WO2011140962A1 - 电子器物的噪声抑制结构及其方法 - Google Patents

电子器物的噪声抑制结构及其方法 Download PDF

Info

Publication number
WO2011140962A1
WO2011140962A1 PCT/CN2011/073827 CN2011073827W WO2011140962A1 WO 2011140962 A1 WO2011140962 A1 WO 2011140962A1 CN 2011073827 W CN2011073827 W CN 2011073827W WO 2011140962 A1 WO2011140962 A1 WO 2011140962A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
electronic
electronic device
noise suppression
suppressing
Prior art date
Application number
PCT/CN2011/073827
Other languages
English (en)
French (fr)
Inventor
陈惠敏
Original Assignee
Chen Huimin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Huimin filed Critical Chen Huimin
Priority to JP2013509439A priority Critical patent/JP2013531877A/ja
Priority to US13/634,049 priority patent/US20130002104A1/en
Publication of WO2011140962A1 publication Critical patent/WO2011140962A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0066Constructional details of transient suppressor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Definitions

  • the present invention relates to a noise suppressing structure of an electronic device and a method of using the same to achieve noise suppression.
  • audio Component audio Component
  • device such as playback devices, amplifiers, speakers, microphones, earphones, mobile communication devices, sound cards, audio equipment, electronic video equipment, telecommunications transmission lines
  • the electronic signals transmitted are extremely vulnerable to the external environment (eg ambient air) high frequency (RF), static (static
  • RF high frequency
  • static static
  • the effects of electricity, radiation, or noise generated by transmission wires, electronic components, or lines in the body produce noise, resulting in a significant degradation or distortion in the quality of the resulting signal.
  • the electrical signals of the general audio equipment are processed by the internal circuit of the audio host and transmitted to the external speakers by means of the transmission wires. Since the internal circuits and the transmission wires have impedance effects, capacitance effects and inductance effects, these effects are common. Heat will be generated in the transmission circuit. If a good heat dissipation or a mechanism for reducing heat accumulation cannot be provided at this time, the heat generation phenomenon will cause attenuation of the electronic signal transmission in the circuit, thereby causing distortion and noise.
  • the technical problem to be solved by the present invention is to provide a noise suppression method for an electronic device, which utilizes a noise suppression structure which is simple in manufacture and low in cost, and is applied to an electronic device, which can reduce or suppress noise of the circuit and improve the electronic device.
  • the quality of the electronic signal transmitted by its circuit is to provide a noise suppression method for an electronic device, which utilizes a noise suppression structure which is simple in manufacture and low in cost, and is applied to an electronic device, which can reduce or suppress noise of the circuit and improve the electronic device.
  • the noise suppression method of the electronic device of the present invention is mainly for covering a periphery of an electronic object, and covering a zirconia ceramic body, the zirconia ceramic system is composed of zirconia and at least one other oxide. After uniformly mixing, the formed ceramic coating body is fired.
  • the other oxide is composed of calcium oxide, magnesium oxide, antimony trioxide or a mixture thereof.
  • the composition of the noise suppression structure of the electronic device is: zirconia 80 to 99 wt%, and the other oxides 1 to 20
  • the wt% may be magnesium oxide, calcium oxide or antimony trioxide, or may be composed of a mixture of at least two of magnesium oxide, calcium oxide and antimony trioxide.
  • the ceramic covering body may be a fitting member, a covering member or a covering member
  • the structural form may be a sheet-shaped body, a columnar body, a rod-shaped body, a needle-shaped body, a powder body, a hollow cylindrical shape or a solid cylindrical shape.
  • the circuit noise suppression method of the present invention is achieved by masking a circuit noise suppression object on a circuit periphery or a surface, wherein the circuit noise suppression object is manufactured by the following steps, providing:
  • a zirconia material (which may be a powder) in a weight percentage of 80 to 99%;
  • An oxide type stabilizer material (which may be a powder), in a weight percentage of 1 to 20%;
  • the firing step sequentially includes a preheating step, an isothermal step, and a cooling step, wherein the preheating step heats the process temperature from room temperature to about 1170 ° C to 1850 ° C within 8 to 14 hours; the isothermal step will The process temperature is maintained at a fixed temperature between 1170 ° C and 1850 ° C and continues to be isothermal for about 1-4 hours; the temperature reduction step is reduced from 1170 ° C to 1850 ° C to room temperature within 11-15 hours. . After firing at a high temperature, the formed zirconia ceramic body is crushed into a powder. It is also possible to press the mixed material prior to firing at a high temperature to form a set of parts or covers.
  • the noise suppression structure and method of the electronic device of the present invention have the following beneficial effects:
  • the noise suppression structure of the electronic object can be easily disposed on the periphery of the electronic object Or a surface to reduce or suppress the noise factor passing through the vicinity of the electronic device.
  • the noise suppressing structure of the electronic device can generate far-infrared rays and resonance phenomena when the electronic device is turned on, thereby increasing the efficiency of heat conduction, thereby promoting the efficiency of heat dissipation of electronic components and circuits in the electronic device.
  • the noise in the signal transmission process caused by the accumulation of heat in the circuit of the electronic device is reduced or suppressed, so that the quality of the electronic signal transmitted by the circuit is improved.
  • the noise suppression structure of the electronic device is simple to manufacture and low in cost, and therefore has a wide application range and can be widely implemented in general electronic products.
  • FIG. 1 is a schematic view showing the application of a noise suppressing structure of an electronic device of the present invention to a transmission wire;
  • FIG. 2 is a schematic diagram of application of a noise suppression structure of an electronic device of the present invention to a circuit board;
  • 3A is a waveform diagram of test results of a state of a noise suppression structure of an electronic device of the present invention in a test system for digital electronic signals;
  • FIG. 3B is a waveform diagram of test results of the state of the noise suppression structure of the electronic device of the present invention using the test system of FIG. 3A;
  • FIG. 3B is a waveform diagram of test results of the state of the noise suppression structure of the electronic device of the present invention using the test system of FIG. 3A;
  • 4A is a power-time-frequency common analysis diagram of a test system simulating an electronic signal in a state in which a noise suppression structure of an electronic object of the present invention is not used;
  • 4B is a power-time-frequency common analysis diagram of a test system simulating an electronic signal in a state in which a noise suppression structure of an electronic object of the present invention has been used.
  • the method for suppressing noise of the electronic device of the present invention is mainly formed by covering a periphery of an electronic device with a zirconia ceramic body, the zirconia ceramic system is combined with other oxides in proportion to zirconia, and then fired to form a ceramic body.
  • Forming a change in its physical properties (such as magnetic or frequency) when the user places the noise suppression structure on the periphery or surface of the circuit, it can reduce or suppress the noise passing through the vicinity of the electronic device, and
  • the noise suppression structure can generate far infrared rays while turning on the circuit of the electronic object, thereby achieving the effect of promoting heat dissipation to reduce noise, thereby further improving the quality of the electronic signal transmitted by the circuit of the electronic device. the goal of.
  • the structure of the noise suppression of the electronic device of the present invention and the method of using the same can be applied to a general circuit (including a circuit board and a circuit related component), a component or device for image signal processing or transmission, and an audio component (audio).
  • Component Component or device, such as a playback device, an amplifying device, a speaker, a microphone, a headset, a mobile communication device, a sound card, an audio device, an electronic video device, a circuit for transmitting a telecommunication wire, and the like.
  • the audio component is taken as an example for detailed description. Since the processing/transmission of the audio electronic signal and the processing/transmission of the image signal have a common point, the electronic signal noise suppressor suitable for the audio field can also be applied to the image system, so This will not be further elaborated.
  • the noise suppression structure is mainly a zirconia ceramic body, which can be zirconia (ZrO) 2 Mainly, and then contain antimony trioxide (Y 2 O 3 ), calcium oxide (Ca O Or other oxides such as magnesium oxide (MgO) or a mixture thereof, etc., as one of its phase stabilizer components.
  • ZrO zirconia
  • Y 2 O 3 antimony trioxide
  • Ca O Or other oxides such as magnesium oxide (MgO) or a mixture thereof, etc.
  • the noise suppression structure of the present invention may contain other components in addition to the above-mentioned components.
  • the various components mentioned above are listed, it does not show that the characteristics of each component are the same or similar, and each component actually has the individual characteristic.
  • the weight percentage (wt%) of the possible components of the zirconia ceramic body in the noise suppressing structure of the electronic device of the present invention is as follows:
  • Example 1 zirconia 80-99, magnesium oxide 1-20;
  • Example 2 zirconia 80 ⁇ 99, calcium oxide 1 ⁇ 20;
  • Example 3 zirconia 80 ⁇ 99, dioxane 1 ⁇ 20;
  • Example 4 zirconia 80-99, magnesium oxide 1-19, calcium oxide 1-19;
  • Example 5 zirconia 80-99, magnesium oxide 1-19, antimony trioxide 1-19;
  • Example 6 zirconia 80-99, calcium magnesium oxide 1-19, antimony trioxide 1-19;
  • Example 7 zirconia 80-99, magnesium oxide 1-18, calcium oxide 1-18, antimony trioxide 1-18.
  • the manufacturing process of the noise suppression structure of the electronic device is as follows:
  • the mixed material can be pre-pressed into a desired shape (for example, a sheet).
  • a mold or a processing tool can be selected, and the uniformly mixed material is pressed into a molding material of various shapes and formed according to the application.
  • the shape may be annular, sheet-like (flaky, curved, flat, curved), rod-shaped, needle-like, hollow cylindrical, solid cylindrical, granular or other geometric shapes.
  • the molded body is sent to a high-temperature furnace (for example, a tunnel type electric furnace) for high-temperature firing to ceramization, whereby a noise suppressing structure for the electronic object can be produced.
  • the high temperature firing step may be followed by a heating stage and an isothermal step (steady Temperature stage) and cooling step (cooling Stage).
  • the process temperature in the high temperature furnace is heated from room temperature to a high temperature between 1170 ° C and 1850 ° C in 8 to 14 hours; and then an isothermal step is performed, the high temperature is then performed.
  • the process temperature in the oven is maintained at a fixed temperature between 1170 ° C and 1850 ° C for about 1 to 4 hours.
  • the temperature is lowered into steps, that is, the temperature is from the above process temperature of 1170 by using about 11 to 15 hours.
  • the high temperature between ° C and 1850 ° C is gradually lowered to room temperature, so that the firing of the noise suppressing structure of the electronic article of the present invention is completed.
  • the process has a high temperature of 1170 ° C to 1850 ° C, which is a preferred firing temperature, and the actual operation is not limited to the temperature, as long as the zirconia and other mixed components can be obtained (such as Other oxides)
  • the temperature range at which sufficient ceramization is produced is the high temperature at which the process can be practiced in the present invention.
  • the above-mentioned high-temperature fired noise suppression structure can be directly placed or placed on the periphery of an electronic device, circuit or circuit, and can be ground into a powder when needed, and coated on an electron that needs to suppress electronic signal noise.
  • these high-temperature fired powders can also be adhered to the surface of the electronic device or circuit that needs to suppress the noise of the electronic signal by means of glue or tape, such as the circuit surface on the circuit board or the coupling of the wire or the end of the wire.
  • glue or tape such as the circuit surface on the circuit board or the coupling of the wire or the end of the wire.
  • this embodiment illustrates the practical application of the noise suppression structure of the electronic device of the present invention.
  • the noise suppression structure 10 of the electronic device of the present invention shown in the figure is provided in the form of a nesting member or a covering member (for example, a loop-shaped or flexible sheet) that can be fitted around the periphery of the general transmission wire 20.
  • the ring is press-fitted into an end portion or an intermediate portion of the transmission wire 20, and both ends of the transmission wire 20 can be connected to an electric host (such as an audio host) and an external amplifier or speaker.
  • the noise suppression structure 10 of the ceramized electronic object can generate resonance or heat dissipation effect when the electronic device turns on the circuit, so when the electronic signal is transmitted on the transmission wire 20, Noise near the transmission wire 20 will produce an effective reduction or suppression.
  • the noise suppression structure 10 of the electronic device is mounted on the transmission wire 20 connected to the audio host and the amplifier
  • the electronic signal of the small signal range can be filtered out by the noise suppression structure 10 of the electronic object. noise.
  • the noise suppression structure 10 of the electronic device is mounted on the transmission wire 20 connecting the amplifier and the speaker
  • the electronic signal processed by the amplifier can also filter out the noise of the electronic signal waveform by the noise suppression structure 10 of the electronic object. Part, then enter this electronic signal into the speaker.
  • FIG. 2 is a schematic view showing the application of the noise suppression structure 10 of the electronic device of the present invention to the circuit board 30.
  • the noise suppressing structure 10A which is pressed into a strip or sheet of electronic objects, is fixed or attached to the connector 31 of the input end of the circuit board 30 and the connector 32 of the output end, thereby filtering or suppressing.
  • the form of the noise suppression structure 10 may be separately formed into a plate shape, a strip shape, a sheet shape or a powder shape, and each applied to an integrated circuit on the circuit board 30, Metal winding, layout circuit and other surfaces.
  • the inventor of the present invention utilizes the American Audio. Spectrum Analyzer manufactured by Precision (Audio Precision System) The noise intensity comparison test before and after use of the present invention was performed.
  • 3A and 3B respectively show a comparison of test results of a noise suppression structure of an electronic object of the present invention with respect to a digital electronic signal, wherein FIG. 3A is for the case where the circuit noise suppression object is not used, and FIG. 3B is for the noise suppression of the electronic object using the present invention.
  • a digital electronic signal is first transmitted by the above computer, by the first transmission wire and the universal serial bus (Universal) Serial Bus, USB) (not shown), transmitted to the MP3 player, generated by the MP3 player to generate an analog electronic signal, amplified by the amplifier and transmitted back to the spectrum analyzer by the second transmission wire for frequency domain of the signal Analyze, analyze the data and send it back to the computer.
  • USB Universal Serial Bus
  • FIG. 3A the noise suppression structure without using an electronic object
  • FIG. 3B incorporating the noise suppression structure of the electronic object on the universal serial bus
  • Noise intensity (dBV) of the object noise suppression object is not used Noise immunity (dBV) using a circuit noise suppression object 2K -72 -88 5K -79 -92 13K -90 -96 15K -82 -98 18K -102 -108
  • the noise intensity is much lower than the noise intensity when not used.
  • FIG. 4A and FIG. 4B respectively show the noise suppression structure of the electronic device of the present invention.
  • the computer controlled acoustic (frequency) tester using the Italian-made IEA EA-Z) Electro-Acoustic Integrated
  • the signal generator of the system outputs an analog electronic signal, and the analog signal is transmitted to the circuit (ie, the position where the noise suppression structure of the electronic object of the present invention is installed) via the first transmission wire, and then transmitted back through the second transmission wire.
  • the audio (frequency) tester performs the energy-time-frequency common analysis, the analysis data is transmitted back to the computer.
  • FIG. 4A shows a case where the noise suppressing structure of the electronic object of the present invention is not used, and when the frequency band is in the range of 500 to 7000 Hz, the energy is -41.8 dBV
  • FIG. 4B is the noise of the electronic object in which the present invention has been used.
  • the frequency band range is amplified to 300 to 8000 Hz
  • the energy is only -43.8 dBV, which shows that the dynamic energy change can be reduced, the energy consumption can be reduced, and the audio signal can be improved after using the noise suppression structure of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Structure Of Receivers (AREA)

Description

电子器物的噪声抑制结构及其方法
技术领域
本发明涉及一种电子器物的噪声抑制结构以及利用该结构以达到噪音抑制的方法。
背景技术
近几年来,数字电子设备有惊人的进步,尤其是以移动电话、数码相机或笔记本计算机为代表的移动电子设备,可说是日新月异,而这类产品都要求动作信号的高频化、小型化或轻量化,但电子零件或电路基板的高密度安装,却成为这类产品最大的技术课题的一。
由于电子设备的电子零件或电路基板的高密度安装与动作信号的高频化进展,故无法完善规划出发生噪声的零件与其它零件的距离,以致需要在电子电路、电路基板或电联接组件上,贴附用以抑制该电子设备(如:微处理器、LS I 、电联接器 或液晶面板等)所产生的放射电磁噪声的噪声抑制装置。但在使用时,若从该噪声抑制装置上产生的反射波太大,则该反射波可能对电路传输的信号产生干涉,因此可能引起错误动作。
另外,在传统音频组件(audio component)或设备(device),例如播放装置、放大装置、扬声器具、麦克风、耳机、移动通讯器具、声卡、音频设备、电子影视机具、电讯传输导线中,其传输的电子信号极容易受到外部环境(例如周遭环境空气中)高频(RF)、静电(static electricity)、辐射线(radiation)或机体内传输线材、电子组件或线路产生的噪声等的影响而产生噪声,使得最后产生的信号的质量大幅降低或失真。
比较常见的是,一般音响设备的电子信号经由音响主机内部电路的处理,并借助传输线材传送至外部扬声器的过程中,由于内部电路及传输线材均具有阻抗效应、电容效应以及电感效应,这些效应会在传输电路中产生热,若此时不能提供一个良好的散热或降低积热的机制,则此产热现象将会使得电路中的电子信号传输产生衰减,进而造成失真及噪音的现象。
此外,如前述的外部环境影响及设备内部电子组件或线路所产生的积热影响,将使得从电子主机输出的电子信号,会附随出不同强度及数量的噪声,使得信号输出质量降低。上述这些缺点虽然可以通过使用具有高传导效率以及较佳遮蔽(shield)保护功能的传输线材来加以改进,但由于特殊线材的造价高昂,难以普遍推行于一般性产品,因此,仍有改进的必要。
发明内容
本发明要解决的技术问题是提供一种电子器物的噪声抑制方法,它利用一种制作简便、造价低廉的噪音抑制结构,应用于电子器物上,可以消减或抑制电路的噪声,提高该电子器物或其电路传输的电子信号的质量。
为解决上述技术问题,本发明的电子器物的噪声抑制方法,主要系在一电子器物的外围,遮覆一种氧化锆陶瓷体,该氧化锆陶瓷体系由氧化锆和至少一种其它的氧化物均匀混合后,再烧制形成的陶瓷包覆体。
所述其它的氧化物为氧化钙、氧化镁、三氧化二钇或其混合物所构成。
所述电子器物的噪声抑制结构的组成为:氧化锆80~99 wt%,而该其它的氧化物1~20 wt%,可以为氧化镁、氧化钙或三氧化二钇,也可以由氧化镁、氧化钙、三氧化二钇中的至少两种混合组成。
所述陶瓷包覆体可为套合件、被覆件或包覆件,结构型态可以为片状体、柱状体、棒状体、针状体、粉状体、中空圆柱状或实心圆柱状。
另为解决上述技术问题,本发明的电路噪声抑制方法,以一电路噪声抑制对象遮蔽于电路外围或表面而达成,其中的电路噪声抑制对象通过下列步骤制成,提供:
氧化锆材料(可为粉末),重量百分比为80~99%;
氧化物型相安定剂材料(可为粉末),重量百分比为1~20%;
将上述两种材料混合均匀后,以高温烧制步骤加以陶瓷化形成一氧化锆陶瓷体。
所述烧制步骤依序包括预热步骤、等温步骤及降温步骤,其中,预热步骤在8~14小时内,将制程温度从室温加温至大约1170℃至1850℃的间;等温步骤将制程温度维持在1170℃至1850℃的间的某一固定温度,并持续等温约1~4小时;降温步骤在11~15小时内,将制程温度由1170℃至1850℃的间降回至室温。高温烧制后,成型的氧化锆陶瓷体,加以压碎成粉末状。也可在高温烧制前,先行对混合后的材料进行压制,以形成一套合件或包覆件型体的步骤。
与现有技术相比,本发明的电子器物的噪声抑制结构及其方法具有下列有益效果:
1 、该电子器物的噪声抑制结构,可以简便地设置在电子器物的 外围 或表面,以对经过该电子器物附近的噪声因素产生消减或抑制作用。
2 、该电子器物的噪声抑制结构可在电子器物导通电路时,产生远红外线及共振现象,以增加热传导的效率,因此能够促进电子设备内部电子组件和线路等的积热的散除效率,藉以降低或抑制该等电子器物的电路因积热而造成的讯号传输过程中的噪声,从而使电路传输的电子信号质量得以提高。
3 、该电子器物的噪声抑制结构的制作简便,造价低廉,因此具有较广的应用范围,能够在一般性电子产品中普遍推行。
附图说明
下面结合附图与具体实施方式对本发明作进一步详细的说明:
图1是本发明的 电子器物的噪声抑制结构 ,应用于传输线材的应用示意图;
图2是本发明的电子器物的噪声抑制结构,应用于电路板的应用示意图;
图3A是数字电子信号的测试系统,在未使用本发明的电子器物的噪声抑制结构的状态的测试结果波形图;
图3B为图3A的测试系统,在已使用本发明的电子器物的噪声抑制结构的状态的测试结果波形图;
图4A是模拟电子信号的测试系统,在未使用本发明的电子器物的噪声抑制结构的状态的能量-时间-频率共同分析图;
图4B是模拟电子信号的测试系统,在已使用本发明的电子器物的噪声抑制结构的状态的能量-时间-频率共同分析图。
图中附图标记说明如下:
10 、10A:电子器物的噪声抑制结构
20 :传输线材
30 :电路板
31 :输入端的连接器
32 :输出端的连接器
具体实施方式
为对本发明的技术内容、特点与功效有更具体的了解,现结合图示的实施方式,详述如下:
本发明的电子器物的噪声抑制方法,主要是在一电子器物的外围遮覆一氧化锆陶瓷体所形成,该氧化锆陶瓷体系以氧化锆按比例结合其它氧化物,再烧制以形成陶瓷体,使其物理特性(例如磁性或频率)产生变化而形成,当使用者将该噪声抑制结构体设置在电路外围或表面时,即可对经过此电子器物附近的噪声产生消减或抑制作用,并且,利用该噪声抑制结构可在导通该电子器物的电路的同时,产生远红外线,进而可达到促进散热以降低噪声的效果,从而,更进一步达到提升该电子器物的电路所传输的电子信号质量的目的。
本发明的电子器物的噪声抑制的结构及其使用方法,可以适用的场合,包括一般电路(含电路板及线路相关的组件)、影像信号处理或传输的组件或设备及音频组件(audio component)或设备(device),例如播放装置、放大装置、扬声器具、麦克风、耳机、移动通讯器具、声卡、音频设备、电子影视机具、电讯传输导线的电路等的使用。以下以音频组件为例来详细说明,由于音频电子信号的处理/传输与影像信号的处理/传输具有共通点,因此适用于音频领域的电子信号噪声抑制器,也可适用于影像系统,故在此不再作进一步阐述。
本发明实施例中,该噪声抑制的结构主要系为一氧化锆陶瓷体,其可以氧化锆(ZrO 2)为主,再包含三氧化二钇(Y 2O3 )、氧化钙(Ca O )、氧化镁(MgO)等其它氧化物或其混合物等作为其相安定剂成分的一。值得注意的是,除了上述所提到的成分外,本发明的噪声抑制结构还可以包含其它成分。另外,上述的各种成分虽以列举方式,但并不表示各成分的特性相同或类似,实际上各种成分各自具有其个别的特性。根据本发明的数种实施例,本发明的电子器物的噪声抑制结构中的氧化锆陶瓷体,其中的可能成分的重量百分比(wt%)如下所示:
实施例一:氧化锆80~99,氧化镁1~20;
实施例二:氧化锆80~99,氧化钙1~20;
实施例三:氧化锆80~99,二氧化二钇1~20;
实施例四:氧化锆80~99,氧化镁1~19,氧化钙1~19;
实施例五:氧化锆80~99,氧化镁1~19,三氧化二钇1~19;
实施例六:氧化锆80~99,氧化钙镁1~19,三氧化二钇1~19;
实施例七:氧化锆80~99,氧化镁1~18,氧化钙1~18,三氧化二钇1~18。
而根据本发明以上各种可行实施例一至七,该电子器物的噪声抑制结构的制作流程如下所述:
首先,选择至少上述成分的部分或全部的材料,将其按比例予以均匀混合。接着,可将混合的材料预先压制成所需的造型(例如薄片),此步骤可以选用模具或加工机具,将混合均匀后的材料压制成各种形状成型态的成型材料,根据应用场合的需求,其形状可以为环状、片状(薄片状,带有弧面的片状、平片状)、棒状、针状、中空圆柱状、实心圆柱状、颗粒状或其它几何形体。然后,将该等成型形体送入高温炉具(例如隧道式电器炉)中进行高温烧制至陶瓷化,即可制作成本电子器物的噪声抑制结构体。
在上述实施例中,高温烧制的步骤,可依序为预热步骤(heating stage)、等温步骤(steady temperature stage)以及降温步骤(cooling stage)。其中,在预热步骤中,将该高温炉具内的制程温度,在8~14小时的内,从室温加温至1170℃~1850℃的间的高温;而后再进行等温步骤,将该高温炉具内的制程温度,在1170℃~1850℃的间的固定温度下,持续约1~4小时;最后,进入降温步骤,即利用约11~15小时的时间,将温度由上述制程温度1170℃~1850℃的间的高温缓降至室温,如此,即完成本发明电子器物的噪声抑制结构体的烧制。
在前述实施例中,该制程高温1170℃~1850℃,为一较佳烧制温度,实际操作并不限定必须以此温度来完成,只要是可以让氧化锆及等其它混合成分(如该等其它氧化物)产生充分陶瓷化的温度范围,皆为本发明所称的可实施制程高温。上述经高温烧制的噪声抑制结构体,除可直接套置或贴置于电子器物、电路或线路的外围处,在需要时还可研磨成粉末状,涂布在需要抑制电子信号噪声的电子器物或电路表面,也可借助胶水或胶带将这些高温烧制的粉末,黏附于需要抑制电子信号噪声的电子器物或电路表面,例如电路板上的电路表面或线材或线材端部的联接件的外表面上。
请参阅图1所示的实施例,该实施例说明了本发明的电子器物的噪声抑制结构的实际应用情况。在该图中显示的本发明的电子器物的噪声抑制结构10,设置成可套合在一般传输线材20外围的套合件或包覆件的形式(例如环套状或可挠性薄片),如图所示,压制成环状,分别固套于传输线材20的端部或中间段,该传输线材20的两端可以连接电器主机(如音响主机)与外接的放大器或扬声器。使用了上述噪声抑制结构10后,由于该已陶瓷化的电子器物的噪声抑制结构10,可在该电子器物导通电路时产生共振或散热效果,故在传输线材20上传送电子信号时,对该传输线材20附近的噪声将产生有效的降低或抑制作用。例如,将该电子器物的噪声抑制结构10,安装在连接音响主机与放大器的传输线材20上时,小信号范围的电子信号,即可通过该电子器物的噪声抑制结构10滤除音频电子信号的噪声。又若该电子器物的噪声抑制结构10,安装在连接放大器与扬声器的传输线材20上,则经由放大器处理过后的电子信号,亦可通过电子器物的噪声抑制结构10来滤除电子信号波形的噪声部份,然后再将此电子信号输入扬声器。
图2显示了本发明的电子器物的噪声抑制结构10应用于电路板30的应用示意图。如图所示,将压制成条状或片状的电子器物的噪声抑制结构10A,固着或贴附于电路板30输入端的连接器31及输出端的连接器32的位置,即可滤除或抑制该电路板30内电子信号的噪声。为了扩展该噪声抑制结构10的运用范畴,实施上更可将该噪声抑制结构10的形态分别设成板状、条状、片状或粉末状,且各自应用于电路板30上的集成电路、金属绕线、布局电路等表面。
为了证实本发明的电子器物的噪声抑制结构确实可以达到抑制电子器物的噪声的效果,本案发明人利用美国Audio Precision公司制造的频谱分析仪(Audio Precision System)对本发明进行了使用前后的噪声强度比较测试。图3A及3B分别显示了本发明的电子器物的噪声抑制结构对于数字电子信号的测试结果比较,其中图3A针对未使用电路噪声抑制对象的情况,图3B针对已使用本发明电子器物的噪声抑制结构的情形,首先由上述的计算机将一数字电子信号,借由第一传输线材及万用串行总线(Universal Serial Bus, USB)(图中未示),传输到MP3播放器,经过该MP3播放器的播放处理而产生模拟电子信号,再经放大器放大并由第二传输线材传输回到频谱分析仪进行信号的频域分析,分析数据再回传至计算机。比较图3A(未使用电子器物的噪声抑制结构)及图3B(将该电子器物的噪声抑制结构结合在万用串行总线上)可以得知,使用了本发明的电子器物的噪声抑制结构后,噪声强度明显降低。为了更详细比较两者的差异,以下列表1来显示比较图3A及图3B的部分测试数据。
表1
频率(HZ) 未使用电路噪声抑制对象的噪声强度(dBV) 使用电路噪声抑制对象的噪声强度(dBV)
2K -72 -88
5K -79 -92
13K -90 -96
15K -82 -98
18K -102 -108
如表1所示,当使用电子器物的噪声抑制结构时,噪声强度较未使用时的噪声强度来得低很多。
其次,图4A及图4B分别表示了本发明的电子器物的噪声抑制结构,对于模拟电子信号测试结果的比较,其用计算机控制音响(频)测试仪(采用意大利制IEA EA-Z Electro-Acoustic Integrated System)的信号产生器输出模拟电子信号,经由第一传输线材将此模拟信号传输到电路(即本发明的电子器物的噪声抑制结构所装设的位置)后,再经由第二传输线材传输回该音响(频)测试仪进行能量-时间-频率共同分析后,将分析数据回传至计算机。图4A表示未使用本发明的电子器物的噪声抑制结构的情况,当其频带范围在500~7000Hz的间时,能量为-41.8dBV,相对的,图4B为已使用本发明的电子器物的噪声抑制结构的情况,发现即使频带范围放大到300~8000Hz的间,其能量亦只有-43.8dBV,显示了使用本发明的噪声抑制结构后,确实可以降低动态能量变化,减少耗能,改善音频信号(音频模拟信号)的清晰度。
上述数据证明,使用本发明电子器物的噪声抑制结构会使电路或线路的噪声明显降低,使声音听起来更清晰。
以上所述仅为本发明的较佳实施例而已,并非用以限定本发明申请专利的范围;凡其它未脱离本发明所揭示的精神下完成的等效改变或修饰,均应包含在本发明申请专利的范围内。

Claims (18)

  1. 一种电子器物的噪声抑制结构,其特征在于:主要系在一电子器物的外围遮覆一氧化锆陶瓷体,该氧化锆陶瓷体的主要成分包括氧化锆和至少一种作为相安定剂的氧化物,通过均匀混合各成分,再经高温烧制加以陶瓷化而形成。
  2. 根据权利要求1所述的电子器物的噪声抑制结构,其特征在于:所述作为相安定剂的氧化物为氧化钙、氧化镁、三氧化二钇或其混合物的粉末。
  3. 根据权利要求1所述的电子器物的噪声抑制结构,其特征在于:所述各成分的组成与重量百分比为:氧化锆80~99 wt%,相安定剂1~20 wt%。
  4. 根据权利要求3所述的电子器物的噪声抑制结构,其特征在于:所述相安定剂为氧化镁。
  5. 根据权利要求3所述的电子器物的噪声抑制结构,其特征在于:所述相安定剂为氧化钙。
  6. 根据 权利要求3所述的电子器物的噪声抑制结构,其特征在于:所述相安定剂为三氧化二钇。
  7. 根据 权利要求3所述的电子器物的噪声抑制结构,其特征在于:所述相安定剂由氧化镁、氧化钙、三氧化二钇中至少两种混合组成。
  8. 根据 权利要求1或2或3所述的电子器物的噪声抑制结构,其特征在于:所述氧化锆陶瓷体系被覆在该电子器物外表的套合件或包覆件。
  9. 根据 权利要求1或2或3所述的电子器物的噪声抑制结构,其特征在于:所述氧化锆陶瓷体为片状体。
  10. 根据 权利要求1或2或3所述的电子器物的噪声抑制结构,其特征在于:所述氧化锆陶瓷体为柱状体。
  11. 根据 权利要求1或2或3所述的电子器物的噪声抑制结构,其特征在于:所述氧化锆陶瓷体为粉状体。
  12. 一种电子器物的噪声抑制方法,其特征在于:以一电子器物的噪声抑制结构遮蔽于电子器物或其电路外围或表面而达成,其中的电子器物的噪声抑制结构通过下列步骤制成,提供:氧化锆材料,重量百分比为80~99%;氧化物型相安定剂材料,重量百分比为1~20%;将上述两种材料混合均匀后,以高温烧制步骤加以陶瓷化形成一氧化锆陶瓷体。
  13. 根据 权利要求12所述的电子器物的噪声抑制方法,其特征在于:所述烧制步骤依序包括预热步骤、等温步骤及降温步骤。
  14. 根据 权利要求13所述的电子器物的噪声抑制方法,其特征在于:所述预热步骤在8~14小时的内,将制程温度从室温加温至1170℃至1850℃的间。
  15. 根据 权利要求13所述的电子器物的噪声抑制方法,其特征在于:所述等温步骤将该制程温度维持在1170℃至1850℃的间的一固定温度,并持续等温1~4小时。
  16. 根据 权利要求13所述的电子器物的噪声抑制方法,其特征在于:所述降温步骤在11~15小时的内,将该制程温度由1170℃至1850℃的间降回至室温。
  17. 根据 权利要求12至16中任何一项所述的电子器物的噪声抑制方法,其特征在于:高温烧制前,先行对混合后的材料进行压制,以形成一套合件或包覆件型体的步骤。
  18. 根据 权利要求15所述的电子器物的噪声抑制方法,其特征在于:经高温烧制的氧化锆陶瓷体,再加以压碎成粉末状。
PCT/CN2011/073827 2010-05-10 2011-05-09 电子器物的噪声抑制结构及其方法 WO2011140962A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013509439A JP2013531877A (ja) 2010-05-10 2011-05-09 電子機器のノイズ抑制構造及びその方法
US13/634,049 US20130002104A1 (en) 2010-05-10 2011-05-09 Structure and a method for suppressing noise of electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010168080.3 2010-05-10
CN201010168080.3A CN102245008B (zh) 2010-05-10 2010-05-10 电路噪声抑制方法及其制成对象

Publications (1)

Publication Number Publication Date
WO2011140962A1 true WO2011140962A1 (zh) 2011-11-17

Family

ID=44913943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073827 WO2011140962A1 (zh) 2010-05-10 2011-05-09 电子器物的噪声抑制结构及其方法

Country Status (4)

Country Link
US (1) US20130002104A1 (zh)
JP (1) JP2013531877A (zh)
CN (1) CN102245008B (zh)
WO (1) WO2011140962A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9144184B1 (en) * 2014-03-18 2015-09-22 Tse-Wei Hsieh Noise suppression device
JP6623395B2 (ja) * 2015-08-07 2019-12-25 北川工業株式会社 ノイズ対策部材

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010020694A1 (en) * 2000-02-28 2001-09-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Material for measuring static and dynamic physical parameters
CN1562887A (zh) * 2004-03-31 2005-01-12 南京工业大学 高四方相氧化锆-氧化铝复合粉料及其制备方法
CN1699278A (zh) * 2005-04-30 2005-11-23 天津城市建设学院 光纤连接器用氧化锆陶瓷套管的制备方法
CN101259347A (zh) * 2007-12-14 2008-09-10 济南圣泉集团股份有限公司 氧化锆泡沫陶瓷过滤器
CN101555134A (zh) * 2009-05-20 2009-10-14 上海景文材料科技发展有限公司 光纤插芯、光纤套管用钇锆复合纳米陶瓷粉体及生产工艺
JP2009289781A (ja) * 2008-05-27 2009-12-10 Panasonic Corp コモンモードノイズフィルタ
CN101619202A (zh) * 2009-08-06 2010-01-06 重庆红宇摩擦制品有限公司 低磨耗环保型复合陶瓷基摩擦材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5649951A (en) * 1989-07-25 1997-07-22 Smith & Nephew Richards, Inc. Zirconium oxide and zirconium nitride coated stents
US6181760B1 (en) * 1999-07-20 2001-01-30 General Electric Company Electrochemical corrosion potential sensor with increased lifetime
US6916569B2 (en) * 2000-11-23 2005-07-12 Sulzer Hexis Ag Fuel cell comprising a solid electrolyte layer
JP4031631B2 (ja) * 2001-10-24 2008-01-09 三菱重工業株式会社 遮熱コーティング材及びガスタービン部材並びにガスタービン
GB0520778D0 (en) * 2005-10-12 2005-11-23 Environmental Monitoring And C Ceramic component and fabrication method
TWI313255B (en) * 2006-06-23 2009-08-11 Y & L Technology Inc Noise suppressor for electronic signals
CN101497524A (zh) * 2008-01-31 2009-08-05 戴文斌 致密氧化镁部分稳定氧化锆陶瓷的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010020694A1 (en) * 2000-02-28 2001-09-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Material for measuring static and dynamic physical parameters
CN1562887A (zh) * 2004-03-31 2005-01-12 南京工业大学 高四方相氧化锆-氧化铝复合粉料及其制备方法
CN1699278A (zh) * 2005-04-30 2005-11-23 天津城市建设学院 光纤连接器用氧化锆陶瓷套管的制备方法
CN101259347A (zh) * 2007-12-14 2008-09-10 济南圣泉集团股份有限公司 氧化锆泡沫陶瓷过滤器
JP2009289781A (ja) * 2008-05-27 2009-12-10 Panasonic Corp コモンモードノイズフィルタ
CN101555134A (zh) * 2009-05-20 2009-10-14 上海景文材料科技发展有限公司 光纤插芯、光纤套管用钇锆复合纳米陶瓷粉体及生产工艺
CN101619202A (zh) * 2009-08-06 2010-01-06 重庆红宇摩擦制品有限公司 低磨耗环保型复合陶瓷基摩擦材料

Also Published As

Publication number Publication date
JP2013531877A (ja) 2013-08-08
US20130002104A1 (en) 2013-01-03
CN102245008A (zh) 2011-11-16
CN102245008B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
CN100360001C (zh) 复合磁性体、片状物品的制法、电磁波吸收片材及其制法
US6243472B1 (en) Fully integrated amplified loudspeaker
WO2014104816A1 (ko) 전자파 흡수시트 및 그의 제조방법과 이를 포함하는 전자기기
WO2011088760A1 (zh) 一种消除噪声的耳机及其驱动电路
WO2012148218A2 (ko) 수평열전 테이프 및 그 제조방법
WO2011140962A1 (zh) 电子器物的噪声抑制结构及其方法
WO2013113239A1 (zh) 进行功率调整的手机及其功率调整方法
WO2021107277A1 (ko) Feco 나노 체인, 이의 제조방법 및 이를 포함하는 전자파 흡수체
US5668070A (en) Ceramic composition for absorbing electromagnetic wave and a method for manufacturing the same
KR20160103397A (ko) 전파방해잡음 흡수기능을 가지는 점착테이프 및 이의 제조방법
TWI223908B (en) Concealed antenna for mobile communication device
TWI523599B (zh) Circuit noise suppression method and its object
US10224984B1 (en) Electronic device and ceramic back cover used in electronic device
KR102202204B1 (ko) 금속-탄소 복합 구조체, 이를 포함하는 복합 시트, 및 그 제조 방법
JP2002158488A (ja) シート状ノイズ対策部品
US20150282361A1 (en) Structure and a method for suppressing audio noise of electronic equipment
CN202168322U (zh) 电路噪声抑制对象
WO2015149317A1 (zh) 一种叠层片式陶瓷射频低通滤波器及其制备方法
CN202167232U (zh) 电子器物的噪声抑制结构
TWI313255B (en) Noise suppressor for electronic signals
JPH10229292A (ja) 電磁波干渉抑制体
JP2002344191A (ja) 電磁遮蔽板材及び電磁遮蔽構造物
TWM412970U (en) Article for suppressing circuit noise
JP5912278B2 (ja) 電磁干渉抑制体
WO2021101326A1 (ko) 무선충전 장치 및 이를 포함하는 이동 수단

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13634049

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013509439

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780183

Country of ref document: EP

Kind code of ref document: A1