
  • W-phase coils 183 and 183a are inserted into W-phase slots 193 and 193a, respectively.
  • On the inner peripheral surface 142 of the stator core 141 two U-phase slots 191, 191a, two V-phase slots 192, 192a, and two W-phase slots 193, 193a are arranged in the circumferential direction DR1 of the stator core 141. Is formed adjacent to. Multiple-phase coil conductors are inserted into the plurality of slots of the stator core 141.
  • FIG. 3 shows the positional relationship between the U-phase coil 181, the V-phase coil 182 and the W-phase coil 183 extending in the circumferential direction DR1 and the plurality of slots 191, 191a, 192, 192a, 193, 193a. , 191a, 192, 192a, 193, 193a are not shown.
  • the stator 140 in which the U-phase coils 181, 181 a, V-phase coils 182, 182 a, and W-phase coils 183, 183 a in the slots 191, 191 a, 192, 192 a, 193, 193 a are arranged in the axial direction
  • the state seen in DR3 is schematically illustrated.
  • the coils of each phase are divided into two sets in the circumferential direction DR1 immediately above each slot.
  • the two sets are arranged such that the positions in the circumferential direction DR1 are shifted from each other, are further bent in the radial direction DR2 and extend along the radial direction DR2, and are bent in the axial direction DR3 at a predetermined radial direction DR2 position. It extends along the direction DR3, is bent in the circumferential direction DR1 at a predetermined axial direction DR3 position, and extends along the circumferential direction DR1.
  • illustration of each phase coil in the path from going out of the slot to extending along the circumferential direction DR1 is omitted.
  • the U-phase coil 181 that is one of the three-phase coils included in the coil 180 includes the first coil wire group 11 and the second coil wire group 16.
  • the first coil wire group 11 and the second coil wire group 16 respectively have part of the coil wires 12 to 15 and 17 to 20 inserted in the slot 191.
  • the first coil wire group 11 includes half of the coil wires 12 to 15 and 17 to 20 inserted in the slot 191, the coil wires 12 to 15.
  • the second coil wire group 16 has coil wires 17 to 20 which are half of the coil wires 12 to 15 and 17 to 20 inserted in the slot 191.
  • the first coil wire group 11 and the second coil wire group 16 are arranged in the radial direction DR2 in the slot 191.
  • the first coil wire group 11 and the second coil wire group 16 are also arranged in the circumferential direction DR1 at the slot outlet portion 42 where the coil 180 extends to the outside of the stator core 141 in the axial direction DR3 (FIG. 6, See also FIG.
  • the slot outlet portion 42 is a region in the vicinity of the axial end faces 177 and 178 of the stator core 141 and extends the slots 191, 191 a, 192, 192 a, 193, and 193 a of each phase in the axial direction DR 3.
  • the region outside the stator core 141 is shown.
  • the first coil wire group 11 and the second coil wire group 16 also have coil end portions extending across the V-phase slots 192 and 192a and the W-phase slots 193 and 193a, which are other phases of the U-phase coil 181. 44, they are arranged in the axial direction DR3 (see also FIGS. 3 and 7).
  • the coil end portion 44 indicates a region slightly outside the axial end surfaces 177 and 178 of the stator core 141 outside the axial end surfaces 177 and 178 of the stator core 141 in the axial direction DR3.
  • the coil end portion 44 is a region on the side away from the stator core 141 in the axial direction DR3 with respect to the slot outlet portion 42.
  • the coil 180 of each phase extends along the circumferential direction DR1 across the slot of the other phase in the coil end portion 44.
  • the U-phase coil 181a includes a third coil wire group 21 and a fourth coil wire group 26.
  • the third coil wire group 21 and the fourth coil wire group 26 respectively have part of the coil wires 22 to 25 and 27 to 30 inserted into the slot 191a.
  • the third coil wire group 21 includes half of the coil wires 22 to 25 and 27 to 30 inserted in the slot 191a, the coil wires 22 to 25.
  • the fourth coil wire group 26 includes coil wires 27 to 30 which are half of the coil wires 22 to 25 and 27 to 30 inserted in the slot 191a.
  • the third coil wire group 21 and the fourth coil wire group 26 are arranged in the radial direction DR2 in the slot 191a.
  • the third coil wire group 21 and the fourth coil wire group 26 are also arranged in the circumferential direction DR1 at the slot outlet 42 (see also FIGS. 6 and 7).
  • the third coil wire group 21 and the fourth coil wire group 26 also have an axial direction in which the U-phase coil 181a extends across the V-phase slots 192 and 192a and the W-phase slots 193 and 193a. It is arranged in DR3.
  • the first coil wire group 11, the second coil wire group 16, the third coil wire group 21, and the fourth coil wire group 26 are arranged in the axial direction DR3. Yes.
  • the coil wires 12 to 15, 17 to 20, 22 to 25, and 27 to 30 are arranged in the radial direction DR2.
  • the U-phase coils 181 and 181a which are coils of one phase among the coils 180 of each phase, include coil wires 12 to 15, 17 to 20, 22 to 25, and 27 to 30.
  • the coil wires 12 to 15 and 17 to 20 are arranged next to each other in the slot 191 in order from the inside to the outside in the radial direction DR2.
  • Half of the coil wires 12 to 15 and 17 to 20 arranged in the slot 191 are divided into two sets. One set forms a first coil wire group 11 having coil wires 12-15, and the other set forms a second coil wire group 16 having coil wires 17-20.
  • the coil wires 12 to 15 and 17 to 20 extend in the axial direction DR3 inside the slot 191. That is, the first coil wire group 11 and the second coil wire group 16 extend in the axial direction DR3 inside the slot 191.
  • U-phase coil 181 includes a slot conductor portion extending into slot 191 along axial direction DR3.
  • the slot conductor portion includes a first coil wire group 11 as an inner diameter side coil set arranged inside the radial direction DR2 in the slot 191 and a first coil set as an outer diameter side coil set arranged outside the slot 191 in the radial direction. Divided into two coil wire groups 16.
  • the first coil wire group 11 and the second coil wire group 16 extending in the axial direction DR3 extend from the axial end surfaces 177 and 178 of the stator core 141 in the axial direction DR3, and exit from the slot 191.
  • the slot outlet portion 42 is an area where the first coil wire group 11 and the second coil wire group 16 that have come out of the slot 191 are arranged.
  • the first coil wire group 11 and the second coil wire group 16 arranged in the radial direction DR2 inside the slot 191 are arranged in the circumferential direction DR1 at the slot outlet portion 42.
  • the U-phase coil 181 is divided into two sets in the circumferential direction DR1 immediately above the slot 191, and the positions of the two sets are shifted from each other in the circumferential direction DR1.
  • the first coil wire group 11 and the second coil wire group 16 shifted in the circumferential direction DR1 are bent in the radial direction DR2 and extend along the radial direction DR2 to a predetermined position in the radial direction DR2. .
  • the first coil wire group 11 and the second coil wire group 16 are aligned in the radial direction DR2, bent in the axial direction DR3 toward the side away from the stator core 141, and axially DR3. Extends along the axial direction DR3 to a predetermined position.
  • the first coil wire group 11 and the second coil wire group 16 that are aligned in the radial direction DR2 at a predetermined axial direction DR3 position are bent in the circumferential direction DR1 and extend along the circumferential direction DR1.
  • the U-phase coil 181 includes a coil end conductor portion that extends along the circumferential direction DR1 at the coil end portion 44 on the outer side of the axial end surfaces 177 and 178 of the stator core 141.
  • U-phase coil 181 includes a conductor portion directly above the slot that connects a slot conductor portion extending in axial direction DR3 within slot 191 and a coil end conductor portion extending in circumferential direction DR1 at coil end portion 44.
  • the conductor portion immediately above the slot is branched so that a coil set continuous from the inner diameter side coil set of the slot conductor portion and a coil set continuous from the outer diameter side coil set are separated on both sides in the circumferential direction DR1, and bent in the radial direction DR2. Further, it is bent in the axial direction DR3 and connected to the coil end conductor portion.
  • the coil wires 22 to 25 and 27 to 30 included in the U-phase coil 181a are arranged adjacent to each other in order from the inside to the outside in the radial direction DR2 inside the slot 191a.
  • the coil wires 22 to 25 and 27 to 30 arranged in the slot 191a are divided into two sets by half. One set forms a third coil wire group 21 having coil wires 22-25, and the other set forms a fourth coil wire group 26 having coil wires 27-30.
  • U-phase coil 181a includes a slot conductor portion extending into slot 191a along axial direction DR3.
  • the slot conductor portion includes a third coil wire group 21 serving as an inner diameter side coil set disposed inside the radial direction DR2 in the slot 191a, and a third coil group serving as an outer diameter side coil set disposed radially outside the slot 191a. Divided into four coil wire groups 26.
  • the third coil wire group 21 and the fourth coil wire group 26 extending in the axial direction DR3 direction extend in the axial direction DR3 from the axial end faces 177 and 178 of the stator core 141, and exit from the slot 191a.
  • the slot outlet portion 42 is an area in which the third coil wire group 21 and the fourth coil wire group 26 that go out from the slot 191a are arranged.
  • the third coil wire group 21 and the fourth coil wire group 26 arranged in the radial direction DR2 in the slot 191a are arranged in the circumferential direction DR1 at the slot outlet portion 42.
  • the U-phase coil 181a is divided into two sets in the circumferential direction DR1 immediately above the slot 191a, and the two sets are arranged with their positions in the circumferential direction DR1 shifted from each other.
  • the third coil wire group 21 and the fourth coil wire group 26 shifted in the circumferential direction DR1 are bent in the radial direction DR2 and extend along the radial direction DR2 to a predetermined position in the radial direction DR2.
  • the three-phase coil 180 is arranged at the position in the radial direction DR2 that is the same as the radial direction DR2 position of the U-phase coil 181 on the outermost diameter side in the radial direction DR2.
  • the third coil wire group 21 and the fourth coil wire group 26 are aligned in the radial direction DR2, bent in the axial direction DR3 toward the side away from the stator core 141, and axial direction DR3. Extends along the axial direction DR3 to a predetermined position.
  • the third coil wire group 21 and the fourth coil wire group 26 that are aligned in the radial direction DR2 at a predetermined axial direction DR3 position are bent in the circumferential direction DR1 and extend along the circumferential direction DR1. Exists.
  • the U-phase coil 181a includes a coil end conductor portion that extends along the circumferential direction DR1 at the outer coil end portion 44 of the axial end surfaces 177 and 178 of the stator core 141.
  • U-phase coil 181a includes a conductor portion directly above the slot that connects a slot conductor portion extending in axial direction DR3 within slot 191a and a coil end conductor portion extending in circumferential direction DR1 at coil end portion 44.
  • the conductor portion immediately above the slot is branched so that a coil set continuous from the inner diameter side coil set of the slot conductor portion and a coil set continuous from the outer diameter side coil set are separated on both sides in the circumferential direction DR1, and bent in the radial direction DR2. Further, it is bent in the axial direction DR3 and connected to the coil end conductor portion.
  • the U-phase coil 181 is bent and disposed as described above in the path from the inside of the slot 191 to the coil end portion 44, whereby the first coil wire group 11 extending in the circumferential direction DR1 at the coil end portion 44 and the second coil wire group 11 are arranged.
  • the coil wire group 16 is arranged so as to overlap with the axial direction DR3.
  • the coil wires 12 to 15 included in the first coil wire group 11 are arranged adjacent to each other in the radial direction DR2.
  • the coil wires 17 to 20 included in the second coil wire group 16 are arranged so as to be adjacent to each other in the radial direction DR2.
  • the in-phase coil wires 12 to 15 and 17 to 20 are arranged adjacent to each other in the axial direction DR3 and the radial direction DR2.
  • the U-phase coil 181a is bent and arranged as described above in the path from the inside of the slot 191a to the coil end portion 44, whereby the third coil wire group 21 and the fourth coil group extending in the circumferential direction DR1 at the coil end portion 44 are arranged.
  • the coil wire group 26 is arranged so as to overlap in the axial direction DR3.
  • the coil wires 22 to 25 included in the third coil wire group 21 are arranged adjacent to each other in the radial direction DR2.
  • the coil wires 27 to 30 included in the fourth coil wire group 26 are arranged so as to be adjacent to each other in the radial direction DR2.
  • the first coil wire group 11, the second coil wire group 16, the third coil wire group 21, and the fourth coil wire group 26 are arranged side by side in the axial direction DR3.
  • in-phase coil wires 12 to 15, 17 to 20, 22 to 25, and 27 to 30 are adjacent to each other in the axial direction DR3 and the radial direction DR2. Be placed.
  • in-phase coil wires 12 to 15, 17 to 20, 22 to 25, and 27 to 30 are adjacent to each other in the axial direction DR3 and the radial direction DR2. Be placed.
  • the conventional configuration in which the coil wires of different phases are alternately arranged. Compared with, it can reduce the location which requires the insulation between phases.
  • the conventional configuration requires interphase insulation for all the coil wires of different phases, whereas the configuration of the present embodiment does not require interphase insulation for the adjacent in-phase coil wires. Can be reduced. Therefore, the number of necessary interphase insulating materials can be reduced, and the man-hours required for arranging the interphase insulating materials can be reduced, so that the manufacturing cost of the stator 140 can be reduced.
  • the first coil wire group 11 and the second coil wire group 16 each including the in-phase coil wires 12 to 15 and 17 to 20 are arranged in the axial direction DR3 at the coil end portion 44. Accordingly, the coil wires 12 and 17 having the same phase can be reliably arranged side by side in the axial direction DR3 in the coil end portion 44.
  • the radial direction DR2 necessary for extending the U-phase coil 181 in the circumferential direction DR1 is obtained. Space can be reduced.
  • the first coil wire group 11 and the second coil wire group 16 whose positions in the circumferential direction DR1 are shifted from each other at the slot outlet portion 42 are bent in the radial direction DR2 and the axial direction DR3, so that the coil is formed from the inside of the slot 191.
  • the stator 140 can be reduced in size. Further, interference between the U-phase coil 181 and the V-phase coil 182 and W-phase coil 183 of other phases can be easily avoided.
  • the in-phase coil wires 12 to 15 included in the first coil wire group 11 and the in-phase coil wires 17 to 20 included in the second coil wire group 16 are arranged in the radial direction DR2 at the coil end portion 44. Thereby, the coil wires 12 and 13 having the same phase can be reliably arranged adjacent to each other in the radial direction DR2 in the coil end portion 44.
  • the V-phase coils 182, 182a and the W-phase coils 183, 183a can also be formed in the same structure as the U-phase coils 181, 181a described above.
  • the extending length in the radial direction DR2 of the coil of each phase in the path from the slot outlet portion 42 to the coil end portion 44 is the radial direction DR2 in the coil end portion 44 and the U-phase coil 181 from the outer diameter side, It is prescribed that the V-phase coil 182 and the W-phase coil 183 are arranged in this order.
  • U-phase coil 181 and V-phase coil 182 are arranged in radial direction DR2, and V-phase coil 182 and W-phase coil 183 are arranged in radial direction DR2. Lined up and arranged.
  • the U-phase coil 181 extends in the circumferential direction DR1 at the coil end portion 44.
  • V-phase coil 182 extends in circumferential direction DR1 at coil end portion 44.
  • W-phase coil 183 extends in circumferential direction DR1 at coil end portion 44.
  • the three-phase coil 180 that is, the U-phase coil 181, the V-phase coil 182, and the W-phase coil 183 are arranged so that the positions in the radial direction DR 2 are shifted from each other.
  • each of the U-phase coil 181, the V-phase coil 182, and the W-phase coil 183 extends in the circumferential direction DR1, and the arrangement of the radial direction DR2 of each phase can be changed for each phase. ing.
  • the coil conductors of the respective phases are arranged side by side with the coil conductors of the other phases in the radial direction DR2 in the coil end portion 44.
  • the stator core 141 is provided with two slots of each phase adjacent to each other in the circumferential direction DR1.
  • the U-phase coil 181 extends in the U-phase slot 191 from one side to the other side in the axial direction DR3 of the stator core 141, and passes through the coil end portion 44 to the other adjacent to the slot 191 in the radial direction DR2.
  • the inside of the U-phase slot 191 extends from the other side in the axial direction DR3 to one side.
  • the U-phase coil 181 is alternately connected to the coil end portion 44 outside the axial end surface 177 on one side of the stator core 141 and the coil end portion 44 outside the axial end surface 178 on the other side, and is alternately connected a plurality of times.
  • 141 is formed in a wave-like shape that makes a round in the circumferential direction DR1.
  • the U-phase coil 181a extends from one side to the other side in the axial direction DR3 of the stator core 141 in the U-phase slot 191a, and passes through the coil end portion 44 to the other adjacent to the slot 191a in the radial direction DR2.
  • the U-phase slot 191a extends from the other side in the axial direction DR3 to one side.
  • the U-phase coil 181a is alternately connected to the coil end portion 44 on the outer side of the axial end surface 177 on one side of the stator core 141 and the coil end portion 44 on the outer side of the axial end surface 178 on the other side.
  • 141 is formed in a wave-like shape that makes a round in the circumferential direction DR1.
  • the U-phase coil 181 extends from the U-phase slot 191 to the coil end portion 44.
  • the U-phase slot 191a, the V-phase slots 192a and 192, and the W-phase Extends in the circumferential direction DR1 across the slots 193, 193a of the first and 191a of the U phase and is inserted into the U phase slot 191.
  • the U-phase coil 181a extends from the U-phase slot 191a to the coil end portion 44, extends in the circumferential direction DR1 across the V-phase slots 192a and 192 and the W-phase slots 193 and 193a. Is inserted into the slot 191a.
  • the U-phase coil 181 a extending in the circumferential direction DR ⁇ b> 1 in the coil end portion 44 is closer to the axial end surfaces 177 and 178 of the stator core 141 than the U-phase coil 181. Arranged. Therefore, as shown in FIGS. 3 and 4, when viewed in plan along the axial direction DR3, the U-phase coil 181a is hidden behind the U-phase coil 181 and cannot be seen.
  • V-phase coils 182 and 182a and the W-phase coils 183 and 183a are also alternately passed through the coil end portions 44 on one side and the other side in the axial direction DR3, respectively, similarly to the U-phase coils 181 and 181a. It is formed in a wavy shape.
  • FIG. 10 is a schematic diagram showing interphase insulation locations 81 and 82 of the coils of each phase.
  • the U-phase coil 181, the V-phase coil 182, and the W-phase coil 183 extending in the circumferential direction DR ⁇ b> 1 are arranged such that the positions in the radial direction DR ⁇ b> 2 are shifted from each other. Therefore, as shown in FIG. 10, the U-phase coil 181 and the V-phase coil are disposed only in a portion where the inner peripheral side in the radial direction DR2 of the U-phase coil 181 and the outer peripheral side of the V-phase coil 182 are closely opposed.
  • An inter-phase insulation location 81 between 182 is provided.
  • phase difference between the V-phase coil 182 and the W-phase coil 183 is only in the portion where the inner peripheral side in the radial direction DR2 of the V-phase coil 182 and the outer peripheral side of the W-phase coil 183 are close to each other.
  • An insulation location 82 is provided.
  • the coil wires 12 to 15, 17 to 20, 22 to 25, and 27 to 30 are arranged adjacent to each other in the axial direction DR3 and the radial direction DR2. Therefore, as shown in FIG. 10, interphase insulation may be performed only at interphase insulation locations 81 and 82 where the coils of each phase are adjacent in the coil end portion 44. Therefore, the location requiring interphase insulation is clarified, and the interphase insulation locations 81 and 82 can be easily grasped. Further, the number of places where interphase insulation is required can be reduced, and the interphase insulation can be easily obtained at the minimum necessary interphase insulation places 81 and 82.
  • the interphase insulating portions 81 and 82 are both formed in an arc shape.
  • the interphase insulating portions 81 and 82 are both formed in an arc shape.
  • the interphase insulating paper by interposing the interphase insulating paper at the interphase insulating portions 81 and 82 having a simple shape, it is possible to insulate the phases. Therefore, since a necessary insulating material can be reduced and man-hours required for interphase insulation can be reduced, the coils of each phase can be easily insulated.
  • the shape of the necessary insulating material can be made the same, and the insulating material having the same shape can be shared, so that the cost of the insulating material can be reduced.
  • FIG. 11 is a schematic diagram showing a first example of the arrangement of coil wires in the slots 191 and 191a.
  • FIG. 11 shows in-phase U-phase coil 181 and U-phase coil 181a mounted in two adjacent slots 191 and 191a with stator teeth 171 interposed therebetween.
  • the U-phase coil 181 includes a first coil wire group 11 disposed inside the radial direction DR2 in the slot 191 and a second coil wire group 16 disposed outside the radial direction DR2 in the slot 191.
  • the first coil wire group 11 has coil wires 12 to 15 arranged in order from the inside to the outside in the radial direction DR2 inside the slot 191.
  • the second coil wire group 16 has coil wires 17 to 20 arranged in order from the inside to the outside in the radial direction DR2 inside the slot 191.
  • the U-phase coil 181a includes a third coil wire group 21 disposed inside the radial direction DR2 in the slot 191a and a fourth coil wire group 26 disposed outside the radial direction DR2 in the slot 191a.
  • the third coil wire group 21 has coil wires 22 to 25 arranged in order from the inside to the outside in the radial direction DR2 inside the slot 191a.
  • the fourth coil wire group 26 has coil wires 27 to 30 arranged in order from the inside to the outside in the radial direction DR2 inside the slot 191a.
  • the first coil wire group 11 and the second coil wire group 16 are arranged in the radial direction DR2 in the slot 191.
  • the first coil wire group 11 is disposed on the inner side in the radial direction DR2
  • the second coil wire group 16 is disposed on the outer side in the radial direction DR2.
  • the third coil wire group 21 and the fourth coil wire group 26 are arranged in the radial direction DR2 in the slot 191a.
  • the third coil wire group 21 is disposed inside the radial direction DR2
  • the fourth coil wire group 26 is disposed outside the radial direction DR2.
  • the 1st coil wire group 11 and the 2nd coil wire group 16 are formed of the 1st electric wire which is one continuous electric wire.
  • the third coil wire group 21 and the fourth coil wire group 26 are formed by a second electric wire which is a single continuous electric wire different from the first electric wire.
  • the stator 140 is provided with an 8-turn specification in which each of the first electric wire and the second electric wire is wound around the stator core 141 in the circumferential direction DR1. In the slot 191, the U-phase coil 181 for 8 turns is mounted. Similarly, a U-phase coil 181a for 8 turns is mounted in the slot 191a.
  • the stator 140 has a double star connection structure in which two electric wires are used in one phase and the two electric wires are connected in parallel.
  • each of the coil wires 12 to 15, 17 to 20, 22 to 25, and 27 to 30 is given any number from 1 to 8. This number indicates which winding from the first turn to the eighth turn corresponds to each coil wire.
  • the 8-turn coil wires 12 to 15 and 17 to 20 in the slot 191 are arranged in the radial direction DR2 between the first coil wire group 11 as an inner diameter coil set and the second coil wire group 16 as an outer diameter coil set. It is divided into two.
  • the first coil wire group 11 includes four-turn coil wires 12 to 15 corresponding to half of the eight-turn coil wires 12 to 15 and 17 to 20.
  • the second coil wire group 16 includes four-turn coil wires 17 to 20 corresponding to half of the eight-turn coil wires 12 to 15 and 17 to 20.
  • the 8-turn coil wires 22 to 25 and 27 to 30 in the slot 191a are arranged in the radial direction DR2 between a third coil wire group 21 as an inner diameter coil set and a fourth coil wire group 26 as an outer diameter coil set. It is divided into two.
  • the third coil wire group 21 includes four-turn coil wires 22 to 25 corresponding to half of the eight-turn coil wires 22 to 25 and 27 to 30.
  • the fourth coil wire group 26 includes four-turn coil wires 27 to 30 corresponding to half of the eight-turn coil wires 22 to 25 and 27 to 30.
  • FIG. 12 is a schematic diagram showing a first example of the arrangement of the coil wires at the slot outlet 42.
  • the first coil wire group 11 and the second coil wire group 16 are arranged in the circumferential direction DR1 at the slot outlet portion 42 immediately above the slots 191 and 191a, and the third coil wire group 21 and the fourth coil wire.
  • the group 26 is arranged in the circumferential direction DR1.
  • the U-phase coils 181 and 181a are connected to the first coil wire group 11, the second coil wire group 16, the third coil wire group 21, the first coil wire group 181a, and the first coil wire group 21 at positions extending outward from the slots 191 and 191a.
  • the four coil wire groups 26 are arranged in the circumferential direction DR1 in this order.
  • the slots 191 and 191a and other slots 191 and 191a adjacent to the slots 191 and 191a extend along the axial direction DR3, and extend outward from the stator core 141 from the axial end surface 177 on one side.
  • the U-phase coils 181 and 181a to be output are shown.
  • the U-phase coils 181 and 181a of the slot outlet portion 42 illustrated on the left side of FIG. 12 are bent and extend along the circumferential direction DR1, and are bent again, so that the slots illustrated on the right side of FIG.
  • the U-phase coils 181 and 181a of the outlet portion 42 are connected.
  • the arrangement of the wire group 11, the second coil wire group 16, the third coil wire group 21, and the fourth coil wire group 26 is symmetric.
  • the first electric wire and the second electric wire forming the U-phase coils 181 and 181a are wound eight times in the circumferential direction DR1 of the stator core 141. Even within the same wire, there is a time difference of a minute current flow in 8 turns. That is, there is a minute time difference from when the current flows through the first turn winding to when the current flows through the eighth turn winding. Therefore, a shared voltage difference occurs in the same phase. Insulations within the phase are required at locations where the shared voltage difference within the phase is high. For example, the coil wire 12 shown in the lower left corner in FIG.
  • the coil wire 17 adjacent to the right is the coil of the fourth turn
  • the current in the coil wires 12 and 17 is The potential difference between the coil wires 12 and 17 may increase momentarily due to a minute time difference in flow.
  • the in-phase insulation locations 91 and 92 shown in FIG. 12 are locations that require in-phase insulation. Insulation within the phase can be performed by disposing insulating members such as insulating paper at the in-phase insulation locations 91 and 92. By electrically insulating the in-phase insulating portions 91 and 92, the insulating performance of the U-phase coils 181 and 181a can be stabilized, and the portions that need to be insulated can be reliably insulated.
  • FIG. 13 is a schematic diagram showing a second example of the arrangement of coil wires in the slots 191 and 191a.
  • the first coil wire group 11 and the second coil wire group 16 each having the coil wires 12 to 15 and 17 to 20 arranged in the slot 191 and the slot 191a.
  • the third coil wire group 21 and the fourth coil wire group 26 having the coil wires 22 to 25 and 27 to 30 respectively disposed in FIG.
  • the first coil wire group 11 and the second coil wire group 16 are arranged in the radial direction DR2 in the slot 191.
  • the first coil wire group 11 is disposed on the inner side in the radial direction DR2
  • the second coil wire group 16 is disposed on the outer side in the radial direction DR2.
  • the third coil wire group 21 and the fourth coil wire group 26 are arranged in the radial direction DR2 in the slot 191a.
  • the third coil wire group 21 is disposed inside the radial direction DR2
  • the fourth coil wire group 26 is disposed outside the radial direction DR2.
  • the first coil wire group 11 and the second coil wire group 16 are formed by different electric wires
  • the third coil wire group 21 and the fourth coil wire group 26 are formed by different electric wires.
  • the 1st coil wire group 11 and the 3rd coil wire group 21 are formed of the 1st electric wire which is one continuous electric wire.
  • the second coil wire group 16 and the fourth coil wire group 26 are formed of a second electric wire that is a single continuous electric wire different from the first electric wire.
  • FIG. 14 is a schematic diagram showing a second example of the arrangement of the coil wires at the slot outlet 42.
  • FIG. 14 is a view showing the same arrangement of coil wires as in FIG. 12, and coil wires 12 to 15, 17 to 20, 22 to 25, 27 to 30 arranged in slots 191 and 191a as shown in FIG. It is a figure which shows arrangement
  • the first coil wire group 11 and the third coil wire group 21 are formed by one first electric wire
  • the second coil wire group 16 and the fourth coil wire group 26 are formed by one second electric wire.
  • the first coil wire group 11 arranged in the slot 191 constitutes the first to fourth turns of the first electric wire
  • the second coil wire group 16 arranged in the slot 191 is one turn of the second electric wire. Constructs from eye to turn 4. Therefore, as shown in FIG. 14, the first coil wire group 11 and the second coil wire group 16 are arranged in the circumferential direction DR1 at the slot outlet portion 42, whereby the first electric wire from the first turn to the fourth turn
  • the second electric wires are adjacent to each other.
  • the third coil wire group 21 arranged in the slot 191a constitutes the fifth to eighth turns of the first electric wire
  • the fourth coil wire group 26 arranged in the slot 191a is made of the second electric wire. Configure from turn 5 to turn 8. Therefore, as shown in FIG. 14, the third coil wire group 21 and the fourth coil wire group 26 are arranged in the circumferential direction DR1 at the slot outlet portion 42, whereby the first electric wire from the fifth turn to the eighth turn The second electric wires are adjacent to each other.
  • the difference between the numbers assigned to the two adjacent coil wires is large, and the in-phase insulation portion 91 shown in FIG. Only.
  • the in-phase insulating portion 91 By electrically insulating the in-phase insulating portion 91, the insulating performance of the U-phase coils 181 and 181a can be stabilized, and the portion requiring insulation can be reliably insulated.
  • the number of locations that require in-phase insulation is reduced. Therefore, the number of required in-phase insulating materials can be reduced, and the number of steps required for arranging the in-phase insulating materials can be reduced, so that the manufacturing cost of the stator 140 can be reduced.
  • FIG. 15 is a schematic diagram showing a third example of the arrangement of coil wires in the slots 191 and 191a.
  • the first coil wire group 11 and the second coil wire group 16 each having the coil wires 12 to 15 and 17 to 20 arranged in the slot 191, and the slot A third coil wire group 21 and a fourth coil wire group 26 having coil wires 22 to 25 and 27 to 30 arranged in 191a, respectively, are shown.
  • the first coil wire group 11 and the second coil wire group 16 are arranged in the radial direction DR2 in the slot 191.
  • the first coil wire group 11 is disposed on the inner side in the radial direction DR2
  • the second coil wire group 16 is disposed on the outer side in the radial direction DR2.
  • the third coil wire group 21 and the fourth coil wire group 26 are arranged in the radial direction DR2 in the slot 191a.
  • the third coil wire group 21 is disposed inside the radial direction DR2
  • the fourth coil wire group 26 is disposed outside the radial direction DR2.
  • the first coil wire group 11 and the second coil wire group 16 are formed by different electric wires, and the third coil wire group 21 and the fourth coil wire group 26 are formed by different electric wires.
  • the first coil wire group 11 and the fourth coil wire group 26 are formed by the first electric wire which is one continuous electric wire, and the second coil wire group 16 and the third coil wire group 21 are formed by the first electric wire.
  • 13 is different from the second example shown in FIG. 13 in that it is formed by a second electric wire which is a single continuous electric wire different from.
  • FIG. 16 is a schematic diagram showing a third example of the arrangement of the coil wires at the slot outlet 42.
  • FIG. 16 is a view showing the arrangement of coil wires similar to FIG. 12, and coil wires 12-15, 17-20, 22-25, 27-30 arranged in slots 191 and 191a as shown in FIG. It is a figure which shows arrangement
  • the first coil wire group 11 and the second coil wire group 16 are arranged in the circumferential direction DR1 at the slot outlet portion 42, as in the second example shown in FIG.
  • the first electric wire and the second electric wire in the first to fourth turns are adjacent to each other.
  • the third coil wire group 21 and the fourth coil wire group 26 are arranged in the circumferential direction DR1, so that the first electric wire and the second electric wire in the fifth to eighth turns are adjacent to each other.
  • the first to fourth turns of the second electric wire and the fifth to eighth turns of the first electric wire are adjacent to each other through the in-phase insulating portion 91.
  • the first to fourth turns of the second electric wire and the fifth to eighth turns of the second electric wire are adjacent to each other via the in-phase insulation portion 91.
  • the place where the difference between the numbers attached to the two adjacent coil wires is large and the insulation within the phase is necessary is only the in-phase insulation place 91. .
  • the in-phase insulating portion 91 By electrically insulating the in-phase insulating portion 91, the insulating performance of the U-phase coils 181 and 181a can be stabilized, and the portion requiring insulation can be reliably insulated.
  • the number of locations that require in-phase insulation is reduced. Therefore, the number of required in-phase insulating materials can be reduced, and the number of steps required for arranging the in-phase insulating materials can be reduced, so that the manufacturing cost of the stator 140 can be reduced.
  • the first coil wire group 11 and the third coil wire group 21 disposed on the radially inner side DR2 of both the adjacent slots 191 and 191a are formed from a single first electric wire.
  • the second coil wire group 16 and the fourth coil wire group 26 arranged on the outer diameter side in the radial direction DR2 have a configuration composed of another second electric wire.
  • the rotor 120 is disposed inside the annular stator 140 in the radial direction DR2.
  • a permanent magnet 123 is embedded in the rotor 120.
  • the first electric wire has a relatively small distance from the permanent magnet 123 along the entire circumference in the circumferential direction DR1.
  • the second electric wire has a relatively large distance from the permanent magnet 123 along the entire circumference in the circumferential direction DR1.
  • the distance from the permanent magnet 123 differs, so that the way of receiving the magnetic flux from the permanent magnet 123 differs between the first electric wire and the second electric wire. Therefore, since the electromotive force generated in each of the first electric wire and the second electric wire is different, a potential difference is generated between the first electric wire and the second electric wire. Since the stator 140 has a 2Y connection structure in which the first electric wire and the second electric wire are connected in parallel, a circulating current flows through the parallel circuit due to the potential difference. A vibration force is generated by the circulating current, the rotor 120 is vibrated, and noise and vibration characteristics during operation of the rotating electrical machine 100 are deteriorated.
  • the first coil wire group 11 inside the radial direction DR2 of the slot 191 and the fourth coil wire group 26 outside the radial direction DR2 of the adjacent in-phase slot 191a are provided. , Consisting of one first electric wire. Further, the second coil wire group 16 outside the radial direction DR2 of the slot 191 and the third coil wire group 21 inside the radial direction DR2 of the adjacent in-phase slot 191a are composed of one second electric wire. Therefore, when the arrangement of the coil wires in the adjacent slots 191 and 191a is viewed along the axial direction DR3, the coil arrangement is a cross arrangement in which the first electric wire and the second electric wire obliquely intersect.
  • the first electric wire including the first coil wire group 11 is arranged on the inner diameter side near the permanent magnet 123 in the slot 191, and the second electric wire including the third coil wire group 21 is inside the slot 191 a. It is arranged on the inner diameter side near 123.
  • the second electric wire including the second coil wire group 16 is arranged on the outer diameter side far from the permanent magnet 123, and in the slot 191 a, the first electric wire including the fourth coil wire group 26 is from the permanent magnet 123. It is arranged on the far outer diameter side.
  • the first electric wire and the second electric wire are switched between the inner diameter side and the outer diameter side.
  • FIGS. 17 and 18 are cross-sectional views showing the insulating coating 54 covering the coil wires 17 to 20 and 22 to 25, respectively.
  • the coil wires 12 to 15, 17 to 20, 22 to 25, and 27 to 30 of the present embodiment are formed by flat wires 52 having a substantially rectangular cross-sectional shape.
  • An insulating coating 54 is coated around the flat wire 52.
  • the flat wire 52 has an insulating coating 54 in contact with its four surfaces. On the four surfaces 31 to 34 and 35 to 38 around the flat wire 52, the thickness of the insulating coating 54 is changed.
  • the insulating film 54 which is adhered to the surface 34 is larger thickness than d 1 having a d 2.
  • the surface 34 is a surface facing the adjacent in-phase slot 191a when the coil wires 17 to 20 are inserted into the slot 191.
  • the insulating film 54 of the coil wires 17 to 20 inserted in the slot 191 is formed to be the thickest on the surface 34 facing the slot 191a.
  • the insulating film 54 which is adhered to the surface 36-38 whereas with a thickness d 1, the thickness insulating coating 54 bonded to the face 35 is greater than the thickness d 1 d 2
  • the surface 35 is a surface facing the adjacent in-phase slot 191 when the coil wires 22 to 25 are inserted into the slot 191a.
  • the insulating film 54 of the coil wires 22 to 25 inserted in the slot 191a is formed to be thickest on the surface 35 on the side facing the slot 191.
  • the insulating coating 54 Since the insulating coating 54 is thus thick, a thick portion of the insulating coating 54 is present between the second coil wire group 16 and the third coil wire group 21 in the in-phase insulating portion 91 shown in FIG. Sandwiched.
  • the insulating coating 54 has a thickness d 2 sufficient to ensure the necessary dielectric strength at the in-phase insulating portion 91 shown in FIG. 16, and electrically connects the second coil wire group 16 and the third coil wire group 21. Insulate. That is, it is not necessary to insulate by providing an insulating material such as insulating paper at the in-phase insulating portion 91 where in-phase insulation is required at the slot outlet portion 42 and the coil end portion 44.
  • the insulating coating 54 By thickening the insulating coating 54, it is possible to eliminate the need for an insulating material for the in-phase insulating portion 91 having a high in-phase shared voltage difference, so that the number of necessary in-phase insulating materials can be reduced and the in-phase insulating material can be reduced. Man-hours required for placement can be reduced.
  • the insulating coating 54 is thickened only on one side surface of the flat wire 52 inserted into the slots 191 and 191a, and the insulating coating 54 around the flat wire 52 is not thickened.
  • a minimum amount of the insulating coating 54 can be realized. Therefore, the proportion of the conductors in the slots 191 and 191a is larger than when the insulating coating 54 on the entire circumference is thickened. That is, insulation can be achieved without reducing the space factor, and a high space factor winding can be realized.
  • the current density at the heat rated operating point can be designed to be high, so that the size of the stator 140 can be reduced. Moreover, the fall of the output of the rotary electric machine 100 accompanying providing the insulating film 54 thick can be avoided.
  • the coil wires 12 to 15, 17 to 20, 22 to 25, and 27 to 30 are arranged in a cross manner.
  • the first coil wire group 11 and the second coil wire group 16 inserted into the slot 191 are arranged in the circumferential direction DR1
  • the third coil wire group 21 inserted into the slot 191a and the The four coil wire groups 26 are arranged in the circumferential direction DR1.
  • the place where the insulation in the phase is necessary can be set only in the in-phase insulation place 91 between the second coil wire group 16 and the third coil wire group 21.
  • the coil wires 12 to 15, 17 to 20, 22 to 25, and 27 to 30 it is possible to set in advance a place where in-phase insulation is necessary. Therefore, a portion corresponding to the in-phase insulating portion 91 where the insulating coating 54 should be formed with a large thickness can be easily grasped. Therefore, the coil wire 17 in which the insulating coating 54 is thickened only on one side as shown in FIGS. ⁇ 20, 22 ⁇ 25 can be easily produced.
  • V-phase coils 182 and 182a and the W-phase coils 183 and 183a can also obtain the same effects as described above by arranging the coil wires of the respective phases in the same manner as the U-phase coils 181 and 181a. .
  • FIGS. 19 and 20 are plan views of the stator core 141 in a state where the coil 180 of the second embodiment is mounted.
  • FIG. 21 is a perspective view showing the arrangement of coils 180 as seen from the center side of stator core 141 according to the second embodiment.
  • the stator 140 according to the second embodiment and the stator 140 according to the first embodiment described above basically have the same configuration.
  • the second embodiment is different from the first embodiment in that the configuration of the V-phase coil 182 is as shown in FIGS.
  • the V-phase coil 182 as the second coil conductor has a first portion 184 extending in the circumferential direction DR1 and a second portion 185 extending in the circumferential direction DR1 at the coil end portion 44. .
  • the first portion 184 forms a gap 196 in the radial direction DR2 between the first portion 184 and the U-phase coil 181.
  • the second portion 185 forms a gap 197 in the radial direction DR2 with the W-phase coil 183.
  • the V-phase coil 182 also has a third part 186 that connects the first part 184 and the second part 185.
  • the third portion 186 extends along the radial direction DR2 so as to extend from the position in the radial direction DR2 where the U-phase coil 181 extends to the position in the radial direction DR2 where the W-phase coil 183 extends.
  • FIG. 19 in order to show the positional relationship between the U-phase coil 181, the V-phase coil 182 and the W-phase coil 183 extending along the circumferential direction DR1 and the plurality of slots 191, 191a, 192, 192a, 193, 193a, The coils in the slots 191, 191a, 192, 192a, 193, 193a are not shown.
  • FIG. 20 the U-phase coils 181 and 181a, the V-phase coils 182 and 182a, and the W-phase coils 183 and 183a in the slots 191, 191a, 192, 192a, 193, and 193a are arranged.
  • a state in which the stator 140 is viewed in the axial direction DR3 is schematically illustrated.
  • the coils of each phase are divided into two sets in the circumferential direction DR1 immediately above each slot.
  • the two sets are arranged such that the positions in the circumferential direction DR1 are shifted from each other, are further bent in the radial direction DR2 and extend along the radial direction DR2, and are bent in the axial direction DR3 at a predetermined radial direction DR2 position. It extends along the direction DR3, is bent in the circumferential direction DR1 at a predetermined axial direction DR3 position, and extends along the circumferential direction DR1.
  • each phase coil in the path from going out of the slot to extending along the circumferential direction DR1 is not shown.
  • the U-phase coil 181 extends in the circumferential direction DR1 on the axial end surface 177 of the stator core 141.
  • a gap extending in the circumferential direction DR1 is formed between the U-phase coils 181 extending in an arc shape.
  • the U-phase coil 181 has a wave winding structure, and the U-phase coil 181 extends alternately on the axial end face 177 side and on the opposite axial end face 178 side.
  • a gap extending in the circumferential direction DR1 is formed between the U-phase coils 181 at a position in the circumferential direction DR1 where the U-phase coil 181 extends on the opposite axial end surface 178 side.
  • the gap extending in the circumferential direction DR1 is formed on the outer diameter side of the position where the V-phase coil 182 and the W-phase coil 183 are arranged in the radial direction DR2.
  • a gap extending in the circumferential direction DR1 is formed between the W-phase coils 183 extending in an arc shape on the axial end surface 177 of the stator core 141.
  • the W-phase coil 183 has a wave winding structure, and the circumferential direction DR1 is located between the W-phase coils 183 at a position in the circumferential direction DR1 where the W-phase coil 183 extends toward the opposite axial end surface 178 side.
  • a gap extending in the direction is formed.
  • the gap extending in the circumferential direction DR1 is formed on the inner diameter side of the position where the U-phase coil 181 and the V-phase coil 182 are arranged in the radial direction DR2.
  • the first portion 184 of the V-phase coil 182 is disposed in a gap extending in the circumferential direction DR ⁇ b> 1 between the W-phase coils 183 described above.
  • the second portion 185 of the V-phase coil 182 is disposed in a gap extending in the circumferential direction DR1 between the U-phase coils 181 described above. Since the first portion 184 and the W-phase coil 183 are arranged concentrically, a gap 196 in the radial direction DR2 is formed between the first portion 184 and the U-phase coil 181. Since the second portion 185 and the U-phase coil 181 are arranged concentrically, a gap 197 in the radial direction DR2 is formed between the second portion 185 and the W-phase coil 183.
  • a space is formed between the first portion 184 and the U-phase coil 181 so as to be in a non-contact state.
  • a space is formed between the second portion 185 and the W-phase coil 183 and is in a non-contact state.
  • the third portion 186 is disposed so as to extend in the radial direction DR2 from the radial direction DR2 position where the U-phase coil 181 is disposed to the radial direction DR2 position where the W-phase coil 183 is disposed.
  • the second part 185 is connected. Only a part of the third portion 186 outside the radial direction DR2 contacts the end of the U-phase coil 181, and only a portion of the third portion 186 inside the radial direction DR2 contacts the end of the W-phase coil 183.
  • FIG. 22 is a schematic diagram showing interphase insulation locations 81 and 82 of the coils of each phase according to the second embodiment.
  • U-phase coil 181 and V-phase coil 182 are in surface contact along circumferential direction DR1
  • V-phase coil 182 and W-phase coil 183 are in surface contact along circumferential direction DR1. Insulation between the phases was required at two points in contact with the surface. Therefore, as shown in FIG. 10, an arc-shaped interphase insulating portion 81 is formed between the inner surface of the U-phase coil 181 and the outer surface of the V-phase coil 182, and the inner diameter of the V-phase coil 182.
  • An arc-shaped interphase insulating portion 82 was formed between the outer surface and the outer surface of the W-phase coil 183.
  • the U-phase coil 181 and the V-phase coil 182 are arranged close to each other in a substantially line contact state.
  • the V-phase coil 182 and the W-phase coil 183 are: They are arranged close to each other in a substantially line contact state. Therefore, as shown in FIG. 22, inter-phase insulation locations 81 and 82 that require insulation between phases are extremely small, and the area that requires insulation is greatly reduced as compared with the first embodiment. Therefore, the required amount of the interphase insulating material can be reduced, and the man-hours required for arranging the interphase insulating material can be reduced, so that the manufacturing cost of the stator 140 can be reduced.
  • FIG. 23 is a perspective view showing an example of the interphase insulating material 83 of the second embodiment. Unlike the first embodiment, since the interphase insulating locations 81 and 82 shown in FIG. 22 are close to each other, the interphase insulating location 81, Both can be insulated.
  • the interphase insulating material 83 has a pair of insulating portions 84 and 85.
  • the insulating parts 84 and 85 have a plate-like shape and are arranged substantially spaced apart in parallel.
  • the interphase insulating material 83 straddles the third portion 186 of the V-phase coil 182 so that one of the insulating portions 84 and 85 is disposed at the inter-phase insulating portion 81 and the other is disposed at the inter-phase insulating portion 82. Attached to 182.
  • stator core 141 can be further reduced.

Abstract

 ステータ(140)は、環状に形成され、内周面(142)に複数のスロット(191)が形成されたステータコア(141)と、スロット(191)内に挿入された複数相のコイル(180)と、を備える。各相のコイル(180)は、コイル線(12~15,17~20,22~25,27~30)を含む。コイル(180)が他相のスロット(192)を跨いで延びるコイルエンド部(44)で、ステータコア(141)の軸方向(DR3)と径方向(DR2)とにおいて同相のコイル線(12~15,17~20,22~25,27~30)が隣り合って配置されている。

Description

ステータ
 本発明は、ステータに関し、特に、分布巻線構造のコイル線を備えるステータに関する。
 従来、ステータに関する種々の技術が提案されており、特に近年、コイルエンド部の寸法を小さくできるステータが提案されている。たとえば、特開2009-291050号公報(特許文献1)には、スロット導体部がスロット内の径方向に並ぶと共に、立上導体部がステータコアの周方向に分岐し、コイルエンド導体部においてステータコアの軸方向に並ぶ状態で配置してある、隣接して配置された2本1組のコイル導体を備えるステータが提案されている。
特開2009-291050号公報
 上述した従来のステータにおいては、コイルエンド上において、U相、V相およびW相の3相のコイル導体が、交互に径方向に並べられて配置されている。異なる相のコイル導体間は、絶縁する必要がある。そのため、従来のステータでは相間絶縁箇所が多くなり、絶縁箇所が複雑となり、絶縁が困難となる問題があった。
 本発明は上記の問題に鑑みてなされたものであり、その主たる目的は、相間絶縁箇所を低減し、容易に相間の絶縁が可能な、ステータを提供することである。
 本発明に係るステータは、環状に形成され、内周面に複数のスロットが形成されたステータコアと、スロット内に挿入された複数相のコイルと、を備える。各相のコイルは、コイル線を含む。コイルが他相のスロットを跨いで延びるコイルエンド部で、ステータコアの軸方向と径方向とにおいて同相のコイル線が隣り合って配置されている。
 上記ステータにおいて、コイルは、第一スロット内に挿入されたコイル線の一部をそれぞれ有する第一コイル線群と第二コイル線群とを含み、第一コイル線群と第二コイル線群とは、第一スロット内において径方向に並べられ、コイルが軸方向にステータコアの外部へ延出するスロット出口部においてステータコアの周方向に並べられ、コイルエンド部において軸方向に並べられてもよい。
 上記ステータにおいて、第一コイル線群は、第一スロット内に挿入されたコイル線の半数を有し、第二コイル線群は、第一スロット内に挿入されたコイル線の半数を有してもよい。
 上記ステータにおいて、コイル線は、コイルエンド部において径方向に並べられてもよい。
 上記ステータにおいて、コイルは、第一スロットに隣接する第二スロット内に挿入されたコイル線の一部をそれぞれ有する第三コイル線群と第四コイル線群とを含み、第三コイル線群と第四コイル線群とは、第二スロット内において径方向に並べられ、スロット出口部において周方向に並べられ、第一コイル線群と第二コイル線群と第三コイル線群と第四コイル線群とは、コイルエンド部において軸方向に並べられてもよい。
 上記ステータにおいて、コイルは、第一位相の第一コイル導体と、第一位相と異なる第二位相の第二コイル導体と、第一位相および第二位相と異なる第三位相の第三コイル導体と、を含み、コイルエンド部において、第一コイル導体と第二コイル導体とが径方向に並べられ、第二コイル導体と第三コイル導体とが径方向に並べられて配置されてもよい。
 上記ステータにおいて、第一コイル導体は、コイルエンド部において、周方向に延在してもよい。
 上記ステータにおいて、第三コイル導体は、コイルエンド部において、周方向に延在してもよい。
 上記ステータにおいて、第二コイル導体は、コイルエンド部において、周方向に延在してもよい。
 上記ステータにおいて、第二コイル導体は、コイルエンド部において、第一コイル導体との間に径方向の隙間を形成して周方向に延在する第一部分と、第三コイル導体との間に径方向の隙間を形成して周方向に延在する第二部分と、径方向に沿って延び第一部分と第二部分とを連結する第三部分と、を有してもよい。
 上記ステータにおいて、第一コイル線群と第二コイル線群とは、連続する一本の第一電線により形成され、第三コイル線群と第四コイル線群とは、第一電線と異なる連続する一本の第二電線により形成されてもよい。
 上記ステータにおいて、第一コイル線群と第二コイル線群とは、第一スロット内において径方向に並べられ、第三コイル線群と第四コイル線群とは、第二スロット内において径方向に並べられ、第一コイル線群と第二コイル線群とは、異なる電線により形成されており、第三コイル線群と第四コイル線群とは、異なる電線により形成されていてもよい。
 上記ステータにおいて、第一スロット内において、第一コイル線群が径方向内側に配置され、第二コイル線群が径方向外側に配置され、第二スロット内において、第三コイル線群が径方向内側に配置され、第四コイル線群が径方向外側に配置され、第一コイル線群と第三コイル線群とは、連続する一本の第一電線により形成されており、第二コイル線群と第四コイル線群とは、第一電線と異なる連続する一本の第二電線により形成されていてもよい。
 上記ステータにおいて、第一スロット内において、第一コイル線群が径方向内側に配置され、第二コイル線群が径方向外側に配置され、第二スロット内において、第三コイル線群が径方向内側に配置され、第四コイル線群が径方向外側に配置され、第一コイル線群と第四コイル線群とは、連続する一本の第一電線により形成されており、第二コイル線群と第三コイル線群とは、第一電線と異なる連続する一本の第二電線により形成されていてもよい。
 上記ステータにおいて、コイル線は、絶縁被膜を有する断面略矩形状の平角線により形成され、第一スロット内に挿入されたコイル線の絶縁被膜は、第二スロットに対向する側の面において、最も厚く形成されており、第二スロットに挿入されたコイルの絶縁被膜は、第一スロットに対向する側の面において、最も厚く形成されていてもよい。
 本発明によると、相間絶縁箇所が低減され、容易に相間の絶縁が可能なステータを得ることができる。
本発明の実施の形態1に係るステータを備える回転電機の断面図である。 ステータコアを軸方向から見た平面図である。 コイルが装着された状態のステータコアの平面図である。 コイルが装着された状態のステータコアの平面図である。 U相コイルの配置を示す斜視図である。 図4中の矢印V方向にU相コイルを見た模式図である。 ステータコアの中心側から見たコイルの配置を示す斜視図である。 図3中のVII-VII線に沿う、ステータコアおよびコイルの断面図である。 図3中のVIII-VIII線に沿う、ステータコアおよびコイルの断面図である。 各相のコイルの相間絶縁箇所を示す模式図である。 スロット内のコイル線の配置の第一の例を示す模式図である。 スロット出口部でのコイル線の配置の第一の例を示す模式図である。 スロット内のコイル線の配置の第二の例を示す模式図である。 スロット出口部でのコイル線の配置の第二の例を示す模式図である。 スロット内のコイル線の配置の第三の例を示す模式図である。 スロット出口部でのコイル線の配置の第三の例を示す模式図である。 コイル線を被覆する絶縁被膜を示す断面図である。 コイル線を被覆する絶縁被膜を示す断面図である。 実施の形態2のコイルが装着された状態のステータコアの平面図である。 実施の形態2のコイルが装着された状態のステータコアの平面図である。 実施の形態2のステータコアの中心側から見たコイルの配置を示す斜視図である。 実施の形態2の各相のコイルの相間絶縁箇所を示す模式図である。 実施の形態2の相間絶縁材料の一例を示す斜視図である。
 以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 (実施の形態1)
 図1は、本発明の実施の形態1に係るステータ140を備える回転電機100の断面図である。図1に示すように、回転電機100は、回転中心軸線Oを中心に回転可能に設けられた回転シャフト110と、回転シャフト110に固設され、回転シャフト110と共に回転可能に設けられたロータ120と、ロータ120の外周を取り囲むように設けられた環状のステータ140とを備えている。回転電機100は、典型的には、ハイブリッド車両に搭載され、車輪を駆動する駆動源やエンジン等の動力によって電気を発電する発電機として機能する。さらには、電気自動車等にも搭載可能であり、車輪を駆動する駆動源としても利用される。
 ロータ120は、複数の電磁鋼板を積層することで形成されたロータコア125と、ロータコア125に形成された磁石挿入孔126内に挿入された複数の永久磁石123と、ロータコア125の端面に設けられたエンドプレート122とを備えている。永久磁石123は、磁石挿入孔126内に充填された樹脂124によって固定されている。
 ステータ140は、ロータ120の周囲を取り囲むように回転中心軸線Oを中心に環状に形成されたステータコア141を備える。ステータ140の軸方向端面177,178には、複数相のコイル180が装着されている。ステータコア141に装着されたコイル180は、U相コイル181、V相コイル182およびW相コイル183を含む。U相コイル181,V相コイル182,W相コイル183は、ステータコア141に装着されている。
 ステータ140(ステータコア141)の軸方向端面177,178には、絶縁性のモールド樹脂172が形成されている。このモールド樹脂172は、たとえばBMC(バルクモールディングコンパウンド)、エポキシ樹脂といった熱硬化性樹脂や、PPS(ポリフェニレンサルファイド)、PBT(ポリブチレンテレフタレート)などの熱可塑性樹脂等により構成されている。
 ステータコア141は、環状に配列する分割ステータコアと、この分割ステータコアの外周に設けられた環状の固定部材とを備える。各分割ステータコアは、周方向に延びる分割ヨーク部と、分割ヨーク部から突出するように形成されたステータティース171とを備えている。複数の分割ステータコアが環状に配列することで、環状のヨーク部170が形成され、各ステータティース171がヨーク部170の内周面から径方向内側に突出するように配置されている。
 図2は、ステータコア141を軸方向DR3から見た平面図である。ステータコア141は、略円筒状に形成されている。ステータコア141は、ステータコア141の軸方向(図2中の紙面垂直方向)に平面視した形状が環状のヨーク部170と、ヨーク部170からステータコア141の径方向DR2内側に向かって延びる複数のステータティース171とを含む。ステータティース171の先端面は、ステータコア141の内周面142を形成する。環状に形成されたステータコア141の内周面142には、各ステータティース171間に設けられた、複数のスロット191,191a,192,192a,193,193aが形成されている。
 図3および図4は、コイル180が装着された状態のステータコア141の平面図である。図5は、U相コイル181,181aの配置を示す斜視図である。図6は、図5中の矢印VI方向にU相コイル181,181aを見た模式図である。図7は、ステータコア141の中心側から見たコイル180の配置を示す斜視図である。図8は、図3中のVIII-VIII線に沿う、ステータコア141およびコイル180の断面図である。図9は、図3中のIX-IX線に沿う、ステータコア141およびコイル180の断面図である。
 図3~図9を参照して、本実施の形態の特徴的な構成を成すコイル180の配置について説明する。コイル180は、第一コイル導体としてのU相コイル181と、第二コイル導体としてのV相コイル182と、第三コイル導体としてのW相コイル183と、を含む。U相コイル181には、第一位相としてのU相の電流が供給される。V相コイル182には、第一位相と異なる第二位相としてのV相の電流が供給される。W相コイル183には、第一位相および第二位相と異なる第三位相としてのW相の電流が供給される。ステータ140は、各相の巻線がいくつかのスロットに分散して巻回された、分布巻構造を有する。
 図2~図4および図7に示すように、U相コイル181は、ステータコア141に形成された第一スロットとしてのスロット191内に挿入されている。V相コイル182は、ステータコア141に形成された第三スロットとしてのスロット192内に挿入されている。W相コイル183は、ステータコア141に形成された第五スロットとしてのスロット193内に挿入されている。
 スロット191に隣接する第二スロットとしてのスロット191a内には、U相コイル181と同相のU相の電流が供給される、第四コイル導体としてのU相コイル181aが挿入されている。スロット192に隣接する第四スロットとしてのスロット192a内には、V相コイル182と同相のV相の電流が供給される、第五コイル導体としてのV相コイル182aが挿入されている。スロット193に隣接する第六スロットとしてのスロット193a内には、W相コイル183と同相のW相の電流が供給される、第六コイル導体としてのW相コイル183aが挿入されている。
 U相コイル181,181aは、U相のスロット191,191aに、それぞれ挿入されている。V相コイル182,182aは、V相のスロット192,192aに、それぞれ挿入されている。W相コイル183,183aは、W相のスロット193,193aに、それぞれ挿入されている。ステータコア141の内周面142には、2つのU相のスロット191,191aと、2つのV相のスロット192,192aと、2つのW相のスロット193,193aとが、ステータコア141の周方向DR1に隣接して形成されている。ステータコア141の複数のスロット内には、複数相のコイル導体が挿入されている。
 なお図3では、周方向DR1に延びるU相コイル181、V相コイル182およびW相コイル183と複数のスロット191,191a,192,192a,193,193aとの位置関係を示すため、各スロット191,191a,192,192a,193,193a内のコイルは図示を省略されている。一方図4では、各スロット191,191a,192,192a,193,193a内のU相コイル181,181a、V相コイル182,182aおよびW相コイル183,183aが配置された、ステータ140を軸方向DR3に見た状態が模式的に図示されている。
 後述するように、各相のコイルは各スロットの直上において周方向DR1に二つの集合に分けられる。当該二つの集合は、周方向DR1の位置が互いにずれて配置され、さらに径方向DR2へ曲げられ径方向DR2方向に沿って延在し、所定の径方向DR2位置において軸方向DR3に曲げられ軸方向DR3方向に沿って延在し、所定の軸方向DR3位置において周方向DR1に曲げられ周方向DR1方向に沿って延在する。但し図3および図4では、スロットの外へ出てから周方向DR1方向に沿って延在するまでの経路にある各相コイルは、図示を省略されている。
 図5を参照して、U相コイル181,181aの配置について説明する。コイル180に含まれる三相のコイルのうちの一つであるU相コイル181は、第一コイル線群11と第二コイル線群16とを含む。第一コイル線群11と第二コイル線群16とは、スロット191内に挿入されたコイル線12~15,17~20の一部をそれぞれ有する。具体的には、第一コイル線群11は、スロット191内に挿入されたコイル線12~15,17~20のうちの半数の、コイル線12~15を有する。第二コイル線群16は、スロット191内に挿入されたコイル線12~15,17~20のうちの半数の、コイル線17~20を有する。
 第一コイル線群11と第二コイル線群16とは、スロット191内において、径方向DR2に並べられている。第一コイル線群11と第二コイル線群16とはまた、コイル180が軸方向DR3にステータコア141の外部へ延出するスロット出口部42において、周方向DR1に並べられている(図6、図7も合わせて参照)。本明細書中でスロット出口部42とは、ステータコア141の軸方向端面177,178の近傍の領域であって、各相のスロット191,191a,192,192a,193,193aを軸方向DR3に延長した、ステータコア141の外部の領域を示す。
 第一コイル線群11と第二コイル線群16とはまた、U相コイル181が他の相であるV相のスロット192,192aとW相のスロット193,193aとを跨いで延びるコイルエンド部44において、軸方向DR3に並べられている(図3、図7も合わせて参照)。本明細書中でコイルエンド部44とは、軸方向DR3においてステータコア141の軸方向端面177,178の外方の、ステータコア141の軸方向端面177,178からわずかに離れた領域を示す。コイルエンド部44は、スロット出口部42に対して軸方向DR3にステータコア141から離れる側の領域である。各相のコイル180は、コイルエンド部44において、他相のスロットを跨いで、周方向DR1に沿って延びている。
 U相コイル181aは、第三コイル線群21と第四コイル線群26とを含む。第三コイル線群21と第四コイル線群26とは、スロット191a内に挿入されたコイル線22~25,27~30の一部をそれぞれ有する。具体的には、第三コイル線群21は、スロット191a内に挿入されたコイル線22~25,27~30のうちの半数の、コイル線22~25を有する。第四コイル線群26は、スロット191a内に挿入されたコイル線22~25,27~30のうちの半数の、コイル線27~30を有する。
 第三コイル線群21と第四コイル線群26とは、スロット191a内において、径方向DR2に並べられている。第三コイル線群21と第四コイル線群26とはまた、スロット出口部42において、周方向DR1に並べられている(図6、図7も合わせて参照)。第三コイル線群21と第四コイル線群26とはまた、U相コイル181aがV相のスロット192,192aとW相のスロット193,193aとを跨いで延びるコイルエンド部44において、軸方向DR3に並べられている。
 図5に示すように、コイルエンド部44において、第一コイル線群11と第二コイル線群16と第三コイル線群21と第四コイル線群26とは、軸方向DR3に並べられている。またコイルエンド部44において、コイル線12~15,17~20,22~25,27~30は、径方向DR2に並べられている。
 各相のコイル180のうちの一つの相のコイルであるU相コイル181,181aは、コイル線12~15,17~20,22~25,27~30を含む。コイル線12~15,17~20は、スロット191の内部において、径方向DR2の内側から外側へ順に隣り合って並べられる。スロット191内に配置されたコイル線12~15,17~20は、半数ずつ二つの集合に分けられている。一方の集合はコイル線12~15を有する第一コイル線群11を形成し、他方の集合はコイル線17~20を有する第二コイル線群16を形成する。
 各々のコイル線12~15,17~20は、スロット191の内部において、軸方向DR3に延在している。つまり、第一コイル線群11と第二コイル線群16とは、スロット191の内部において、軸方向DR3に延在している。U相コイル181は、軸方向DR3に沿ってスロット191内に延在するスロット導体部を含む。スロット導体部は、スロット191内の径方向DR2内側に配置された内径側コイル集合としての第一コイル線群11と、スロット191内の径方向外側に配置された外径側コイル集合としての第二コイル線群16と、に二分される。
 軸方向DR3方向に延びる第一コイル線群11と第二コイル線群16とは、ステータコア141の軸方向端面177,178から軸方向DR3に延出して、スロット191から外へ出る。スロット出口部42は、スロット191から外へ出た第一コイル線群11と第二コイル線群16とが配置される領域である。図6により明確に示すように、スロット191の内部では径方向DR2に並べられている第一コイル線群11と第二コイル線群16とは、スロット出口部42において、周方向DR1に並べられる。U相コイル181は、スロット191の直上において周方向DR1に二つの集合に分けられ、当該二つの集合は、周方向DR1の位置が互いにずれて配置される。
 周方向DR1の位置をずらされた第一コイル線群11と第二コイル線群16とは、径方向DR2へ曲げられ、径方向DR2の所定の位置まで径方向DR2方向に沿って延在する。U相コイル181の場合、図3および図4に示すように、三相のコイル180のうち径方向DR2の最も外径側の位置に配置される。所定の径方向DR2位置において、第一コイル線群11と第二コイル線群16とは、径方向DR2の位置を揃えられて、軸方向DR3にステータコア141から離れる側に曲げられ、軸方向DR3の所定の位置まで軸方向DR3方向に沿って延在する。所定の軸方向DR3位置において、径方向DR2の位置を揃えられた状態の第一コイル線群11と第二コイル線群16とは、周方向DR1に曲げられ、周方向DR1方向に沿って延在する。
 U相コイル181は、ステータコア141の軸方向端面177,178の外方のコイルエンド部44において周方向DR1に沿って延びる、コイルエンド導体部を含む。U相コイル181は、スロット191内で軸方向DR3に延在するスロット導体部と、コイルエンド部44で周方向DR1に延在するコイルエンド導体部とを連結する、スロット直上導体部を含む。スロット直上導体部は、スロット導体部の内径側コイル集合から連続するコイル集合と外径側コイル集合から連続するコイル集合とが、周方向DR1の両側に離れるように分岐し、径方向DR2に屈曲され、さらに軸方向DR3に屈曲され、コイルエンド導体部に連結されている。
 U相コイル181aに含まれるコイル線22~25,27~30は、スロット191aの内部において、径方向DR2の内側から外側へ順に隣り合って並べられる。スロット191a内に配置されたコイル線22~25,27~30は、半数ずつ二つの集合に分けられている。一方の集合はコイル線22~25を有する第三コイル線群21を形成し、他方の集合はコイル線27~30を有する第四コイル線群26を形成する。
 各々のコイル線22~25,27~30は、スロット191aの内部において、軸方向DR3に延在している。つまり、第三コイル線群21と第四コイル線群26とは、スロット191aの内部において、軸方向DR3に延在している。U相コイル181aは、軸方向DR3に沿ってスロット191a内に延在するスロット導体部を含む。スロット導体部は、スロット191a内の径方向DR2内側に配置された内径側コイル集合としての第三コイル線群21と、スロット191a内の径方向外側に配置された外径側コイル集合としての第四コイル線群26と、に二分される。
 軸方向DR3方向に延びる第三コイル線群21と第四コイル線群26とは、ステータコア141の軸方向端面177,178から軸方向DR3に延出して、スロット191aから外へ出る。スロット出口部42は、スロット191aから外へ出た第三コイル線群21と第四コイル線群26とが配置される領域である。図6により明確に示すように、スロット191aの内部では径方向DR2に並べられている第三コイル線群21と第四コイル線群26とは、スロット出口部42において、周方向DR1に並べられる。U相コイル181aは、スロット191aの直上において周方向DR1に二つの集合に分けられ、当該二つの集合は、周方向DR1の位置が互いにずれて配置される。
 周方向DR1の位置をずらされた第三コイル線群21と第四コイル線群26とは、径方向DR2へ曲げられ、径方向DR2の所定の位置まで径方向DR2方向に沿って延在する。U相コイル181aの場合、三相のコイル180のうち径方向DR2の最も外径側の、U相コイル181の径方向DR2位置と同じ径方向DR2の位置に配置される。所定の径方向DR2位置において、第三コイル線群21と第四コイル線群26とは、径方向DR2の位置を揃えられて、軸方向DR3にステータコア141から離れる側に曲げられ、軸方向DR3の所定の位置まで軸方向DR3方向に沿って延在する。所定の軸方向DR3位置において、径方向DR2の位置を揃えられた状態の第三コイル線群21と第四コイル線群26とは、周方向DR1に曲げられ、周方向DR1方向に沿って延在する。
 U相コイル181aは、ステータコア141の軸方向端面177,178の外方のコイルエンド部44において周方向DR1に沿って延びる、コイルエンド導体部を含む。U相コイル181aは、スロット191a内で軸方向DR3に延在するスロット導体部と、コイルエンド部44で周方向DR1に延在するコイルエンド導体部とを連結する、スロット直上導体部を含む。スロット直上導体部は、スロット導体部の内径側コイル集合から連続するコイル集合と外径側コイル集合から連続するコイル集合とが、周方向DR1の両側に離れるように分岐し、径方向DR2に屈曲され、さらに軸方向DR3に屈曲され、コイルエンド導体部に連結されている。
 U相コイル181がスロット191内部からコイルエンド部44へ至る経路において上述の通り屈曲されて配置されることにより、コイルエンド部44で周方向DR1に延在する第一コイル線群11と第二コイル線群16とは、軸方向DR3に重なるように並べられる。第一コイル線群11に含まれるコイル線12~15は、径方向DR2に隣り合うように並べられる。第二コイル線群16に含まれるコイル線17~20は、径方向DR2に隣り合うように、並べられる。その結果、図8に示すように、同相のコイル線12~15,17~20が、軸方向DR3と径方向DR2とにおいて隣り合って配置される。
 U相コイル181aがスロット191a内部からコイルエンド部44へ至る経路において上述の通り屈曲されて配置されることにより、コイルエンド部44で周方向DR1に延在する第三コイル線群21と第四コイル線群26とは、軸方向DR3に重なるように並べられる。第三コイル線群21に含まれるコイル線22~25は、径方向DR2に隣り合うように並べられる。第四コイル線群26に含まれるコイル線27~30は、径方向DR2に隣り合うように、並べられる。
 さらに、コイルエンド部44において、第一コイル線群11と第二コイル線群16と第三コイル線群21と第四コイル線群26とは、軸方向DR3に並べられて配置される。その結果、図9に示すように、コイルエンド部44で、同相のコイル線12~15,17~20,22~25,27~30が、軸方向DR3と径方向DR2とにおいて、隣り合って配置される。図9に示す周方向DR1に直交する断面において、軸方向DR3に同相の4列のコイル線12,17,22,27が互いに接触するように隣り合って並べられており、径方向DR2に同相の4列のコイル線12,13,14,15が互いに接触するように隣り合って並べられる。
 このようにステータ140のコイルエンド部44でのコイル線12~15,17~20,22~25,27~30の配置を規定することにより、異なる相のコイル線が交互に並べられる従来の構成と比較して、相間絶縁を必要とする箇所を低減することができる。つまり、従来の構成では異なる相のコイル線間のすべてに相間絶縁が必要になるのに対し、本実施の形態の構成では隣接する同相のコイル線に相間絶縁を必要としないので、相間絶縁箇所を低減できる。したがって、必要な相間絶縁材料の点数を削減でき、かつ、相間絶縁材料の配置のために必要な工数を削減できるので、ステータ140の製造コストを低減することができる。
 同相のコイル線12~15,17~20をそれぞれ含む第一コイル線群11と第二コイル線群16とが、コイルエンド部44において軸方向DR3に並べられる。これにより、コイルエンド部44において軸方向DR3に同相のコイル線12,17を確実に隣り合わせて並べることができる。
 また、第一コイル線群11と第二コイル線群16とをコイルエンド部44において軸方向DR3に並べることにより、U相コイル181を周方向DR1に延在させるために必要な径方向DR2のスペースを低減できる。加えて、スロット出口部42で周方向DR1の位置を互いにずらした第一コイル線群11と第二コイル線群16とを径方向DR2および軸方向DR3に屈曲させて、スロット191の内部からコイルエンド部44へのU相コイル181の経路を形成することにより、U相コイル181の配置のために必要な軸方向DR3のスペースを低減できる。
 したがって、U相コイル181の配置のために必要なスペースを減少させることができるので、ステータ140の小型化を達成することができる。また、U相コイル181と、他の相のV相コイル182、W相コイル183との干渉を容易に回避することができる。
 第一コイル線群11に含まれる同相のコイル線12~15と、第二コイル線群16に含まれる同相のコイル線17~20とは、コイルエンド部44において径方向DR2に並べられる。これにより、コイルエンド部44において径方向DR2に同相のコイル線12,13を確実に隣り合わせて並べることができる。
 コイル線12~15,17~20と同相のコイル線22~25,27~30をそれぞれ含む第三コイル線群21と第四コイル線群26とは、コイルエンド部44において、第一コイル線群11および第二コイル線群16と共に、軸方向DR3に並べられる。これにより、コイルエンド部44において軸方向DR3に同相のコイル線12,17,22,27を確実に隣り合わせて並べることができる。
 なお、説明を省略するが、V相コイル182,182aおよびW相コイル183,183aもまた、以上説明したU相コイル181,181aと同様の構造に形成することができる。この場合、スロット出口部42からコイルエンド部44への経路における各相のコイルの径方向DR2の延在長さは、コイルエンド部44において径方向DR2に、外径側からU相コイル181、V相コイル182、W相コイル183の順で配置されるように、規定されている。
 図3および図4を再び参照して、コイルエンド部44において、U相コイル181とV相コイル182とが径方向DR2に並べられ、V相コイル182とW相コイル183とが径方向DR2に並べられて、配置されている。U相コイル181は、コイルエンド部44において、周方向DR1に延在している。V相コイル182は、コイルエンド部44において、周方向DR1に延在している。W相コイル183は、コイルエンド部44において、周方向DR1に延在している。
 コイルエンド部44において、3相のコイル180、すなわちU相コイル181、V相コイル182、W相コイル183は、径方向DR2の位置が互いにずれて配置されている。コイルエンド部44において、U相コイル181、V相コイル182、W相コイル183のそれぞれが周方向DR1に延在しており、各相のコイルは、相毎に径方向DR2の配置を変えられている。各相のコイル導体は、コイルエンド部44において、径方向DR2に他の相のコイル導体と並べられて配置されている。
 上述したように、ステータコア141には、各相のスロットが2つずつ周方向DR1に隣接して設けられている。U相コイル181は、U相のスロット191内をステータコア141の軸方向DR3の一方側から他方側へ延び、コイルエンド部44を経由して、径方向DR2において当該スロット191の隣にある他のU相のスロット191内を軸方向DR3の他方側から一方側へ延びる。U相コイル181は、ステータコア141の一方側の軸方向端面177外方のコイルエンド部44と、他方側の軸方向端面178外方のコイルエンド部44とに、交互に複数回連結されてステータコア141を周方向DR1に一周する、波巻状に形成されている。
 U相コイル181aは、U相のスロット191a内をステータコア141の軸方向DR3の一方側から他方側へ延び、コイルエンド部44を経由して、径方向DR2において当該スロット191aの隣にある他のU相のスロット191a内を軸方向DR3の他方側から一方側へ延びる。U相コイル181aは、ステータコア141の一方側の軸方向端面177外方のコイルエンド部44と、他方側の軸方向端面178外方のコイルエンド部44とに、交互に複数回連結されてステータコア141を周方向DR1に一周する、波巻状に形成されている。
 図3に示すように、コイルエンド部44においてU相コイル181は、U相のスロット191から延出してコイルエンド部44へ至り、U相のスロット191a、V相のスロット192a,192、W相のスロット193,193a、およびU相のスロット191aを跨いで周方向DR1に延在し、U相のスロット191へ挿入される。U相コイル181aは、U相のスロット191aから延出してコイルエンド部44へ至り、V相のスロット192a,192およびW相のスロット193,193aを跨いで周方向DR1に延在し、U相のスロット191aへ挿入される。
 図5および図7に明確に示されるように、コイルエンド部44において周方向DR1に延在するU相コイル181aは、U相コイル181よりもステータコア141の軸方向端面177,178に近接する側に、配置される。そのため図3および図4に示すように、軸方向DR3に沿って平面視する場合、U相コイル181aはU相コイル181の裏側に隠れて視認できなくなっている。
 V相コイル182,182a、および、W相コイル183,183aもまた、上記のU相コイル181,181aと同様に、それぞれ軸方向DR3の一方側と他方側とのコイルエンド部44を交互に経由する、波巻状に形成されている。
 図10は、各相のコイルの相間絶縁箇所81,82を示す模式図である。上述したように、周方向DR1に延在するU相コイル181、V相コイル182、W相コイル183は、その径方向DR2の位置を互いにずらして配置されている。そのため、図10に示すように、U相コイル181の径方向DR2の内周側と、V相コイル182の外周側と、が近接して対向する部分のみに、U相コイル181とV相コイル182との間の相間絶縁箇所81が設けられる。同様に、V相コイル182の径方向DR2の内周側と、W相コイル183の外周側と、が近接して対向する部分のみに、V相コイル182とW相コイル183との間の相間絶縁箇所82が設けられる。
 U相コイル181,181aを例として説明したようにコイル線12~15,17~20,22~25,27~30は、互いに軸方向DR3および径方向DR2に隣接して配置される。そのため、図10に示すように、コイルエンド部44で各相のコイルが隣接する相間絶縁箇所81,82のみで相間絶縁を行なえばよい。したがって、相間絶縁を必要とする箇所が明確となり、相間絶縁箇所81,82を容易に把握することができる。また、相間絶縁が必要な箇所を少なくでき、必要最小限の相間絶縁箇所81,82において、相間絶縁を取りやすくすることができる。
 相間絶縁箇所81,82は、いずれも円弧状に形成されている。このように単純な形状の相間絶縁箇所81,82に、たとえば相間絶縁紙を配置することにより、各相間の絶縁が可能となる。したがって、必要な絶縁材料を低減でき、相間絶縁のために必要な工数を低減できるので、各相のコイル間を容易に絶縁することができる。相間絶縁箇所81,82を同一の形状に設けることで、必要な絶縁材料の形状を同一にすることができ、同一形状の絶縁材料を共有できるので、絶縁材料のコストを低減することができる。
 次に、各相のコイル線の配置の例について説明する。以下では、U相のコイル線12~15,17~20,22~25,27~30を例として説明する。図11は、スロット191,191a内のコイル線の配置の第一の例を示す模式図である。図11には、ステータティース171を介在させて隣接する二つのスロット191,191a内に装着されている同相のU相コイル181とU相コイル181aと、が図示されている。
 U相コイル181は、スロット191内の径方向DR2内側に配置された第一コイル線群11と、スロット191内の径方向DR2外側に配置された第二コイル線群16と、を含む。第一コイル線群11は、スロット191の内部において径方向DR2の内側から外側へ順に並べられたコイル線12~15を有する。第二コイル線群16は、スロット191の内部において径方向DR2の内側から外側へ順に並べられたコイル線17~20を有する。
 U相コイル181aは、スロット191a内の径方向DR2内側に配置された第三コイル線群21と、スロット191a内の径方向DR2外側に配置された第四コイル線群26と、を含む。第三コイル線群21は、スロット191aの内部において径方向DR2の内側から外側へ順に並べられたコイル線22~25を有する。第四コイル線群26は、スロット191aの内部において径方向DR2の内側から外側へ順に並べられたコイル線27~30を有する。
 第一コイル線群11と第二コイル線群16とは、スロット191内において径方向DR2に並べられている。スロット191内において、第一コイル線群11が径方向DR2内側に配置され、第二コイル線群16が径方向DR2外側に配置されている。第三コイル線群21と第四コイル線群26とは、スロット191a内において径方向DR2に並べられている。スロット191a内において、第三コイル線群21が径方向DR2内側に配置され、第四コイル線群26が径方向DR2外側に配置されている。
 第一コイル線群11と第二コイル線群16とは、連続する一本の電線である、第一電線により形成されている。第三コイル線群21と第四コイル線群26とは、第一電線と異なる連続する一本の電線である、第二電線により形成されている。ステータ140は、上記第一電線および第二電線の各々が、ステータコア141に周方向DR1に8回巻回された、8ターンの仕様に設けられている。スロット191内には、8ターン分のU相コイル181が装着されている。スロット191a内にも同様に、8ターン分のU相コイル181aが装着されている。ステータ140は、一つの相で二本の電線が使用され、二本の電線が並列に接続されている、ダブルスター結線構造を有している。
 図11および以下説明する図12~図16中で、コイル線12~15,17~20,22~25,27~30に、それぞれ1から8までの数字のいずれかが付されている。この数字は、各コイル線が1ターン目から8ターン目までのいずれの巻線に相当するのかを示している。
 スロット191内の8ターンのコイル線12~15,17~20は、径方向DR2に、内径コイル集合としての第一コイル線群11と、外径コイル集合としての第二コイル線群16との、二つに分けられている。第一コイル線群11は、8ターンのコイル線12~15,17~20の半数にあたる、4ターンのコイル線12~15を含む。第二コイル線群16は、8ターンのコイル線12~15,17~20の半数にあたる、4ターンのコイル線17~20を含む。
 スロット191a内の8ターンのコイル線22~25,27~30は、径方向DR2に、内径コイル集合としての第三コイル線群21と、外径コイル集合としての第四コイル線群26との、二つに分けられている。第三コイル線群21は、8ターンのコイル線22~25,27~30の半数にあたる、4ターンのコイル線22~25を含む。第四コイル線群26は、8ターンのコイル線22~25,27~30の半数にあたる、4ターンのコイル線27~30を含む。
 図12は、スロット出口部42でのコイル線の配置の第一の例を示す模式図である。上述した通り、スロット191,191aの直上のスロット出口部42において、第一コイル線群11と第二コイル線群16とが周方向DR1に並べられ、第三コイル線群21と第四コイル線群26とが周方向DR1に並べられる。図12に示すように、スロット191,191aから外部へ延出する位置において、U相コイル181,181aは、第一コイル線群11、第二コイル線群16、第三コイル線群21、第四コイル線群26の順で、周方向DR1に並べられる。
 図12には、スロット191,191aと、当該スロット191,191aに隣接する他のスロット191,191aとから軸方向DR3に沿って延び、一方側の軸方向端面177からステータコア141の外方へ延出する、U相コイル181,181aが図示されている。図12中の図左側に図示されたスロット出口部42のU相コイル181,181aは、屈曲されて周方向DR1に沿って延び、再度屈曲されて、図12中の図右側に図示されたスロット出口部42のU相コイル181,181aに連結されている。そのため、図12中の図左側の第一コイル線群11、第二コイル線群16、第三コイル線群21および第四コイル線群26の並びと、図12中の図右側の第一コイル線群11、第二コイル線群16、第三コイル線群21および第四コイル線群26の並びとは、対称になっている。
 U相コイル181,181aを形成する上記第一電線と第二電線とは、ステータコア141の周方向DR1に8回巻かれている。同じ電線の中でも、8ターンの中で微小な電流の流れの時間差が生じる。つまり、1ターン目の巻線に電流が流れてから、8ターン目の巻線に電流が流れるまでに、微小な時間差が生じる。そのため、同じ相の中で分担電圧差が生じる。相内の分担電圧差が高い箇所では、相内の絶縁が必要になる。たとえば、図12中の左下隅に示されたコイル線12は8ターン目のコイルであって、その右隣のコイル線17は4ターン目のコイルであって、コイル線12,17における電流の流れの微小な時間差のためにコイル線12,17間の電位差が瞬間的に大きくなる場合がある。
 コイル線12,17間のように、隣接する二つのコイル線に付された数字の差が大きい箇所において、コイル線間の電位差が瞬間的に大きくなり得るため、絶縁が必要になる。具体的には、図12に示す相内絶縁箇所91,92が、相内の絶縁を必要とする箇所である。相内絶縁箇所91,92に、たとえば絶縁紙などの絶縁部材を配置することで、相内の絶縁を行なうことができる。相内絶縁箇所91,92を電気的に絶縁することにより、U相コイル181,181aの絶縁性能を安定させ、絶縁が必要な箇所を確実に絶縁することができる。
 図13は、スロット191,191a内のコイル線の配置の第二の例を示す模式図である。図13に示す例では、図11と同様に、スロット191内に配置されたコイル線12~15,17~20をそれぞれ有する第一コイル線群11および第二コイル線群16と、スロット191a内に配置されたコイル線22~25,27~30をそれぞれ有する第三コイル線群21および第四コイル線群26と、が図示されている。
 第一コイル線群11と第二コイル線群16とは、スロット191内において径方向DR2に並べられている。スロット191内において、第一コイル線群11が径方向DR2内側に配置され、第二コイル線群16が径方向DR2外側に配置されている。第三コイル線群21と第四コイル線群26とは、スロット191a内において径方向DR2に並べられている。スロット191a内において、第三コイル線群21が径方向DR2内側に配置され、第四コイル線群26が径方向DR2外側に配置されている。
 図13に示す第二の例は、第一コイル線群11と第二コイル線群16とが異なる電線により形成され、第三コイル線群21と第四コイル線群26とが異なる電線により形成されている点で、図11に示す第一の例と異なる。具体的には、第一コイル線群11と第三コイル線群21とは、連続する一本の電線である、第一電線により形成されている。第二コイル線群16と第四コイル線群26とは、第一電線と異なる連続する一本の電線である、第二電線により形成されている。
 図14は、スロット出口部42でのコイル線の配置の第二の例を示す模式図である。図14は、図12と同様のコイル線の配置を示す図であって、スロット191,191a内に図13の通り配置されたコイル線12~15,17~20,22~25,27~30の、スロット出口部42における配置を示す図である。
 第一コイル線群11と第三コイル線群21とは一本の第一電線により形成され、第二コイル線群16と第四コイル線群26とは一本の第二電線で形成される。スロット191内に配置された第一コイル線群11が第一電線の1ターン目から4ターン目までを構成し、スロット191内に配置された第二コイル線群16が第二電線の1ターン目から4ターン目までを構成する。そのため、図14に示すように、スロット出口部42において第一コイル線群11と第二コイル線群16とが周方向DR1に並べられることにより、1ターン目から4ターン目の第一電線と第二電線とがそれぞれ隣接する。
 また、スロット191a内に配置された第三コイル線群21が第一電線の5ターン目から8ターン目までを構成し、スロット191a内に配置された第四コイル線群26が第二電線の5ターン目から8ターン目までを構成する。そのため、図14に示すように、スロット出口部42において第三コイル線群21と第四コイル線群26とが周方向DR1に並べられることにより、5ターン目から8ターン目の第一電線と第二電線とがそれぞれ隣接する。
 図14に示す例では、図12に示す例と異なり、隣接する二つのコイル線に付された数字の差が大きく相内の絶縁が必要になる箇所は、図14に示す相内絶縁箇所91のみである。相内絶縁箇所91を電気的に絶縁することにより、U相コイル181,181aの絶縁性能を安定させ、絶縁が必要な箇所を確実に絶縁することができる。また、図12に示す相内絶縁箇所92に相当する隣接するコイル線間は、絶縁する必要がないため、相内絶縁が必要な箇所が低減される。したがって、必要な相内絶縁材料の点数を削減でき、かつ、相内絶縁材料の配置のために必要な工数を削減できるので、ステータ140の製造コストを低減することができる。
 図15は、スロット191,191a内のコイル線の配置の第三の例を示す模式図である。図15に示す例では、図11,13と同様に、スロット191内に配置されたコイル線12~15,17~20をそれぞれ有する第一コイル線群11および第二コイル線群16と、スロット191a内に配置されたコイル線22~25,27~30をそれぞれ有する第三コイル線群21および第四コイル線群26と、が図示されている。
 第一コイル線群11と第二コイル線群16とは、スロット191内において径方向DR2に並べられている。スロット191内において、第一コイル線群11が径方向DR2内側に配置され、第二コイル線群16が径方向DR2外側に配置されている。第三コイル線群21と第四コイル線群26とは、スロット191a内において径方向DR2に並べられている。スロット191a内において、第三コイル線群21が径方向DR2内側に配置され、第四コイル線群26が径方向DR2外側に配置されている。
 図15に示す第三の例は、第一コイル線群11と第二コイル線群16とが異なる電線により形成され、第三コイル線群21と第四コイル線群26とが異なる電線により形成されている点では、図13に示す第二の例と同一である。しかし、第一コイル線群11と第四コイル線群26とが連続する一本の電線である第一電線により形成され、第二コイル線群16と第三コイル線群21とが第一電線と異なる連続する一本の電線である第二電線により形成されている点で、図13に示す第二の例と異なる。
 図16は、スロット出口部42でのコイル線の配置の第三の例を示す模式図である。図16は、図12と同様のコイル線の配置を示す図であって、スロット191,191a内に図15の通り配置されたコイル線12~15,17~20,22~25,27~30の、スロット出口部42における配置を示す図である。
 図16に示す第三の例では、図14に示す第二の例と同様に、スロット出口部42において、第一コイル線群11と第二コイル線群16とが周方向DR1に並べられることにより、1ターン目から4ターン目の第一電線と第二電線とがそれぞれ隣接する。また、第三コイル線群21と第四コイル線群26とが周方向DR1に並べられることにより、5ターン目から8ターン目の第一電線と第二電線とがそれぞれ隣接する。第二の例では、相内絶縁箇所91を介して、第二電線の1ターン目から4ターン目と、第一電線の5ターン目から8ターン目と、が隣接する。これに対し、第三の例では、第二電線の1ターン目から4ターン目と、第二電線の5ターン目から8ターン目とが、相内絶縁箇所91を介して隣接する。
 図16に示す例では、図14に示す例と同様に、隣接する二つのコイル線に付された数字の差が大きく相内の絶縁が必要になる箇所は、相内絶縁箇所91のみである。相内絶縁箇所91を電気的に絶縁することにより、U相コイル181,181aの絶縁性能を安定させ、絶縁が必要な箇所を確実に絶縁することができる。また、図12に示す相内絶縁箇所92に相当する隣接するコイル線間は、絶縁する必要がないため、相内絶縁が必要な箇所が低減される。したがって、必要な相内絶縁材料の点数を削減でき、かつ、相内絶縁材料の配置のために必要な工数を削減できるので、ステータ140の製造コストを低減することができる。
 図13に示す第二の例では、隣接するスロット191,191aの両方の径方向DR2内径側に配置される第一コイル線群11と第三コイル線群21とが一本の第一電線からなり、径方向DR2外径側に配置される第二コイル線群16と第四コイル線群26とが他の一本の第二電線からなる構成を有する。環状のステータ140の径方向DR2内側には、ロータ120が配置される。ロータ120には、永久磁石123が埋設されている。第一電線は、周方向DR1の全周において、永久磁石123からの距離が相対的に小さい。第二電線は、周方向DR1の全周において、永久磁石123からの距離が相対的に大きい。
 永久磁石123からの距離が異なることにより、永久磁石123からの磁束の受け方が第一電線と第二電線とで異なる。そのため、第一電線と第二電線との各々に生じる起電力が異なるので、第一電線と第二電線との間に電位差が発生する。ステータ140は、第一電線と第二電線とが並列に接続された2Y結線構造を有するので、上記の電位差によって並列回路に循環電流が流れる。この循環電流によって起振力が発生し、ロータ120が起振されて、回転電機100の運転中の騒音および振動特性が悪化する問題がある。
 これに対し、図15に示す第三の例では、スロット191の径方向DR2内側の第一コイル線群11と、隣接する同相のスロット191aの径方向DR2外側の第四コイル線群26とが、一本の第一電線からなる。また、スロット191の径方向DR2外側の第二コイル線群16と、隣接する同相のスロット191aの径方向DR2内側の第三コイル線群21とが、一本の第二電線からなる。そのため、隣接するスロット191,191a内のコイル線の配置を軸方向DR3に沿って見た場合、コイル配置は、第一電線と第二電線とが斜めに交わるクロス配置とされている。
 このクロス配置により、スロット191内では第一コイル線群11を含む第一電線が永久磁石123から近い内径側に配置され、スロット191a内では第三コイル線群21を含む第二電線が永久磁石123から近い内径側に配置される。かつ、スロット191内では第二コイル線群16を含む第二電線が永久磁石123から遠い外径側に配置され、スロット191a内では第四コイル線群26を含む第一電線が永久磁石123から遠い外径側に配置される。隣接するスロット191,191aにおいて、第一電線と第二電線とは、内径側と外径側とで入れ替わる。
 このようにコイル線12~15,17~20,22~25,27~30が配置されることにより、スロット191,191a内の内径側のコイル線で発生する起電力と、外径側のコイル線で発生する起電力との差が、周方向DR1の全体で相殺される。第一電線内と第二電線内との各々で起電力の差が打ち消されるので、ダブルスター結線全体として、並列に接続された第一電線と第二電線との間の電位差がゼロになる。これにより、循環電流の発生を防止することができる。
 したがって、図15および図16に示すようにコイル線12~15,17~20,22~25,27~30を配置することにより、相内絶縁箇所を低減することができると共に、循環電流を抑制して、回転電機100の運転中の損失増加を回避し、騒音および振動を抑制することができる。
 図17および図18は、それぞれ、コイル線17~20,22~25を被覆する絶縁被膜54を示す断面図である。図17および図18に示すように、本実施の形態のコイル線12~15,17~20,22~25,27~30は、断面形状が略矩形状の、平角線52により形成されている。平角線52の周囲には、絶縁被膜54が被覆されている。平角線52は、その四面に接触する絶縁被膜54を有する。平角線52の周囲の四つの面31~34,35~38において、絶縁被膜54の厚みが変えられている。
 具体的には、コイル線17~20では、面31~33に接着された絶縁被膜54が厚みdを有するのに対し、面34に接着された絶縁被膜54は厚みdよりも大きい厚みdを有する。この面34とは、コイル線17~20がスロット191内に挿入されるとき、隣接する同相のスロット191aに対向する面である。スロット191内に挿入されたコイル線17~20の絶縁被膜54は、スロット191aに対向する側の面34において、最も厚く形成されている。
 これに対し、コイル線22~25では、面36~38に接着された絶縁被膜54が厚みdを有するのに対し、面35に接着された絶縁被膜54は厚みdよりも大きい厚みdを有する。この面35とは、コイル線22~25がスロット191a内に挿入されるとき、隣接する同相のスロット191に対向する面である。スロット191aに挿入されたコイル線22~25の絶縁被膜54は、スロット191に対向する側の面35において、最も厚く形成されている。
 このように絶縁被膜54が厚く形成されているので、図16に示す相内絶縁箇所91において、第二コイル線群16と第三コイル線群21との間に、絶縁被膜54の厚い部分が挟まれる。絶縁被膜54は、図16に示す相内絶縁箇所91における必要な絶縁耐力を確保するために十分な厚みdを有し、第二コイル線群16と第三コイル線群21とを電気的に絶縁する。つまり、スロット出口部42およびコイルエンド部44において相内絶縁が必要となる相内絶縁箇所91に、絶縁紙などの絶縁材料を設けて絶縁する必要がない。絶縁被膜54を厚くすることで、相内分担電圧差の高い相内絶縁箇所91への絶縁材料を不要にできるので、必要な相内絶縁材料の点数を削減でき、かつ、相内絶縁材料の配置のために必要な工数を削減することができる。
 スロット191,191aに挿入される平角線52の、片側の側面のみ、絶縁被膜54が厚くされており、平角線52全周の絶縁被膜54は厚くされていない。絶縁被膜54を一辺のみ厚くして配置することで、必要最小限の絶縁被膜54の量が実現できる。そのため、全周の絶縁被膜54を厚くした場合に比べ、スロット191,191a内の導体の割合が大きくなる。つまり、占積率を低下させることなく絶縁が可能となり、高占積率の巻線を実現することができる。コイル線を高占積率に巻線することにより、熱定格動作点での電流密度を高く設計できるので、ステータ140の体格の小型化が可能になる。また、絶縁被膜54を厚く設けることに伴う回転電機100の出力の低下を回避することができる。
 スロット191,191a内において、図15に示すように、コイル線12~15,17~20,22~25,27~30はクロス配置される。スロット出口部42において、スロット191内に挿入された第一コイル線群11と第二コイル線群16とが周方向DR1に並べられ、スロット191a内に挿入された第三コイル線群21と第四コイル線群26とが周方向DR1に並べられる。
 このような構成によって、上述した通り、相内の絶縁が必要な箇所を、第二コイル線群16と第三コイル線群21との間の相内絶縁箇所91のみに設定できる。コイル線12~15,17~20,22~25,27~30を適切に配置することにより、相内絶縁が必要な箇所を事前に設定できる。そのため、相内絶縁箇所91に相当する、絶縁被膜54を大きな厚みに形成するべき部分を、容易に把握できるので、図17および図18に示すような片側のみ絶縁被膜54を厚くしたコイル線17~20,22~25を容易に作製することができる。
 V相コイル182,182a、および、W相コイル183,183aもまた、上記のU相コイル181,181aと同様に各相のコイル線を配置することにより、上述した効果を同様に得ることができる。
 (実施の形態2)
 図19および図20は、実施の形態2のコイル180が装着された状態のステータコア141の平面図である。図21は、実施の形態2のステータコア141の中心側から見たコイル180の配置を示す斜視図である。実施の形態2のステータ140と、上述した実施の形態1のステータ140とは、基本的に同様の構成を備えている。しかし、実施の形態2では、V相コイル182の構成が図19~21に示すような構成となっている点で、実施の形態1とは異なっている。
 具体的には、第二コイル導体としてのV相コイル182は、コイルエンド部44において、周方向DR1に延在する第一部分184と、周方向DR1に延在する第二部分185と、を有する。第一部分184は、U相コイル181との間に、径方向DR2の隙間196を形成する。第二部分185は、W相コイル183との間に、径方向DR2の隙間197を形成する。
 V相コイル182はまた、第一部分184と第二部分185とを連結する第三部分186を有する。この第三部分186は、U相コイル181が延在する径方向DR2の位置からW相コイル183が延在する径方向DR2の位置へ渡るように、径方向DR2に沿って延びている。
 なお図19では、周方向DR1に沿って延びるU相コイル181、V相コイル182およびW相コイル183と複数のスロット191,191a,192,192a,193,193aとの位置関係を示すため、各スロット191,191a,192,192a,193,193a内のコイルは図示を省略されている。一方図20では、各スロット191,191a,192,192a,193,193a内のU相コイル181,181a、V相コイル182,182aおよびW相コイル183,183aが配置された、実施の形態2のステータ140を軸方向DR3に見た状態が模式的に図示されている。
 上述したように、各相のコイルは各スロットの直上において周方向DR1に二つの集合に分けられる。当該二つの集合は、周方向DR1の位置が互いにずれて配置され、さらに径方向DR2へ曲げられ径方向DR2方向に沿って延在し、所定の径方向DR2位置において軸方向DR3に曲げられ軸方向DR3方向に沿って延在し、所定の軸方向DR3位置において周方向DR1に曲げられ周方向DR1方向に沿って延在する。但し図19および図20では、スロットの外へ出てから周方向DR1方向に沿って延在するまでの経路にある各相コイルは、図示を省略されている。
 実施の形態1の構成を説明した図3を参照して、ステータ140を軸方向DR3に見たとき、ステータコア141の軸方向端面177において、U相コイル181は周方向DR1に延在する。円弧状に延びるU相コイル181の間に、周方向DR1に延びる隙間が形成されている。U相コイル181は波巻構造を有しており、U相コイル181は軸方向端面177側と、反対側の軸方向端面178側とに、交互に延出する。反対側の軸方向端面178側にU相コイル181が延出している周方向DR1の位置において、U相コイル181の間に、周方向DR1に延びる隙間が形成されている。この周方向DR1に延びる隙間は、V相コイル182とW相コイル183とが径方向DR2に並べられた位置の外径側に形成されている。
 同様に、ステータコア141の軸方向端面177において円弧状に延びるW相コイル183の間に、周方向DR1に延びる隙間が形成されている。W相コイル183は波巻構造を有しており、反対側の軸方向端面178側にW相コイル183が延出している周方向DR1の位置において、W相コイル183の間に、周方向DR1に延びる隙間が形成されている。この周方向DR1に延びる隙間は、U相コイル181とV相コイル182とが径方向DR2に並べられた位置の内径側に形成されている。
 図3と図19とを比較すると、V相コイル182の第一部分184は、上述したW相コイル183の間の周方向DR1に延びる隙間に配置されている。V相コイル182の第二部分185は、上述したU相コイル181の間の周方向DR1に延びる隙間に配置されている。第一部分184とW相コイル183とが同心円上に配置されているために、第一部分184とU相コイル181との間には、径方向DR2の隙間196が形成されている。第二部分185とU相コイル181とが同心円上に配置されているために、第二部分185とW相コイル183との間には、径方向DR2の隙間197が形成されている。
 そのため、第一部分184とU相コイル181とは、その間に空間が形成され、非接触の状態となる。同様に、第二部分185とW相コイル183とは、その間に空間が形成され、非接触の状態となる。第三部分186は、U相コイル181の配置された径方向DR2の位置からW相コイル183の配置された径方向DR2の位置へ、径方向DR2に渡るように配置されて、第一部分184と第二部分185とを連結する。第三部分186の径方向DR2外側の一部分のみがU相コイル181の端部と接触し、第三部分186の径方向DR2内側の一部分のみがW相コイル183の端部と接触する。
 図22は、実施の形態2の各相のコイルの相間絶縁箇所81,82を示す模式図である。実施の形態1では、U相コイル181とV相コイル182とが周方向DR1に沿って面接触しており、かつV相コイル182とW相コイル183とが周方向DR1に沿って面接触しており、この面接触する二箇所において相間の絶縁を必要とした。そのため、図10に示すように、U相コイル181の内径側の表面とV相コイル182の外径側の表面との間に円弧状の相間絶縁箇所81が形成され、V相コイル182の内径側の表面とW相コイル183の外径側の表面との間に円弧状の相間絶縁箇所82が形成された。
 これに対し、実施の形態2では、U相コイル181とV相コイル182とは、ほぼ線接触の状態で互いに近接して配置され、同様に、V相コイル182とW相コイル183とは、ほぼ線接触の状態で互いに近接して配置される。そのため、図22に示すように、相間の絶縁を必要とする相間絶縁箇所81,82が非常に小さくなり、絶縁が必要な面積が実施の形態1と比較して大幅に低減されている。したがって、相間絶縁材料の必要量を削減でき、かつ、相間絶縁材料の配置のために必要な工数を削減できるので、ステータ140の製造コストを低減することができる。
 図23は、実施の形態2の相間絶縁材料83の一例を示す斜視図である。実施の形態1と異なり、図22に示す相間絶縁箇所81,82が互いに近接しているために、図23に示すような概略樋形状の相間絶縁材料83を使用して、相間絶縁箇所81,82の両方を絶縁することができる。
 具体的には、相間絶縁材料83は、一対の絶縁部84,85を有する。絶縁部84,85は、板状の形状を有し、略平行に間隔を空けられて配置されている。この絶縁部84,85の一方が相間絶縁箇所81に配置され、他方が相間絶縁箇所82に配置されるように、相間絶縁材料83はV相コイル182の第三部分186を跨いでV相コイル182に取り付けられる。
 このように、一つの相間絶縁材料83を使用して二箇所の相間絶縁箇所81,82の両方を容易に絶縁することができるので、相間絶縁のために必要な絶縁材料の点数を低減でき、絶縁材料の配置のために必要な工数をより削減できる。したがって、ステータコア141の製造コストをさらに低減することができる。
 以上のように本発明の実施の形態について説明を行なったが、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 11 第一コイル線群、12~15,17~20,22~25,27~30 コイル線、16 第二コイル線群、21 第三コイル線群、26 第四コイル線群、42 スロット出口部、44 コイルエンド部、81,82 相間絶縁箇所、91,92 相内絶縁箇所、140 ステータ、141 ステータコア、142 内周面、171 ステータティース、177,178 軸方向端面、180 コイル、181,181a U相コイル、182,182a V相コイル、183,183a W相コイル、191,191a,192,192a,193,193a スロット、196,197 隙間、DR1 周方向、DR2 径方向、DR3 軸方向。

Claims (15)

  1.  環状に形成され、内周面(142)に複数のスロット(191)が形成されたステータコア(141)と、
     前記スロット(191)内に挿入された複数相のコイル(180)と、を備え、
     各相の前記コイル(180)は、コイル線(12~15,17~20,22~25,27~30)を含み、
     前記コイル(180)が他相のスロット(192)を跨いで延びるコイルエンド部(44)で、前記ステータコア(141)の軸方向(DR3)と径方向(DR2)とにおいて同相の前記コイル線(12~15,17~20,22~25,27~30)が隣り合って配置されている、ステータ(140)。
  2.  前記コイル(180)は、第一スロット(191)内に挿入された前記コイル線(12~15,17~20)の一部をそれぞれ有する第一コイル線群(11)と第二コイル線群(16)とを含み、
     前記第一コイル線群(11)と前記第二コイル線群(16)とは、前記第一スロット(191)内において前記径方向(DR2)に並べられ、前記コイル(180)が前記軸方向(DR3)に前記ステータコア(141)の外部へ延出するスロット出口部(42)において前記ステータコア(141)の周方向(DR1)に並べられ、前記コイルエンド部(44)において前記軸方向(DR3)に並べられる、請求の範囲第1項に記載のステータ(140)。
  3.  前記第一コイル線群(11)は、前記第一スロット(191)内に挿入された前記コイル線(12~15,17~20)の半数(12~15)を有し、
     前記第二コイル線群(16)は、前記第一スロット(191)内に挿入された前記コイル線(12~15,17~20)の半数(17~20)を有する、請求の範囲第2項に記載のステータ(140)。
  4.  前記コイル線(12~15,17~20)は、前記コイルエンド部(44)において前記径方向(DR2)に並べられる、請求の範囲第3項に記載のステータ(140)。
  5.  前記コイル(180)は、前記第一スロット(191)に隣接する第二スロット(191a)内に挿入された前記コイル線(22~25,27~30)の一部をそれぞれ有する第三コイル線群(21)と第四コイル線群(26)とを含み、
     前記第三コイル線群(21)と前記第四コイル線群(26)とは、前記第二スロット(191a)内において前記径方向(DR2)に並べられ、前記スロット出口部(42)において前記周方向(DR1)に並べられ、
     前記第一コイル線群(11)と前記第二コイル線群(16)と前記第三コイル線群(21)と前記第四コイル線群(26)とは、前記コイルエンド部(44)において前記軸方向(DR3)に並べられる、請求の範囲第4項に記載のステータ(140)。
  6.  前記コイル(180)は、第一位相(U)の第一コイル導体(181)と、前記第一位相(U)と異なる第二位相(V)の第二コイル導体(182)と、前記第一位相(U)および前記第二位相(V)と異なる第三位相(W)の第三コイル導体(183)と、を含み、
     前記コイルエンド部(44)において、前記第一コイル導体(181)と前記第二コイル導体(182)とが前記径方向(DR2)に並べられ、前記第二コイル導体(182)と前記第三コイル導体(183)とが前記径方向(DR2)に並べられて配置される、請求の範囲第5項に記載のステータ(140)。
  7.  前記第一コイル導体(181)は、前記コイルエンド部(44)において、前記周方向(DR1)に延在している、請求の範囲第6項に記載のステータ(140)。
  8.  前記第三コイル導体(183)は、前記コイルエンド部(44)において、前記周方向(DR1)に延在している、請求の範囲第7項に記載のステータ(140)。
  9.  前記第二コイル導体(182)は、前記コイルエンド部(44)において、前記周方向(DR1)に延在している、請求の範囲第8項に記載のステータ(140)。
  10.  前記第二コイル導体(182)は、前記コイルエンド部(44)において、前記第一コイル導体(181)との間に前記径方向(DR2)の隙間(196)を形成して前記周方向(DR1)に延在する第一部分(184)と、前記第三コイル導体(183)との間に前記径方向(DR2)の隙間(197)を形成して前記周方向(DR1)に延在する第二部分(185)と、前記径方向(DR2)に沿って延び前記第一部分(184)と前記第二部分(185)とを連結する第三部分(186)と、を有する、請求の範囲第8項に記載のステータ(140)。
  11.  前記第一コイル線群(11)と前記第二コイル線群(16)とは、連続する一本の第一電線により形成され、
     前記第三コイル線群(21)と前記第四コイル線群(26)とは、前記第一電線と異なる連続する一本の第二電線により形成される、請求の範囲第9項または第10項に記載のステータ(140)。
  12.  前記第一コイル線群(11)と前記第二コイル線群(16)とは、前記第一スロット(191)内において前記径方向(DR2)に並べられ、
     前記第三コイル線群(21)と前記第四コイル線群(26)とは、前記第二スロット(191a)内において前記径方向(DR2)に並べられ、
     前記第一コイル線群(11)と前記第二コイル線群(16)とは、異なる電線により形成されており、
     前記第三コイル線群(21)と前記第四コイル線群(26)とは、異なる電線により形成されている、請求の範囲第9項または第10項に記載のステータ(140)。
  13.  前記第一スロット(191)内において、前記第一コイル線群(11)が前記径方向(DR2)内側に配置され、前記第二コイル線群(16)が前記径方向(DR2)外側に配置され、
     前記第二スロット(191a)内において、前記第三コイル線群(21)が前記径方向(DR2)内側に配置され、前記第四コイル線群(26)が前記径方向(DR2)外側に配置され、
     前記第一コイル線群(11)と前記第三コイル線群(21)とは、連続する一本の第一電線により形成されており、
     前記第二コイル線群(16)と前記第四コイル線群(26)とは、前記第一電線と異なる連続する一本の第二電線により形成されている、請求の範囲第12項に記載のステータ(140)。
  14.  前記第一スロット(191)内において、前記第一コイル線群(11)が前記径方向(DR2)内側に配置され、前記第二コイル線群(16)が前記径方向(DR2)外側に配置され、
     前記第二スロット(191a)内において、前記第三コイル線群(21)が前記径方向(DR2)内側に配置され、前記第四コイル線群(26)が前記径方向(DR2)外側に配置され、
     前記第一コイル線群(11)と前記第四コイル線群(26)とは、連続する一本の第一電線により形成されており、
     前記第二コイル線群(16)と前記第三コイル線群(21)とは、前記第一電線と異なる連続する一本の第二電線により形成されている、請求の範囲第12項に記載のステータ(140)。
  15.  前記コイル線(12~15,17~20,22~25,27~30)は、絶縁被膜(54)を有する断面略矩形状の平角線(52)により形成され、
     前記第一スロット(191)内に挿入された前記コイル線(12~15,17~20)の前記絶縁被膜(54)は、前記第二スロット(191a)に対向する側の面(34)において、最も厚く形成されており、
     前記第二スロット(191a)に挿入された前記コイル(22~25,27~30)の前記絶縁被膜(54)は、前記第一スロット(191)に対向する側の面(35)において、最も厚く形成されている、請求の範囲第14項に記載のステータ(140)。
PCT/JP2010/059094 2010-05-28 2010-05-28 ステータ WO2011148501A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059094 WO2011148501A1 (ja) 2010-05-28 2010-05-28 ステータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059094 WO2011148501A1 (ja) 2010-05-28 2010-05-28 ステータ

Publications (1)

Publication Number Publication Date
WO2011148501A1 true WO2011148501A1 (ja) 2011-12-01

Family

ID=45003507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059094 WO2011148501A1 (ja) 2010-05-28 2010-05-28 ステータ

Country Status (1)

Country Link
WO (1) WO2011148501A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136845A1 (ja) * 2012-03-14 2013-09-19 日立オートモティブシステムズ株式会社 回転電機及びその生産方法
CN103441597A (zh) * 2013-08-23 2013-12-11 江苏航天动力机电有限公司 一种增安型电机加强相间绝缘结构
WO2014034723A1 (ja) * 2012-08-31 2014-03-06 三菱電機株式会社 回転電機およびその製造方法
JP5566541B1 (ja) * 2013-03-28 2014-08-06 三菱電機株式会社 回転電機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919096A (ja) * 1995-06-27 1997-01-17 Meidensha Corp 固定子巻線を有する電動機
JP2001320845A (ja) * 2000-05-10 2001-11-16 Mitsubishi Electric Corp 回転電機の固定子
JP2001523939A (ja) * 1997-11-14 2001-11-27 アウトボード マリーン コーポレイション 二重モード発電を用いた高性能交流発電機
JP2007097315A (ja) * 2005-09-29 2007-04-12 Nishishiba Electric Co Ltd 型巻コイルの製造方法およびその型巻コイル
JP2009291050A (ja) * 2008-05-30 2009-12-10 Aisin Aw Co Ltd ステータ
JP2009303335A (ja) * 2008-06-11 2009-12-24 Aisin Aw Co Ltd ステータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919096A (ja) * 1995-06-27 1997-01-17 Meidensha Corp 固定子巻線を有する電動機
JP2001523939A (ja) * 1997-11-14 2001-11-27 アウトボード マリーン コーポレイション 二重モード発電を用いた高性能交流発電機
JP2001320845A (ja) * 2000-05-10 2001-11-16 Mitsubishi Electric Corp 回転電機の固定子
JP2007097315A (ja) * 2005-09-29 2007-04-12 Nishishiba Electric Co Ltd 型巻コイルの製造方法およびその型巻コイル
JP2009291050A (ja) * 2008-05-30 2009-12-10 Aisin Aw Co Ltd ステータ
JP2009303335A (ja) * 2008-06-11 2009-12-24 Aisin Aw Co Ltd ステータ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136845A1 (ja) * 2012-03-14 2013-09-19 日立オートモティブシステムズ株式会社 回転電機及びその生産方法
JP2013192360A (ja) * 2012-03-14 2013-09-26 Hitachi Automotive Systems Ltd 回転電機及びその生産方法
WO2014034723A1 (ja) * 2012-08-31 2014-03-06 三菱電機株式会社 回転電機およびその製造方法
CN104620476A (zh) * 2012-08-31 2015-05-13 三菱电机株式会社 旋转电机及其制造方法
JP5855257B2 (ja) * 2012-08-31 2016-02-09 三菱電機株式会社 回転電機およびその製造方法
CN104620476B (zh) * 2012-08-31 2017-05-10 三菱电机株式会社 旋转电机及其制造方法
US9735641B2 (en) 2012-08-31 2017-08-15 Mitsubishi Electric Corporation Rotary electric machine and manufacturing method therefor
JP5566541B1 (ja) * 2013-03-28 2014-08-06 三菱電機株式会社 回転電機
WO2014155630A1 (ja) * 2013-03-28 2014-10-02 三菱電機株式会社 回転電機
CN103441597A (zh) * 2013-08-23 2013-12-11 江苏航天动力机电有限公司 一种增安型电机加强相间绝缘结构

Similar Documents

Publication Publication Date Title
JP6977556B2 (ja) 回転電機
US8610328B2 (en) Rotary electric machine
US10910899B2 (en) Rotary electric machine
JP5354302B2 (ja) 回転電機の固定子
US20210234415A1 (en) Rotating electric machine
US10298084B2 (en) Rotating electric machine for vehicle
US20090134737A1 (en) Stator of electric rotating machine and electric rotating machine
JP2013070518A (ja) 回転電機および回転電機の製造方法
US20120086288A1 (en) Electric rotating machine
JP2010239740A (ja) 回転電機用電機子
JP2010239691A (ja) 回転電機の固定子及び回転電機
US10608493B2 (en) Stator for rotary electric machine having distributed winding structure
JP2019088139A (ja) ステータおよび回転電機
JP5459561B2 (ja) 回転電機
WO2011148501A1 (ja) ステータ
JP2011135733A (ja) 回転電機
US20110210638A1 (en) Stator for electric rotating machine
JP7001483B2 (ja) アキシャルギャップ型トランスバースフラックス式回転電機
JP2007336725A (ja) 回転電機の固定子
WO2014157621A1 (ja) ステータの構造
JP6350612B2 (ja) 回転電機
WO2013179491A1 (ja) 回転電機、回転電機用ステータおよび車両
JP2018137836A (ja) ステータおよび回転電機
JP2005124378A (ja) リング状の固定子コイルを有する誘導電動機
TW201742356A (zh) 軸向間隙型旋轉電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP