WO2011147006A1 - Disposições introduzidas em unidade de produção de aço líquido - Google Patents

Disposições introduzidas em unidade de produção de aço líquido Download PDF

Info

Publication number
WO2011147006A1
WO2011147006A1 PCT/BR2010/000192 BR2010000192W WO2011147006A1 WO 2011147006 A1 WO2011147006 A1 WO 2011147006A1 BR 2010000192 W BR2010000192 W BR 2010000192W WO 2011147006 A1 WO2011147006 A1 WO 2011147006A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
adoption
oven
liquid
water
Prior art date
Application number
PCT/BR2010/000192
Other languages
English (en)
French (fr)
Inventor
Henrique Carlos Pfeifer
Original Assignee
Henrique Carlos Pfeifer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henrique Carlos Pfeifer filed Critical Henrique Carlos Pfeifer
Priority to PCT/BR2010/000192 priority Critical patent/WO2011147006A1/pt
Publication of WO2011147006A1 publication Critical patent/WO2011147006A1/pt

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D13/00Apparatus for preheating charges; Arrangements for preheating charges
    • F27D13/002Preheating scrap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat

Definitions

  • This utility model patent application which concerns the field of the steel industry, refers to a set of provisions introduced into components of the liquid steel production unit, known as the Energy Optimizing Furnace (EOF), aimed at greater efficiency in both operation and maintenance of the unit as a whole.
  • EEF Energy Optimizing Furnace
  • the EOF is a melting and refining furnace, having coupled a solid metallic charge preheater for the production of liquid steel, operating with a combined oxygen blast, submerged in the liquid metallic charge and in the atmosphere above the liquid metallic bath. acting on an initial charge composed of liquid pig iron, preheated solid metallic charge and fluxes for slag formation.
  • liquid steel elaboration equipment which includes oven support trolley (2 units), oven, sealing between oven and preheater, solid charge preheater; solid metal cargo loading; net cargo loading; loading of oven additions containing silo batteries; loading of additions in the cast steel pan containing battery of silos; equipment related to the processing of gases emanating from post-combustion air injectors, gas bypass; gas cleaning system consisting of gas outlet duct, vertical soaking chamber, emergency chimney, venturi scrubber, dropper cyclone, exhaust blowers, chimney ejected gas flow measurement system, cooling water circuit temperature and gas washing; cooling water system; hydraulic plant for the kiln tilting system; general hydraulic power station; control room; valve panel; space for slag collection; masters equipment traction and analysis for steel and slag; carbon and temperature measuring equipment of liquid steel.
  • the submerged oxygen blast reacts with the carbon contained in the liquid pig iron, generating CO (carbon monoxide) bubbles that rise through the liquid bath, causing a strong agitation to reach the surface. bath, in a region called the furnace "atmosphere", where CO (carbon monoxide) is burned to CO 2 (carbon dioxide) by the action of O 2 (oxygen) blown through injectors and supersonic lances acting above the bath metallic.
  • CO carbon monoxide
  • the purpose of the O 2 (oxygen) blow is to reduce the C (carbon) content contained in the net pig iron charge from 3,5 to 4,5% to 0,2 - 0,1%.
  • scorifiers are added, materials responsible for, through chemical reactions, agglutinate the impurities contained in the metal slag form that, due to its lower density, floats on the surface of the metal bath.
  • the temperature of the metal bath increases due to exothermic reactions between the blown O 2 (oxygen) and the C (carbon) contained in the charge.
  • the slag generated by the reactions of the scorifiers with the impurities contained in the metallic charge, is removed and new slag is formed with new addition of scorifiers.
  • Metal alloys are added to the liquid bath to meet the specifications of the type of steel to be produced.
  • Periodic temperature and C (carbon) percentage measurements in the liquid bath allow you to define when the desired analysis is to be reached, when the liquid metal must be removed from the furnace in an operation called "pouring".
  • a pan is transported in a cart to the oven, positioned just below the oven leakage channel.
  • the O 2 (oxygen) blow is suspended, the leakage channel is opened and the liquid metal is poured into the pan.
  • O 2 oxygen
  • the furnace is tilted towards the pan to facilitate liquid metal exit;
  • the furnace is quickly tilted in the opposite direction to the leak, retaining the remaining slag and preventing it from mixing with the liquid steel in the pan.
  • the time elapsed between two consecutive leaks of metal in the pan is called "run time" and, in the case of EOF, occurs on an average ranging from 20 to 45 runs per day (72 to 32 minutes per run).
  • the furnace tilting is carried out by two hydraulic cylinders, mounted on the outside of the tilting "chairs" seated on the roller collars.
  • the necessary synchronization of the cylinders' movement is not complete, creating a mismatch in the action, which implies an early activation of one side in relation to the other, with oblique forces damaging the equipment and overloading. pressure required for the requested movement.
  • the bottom opening device of the festoon consists of sliding side supports mounted on vertical guides and connected to the bottom covers by rods; These brackets are supported by two horizontal beams with their ends fitted into central slotted columns and supported in the position of receiving hydraulic cylinders with the rod fully extended. To promote the opening of the bottom caps, the cylinders are driven, retracting the rod. This causes the brackets to slide down, causing the bottom to open and the solid load to fall.
  • This system allows the handle, placed in the unloading position by the overhead crane, to remain in this position without the aid of the bridge, freeing it for other services.
  • the horizontal beams descent is irregular due to the lack of a synchronization with the necessary precision to drive the 4 (four) hydraulic cylinders responsible for this action.
  • the molten liquid cast in the furnace forms incrustations in the nozzle's refractory material caused by the cooling of the metal as a function of the long path.
  • the progressive buildup of scale in the refractory nozzle material requires frequent stoppages to remove scale or even replace it with a new one. Both operations imply significant interruptions in steel production because projection of The long pig iron nozzle increases the offset in the furnace's center of gravity from its center of rotation, requiring greater effort on the furnace tilting drive cylinders.
  • the materials loaded in the oven during the race have as their purpose: slag generation; contain an excessively rapid rise in the temperature of the liquid bath or promote an increase in the bath temperature as appropriate; add certain necessary alloys to the final product which are still added during the steelmaking process inside the furnace; add other available sources of metallic iron (sponge iron, for example).
  • the materials loaded in the pan during steel pouring are intended to: add alloying elements to the steel produced in the furnace, according to the programmed final composition; adding deoxidizing materials to reduce the 02 content contained in the cast metal; promote a lost temperature recovery by adding alloys.
  • the bottom of the part which has a horizontal segment where the particulate material is deposited, requiring periodic removal;
  • the slanted circular segment between the transition piece and the soak chamber inlet, lined with refractory material, also has, as in the transition piece, worn points requiring repairs to the refractory material.
  • the water is distributed through circuits that group sets of refrigerated elements, such as: supply circuit of the refrigerated furnace elements; supply circuit of refrigerated sealing elements and bottom of preheater; supply circuit of the preheater top cooling elements and top sliding cover; supply circuit of the refrigerated exhaust system elements.
  • the cooling water flow rates for each element, defined in the project, are affected by the different pressure losses (difference between inlet and outlet pressure - ⁇ ). An element with less pressure drop will have greater water flow than another element with higher ⁇ ; This imbalance causes the refrigerated elements with higher ⁇ to receive less water than projected, becoming more vulnerable to the effects of the thermal load to which they are subjected.
  • Each of the circuits has the same problem, resulting in preferred water paths; The above described imbalances affect the entire system, with real damage to the refrigerated elements with greater pressure drop.
  • Figure 1 is a cross-sectional view showing the support trolley with the complete furnace (threshold, casing and vault) and transverse beams at the height allowing the assembly to pass.
  • Figure 2 is a section showing the furnace area with the new arrangement and a single bridge carrying the shortest pig iron and nozzle.
  • Figure 3 is a plan view showing the arrangement of the single oven and pan loading system with the pivoting of the loading belt to either position.
  • Figure 4 is a cross-sectional view showing the oven, preheater and bypass.
  • Figure 5 is a sectional view of the exhaust system: assembly showing modified oven, preheater, outlet duct and soaking chamber.
  • the present utility model patent refers to a set of arrangements introduced into components of the liquid steel production facility known as the Energy Optimizing Furnace (EOF), these arrangements consisting of relation to the items addressed in the state of the art, in the following innovations:
  • EEF Energy Optimizing Furnace
  • a new structural arrangement of the furnace nave (1) raised the transverse beams (2), making it possible to move the support carriage (3) with complete furnace: threshold, housing and vault. Such a possibility facilitates the maintenance of any oven components; In addition, it provides elasticity for any modifications to the furnace, such as the installation of eccentric leakage of type liquid steel (type EBT). (See figure 1)
  • the furnace vessel (1) had its width increased (11), such that the overhead crane (4) of this vessel was capable of receiving the liquid pig pan (5) and loading the liquid pig iron into the furnace. through an extremely short spout (6).
  • the auxiliary bridge was eliminated;
  • the reduction in the length of the kiln discharge nozzle eliminated the need for it to be split, allowing complete displacement of the sill, including the pig iron nozzle, to the repair area during periodic kiln maintenance; pigment nozzle scale has been minimized, reducing repairs during operation; the efforts on the tipping cylinders have been reduced, favoring their action. (See Figure 2)
  • Transition part (12) has been completely redesigned with an up / down curve at the part inlet.
  • the new part geometry eliminated deposition points of particulate material.
  • the section of the part is now rectangular in its entire length and its construction in water-cooled pipes, eliminating the possibility of "hot spots" and consequent downtime for maintenance.
  • the inclined segment (13) was also redesigned with the same rectangular section as the gas outlet and the refractory lining was eliminated by adopting the water-cooled tubular construction. (See figure 5)
  • each refrigerated element of whatever type, is still tested at the factory by applying the flow indicated for it and measuring the pressure drop.
  • This information allows a first assessment to design a preventive system for correcting pressure imbalances in each circuit; After mounting all the refrigerated elements in the unit, each circuit is subjected to the total flow intended for it; the pressure drop of each circuit element is measured by determining the largest ⁇ of the circuit; Orifice plates are calculated for the elements with the lowest ⁇ , making them all reach the same maximum pressure drop.
  • the circuit is "balanced”, ensuring the projected flow for each element, regardless of its exposed area or its constructive characteristic;
  • the power supply of each circuit is also “balanced” through orifice plates, dimensioned according to the largest ⁇ exis. try it. With the entire system “balanced” against pressure drop, the projected flow of cooling water is ensured for each circuit and each of its components, ensuring the correct performance of the system as a whole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

Compreende a presente patente de modelo de utilidade a um conjunto de disposições introduzidas em componentes da unidade de produção de aço líquido, conhecida como EOF (Energy Optimizing Furnace), consistindo estas disposições nas seguintes inovações: adoção de sincronismo eletrônico no sistema de basculamento do forno e redimensionamento da velocidade, novo arranjo estrutural da nave do forno (1) com a elevação das vigas transversais (2), adoção de sincronismo eletrônico, na atuação dos cilindros hidráulicos do sistema de abertura do fundo do cestão, aumento da largura da nave do forno (11), redução no comprimento da bica (6) de descarga no forno, adoção de um sistema único para estocagem, dosagem e transporte das adições (7) até as imediações do forno, juntamente com um sistema de descarga giratório (8), redisposição da saída inferior (9) do desviador e da entrada superior no topo (10) do pré-aquecedor, com acionamento hidráulico da válvula de regulagem (11) e um sistema de refrigeração a água e paredes tubulares do desviador, adoção de uma peça de transição (12), com uma curva ascendente/descendente na entrada da peça, com seção retangular em toda a sua extensão e tubos refrigerados a água, além de um segmento inclinado (13) com a mesma seção retangular da peça de saída dos gases e tubulação refrigerada a água, adoção de um sistema de monitoramento das perdas de cargas dos diversos circuitos, visando o equilíbrio dos mesmos, sendo: cada elemento refrigerado testado ainda na fábrica aplicando sua vazão indicada, medindo a perda de carga; promoção de um sistema preventivo para correção dos desequilíbrios de pressão em cada circuito, sendo ainda, após a montagem de todos os elementos refrigerados na unidade, os circuitos submetido à vazão total a ele destinada, com suas perdas de carga medida para determinar o maior Δp do circuito.

Description

"DISPOSIÇÕES INTRODUZIDAS EM UNIDADE DE PRODUÇÃO DE AÇO
LÍQUIDO"
Refere-se o presente Pedido de Patente de modelo de utilidade, que diz respeito ao campo da indústria siderúrgica, a um conjunto de disposições introduzi- das em componentes da unidade de produção de aço líquido, conhecida como EOF (Energy Optimizing Furnace), objetivando uma maior eficiência tanto na operação quanto na manutenção da unidade como um todo.
O EOF é um forno de fusão e refino, tendo acoplado um pré-aquecedor de carga metálica sólida para a produção de aço líquido, operando com sopro com- binado de oxigénio, submerso na carga metálica líquida e na atmosfera acima do banho metálico líquido, atuando sobre uma carga inicial composta de ferro gusa líquido, carga metálica sólida pré-aquecida e fluxantes para a formação de escória.
Em uma unidade EOF, seus componentes podem ser agrupados, conforme o tipo de operação necessária ao objetivo final, elaboração do aço líquido, nos seguintes equipamentos e sistemas: equipamentos de elaboração de aço líquido, que compreende carro suporte de forno (2 unidades), forno, selagem entre o forno e o pré-aquecedor, pré-aquecedor de carga sólida; carregamento de carga metálica sólida; carregamento de carga líquida; carregamento de adições no forno, contendo bateria de silos; carregamento de adições na panela de aço vazado, contendo bateria de silos; equipamentos vinculados ao processamento dos gases emanados compostos de injetores de ar do pós-combustão, duto desviador (by- pass) de gases; sistema de limpeza dos gases composto de duto de saída de gases, câmara vertical de encharcamento, chaminé de emergência, venturi lavador, ciclone coletor de gotas, sopradores de exaustão, sistema de medição de vazão dos gases ejetados pela chaminé, circuito de água para arrefecimento de temperatura e lavagem dos gases; sistema de água de refrigeração; central hidráulica para o sistema de basculamento do forno; central hidráulica geral; sala de comando; painel de válvulas; espaço para coleta de escoria; equipamento de amos tragem e análise para o aço e escória; equipamento de medição de carbono e temperatura do aço líquido.
Na produção de aço, nesta unidade, o sopro submerso de oxigénio reage com o carbono contido no ferro gusa líquido, gerando bolhas de CO (monóxido de carbono) que ascendem através do banho líquido, promovendo uma forte agitação do mesmo, até atingir a superfície do banho, numa região chamada de "atmosfera" do forno, onde o CO (monóxido de carbono) é queimado para CO2 (dióxido de carbono) pela ação de O2 (oxigénio) soprado através de injetores e lanças supersônicas atuando acima do banho metálico.
O sopro de O2 (oxigénio) tem por função reduzir o teor do C (carbono) contido na carga líquida de ferro gusa, entre 3,5 a 4,5 %, para valores próximos a 0,2 - 0,1% de C (carbono), relação percentual que caracteriza o aço. Desde o início do processo de fusão são adicionados escorificantes, materiais responsáveis por, através de reações químicas, aglutinarem as impurezas contidas na car- ga metálica na forma de escória que, por sua menor densidade, flutua na superfície do banho metálico. No decorrer do processo a temperatura do banho metálico aumenta devido às reações exotérmicas entre o O2 (oxigénio) soprado e o C (carbono) contido na carga. A escória, gerada pelas reações dos escorificantes com as impurezas contidas na carga metálica, é retirada e nova escória é forma- da com nova adição de escorificantes. Ligas metálicas são adicionadas ao banho líquido para atender às especificações do tipo de aço a ser produzido.
Medições periódicas de temperatura e percentual de C (carbono) no banho líquido permitem definir o momento em que a análise desejada é atingida, quando o metal líquido deve ser retirado do forno numa operação denominada "va- zamento". Para esta operação uma panela é transportada num carro para junto do forno, posicionada imediatamente abaixo do canal de vazamento do forno. O sopro de O2 (oxigénio) é suspenso, o canal de vazamento é aberto e o metal líquido é despejado na panela. Nesse momento, se requeridas pelo tipo de aço a ser produzido, novas adições são feitas no metal líquido, desta vez jogadas dire- tamente na panela, ainda no início de seu enchimento.
0 forno é basculado na direção da panela para facilitar a saída do metal líquido; quando a quantidade programada de metal tiver sido descarregada, o for- no é rapidamente basculado em sentido contrário ao vazamento, retendo a escória remanescente e evitando que a mesma se misture ao aço líquido na panela. O intervalo de tempo decorrido entre dois vazamentos consecutivos do metal na panela é denominado "tempo da corrida" e, no caso do EOF, ocorre numa média variando entre 20 a 45 corridas por dia (72 a 32 minutos por corrida).
No estado atual típico da técnica de operação de uma unidade EOF, tanto em termos operacionais quanto ao arranjo físico dos equipamentos principais, ainda se observam problemas, verificados durante vários anos de operação, tais como:
1 - No carro suporte do forno, o basculamento do forno é efetuado por dois cilindros hidráulicos, montados nos lados externos das "cadeiras" de basculamento assentadas nos colares de roletes. Neste sistema verificou-se que a necessária sincronia de movimento dos cilindros não é completa, çriando-se um descompasso na ação, que implica num acionamento antecipado de um dos lados em relação ao outro, com esforços oblíquos danosos ao equipamento e sobrecar- ga na pressão necessária para o movimento solicitado.
II - A velocidade do basculamento em direção à porta de serviço é lenta, não possibilitando um retorno rápido do forno na fase final do vazamento do aço líquido, permitindo, com isso, que parte da escória vaze para a panela, contaminando o aço. III - A movimentação do carro suporte do forno na área de operação é prejudicada devido ao arranjo estrutural da nave do EOF. A altura das vigas transversais ao deslocamento do carro suporte do forno só permite a transferência da soleira do forno até a posição de manutenção e reparo. IV - No forno em si, o carregamento ou a descarga da carga sólida no pré- aquecedor é realizado através de um sistema onde o cestão especial que transporta a carga assenta em suportes fixos. O dispositivo de abertura do fundo do cestão consiste em suportes laterais deslizantes, montados em guias verticais e conectados às tampas do fundo por hastes; esses suportes se apoiam em duas vigas horizontais com seus extremos encaixados em colunas com rasgo central e suportados na posição de receber o cestão por cilindros hidráulicos, com a haste totalmente estendida. Para promover a abertura das tampas do fundo, os cilindros são acionados, recolhendo a haste. Esta ação faz com que os suportes desli- zem para baixo, provocando a abertura do fundo e a queda da carga sólida.
Este sistema permite que o cestão, colocado na posição de descarga pela ponte rolante, permaneça nessa posição sem o auxílio da ponte, liberando-a para outros serviços. Porém a descida das vigas horizontais é irregular devido à falta de uma sincronia com a precisão necessária para o acionamento dos 4 (quatro) cilindros hidráulicos responsáveis por essa ação.
V - No carregamento de gusa líquido no forno e manutenção da bica de gusa, devido ao arranjo estrutural do prédio da unidade EOF, a ponte rolante auxiliar, com a função de vazar o gusa líquido para o interior do forno, não tem condições de aproximar suficientemente a panela contendo o gusa líquido da bica de descarga no forno, numa boa aproximação ao forno. Nessas condições, a bica é longa, projetando-se além do vão da nave do forno, para possibilitar a descarga do gusa líquido na nave da ponte rolante auxiliar.
O gusa líquido vazado no forno forma incrustações no material refratário da bica, causadas pelo resfriamento do metal em função do longo percurso. O progressivo acúmulo de incrustações no material refratário da bica obriga a frequentes paradas na operação para remoção das incrustações ou mesmo da substituição da bica por uma nova. Tanto uma quanto outra operação implicam em tempos significativos de interrupção na produção do aço, porque a projeção da longa bica de gusa aumenta o afastamento no centro de gravidade do forno em relação ao seu centro de giro, exigindo maior esforço nos cilindros de aciona- mento do basculamento do forno.
VI - No carregamento de adições no forno e na panela de aço, os materiais carregados no forno durante a corrida têm como finalidade: geração de escória; conter um aumento excessivamente rápido da temperatura do banho líquido ou promover um aumento na temperatura do banho, conforme o caso; adicionar certas ligas necessárias ao produto final que se agregam ainda durante o processo de elaboração do aço no interior do forno; adicionar outras fontes disponíveis de ferro metálico (ferro-esponja, por exemplo). Os materiais carregados na panela durante o vazamento do aço têm como finalidade: acrescentar elementos de liga ao aço produzido no forno, de acordo com a composição final programada; adicionar materiais desoxidantes para reduzir o teor de 02 contido no metal vazado; promover uma recuperação da temperatura perdida pela adição de ligas. Trata-se de 2 (dois) sistemas separados que armazenam, dosam e transportam os materiais específicos para adições no forno e adições na panela. Com isso, a e- xistência de 2 (dois) sistemas com funções praticamente iguais, exige uma duplicidade de equipamentos e controles, além de ocupar um espaço maior na instalação. VII - Nos equipamentos vinculados ao processamento dos gases emanados do forno, os problemas observados são:
a) No desviador de gases (By-pass), onde os segmentos horizontais - saída inferior do Pré-aquecedor e entrada no topo - formam depósitos de material par- ticulado carreado pelos gases, exigindo periódica e difícil limpeza dos mesmos através das janelas de inspeção; o acionamento da válvula de controle da vazão, através de cilindro pneumático, não permite uma regulagem precisa. b) Na exaustão dos gases para o sistema de limpeza, o duto de saída dos gases, que tem uma peça de transição retângulo/círculo, com a parte superior refri gerada a água, laterais e o fundo revestidos com concreto refratário, eventuais excessos na temperatura dos gases danificam o refratário, causando pontos quentes e mesmo perfurações nas chapas externas da peça. O fundo da peça, que tem um segmento horizontal onde o material particulado fica depositado, reque- rendo periódica remoção; o segmento circular inclinado entre a peça de transição e a entrada da câmara de encharcamento, revestidos de material refratário, também apresentam, como na peça de transição, pontos desgastados, exigindo reparos no material refratário.
VII - No sistema de água de refrigeração, a água é distribuída através de circuitos que agrupam conjuntos de elementos refrigerados, tais como: circuito de alimentação dos elementos refrigerados do forno; circuito de alimentação dos elementos refrigerados da selagem e parte inferior do pré-aquecedor; circuito de alimentação dos elementos refrigerados da parte superior do pré-aquecedor e tampa deslizante do topo; circuito de alimentação dos elementos refrigerados do sistema de exaustão dos gases. As vazões de água de refrigeração para cada e- lemento, definidas em projeto, são afetadas pelas diferentes perdas de carga (diferença entre a pressão de entrada e a de saída - Δρ). Ura elemento com menor perda de carga terá maior vazão de água que um outro com maior Δρ; tal desequilíbrio faz com que os elementos refrigerados com maior Δρ recebam menos água do que o projetado, tornado-se mais vulneráveis aos efeitos da carga térmica a que são submetidos. Cada um dos circuitos tem o mesmo problema, resultando em caminhos preferenciais da água; os desequilíbrios acima descritos afe- tam todo o sistema, com reais prejuízos para os elementos refrigerados com maior perda de carga.
A presente patente de modelo de utilidade, no sentido de sanar estes problemas, na forma de disposições introduzidas nestes sistemas, apresenta inovações que superam estes problemas, otimizando toda operação de aço líquido na unidade de EOF, permitindo maior desempenho com menores custos de manutenção.
Maiores detalhes das disposições introduzidas em componentes da unidade de produção de aço líquido podem ser conhecidas na descrição detalhada que se segue, reportando-se às figuras anexas que acompanham o presente relatório descritivo, sem, contudo, fazer qualquer restrição quanto as suas proporções, dimensões e eventuais aplicações.
A figura 1 é um corte transversal mostrando o carro suporte com o forno completo (soleira, carcaça e abóbada) e vigas transversais na altura que permite a passagem do conjunto.
A figura 2 é um corte mostrando a área do forno com o novo arranjo e uma única ponte carregando o gusa e bica de gusa mais curta.
A figura 3 é uma vista em planta mostrando o arranjo do sistema único de carregamento do forno e da panela, com o pivotamento da correia de carrega- mento para uma ou outra posição.
A figura 4 é uma vista em corte mostrando o forno, pré-aquecedor e "by- pass".
A figura 5 é uma vista em corte do sistema de exaustão: conjunto mostrando forno, pré-aquecedor, duto de saída e câmara de encharcamento modificados.
De acordo com estas figuras e suas referências numéricas, a presente patente de modelo de utilidade refere-se a um conjunto de disposições introduzidas em componentes da unidade de produção de aço líquido, conhecida como EOF (Energy Optimizing Furnace), consistindo estas disposições, com relação aos itens abordados no estado da técnica, nas seguintes inovações:
No item I, o sistema até então adotado, através de motores hidráulicos acoplados a um eixo comum, foi substituído pelo de sincronismo eletrônico.
No item II, o sistema hidráulico foi redimensionado, de forma a se atingir uma velocidade de aproximadamente 4°/s (quatro graus por segundo) no retor- no. Devido à posição do canal e ao retorno rápido do forno no sentido oposto, consegue-se um vazamento de aço líquido completamente livre de escória, fato nem sempre obtido em outros tipos de vazamento, como no EBT ("Eccentric bottom tapping").
No item III, um novo arranjo estrutural da nave do forno (1) elevou as vigas transversais (2), possibilitando o deslocamento do carro suporte (3) com forno completo: soleira, carcaça e abóbada. Tal possibilidade facilita a manutenção de quaisquer componentes do forno; além disso, confere elasticidade quanto a eventuais modificações no forno, como por exemplo, a instalação do vazamento excêntrico do aço líquido tipo (tipo EBT). (Ver figura 1)
No item IV, como no item I, foi adotado o sistema de sincronismo eletrôni- co, obtendo-se a uniformidade de atuação dos cilindros hidráulicos.
No item V, a nave do forno (1) teve sua largura aumentada (11), de tal forma que a ponte rolante (4) dessa nave fosse capaz de receber a panela (5) de gusa líquido e carregar o gusa líquido no forno através de uma bica de vazamento (6) extremamente curta. Resultados: a ponte auxiliar foi eliminada; a redução no comprimento da bica de descarga no forno eliminou a necessidade de ela ser bipartida, possibilitando o deslocamento completo da soleira, incluindo a bica de gusa, até a área de reparo, durante a manutenção periódica do forno; as incrusta- ções na bica de gusa foram minimizadas, reduzindo reparos durante a operação; os esforços nos cilindros de basculamento foram reduzidos, favorecendo sua a- tuação. (Ver figura 2)
No item VI, criou-se um sistema único para estocagem, dosagem e transporte das adições (7) até as imediações do forno e foi incluído um sistema de descarga giratório (8) capaz de, optativamente, carregar materiais no forno ou na panela (5). Estas soluções simplificaram e "compactaram" o sistema, reduzindo o espaço ocupado, o investimento nos equipamentos e facilitando a manutenção. (Ver figura 3) No item VII, o desviador foi totalmente re-projetado: a saída inferior (9) passou a ter um ângulo ascendente de 45°; a entrada superior no topo (10) do pré-aquecedor é formada por uma curva terminando num ângulo descendente também de 45°. Tal arranjo evita quaisquer depósitos de particulados; o aciona- mento da válvula de regulagem (11) passou a ter comando hidráulico, conferindo à regulagem a precisão desejada; todos os segmentos do desviador passaram a ter paredes tubulares refrigeradas a água. (Ver figura 4)
A peça de transição (12) foi totalmente re-projetada, com uma curva ascendente/descendente na entrada da peça. A nova geometria da peça eliminou pon- tos de deposição de material particulado. A seção da peça passou a ser retangu- lar em toda a sua extensão e sua construção em tubos refrigerados a água, eliminando a possibilidade de "pontos quentes" e as consequentes paradas para manutenção. O segmento inclinado (13) também foi re-projetado, com a mesma seção retangular da peça de saída dos gases e o revestimento refratário foi elimi- nado, adotando-se a construção tubular refrigerada a água. (Ver figura 5)
No item VIII, procedeu-se ao "equilíbrio" das perdas de cargas dos diversos circuitos, como segue: cada elemento refrigerado, seja do tipo que for, é testado ainda na fábrica aplicando-se a vazão indicada para o mesmo e medindo-se a perda de carga. Essa informação permite uma primeira avaliação para projetar um sistema preventivo para correção dos desequilíbrios de pressão em cada circuito; após a montagem de todos os elementos refrigerados na unidade, cada circuito é submetido à vazão total a ele destinada; a perda de carga de cada elemento do circuito é medida, determinando-se o maior Δρ do circuito; placas de orifício são calculadas para os elementos com menor Δρ, fazendo com que todos cheguem à mesma perda de carga máxima. Dessa forma o circuito fica "equilibrado", assegurando-se a vazão projetada para cada elemento, independentemente de sua área exposta ou de sua característica construtiva; determinadas as perdas de carga em cada circuito, a alimentação de cada um também é "equilibrada" através de placas de orifício, dimensionadas em função do maior Δρ exis tente. Com todo o sistema "equilibrado" em relação às perdas de carga, fica assegurada a projetada vazão de água de refrigeração para cada circuito e para cada um de seus componentes, assegurando o correto desempenho do sistema como um todo.

Claims

REIVINDICAÇÃO
"DISPOSIÇÕES INTRODUZIDAS EM UNIDADE DE PRODUÇÃO DE AÇO LÍQUIDO", um conjunto de disposições introduzidas em componentes da unidade de produção de aço líquido, conhecida como EOF (Energy Optimizing Furnace), objetivando uma maior eficiência tanto na operação quanto na manutenção da unidade como um todo, caracterizada por consistir estas disposições nas seguintes inovações: adoção de sincronismo eletrônico no sistema de basculamento do forno; redimensionamento do sistema de basculamento para atingir uma velocidade de aproximadamente 4°/s (quatro graus por segundo) no retor- no; novo arranjo estrutural da nave do forno (1) com a elevação das vigas transversais (2), para possibilitar o deslocamento do carro suporte (3) com forno completo: soleira, carcaça e abóbada; adoção de sincronismo eletrônico, na atu- ação dos cilindros hidráulicos do sistema de abertura do fundo do cestão; aumento da largura da nave do forno (11) para que a ponte rolante (4) seja capaz de receber a panela (5) de gusa líquido e carregar o gusa líquido no forno através de uma bica (6) de vazamento extremamente curta, permitindo a eliminação da ponte auxiliar; redução no comprimento da bica de descarga no forno para eliminar a necessidade de ser bipartida e possibilitar o deslocamento completo da soleira, incluindo a bica de gusa, até a área de reparo, durante a manutenção pe- riódica do forno; adoção de um sistema único para estocagem, dosagem e transporte das adições (7) até as imediações do forno, juntamente com um sistema de descarga giratório (8) capaz de, optativamente, carregar materiais no forno ou na panela (5); redisposição da saída inferior (9) do desviador, em um ângulo ascendente de 45°, e da entrada superior no topo (10) do pré-aquecedor, por uma cur- va terminando num ângulo descendente também de 45°, com acionamento hidráulico da válvula de regulagem (11), sendo adotado um sistema de refrigeração a água e paredes tubulares no desviador; adoção de uma peça de transição (12), com uma curva ascendente/descendente na entrada da peça, que passou a ser retangular, em toda a sua extensão, com tubos refrigerados a água, sendo a dotado um segmento inclinado (13) com a mesma seção retangular da peça de saída dos gases e tubulação refrigerada a água; adoção de um sistema de monito- ramento das perdas de cargas dos diversos circuitos, visando o equilíbrio dos mesmos, sendo: cada elemento refrigerado testado ainda na fábrica aplicando sua vazão indicada, medindo a perda de carga; promoção de um sistema preventivo para correção dos desequilíbrios de pressão em cada circuito, sendo ainda, após a montagem de todos os elementos refrigerados na unidade, os circuitos submetido à vazão total a ele destinada, com suas perdas de carga medida para determinar o maior Δρ do circuito.
PCT/BR2010/000192 2010-05-24 2010-05-24 Disposições introduzidas em unidade de produção de aço líquido WO2011147006A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/BR2010/000192 WO2011147006A1 (pt) 2010-05-24 2010-05-24 Disposições introduzidas em unidade de produção de aço líquido

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BR2010/000192 WO2011147006A1 (pt) 2010-05-24 2010-05-24 Disposições introduzidas em unidade de produção de aço líquido

Publications (1)

Publication Number Publication Date
WO2011147006A1 true WO2011147006A1 (pt) 2011-12-01

Family

ID=45003158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2010/000192 WO2011147006A1 (pt) 2010-05-24 2010-05-24 Disposições introduzidas em unidade de produção de aço líquido

Country Status (1)

Country Link
WO (1) WO2011147006A1 (pt)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003255A1 (en) * 2017-06-29 2019-01-03 Danieli & C. Officine Meccaniche S.P.A. FUSION APPARATUS FOR STEEL PRODUCTION
WO2021116170A1 (de) * 2019-12-12 2021-06-17 Thyssenkrupp Industrial Solutions Ag Turmstruktur eines vorwärmturms einer anlage zur thermischen bearbeitung von mineralien und verfahren zum errichten des vorwärmturms
BE1027848B1 (de) * 2019-12-12 2021-07-14 Thyssenkrupp Ag Turmstruktur eines Vorwärmturms einer Anlage zur thermischen Bearbeitung von Mineralien und Verfahren zum Errichten des Vorwärmturms

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673432A (en) * 1985-01-31 1987-06-16 Korf Engineering Gmbh Process for the production of pig iron
US4854967A (en) * 1984-10-12 1989-08-08 Korf Engineering Gmbh Process for producing carburized sponge iron
US4896810A (en) * 1987-12-14 1990-01-30 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Apparatus for melting scrap
JPH09243274A (ja) * 1996-03-08 1997-09-19 Daido Steel Co Ltd 炉頂予熱装置における金属スクラップの予熱方法
JPH09243275A (ja) * 1996-03-07 1997-09-19 Daido Steel Co Ltd 炉頂予熱装置への導入ガス量の制御方法
JPH10185456A (ja) * 1996-12-18 1998-07-14 Daido Steel Co Ltd スクラップ炉頂予熱装置
CN2573970Y (zh) * 2002-10-25 2003-09-17 西安华兴电炉有限公司 用于电弧炉的立式连续侧加料预热环保装置
CN101545724A (zh) * 2009-04-22 2009-09-30 陈存运 电弧炉废钢预热系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854967A (en) * 1984-10-12 1989-08-08 Korf Engineering Gmbh Process for producing carburized sponge iron
US4673432A (en) * 1985-01-31 1987-06-16 Korf Engineering Gmbh Process for the production of pig iron
US4896810A (en) * 1987-12-14 1990-01-30 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Apparatus for melting scrap
JPH09243275A (ja) * 1996-03-07 1997-09-19 Daido Steel Co Ltd 炉頂予熱装置への導入ガス量の制御方法
JPH09243274A (ja) * 1996-03-08 1997-09-19 Daido Steel Co Ltd 炉頂予熱装置における金属スクラップの予熱方法
JPH10185456A (ja) * 1996-12-18 1998-07-14 Daido Steel Co Ltd スクラップ炉頂予熱装置
CN2573970Y (zh) * 2002-10-25 2003-09-17 西安华兴电炉有限公司 用于电弧炉的立式连续侧加料预热环保装置
CN101545724A (zh) * 2009-04-22 2009-09-30 陈存运 电弧炉废钢预热系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"EOF - ENERGY OPTIMIZING FURNACE.", DATASHEET ON LINE., 2009, Retrieved from the Internet <URL:httn://www.minitecnologi-as.com.br/eof,-pt16-07-09.pdf> [retrieved on 20101230] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003255A1 (en) * 2017-06-29 2019-01-03 Danieli & C. Officine Meccaniche S.P.A. FUSION APPARATUS FOR STEEL PRODUCTION
US11338362B2 (en) 2017-06-29 2022-05-24 Danieli & C. Officine Meccaniche S.P.A. Melting apparatus for the production of steel
WO2021116170A1 (de) * 2019-12-12 2021-06-17 Thyssenkrupp Industrial Solutions Ag Turmstruktur eines vorwärmturms einer anlage zur thermischen bearbeitung von mineralien und verfahren zum errichten des vorwärmturms
BE1027848B1 (de) * 2019-12-12 2021-07-14 Thyssenkrupp Ag Turmstruktur eines Vorwärmturms einer Anlage zur thermischen Bearbeitung von Mineralien und Verfahren zum Errichten des Vorwärmturms
CN114829858A (zh) * 2019-12-12 2022-07-29 蒂森克虏伯工业解决方案股份公司 用于热处理矿物的工厂的预热塔的塔结构和用于构造预热塔的方法

Similar Documents

Publication Publication Date Title
BRPI1006768A2 (pt) instalação para produção de aço, método de fabricação de aço ininterrupto ou pelo menos cíclico em uma instalação e método de utilização
CN109593970B (zh) 一种底吹熔炼、密闭吹炼、阳极精炼三连吹装置
CN105669059B (zh) 一种立式水泥熟料冷却塔
WO2011147006A1 (pt) Disposições introduzidas em unidade de produção de aço líquido
CN110388830A (zh) 废钢预热装置、电弧熔化设备及预热方法
US4216708A (en) Fume containment
CN208472142U (zh) 一种炼钢设备
EP0069988B1 (en) Method of repairing blast furnace wall lining
BRMU9002554U2 (pt) disposiÇÕes introduzidas em unidade de produÇço de aÇo lÍquido
BRMU9002463U2 (pt) disposiÇÕes introduzidas em unidade de produÇço de aÇo lÍquido
NO163078B (no) Fremgangsmaate og apparat for paavisning og maaling av suspenderte partikler i en smelte.
WO2022243856A1 (en) Improved cooling apparatus
US3915441A (en) Heating furnace of walking beam type
RU2761833C1 (ru) Вращающаяся плавильная печь для переработки отходов цветных металлов
RU2588700C1 (ru) Шахтно-отражательная печь для переплава металла
CN203782176U (zh) 一种炼钢合金炉料烘烤仓
US3705713A (en) Bottom cooling device for shaft furnaces
RU2557187C2 (ru) Газовая тигельная печь
RU2661368C1 (ru) Индукционная тигельная печь
CN208472141U (zh) 一种炼钢设备
US3459413A (en) Glass tank coolers
CN110423626A (zh) 干熄焦一次除尘厢式焦粉冷却装置
CN210885936U (zh) 干熄焦一次除尘厢式焦粉冷却装置
US3479438A (en) Apparatus and method for preheating of metal scrap for furnace charging
RU2753926C1 (ru) Двухванная отражательная печь с копильником для переплава алюминиевого лома

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851913

Country of ref document: EP

Kind code of ref document: A1