WO2011142271A1 - 交通シミュレーション装置、及び交通シミュレーションプログラム - Google Patents

交通シミュレーション装置、及び交通シミュレーションプログラム Download PDF

Info

Publication number
WO2011142271A1
WO2011142271A1 PCT/JP2011/060383 JP2011060383W WO2011142271A1 WO 2011142271 A1 WO2011142271 A1 WO 2011142271A1 JP 2011060383 W JP2011060383 W JP 2011060383W WO 2011142271 A1 WO2011142271 A1 WO 2011142271A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle model
speed
road
model
vehicle
Prior art date
Application number
PCT/JP2011/060383
Other languages
English (en)
French (fr)
Inventor
信一 円谷
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11780528.3A priority Critical patent/EP2571002B1/en
Priority to US13/643,242 priority patent/US9524640B2/en
Publication of WO2011142271A1 publication Critical patent/WO2011142271A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/3415Dynamic re-routing, e.g. recalculating the route when the user deviates from calculated route or after detecting real-time traffic data or accidents
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/026Route selection considering the moving speed of individual devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/28Connectivity information management, e.g. connectivity discovery or connectivity update for reactive routing

Definitions

  • the present invention relates to a traffic simulation device and a traffic simulation program.
  • the macro approach is the relationship between traffic volume (number of vehicles that can pass per unit time) determined by speed limit, number of lanes, road width, etc. and traffic demand (number of vehicles expected to be used per unit time) From this, the time required for the vehicle to pass the road, the presence / absence of traffic congestion, and the like are predicted.
  • a macro method for predicting vehicle movement by such a method can predict traffic conditions in a wide area with a short calculation time.
  • the macro method does not track the behavior of each individual vehicle, attention cannot be paid to a specific vehicle, and the travel time required for the travel distance cannot be predicted for each vehicle. Further, since the simulation is performed on the assumption that the density of vehicles on the road is uniform, there is a problem that the increase or decrease in the density of vehicles generated behind causes an influence on the moving speed of the vehicle ahead.
  • the micro method tracks the behavior of each individual vehicle, the problem that the travel time cannot be predicted for each individual vehicle described above is solved.
  • the vehicle speed is calculated from the surrounding conditions such as the distance to the intersection and the behavior of the vehicle ahead, so the increase or decrease in the density of the vehicle generated behind the vehicle speed becomes the moving speed of the vehicle ahead. The problem of creating an impact is also eliminated.
  • Patent Document 1 describes a traffic flow simulator that improves the simulation speed by dividing a link, which is a road model simulating a road, into a plurality of blocks and calculating the movement of the vehicle for each block. Yes.
  • the present invention has been made in view of such circumstances, and provides a traffic simulation device and a traffic simulation program that can reduce the difference between the reality and the simulation and reduce the time required for the simulation. With the goal.
  • the traffic simulation apparatus of the present invention employs the following means.
  • the traffic simulation apparatus is a traffic that moves a vehicle model that simulates a vehicle to a road network model that simulates a road network that includes a plurality of roads and intersections that connect the roads.
  • a simulation device a determination unit that determines whether there is an entering vehicle model that is the vehicle model that enters a different road through an intersection from a road of the road network model, and that the determination unit determines to enter the different road
  • Calculating means for calculating a speed of the approaching vehicle model after entering the different road based on a density of the vehicle model on the different road after the approaching vehicle model enters the different road;
  • Setting means for setting the speed calculated by the calculating means only to the approaching vehicle model that has entered the different road; Obtain.
  • the determination means determines the presence or absence of an approaching vehicle model that is a vehicle model that enters a different road from the road network model road via an intersection, and the calculation means moves to a different road.
  • the speed of the approaching vehicle model after entering is calculated based on the density of the vehicle model on the different road after the approaching vehicle model enters the different road, and the speed calculated by the calculation means is set by the setting means. It is set only for an approaching vehicle model that has entered a different road.
  • the speed of the approaching vehicle model entering the different road is not calculated from the speed of the individual vehicle models, but is calculated based on the density of the vehicle models on the different roads.
  • the time required for calculation is short. Further, even if the approaching vehicle model enters a different road, the speed of other vehicle models located on the different road is not changed, so that the difference between the reality and the simulation is small.
  • the difference between the reality and the simulation can be reduced, and the time required for the simulation can be shortened.
  • the traffic simulation device provides the speed of the vehicle model on the approaching road of the approaching vehicle model after the approaching vehicle model enters the different road.
  • the approach source speed calculating means for calculating the speed based on the density of the vehicle model and the speed calculated by the approach source speed calculating means after the approach vehicle model has entered the different road.
  • an entry source speed setting means for setting the vehicle model.
  • the speed of the vehicle model on the approaching road of the approaching vehicle model after the approaching vehicle model enters the different road by the approaching speed calculating means The vehicle speed is calculated based on the density of the vehicle model, and the calculated speed is set to the vehicle model on the approach source road after the approach vehicle model enters a different road by the approach source speed setting means.
  • the time required to calculate the speed of the vehicle model on the approach source road is short.
  • the determination unit determines that the approaching vehicle model is present
  • the right-turning vehicle intends to turn right so that the approaching vehicle model enters the different road.
  • a right turn determination means for determining whether or not the approach vehicle model is a right turn vehicle when the right turn determination means determines that the approach vehicle model is a right turn vehicle.
  • Determining means for determining on the basis of the density and speed of the vehicle model that becomes an oncoming vehicle on the road to be operated.
  • the right turn determination means determines whether or not the approaching vehicle model is a right turn vehicle to turn right in order to enter a different road, and the determination means determines the approaching vehicle model. Whether or not a right turn is possible is determined based on the density and speed of a vehicle model that is an oncoming vehicle on the road where the approaching vehicle model is located.
  • whether or not the approaching vehicle model can make a right turn is determined based on the density and speed of the vehicle model that is an oncoming vehicle on the road where the approaching vehicle model is located. Can be reduced.
  • the traffic simulation apparatus further includes random number generation means for generating a random number, wherein the determination means is the value of the random number generated by the random number generation means and the oncoming vehicle.
  • the right turn of the approaching vehicle model is permitted based on the result of comparing the values based on the density and speed of the vehicle model.
  • a random number is generated by the random number generation means, and the random number value generated by the random number generation means by the determination means by the determination means and the density of the vehicle model serving as the oncoming vehicle. And the right turn of the approaching vehicle model is permitted based on the result of comparing the value based on the speed.
  • a right turn is permitted when a value based on the density and speed of the vehicle model serving as an oncoming vehicle is larger than a random value.
  • a value based on the density and speed of the vehicle model serving as an oncoming vehicle is larger than a random value.
  • the traffic simulation program of the present invention adopts the following means.
  • the traffic simulation program according to the second aspect of the present invention is a traffic that moves a vehicle model that simulates a vehicle to a road network model that simulates a road network including a plurality of roads and intersections connecting the roads.
  • a traffic simulation program used in a simulation apparatus wherein the computer determines whether or not there is an approaching vehicle model that is a vehicle model that enters a different road from a road of the road network model via an intersection, and the determination
  • the speed of the approaching vehicle model determined to enter the different road by means after entering the different road is set to the density of the vehicle model on the different road after the approaching vehicle model enters the different road.
  • Calculating means based on the speed calculated by the calculating means and the speed calculated by the calculating means.
  • the speed of the approaching vehicle model entering the different road is not calculated from the speed of the individual vehicle models, but is calculated based on the density of the vehicle models on the different roads.
  • the time required for calculation is short. Further, even if the approaching vehicle model enters a different road, the speed of other vehicle models located on the different road is not changed, so that the difference between the reality and the simulation is small.
  • the difference between the reality and the simulation can be reduced, and the time required for the simulation can be shortened.
  • the difference between the reality and the simulation can be reduced, and the time required for the simulation can be shortened.
  • a road network model concerning an embodiment of the present invention it is a mimetic diagram required for explanation of change of a speed of a vehicle model located in a link before and after a vehicle model approached a link.
  • a road network model concerning an embodiment of the present invention it is a mimetic diagram required for explanation of change of a speed of a vehicle model located in a link before and after a vehicle model approached a link.
  • the route selection program which concerns on embodiment of this invention it is a schematic diagram required for the description for selecting a movement route.
  • a flowchart which shows the flow of a process of the right turn possibility determination program which concerns on embodiment of this invention.
  • the traffic simulation apparatus 10 simulates a vehicle on a road network model (see also FIG. 2) that simulates a road network (road network) including a plurality of roads and intersections connecting the roads. It is a device that executes a traffic simulation that moves a model. And the traffic simulation apparatus 10 calculates
  • the road is not limited in the number of lanes, and further refers to all roads such as paved roads, non-paved roads, national roads, prefectural roads, and private roads.
  • Vehicles are motorcycles and three or more ordinary cars. , Various vehicles such as buses and trucks, and bicycles, rickshaws, and carriages that move on the road.
  • the traffic simulation device 10 includes a CPU (Central Processing Unit) 12 that controls the operation of the entire traffic simulation device 10, a ROM (Read Only Memory) 14 in which various programs and various parameters are stored in advance, and various programs executed by the CPU 12.
  • a RAM (Random Access Memory) 16 used as a work area and the like, various programs such as a traffic simulation program whose details will be described later, and an HDD (Hard Disk Drive) 18 as a storage means for storing various information are provided.
  • the traffic simulation apparatus 10 includes a keyboard, a mouse, and the like, and includes an operation input unit 20 that receives input of various operations, an image that prompts input of various information required for the traffic simulation, and various images such as an image that indicates a result of the traffic simulation.
  • the reading unit 28 is provided.
  • the portable storage medium 26 includes a magnetic disk, an optical disk such as a CD (Compact Disc), a DVD (Digital Versatile Disc), a memo IC (Integrated Circuit) card, a memory card, and the like.
  • the CPU 12, ROM 14, RAM 16, HDD 18, operation input unit 20, image display unit 22, external interface 24, and reading unit 28 are electrically connected to each other via a system bus 30. Therefore, the CPU 12 accesses the ROM 14, the RAM 16, and the HDD 18, grasps the operation state of the operation input unit 20, displays various images on the image display unit 22, and various information with the external device via the external interface 24. And the like, and reading information from the portable storage medium 26 via the reading unit 28, respectively.
  • FIG. 2 shows a schematic diagram of the road network model 40 in the traffic simulation according to the present embodiment.
  • the road network model 40 includes a link 42 that simulates a minimum section of a road that is divided by an intersection and the like, and a node 44 that simulates an intersection and a bending point of the road.
  • the road network model 40 may simulate a real road network, or may simulate a road network that does not exist.
  • Each link 42 and each node 44 are numbered, and each link 42 and each node 44 are distinguished based on the number assigned (in FIG. 2, each link 42 and each node 44 is assigned to each link 42 and each node 44). The number to be used is omitted.
  • each node 44 whether or not a traffic signal model simulating a traffic signal for a vehicle is set in advance.
  • the traffic light model changes from blue to red at predetermined time intervals.
  • the traffic light model is blue, the vehicle model is allowed to move from link 42 to another link 42 via the node 44 where the traffic signal model is installed, while when the traffic light model is red, the vehicle model is Movement from the link 42 to another link 42 is prohibited through the node 44 where the traffic signal is installed.
  • FIG. 3A shows an example of the relationship between the traffic density K (vehicles / km) which is the number of vehicles per unit distance and the traffic volume Q (vehicles / hour) which is the number of vehicles passing per unit time.
  • FIG. 3B shows an example of the relationship between traffic density K (vehicles / km) and vehicle speed V (m / sec).
  • the traffic volume Q increases as the traffic density K increases. However, when the traffic density K reaches a certain value, the traffic volume Q tends to decrease. When the traffic density K further increases, the traffic volume Q becomes 0, that is, the speed of the vehicle moving on the road becomes 0 as shown in FIG. 3B.
  • the value at which traffic volume Q changes from rising to decreasing is called phase transition traffic volume Q S
  • traffic density K that becomes phase transition traffic volume Q S is called critical density K S
  • traffic density K increases
  • traffic volume is The traffic density K that becomes 0 is called the limit density KT .
  • Equation (1) is determined in advance for each link 42 based on the width of the road simulated by the link 42, the number of lanes, the speed limit, and the like.
  • the vehicle speed V shown in FIG. 3B can be obtained by dividing the traffic volume Q by the traffic density K as shown in the following equation (2).
  • the vehicle speed is constant (in this embodiment, in advance speed limit V 0 defined) to move in It shows that.
  • the vehicle speed V is expressed by the following equation (3).
  • the time required for the vehicle model to pass through the link 42 is calculated from the traffic volume Q and the phase change traffic volume Q S flowing into the road network model 40. That is, since the traffic density, which is the density of the vehicle model in the link 42, is calculated as being uniform, the calculation is simple, and the time required for the traffic simulation can be shortened even if the road network model 40 covers a wide area. . Further, in the macro method, since calculation is not performed for each individual vehicle model, the time required for the traffic simulation can be shortened even if the number of vehicle models flowing into the road network model 40 is increased.
  • the traffic simulation is performed on the assumption that the traffic density in the link 42 is uniform, the traffic density in the front in the link 42 increases and decreases as the traffic density in the link 42 increases and decreases. Since the speed of the front vehicle model increases or decreases due to the influence of the rear vehicle model, there is a case where it is contradictory to the actual traffic of the general vehicle, that is, the result of the traffic simulation may be greatly different from the actual.
  • the traffic simulation called a micro method in the conventional traffic simulation the behavior of the vehicle model moving on the road network model 40 is simulated according to the situation where each vehicle model is located (speed of the front vehicle model, etc.). For this reason, the result of the traffic simulation by the micro method is not inconsistent with the actual traffic of the general vehicle, and the deviation from the reality is small compared to the result of the traffic simulation by the macro method.
  • the amount of calculation is larger than that in the macro method.
  • the road network model 40 covers a wide area.
  • the computation time increases as compared with the macro method.
  • the speed of the model after entering the different link 42 is calculated based on the density of the vehicle model at the different link 42 after the vehicle model enters the different link 42.
  • FIG. 4A and FIG. 4B are flowcharts showing the flow of processing of the traffic simulation program executed by the CPU 12, and the traffic simulation program is stored in advance in a predetermined area of the HDD 18.
  • Steps 102 to 130 of the flowchart shown in FIGS. 4A and 4B are executed at predetermined time intervals (for example, every 1 second or every 10 seconds).
  • step 100 an input of a predetermined value for performing a traffic simulation according to the present embodiment is accepted via the operation input unit 20.
  • the predetermined value is, for example, the time interval, the number of vehicle models moved by the road network model 40, the movement start position of each vehicle model, the destination of each vehicle model, the initial speed of each vehicle model, and the acceleration of each vehicle model. And various information necessary for the traffic simulation, such as a time for executing the traffic simulation (not a real time but a virtual time in the traffic simulation, hereinafter referred to as “calculation time”).
  • a time for executing the traffic simulation not a real time but a virtual time in the traffic simulation, hereinafter referred to as “calculation time”.
  • step 102 the position of each vehicle model on the road network model 40 is updated based on the value input in step 100.
  • a predetermined distance X (a predetermined distance X (node 44) from which the vehicle model enters the different road (different link 42, hereinafter referred to as "entry destination link") from the current road. m) It is determined whether or not they are separated from each other. If the determination is affirmative, the process proceeds to step 106. If the determination is negative, the process proceeds to step 108.
  • step 106 the route selection process is executed on the vehicle model to update the travel route of the vehicle model. Thereby, it is updated to the optimal travel route at this time.
  • step 108 it is determined whether or not the vehicle model has reached the node 44 predetermined by the moving route for entering the destination link. If the determination is affirmative, the process proceeds to step 110. If the determination is negative, the process proceeds to step 128.
  • a vehicle model that enters a different link 42 is referred to as an approach vehicle model.
  • the link 42 where the approaching vehicle model is located before entering the entry destination link is referred to as an entry source link.
  • step 110 it is determined whether or not a traffic light model is installed at the node 44 to which the approaching vehicle model has arrived. If the determination is affirmative, the process proceeds to step 112. If the determination is negative, the process proceeds to step 114.
  • step 112 it is determined whether or not the traffic light model is blue. If the determination is affirmative, the process proceeds to step 114. If the determination is negative, the traffic signal model waits until the traffic light model indicates blue.
  • step 114 it is determined whether or not the approaching vehicle model can enter the destination link connected by the node 44. If the determination is affirmative, the process proceeds to step 116. If the determination is negative, the process proceeds to step 112. Return. If the determination in step 114 is negative, the vehicle model is located up to the rear end of the approach destination link, and the approach vehicle model cannot enter the approach destination link via the node 44.
  • step 116 it is determined whether or not the approaching vehicle model needs to make a right turn in order to enter the destination link via the node 44. If the determination is affirmative, the process proceeds to step 118 and a right turn process described later. On the other hand, if the determination is negative, the routine proceeds to step 120.
  • the approaching vehicle model calculates the traffic density and vehicle speed at the approaching source link located before entering the approaching destination link.
  • step 122 the speed of the vehicle model of the approach source link is set according to the speed calculated in step 120.
  • FIG. 5A shows changes in the speed of the vehicle models 50i to 50m located on the approach source link before and after the approach vehicle model moves from the approach source link.
  • the traffic density of the approaching source link changes (decreases) as the approaching vehicle model 50X moves. Then, the speed used for updating the speed of the vehicle models 50i to 50m is calculated from the traffic density after the approaching vehicle model has moved.
  • the speed V ′ corresponding to the traffic density after the approaching vehicle model 50X has moved is calculated from the above-described equation (2) or (3).
  • the speeds Vk to Vm of the vehicle models 50k to 50m are slower than the speed V ′ (the movement of the approaching vehicle model 50X from the approaching source link is the density of the vehicle model in the approaching source link). Therefore, the speed of the vehicle models 50K to 50m is updated and set to the speed V ′.
  • the speeds Vi and Vj of the vehicle models 50i and 50j are faster than the speed V ', the speeds are not updated.
  • the speed of the vehicle model at the approach source link is calculated according to the increase / decrease in the density of the vehicle model, so that the speed of the vehicle model at the approach source link is compared with the conventional simulation (particularly the micro method).
  • the time required for calculation is shortened.
  • next step 124 the traffic density of the destination link after the approaching vehicle model enters and the speed V ′′ of the vehicle model are calculated.
  • step 126 the speed of the approaching vehicle model after entering the approach destination link is set according to the speed calculated in step 124.
  • FIG. 5B shows a change in speed of the vehicle models 50i to 50m located at the approach destination link after the approach vehicle model 50Y enters the approach destination link.
  • the speed V ′′ corresponding to the traffic density after the approaching vehicle model 50Y has moved is calculated from the above-described equation (2) or (3).
  • the speed of 50Y is set to the speed V ′′.
  • the speed of the vehicle models 50i to 50m that are positioned ahead of the approaching vehicle model 50Y are changed. I won't let you.
  • step 128 the movement amount of the vehicle model in the remaining time in the time interval received in step 100 is calculated.
  • step 130 it is determined whether or not the movement of all the vehicle models on the road network model 40 is completed. If the determination is affirmative, the process proceeds to step 132. If the determination is negative, the process proceeds to step 102. Return.
  • step 132 it is determined whether or not the calculation time accepted in step 100 has ended. If the determination is affirmative, the program ends. If the determination is negative, the process returns to step 102.
  • the traffic simulation apparatus 10 does not calculate the speed of the approaching vehicle model that enters the approach destination link from the speed of the individual vehicle model, but based on the density of the vehicle model at the approach destination link. Therefore, the time required to calculate the speed of the approaching vehicle model is shorter than that of a conventional simulation (particularly, a micro method). Furthermore, since the calculated speed is set only for the approaching vehicle model and the speeds of other vehicle models located at the approach destination link are not changed, compared with the conventional simulation (especially macro method), Can be reduced. In addition, the behavior of each vehicle model can be tracked, and for example, the time required to reach the destination from the movement start position can be measured for each vehicle model.
  • FIG. 6 is a flowchart showing the flow of processing of the route selection program executed by the CPU 12 when performing route selection processing, and the route selection program is stored in advance in a predetermined area of the HDD 18.
  • step 200 a plurality of vehicle model movement routes are provided for each vehicle model from the vehicle model movement start position and destination input in step 100 of the traffic simulation program (three in the example of FIG. 7). Extract. For example, a plurality of movement routes to be extracted are selected in the order in which the movement distance from the movement start position of the vehicle model to the destination becomes longer from the shortest route.
  • the travel cost is calculated for each travel route from the travel route extracted in step 200.
  • the travel cost is the time, speed (average speed, maximum speed), etc. required for the vehicle model to reach the destination by the extracted travel route.
  • FIG. 7A shows the movement cost for each movement route.
  • the average speed of the vehicle model in the case of moving the moving route 1 and velocity V 1 the mobile Route 2 the average speed of the vehicle model in the case of moving a velocity V 2
  • the average speed of the vehicle model in the case of moving the mobile route 3 and the speed V 3.
  • Each speed has a relationship of speed V 1 > speed V 2 > speed V 3 .
  • the movement cost for each movement route calculated in step 202 is normalized.
  • the movement cost for each movement route is normalized by the sum of the average speeds of the vehicle models in each movement route.
  • the movement cost of each movement route is divided within a predetermined numerical range (for example, proportional distribution).
  • a predetermined numerical range for example, proportional distribution.
  • the standardized travel cost of the travel route 1 is 0 to 5.5
  • the travel cost of the standardized travel route 2 is 5.6 to 8.0
  • the standardized travel cost The travel cost of route 3 is divided into 8.1 to 10.0.
  • random numbers are generated.
  • the generated random number is set to a value within the above numerical range.
  • a travel route having a travel cost corresponding to the random number generated in step 206 is determined as the travel route of the vehicle model.
  • the travel route 2 is selected as the travel route. And after determining a movement route, this program is complete
  • FIG. 8 is a flowchart showing the flow of the right turn permission / inhibition determining program executed by the CPU 12 when performing the right turn processing.
  • the route selection processing program is stored in a predetermined area of the HDD 18 in advance.
  • step 300 the number of the link 42 of the straight ahead destination when the approaching vehicle model goes straight without turning right is acquired.
  • the number of the right turn destination link 42 (the approach destination link 42a shown in the example of the schematic diagram of FIG. 9) where the approaching vehicle model makes a right turn is acquired.
  • the traffic density K and speed V of the vehicle model of the straight ahead link 42 acquired in step 300 are acquired. That is, the traffic density K and the speed V of the vehicle model that is the oncoming vehicle are acquired at the link 42 where the approaching vehicle model is located.
  • a predetermined value P for determining whether or not the approaching vehicle can turn right is calculated.
  • the predetermined value (probability value) P is input to the distribution D (Distribution), the velocity V, and the interval I (Interval) to a predetermined function f. To calculate.
  • Equation (4) is a function in which the value of the predetermined value P increases as the traffic density K and the speed V of the vehicle model that is an oncoming vehicle with respect to the approaching vehicle model are lower.
  • step 310 the predetermined value P calculated in step 306 is compared with the random value generated in step 308, and it is determined whether or not the predetermined value P is larger than the random value. In the case of, the process proceeds to step 312, whereas in the case of negative determination, the process proceeds to step 314.
  • a right turn permission flag is set to permit the right turn to the approach destination link 42a of the approaching vehicle model, and the program ends. That is, the lower the traffic density K and speed V of the vehicle model that is an oncoming vehicle with respect to the approaching vehicle model, the easier it is for the approaching vehicle model to turn right (the probability of right turn permission increases), and the vehicle model that becomes the oncoming vehicle. The higher the traffic density K and the speed V, the harder it is for the approaching vehicle model to turn right (the probability of permission to turn right is lower). In the traffic simulation, when the right turn permission flag is set, the approaching vehicle model is turned right to the approach destination link 42a.
  • step 314 since the right turn to the approach destination link 42a of the approaching vehicle model is not permitted, this program is terminated without setting the right turn permission flag.
  • the approaching vehicle model can make a right turn is determined based on the traffic density and speed of the oncoming vehicle model on the road where the approaching vehicle model is located, so the reality and simulation when the approaching vehicle model makes a right turn The deviation from can be reduced.
  • the right turn is determined using a random number, the process for determining whether the right turn is possible can be simplified.
  • the traffic simulation program is stored in the HDD 18, but the present invention is not limited to this, and the traffic simulation program may be stored in the portable storage medium 26.
  • the movement route selection process and the right turn process were included in the process of the traffic simulation program, this invention is not limited to this, At least one of a movement route selection process and a right turn process is performed. It is good also as a form which is not included.
  • the relationship between the traffic volume Q and the traffic density K was represented by the quadratic approximate expression as shown in (1) Formula as an example, this invention is limited to this. Instead, the relationship between the traffic volume Q and the traffic density K may be expressed by a polynomial approximation of the first order or the third order or other approximate expressions.
  • the function expressed by the equation (4) has been described as a function in which the value of the predetermined value P increases as the traffic density K and the speed V of the vehicle model serving as the oncoming vehicle are lower.
  • the present invention is not limited to this, and the function represented by the equation (4) is a function in which the value of the predetermined value P decreases as the traffic density K and the speed V of the vehicle model serving as the oncoming vehicle are lower. It is good.
  • the predetermined value P is compared with the value of the random number, and when the predetermined value P is smaller, the right turn of the approaching vehicle model is permitted.
  • the traffic light model has been described as a traffic light that changes to blue and red.
  • the present invention is not limited to this, and the traffic light model may be a traffic light that changes to blue, yellow, and red. Good.
  • the traffic light model changes from blue to yellow, by performing the process of changing the speed of the vehicle model moving in front of the traffic light model, it is possible to perform a simulation with a smaller deviation from reality. .
  • the vehicle in the traffic simulation has been described as various vehicles such as three or more ordinary automobiles.
  • the present invention is not limited to this, and the airport runway is applied as a road. It is good also as a form which applies the aircraft which moves a road as a vehicle.
  • the traffic simulation device 10 can simulate the congestion state of the aircraft on the runway.
  • the traffic light model corresponds to an instruction from the controller for the aircraft.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 現実とシミュレーションとの乖離を小さくでき、かつシミュレーションに要する時間を短くできる交通シミュレーション装置、及び交通シミュレーションプログラムを得る。交差点等で区切られる道路の最小区間を模擬するリンク(42)、及び交差点及び道路の屈曲点等を模擬するノード(44)を含んだ道路網モデル(40)に、車両を模擬した車両モデルを移動させる交通シミュレーションにおいて、道路網モデル(40)のリンク(42)からノード(44)を介して異なるリンク(42)へ進入する進入車両モデルの有無を判定し、進入車両モデルの異なるリンク(42)へ進入した後の速度を、該進入車両モデルが該異なるリンク(42)に進入した後の該異なるリンク(42)における車両モデルの密度に基づいて算出し、該算出した速度を、異なるリンク(42)へ進入した進入車両モデルのみに設定する。

Description

交通シミュレーション装置、及び交通シミュレーションプログラム
 本発明は、交通シミュレーション装置、及び交通シミュレーションプログラムに関するものである。
 コンピュータシミュレーションによる車両の道路移動に関する予測手法には、主にマクロ的手法とミクロ的手法とがある。
 マクロ的手法は、制限速度、車線数、及び道路幅等により定められる交通量(単位時間当たりに通過可能な車両台数)と交通需要(利用が見込まれる車両の単位時間当りの台数)との関係から、車両が道路を通過するのに要する時間、及び渋滞発生の有無等を予測する。このような手法により車両の移動の予測を行うマクロ的手法は、広域の交通状況を少ない計算時間で予測可能である。
 しかし、マクロ的手法では、個々の車両毎の挙動を追跡しないため、特定の車両に注目し、移動距離に要する移動時間等を車両毎に予測することができない。また、道路における車両の密度が一様であるとしてシミュレーションを行うため、後方で発生した車両の密度の増減が前方の車両の移動速度に影響を生じさせるという問題もあった。
 一方、ミクロ的手法は、個々の車両毎の挙動を追跡するため、上述した個々の車両毎に移動時間を予測できないという問題は解消される。また、ミクロ的手法は、車両速度を個々の車両が、交差点までの距離、前方車両の挙動など周囲の状況から算出するため、後方で発生した車両の密度の増減が前方の車両の移動速度に影響を生じさせるという問題も解消される。
 しかし、ミクロ的手法は、個々の車両毎に挙動を解析するため、全体としての計算量が多く、多くの計算時間を要するという問題があった。
 そこで、特許文献1には、道路を模擬した道路モデルであるリンクを複数のブロックに分割し、該ブロック毎に車両の移動を算出することによって、シミュレーション速度を向上させる交通流シミュレータが記載されている。
特開平10-334389号公報
 しかし、特許文献1に記載の交通流シミュレータでは、道路モデルを複数のブロックに分割するという、現実の道路には即さないモデルに基づいてシミュレーションを行っているため、現実との乖離が生じている。
 本発明は、このような事情に鑑みてなされたものであって、現実とシミュレーションとの乖離を小さくでき、かつシミュレーションに要する時間を短くすることができる交通シミュレーション装置及び交通シミュレーションプログラムを提供することを目的とする。
 上記課題を解決するために、本発明の交通シミュレーション装置は以下の手段を採用する。
 すなわち、本発明の第1の態様に係る交通シミュレーション装置は、複数の道路、及び道路と道路とを結ぶ交差点を含む道路網を模擬した道路網モデルに、車両を模擬した車両モデルを移動させる交通シミュレーション装置であって、前記道路網モデルの道路から交差点を介して異なる道路へ進入する前記車両モデルである進入車両モデルの有無を判定する判定手段と、前記判定手段によって前記異なる道路へ進入すると判定された前記進入車両モデルの該異なる道路へ進入した後の速度を、該進入車両モデルが該異なる道路に進入した後の該異なる道路における前記車両モデルの密度に基づいて算出する算出手段と、前記算出手段によって算出された速度を、前記異なる道路へ進入した前記進入車両モデルのみに設定する設定手段と、を備える。
 本発明の第1の態様によれば、判定手段によって、道路網モデルの道路から交差点を介して異なる道路へ進入する車両モデルである進入車両モデルの有無が判定され、算出手段によって、異なる道路へ進入した後の進入車両モデルの速度が、該進入車両モデルが該異なる道路に進入した後の該異なる道路における車両モデルの密度に基づいて算出され、設定手段によって、算出手段で算出された速度が、異なる道路へ進入した進入車両モデルのみに設定される。
 このように、異なる道路へ進入する進入車両モデルの速度が、個々の車両モデルの速度から算出されずに、該異なる道路における車両モデルの密度に基づいて算出されるので、進入車両モデルの速度を算出するのに要する時間が短い。また、進入車両モデルが異なる道路へ進入しても、該異なる道路に位置する他の車両モデルの速度を変更しないため、現実とシミュレーションとの乖離が小さい。
 以上のことから、本発明の第1の態様によれば、現実とシミュレーションとの乖離を小さくでき、かつシミュレーションに要する時間を短くすることができる。
 本発明の第1の態様に係る交通シミュレーション装置は、前記進入車両モデルが前記異なる道路へ進入した後の、該進入車両モデルの進入元の道路における前記車両モデルの速度を、該進入元の道路における前記車両モデルの密度に基づいて算出する進入元速度算出手段と、前記進入元速度算出手段によって算出された速度を、前記進入車両モデルが前記異なる道路へ進入した後の、前記進入元の道路における前記車両モデルに設定する進入元速度設定手段と、をさらに備える。
 本発明の第1の態様によれば、進入元速度算出手段によって、進入車両モデルが異なる道路へ進入した後の、進入車両モデルの進入元の道路における車両モデルの速度が、進入元の道路における車両モデルの密度に基づいて算出され、進入元速度設定手段によって、上記算出された速度が、進入車両モデルが異なる道路へ進入した後の、進入元の道路における車両モデルに設定される。
 このように、進入元の道路における車両モデルの速度が、車両モデルの密度の増減に応じて算出されるので、進入元の道路における車両モデルの速度を算出するのに要する時間が短い。
 本発明の第1の態様に係る交通シミュレーション装置は、前記判定手段によって前記進入車両モデルが有ると判定された場合に、該進入車両モデルが前記異なる道路へ進入するために右折しようとする右折車両であるか否かを判定する右折判定手段と、前記右折判定手段によって前記進入車両モデルが右折車両であると判定された場合に、該進入車両モデルの右折の可否を、該進入車両モデルが位置する道路において対向車両となる前記車両モデルの密度及び速度に基づいて決定する決定手段と、をさらに備える。
 本発明の第1の態様によれば、右折判定手段によって、進入車両モデルが異なる道路へ進入するために右折しようとする右折車両であるか否かが判定され、決定手段によって、進入車両モデルの右折の可否が、該進入車両モデルが位置する道路において対向車両となる車両モデルの密度及び速度に基づいて決定される。
 このように、進入車両モデルの右折の可否を、進入車両モデルが位置する道路において対向車両となる車両モデルの密度及び速度に基づいて決定するので、進入車両モデルが右折する場合の現実とシミュレーションとの乖離を小さくできる。
 さらに、本発明の第1の態様に係る交通シミュレーション装置は、乱数を発生させる乱数発生手段をさらに備え、前記決定手段が、前記乱数発生手段によって発生された乱数の値と前記対向車両となる前記車両モデルの密度及び速度に基づく値とを比較した結果に基づいて、前記進入車両モデルの右折を許可する。
 本発明の第1の態様によれば、乱数発生手段によって、乱数が発生され、決定手段によって、決定手段によって、乱数発生手段で発生された乱数の値と前記対向車両となる前記車両モデルの密度及び速度に基づく値とを比較した結果に基づいて、進入車両モデルの右折が許可される。
 例えば、対向車両となる前記車両モデルの密度及び速度に基づく値が乱数の値に比較して大きい場合に、右折が許可される。このように、乱数を用いて右折の可否を決定するので、右折の可否を決定するための処理を簡易にすることができる。
 また、課題を解決するために、本発明の交通シミュレーションプログラムは以下の手段を採用する。
 すなわち、本発明の第2の態様に係る交通シミュレーションプログラムは、複数の道路、及び道路と道路とを結ぶ交差点を含む道路網を模擬した道路網モデルに、車両を模擬した車両モデルを移動させる交通シミュレーション装置で用いられる交通シミュレーションプログラムであって、コンピュータを、前記道路網モデルの道路から交差点を介して異なる道路へ進入する前記車両モデルである進入車両モデルの有無を判定する判定手段と、前記判定手段によって前記異なる道路へ進入すると判定された前記進入車両モデルの該異なる道路へ進入した後の速度を、該進入車両モデルが該異なる道路に進入した後の該異なる道路における前記車両モデルの密度に基づいて算出する算出手段と、前記算出手段によって算出された速度を、前記異なる道路へ進入した前記進入車両モデルのみに設定する設定手段と、して機能させるための交通シミュレーションプログラム。
 このように、異なる道路へ進入する進入車両モデルの速度が、個々の車両モデルの速度から算出されずに、該異なる道路における車両モデルの密度に基づいて算出されるので、進入車両モデルの速度を算出するのに要する時間が短い。また、進入車両モデルが異なる道路へ進入しても、該異なる道路に位置する他の車両モデルの速度を変更しないため、現実とシミュレーションとの乖離が小さい。
 以上のことから、本発明によれば、現実とシミュレーションとの乖離を小さくでき、かつシミュレーションに要する時間を短くすることができる。
 現実とシミュレーションとの乖離を小さくでき、かつシミュレーションに要する時間を短くできる。
本発明の実施形態に係る交通シミュレーション装置の電気系の要部構成を示す図である。 本発明の実施形態に係る交通シミュレーションにおける道路網モデルを示す模式図である。 交通密度と交通量との関係を示すグラフである。 交通密度と車両の速度との関係を示すグラフである。 本発明の実施形態に係る交通シミュレーションプログラムの処理の流れを示すフローチャートである。 本発明の実施形態に係る交通シミュレーションプログラムの処理の流れを示すフローチャートである。 本発明の実施形態に係る道路網モデルにおいて、車両モデルがリンクに進入した前後におけるリンクに位置する車両モデルの速度の変化の説明に要する模式図である。 本発明の実施形態に係る道路網モデルにおいて、車両モデルがリンクに進入した前後におけるリンクに位置する車両モデルの速度の変化の説明に要する模式図である。 本発明の実施形態に係るルート選択プログラムの処理の流れを示すフローチャートである。 本発明の実施形態に係るルート選択プログラムにおいて、移動ルートを選択するための説明に要する模式図である。 本発明の実施形態に係る右折可否決定プログラムの処理の流れを示すフローチャートである。 本発明の実施形態に係る進入車両の右折可否の説明に要する道路網モデルの模式図である。
 以下に、本発明に係る交通シミュレーション装置の一実施形態について、図面を参照して説明する。
 図1に、本実施形態に係る交通シミュレーション装置10の電気系の要部構成を示す。
 本実施形態に係る交通シミュレーション装置10は、複数の道路、及び道路と道路とを結ぶ交差点を含む道路網(道路ネットワーク)を模擬した道路網モデル(図2も参照)に、車両を模擬した車両モデルを移動させる交通シミュレーションを実行する装置である。そして、交通シミュレーション装置10は、例えば、災害が発生した場合において住民が車両を用いて移動する際に、災害の影響を受けない目的地に到達するまでに要する時間の導出、災害が発生してから所定時間内に移動できる距離の導出、あるいは住宅地又は商業地等における道路の混雑状態の模擬等に用いられる。
 以下の説明において、道路とは、車線数の限定はなく、さらに、舗装路、非舗装路、国道、県道、及び私道等のあらゆる道路を示し、車両とは、自動二輪車、三輪以上の普通自動車、バス、及びトラック等の各種自動車、並びに自転車、人力車、及び馬車等、道路を移動するあらゆる車両を示す。
 交通シミュレーション装置10は、交通シミュレーション装置10全体の動作を司るCPU(Central Processing Unit)12、各種プログラムや各種パラメータ等が予め記憶されたROM(Read Only Memory)14、CPU12による各種プログラムの実行時のワークエリア等として用いられるRAM(Random Access Memory)16、詳細を後述する交通シミュレーションプログラム等の各種プログラム及び各種情報を記憶する記憶手段としてのHDD(Hard Disk Drive)18を備えている。
 さらに、交通シミュレーション装置10は、キーボード及びマウス等から構成され、各種操作の入力を受け付ける操作入力部20、交通シミュレーションに要する各種情報の入力を促す画像、交通シミュレーションの結果を示す画像等の各種画像を表示する画像表示部22、プリンタや他のコンピュータ等の外部装置と接続され、該外部装置への各種情報の送受信を行う外部インタフェース24、並びに可搬型記憶媒体26に記憶されている情報を読み取るための読取部28を備えている。可搬型記憶媒体26には、磁気ディスク、CD(Compact Disc)、DVD(Digital Versatile Disc)等の光ディスク、メモIC(Integrated Circuit)カード、及びメモリカード等が含まれる。
 これらCPU12、ROM14、RAM16、HDD18、操作入力部20、画像表示部22、外部インタフェース24、及び読取部28は、システムバス30を介して相互に電気的に接続されている。従って、CPU12は、ROM14、RAM16、及びHDD18へのアクセス、操作入力部20に対する操作状態の把握、画像表示部22に対する各種の画像の表示、並びに外部インタフェース24を介した上記外部装置との各種情報の送受信、読取部28を介した可搬型記憶媒体26からの情報の読み取り等を各々行なうことができる。
 図2に、本実施形態に係る交通シミュレーションにおける道路網モデル40の模式図を示す。
 道路網モデル40は、交差点等で区切られる道路の最小区間を模擬するリンク42、並びに交差点及び道路の屈曲点等を模擬するノード44を含んでいる。道路網モデル40は、実在する道路網を模擬したものであってもよいし、実在しない道路網を模擬したものであってもよい。各リンク42及び各ノード44は、各々番号が付さており、付されている番号に基づいて各リンク42及び各ノード44は、区別される(図2では、各リンク42及び各ノード44に付される番号は省略している。)。
 各ノード44には、車両用の交通信号機を模擬した信号機モデルの設置の有無が予め設定されている。該信号機モデルは、所定の時間間隔で青色から赤色に変化する。信号機モデルが青色の場合、車両モデルは、該信号機モデルが設置されているノード44を介してリンク42から他のリンク42へ移動が許可される一方、信号機モデルが赤色の場合、車両モデルは、該信号機が設置されているノード44を介してリンク42から他のリンク42への移動が禁止される。
 ここで、図3Aに、単位距離当たりの車両の台数である交通密度K(台/km)と時間当たりの車両の通過台数である交通量Q(台/hour)との関係の一例を示す。また、図3Bに、交通密度K(台/km)と車両の速度V(m/sec)との関係の一例を示す。
 図3Aに示されるように、交通密度Kが大きくなるに従って交通量Qは多くなるが、交通密度Kがある値に達すると、交通量Qは減少する傾向を示す。さらに交通密度Kが上昇すると、交通量Qが0すなわち、図3Bに示すように、道路を移動する車両の速度が0となる。交通量Qが、上昇から減少に転じる値を相転移交通量Qといい、相転移交通量Qとなる交通密度Kを臨界密度Kといい、交通密度Kが上昇し、交通量が0となる交通密度Kを限界密度Kという。
 そして、相転移交通量Qに達した後の交通量Qと交通密度Kとの関係は、例えば、次の(1)式(Q-K曲線)に示される近似式で表わされる。(1)式において、a、b、及びcは、定数である。
Figure JPOXMLDOC01-appb-M000001
 (1)式は、リンク42で模擬されている道路の幅、車線数、及び制限速度等に基づいて、予めリンク42毎に決定されている。
 また、図3Bに示される車両の速度Vは、次の(2)式で示すように、交通量Qを交通密度Kで除算することで求められる。
Figure JPOXMLDOC01-appb-M000002
 すなわち、図3Bでは、交通量Qが図3Aに示される相転移交通量Qに達するまでは、車両の速度が一定(本実施形態では、予め定められた制限速度V)で移動していることを示している。
 一方、交通量が相転移交通量Qに達した後は、車両の速度Vは、次の(3)式で表わされる。
Figure JPOXMLDOC01-appb-M000003
 ここで、従来の交通シミュレーションについて説明する。従来の交通シミュレーションでは、マクロ的手法及びミクロ的手法と呼ばれる交通シミュレーションが行われていた。
 マクロ的手法と呼ばれる交通シミュレーションでは、道路網モデル40に流入する車両モデルの交通量Qと相転移交通量Qとから車両モデルがリンク42を通過するのに要する時間を算出する。すなわち、リンク42内の車両モデルの密度である交通密度は一様であるとして演算するため、単純な演算となり、道路網モデル40を広範囲な領域を対象としても交通シミュレーションに要する時間が短くて済む。また、マクロ的手法では、個々の車両モデル毎に演算を行わないため、道路網モデル40に流入する車両モデルの数を増加させても、交通シミュレーションに要する時間が短くて済む。
 しかし、マクロ的手法では、リンク42内の交通密度が一様であるとして交通シミュレーションを行うため、リンク42内における後方の交通密度の増減に伴い、リンク42内における前方の交通密度が増減し、後方の車両モデルの影響により前方の車両モデルの速度が増減するため、現実の一般的な車両の交通とは矛盾する、すなわち、交通シミュレーションの結果が現実との乖離が大きくなる場合がある。
 一方、従来の交通シミュレーションにおけるミクロ的手法と呼ばれる交通シミュレーションでは、道路網モデル40を移動する車両モデルの挙動を、各車両モデルが位置する状況(前方車両モデルの速度等)に従いシミュレーションする。このため、ミクロ的手法の交通シミュレーションの結果は、現実の一般的な車両の交通とは矛盾せず、マクロ的手法による交通シミュレーションの結果と比較して、現実との乖離が小さい。
 しかし、ミクロ的手法では、各車両モデル毎に交通シミュレーションを行うため、マクロ的手法に比較して、演算量が多く、特に、道路網モデル40を広範囲な領域を対象とした場合や、シミュレーションの対象となる車両モデルを増加させた場合には、マクロ的手法に比較して、演算時間が増加する。
 そこで、本実施形態に係る交通シミュレーションでは、現実との乖離を小さくし、かつシミュレーションに要する時間を短くするために、道路網モデル40のリンク42からノード44を介して異なるリンク42へ進入する車両モデルの該異なるリンク42へ進入した後の速度を、該車両モデルが該異なるリンク42に進入した後の該異なるリンク42における車両モデルの密度に基づいて算出する。
 次に、図4A,図4Bおよび図5を参照して、本実施形態に係る交通シミュレーション装置10の作用を説明する。
 図4Aおよび図4Bは、CPU12によって実行される交通シミュレーションプログラムの処理の流れを示すフローチャートであり、該交通シミュレーションプログラムはHDD18の所定領域に予め記憶されている。また、本実施形態に係る交通シミュレーションでは、予め定められた時間間隔(例えば、1秒刻みや10秒刻み等)毎に図4Aおよび図4Bに示されるフローチャートのステップ102~ステップ130を実行する。
 まず、ステップ100で、本実施形態に係る交通シミュレーションを行うための所定値の入力を、操作入力部20を介して受け付ける。
 上記所定値とは、例えば、上記時間間隔、道路網モデル40で移動させる車両モデルの数、各車両モデルの移動開始位置、各車両モデルの目的地、各車両モデルの初速、各車両モデルの加速度、及び交通シミュレーションを実行させる時間(現実の時間ではなく、交通シミュレーションにおける仮想的な時間であり、以下、「計算時間」という。)等、交通シミュレーションに要する各種情報である。該所定値の入力の受け付けが終了すると次のステップ102へ移行する。車両モデルの移動開始位置及び目的地が入力されると、各車両毎に移動開始位置から目的地までのルートを選択するルート選択処理が実行される。該ルート選択処理の詳細は後述する。
 次のステップ102では、ステップ100で入力された値に基づいて、道路網モデル40上の各車両モデルの位置を更新する。
 次のステップ104では、車両モデルが現在の道路から異なる道路(異なるリンク42、以下、「進入先リンク」という。)へ進入するための次の交差点(ノード44)まで予め定められた距離X(m)以上離れているか否かを判定し、肯定判定の場合は、ステップ106へ移行する一方、否定判定の場合は、ステップ108へ移行する。
 ステップ106では、車両モデルに対してルート選択処理を実行することによって、車両モデルの移動ルートを更新する。これにより、この時点における最適な移動ルートに更新される。
 一方、ステップ108では、車両モデルが進入先リンクへ進入するための、移動ルートによって予め定められたノード44に到達したか否かを判定し、肯定判定の場合は、ステップ110へ移行する一方、否定判定の場合は、ステップ128へ移行する。
 以下の説明において、異なるリンク42へ進入する車両モデルを進入車両モデルという。また、進入先リンクへ進入する前に進入車両モデルが位置していたリンク42を進入元リンクという。
 ステップ110では、進入車両モデルが到達したノード44に信号機モデルが設置されているか否かを判定し、肯定判定の場合は、ステップ112へ移行し、否定判定の場合は、ステップ114へ移行する。
 ステップ112では、信号機モデルが青色を示しているか否かを判定し、肯定判定の場合は、ステップ114へ移行する一方、否定判定の場合は、信号機モデルが青色を示すまで待ち状態となる。
 ステップ114では、ノード44で接続されている進入先リンクへ進入車両モデルが進入可能か否かを判定し、肯定判定の場合は、ステップ116へ移行する一方、否定判定の場合は、ステップ112へ戻る。ステップ114で否定判定となる場合は、進入先リンクの後端にまで車両モデルが位置し、進入車両モデルが、ノード44を介して進入先リンクへ進入できない場合である。
 ステップ116では、進入車両モデルが、ノード44を介して進入先リンクへ進入するために右折する必要があるか否かを判定し、肯定判定の場合は、ステップ118へ移行して後述する右折処理を実行する一方、否定判定の場合は、ステップ120へ移行する。
 ステップ120では、進入車両モデルが、進入先リンクに進入する以前に位置していた進入元リンクにおける交通密度及び車両の速度を算出する。
 次のステップ122では、進入元リンクの車両モデルの速度をステップ120で算出した速度に応じて設定する。
 図5Aに、進入元リンクから進入車両モデルが移動する前後の、進入元リンクに位置する車両モデル50i~50mの速度の変化を示す。
 進入元リンクは、進入車両モデル50Xが移動することによって、交通密度が変化(減少)する。そして、進入車両モデルが移動した後の交通密度から、車両モデル50i~50mの速度の更新に用いる速度を算出する。
 具体的には、上述した(2)式又は(3)式から、進入車両モデル50Xが移動した後の交通密度に応じた速度V’を算出する。そして、図5Aに示す例では、車両モデル50k~50mの速度Vk~Vmは、速度V’よりも遅い(進入車両モデル50Xの進入元リンクからの移動は、進入元リンクにおける車両モデルの密度の低下、すなわち速度上昇に作用する。)ため、車両モデル50K~50mの速度を速度V’に更新して設定する。一方、車両モデル50i,50jの速度Vi,Vjは速度V’よりも速いため、速度は更新されない。
 このように、進入元リンクにおける車両モデルの速度を、車両モデルの密度の増減に応じて算出するので、従来のシミュレーション(特にミクロ的手法)と比較して、進入元リンクにおける車両モデルの速度を算出するのに要する時間が短くなる。
 次のステップ124では、進入車両モデルが進入した後の進入先リンクの交通密度及び車両モデルの速度V”を算出する。
 次のステップ126では、進入先リンクに進入した後の進入車両モデルの速度をステップ124で算出した速度に応じて設定する。
 図5Bに、進入先リンクに進入車両モデル50Yが進入した後の進入先リンクに位置する車両モデル50i~50mの速度の変化を示す。
 上記ステップ124でも、上述した(2)式又は(3)式から、進入車両モデル50Yが移動した後の交通密度に応じた速度V”を算出する。そして、進入先リンクに進入した進入車両モデル50Yの速度を速度V”に設定する。一方、交通密度の変化は、後端に位置することとなる進入車両モデル50Yの影響であるため、進入車両モデル50Yよりも進行方向前方に位置している車両モデル50i~50mの速度は、変化させない。
 次のステップ128では、ステップ100で受け付けた時間間隔のうち、残りの時間における車両モデルの移動量を算出する。
 次のステップ130では、道路網モデル40上の全ての車両モデルの移動が完了したか否かを判定し、肯定判定の場合は、ステップ132へ移行する一方、否定判定の場合は、ステップ102へ戻る。
 ステップ132では、ステップ100で受け付けた計算時間が終了したか否かを判定し、肯定判定の場合は、本プログラムを終了する一方、否定判定の場合は、ステップ102へ戻る。
 このように、本実施形態に係る交通シミュレーション装置10は、進入先リンクへ進入する進入車両モデルの速度を、個々の車両モデルの速度から算出せずに、進入先リンクにおける車両モデルの密度に基づいて算出するので、従来のシミュレーション(特にミクロ的手法)と比較して、進入車両モデルの速度を算出するのに要する時間が短くなる。さらに、進入車両モデルのみに上記算出した速度を設定し、進入先リンクに位置する他の車両モデルの速度を変更しないため、従来のシミュレーション(特にマクロ的手法)と比較して、現実とシミュレーションとの乖離を小さくできる。また、個々の車両モデルの挙動の追跡も可能となり、例えば、車両モデル毎に移動開始位置から目的地に達するまでに要する時間を測定できる。
 次に、図6,7を参照して、ルート選択処理について説明する。
 図6は、ルート選択処理を行う場合に、CPU12によって実行されるルート選択プログラムの処理の流れを示すフローチャートであり、該ルート選択プログラムはHDD18の所定領域に予め記憶されている。
 まず、ステップ200では、車両モデルの移動ルートを、交通シミュレーションプログラムのステップ100で入力された車両モデルの移動開始位置及び目的地から、各車両モデル毎に複数(図7の例では、3つ)抽出する。抽出する移動ルートは、例えば、車両モデルの移動開始位置から目的地までの移動距離が最短のルートから長くなる順に複数選択する。
 次のステップ202では、ステップ200で抽出した移動ルートから、移動ルート毎に移動コストを算出する。移動コストとは、抽出した移動ルートによって、車両モデルが目的地に達するまでに要する時間、速度(平均速度、最高速度)等である。
 図7(A)に移動ルート毎の移動コストを示す。図7(A)の例では、移動コストとして、各移動ルートにおける車両モデルの平均速度を用いており、移動ルート1で移動した場合の車両モデルの平均速度を速度Vとし、移動ルート2で移動した場合の車両モデルの平均速度を速度Vとし、移動ルート3で移動した場合の車両モデルの平均速度を速度Vとする。各速度は、速度V>速度V>速度Vの関係を有する。
 次のステップ204では、ステップ202で算出した移動ルート毎の移動コストを規格化する。図7(B)の例では、移動ルート毎の移動コストを各移動ルートにおける車両モデルの平均速度の総和で規格化している。
 そして、規格化した移動コストの大きさに応じて、各移動ルートの移動コストを所定数値範囲内で区分け(例えば、比例配分)する。例えば、上記所定数値範囲を0~1とし、移動ルート1の規格化した移動コストを0~5.5、規格化した移動ルート2の移動コストを5.6~8.0、規格化した移動ルート3の移動コストを8.1~10.0に区分けする。
 次のステップ206では、乱数を発生させる。本実施形態では、発生させる乱数を、上記数値範囲内の値とする。
 次のステップ208では、ステップ206で発生させた乱数に対応した移動コストを有する移動ルートを、車両モデルの移動ルートとして決定する。
 図7(C)の例では、発生させた乱数の値が7.5のため、移動ルートとして、移動ルート2が選択される。そして、移動ルートを決定した後に、本プログラムを終了し、各車両モデル毎に移動ルートを設定する。
 次に、図8を参照して、右折処理について説明する。
 図8は、右折処理を行う場合に、CPU12によって実行される右折可否決定プログラムの処理の流れを示すフローチャートであり、該ルート選択処理プログラムはHDD18の所定領域に予め記憶されている。
 まず、ステップ300では、進入車両モデルが右折せず、直進した場合における直進先のリンク42の番号を取得する。
 次のステップ302では、進入車両モデルが右折する右折先のリンク42(図9の模式図の一例に示す進入先リンク42a)の番号を取得する。
 次のステップ304では、ステップ300で取得した直進先のリンク42の車両モデルの交通密度K及び速度Vを取得する。すなわち、進入車両モデルが位置するリンク42において対向車両となる車両モデルの交通密度K及び速度Vを取得する。
 次のステップ306では、ステップ300で取得した交通密度K及び速度Vに基づいて、進入車両の右折の可否を決定するための所定値Pを算出する。
 本実施形態では、次の(4)式に示すように、上記所定値(確率値)Pを分布D(Distribution)、速度V、間隔I(Interval)を、予め定められた関数fに入力することで算出する。
Figure JPOXMLDOC01-appb-M000004
 本実施形態に係る(4)式は、進入車両モデルに対して対向車両となる車両モデルの交通密度K及び速度Vが低いほど、所定値Pの値が大きくなる関数である。
 次のステップ308では、乱数を発生させる。
 次のステップ310では、ステップ306で算出した所定値Pとステップ308で発生させた乱数の値とを比較し、乱数の値に比較して所定値Pが大きいか否かを判定し、肯定判定の場合は、ステップ312へ移行する一方、否定判定の場合は、ステップ314へ移行する。
 ステップ312では、進入車両モデルの進入先リンク42aへの右折を許可する右折許可フラグを立て、本プログラムを終了する。すなわち、進入車両モデルに対して対向車両となる車両モデルの交通密度K及び速度Vが低いほど、進入車両モデルが右折しやすくなり(右折許可の確率が高くなり)、該対向車両となる車両モデルの交通密度K及び速度Vが高いほど、進入車両モデルが右折しにくくなる(右折許可の確率が低くなる)。交通シミュレーションでは、右折許可フラグが立てられると、進入車両モデルを進入先リンク42aへ右折させる。
 ステップ314では、進入車両モデルの進入先リンク42aへの右折を許可しないため、右折許可フラグを立てることなく、本プログラムを終了する。
 このように、進入車両モデルの右折の可否を、進入車両モデルが位置する道路において対向車両となる車両モデルの交通密度及び速度に基づいて決定するので、進入車両モデルが右折する場合の現実とシミュレーションとの乖離を小さくできる。また、乱数を用いて右折の可否を決定するので、右折の可否を決定するための処理を簡易にすることができる。
 以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更または改良を加えることができ、該変更または改良を加えた形態も本発明の技術的範囲に含まれる。
 例えば、上記実施形態では、HDD18に交通シミュレーションプログラムを記憶させていたが、本発明は、これに限定されるものではなく、交通シミュレーションプログラムを、可搬型記憶媒体26に記憶させる形態としてもよい。
 また、上記実施形態では、交通シミュレーションプログラムの処理に移動ルート選択処理及び右折処理を含めていたが、本発明は、これに限定されるものではなく、移動ルート選択処理及び右折処理の少なくとも一方を含めない形態としてもよい。
 また、上記実施形態では、交通量Qと交通密度Kとの関係を、一例として(1)式に示すように、2次の近似式で表わしたが、本発明は、これに限定されるものではなく、交通量Qと交通密度Kとの関係を、1次、又は、3次以上の多項式近似や、その他の近似式で表わしてもよい。
 また、上記実施形態では、(4)式に示される関数を、対向車両となる車両モデルの交通密度K及び速度Vが低いほど、所定値Pの値が大きくなる関数とする場合について説明したが、本発明は、これに限定されるものではなく、(4)式に示される関数を、対向車両となる車両モデルの交通密度K及び速度Vが低いほど、所定値Pの値が小さくなる関数としてもよい。この形態の場合、所定値Pと乱数の値とを比較して、所定値Pの方が小さい場合に、進入車両モデルの右折が許可される。
 また、上記実施形態では、信号機モデルを青色と赤色に変化する信号機として説明したが、本発明は、これに限定されるものではなく、信号機モデルを青色、黄色、及び赤色に変化する信号機としてもよい。この形態の場合、信号機モデルが青色から黄色に変化する際に、信号機モデルの前を移動する車両モデルの速度を変化させる処理を行うことにより、より現実との乖離が小さいシミュレーションを行うことができる。
 さらに、本実施形態では、交通シミュレーションにおける車両を三輪以上の普通自動車等の各種車両として説明したが、本発明は、これに限定されるものではなく、空港の滑走路を道路として適用し、滑走路を移動する航空機を車両として適用する形態としてもよい。これによって、交通シミュレーション装置10で、滑走路上の航空機の混雑状態を模擬することができる。この形態の場合、信号機モデルは、航空機に対する管制官の指示に該当する。
10  交通シミュレーション装置
40  道路網モデル
42  リンク
44  ノード

Claims (5)

  1.  複数の道路、及び道路と道路とを結ぶ交差点を含む道路網を模擬した道路網モデルに、車両を模擬した車両モデルを移動させる交通シミュレーション装置であって、
     前記道路網モデルの道路から交差点を介して異なる道路へ進入する前記車両モデルである進入車両モデルの有無を判定する判定手段と、
     前記判定手段によって前記異なる道路へ進入すると判定された前記進入車両モデルの該異なる道路へ進入した後の速度を、該進入車両モデルが該異なる道路に進入した後の該異なる道路における前記車両モデルの密度に基づいて算出する算出手段と、
     前記算出手段によって算出された速度を、前記異なる道路へ進入した前記進入車両モデルのみに設定する設定手段と、
    を備えた交通シミュレーション装置。
  2.  前記進入車両モデルが前記異なる道路へ進入した後の、該進入車両モデルの進入元の道路における前記車両モデルの速度を、該進入元の道路における前記車両モデルの密度に基づいて算出する進入元速度算出手段と、
     前記進入元速度算出手段によって算出された速度を、前記進入車両モデルが前記異なる道路へ進入した後の、前記進入元の道路における前記車両モデルに設定する進入元速度設定手段と、
    をさらに備えた請求項1記載の交通シミュレーション装置。
  3.  前記判定手段によって前記進入車両モデルが有ると判定された場合に、該進入車両モデルが前記異なる道路へ進入するために右折しようとする右折車両であるか否かを判定する右折判定手段と、
     前記右折判定手段によって前記進入車両モデルが右折車両であると判定された場合に、該進入車両モデルの右折の可否を、該進入車両モデルが位置する道路において対向車両となる前記車両モデルの密度及び速度に基づいて決定する決定手段と、
    をさらに備えた請求項1又は請求項2記載の交通シミュレーション装置。
  4.  乱数を発生させる乱数発生手段をさらに備え、
     前記決定手段は、前記乱数発生手段によって発生された乱数の値と前記対向車両となる前記車両モデルの密度及び速度に基づく値とを比較した結果に基づいて、前記進入車両モデルの右折を許可する請求項3記載の交通シミュレーション装置。
  5.  複数の道路、及び道路と道路とを結ぶ交差点を含む道路網を模擬した道路網モデルに、車両を模擬した車両モデルを移動させる交通シミュレーション装置で用いられる交通シミュレーションプログラムであって、
     コンピュータを、
     前記道路網モデルの道路から交差点を介して異なる道路へ進入する前記車両モデルである進入車両モデルの有無を判定する判定手段と、
     前記判定手段によって前記異なる道路へ進入すると判定された前記進入車両モデルの該異なる道路へ進入した後の速度を、該進入車両モデルが該異なる道路に進入した後の該異なる道路における前記車両モデルの密度に基づいて算出する算出手段と、
     前記算出手段によって算出された速度を、前記異なる道路へ進入した前記進入車両モデルのみに設定する設定手段と、
    して機能させるための交通シミュレーションプログラム。
PCT/JP2011/060383 2010-05-12 2011-04-28 交通シミュレーション装置、及び交通シミュレーションプログラム WO2011142271A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11780528.3A EP2571002B1 (en) 2010-05-12 2011-04-28 Traffic simulation device, and traffic simulation program
US13/643,242 US9524640B2 (en) 2010-05-12 2011-04-28 Traffic simulation system and traffic simulation program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010110147A JP5455777B2 (ja) 2010-05-12 2010-05-12 交通シミュレーション装置、及び交通シミュレーションプログラム
JP2010-110147 2010-05-12

Publications (1)

Publication Number Publication Date
WO2011142271A1 true WO2011142271A1 (ja) 2011-11-17

Family

ID=44914327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060383 WO2011142271A1 (ja) 2010-05-12 2011-04-28 交通シミュレーション装置、及び交通シミュレーションプログラム

Country Status (4)

Country Link
US (1) US9524640B2 (ja)
EP (1) EP2571002B1 (ja)
JP (1) JP5455777B2 (ja)
WO (1) WO2011142271A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715715B1 (ja) * 2014-01-07 2015-05-13 株式会社Screenホールディングス 避難経路提供システム、避難経路提供方法、及び避難経路提供プログラム
WO2015079787A1 (ja) * 2013-11-28 2015-06-04 大日本スクリーン製造株式会社 避難経路提供システム、避難経路提供方法、および避難経路提供プログラム
JP2015127693A (ja) * 2013-11-28 2015-07-09 株式会社Screenホールディングス 避難経路提供システム、避難経路提供方法、および避難経路提供プログラム
CN113299101A (zh) * 2021-06-01 2021-08-24 湖北杰纳动力科技有限公司 一种智慧沙盘交通展示系统及控制方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896715B2 (ja) * 2011-12-14 2016-03-30 三菱重工業株式会社 交通流シミュレータ及び移動経路計算方法ならびにそのプログラム
JP5910247B2 (ja) * 2012-03-29 2016-04-27 富士通株式会社 交通シミュレーション方法、交通シミュレーション装置及び交通シミュレーションプログラム
EP2994903B1 (en) * 2013-10-01 2019-04-03 NEC Corporation Method and computer program product for accurate motorway speed control
CN104866668B (zh) * 2015-05-22 2018-12-14 浙江大学 一种基于动态切换的水电工程交通运输系统仿真方法
CN106781470B (zh) * 2016-12-12 2022-01-28 百度在线网络技术(北京)有限公司 城市道路的运行速度的处理方法及装置
CN107180146B (zh) * 2017-06-28 2020-07-14 崔曼 一种基于新型交通仿真模型的无网格交通仿真方法
CN110245423B (zh) * 2019-06-14 2023-01-31 重庆大学 一种高速公路收费站间流量关系分析方法
US12002361B2 (en) * 2019-07-03 2024-06-04 Cavh Llc Localized artificial intelligence for intelligent road infrastructure
CN115587460B (zh) * 2022-11-24 2023-03-21 河北纬坤电子科技有限公司 道路交通情况数字仿真方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249586A (ja) * 1995-03-09 1996-09-27 Toshiba Corp 交通流予測装置
JPH10222791A (ja) * 1997-02-10 1998-08-21 Masahiko Katakura 交通流シミュレータ
JPH10256981A (ja) * 1997-03-06 1998-09-25 Y R P Ido Tsushin Kiban Gijutsu Kenkyusho:Kk 移動体の移動特性シミュレーション方法
JPH11144182A (ja) * 1997-11-07 1999-05-28 Toyota Central Res & Dev Lab Inc 交通流シミュレーションシステム
JP2008046955A (ja) * 2006-08-18 2008-02-28 Xanavi Informatics Corp 予測交通情報生成方法、予測交通情報生成装置および交通情報表示端末

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2816919B2 (ja) * 1992-11-05 1998-10-27 松下電器産業株式会社 空間平均速度および交通量推定方法、地点交通信号制御方法、交通量推定・交通信号制御機制御装置
JP2875520B2 (ja) 1997-06-03 1999-03-31 雅夫 桑原 交通流シミュレータ
DE19944075C2 (de) * 1999-09-14 2002-01-31 Daimler Chrysler Ag Verfahren zur Verkehrszustandsüberwachung für ein Verkehrsnetz mit effektiven Engstellen
DE10108611A1 (de) * 2001-02-22 2002-09-05 Daimler Chrysler Ag Verfahren zur Simulation und Prognose der Bewegung von Einzelfahrzeugen auf einem Verkehrswegenetz
DE10111261A1 (de) 2001-03-09 2002-09-12 Daimler Chrysler Ag Verfahren zur stufenlosen Anpassung einer Verkehrsdichte bei einer mikroskopischen Verkehrssimulation für ein Verkehrswegenetz
JP4074084B2 (ja) 2001-11-22 2008-04-09 ▲隆▼一 北村 交通流シミュレーション装置
US20040088392A1 (en) * 2002-03-18 2004-05-06 The Regents Of The University Of California Population mobility generator and simulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249586A (ja) * 1995-03-09 1996-09-27 Toshiba Corp 交通流予測装置
JPH10222791A (ja) * 1997-02-10 1998-08-21 Masahiko Katakura 交通流シミュレータ
JPH10256981A (ja) * 1997-03-06 1998-09-25 Y R P Ido Tsushin Kiban Gijutsu Kenkyusho:Kk 移動体の移動特性シミュレーション方法
JPH11144182A (ja) * 1997-11-07 1999-05-28 Toyota Central Res & Dev Lab Inc 交通流シミュレーションシステム
JP2008046955A (ja) * 2006-08-18 2008-02-28 Xanavi Informatics Corp 予測交通情報生成方法、予測交通情報生成装置および交通情報表示端末

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079787A1 (ja) * 2013-11-28 2015-06-04 大日本スクリーン製造株式会社 避難経路提供システム、避難経路提供方法、および避難経路提供プログラム
JP2015127693A (ja) * 2013-11-28 2015-07-09 株式会社Screenホールディングス 避難経路提供システム、避難経路提供方法、および避難経路提供プログラム
JP5715715B1 (ja) * 2014-01-07 2015-05-13 株式会社Screenホールディングス 避難経路提供システム、避難経路提供方法、及び避難経路提供プログラム
JP2015129658A (ja) * 2014-01-07 2015-07-16 株式会社Screenホールディングス 避難経路提供システム、避難経路提供方法、及び避難経路提供プログラム
CN113299101A (zh) * 2021-06-01 2021-08-24 湖北杰纳动力科技有限公司 一种智慧沙盘交通展示系统及控制方法

Also Published As

Publication number Publication date
US9524640B2 (en) 2016-12-20
JP2011238101A (ja) 2011-11-24
EP2571002B1 (en) 2015-02-25
US20130041642A1 (en) 2013-02-14
JP5455777B2 (ja) 2014-03-26
EP2571002A1 (en) 2013-03-20
EP2571002A4 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5455777B2 (ja) 交通シミュレーション装置、及び交通シミュレーションプログラム
Essa et al. Simulated traffic conflicts: do they accurately represent field-measured conflicts?
JP4490991B2 (ja) 交通流シミュレーション方法
JP4783414B2 (ja) 交通状況予測システム
Park et al. The impact of automated vehicles on traffic flow and road capacity on urban road networks
JP4361389B2 (ja) 道路交通シミュレーション装置
CN110118661A (zh) 驾驶仿真场景的处理方法、装置及存储介质
CN114077541A (zh) 验证用于自动驾驶车辆的自动控制软件的方法和系统
JP2009019920A (ja) 経路探索装置、交通シミュレーション装置、歩行者挙動予測装置、及びプログラム
Ma et al. Two‐dimensional simulation of turning behavior in potential conflict area of mixed‐flow intersections
Tan et al. Development of microscopic traffic simulation model for safety assessment at signalized intersections
Dey et al. Left-turn phasing selection considering vehicle to vehicle and vehicle to pedestrian conflicts
Elefteriadou Two-lane highways
JP4028413B2 (ja) 交通流シミュレーションシステム及びプログラム
Desta et al. Impacts of autonomous vehicle driving logics on heterogenous traffic and evaluating transport interventions with microsimulation experiments
JP4041028B2 (ja) 交通流ミクロシミュレーションにおける車線変更判定方法およびそれを適用した交通流ミクロシミュレーションシステム
Goss et al. Integration of formal specification and traffic simulation for scenario-based validation
CN113778102A (zh) Avp全局路径规划系统、方法、车辆及存储介质
Patel Estimating the Effect of Connected and Autonomous Vehicles (CAVs) on Capacity and Level of Service at Freeway Merge Segments
US20230334982A1 (en) Simulation method and computer readable recording medium storing simulation program
Razi Autonomous Vehicle Testing Using a Model-Based Approach
Alhajyaseen et al. A Methodology for Modeling the Distribution of Turning Vehicle Paths at Signalized Intersections
Pilko et al. Vehicle Speed Impact on the Design of Efficient Urban Single-Lane Roundabouts
Pettersson Modelling and Simulation of Heterogeneous Traffic: An investigation of autonomous vehicles impact on heterogeneous traffic in terms of traffic flow and safety
Corrales et al. Evaluation of the microscopic behavior of motorcycle taxis by adapting the SSAM model at an urban intersection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780528

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13643242

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011780528

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE