WO2011145603A1 - 内燃機関の燃料供給装置及び燃料供給制御方法 - Google Patents

内燃機関の燃料供給装置及び燃料供給制御方法 Download PDF

Info

Publication number
WO2011145603A1
WO2011145603A1 PCT/JP2011/061291 JP2011061291W WO2011145603A1 WO 2011145603 A1 WO2011145603 A1 WO 2011145603A1 JP 2011061291 W JP2011061291 W JP 2011061291W WO 2011145603 A1 WO2011145603 A1 WO 2011145603A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
injection
switching
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2011/061291
Other languages
English (en)
French (fr)
Inventor
将秀 田中
Original Assignee
スズキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スズキ株式会社 filed Critical スズキ株式会社
Priority to DE112011101688.3T priority Critical patent/DE112011101688B4/de
Priority to CN201180024842.5A priority patent/CN102906397B/zh
Publication of WO2011145603A1 publication Critical patent/WO2011145603A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • F02D19/0615Switch-over from one fuel to another being initiated by automatic means, e.g. based on engine or vehicle operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0628Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/16Indirect injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a control technology that uses a plurality of fuels and supplies the internal combustion engine by switching the fuel, and more particularly, to a fuel supply device and a fuel supply control method for an internal combustion engine having a fuel switching means.
  • an internal combustion engine of a vehicle As an internal combustion engine of a vehicle, an internal combustion engine using liquid fuel such as gasoline or light oil, an internal combustion engine using gas fuel such as compressed natural gas or liquefied petroleum gas (CNG, LPG), or gas fuel and liquid fuel There are internal combustion engines that select two types of fuel and switch the use.
  • liquid fuel such as gasoline or light oil
  • gas fuel such as compressed natural gas or liquefied petroleum gas (CNG, LPG)
  • CNG, LPG liquefied petroleum gas
  • gas fuel and liquid fuel There are internal combustion engines that select two types of fuel and switch the use.
  • a vehicle equipped with an internal combustion engine that selects two types of fuels, gas fuel and liquid fuel, and switches the use thereof is called a “bi-fuel vehicle”.
  • a fuel supply system for an internal combustion engine of a bi-fuel vehicle sets a fuel supply system provided independently of each other for a plurality of fuels having different properties, and sets an appropriate injection amount according to the intake air amount of the internal combustion engine for each fuel And a control means for enabling the fuel to be supplied to the internal combustion engine by selectively switching.
  • Patent Document 1 As a conventional technique, there is a dual fuel switching control method and apparatus disclosed in Patent Document 1 described above.
  • the device disclosed in Patent Document 2 is a fuel supply device for an internal combustion engine that selectively switches between two fuel supply systems and switches the fuel supplied to the internal combustion engine, and supplies fuel to each cylinder.
  • a technique for controlling to perform asynchronous injection immediately after fuel switching is disclosed.
  • the present invention ensures smooth operation of the internal combustion engine while accurately adjusting the air-fuel ratio by eliminating fuel shortage at the time of fuel switching, and eliminates the simultaneous use of multiple fuels and increases the control load.
  • An object of the present invention is to provide a fuel supply device and a fuel supply control method for an internal combustion engine that can be avoided.
  • a fuel supply apparatus for an internal combustion engine includes a fuel supply system provided independently for a plurality of fuels having different properties, and a fuel supply system for each fuel.
  • Control means for setting an appropriate injection amount in accordance with the intake air amount, and a fuel supply device for an internal combustion engine that selectively supplies fuel to be supplied to the internal combustion engine. Is connected to another type of fuel, and when a fuel switching request is made, the fuel after switching is switched for all the cylinders during a round of all the cylinders from the cylinder following the cylinder that is injecting at the time of the switching request.
  • a switching correction amount is injected in addition to the standard injection amount during normal operation.
  • fuel is supplied from a fuel supply system that is independently provided for a plurality of fuels having different properties.
  • a fuel supply device including a control means for supplying and setting an appropriate injection amount according to the intake air amount of the internal combustion engine for each fuel, and selectively switching the fuel to be supplied to the internal combustion engine
  • a fuel supply control method for an internal combustion engine to be supplied wherein when a request for switching from one type of fuel to another type of fuel is made, a switching correction amount to be added to a standard injection amount during normal operation of the fuel after switching is calculated, and when a fuel switching request is made The switching correction amount is injected to all the cylinders while making a round of all the cylinders from the cylinder next to the cylinder performing the fuel injection.
  • the control means determines the switching correction amount to a predetermined ratio smaller than the standard injection amount based on operating conditions including the rotation speed of the internal combustion engine before fuel switching.
  • the injection of the switching correction amount can be performed independently of the standard injection at any time before the injection of the standard injection amount of each cylinder and after the last intake stroke.
  • the switching correction amount of injection may be continued to this standard injection before or after the standard injection amount of each cylinder.
  • a fuel supply device for an internal combustion engine that can selectively switch and supply fuel to be supplied to the internal combustion engine, and when a switch request from one type of fuel to another type of fuel is requested, injection is performed at the time of the switch request. While making a round of all the cylinders from the next cylinder to the cylinder being performed, the switching correction amount is injected to all the cylinders in addition to the standard injection amount during normal operation of the switched fuel.
  • the control is always performed with only a single fuel, the amount of fuel to be corrected by air-fuel ratio feedback control is also single even after the fuel is switched. .
  • FIG. 1 is a schematic configuration diagram of a fuel supply device for an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is a flowchart for controlling the fuel supply device for the internal combustion engine shown in FIG.
  • FIG. 3 is a time chart of injection in advance in addition to the switching-time injection and sequential injection according to this embodiment.
  • FIG. 4 is also a time chart of injection in addition to the switching injection and sequential injection.
  • 1 to 4 show an embodiment of the present invention.
  • reference numeral 1 denotes an internal combustion engine mounted on a bi-fuel vehicle.
  • This internal combustion engine 1 has a plurality of cylinders (not shown).
  • each of the branch pipes 7 of an air cleaner 2, an intake pipe 3, a throttle body 4, a surge tank 5, and an intake manifold 6 serves as an intake system.
  • an intake passage 8 communicating with each cylinder is provided.
  • the internal combustion engine 1 is provided with an exhaust passage 13 that sequentially connects each branch pipe 10 of the exhaust manifold 9, the catalytic converter 11, and the exhaust pipe 12 as an exhaust system, and communicates with each cylinder.
  • the internal combustion engine 1 is provided with a throttle valve 14 in the intake passage 8 of the throttle body 4.
  • the throttle valve 14 is opened and closed by a throttle motor in accordance with an operation amount of an accelerator pedal (not shown).
  • the internal combustion engine 1 is provided with a bypass air passage 15 that bypasses the throttle valve 14 and communicates with the intake passage 8.
  • An idle air amount control valve (also referred to as an “ISC valve”) 16 that adjusts the bypass air amount is provided in the middle of the bypass air passage 15 so that the engine speed during idling becomes the target engine speed. .
  • the internal combustion engine 1 includes a gaseous fuel container (also referred to as a “gas cylinder”) 17 that stores gaseous fuel.
  • a gaseous fuel container also referred to as a “gas cylinder” 17 that stores gaseous fuel.
  • One end of a gaseous fuel supply pipe 18 is connected to the gaseous fuel container 17.
  • the other end of the gaseous fuel supply pipe 18 is connected to the gaseous fuel delivery pipe 19.
  • a gaseous fuel injection valve 20 provided in each branch pipe 7 of the intake manifold 6 is connected to the gaseous fuel delivery pipe 19.
  • the gas fuel supply pipe 18 is provided with a main stop valve 21, a pressure-reducing pressure regulator 22, a gas fuel filter 23, and a gas fuel pressure / gas fuel temperature sensor 24 sequentially from the gas fuel container 17 side. is doing.
  • the main stop valve 21 is for shutting off the gaseous fuel when the internal combustion engine 1 is stopped, and the pressure regulating valve 22 depressurizes the gaseous fuel and adjusts it to an appropriate pressure and flow rate.
  • the gaseous fuel filter 23 filters gaseous fuel, and the gaseous fuel pressure / gas fuel temperature sensor 24 detects the pressure of the gaseous fuel and also detects the temperature of the gaseous fuel.
  • the internal combustion engine 1 includes a liquid fuel tank 25 that stores liquid fuel.
  • a liquid fuel pump 26 connected to one end side of the liquid fuel supply pipe 27 is provided.
  • the other end of the liquid fuel supply pipe 27 is connected to a liquid fuel delivery pipe 28.
  • a liquid fuel injection valve 29 provided in each branch pipe 7 of the intake manifold 6 is connected to the liquid fuel delivery pipe 28.
  • a liquid fuel filter 30 is disposed in the liquid fuel supply pipe 27.
  • the liquid fuel delivery pipe 28 is connected to a pressure regulator 31 connected to the liquid fuel tank 25 by a fuel return pipe 32.
  • the pressure regulator 31 functions to adjust the liquid fuel pressure supplied to the liquid fuel injection valve 29 and return surplus fuel to the liquid fuel tank 25 through the fuel return pipe 32.
  • one end side of an evaporation pipe 33 is connected to the liquid fuel tank 25, and the other end side of the evaporation pipe 33 is connected to a canister 34 for adsorbing and releasing evaporated liquid fuel.
  • One end of a purge pipe 35 is connected to the canister 34, and the other end communicates with the intake passage 8 downstream of the throttle valve 14.
  • the purge pipe 35 is provided with a purge control valve 36, and intake air is supplied from the canister 34.
  • the purge control valve 36 adjusts the amount of evaporated liquid fuel supplied from the canister 34 to the intake passage 8.
  • an intake air temperature sensor 37 that detects the intake air temperature of the intake passage 8 is provided in the intake pipe 3
  • an airflow sensor 38 that detects the intake air flow rate of the intake passage 8 is provided in the intake pipe 3.
  • An intake pressure sensor 39 for detecting the pressure is provided in the surge tank 5, and an air-fuel ratio sensor 40 for detecting the exhaust oxygen concentration in the exhaust passage 13 is provided in the exhaust manifold 9.
  • the idle air amount control valve 16, the gas fuel injection valve 20, the main stop valve 21, the gas fuel pressure / gas fuel temperature sensor 24, the liquid fuel pump 26, the liquid fuel injection valve 29, the purge control valve 36, the intake air temperature sensor 37, The air flow sensor 38, the intake pressure sensor 39, and the air-fuel ratio sensor 40 are connected to a control means 42 constituting the fuel supply device 41 of the internal combustion engine 1 capable of supplying at least one of gaseous fuel and liquid fuel to the combustion chamber. Yes.
  • the fuel selection switch 43 is connected to the control means 42.
  • the control means 42 can set an appropriate injection amount corresponding to the intake amount of the internal combustion engine 1 for each fuel.
  • the fuel supply device 41 of the internal combustion engine 1 can selectively switch and supply the fuel to be supplied to the internal combustion engine 1.
  • control unit 42 of the fuel supply device 41 of the internal combustion engine 1 requests to switch from one type of fuel to another type of fuel, it makes a round of all the cylinders from the cylinder next to the cylinder that is injecting at the time of this switching request. In the meantime, the switching correction amount is injected into all cylinders in addition to the standard injection amount during normal operation of the fuel after switching.
  • the amount of asynchronous injection to be injected is determined in advance through actual tests to determine the optimal injection correction amount for each engine operating condition (intake air amount, intake pipe pressure, engine speed, engine load, throttle opening, etc.). In this actual test, similar to a general conformity test, it may be set so as to balance fluctuations in exhaust gas components and engine speed.
  • the fuel supply device 41 is provided independently for a plurality of fuels having different properties, and is provided so as to be capable of injection control independently for each cylinder.
  • Both the fuel injection device and the fuel injection device for gasoline which is a liquid fuel, can be selectively switched between synchronous injection (sequential injection) and asynchronous injection (simultaneous injection, simultaneous injection). .
  • the fuel injection device for gas fuel is arranged on the upstream side of the intake pipe from the fuel injection device for gasoline.
  • the standard injection amount is an injection amount obtained by adding various correction amounts to the basic injection amount, and is a final injection amount used for air-fuel ratio feedback control performed as a normal post-startup operation.
  • the standard injection amount is controlled by the fuel adjusted to a predetermined pressure and the injection time that is the time when the injection device is opened.
  • a predetermined correction value is set for each fuel according to the operating state. Note that these fuel supply pressures are all low pressure (about several atmospheres).
  • the fuel injection amount is adjusted.
  • the injection amount of asynchronous injection is set and adjusted according to the engine rotation (and load, etc.).
  • the control is always performed with only a single fuel, the amount of fuel to be corrected by air-fuel ratio feedback control is also single even after the fuel is switched. .
  • the switching correction amount is determined to be a predetermined ratio smaller than the standard injection amount based on the operating condition including the rotation speed of the internal combustion engine 1 before fuel switching, and the cylinder next to the cylinder that performs the injection at the time of switching request Cylinders that perform injection by synchronous injection that starts pre-injection that sequentially performs injection of switching correction amounts for all cylinders independently before normal injection, or during a switching request
  • the injection of the switching correction amount is performed by synchronous injection in which the switching correction amount is sequentially injected to all the cylinders while making a round of all the cylinders from the next cylinder.
  • the desired air-fuel ratio feedback control performs the desired air-fuel ratio feedback control. Since the fuel ratio can be controlled, the exhaust gas purification performance can be secured.
  • the correction amount for switching to be added is determined in consideration of the charging efficiency into the cylinder.
  • the coefficient Kpinj may be determined.
  • a correction amount at the time of switching according to the operating condition including the rotation speed of the internal combustion engine 1 (including any one of the intake air amount, the intake pipe pressure, the engine load (rate), and the throttle opening) is added.
  • the air-fuel ratio adjustment immediately after switching can be set in detail, and good control accuracy can be secured.
  • vertical dotted lines arranged at equal intervals indicate the boundary of the stroke, and the main stroke in which the standard injection is performed is the exhaust stroke for both fuel gas and gasoline. ing.
  • the injection amount at the time of switching is calculated from the value obtained by multiplying the fuel injection pulse width (TPms) immediately before the execution of the injection at the time of switching by a correction coefficient Kpinj for calculating the injection at the time of switching (Tchg ms) obtained in advance by an experiment according to the following equation. .
  • Tchg TP x Kpinj 0 ⁇ Kpinj ⁇ 1
  • the correction coefficient for calculating injection at the time of switching (Tchg ms) Kpinj is set as a table for the engine speed (Ne rpm) or a map for the engine speed (Ne rpm) and the intake pipe pressure (Pin kPa). . In either case, the setting is made finely for each reference engine speed (Ne rpm). Then, as shown in FIG. 3 and FIG. 4, the switching injection (Tchg ms) calculation correction coefficient Kpinj is set so that the injection amount of the switching correction injection is sufficiently smaller than the standard injection amount of normal sequential injection. A smaller predetermined ratio is set so that the engine speed can be adjusted by the engine speed (Ne rpm), the intake pipe pressure (Pin kPa), and the like.
  • the intermediate value uses a known calculation calculated by interpolation calculation.
  • control means 42 proceeds to a process of inputting a fuel switching signal from the fuel selection switch 43 (S102).
  • the fuel switching signal from the fuel selection switch 43 includes a bidirectional switching signal between liquid fuel that is gasoline and gaseous fuel that is gas. And it is judged whether it is a switching signal from the liquid fuel which is gasoline to the gaseous fuel which is gas (S103).
  • the operating state in the determination of whether or not the signal is a switching signal from liquid fuel that is gasoline to gaseous fuel that is gas (S103), if the determination is YES, the operating state (intake air amount, intake pipe pressure, engine speed, engine The process proceeds to a process (S104) for calculating a switching correction gas injection amount corresponding to a load, a throttle opening degree, and the like.
  • the process proceeds to the process of calculating the correction gasoline injection amount at the time of switching (S105). Then, after the process of calculating the switching correction gas injection amount corresponding to the operation state (intake air amount, intake pipe pressure, engine speed, engine load, throttle opening, etc.), fuel switching is performed. The process proceeds to processing (S106), and the corrected fuel injection amount calculated in the above processing (S104) is added independently in advance or continuously with the fuel injection amount at the time of normal sequential injection to inject gaseous fuel as gas. After the process (S107), the process proceeds to the end (S110) of the control program for the fuel supply device 41 of the internal combustion engine 1.
  • the sequential injection in the four-cylinder internal combustion engine is described as an example in FIGS. 3 and 4, but in the simultaneous injection control in other internal combustion engines (3 cylinders, 6 cylinders, etc.) Similarly, fuel switching injection control can be performed.
  • the correction coefficient Kpinj for calculating the injection at the time of switching has been described by adjusting the intake pipe pressure (Pin kPa), but instead of the intake pipe pressure (Pin kPa), It can also be set by throttle opening (0-100%, etc.), engine load factor (0-1.0), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 本発明は、燃料切替時の燃料不足をなくして空燃比の調節を的確にしつつ内燃機関の滑らかな運転を確保すること、複数燃料の同時使用をなくし制御負荷の増大を回避するため、性状の異なる複数の燃料について相互に独立して設ける燃料供給系と、それぞれの燃料について内燃機関の吸気量に応じた適量の噴射量を設定可能とする制御手段とを備え、内燃機関に供給する燃料を選択的に切り替えて供給可能とする内燃機関の燃料供給装置おいて、一種の燃料から別種の燃料への切替要求時には、この切替要求時に噴射を行っている気筒の次の気筒から全気筒を一巡する間に全気筒に対して切替後燃料の通常運転時の標準噴射量に加えて切替補正量を噴射する。

Description

内燃機関の燃料供給装置及び燃料供給制御方法
 本発明は複数の燃料を使用し、燃料を切り替えて内燃機関に供給する制御技術に関し、特に、燃料切り替え手段を有する内燃機関の燃料供給装置及び燃料供給制御方法に関する。
 車両の内燃機関には、ガソリンや軽油等の液体燃料を使用する内燃機関や、圧縮天然ガスや液化石油ガス(CNG、LPG)等のガス燃料を使用する内燃機関、あるいは、ガス燃料と液体燃料との2種類の燃料を選択して使用を切り替える内燃機関などがある。
 そして、このガス燃料と液体燃料との2種類の燃料を選択して使用を切り替える内燃機関を搭載する車両を「バイフューエル車」と称している。
 このバイフューエル車の内燃機関の燃料供給装置は、性状の異なる複数の燃料について相互に独立して設ける燃料供給系と、それぞれの燃料について前記内燃機関の吸気量に応じた適量の噴射量を設定可能とする制御手段とを備え、前記内燃機関に供給する燃料を選択的に切り替えて供給可能としている。
特公平6-43814号公報 特開2006-336499号公報
 ところで、従来の内燃機関の燃料供給装置においては、液体燃料用の燃料供給系と気体燃料用の燃料供給系とが独立して2系統あり、各々を切り替えて使用している。
 この様な従来の燃料供給装置(技術)においては、燃料切替時には、切替前後の燃料供給系が変わるため、吸気通路内に残った切替前の残存余剰燃料と切替直後に切替後燃料の供給が不足する分との過不足を切替前後で適切に調整し、空燃比を制御する必要がある。
 特に、バイフューエル気体燃料車において、液体燃料車をベースとして気体燃料用の燃料供給系を追加するケースにおいては、液体燃料から気体燃料への切替直後に液体燃料の燃料供給量が不足するという傾向がある。
 従来技術としては、上記の特許文献1に開示される二元燃料の切替制御方法及び装置がある。
 この特許文献1に記載のものは、燃料切替後もしばらくは切替前の燃料を供給し続けることで、切替時の燃料過不足を調整しているが、同時に2種類の燃料を供給する必要があり、一時的に制御手段(「エンジンコントローラ」とも換言できる。)の出力電流が増大することや、混合する燃料量の制御が複雑になるという不都合がある。
 また、上記の特許文献2に開示される装置は、2系統の燃料供給系を選択的に切り替えて内燃機関に供給する燃料を切り替える内燃機関の燃料供給装置であって、各気筒毎に燃料を噴射供給する同期噴射(シーケンシャル噴射)を行って、途中で燃料切替要求があった場合に、次の気筒から燃料を切り替えて同期噴射を継続するよう制御する技術、あるいは、燃料切替要求があった場合に、燃料切替直後に非同期噴射を行うよう制御する技術を開示している。
 しかし、燃料の切替タイミングと噴射形式(同期噴射(シーケンシャル噴射)、非同期噴射(同時噴射、斉時噴射)それぞれ)との関係を細かく配慮しているものの、切替時に供給燃料量に不足が生ずる点については改良の余地があり、さらに、切替時に不足する供給燃料量が、切替直前の噴射量との関連性を見出すまでに至っていないという不都合がある。
 本発明は、上述の従来技術を鑑み、燃料切替時の燃料不足をなくして空燃比の調節を的確にしつつ内燃機関の滑らかな運転を確保し、複数燃料の同時使用をなくし制御負荷の増大を回避することを可能とした、内燃機関の燃料供給装置及び燃料供給制御方法を提供する事を目的とする。
 上記課題を解決するために提供される本発明の一実施例による内燃機関の燃料供給装置は、性状の異なる複数の燃料について相互に独立して設ける燃料供給系と、それぞれの燃料について内燃機関の吸気量に応じた適量の噴射量を設定する制御手段とを備え、前記内燃機関に供給する燃料を選択的に切り替えて供給する内燃機関の燃料供給装置であって、前記制御手段には、一種の燃料から別種の燃料への切替手段が接続され、燃料切替要求時には、この切替要求時に噴射を行っている気筒の次の気筒から全気筒を一巡する間に全気筒に対して切替後燃料の通常運転時の標準噴射量に加えて切替補正量を噴射することを特徴とする。
 また、上記課題を解決するために提供される本発明の他の実施例による内燃機関の燃料供給制御方法によれば、性状の異なる複数の燃料について相互に独立して設ける燃料供給系より燃料を供給し、それぞれの燃料について内燃機関の吸気量に応じた適量の噴射量を設定可能にする制御手段とを備えた燃料供給装置を用いて、前記内燃機関に供給する燃料を選択的に切り替えて供給する内燃機関の燃料供給制御方法であって、一種の燃料から別種の燃料への切替要求時には、切替後燃料の通常運転時の標準噴射量に加える切替補正量を算出し、燃料切替要求時に燃料の噴射を行っている気筒の次の気筒から全気筒を一巡する間に全気筒に対して前記切替補正量を噴射する、ことを特徴とする。
 更に、本発明実施例お好適な態様によれば、前記制御手段は、切替補正量を燃料切替前の前記内燃機関の回転数を含む運転条件に基づいて標準噴射量より少ない所定割合に決定し、前記切替手段に対して、切替要求時に噴射を行っている気筒の次の気筒の噴射時間の間に全気筒に対して切替補正量の噴射を開始する非同期噴射により、または、切替要求時に噴射を行っている気筒の次の気筒から全気筒を一巡する間に全気筒に対して順次切替補正量を噴射する同期噴射により、切替補正量の噴射を行うよう制御することを可能とする。
 また、前記切替補正量の噴射を各気筒の標準噴射量の噴射の前であって直前の吸気行程が終了した後の任意の時にこの標準噴射から独立して行うことを可能とする。
 さらに、前記切替補正量の噴射を各気筒の標準噴射量の噴射の前又は後にこの標準噴射に連続させても良い。
 以上詳細に説明した如くこの発明によれば、性状の異なる複数の燃料について相互に独立して設ける燃料供給系と、それぞれの燃料について内燃機関の吸気量に応じた適量の噴射量を設定可能とする制御手段とを備え、内燃機関に供給する燃料を選択的に切り替えて供給可能とする内燃機関の燃料供給装置において、一種の燃料から別種の燃料への切替要求時には、この切替要求時に噴射を行っている気筒の次の気筒から全気筒を一巡する間に全気筒に対して切替後燃料の通常運転時の標準噴射量に加えて切替補正量を噴射する。
 従って、複数の燃料を同時に使用しないので、配分を考慮する必要がなく、制御装置の駆動負荷を低減できる。
 また、常に単一燃料のみの制御となるので、燃料切替後も、空燃比フィードバック制御で補正する燃料量も単一となり、その燃料の過不足を考慮すれば良く、良好な制御精度を確保できる。
図1は本発明の一実施例に係る内燃機関の燃料供給装置の概略構成図である。 図2は上記図1に示される内燃機関の燃料供給装置の制御用フローチャートである。 図3は本実施例装置に係る切替時噴射、シーケンシャル噴射の前に追加して事前に噴射のタイムチャートである。 図4は同じく切替時噴射、シーケンシャル噴射に追加して噴射のタイムチャートである。
 以下、添付図面に基づいてこの発明の実施例を詳細に説明する。
 図1乃至図4はこの発明の一実施例を示すものである。
 図1において、1はバイフューエル車に搭載される内燃機関である。この内燃機関1は複数の気筒(図示せず)を有し、図1に示す如く、吸気系として、エアクリーナ2と吸気管3とスロットルボディ4とサージタンク5と吸気マニホルド6の各分岐管7とを順次に接続し、各気筒に連通する吸気通路8を設けている。
 また、前記内燃機関1は、排気系として、排気マニホルド9の各分岐管10と触媒コンバータ11と排気管12とを順次に接続し、各気筒に連通する排気通路13を設けている。
 前記内燃機関1は、スロットルボディ4の吸気通路8にスロットルバルブ14を設けている。このスロットルバルブ14は、図示しないアクセルペダルの操作量に応じてスロットルモータにより開閉動作される。
 また、前記内燃機関1は、スロットルバルブ14を迂回して前記吸気通路8を連通するバイパス空気通路15を設けている。このバイパス空気通路15の途中には、アイドル運転時のエンジン回転数が目標エンジン回転数になるようバイパス空気量を調整するアイドル空気量制御弁(「ISCバルブ」ともいう。)16を設けている。
 更に、前記内燃機関1は、圧縮天然ガスや液化石油ガス(CNG、LPG)等の気体燃料と、ガソリンや軽油等の液体燃料との、少なくとも一方が燃焼室(図示せず)に供給される。また、前記内燃機関1は、気体燃料を貯留する気体燃料容器(「ガスボンベ」とも換言できる。)17を備えている。この気体燃料容器17には、気体燃料供給管18の一端側を接続している。気体燃料供給管18は、他端側を気体燃料デリバリパイプ19に接続している。気体燃料デリバリパイプ19には、前記吸気マニホルド6の各分岐管7に設けられた気体燃料噴射弁20がそれぞれ接続している。
 また、前記気体燃料供給管18には、気体燃料容器17側から順次に、主止弁21と減圧用の調圧弁22と気体燃料フィルタ23と気体燃料圧力・気体燃料温度センサ24とを配設している。
 前記主止弁21は、前記内燃機関1の停止時に気体燃料を遮断するためのものであり、前記調圧弁22は、気体燃料を減圧して適正な圧力・流量に調整する。また、前記気体燃料フィルタ23は、気体燃料を濾過し、前記気体燃料圧力・気体燃料温度センサ24は、気体燃料の圧力を検出するとともに、気体燃料の温度をも検出する。
 また、前記内燃機関1は、液体燃料を貯留する液体燃料タンク25を備えている。 この液体燃料タンク25内には、液体燃料供給管27の一端側に接続する液体燃料ポンプ26を設けている。この液体燃料供給管27の他端側は液体燃料デリバリパイプ28に接続している。そして、この液体燃料デリバリパイプ28には、前記吸気マニホルド6の各分岐管7に設けられた液体燃料噴射弁29をそれぞれ接続している。
 前記液体燃料供給管27には、液体燃料フィルタ30を配設している。前記液体燃料デリバリパイプ28には、燃料戻り管32により液体燃料タンク25に接続されたプレッシャレギュレータ31に接続している。このプレッシャレギュレータ31は、液体燃料噴射弁29に供給される液体燃料圧力を調整し、余剰の燃料を燃料戻り管32により液体燃料タンク25に戻す作用をする。
 このとき、この液体燃料タンク25には、エバポ配管33の一端側が接続され、このエバポ配管33は、他端側を蒸発液体燃料の吸着・放出を行うキャニスタ34に接続している。このキャニスタ34には、パージ配管35の一端側が接続され、他端側を前記スロットルバルブ14下流側の吸気通路8に連通している。
 上記パージ配管35には、パージ制御弁36を設けて、キャニスタ34から吸気通このパージ制御弁36は、キャニスタ34から吸気通路8に供給される蒸発液体燃料量を調整する。
 前記内燃機関1は、吸気通路8の吸気温度を検出する吸気温センサ37を吸気管3に設け、吸気通路8の吸気流量を検出するエアフローセンサ38を吸気管3に設け、吸気通路8の吸気圧力を検出する吸気圧力センサ39をサージタンク5に設け、排気通路13の排気酸素濃度を検出する空燃比センサ40を排気マニホルド9に設けている。
 前記アイドル空気量制御弁16や気体燃料噴射弁20、主止弁21、気体燃料圧力・気体燃料温度センサ24、液体燃料ポンプ26、液体燃料噴射弁29、パージ制御弁36、吸気温センサ37、エアフローセンサ38、吸気圧力センサ39、空燃比センサ40は、気体燃料と液体燃料との少なくとも一方を燃焼室に供給可能な前記内燃機関1の燃料供給装置41を構成する制御手段42に接続されている。
 そして、この制御手段42には、燃料選択スイッチ43を接続する。前記制御手段42は、それぞれの燃料について前記内燃機関1の吸気量に応じた適量の噴射量を設定可能としている。また、前記内燃機関1の燃料供給装置41は、前記内燃機関1に供給する燃料を選択的に切り替えて供給可能としている。
 また、前記内燃機関1の燃料供給装置41の制御手段42は、一種の燃料から別種の燃料への切替要求時には、この切替要求時に噴射を行っている気筒の次の気筒から全気筒を一巡する間に全気筒に対して切替後燃料の通常運転時の標準噴射量に加えて切替補正量を噴射する構成を有している。
 詳述すれば、バイフューエル車の燃料切替時に、定常運転時に供給する燃料に加えて追加の切替時燃料噴射を「シーケンシャル噴射の前に適量事前に噴射」あるいは「通常のシーケンシャル噴射量に適量加算して噴射」し、切替直後の空燃比を調整する。
 また、噴射する非同期噴射量は、予め各エンジン運転条件(吸入空気量、吸気管圧力、エンジン回転数、エンジン負荷、スロットル開度など)に最適な噴射補正量を実試験で求め設定する。尚、この実試験では、一般的な適合試験と同様に、排気ガス成分やエンジン回転数の変動をバランスするようにして設定すれば良い。
 更に、前記燃料供給装置41は、性状の異なる複数の燃料について相互に独立して設けてあり、また、各気筒毎に独立して噴射制御可能として設けてあるので、気体燃料であるガス燃料の燃料噴射装置、および、液体燃料であるガソリンの燃料噴射装置は、ともに、同期噴射(シーケンシャル噴射)と、非同期噴射(同時噴射、斉時噴射)とを選択的に切り替えて実施することが可能である。
 更にまた、ガソリン内燃機関をベースとしているため、ガス燃料の燃料噴射装置は、ガソリンの燃料噴射装置よりも吸気管上流側に配設してある。標準噴射量とは、基本噴射量に様々な補正量を加えた噴射量のことであり、通常の始動後運転として行う空燃比フィードバック制御に使用する最終的な噴射量のことである。標準噴射量は、所定の圧力に調整された燃料と噴射装置が開弁される時間となる噴射時間とによって制御する。各燃料で、運転状態に応じた所定の補正値をそれぞれ設定する。なお、それらの燃料供給圧は、いずれも低圧(数気圧程度)である。
 燃料切替時の燃料不足(空燃比が理論空燃比よりも薄く(リーン)なる)となるが、切替直前の噴射量に対し相関性がある(ある一定の割合となっている)との知見に基づき、燃料噴射量を調整している。図3では、非同期噴射の噴射量を、エンジン回転(及び負荷など)に応じて設定し調整している。
 従って、複数の燃料を同時に使用しないので、配分を考慮する必要がなく、制御装置の駆動負荷を低減できる。
 また、常に単一燃料のみの制御となるので、燃料切替後も、空燃比フィードバック制御で補正する燃料量も単一となり、その燃料の過不足を考慮すれば良く、良好な制御精度を確保できる。
 また、前記切替補正量を、燃料切替前の前記内燃機関1の回転数を含む運転条件に基づいて標準噴射量より少ない所定割合に決定し、切替要求時に噴射を行っている気筒の次の気筒から全気筒を一巡する間に全気筒に対して順次切替補正量の噴射を通常の噴射の前に独立して行う事前噴射を開始する同期噴射により、または、切替要求時に噴射を行っている気筒の次の気筒から全気筒を一巡する間に全気筒に対して順次切替補正量を噴射する同期噴射により、切替補正量の噴射を行う。
 つまり、切替補正量が各気筒に一通り加えられた後、その一時的に通過供給された燃料噴射に起因して空燃比の変動が生じても、通常の空燃比フィードバック制御によって、所望の空燃比に制御できるので、排ガスの浄化性能を確保できる。
 また、前記内燃機関1の回転数が高くなるほど、燃焼サイクルに要する時間、あるいは各工程に要する時間が短くなるので、シリンダ内への充填効率を考慮して、追加する切替時補正量を決定する係数Kpinjを決定すれば良い。
 従って、前記内燃機関1の回転数を含む運転条件(他に、吸入空気量、吸気管圧力、エンジン負荷(率)、スロットル開度のいずれかを含む)に応じた切替時補正量を加えることで、切替直後の空燃比調節が詳細に設定でき、良好な制御精度を確保できる。
 ここで、図3の切替時噴射、切替時補正噴射のタイムチャートについて説明する。
 この図3のタイムチャートにおいては、
(1)t0位置にて前記燃料選択スイッチ43を操作すると、
(2)t1位置にてガソリンよりガス燃料へ噴射燃料を切り替え、
   (t0時の噴射気筒の次の噴射気筒の標準噴射開始時)
(3)t2位置にて燃料切替時噴射(ガス)を各気筒のシーケンシャル噴射の前に適量の切替時補正量を標準噴射から独立して噴射する(標準噴射時間の前であって直前の吸気行程が終了した後の任意の時)。
 なお、図3、および後述の図4において、等間隔に並んだ縦の点線は行程の境界を示すものであり、標準噴射が行われる主な行程は、燃料のガス、ガソリンともに排気行程となっている。
 また、図4の切替時噴射、シーケンシャル噴射に追加して噴射のタイムチャートについて説明する。
 この図4のタイムチャートにおいては、
(1)t0位置にて前記燃料選択スイッチ43を操作すると、
(2)t1位置にてガソリンよりガス燃料へ噴射燃料を切り替え 
  (t0時の噴射気筒の次の噴射気筒の標準噴射開始時)、
(3)各気筒のシーケンシャル噴射時に標準噴射量を与える噴射時間に燃料切替時補正噴射(ガス)を与える噴射時間を連続するよう加算して全気筒それぞれに噴射する。燃料切替時補正分は標準噴射分の前又は後に連続させて加算する。
 以下、切替時噴射量について説明する。
 切替時噴射量は、以下の式によって、切替時噴射実施直前の燃料噴射パルス巾(TPms)に予め実験で求めた切替時噴射(Tchg ms)算出用補正係数Kpinjを乗じた値より算出される。
   Tchg = TP × Kpinj
   0 ≦ Kpinj ≦ 1
そして、切替時噴射(Tchg ms)算出用補正係数Kpinjは、エンジン回転数(Ne rpm)についてのテーブル、又は、エンジン回転数(Ne rpm)および吸気管圧力(Pin kPa)についてのマップとして設定する。いずれの場合も、基準となるエンジン回転数(Ne rpm)毎に細かく分けて設定する。そして、図3及び図4に示す通り、切替時噴射(Tchg ms)算出用補正係数Kpinjを、切替時補正噴射の噴射量が通常のシーケンシャル噴射の標準噴射量より充分小さくなるように標準噴射量より少ない所定割合とし、エンジン回転数(Ne rpm)、吸気管圧力(Pin kPa)などにより調整できるように設定する。
 なお、吸気管圧力が大きい程、スロットルが開いて大気圧に近くなっているということになる。また、中間値は、補間計算によって算出する周知の演算を利用する。
 次に、図2の前記内燃機関1の燃料供給装置41の制御用フローチャートに沿って上記本発明実施例に係る内燃機関1の燃料供給装置41の作用(動作)を説明する。
 この内燃機関1の燃料供給装置41の制御用プログラムがスタート(S101)すると、前記制御手段42は前記燃料選択スイッチ43からの燃料切替信号を入力する処理(S102)に移行する。
 このとき、前記燃料選択スイッチ43からの燃料切替信号は、ガソリンである液体燃料とガスである気体燃料との双方向の切替信号を含む。そして、ガソリンである液体燃料からガスである気体燃料への切替信号か否かの判断(S103)をする。
 このガソリンである液体燃料からガスである気体燃料への切替信号か否かの判断(S103)において、判断がYESの場合には、運転状態(吸入空気量、吸気管圧力、エンジン回転数、エンジン負荷、スロットル開度など)に対応する切替時補正ガス噴射量を算出する処理(S104)に移行する。
 一方、判断がNO、つまりガスである気体燃料からガソリンである液体燃料への切替信号の場合には、運転状態(吸入空気量、吸気管圧力、エンジン回転数、エンジン負荷、スロットル開度など)に対応する切替時補正ガソリン噴射量を算出する処理(S105)に移行する。そして、運転状態(吸入空気量、吸気管圧力、エンジン回転数、エンジン負荷、スロットル開度など)に対応する切替時補正ガス噴射量を算出する処理(S104)の後には、燃料切替を実施する処理(S106)に移行し、上記の処理(S104)で算出した補正噴射量を事前に独立してあるいは通常のシーケンシャル噴射時の噴射量に連続するよう加算してガスである気体燃料を噴射する処理(S107)の後に、前記内燃機関1の燃料供給装置41の制御用プログラムのエンド(S110)に移行する。
 また、上述の運転状態(吸入空気量、吸気管圧力、エンジン回転数、エンジン負荷、スロットル開度など)に対応する切替時補正ガソリン噴射量を算出する処理(S105)の後には、燃料切替を実施する処理(S108)に移行し、上記の処理(S105)で算出した補正噴射量を通常のシーケンシャル噴射時の噴射量に加算してガソリンである液体燃料を噴射する処理(S109)の後に、前記内燃機関1の燃料供給装置41の制御用プログラムのエンド(S110)に移行する。
 上述の本発明の好適な実施例に拠れば、燃料切替時の燃料不足をなくして空燃比の調節を的確にしつつ内燃機関の滑らかな運転を確保し、複数燃料の同時使用をなくし制御負荷の増大を回避することが可能となる。
 なお、この発明は上述実施例に限定されるものではなく、請求項に記載の範囲を逸脱しない限りその他の種々の応用改変が可能である。
 例えば、この発明の実施例においては、図3や図4において4気筒内燃機関におけるシーケンシャル噴射を例に挙げて説明したが、その他の内燃機関(3気筒、6気筒など)における同時噴射制御でも、同様に燃料切替噴射制御を実施することができる。
 また、この発明の実施例においては、切替時噴射(Tchg ms)算出用補正係数Kpinjを吸気管圧力(Pin kPa)により調整する説明を行ったが、吸気管圧力(Pin kPa)の代わりに、スロットル開度(0-100%など)、エンジン負荷率(0-1.0)などで設定することもできる。
  1 内燃機関
  3 吸気管
  6 吸気マニホルド
  8 吸気通路
  9 排気マニホルド
 11 触媒コンバータ
 12 排気管
 13 排気通路
 14 スロットルバルブ
 17 気体燃料容器(「ガスボンベ」とも換言できる。)
 18 気体燃料供給管
 19 気体燃料デリバリパイプ
 20 気体燃料噴射弁
 21 主止弁
 22 減圧用の調圧弁
 23 気体燃料フィルタ
 24 気体燃料圧力・気体燃料温度センサ
 25 液体燃料タンク
 26 液体燃料ポンプ
 27 液体燃料供給管
 28 液体燃料デリバリパイプ
 29 液体燃料噴射弁
 30 液体燃料フィルタ
 31 プレッシャレギュレータ
 32 燃料戻り管
 34 キャニスタ
 36 パージ制御弁
 37 吸気温センサ
 38 エアフローセンサ
 39 吸気圧力センサ
 40 空燃比センサ
 41 燃料供給装置
 42 制御手段
 43 燃料選択スイッチ

Claims (6)

  1.  性状の異なる複数の燃料について相互に独立して設ける燃料供給系と、それぞれの燃料について内燃機関の吸気量に応じた適量の噴射量を設定する制御手段とを備え、前記内燃機関に供給する燃料を選択的に切り替えて供給する内燃機関の燃料供給装置において、前記制御手段には、一種の燃料から別種の燃料への切替手段が接続され、燃料切替要求時には、この切替要求時に噴射を行っている気筒の次の気筒から全気筒を一巡する間に全気筒に対して切替後燃料の通常運転時の標準噴射量に加えて切替補正量を噴射することを特徴とする内燃機関の燃料供給装置。
  2.  前記制御手段は、切替補正量を燃料切替前の前記内燃機関の回転数を含む運転条件に基づいて標準噴射量より少ない所定割合に決定し、前記切替手段に対して、切替要求時に噴射を行っている気筒の次の気筒の噴射時間の間に全気筒に対して切替補正量の噴射を開始する非同期噴射により、または、切替要求時に噴射を行っている気筒の次の気筒から全気筒を一巡する間に全気筒に対して順次切替補正量を噴射する同期噴射により、切替補正量の噴射を行うよう制御する、ことを特徴とする請求項1に記載の内燃機関の燃料供給装置。 
  3.  性状の異なる複数の燃料について相互に独立して設ける燃料供給系より燃料を供給し、それぞれの燃料について内燃機関の吸気量に応じた適量の噴射量を設定可能にする制御手段とを備えた燃料供給装置を用いて、前記内燃機関に供給する燃料を選択的に切り替えて供給する内燃機関の燃料供給制御方法であって、一種の燃料から別種の燃料への切替要求時には、切替後燃料の通常運転時の標準噴射量に加える切替補正量を算出し、燃料切替要求時に燃料の噴射を行っている気筒の次の気筒から全気筒を一巡する間に全気筒に対して前記切替補正量を噴射する、ことを特徴とする内燃機関の燃料供給制御方法。
  4.  前記切替補正量を、燃料切替前の前記内燃機関の回転数を含む運転条件に基づいて標準噴射量より少ない所定割合に決定し、切替要求時に噴射を行っている気筒の次の気筒の噴射時間の間に全気筒に対して切替補正量の噴射を開始する非同期噴射により、または、切替要求時に噴射を行っている気筒の次の気筒から全気筒を一巡する間に全気筒に対して順次切替補正量を噴射する同期噴射により、切替補正量を噴射する処理を行う、ことを特徴とする請求項3に記載の内燃機関の燃料供給制御方法。
  5.  前記切替補正量の噴射を各気筒の標準噴射量の噴射の前であって直前の吸気行程が終了した後の任意の時にこの標準噴射から独立して行うことを特徴とする請求項3に記載の内燃機関の燃料供給制御方法。
  6.  前記切替補正量の噴射を各気筒の標準噴射量の噴射の前又は後にこの標準噴射に連続させて行うことを特徴とする請求項3に記載の内燃機関の燃料供給制御方法。
PCT/JP2011/061291 2010-05-18 2011-05-17 内燃機関の燃料供給装置及び燃料供給制御方法 WO2011145603A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011101688.3T DE112011101688B4 (de) 2010-05-18 2011-05-17 Kraftstoffversorgungsvorrichtung und Kraftstoffversorgungssteuerverfahren für einen Verbrennungsmotor
CN201180024842.5A CN102906397B (zh) 2010-05-18 2011-05-17 内燃机的燃料供给装置以及燃料供给控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010114409A JP5557094B2 (ja) 2010-05-18 2010-05-18 内燃機関の燃料供給装置
JP2010-114409 2010-05-18

Publications (1)

Publication Number Publication Date
WO2011145603A1 true WO2011145603A1 (ja) 2011-11-24

Family

ID=44991705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061291 WO2011145603A1 (ja) 2010-05-18 2011-05-17 内燃機関の燃料供給装置及び燃料供給制御方法

Country Status (4)

Country Link
JP (1) JP5557094B2 (ja)
CN (1) CN102906397B (ja)
DE (1) DE112011101688B4 (ja)
WO (1) WO2011145603A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12085216B2 (en) 2022-02-17 2024-09-10 Arctic Cat Inc. Multi-use fuel filler tube

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9393954B2 (en) * 2012-05-04 2016-07-19 Ford Global Technologies, Llc Methods and systems for engine stopping
CN104454187A (zh) * 2014-10-29 2015-03-25 阿尔特汽车技术股份有限公司 油气两用燃料切换控制方法
JP6521689B2 (ja) * 2015-03-24 2019-05-29 大阪瓦斯株式会社 凝縮水処理機能付きエンジンシステム
JP7113671B2 (ja) 2018-06-12 2022-08-05 東京エレクトロン株式会社 脱泡装置および脱泡方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065112A (ja) * 2001-08-22 2003-03-05 Aisan Ind Co Ltd エンジンの燃料供給制御装置
JP2005226622A (ja) * 2004-02-16 2005-08-25 Toyota Motor Corp 内燃機関およびその運転方法
JP2007051604A (ja) * 2005-08-19 2007-03-01 Mazda Motor Corp デュアルフューエルエンジンの空燃比制御装置
JP2008175159A (ja) * 2007-01-19 2008-07-31 Mazda Motor Corp デュアルフューエルエンジンの制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643814B2 (ja) 1986-03-14 1994-06-08 トヨタ自動車株式会社 二元燃料の切換制御方法及び装置
JPH0750380B2 (ja) 1992-02-10 1995-05-31 小島プレス工業株式会社 表示装置と表示装置用ledホルダ及び表示装置におけるledのプリント基板への取付方法
JP2003120352A (ja) 2001-10-16 2003-04-23 Aisan Ind Co Ltd エンジンの燃料切換方法とその装置
DE10239397B4 (de) 2002-08-28 2013-04-11 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
JP2004211610A (ja) * 2003-01-06 2004-07-29 Hitachi Ltd バイフューエル型内燃機関の燃料噴射制御方法及び装置
JP2006336499A (ja) 2005-05-31 2006-12-14 Aisan Ind Co Ltd 内燃機関の燃料供給装置
JP4446084B2 (ja) * 2006-01-24 2010-04-07 日立オートモティブシステムズ株式会社 エンジンの制御装置
JP2008014162A (ja) * 2006-07-03 2008-01-24 Mazda Motor Corp デュアルフューエルエンジンの制御装置
JP2008051063A (ja) * 2006-08-28 2008-03-06 Toyota Motor Corp 内燃機関の制御装置
JP2008267268A (ja) * 2007-04-20 2008-11-06 Nissan Motor Co Ltd 内燃機関の燃料供給装置
DE102008041689B4 (de) 2008-08-29 2019-07-25 Robert Bosch Gmbh Verfahren und Motorsteuergerät zur Adaption von Verdampfungsparametern eines Kraftstoffs bei einem dualen Einspritzsystem
JP5009891B2 (ja) * 2008-10-29 2012-08-22 本田技研工業株式会社 多種燃料エンジンの燃料噴射制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065112A (ja) * 2001-08-22 2003-03-05 Aisan Ind Co Ltd エンジンの燃料供給制御装置
JP2005226622A (ja) * 2004-02-16 2005-08-25 Toyota Motor Corp 内燃機関およびその運転方法
JP2007051604A (ja) * 2005-08-19 2007-03-01 Mazda Motor Corp デュアルフューエルエンジンの空燃比制御装置
JP2008175159A (ja) * 2007-01-19 2008-07-31 Mazda Motor Corp デュアルフューエルエンジンの制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12085216B2 (en) 2022-02-17 2024-09-10 Arctic Cat Inc. Multi-use fuel filler tube

Also Published As

Publication number Publication date
JP5557094B2 (ja) 2014-07-23
DE112011101688T5 (de) 2013-04-25
CN102906397A (zh) 2013-01-30
CN102906397B (zh) 2015-07-22
JP2011241758A (ja) 2011-12-01
DE112011101688B4 (de) 2018-04-19

Similar Documents

Publication Publication Date Title
US7913673B2 (en) Method and apparatus for controlling liquid fuel delivery during transition between modes in a multimode engine
JP4811733B2 (ja) バイフューエル車の燃料供給制御装置
WO2011145603A1 (ja) 内燃機関の燃料供給装置及び燃料供給制御方法
US20150101563A1 (en) Method and apparatus for sequential control of air intake components of a gas-fueled compression ignition engine
AU2004250135B2 (en) Method and apparatus for controlling transition between operating modes in a multimode engine
WO2014108969A1 (ja) 内燃機関の燃料噴射制御装置
WO2011125601A1 (ja) バイフューエルエンジンのアイドル回転速度制御装置
US20140121941A1 (en) Intake Pressure Control In Internal Combustion Engine
JP4246431B2 (ja) エンジンの燃料制御装置
US8037875B2 (en) Control apparatus and control method for internal combustion engine
US20160252030A1 (en) Auxiliary-chamber-type gas engine
JP2014118841A (ja) 内燃機関の燃料噴射制御装置
JP2015129491A (ja) 内燃機関の燃料供給制御装置
WO2015104772A1 (ja) 内燃機関の制御装置
JP4788454B2 (ja) バイフューエルエンジンの燃料選択制御装置
JP2015224583A (ja) 内燃機関の制御装置
JPH06257479A (ja) 内燃機関の制御装置
JP2005180228A (ja) エンジンの燃料供給方法および装置
JP5310413B2 (ja) 内燃機関の燃料噴射制御装置
JP2015129492A (ja) 内燃機関の燃料供給制御装置
JP2016217330A (ja) 内燃機関の燃料噴射制御装置
WO2017130543A1 (ja) バイフューエルエンジンシステム
KR20160059854A (ko) 가스연료 조정장치를 이용한 내연기관 엔진의 연료 공급 시스템 및 그 제어방법
JP4395734B2 (ja) エンジンの正圧ガス燃料供給方法および装置
JP2014152657A (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024842.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9449/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1120111016883

Country of ref document: DE

Ref document number: 112011101688

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783537

Country of ref document: EP

Kind code of ref document: A1