WO2011145542A1 - 電池ユニットおよび電源装置 - Google Patents

電池ユニットおよび電源装置 Download PDF

Info

Publication number
WO2011145542A1
WO2011145542A1 PCT/JP2011/061141 JP2011061141W WO2011145542A1 WO 2011145542 A1 WO2011145542 A1 WO 2011145542A1 JP 2011061141 W JP2011061141 W JP 2011061141W WO 2011145542 A1 WO2011145542 A1 WO 2011145542A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
battery
power supply
laminated
supply device
Prior art date
Application number
PCT/JP2011/061141
Other languages
English (en)
French (fr)
Inventor
鈴木 亨
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to US13/640,577 priority Critical patent/US20130029198A1/en
Priority to CN201180024428.4A priority patent/CN102906899B/zh
Publication of WO2011145542A1 publication Critical patent/WO2011145542A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery unit including a plurality of electrically connected laminated batteries and a power supply apparatus including the battery unit.
  • NAS batteries sodium-sulfur battery
  • lead storage battery there is a NAS battery (sodium-sulfur battery) as an alternative to this lead storage battery.
  • NAS batteries are more compact and have higher energy density than lead acid batteries.
  • the NAS battery has a high operating temperature range of about 300 ° C., and large-scale incidental equipment including a heater for heating is necessary to operate the NAS battery. Further, since the NAS battery needs to be heated to the operating temperature range in order to operate properly, it takes time to operate.
  • lithium ion secondary batteries have attracted attention as batteries that can replace NAS batteries.
  • Lithium ion secondary batteries can operate at room temperature and have a high energy density.
  • the lithium ion secondary battery has low impedance, it is excellent in responsiveness.
  • lithium ion secondary battery examples include a cylindrical or flat rectangular battery in which a battery element is enclosed in a can-like container, a laminated battery in which a battery element is enclosed in a flexible film, and the like.
  • Laminated batteries are generally flat and positive and negative electrodes are drawn out of the flexible film.
  • Patent Document 1 describes a power supply device to which a laminated battery is applied.
  • a plurality of laminated batteries are arranged in the horizontal direction and the vertical direction.
  • each laminated battery is accommodated in a casing.
  • an object of the present invention is to provide a battery unit capable of easily performing maintenance of a laminated battery, and a power supply device including the battery unit.
  • a battery unit includes a plurality of electrically connected laminated batteries, and a tray on which a plurality of laminated batteries are placed and another tray on which the plurality of laminated batteries are placed.
  • a tray configured to be stackable.
  • a pressure release portion for releasing the pressure generated inside each of the plurality of laminate batteries to the outside is provided on each outer peripheral portion of the plurality of laminate batteries.
  • Each of the plurality of laminated batteries has a pressure release portion disposed adjacent to the outer peripheral portion of the tray.
  • the maintenance of the laminated battery placed on the tray can be easily performed.
  • FIG. 4B is a cross-sectional view taken along line A-A ′ shown in FIG. 4A. It is a perspective view which shows the power supply device of 1st Embodiment.
  • 5B is a cross-sectional view taken along line B-B ′ shown in FIG. 5A. It is a perspective view which shows the power supply device of 1st Embodiment. It is the schematic which shows the ion conduction path
  • FIG. 1A and 1B are perspective views of the battery unit 1 according to the first embodiment as viewed from above.
  • the battery unit 1 is shown from the opposite side of the horizontal direction to the orientation shown in FIG. 1A.
  • the battery unit 1 of the present embodiment includes three flat laminated batteries 2a, 2b, 2c and a tray 3 on which the laminated batteries 2a, 2b, 2c are attached.
  • lithium ion secondary batteries are used as the laminated batteries 2a, 2b, and 2c.
  • the laminated battery is not limited to a lithium ion secondary battery, and other laminated batteries such as a nickel hydride battery may be used.
  • the three laminated batteries 2a, 2b, and 2c are arranged side by side on the tray 3 so that the positive electrode and the negative electrode face each other. That is, the positive and negative electrodes of the laminated batteries 1a and 1c are oriented in the same direction, and the positive and negative electrodes of the laminated battery 1b disposed between the laminated batteries 1a and 1c are the positive and negative electrodes of the laminated batteries 1a and 1c. It faces the opposite direction to the negative electrode.
  • the positive electrode of the laminated battery 1a and the negative electrode of the laminated battery 1b are electrically connected by the bus bar 4a, and the positive electrode of the laminated battery 2b and the negative electrode of the laminated battery 2c are electrically connected by the bus bar 4b.
  • the laminated batteries 2a, 2b, 2c are connected in series.
  • a bus bar 4c is provided on the negative electrode of the laminate 1a, and a bus bar 4d is provided on the positive electrode of the laminate 1c. That is, the bus bar 4 c is a positive terminal of the battery unit 1, and the bus bar 4 d is a negative terminal of the battery unit 1.
  • the bus bars 4a, 4b, 4c, and 4d are made of copper or a copper-based compound that has a relatively high electrical conductivity and is relatively inexpensive.
  • the bus bars 4a, 4b, 4c, and 4d are preferably formed of a material having high electrical conductivity, and may be formed of, for example, silver or a silver-based compound.
  • the bus bars 4a, 4b, 4c, and 4d may be formed of inexpensive iron or the like in order to reduce manufacturing costs.
  • the bus bars 4a, 4b, 4c and 4d are screwed to the tray 3 with the positive and negative electrodes of the laminated batteries 2a, 2b and 2c interposed therebetween. Thereby, the bus bars 4a, 4b, 4c, 4d are electrically connected to the positive and negative electrodes of the corresponding laminated batteries 2a, 2b, 2c, respectively, and the laminated batteries 2a, 2b, 2c are mechanically connected to the tray 3. It is fixed to.
  • the laminated batteries 2a, 2b, 2c can be detached from the tray 3 by removing the bus bars 4a, 4b, 4c, 4d, and conversely, can be attached to the tray 3 by the bus bars 4a, 4b, 4c, 4d. It is.
  • the laminated batteries 2a, 2b, 2c can be attached and detached very easily by the bus bars 4a, 4b, 4c, 4d.
  • the battery unit 1 of the present embodiment has a small number of parts when the laminated batteries 2a, 2b, and 2c are attached and detached.
  • FIGS. 2A and 2B are perspective views of the tray 3 as viewed from above.
  • the tray 3 will be described in detail with reference to FIGS. 2A and 2B.
  • the tray 3 is formed of a material having heat resistance and insulating properties.
  • the tray 3 in the present embodiment is made of polycarbonate resin.
  • the material for forming the tray 3 may be any material having insulating properties such as polypropylene polyethylene, nylon, and PET (polyethylene terephthalate).
  • the tray 3 is formed with a stacking portion 9a on which the laminated battery 2a is loaded, a loading portion 9b on which the laminated battery 2b is loaded, and a loading portion 9c on which the laminated battery 2c is loaded.
  • the stacking portions 9a, 9b, and 9c are formed in a concave shape that accommodates the laminated batteries 2a, 2b, and 2c, respectively.
  • Two protrusions 5a protruding upward are formed at the end of the tray 3 on the stacking portion 9a side, and two protrusions 5b protruding upward are formed at the end of the stacking portion 9c side. Yes.
  • the protrusions 5a are formed at wider intervals than the protrusions 5b.
  • the tray 3 Since the tray 3 has an insulating property, parts that insulate the laminated batteries 2a, 2b, and 2c stacked on the stacking portions 9a, 9b, and 9c of the tray 3 become unnecessary. Therefore, in the battery unit 1 of this embodiment, the number of parts can be reduced and a simple configuration can be realized.
  • FIG. 3A shows a top view of the tray 3, and FIG. 3B shows a bottom view of the tray 3.
  • FIG. 3B a hole 6a corresponding to the protrusion 5a and a hole 6a corresponding to the protrusion 5b are formed on the back surface of the tray 3.
  • the tray 3 is provided on the upper surface of the battery unit 1 so that the two protrusions 5a and the two holes 6a are fitted and the two protrusions 5b and the two holes 6b are fitted.
  • the tray 3 can be overlapped with another tray 3 by rotating 180 ° about the central axis perpendicular to the upper surface and the lower surface with respect to the tray 3 different from the tray 3. It has become.
  • the protrusions 5a and 5b and the holes 6a and 6b function as a restricting portion that restricts movement of the tray 3 in a direction different from the stacking direction by fitting the trays 3 in a stacked state. For this reason, even when a large number of trays 3 are stacked, it is possible to prevent the positions of the respective trays 3 from being displaced and the stacked trays 3 from being collapsed.
  • the trays 3 adjacent to each other in the stacking direction have the end portions on the stacking portion 9a side facing in opposite directions. That is, in the state where the trays 3 are stacked, the trays 3 adjacent to each other in the stacking direction have the stacking unit 9a and the stacking unit 9c adjacent to each other in the stacking direction, and the stacking unit 9b is continuous in the stacking direction. If the trays 3 adjacent to each other in the stacking direction are stacked in the same direction, the protrusions 5a and the holes 6a are not fitted and a normal stacking state is not achieved.
  • the tray 3 can be stacked on each other even when the laminated batteries 2a, 2b, 2c are attached to the tray 3 by the bus bars 4a, 4b, 4c, 4d bus bars 4a, 4b, 4c, 4d. That is, the battery units 1 can be stacked on each other.
  • FIG. 4A shows a perspective view of seven battery units 1 of the present embodiment that are stacked.
  • FIG. 4B shows a cross-sectional view along the line A-A ′ in FIG. 4A. As shown in FIG. 4B, the laminated battery 2 a and the laminated battery 2 c are alternately arranged in the stacking direction of the tray 3 in a state where the battery units 1 are stacked.
  • the bus bar 4c as the positive electrode and the bus bar 4d as the negative electrode are reversed. Therefore, as shown in FIG. 4A, in adjacent battery units 1, the bus bar 4c and the bus bar 4d are adjacent to each other.
  • an insulating portion 7 is formed on the tray 3.
  • the insulating part 7 is made of the same material as that of the tray 3 and is arranged adjacent to the lower side of the tray 3 where the bus bar 4c is attached. On the other hand, the insulating portion 7 is not provided on the lower side of the tray 3 where the bus bar 4d is attached.
  • an insulating portion 7 is formed between the bus bar 4c and the bus bar 4d adjacent to the lower side of the bus bar 4c.
  • the insulating part 7 having insulation functions to prevent the bus bar 4c and the bus bar 4d adjacent to the lower side of the bus bar 4c from being electrically connected.
  • the insulating portion 7 is not formed between the bus bar 4c and the bus bar 4d adjacent to the upper side of the bus bar 4c.
  • the bus bar 4d and the bus bar adjacent to the lower side of the bus bar 4d are similarly used.
  • FIG. 5A shows a perspective view of a power supply device 10 formed by stacking seven battery units 1 of the present embodiment.
  • FIG. 5B shows a cross-sectional view along the line B-B ′ in FIG. 5A.
  • the power supply device 10 is configured by electrically connecting the battery units 1 shown in FIG.
  • the connecting member 8 is attached to the bus bar 4d and the bus bar 4c adjacent to the lower side of the bus bar 4d by screwing or the like. Thereby, the bus bar 4d and the bus bar 4c adjacent to the lower side of the bus bar 4d are electrically connected and mechanically connected.
  • the adjacent battery units can be easily connected by the connecting member 8. Is possible.
  • the battery unit 1 includes three laminated batteries 2a, 2b, and 2c connected in series.
  • the number of laminated batteries included in the battery unit 1 may be an odd number. If the number of laminated batteries provided in the battery unit 1 is an odd number, when the tray 3 is rotated by 180 ° about the central axis orthogonal to the upper surface and the lower surface, the bus bar as the positive electrode and the bus bar as the negative electrode This is because the structure is reversed. On the other hand, when the number of laminated batteries included in the battery unit is an even number, the positive bus bar and the negative bus bar are reversed even if the tray 3 is rotated 180 ° about the central axis orthogonal to the upper and lower surfaces. It is not the structure to do.
  • the connecting member 8 is formed of copper or a copper-based compound that has a high electrical conductivity and is relatively inexpensive, like the bus bars 4a, 4b, 4c, and 4d.
  • the connection member 8 is desirably formed of a material having high electrical conductivity, and may be formed of, for example, silver or a silver-based compound. Further, the connecting member 8 may be formed of inexpensive iron or the like in order to reduce manufacturing costs.
  • the insulating portion 7 may be formed adjacent to the lower side of the tray 3 where the bus bar 4d is attached. In this case, the insulating portion 7 is not formed below the position of the tray 3 where the bus bar 4c is attached, and the connection member 8 is screwed to the bus bar 4c and the bus bar 4d adjacent to the bus bar 4c on the lower side. Attached by.
  • the seven battery units 1 adjacent to each other in the vertical direction of the power supply device 10 are connected in series by being electrically connected by a connecting member 8. That is, in the power supply device 10, since the three laminated batteries 2a, 2b, 2c of each battery unit 1 are connected in series, a total of 21 laminated batteries are connected in series.
  • the bus bar 4d of the lowermost battery unit 1 serves as a positive electrode terminal
  • the bus bar 4c of the uppermost battery unit 1 serves as a negative electrode terminal.
  • the power supply device 10 shown in FIG. 5A needs to include a control board that controls output power from the plurality of battery units 1 and prevents overcharge and overdischarge in order to operate the lithium ion battery safely.
  • FIG. 6 is a perspective view of the power supply device 10 with the control board 11 stacked on the top.
  • the control board 11 has the same outer shape as the battery unit 1 and is formed so as not to protrude greatly in a direction different from the stacking direction of the battery units 1 when stacked on the battery unit 1. Yes.
  • the bus bar 4 d of the lowermost battery unit 1 that is the positive electrode terminal of the power supply device 10 and the bus bar 4 c of the uppermost battery unit 1 that is the negative electrode terminal of the power supply device 10 are electrically connected.
  • the control board 11 is provided with an electric circuit (not shown) and the like, and the control board 11 enables safe input / output of power from the power supply device 10.
  • the output voltage can be easily changed by changing the number of stacked battery units 1. That is, in the power supply device 10, when the number of stacked battery units 1 is increased, the output voltage of the power supply device 10 increases, and when the number of stacked battery units 1 is decreased, the output voltage of the power supply device 10 increases. descend.
  • the insulating material such as polycarbonate resin forming the tray 3 of the battery unit 1 is relatively lightweight, even when a large number of battery units 1 are stacked, the load applied to the tray 3 of the lower-layer battery unit 1 is reduced. The battery unit 1 on the lower layer side is not easily damaged. Therefore, in the power supply device 10, it is possible to stack a large number of power supply units 1.
  • Each battery unit 1 can be detached from the battery units adjacent vertically by removing the connecting members 8 from the bus bars 4c and 4d. Therefore, in the power supply device 10 of the present embodiment, even when one of the plurality of battery units 1 has a problem, the battery unit 1 can be removed and easily replaced with a new battery unit 1. is there.
  • the three laminated batteries 2a, 2b, 2c provided in the battery unit 1 are detachable, any of the laminated batteries 2a, 2b, 2c in which a problem has occurred out of the three laminated batteries 2a, 2b, 2c. It is possible to exchange only. Therefore, in the power supply device 10, when a failure occurs in one of the plurality of battery units 1, the failure occurs among the battery units 1 removed from the power supply device 10 without preparing a new battery unit 1. The power supply device 10 can be repaired by replacing only the generated laminated battery 2 and then returning it to the same position of the power supply device 10 again.
  • the power supply apparatus can easily maintain the laminated battery 2 of the arbitrary battery unit 1.
  • FIG. 7 shows a schematic diagram of the ion conduction path P of the power supply device 10 shown in FIG.
  • the bus bar 4d of the lowermost battery unit 1 that is the positive electrode terminal is connected to the control board 11 via the lead wire 12, and the bus bar 4c of the uppermost battery unit 1 that is the negative electrode terminal is directly connected to the control board 11. Electrically connected.
  • connection path P of the laminated battery can be changed as in the power supply device 10a shown in FIG. 8A by changing the shape and arrangement of the bus bar and the connection member. Also in this case, all the laminated batteries 2a, 2b, 2c in the power supply device 10a are connected in series, and an output voltage equivalent to that of the power supply device 10 shown in FIG. 7 can be obtained. Also in the power supply apparatus 10a, the bus bar 4d of the lowermost battery unit 1a serves as a positive electrode terminal, and the bus bar 4c of the uppermost battery unit 1a serves as a negative electrode terminal.
  • the number of laminated batteries loaded on the tray of one battery unit can be appropriately changed by changing the configuration of the tray. Thereby, the total capacity of one battery unit can be easily changed.
  • FIG. 8B shows a power supply device 10b in which the number of laminated batteries loaded on the tray of one battery unit is changed.
  • Each tray 3b of the power supply device 10b shown in FIG. 8B includes four laminated batteries 2a, 2b, 2c, and 2d.
  • the bus bar 4d of the uppermost battery unit 1b serves as a positive electrode terminal
  • the connection member bus bar 4c of the uppermost battery unit 1b serves as a negative electrode terminal. Therefore, even if the lead wires 12 of the power supply devices 10 and 10a shown in FIGS. 7 and 8A are not provided, the positive terminal and the negative terminal can be electrically connected directly to the control board 11.
  • 8B shows the case where the number of laminated batteries in each battery unit 1b is four, the number of laminated batteries is not limited. If the number of laminated batteries is an even number, the same effect as the embodiment can be obtained.
  • the power supply device changes the configuration of the tray and changes the configuration of the bus bar and the connection member as appropriate according to the configuration of the tray, so that all the laminated batteries can be connected in parallel or a part of the laminated battery can be connected.
  • the power supply device changes the configuration of the tray and changes the configuration of the bus bar and the connection member as appropriate according to the configuration of the tray, so that all the laminated batteries can be connected in parallel or a part of the laminated battery can be connected.
  • a laminated battery is used.
  • a flat battery may be used, and it is needless to say that the battery is not limited to a laminated battery.
  • FIG. 9 shows a side sectional view of the power supply device 20 of the second embodiment.
  • the power supply device 20 of the second embodiment is configured in the same manner as the power supply device 10 of the first embodiment except for the configuration described below.
  • the tray 13 of the battery unit 1c of this embodiment is provided with a partition wall that surrounds the outer periphery of each of the laminated batteries 2a, 2b, 2c.
  • the battery units 1c are stacked, and a private chamber that covers the laminated batteries 1a, 1b, and 1c is formed by the tray 13 and the lower surface of the tray 13 adjacent to the upper side of the tray 13, respectively.
  • Only the uppermost battery unit 1c has no tray 13 adjacent to the upper side of the tray 13, and a lid 14 made of the same material as the tray 13 is provided on the uppermost battery unit 1c.
  • the lid 14 can be substituted by a control board 11 as shown in FIG.
  • the tray 13 is formed of a material having low thermal conductivity, the heat generated by each of the laminated batteries 2a, 2b, 2c is released from the inside of the tray 13 to the outside. Hateful.
  • FIG. 10 shows a side sectional view of a power supply device of a comparative example.
  • the power supply device 20a of the comparative example four battery units 1d are stacked.
  • the laminated batteries 2a, 2b, and 2c are not covered with the tray 13 like the power supply device 20 shown in FIG. Therefore, the heat generated by each laminated battery 2a, 2b, 2c is likely to diffuse around. Therefore, in the power supply device 20a of the comparative example, the central region surrounded by the alternate long and short dash line is likely to be heated from the surrounding laminated battery. Therefore, in the power supply device 20a, the temperature environment between the laminated battery disposed in the central region and the laminated battery disposed in the outer peripheral portion becomes non-uniform, and there is a high possibility that a problem occurs as the power supply device.
  • each laminated battery 2a, 2b, 2c is hard to cause a malfunction.
  • FIG. 11 the perspective view of the power supply device 30 of 3rd Embodiment is shown.
  • the power supply device 30 of the present embodiment is configured in the same manner as the power supply device 10 of the first embodiment except for the configuration described below.
  • the tray 23 of each battery unit 1e is indicated by a broken line.
  • the positive and negative electrodes of the laminated batteries 22a, 22b, and 22c are drawn out in the same direction.
  • the negative electrode of the laminated battery 22a and the positive electrode of the laminated battery 22b are electrically connected by the bus bar 24a
  • the negative electrode of the laminated battery 22b and the positive electrode of the laminated battery 22c are electrically connected by the bus bar 24b.
  • the laminate batteries 22a, 22b, and 22c are connected in series.
  • the negative electrode of the laminate battery 22c is electrically connected to the positive electrode of the laminate battery 22a of the battery unit 1e adjacent to the battery unit 1e on the lower side.
  • the laminated batteries 22a, 22b, and 22c of each battery unit 1e are connected in series, and the battery units 1e are connected in series. Therefore, in the power supply device 30, the positive electrode of the laminated battery 22a of the uppermost battery unit 1e is a positive electrode terminal, and the negative electrode of the laminated battery 22c of the lowermost battery unit 1e is a negative electrode terminal.
  • the power supply device of the fourth embodiment is configured by stacking a plurality of battery units, and is configured in the same manner as the power supply device 10 of the first embodiment except for the configuration of the battery unit described below. . For this reason, in the fourth embodiment, only the battery unit will be described. In FIG. 12, the top view of the battery unit of 4th Embodiment is shown.
  • the battery unit of the fourth embodiment is characterized by an arrangement state of laminated batteries loaded on a tray.
  • the battery unit of the fourth embodiment includes a plurality of laminated batteries 32 (32a, 32b, 32c, 32d), a tray 33 on which the plurality of laminated batteries 32 are placed, and a plurality of laminated batteries 32. And a plurality of bus bars 34a, 34b, 34c, 34d, 34e. Similar to the above-described embodiment, the tray 33 is configured to be able to be stacked on another tray 33 on which a plurality of laminated batteries 32 are placed.
  • the laminate battery 32 in the present embodiment has a gas discharge portion 35 as a pressure release portion that releases the pressure generated inside the laminate battery 32 to the outside at the outer peripheral portion.
  • the gas discharge part 35 has a discharge hole formed in the welded part of the outer peripheral part of the laminate film constituting the laminate battery 32.
  • the gas discharge part 35 The laminate film is formed to be torn.
  • another laminate battery may not be placed at a position where gas is discharged from the gas discharge portion of the laminate battery. desirable.
  • another laminate battery is placed at a position adjacent to the gas discharge part of the laminate battery, the other laminate batteries adjacent to each other are heated one after another by the heat of the gas released from the gas discharge part. There is a risk that gas will be released from the gas discharge portion of the battery, and so-called explosion phenomenon may occur.
  • the tray 33 of the battery unit of the present embodiment includes a plurality of laminated batteries 32 such that the gas discharge portions 35 of the plurality of laminated batteries 32 are adjacent to the outer periphery of the tray 33 as shown in FIG. Is arranged.
  • the plurality of laminated batteries 32a, 32b, 32c, 32d in the present embodiment are connected in series by bus bars 34a, 34b, 34c, 34d, 34e.
  • the tray 33 may be formed with a cooling structure such as a heat sink in the vicinity of the gas discharge portion 35 of the laminate battery 32.
  • the tray 33 is heated with the gas discharged from the laminate battery 32. 33 can be cooled by the cooling structure.
  • the tray 33 may be provided with a sheet material that absorbs liquid leaked from the gas discharge portion 35 in the vicinity of the gas discharge portion 35 of the laminated battery 32.
  • the battery unit constituting the power supply device of the fourth embodiment when high-pressure gas is released from the gas discharge portion 35 of any laminated battery 32, the heat of the high-pressure gas is used. It is avoided that another laminate battery 32 is heated. For this reason, this embodiment can improve the safety
  • a laminate battery in which the gas discharge part is arranged in the central part in the long side direction of the outer peripheral part is used.
  • a laminated battery disposed in the central portion of the outer peripheral portion in the short side direction may be used.
  • a plurality of laminated batteries are arranged so that the long side directions are adjacent to each other, and the gas discharge portions of the adjacent laminated batteries are adjacent to a pair of opposed outer peripheral portions of the tray, respectively.
  • a laminated battery is preferably arranged.
  • the four laminated batteries 32 are arranged.
  • the arrangement of the laminated batteries is not limited, and the number of laminated batteries is not limited to an even number. Of course, it may be changed as appropriate.

Abstract

本発明は、電気的に接続された複数のラミネート電池(32)と、複数のラミネート電池(32)が載せられるトレイ(33)であって複数のラミネート電池(32)が載せられた別のトレイ(33)に積層可能に構成されたトレイ(33)と、を備える。複数のラミネート電池(32)のそれぞれの外周部には、複数のラミネート電池(32)のそれぞれの内部で生じた圧力を外部に開放するガス放出部(35)が設けられている。複数のラミネート電池(32)のそれぞれは、ガス放出部(35)が、トレイ(33)の外周部に隣接するように配置される。

Description

電池ユニットおよび電源装置
 本発明は、電気的に接続された複数のラミネート電池を備える電池ユニット、およびこの電池ユニットを備える電源装置に関する。
 近年、環境問題の観点から、戸建住宅等の家庭用途や、輸送機器、建設機器等の産業用途に用いることが可能な、風力発電、太陽光発電等から得られるクリーンエネルギが注目されている。しかし、クリーンエネルギは、状況に応じた出力の変動が大きいという問題を有している。例えば、太陽光発電によるエネルギは、太陽が昇っている日中に得られるが、太陽が沈んだ後の夜間に得られない。
 クリーンエネルギの出力を安定化するために、クリーンエネルギを一時的に電池に蓄える技術が用いられる。例えば、電池に蓄えられた太陽光エネルギは、太陽が沈んだ後の夜間にも利用可能となる。このようなクリーンエネルギを蓄えるための電池としては、一般的に鉛蓄電池が使用される。しかし、鉛蓄電池は、一般的に大型であり、エネルギ密度が低いという欠点がある。
 この鉛蓄電池に代わる電池としてはNAS電池(ナトリウム硫黄電池:sodium-sulfur battery)がある。NAS電池は鉛蓄電池よりもコンパクトでエネルギ密度が高い。しかし、NAS電池は、作動温度域が300℃程度と高く、作動させるために加熱用のヒータ等を含む大規模な付帯設備が必要である。また、NAS電池は、適正に作動するために作動温度域まで加熱される必要があるので、作動するのに時間がかかる。
 近年では、NAS電池に代わる電池としてリチウムイオン二次電池が注目されている。リチウムイオン二次電池は、常温で作動可能であり、エネルギ密度が高い。また、リチウムイオン二次電池は、インピーダンスが低いので応答性に優れている。
 リチウムイオン二次電池としては、缶状の容器に電池要素が封入された円筒型や平板状の角型の電池、可撓性のフィルムの内部に電池要素が封入されているラミネート電池等がある。ラミネート電池は、一般的に平板状であり、正極および負極が可撓性フィルムの外部に引き出されている。
 特許文献1にはラミネート電池が適用された電源装置が記載されている。特許文献1に記載された電源装置では、複数のラミネート電池が水平方向および鉛直方向に並べられている。この電源装置では、各ラミネート電池がケーシングに収容されている。
特許第3971684号
 ところで、特許文献1に記載の電源装置では、複数のラミネート電池のうちの1つのラミネート電池が機能しなくなった場合、不具合を生じることがある。特に、複数のラミネート電池が全て直列接続されている場合には、電源装置自体が使用不能となる。このような場合などに、電源装置のメンテナンスを行う必要がある。
 しかし、特許文献1に記載の電源装置では、ケーシングが金属材料によって形成されているので、各ラミネート電池をケーシングから絶縁するための部品点数が多い。そのため、ケーシングに対してラミネート電池の着脱作業等が煩雑になり、メンテナンスに多くの手間がかかる。
 そこで、本発明の目的は、ラミネート電池のメンテナンスを容易に行うことが可能な電池ユニット、および電池ユニットを備える電源装置を提供することにある。
 上記目的を達成するため、本発明に係る電池ユニットは、電気的に接続された複数のラミネート電池と、複数のラミネート電池が載せられるトレイであって複数のラミネート電池が載せられた別のトレイに積層可能に構成されたトレイと、を備える。複数のラミネート電池のそれぞれの外周部には、複数のラミネート電池のそれぞれの内部で生じた圧力を外部に開放する圧力開放部が設けられる。複数のラミネート電池のそれぞれは、圧力開放部がトレイの外周部に隣接して配置される。
 本発明によれば、トレイに載せられたラミネート電池のメンテナンスを容易に行うことができる。
第1の実施形態の電池ユニットを示す斜視図である。 図1Aに示した電池ユニットを示す斜視図である。 図1Aに示したトレイを示す斜視図である。 図1Aに示したトレイを示す斜視図である。 図1Aに示したトレイを示す上面図である。 図1Aに示したトレイを示す下面図である。 図1に示した電池ユニットの積層状態を示す斜視図である。 図4Aに示したA-A’線に沿って示す断面図である。 第1の実施形態の電源装置を示す斜視図である。 図5Aに示したB-B’線に沿って示す断面図である。 第1の実施形態の電源装置を示す斜視図である。 図5Aに示した電源装置のイオン伝導パスを示す概略図である。 図7に示した電源装置の変形例としてラミネート電池の接続パスを示す概略図である。 図7に示した電源装置の変形例としてラミネート電池の接続パスを示す概略図である。 第2の実施形態の電源装置を示す側断面図である。 図9に示した電源装置の比較例を示す側断面図である。 第3の実施形態の電源装置を示す斜視図である。 第4の実施形態の電池ユニットを示す平面図である。
 以下、本発明に係る実施形態について図面を参照して説明する。
 (第1の実施形態)
 図1Aおよび図1Bに、第1の実施形態の電池ユニット1を上方から見た斜視図を示す。図1Bでは、電池ユニット1を図1Aで示した向きとは水平方向の反対側から示している。
 本実施形態の電池ユニット1は、平板状の3つのラミネート電池2a,2b,2cと、ラミネート電池2a,2b,2cが取り付けられたトレイ3と、を有している。
 本実施形態では、ラミネート電池2a,2b,2cとして、リチウムイオン二次電池を用いている。なお、ラミネート電池としては、リチウムイオン二次電池に限らず、ニッケル水素電池等の他のラミネート電池が用いられてもよい。
 3つのラミネート電池2a,2b,2cは、トレイ3にその正極と負極とが互いに反対側に向くように並べて配置されている。すなわち、ラミネート電池1a,1cの正極および負極は同方向を向いており、ラミネート電池1aとラミネート電池1cとの間に配置されたラミネート電池1bの正極および負極は、ラミネート電池1a,1cの正極および負極とは逆方向を向いている。
 そして、ラミネート電池1aの正極とラミネート電池1bの負極とがバスバー4aで電気的に接続され、ラミネート電池2bの正極とラミネート電池2cの負極とがバスバー4bで電気的に接続されている。これにより、ラミネート電池2a,2b,2cが直列接続されている。さらに、ラミネート1aの負極にはバスバー4cが設けられており、ラミネート1cの正極にはバスバー4dが設けられている。すなわち、バスバー4cは電池ユニット1の正極端子であり、バスバー4dは電池ユニット1の負極端子である。
 バスバー4a,4b,4c,4dは、電気伝導率が比較的高く比較的安価である銅や銅系化合物で形成されている。しかし、バスバー4a,4b,4c,4dは、電気伝導率が高い材料で形成されることが望ましく、例えば銀や銀系化合物で形成されてもよい。また、バスバー4a,4b,4c,4dは、製造コストを低減するために安価な鉄などで形成されてもよい。
 バスバー4a,4b,4c,4dは、各ラミネート電池2a,2b,2cの正極や負極を挟んでトレイ3にねじ止めされている。これにより、バスバー4a,4b,4c,4dは、それぞれ対応するラミネート電池2a,2b,2cの正極や負極に電気的に接続されているとともに、トレイ3にラミネート電池2a,2b,2cを機械的に固定している。
 そのため、ラミネート電池2a,2b,2cは、バスバー4a,4b,4c,4dを取り外すことによってトレイ3から取り外すことが可能であり、逆に、バスバー4a,4b,4c,4dによってトレイ3に取り付け可能である。このように、ラミネート電池2a,2b,2cは、バスバー4a,4b,4c,4dによって非常に容易に着脱可能である。換言すると、本実施形態の電池ユニット1は、ラミネート電池2a,2b,2cを着脱する際の部品点数が少ない。
 図2Aおよび図2Bに、トレイ3を上方から見た斜視図を示す。図2Aおよび図2Bを参照してトレイ3について詳細に説明する。
 トレイ3は、耐熱性および絶縁性を有する材料によって形成されている。本実施形態におけるトレイ3は、ポリカーボネート樹脂で形成されている。しかし、トレイ3を形成する材料としては、例えばポリプロピレンポリエチレン、ナイロン、PET(ポリエチレンテレフタラート)などの絶縁性を有する材料であればよい。
 トレイ3には、ラミネート電池2aが積載される積載部9aと、ラミネート電池2bが積載される積載部9bと、ラミネート電池2cが積載される積載部9cと、が形成されている。積載部9a,9b,9cは、ラミネート電池2a,2b,2cがそれぞれ収容される凹状に形成されている。トレイ3の、積載部9a側の端部には上方に突出した2つの突起部5aが形成されており、積載部9c側の端部には上方に突出した2つの突起部5bが形成されている。突起部5aは、突起部5bに比べて広い間隔で形成されている。
 トレイ3は、絶縁性を有するので、トレイ3の積載部9a,9b,9cに積載されるラミネート電池2a,2b,2c間を絶縁する部品が不要になる。したがって、本実施形態の電池ユニット1では、部品点数を削減し、簡素な構成を実現できる。
 図3Aに、トレイ3の上面図を示し、図3Bに、トレイ3の下面図を示す。図3Bに示すように、トレイ3の裏面には、突起部5aに対応する穴部6aと、突起部5bに対応する穴部6aと、が形成されている。トレイ3は、2つの突起部5aと2つの穴部6aとを嵌合させ、2つの突起部5bと2つの穴部6bとを嵌合させるように、電池ユニット1の上面に、この電池ユニット1とは異なる別の電池ユニット1の裏面を重ね合わせることによって、正常な積層状態を構成することができる。
 すなわち、トレイ3は、このトレイ3とは別のトレイ3に対して、上面および下面に直交する中心軸を中心として180°回転させることによって、別のトレイ3に重ね合わせることが可能な構成となっている。
 突起部5a,5bおよび穴部6a,6bは、トレイ3が積層された状態で互いに嵌合することで、トレイ3の積層方向とは異なる方向への移動を規制する規制部として機能する。そのため、多数のトレイ3が積層された場合であっても、各トレイ3の位置がずれたり、積層されたトレイ3が崩れたりすることが防止される。
 各トレイ3が積層された状態で、積層方向に隣接するトレイ3は、積載部9a側の端部を互いに反対方向に向けている。すなわち、各トレイ3が積層された状態で、積層方向に隣接するトレイ3は、積載部9aと積載部9cとが積層方向に隣接し、積載部9bが積層方向に連なっている。仮に、積層方向に隣接するトレイ3が互いに同方向に積層された場合には、突起部5aと穴部6aが嵌合せず、正常な積層状態とはならない。
 トレイ3は、ラミネート電池2a,2b,2cがバスバー4a,4b,4c,4dバスバー4a,4b,4c,4dによってトレイ3に取り付けられた状態であっても互いに積層可能である。すなわち、電池ユニット1は互いに積層可能である。
 図4Aに、積層された7個の本実施形態の電池ユニット1の斜視図を示す。図4Bに、図4A中のA-A’線に沿った断面図を示す。図4Bに示すように、電池ユニット1が積層された状態で、ラミネート電池2aとラミネート電池2cとがトレイ3の積層方向に交互に配列されている。
 本実施形態の電池ユニット1は、上面および下面に直交する中心軸を中心として180°回転させたときに、正極であるバスバー4cと、負極であるバスバー4dとが反転する。したがって、図4Aに示すように、隣接する電池ユニット1において、バスバー4cとバスバー4dとは隣接している。
 次に、図1A~図3Bに示すように、トレイ3には絶縁部7が形成されている。絶縁部7は、トレイ3と同様の材料で形成されており、トレイ3の、バスバー4cが取り付けられる位置の下側に隣接して配されている。一方、トレイ3の、バスバー4dが取り付けられる位置の下側には絶縁部7が設けられていない。
 図4Bに示すように、バスバー4cとこのバスバー4cの下側に隣接するバスバー4dとの間には絶縁部7が形成されている。絶縁性を有する絶縁部7は、バスバー4cとこのバスバー4cの下側に隣接するバスバー4dとが電気的に接続されることを防止する役割をする。一方、バスバー4cとこのバスバー4cの上側に隣接するバスバー4dとの間には、絶縁部7が形成されていない。なお、図4Aに示す向きとは反対側から見た場合、つまり最上層の電池ユニット1のバスバー4d側から見た場合にも、同様に、バスバー4dとこのバスバー4dの下側に隣接するバスバー4cとの間には絶縁部7があり、バスバー4dの上側に隣接するバスバー4cとの間には絶縁部7がない。
 図5Aに、7個の本実施形態の電池ユニット1を積層して形成された電源装置10の斜視図を示す。図5Bに、図5A中のB-B’線に沿った断面図を示す。電源装置10は、図5Aに示した各電池ユニット1が接続部材8によって電気的に接続されて構成されている。接続部材8は、バスバー4dとこのバスバー4dの下側に隣接するバスバー4cとに、ねじ止め等によって取り付けられている。これにより、バスバー4dとこのバスバー4dの下側に隣接するバスバー4cとを電気的に接続されるとともに機械的に接続される。
 電源装置10では、上述したように、隣接する電池ユニット1の正極であるバスバー4cと負極であるバスバー4dとが隣接しているため、隣接する電池ユニットを接続部材8によって簡単に接続することが可能である。
 なお、本実施形態では、電池ユニット1が直列接続された3つのラミネート電池2a,2b,2cを備えているが、電池ユニット1が備えるラミネート電池の個数は奇数であればよい。これは、電池ユニット1が備えるラミネート電池の個数が奇数であれば、トレイ3を上面および下面に直交する中心軸を中心として180°回転させたときに、正極であるバスバーと負極であるバスバーとが反転する構成となるからである。一方、電池ユニットが備えるラミネート電池の個数が偶数の場合には、トレイ3を上面および下面に直交する中心軸を中心として180°回転させても、正極であるバスバーと負極であるバスバーとが反転する構成とはならない。
 接続部材8は、バスバー4a,4b,4c,4dと同様に、電気伝導率が高く比較的安価である銅や銅系化合物で形成されている。しかし、接続部材8は、電気伝導率が高い材料によって形成されることが望ましく、例えば銀や銀系化合物で形成されてもよい。また、接続部材8は、製造コストを低減するために安価な鉄などで形成されてもよい。
 なお、絶縁部7は、トレイ3の、バスバー4dが取り付けられる位置の下側に隣接して形成されてもよい。この場合、トレイ3の、バスバー4cが取り付けられる位置の下側に絶縁部7が形成されず、接続部材8は、バスバー4cと、このバスバー4cに下側に隣接するバスバー4dとにねじ止め等によって取り付けられる。
 図5Aに示すように、電源装置10の鉛直方向に隣接する7つの各電池ユニット1は、接続部材8によって電気的に接続されることで直列接続されている。すなわち、電源装置10では、各電池ユニット1の3つのラミネート電池2a,2b,2cが直列接続されているので、合計21個のラミネート電池が直列接続されている。また、電源装置10では、最下層の電池ユニット1のバスバー4dが正極端子となり、最上層の電池ユニット1のバスバー4cが負極端子となっている。
 図5Aに示した電源装置10は、リチウムイオン電池を安全に作動させるために、複数の電池ユニット1による出力電力を制御し、過充電や過放電を防止する制御基板を備える必要がある。図6に、制御基板11が最上部に積載された電源装置10の斜視図を示す。制御基板11は、電池ユニット1と同様の外形を有し、電池ユニット1の上に積載されたときに、電池ユニット1の積層方向とは異なる方向に大きく突出することがないように形成されている。制御基板11では、電源装置10の正極端子である最下層の電池ユニット1のバスバー4dと、電源装置10の負極端子である最上層の電池ユニット1のバスバー4cと、が電気的に接続されている。制御基板11には電気回路(不図示)等が設けられており、制御基板11が電源装置10から電力の安全な入出力を可能としている。
 なお、電源装置10では、積層される電池ユニット1の個数を変更することによって、出力電圧を容易に変更することが可能である。すなわち、電源装置10において、積層される電池ユニット1の個数を増やした場合、電源装置10の出力電圧が上昇し、積層される電池ユニット1の個数を減らした場合、電源装置10の出力電圧が低下する。
 さらに、電池ユニット1のトレイ3を形成するポリカーボネート樹脂などの絶縁材料は比較的軽量であるので、多数の電池ユニット1を積層する場合にも、下層側の電池ユニット1のトレイ3にかかる荷重が小さく抑えられ、下層側の電池ユニット1が損傷を受けにくい。そのため、電源装置10では、多数の電源ユニット1を積層することが可能である。
 各電池ユニット1はバスバー4c,4dからそれぞれ接続部材8を取り外すことによって上下にそれぞれ隣接する電池ユニットから取り外し可能となる。したがって、本実施形態の電源装置10では、複数の電池ユニット1のうちの1つに不具合が生じた場合にも、その電池ユニット1を取り外して新しい電池ユニット1に容易に交換することが可能である。
 また、上述したとおり、電池ユニット1に設けられた3つのラミネート電池2a,2b,2cはそれぞれ着脱可能であるので、3つのラミネート電池2a,2b,2cのうち不具合が生じた任意のラミネート電池2のみを交換することが可能である。したがって、電源装置10では、複数の電池ユニット1のうちの1つに不具合が生じた場合に、新しい電池ユニット1を用意しなくても、電源装置10から取り外した電池ユニット1のうち、不具合が生じた任意のラミネート電池2のみを交換した後に再び電源装置10の同じ位置に戻すことで、電源装置10を修復可能である。
 このように、本実施形態の電源装置は、任意の電池ユニット1のラミネート電池2を容易にメンテナンス可能である。
 図7に、図6に示した電源装置10のイオン伝導パスPの概略図を示す。正極端子である、最下層の電池ユニット1のバスバー4dが、制御基板11にリード線12を介して接続され、負極端子である、最上層の電池ユニット1のバスバー4cが、直接制御基板11に電気的に接続されている。
 本実施形態の変形例として、バスバーおよび接続部材の形状や配置を変更することにより、図8Aに示す電源装置10aのようにラミネート電池の接続パスPを変更することが可能である。この場合にも、電源装置10aにおける全てのラミネート電池2a,2b,2cが直列接続されており、図7に示した電源装置10と同等の出力電圧を得ることができる。電源装置10aにおいても、最下層の電池ユニット1aのバスバー4dが正極端子となり、最上層の電池ユニット1aのバスバー4cが負極端子となる。
 また、本実施形態の変形例として、トレイの構成を変更することによって、1つの電池ユニットのトレイに積載するラミネート電池の個数を適宜変更することが可能である。これにより、1つの電池ユニットの総容量を容易に変更することができる。
 図8Bに、1つの電池ユニットのトレイに積載するラミネート電池の個数を変更した電源装置10bを示す。図8Bに示した電源装置10bの各トレイ3bは、4つのラミネート電池2a,2b,2c,2dを備えている。電源装置10bでは、最上層の電池ユニット1bのバスバー4dが正極端子となり、最上層の電池ユニット1bの接続部材バスバー4cが負極端子となる。そのため、図7および図8Aに示した電源装置10,10aのリード線12が設けられなくても、正極端子および負極端子を、直接制御基板11に電気的に接続させることが可能である。これにより、電源装置の内部抵抗の低下や、製造工程の削減および製造コストの低減が可能である。なお、図8Bでは、各電池ユニット1bのラミネート電池の個数が4つである場合を示したが、ラミネート電池の個数を限定するものではない。ラミネート電池の個数は偶数であれば、実施形態と同様の効果が得られる。
 なお、本実施形態の電源装置では、各電池ユニットの各ラミネート電池が全て直列接続されている。しかし、電源装置は、トレイの構成を変更し、トレイの構成に応じてバスバーや接続部材の構成を適宜変更することによって、各ラミネート電池を全て並列に接続することや、ラミネート電池の一部を直列接続し、他のラミネート電池を並列接続することが可能であることは当然である。
 また、本実施形態の電源装置では、ラミネート電池が用いられているが、平板状の電池であればよく、ラミネート電池に限定されないことは勿論である。
 (第2の実施形態)
 図9に、第2の実施形態の電源装置20の側断面図を示す。電源装置20では、4つの電池ユニット1cが積層されている。第2の実施形態の電源装置20は、以下に説明する構成を除いて第1の実施形態の電源装置10と同様に構成されている。
 本実施形態の電池ユニット1cのトレイ13には、ラミネート電池2a,2b,2cのそれぞれの外周を包囲する隔壁が設けられている。そして、電池ユニット1cが積層され、トレイ13と、このトレイ13の上側に隣接するトレイ13の下面とによって、ラミネート電池1a,1b,1cをそれぞれ覆う個室が形成されている。最上層の電池ユニット1cのみ、トレイ13の上側に隣接するトレイ13が無く、最上層の電池ユニット1c上には、トレイ13と同様の材料で形成された蓋14が設けられている。なお、蓋14は、図6に示すような制御基板11によって代用することも可能である。
 第1の実施形態で述べたように、トレイ13は、熱伝導率が低い材料で形成されているので、各ラミネート電池2a,2b,2cが発する熱が、トレイ13の内部から外部に放出されにくい。
 図10に、比較例の電源装置の側断面図を示す。比較例の電源装置20aでは、4つの電池ユニット1dが積層されている。電源装置20aは、図9に示した電源装置20のようにラミネート電池2a,2b,2cがトレイ13によって覆われていない。そのため、各ラミネート電池2a,2b,2cが発する熱は周囲に拡散しやすい。したがって、比較例の電源装置20aでは、周囲のラミネート電池から熱が加わりやすい一点鎖線で囲んだ中央領域が高温となってしまう。そのため、電源装置20aでは、中央領域に配されたラミネート電池と、外周部に配されたラミネート電池との温度環境が不均一となり、電源装置として不具合が生じる可能性が高い。
 一方、図9に示した電源装置20では、各ラミネート電池2a,2b,2cが発する熱がトレイ13の各個室内に留まりやすいので、各トレイ13のいずれの個室もほぼ一定の温度となる。換言すると、各ラミネート電池2a,2b,2c間で周囲温度の分布が生じにくい。そのため、本実施形態の電源装置20では各ラミネート電池2a,2b,2cが不具合を起こしにくい。
 また、1つのラミネート電池が熱暴走に至った場合、1つのラミネート電池が発生した熱によって、隣接するラミネート電池も次々に熱暴走に至るいわゆる誘爆の現象が発生するおそれがある。一方、図9に示した電源装置20では、各個室の外方に熱が伝わりにくいので、1つのラミネート電池が熱暴走に至った場合であっても誘爆に至るのを防ぐことができる。
 (第3の実施形態)
 図11に、第3の実施形態の電源装置30の斜視図を示す。電源装置30では、複数の電池ユニット1eが積層されている。本実施形態の電源装置30は、以下に説明する構成を除いて第1の実施形態の電源装置10と同様に構成されている。図面に示す便宜上、各電池ユニット1eのトレイ23を破線で示す。
 本実施形態の電源装置30の各電池ユニット1eでは、ラミネート電池22a,22b,22cの各正極および負極が、同一方向に引き出されている。電源装置30は、ラミネート電池22aの負極とラミネート電池22bの正極とがバスバー24aで電気的に接続され、ラミネート電池22bの負極とラミネート電池22cの正極とがバスバー24bで電気的に接続されている。これにより、ラミネート電池22a,22b,22cは直列接続されている。さらに、ラミネート電池22cの負極が、この電池ユニット1eに下側に隣接する電池ユニット1eのラミネート電池22aの正極と電気的に接続されている。
 このように、電源装置30では、各電池ユニット1eのラミネート電池22a,22b,22cが直列接続され、さらに各電池ユニット1e同士が直列接続されている。したがって、電源装置30では、最上層の電池ユニット1eのラミネート電池22aの正極が正極端子となり、最下層の電池ユニット1eのラミネート電池22cの負極が負極端子となる。
 (第4の実施形態)
 第4の実施形態の電源装置は、複数の電池ユニットが積層されて構成されており、以下に説明する電池ユニットの構成を除いて第1の実施形態の電源装置10と同様に構成されている。このため、第4の実施形態では、電池ユニットについてのみ説明する。図12に、第4の実施形態の電池ユニットの平面図を示す。
 第4の実施形態の電池ユニットは、トレイに積載されるラミネート電池の配置状態を特徴としている。
 図12に示すように、第4の実施形態の電池ユニットは、複数のラミネート電池32(32a,32b,32c,32d)と、複数のラミネート電池32が載せられるトレイ33と、複数のラミネート電池32を電気的に接続する複数のバスバー34a,34b,34c,34d,34eと、を備えている。トレイ33は、上述した実施形態と同様に、複数のラミネート電池32が載せられた別のトレイ33に積層可能に構成されている。
 そして、図12に示すように、本実施形態におけるラミネート電池32には、外周部に、ラミネート電池32の内部で生じた圧力を外部に開放する圧力開放部としてのガス放出部35が形成されている。ガス放出部35は、ラミネート電池32を構成するラミネートフィルムの外周部の溶着部に形成された放出孔を有しており、ラミネート電池32の内部から所定の圧力が加わったときに、放出孔からラミネートフィルムが破れるように形成されている。このようにガス放出部35が形成されることで、ラミネート電池32の内圧が異常に上昇したときに、ラミネート電池32の内部の高圧ガスを、ガス放出部35から外部に放出することが可能にされている。
 このようにガス放出部を有する複数のラミネート電池を1つのトレイ上に配置する場合には、ラミネート電池のガス放出部からガスが放出される位置に、別のラミネート電池が配置されていないことが望ましい。ラミネート電池のガス放出部に隣接する位置に別のラミネート電池が配置されていた場合、ガス放出部から放出されたガスの熱によって、隣接する別のラミネート電池も次々に加熱されて、別のラミネート電池のガス放出部からガスが放出されることを招き、いわゆる誘爆の現象が発生するおそれがある。
 そこで、本実施形態の電池ユニットのトレイ33には、図12に示すように、複数のラミネート電池32のそれぞれのガス放出部35がトレイ33の外周部に隣接するように、複数のラミネート電池32が配置されている。また、本実施形態における複数のラミネート電池32a,32b,32c,32dは、バスバー34a,34b,34c,34d,34eによって直列接続されている。このように複数のラミネート電池32が配置されることで、ガス放出部35から放出されたガスの熱によって別のラミネート電池32が誘爆するのを防ぐことができる。
 また、図示しないが、トレイ33には、ラミネート電池32のガス放出部35の近傍に、例えばヒートシンク等の冷却構造体が形成されてもよく、ラミネート電池32から放出されたガスで加熱されたトレイ33を冷却構造体によって冷却することができる。また、トレイ33には、ラミネート電池32のガス放出部35の近傍に、ガス放出部35から漏れた液体を吸収するシート材が配置されてもよい。
 上述したように、第4の実施形態の電源装置を構成する電池ユニットによれば、任意のラミネート電池32のガス放出部35から高圧ガスが外部に放出されたときに、この高圧ガスの熱によって別のラミネート電池32が加熱されることが避けられる。このため、本実施形態は、複数のラミネート電池32の各ガス放出部35がトレイ33の外周部に隣接して配置されていることによって、電池ユニット及び電源装置の安全性を向上することができる。
 なお、第4の実施形態におけるラミネート電池としては、ガス放出部が外周部の長辺方向の中央部に配置されて構成されたラミネート電池が用いられたが、必要に応じて、ガス放出部が例えば外周部の短辺方向の中央部に配置されたラミネート電池が用いられてもよい。この場合、例えば複数のラミネート電池がその長辺方向を隣接するように配置されるとともに、隣接するラミネート電池のガス放出部が、トレイの対向する一対の外周部にそれぞれ隣接するように、複数のラミネート電池が配置されるのが好ましい。
 また、第4の実施形態では、4つのラミネート電池32が配置される構成にされたが、ラミネート電池の配列を限定したり、ラミネート電池の個数を偶数に限定したりするものではなく、必要に応じて適宜変更されてもよいことは勿論である。
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細に対して、本発明のスコープ内で当業者が理解し得る様々な変更を行うことができる。
 この出願は、2010年5月19日に出願された日本出願特願2010-115234を基礎とする優先権を主張し、その開示の全てをここに取り込む。
  1 電池ユニット
 10 電源装置
 32(32a,32b,32c,32d) ラミネート電池
 33 トレイ
 34a,34b,34c,34d,34e バスバー
 35 ガス放出部

Claims (8)

  1.  電気的に接続された複数のラミネート電池と、
     前記複数のラミネート電池が載せられるトレイであって、前記複数のラミネート電池が載せられた別のトレイに積層可能に構成されたトレイと、を備え、
     前記複数のラミネート電池のそれぞれの外周部には、前記複数のラミネート電池のそれぞれの内部で生じた圧力を外部に開放する圧力開放部が設けられ、
     前記複数のラミネート電池のそれぞれは、前記圧力開放部が前記トレイの外周部に隣接して配置される、電池ユニット。
  2.  前記トレイが前記別のトレイに積層された状態で、前記トレイの積層方向とは異なる方向への前記トレイの移動を規制する規制部を有する、請求項1に記載の電池ユニット。
  3.  前記トレイが前記別のトレイに積層された状態で、前記トレイの積層方向に前記複数のラミネート電池の正極と負極とが隣接する、請求項1または2に記載の電池ユニット。
  4.  前記複数のラミネート電池が直列接続されており、
     前記直列接続の両端に接続された正極端子および負極端子を有し、前記トレイが前記別のトレイに積層された状態で、前記正極端子と前記負極端子とが前記トレイの積層方向に隣接する、請求項1から3のいずれか1項に記載の電池ユニット。
  5.  前記正極端子と前記負極端子とのいずれか一方に隣接して設けられ、前記トレイが前記別のトレイに積層された状態で、前記積層方向に隣接している前記正極端子と前記負極端子との間を隔てる絶縁部が設けられている、請求項4に記載の電池ユニット。
  6.  請求項1から5のいずれか1項に記載の複数の電池ユニットと、
     積層された複数の前記トレイの積層方向に隣接する前記電池ユニットを電気的に接続する接続部材と、を備える電源装置。
  7.  請求項4または5に記載の複数の電池ユニットと、
     前記積層方向に隣接する前記正極端子と前記負極端子とを接続することにより、前記複数の電池ユニットを前記積層方向に直列接続する接続部材と、を備える電源装置。
  8.  前記トレイに積層可能に構成され、前記複数の電池ユニットによる出力電力を制御する制御基板を備える、請求項6または7に記載の電源装置。
PCT/JP2011/061141 2010-05-19 2011-05-16 電池ユニットおよび電源装置 WO2011145542A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/640,577 US20130029198A1 (en) 2010-05-19 2011-05-16 Battery unit and power supply device
CN201180024428.4A CN102906899B (zh) 2010-05-19 2011-05-16 电池单元和电源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010115234A JP5618356B2 (ja) 2010-05-19 2010-05-19 電池ユニットおよび電源装置
JP2010-115234 2010-05-19

Publications (1)

Publication Number Publication Date
WO2011145542A1 true WO2011145542A1 (ja) 2011-11-24

Family

ID=44991645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061141 WO2011145542A1 (ja) 2010-05-19 2011-05-16 電池ユニットおよび電源装置

Country Status (4)

Country Link
US (1) US20130029198A1 (ja)
JP (1) JP5618356B2 (ja)
CN (1) CN102906899B (ja)
WO (1) WO2011145542A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT512028A1 (de) * 2011-10-13 2013-04-15 Avl List Gmbh Elektrischer energiespeicher
WO2016080196A1 (ja) * 2014-11-21 2016-05-26 株式会社オートネットワーク技術研究所 蓄電モジュール
CN109120210A (zh) * 2017-06-26 2019-01-01 絜静精微有限公司 具有防水夹持式连接器的太阳能发电桩结构

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552109B2 (ja) * 2011-12-27 2014-07-16 株式会社神戸製鋼所 車載用バッテリートレイおよび車載用バッテリーフレーム
KR101507222B1 (ko) * 2013-05-15 2015-03-30 세방전지(주) 배선이 용이한 커넥터를 구비한 에너지저장시스템
EP3092669A4 (en) * 2014-01-08 2017-06-21 MiniPumps, LLC Stacked battery tray structure and related methods
US10050319B2 (en) * 2014-05-28 2018-08-14 John M. Guerra Photoelectrochemical secondary cell and battery
JP6692188B2 (ja) * 2016-03-09 2020-05-13 株式会社東芝 電池、蓄電池、及び電気装置
US20180108891A1 (en) * 2016-10-14 2018-04-19 Inevit, Inc. Battery module compartment and battery module arrangement of an energy storage system
US10559805B2 (en) * 2017-02-01 2020-02-11 GM Global Technology Operations LLC Battery for an electric vehicle
CN110739422A (zh) * 2019-09-29 2020-01-31 东莞新能源科技有限公司 电芯支架组和包含所述电芯支架组的储能装置封装件
EP4087040A1 (en) * 2020-08-14 2022-11-09 LG Energy Solution, Ltd. Battery pack, and automotive vehicle comprising same
KR20220071588A (ko) * 2020-11-24 2022-05-31 주식회사 엘지에너지솔루션 셀 트레이 및 이를 포함하는 보관 컨테이너
KR102331238B1 (ko) * 2021-08-19 2021-12-02 주식회사 에스아이티 배터리 운반용 트레이

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257396A (ja) * 2002-02-28 2003-09-12 Sanyo Electric Co Ltd パック電池
JP2005116436A (ja) * 2003-10-10 2005-04-28 Nissan Motor Co Ltd 組電池
JP2006156185A (ja) * 2004-11-30 2006-06-15 Nec Lamilion Energy Ltd フィルム外装電気デバイス用ケースおよびケース付きフィルム外装電気デバイス
WO2007043510A1 (ja) * 2005-10-14 2007-04-19 Nec Corporation フィルム外装電気デバイス収納システム
JP2008053019A (ja) * 2006-08-24 2008-03-06 Toyota Motor Corp 蓄電モジュール
JP2008166191A (ja) * 2006-12-28 2008-07-17 Sanyo Electric Co Ltd 電池パック
JP2009272234A (ja) * 2008-05-09 2009-11-19 Gs Yuasa Corporation 組電池用スペーサーおよびそれを用いた組電池
JP2010092598A (ja) * 2008-10-03 2010-04-22 Gs Yuasa Corporation 組電池
JP2010097720A (ja) * 2008-10-14 2010-04-30 Toshiba Corp 非水電解質電池および電池パック

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844110B2 (en) * 2000-05-24 2005-01-18 Ngk Insulators, Ltd. Lithium secondary cell and assembly thereof
JP3698320B2 (ja) * 2002-06-03 2005-09-21 日産自動車株式会社 組電池
JP4849848B2 (ja) * 2005-08-31 2012-01-11 三洋電機株式会社 組電池
CN2849986Y (zh) * 2005-10-26 2006-12-20 广东省电子技术研究所 电池托盘

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257396A (ja) * 2002-02-28 2003-09-12 Sanyo Electric Co Ltd パック電池
JP2005116436A (ja) * 2003-10-10 2005-04-28 Nissan Motor Co Ltd 組電池
JP2006156185A (ja) * 2004-11-30 2006-06-15 Nec Lamilion Energy Ltd フィルム外装電気デバイス用ケースおよびケース付きフィルム外装電気デバイス
WO2007043510A1 (ja) * 2005-10-14 2007-04-19 Nec Corporation フィルム外装電気デバイス収納システム
JP2008053019A (ja) * 2006-08-24 2008-03-06 Toyota Motor Corp 蓄電モジュール
JP2008166191A (ja) * 2006-12-28 2008-07-17 Sanyo Electric Co Ltd 電池パック
JP2009272234A (ja) * 2008-05-09 2009-11-19 Gs Yuasa Corporation 組電池用スペーサーおよびそれを用いた組電池
JP2010092598A (ja) * 2008-10-03 2010-04-22 Gs Yuasa Corporation 組電池
JP2010097720A (ja) * 2008-10-14 2010-04-30 Toshiba Corp 非水電解質電池および電池パック

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT512028A1 (de) * 2011-10-13 2013-04-15 Avl List Gmbh Elektrischer energiespeicher
WO2013053842A1 (de) 2011-10-13 2013-04-18 Avl List Gmbh Elektrischer energiespeicher
AT512028B1 (de) * 2011-10-13 2015-06-15 Avl List Gmbh Elektrischer energiespeicher
WO2016080196A1 (ja) * 2014-11-21 2016-05-26 株式会社オートネットワーク技術研究所 蓄電モジュール
JP2016100210A (ja) * 2014-11-21 2016-05-30 株式会社オートネットワーク技術研究所 蓄電モジュール
US10418613B2 (en) 2014-11-21 2019-09-17 Autonetworks Technologies, Ltd. Electricity storage module
CN109120210A (zh) * 2017-06-26 2019-01-01 絜静精微有限公司 具有防水夹持式连接器的太阳能发电桩结构

Also Published As

Publication number Publication date
US20130029198A1 (en) 2013-01-31
JP2011243442A (ja) 2011-12-01
JP5618356B2 (ja) 2014-11-05
CN102906899A (zh) 2013-01-30
CN102906899B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5618356B2 (ja) 電池ユニットおよび電源装置
JP5626852B2 (ja) 電源装置
US10164229B2 (en) Energy storage apparatus
EP3474345B1 (en) Battery module, battery pack including the battery module, and automobile including the battery pack
JP5465125B2 (ja) 蓄電モジュール
JP5712303B2 (ja) バッテリーモジュール収納装置、バッテリーモジュール温度調節装置、及びそれらを含む電力貯蔵システム
US9705163B2 (en) Battery module
JP2011243561A (ja) バッテリーパック
JP5230801B2 (ja) 二次電池および電池システム
EP3506383B1 (en) Battery module
JP5748190B2 (ja) 電池ユニットおよびこれを用いた電源装置
JP2019053816A (ja) 電池パック
KR101761825B1 (ko) 배터리 모듈 및 그를 구비하는 배터리 팩
JP2014127403A (ja) 電池モジュール
JP2008270350A (ja) 積層型電力貯蔵デバイス
WO2018180254A1 (ja) 電池パック
JP3224790U (ja) 蓄電池及び蓄電池システム
JP2014022238A (ja) 電池パック
JP7357777B2 (ja) 電池パックおよびこれを含むデバイス
JP6499043B2 (ja) 電気化学デバイス
JP7439034B2 (ja) 電池スタック
US9887436B2 (en) Battery pack
KR102564972B1 (ko) 이차 전지 및 이차 전지 적층체
WO2017119106A1 (ja) 蓄電モジュール
JP2014022237A (ja) 電池パック

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024428.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13640577

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783476

Country of ref document: EP

Kind code of ref document: A1