WO2011137713A1 - 一种用于红外测温仪的光学系统和调焦结构 - Google Patents

一种用于红外测温仪的光学系统和调焦结构 Download PDF

Info

Publication number
WO2011137713A1
WO2011137713A1 PCT/CN2011/072851 CN2011072851W WO2011137713A1 WO 2011137713 A1 WO2011137713 A1 WO 2011137713A1 CN 2011072851 W CN2011072851 W CN 2011072851W WO 2011137713 A1 WO2011137713 A1 WO 2011137713A1
Authority
WO
WIPO (PCT)
Prior art keywords
focusing
objective lens
optical
optical system
infrared
Prior art date
Application number
PCT/CN2011/072851
Other languages
English (en)
French (fr)
Inventor
袁国炳
Original Assignee
Yuan Guobing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuan Guobing filed Critical Yuan Guobing
Priority to RU2012144003/28A priority Critical patent/RU2540439C2/ru
Priority to US13/695,751 priority patent/US8870452B2/en
Priority to JP2013506466A priority patent/JP5486732B2/ja
Priority to EP11777134.5A priority patent/EP2554960B1/en
Publication of WO2011137713A1 publication Critical patent/WO2011137713A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0265Handheld, portable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/028Constructional details using a charging unit or battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • G01J5/051Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path using a gas purge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/084Adjustable or slidable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/084Adjustable or slidable
    • G01J5/0843Manually adjustable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0859Sighting arrangements, e.g. cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/16Housings; Caps; Mountings; Supports, e.g. with counterweight
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/048Protective parts

Definitions

  • the invention relates to a non-contact optical temperature measuring instrument, in particular to an infrared thermometer which operates on both the eyepiece and the objective lens focusing of the optical system at the rear end of the optical probe.
  • the infrared thermometer is used to collect the infrared heat radiation energy of the target through its optical system, directly or indirectly (via optical fiber transmission) to focus on the infrared temperature sensor, convert it into an electrical signal, and process it through subsequent circuits to display the measured temperature and output corresponding electric signal.
  • the form of its optical system can be divided into:
  • thermometer A There is a single objective lens, and it is not adjustable. Generally, a laser beam with a pointing direction is added. This structure is the simplest and is mainly used for simple low, medium and high temperature infrared thermometers.
  • the objective lens can be adjusted at the front end of the probe, and the eyepiece is not focusable at the back end of the probe.
  • This structure is used more in general medium and high temperature products. Columns such as: the United States Raytek's Marathon series of infrared thermometers, IRCON's SR and Modline 3 series of infrared thermometers.
  • the objective lens can be operated at the front of the probe for focusing, and the eyepiece can be operated at the back end of the probe.
  • This structure is generally used for relatively high-end products, similar to the technology involved in the present invention.
  • UK LAND company and Japan MINOLTA The company's TR-630, Japan's CHINO's IR-AH portable infrared thermometer and some IR-CA series infrared thermometers, XTIR-F of Shanghai Institute of Synergetics Series of fiber optic infrared thermometers.
  • the objective lens can be operated at the back end of the probe, but the eyepiece at the rear end of the probe is not focusable.
  • This structure is relatively complicated and relatively novel, and is only visible on a few high-end products at present, and is closely related to the technology involved in the present invention.
  • the objective lens is fixed, and the measurement image distance cannot be adjusted according to the change of the measured object distance, and the resolution of the optical focus is low.
  • the eyepiece is not adjustable, and it will affect the aiming circle (or aiming cross) on the dividing surface and the target imaging due to the difference in vision of the operator, and it will not achieve the best objective focusing measurement.
  • the objective lens is operated at the front end of the probe, which is affected by the installation of the air purifier and the water jacket.
  • the focusing operation part and the active gap are exposed.
  • the instrument When used for a long time online, it is easy to be infiltrated by the oil vapor and dust on the industrial site.
  • the instrument is easy to malfunction and affect the use; when cleaning and cleaning, the cleaning is also troublesome.
  • the objective lens After the objective lens is adjusted, it cannot be locked or locked. It is inconvenient and easy to forget. When it is used online, it may be affected by the vibration of the workpiece being measured and the measurement result may change.
  • the existing high-end technology of the objective lens at the back end of the probe, the design structure is complex, and there are also insufficient eyesight adjustment, such as: UK LAND company's SYSTEM 4 (referred to as S4 A series of fixed infrared thermometers, the front end of the probe is sealed, and the objective lens is shifted and adjusted by rotating the objective lens focusing ring at the rear end; the parts of the focusing transmission structure are: casting frame, focusing ring, gear set, transmission connection Rods, springs, threads, etc., except for the damping of the spring, no focus locking device, The eyepiece cannot be adjusted.
  • Modline 5 of IRCON, USA The series integrated infrared thermometer is fixed on the front end of the probe.
  • the objective lens is adjusted by rotating the second half of the probe and linearly shifting the internal movement.
  • the external cable connector is fixed on the front half of the housing.
  • the internal cable connection is pulled back and forth during focusing; the focus locking is by screwing a large screw fixed to the front half of the probe to support the second half of the rotatable probe; Processing tolerance requirements are high; The eyepiece cannot be adjusted.
  • the objective lens and the eyepiece can be adjusted, and the active part of the focusing operation will not be polluted or infiltrated by the oil vapor on site.
  • the optical probe At the rear end of the optical probe, there is a stretchable focusing eyepiece tube and a rotatable focusing objective focusing ring.
  • the rear end cap of the probe is designed to seal the entire active focusing area, and at the same time, the objective lens can be locked. Measuring image distance.
  • the eyepiece and the objective lens are convenient at the back end of the probe. The focus adjustment is carried out smoothly, completely unaffected by the use of air purifiers and water jackets.
  • FIG. 1 Schematic diagram of an optical probe of an optical fiber infrared thermometer of the present invention
  • FIG. 1 Schematic diagram of an integrated infrared thermometer of the present invention
  • FIG. 1 Schematic diagram of the optical probe of the optical fiber infrared thermometer with air purifier of the present invention
  • FIG. 1 Schematic diagram of the integrated infrared thermometer with air purging and water cooling jacket of the present invention
  • the preferred embodiment is an optical probe for a fiber optic infrared thermometer, where:
  • the eyepiece barrel (100) can be stretched backwards, including a front and a rear two-threaded cylinder and an intermediate aiming eyepiece (101); a front positioning cylinder is provided with a linear positioning chute (102); The rear cylinder is used as a visual sighting eyepiece with a slightly larger diameter at the end and an O-ring (103) embedded in the neck ring groove.
  • the objective lens focusing ring (300) which can be rotated left and right, has a slightly larger diameter hand-held knurling wheel at the rear end, a ring-shaped positioning chute (301) in the middle, and six external threads on the front cylinder. .
  • the front end of the objective lens barrel member (200) which can be linearly slidably displaced is provided with an objective lens (201); the front section cylinder has a linear positioning chute (202); the middle section is a chute which is connected up and down and connected on both sides; the rear section cylinder There are six internal threads.
  • the front section of the cylinder retains the cylinder surface up and down, and the left and right sides are cut into a plane, and the beam splitter (402) is mounted on the 45° slope of the end;
  • the rear cylinder has a positioning screw hole and a screw (403).
  • the optical outer cylinder member (500) is provided with an optical path sealing protection window (501) at the front end; a positioning screw hole and a screw (502) on the front side; a device connection port (503) and a positioning screw for receiving the infrared focused spot on the outer side of the middle portion; Hole and screw (504); positioning screw hole and screw (505) on the rear section; external thread on the rear end, O-ring rubber ring on the back slot (506 ); and has a rear end protection cap (507).
  • the rear section of the objective barrel member (200) is assembled with the six internal and external threads of the front section of the objective lens focusing ring (300), and the front section of the beam splitter member (400) is embedded in the middle section of the barrel member (200).
  • the focused spot that reflects the incident light through the objective lens (201) and the beam splitter (402) falls exactly at the center of the port (503), and the visible light focused spot that passes through the beam splitter (402) falls on the reticle (401).
  • the center of the aiming circle is fixed with the positioning screw (504) on the optical outer cylinder (500) to fix the beam splitter member (400); the positioning screw (505) and the ring type chute on the middle section of the objective lens focusing ring (300) (301) ) cooperate to make the objective lens focusing ring (300) back and forth at the rear end of the outer cylinder (500) Rotate left and right; the outer cylinder (500) and the rear end cap (507) can be screwed to complete the overall combination.
  • the rear end cap (507) can push the eyepiece barrel (100) to axially compress the objective lens focusing ring (300), lock the measuring image distance of the objective lens (201); and the flexible O-shaped rubber ring (103) elastic
  • the fine adjustment adjusts the compression fit of the focusing ring (300) of the objective lens to increase its rotational damping, and the entire focusing portion with the active gap is also fully sealed.
  • the embodiment 2 is based on the optical system, and the peripheral components are enlarged to form a complete integrated infrared thermometer. among them:
  • An embedded microprocessor system PCB board equipped with signal processing circuit devices can have up to four blocks: (701), (702), (703), (704);
  • the man-machine interface component (705) comprises: a digital display with 4 LEDs and 3 function operation buttons and related processing circuit devices;
  • Integrated machine housing 600: optical path seal protection window (601) at the front end, O-ring rubber ring (606) at the rear end, and matching rear end cap (607) with observation window glass (602) And an external cable socket (603).
  • Example 2 The mounting position of the augmented portion is structurally matched to the optical system of the present invention.
  • the optical outer cylinder (500) in the seal protection can eliminate the need for the front end optical path seal protection window (501), the O-type seal rubber ring (506) and the rear end cap (507); the port (503) can be directly used as the installation infrared temperature sensor Seat cover; eyepiece tube (100)
  • an eyepiece (101) with a longer focal length can be selected, or a combination of eyepieces (101) and (104) can be used to lengthen.
  • the structural principle, the focusing operation mode, and the locking and protection features are exactly the same as those in Embodiment 1. Since the circuit portion does not involve the present invention, it will not be further described.
  • the above integrated infrared thermometer is equipped with a battery handle, which is changed into a battery power supply, and the rear end screw cap (607) is omitted, and can be transformed into a hand-held infrared thermometer.
  • thermometers can be constructed by using the optical system of the present invention and its focusing structure.
  • thermometers To date, there are many types of in-line infrared thermometers designed and manufactured for industrial applications. There are differences and limitations in terms of performance and use. among them:
  • optical probes of the optical fiber infrared thermometer are simple in design, do not contain sensors and other electronic devices inside, and usually do not use visual aiming and optical focusing.
  • the advantages are: full sealing, can work in high temperature environment without water cooling; It is low in optical resolution.
  • the integrated and split infrared thermometers contain sensors and other electronics inside the probe and require an auxiliary water-cooled or air-cooled unit to operate in a high temperature environment, thus incurring additional costs of use.
  • the probes of high-end instruments with high optical resolution mostly adopt the visual aiming structure of the front end of the objective lens. In the industrial field where water cooling or air purging is required, the focusing operation will be affected, which is very inconvenient. .
  • the famous brand of high-end instruments such as: LAND (Land) company's SYSTEM4 series of infrared thermometers, the United States IRCON (Aiguang) company's Modline5 series of infrared thermometers, using the objective lens after focusing operation, complex structure, expensive.
  • the eyepiece can't be adjusted (the eyes with different visions can't guarantee the best visual resolution when adjusting the focus), and the probe can't be completely sealed. Used in industrial high temperature environments, there is an additional cost of water cooling.
  • the Modline5 infrared thermometer of IRCON USA
  • its explosion-proof type is much more expensive than the non-explosion-proof type.
  • the infrared thermometer probe of the invention especially the fiber-optic probe, the eyepiece and the objective lens can respectively operate focusing on the back of the probe, and the same optimal visual resolution can be achieved when the focus adjustment operation is performed by different vision persons. , and the system's best optical measurement accuracy, and is completely immune to the front air purging device.
  • the position of the objective lens after focusing can be easily locked and sealed by the rear end cap of the probe, and is not afraid of the vibration of the scene and the oil vapor. It can be used in high temperature environment for a long time without using water cooling device, and it can have good repeatability and long-term stability for high temperature target measurement. As long as the transmission fiber passes through the explosion-proof area, it can be completely safely used for high-precision, explosion-proof temperature measurement of polysilicon production.
  • the present invention effectively combines and surpasses the advantages of the existing optical probes of various infrared thermometers, in particular, the fiber-optic probes have higher optical resolution and are fully sealed, with a simple structural design method.
  • the focus adjustment of the objective lens is not affected by the use of the air purifier, high temperature resistance, no fear of vibration, and explosion-proof performance. It is greatly improved in various occasions (currently applicable to the temperature range of 100 ° C to 3000 ° C target). Its practicality and versatility in industrial use. There is almost no additional cost of use other than air purging.

Description

一种用于红外测温仪的光学系统和调焦结构 技术领域
本发明涉及一种非接触的光学测温仪器,尤其是一种光学系统的目镜和物镜调焦均在光学探头后端操作的红外测温仪。
背景技术
红外测温仪是通过其光学系统采集目标的红外线热辐射能,直接或间接(通过光纤传输)聚焦到红外测温传感器上,转换成电信号,经后续电路处理,显示测量温度和输出对应的电信号。其光学系统的形式可分:
A. 单有物镜,且不可调焦,一般加有指点测量方向的激光束。 这种结构最简单,主要用于简易的低、中、高温红外测温仪。
B. 有物镜和目镜,但都不可调焦, 这种结构也很简单。 列如:日本 CHINO 公司的 IR-HS 便携式红外测温仪采用。
C. 物镜可在探头前端操作调焦,目镜在探头后端不可调焦。这种结构在一般中、高温产品中使用较多。列如:美国 Raytek 公司的 Marathon 系列红外测温仪,美国 IRCON 公司的 SR 和 Modline 3 系列红外测温仪。
D. 物镜可在探头前端操作调焦,目镜可在探头后端操作调焦。这种结构通常用于比较高端的产品,与本发明所涉及的技术相近。如:英国 LAND 公司和日本 MINOLTA 公司的 TR-630 ,日本 CHINO 公司的 IR-AH 便携式红外测温仪和部分 IR-CA 系列红外测温仪,上海协同物理研究所的 XTIR-F 系列光纤红外测温仪。
E. 物镜可在探头后端操作调焦,但在探头后端的目镜不可调焦。这种结构相对复杂、也比较新颖,只在当前少数高端产品上可见,与本发明所涉及的技术很相近。如:英国 LAND 公司的 SYSTEM 4 (简称 S4 )系列固定式红外测温仪和美国 IRCON 公司的 Modline 5 系列一体化红外测温仪。
现有技术的不足和缺点:
a. 物镜固定, 不能根据测量物距的改变来调节测量像距,光学聚焦的分辨率较低。
b. 无目镜,不能瞄准观察和判断目标被测量的准确有效部位。当环境光照较亮或目标温度偏高而发红时,在被测面上,激光红点指向的瞄准效果会因此丧失。
c. 目镜不可调焦,会因操作者的视力差异,影响对分划面上的瞄准圆(或瞄准十字)和目标成像的观察,也不能达到最佳的物镜调焦测量效果。
d. 物镜在探头前端操作调焦 ,会受空气吹扫器和水冷套安装使用的影响。
e. 调焦操作部分和活动缝隙裸露,长期在线使用时,容易被工业现场的油汽、灰尘污染渗透,仪器因此容易发生故障,影响使用;维护保洁时,清洗也麻烦。
f. 物镜调焦后不能锁定或锁定不方便、容易遗忘,在线使用时,可能受被测温工件的震动影响而引起测量结果的变化。
g. 物镜在探头后端操作调焦的现有高端技术,设计结构复杂,且还有目镜不能调焦等不足,列如: 英国 LAND 公司的 SYSTEM 4 (简称 S4 )系列固定式红外测温仪,探头前端密封,通过转动在后端的物镜调焦圈操作物镜移位调焦;其调焦传动结构的零件有:铸件架、调焦圈、齿轮组、传动连杆、弹簧、螺纹等,除了弹簧的阻尼作用,无调焦锁定装置, 目镜不能调焦 。
美国 IRCON 公司的 Modline 5 系列一体化红外测温仪,物镜密封固定在探头前端,通过旋转探头后半段外壳、使内部机芯作整体的直线移位来实现物镜调焦,其外接电缆连接座固定在前半段外壳上,内部多根电缆连线在调焦时会被来回拉扯;调焦锁定是靠拧一个基座固定在探头前半段外壳上的大螺丝来顶住可转动的探头后半段外壳;旋转外壳的加工配合精度要求较高; 目镜不能调焦 。
技术问题
本发明的任务是提供能同时解决下列问题的总体技术方案:
不受吹扫器和水冷套安装使用的影响,物镜和目镜都能调焦,调焦操作的活动部位不会受到现场油污蒸汽的污染、渗透。
技术解决方案
本发明采用的技术方案的主要特征是:
在光学探头后端,设计有可拉伸调焦的目镜筒和可旋转调焦的物镜调焦圈,设计有探头的后端盖帽,能密封保护整个活动调焦部位,同时又能顺便锁定物镜的测量像距。
有益效果
本发明与现有技术相比的有益效果是:
1) 可操作性好:目镜和物镜在探头后端,都可方便、 顺手地操作调焦,完全不受空气吹扫器、水冷套使用的影响。
2) 可靠性高:后端密封盖帽的防污染和锁定测量像距的作用,提高了长期在线使用的可靠性。
3) 测量精度和重复性高:目镜和物镜的先后调焦,使视力差异的操作者,能得到相同的、最佳的目视瞄准清晰度、光学聚焦分辨率和测量精度。
4) 保洁性好:外表光洁的全密封探头,不容易受污染渗透和结垢,维护清洗更方便(外接端口在不用时另有密封旋帽保护)。
5) 简易最好:与物镜在探头后端操作调焦的现有高端技术比较,设计巧,结构简,制造易,功能齐,适用广,工业实用性强。
附图说明
图 1. 本发明的一种光纤红外测温仪光学探头的结构示意图
图 2. 本发明的一种一体化红外测温仪的结构示意图
图 3. 本发明的带空气吹扫器的光纤红外测温仪光学探头的示意图
图 4. 本发明的带空气吹扫和水冷套的一体化红外测温仪的示意图
本发明的最佳实施方式
如图1. 所示,最佳实施方式是一种光纤红外测温仪的光学探头,其中:
1. 可向后拉伸调焦的目镜筒(100),包括前、后两段螺纹连接的圆筒和装在中间的瞄准目镜(101);前段圆筒上开有一条直线定位滑槽(102);后段圆筒作为目视瞄准眼罩,端头直径略大,颈部环槽嵌有O型橡胶圈(103)。
2. 可供左、右旋转的物镜调焦圈(300),其后端是直径略大的手持滚花转轮,中间有一圈环型定位滑槽(301),前段圆筒上有六头外螺纹。
3. 可直线滑动移位的物镜筒构件(200)前端装有物镜(201);前段圆筒上有一条直线定位滑槽(202);中段是上下贯通、两边连接的一条滑槽;后段圆筒有六头内螺纹。
4. 固定在光学外筒(500)内的分光镜构件(400),其前、后两段是直径不同的圆筒,中间嵌有带中心瞄准圆的分划板(401);再用螺纹连接;前段圆筒上下保留柱面,左右两边削为平面,端头45°斜面上装有分光镜(402);后段圆筒上有定位螺孔和螺丝(403)。
5. 光学外筒构件(500),前端装有光路密封保护窗(501);前段上有定位螺孔和螺丝(502);中段外侧装有接受红外线聚焦光点的器件连接端口(503)和定位螺孔及螺丝(504);后段上有定位螺孔和螺丝(505);后端有外螺纹,退刀槽卡有O型密封橡胶圈(506 );并有后端保护旋帽(507)。
最佳实施方式的整体组合步序是:
1. 将目镜筒(100)前段上的直线滑槽(102)和分光镜构件(400)后段上的定位螺丝(403)配合组装。
2. 将物镜筒构件(200)的后段与物镜调焦圈(300)前段的六头内、外螺纹配合组装,分光镜构件(400)的前段嵌入物镜筒构件(200)的中段滑槽内。
3. 将上述1)和2)中的分光镜构件(400)的前、后二部分螺纹连接,中间装上分划板(401)。
4. 将上述3)插入光学外筒(500)内,定位螺丝(502)与直线滑槽(202)限定物镜筒构件(200)同轴滑配、可直线移动的距离;在外筒(500)中段,装上连接端口(503)。
5. 使入射光通过物镜(201)和分光镜(402)反射后的聚焦光点正好落在端口(503)中心,而通过分光镜(402)的可见光聚焦光点落在分划板(401)上的中心瞄准圆内,用光学外筒(500)上的定位螺丝(504)固定分光镜构件(400);定位螺丝(505)与物镜调焦圈(300)中段上的环型滑槽(301)配合,使物镜调焦圈(300)能在外筒(500)的后端来回 左右旋转;外筒(500)与后端旋帽(507)可螺纹连接,完成整体组合。
最佳实施方式的调焦 操作和保护方式是:
拉伸目镜筒(100),改变目镜(101)与分划板(401)之间的距离,通过瞄准目镜(101)将分划面中心的瞄准圆看清楚;再旋转物镜调焦圈(300),带动物镜筒构件(200)移动,改变物镜(201)与分划板(401)之间的距离,在分划面上看清目标成像,根据瞄准圆判断目标的有效被测温区域;此时,目标辐射的红外线经分光镜(402)反射,聚焦光点落在端口(503)的中心;通过插入的光纤传输给远端的红外测温传感器接收,进行光电变换,经后续电路处理,显示被测温度和输出对应的电信号。在完成上述操作后,后端盖帽(507)可推进目镜筒(100)轴向压紧物镜调焦圈(300),锁定物镜(201)的测量像距;柔性O型橡胶圈(103)弹性微调对物镜调焦圈(300)的压紧配合,增大其转动阻尼,整个有活动缝隙的调焦部位也得到全密封保护。
本发明的实施方式
如图2.所示,实施例2.是在所述光学系统的基础上,增扩了外围部件,构成一种完整的一体化红外测温仪。其中:
a) 装有信号处理电路器件的嵌入式微处理器系统PCB板,最多可有4块:(701),(702),(703),(704);
b) 人机操作界面构件(705),包括:含4位LED的数码显示器和3个功能操作按键和相关处理电路器件;
c) 一体化整机外壳(600):前端有光路密封保护窗(601),后端有O型密封橡胶圈(606),和配套的带有观察窗玻璃(602)的后端旋盖(607),以及外接电缆插座(603)。
在图2.实施例2.中, 明示了 增扩部分的安装位置与本发明所述的光学系统在结构上的配合。处在整机外壳( 600 )密封保护内的光学外筒(500)可无须前端光路密封保护窗(501),O型密封橡胶圈(506)和后端盖帽(507);端口(503)可直接作为安装红外测温传感器的座套;目镜筒(100) 配合后端 人机操作界面构件(705)的安装, 可选择采用更长焦距的目镜( 101 ),或采用目镜(101)和(104)组合而加长 。 除上述调整外,其结构原理、调焦操作方式和锁定、保护特征,与实施例 1. 完全相同;因电路部分不涉及本发明内容,故不作进一步描述。
将上述一体化红外测温仪加装电池手柄,改成电池供电,省略后端旋盖(607),即可变形为一款手持式红外测温仪。
将上述一体化红外测温仪中的部分信号处理电路或人机操作界面分离,另外组成一台单独的远程电信号处理/显示/控制器,剩余部分就是一台含有红外测温传感器和部分电信号处理电路的光学测温探头;再添加一条中间连接电缆,就构成一套分体式红外测温仪。
由此可见,用本发明所述的光学系统及其调焦结构,可以构建多种形式的红外测温仪。
工业实用性
迄今为止,为工业应用而设计制造的在线式红外测温仪有很多种类。在使用性能和使用场合方面,各有侧重和局限。其中:
光纤红外测温仪的各种光学探头设计简单,内部不含传感器和其它电子器件,通常也不采用目视瞄准和光学调焦,优点是:全密封,能无需水冷在高温环境下工作;缺点是光学分辨率低。
一体化和分体式红外测温仪的探头内部含有传感器和其它电子器件,需要有辅助的水冷或风冷装置才能在高温环境中正常工作,因此会发生使用的附加成本。其中,有较高的光学分辨率的高端仪器的探头,大多采用物镜前端调焦的目视瞄准结构,在要求水冷或空气吹扫的工业现场使用,其调焦操作会受影响,很不方便。
目前,著名品牌的高端仪器,如:英国LAND(兰德)公司的SYSTEM4系列红外测温仪,美国IRCON(爱光)公司的Modline5系列红外测温仪,采用物镜后调焦操作,结构复杂,价格昂贵。另有不足之处:目镜不能调焦(不同视力的人调焦操作时,不能保证达到最佳视觉分辨率),也不能做到探头的完全密封。在工业高温环境中使用,有水冷装置的附加使用成本。在有防爆和高精度测量要求的多晶硅生产场合,以美国IRCON(爱光)公司的Modline5红外测温仪为例,其防爆型的比非防爆型的市场价格贵很多。
本发明所述的红外测温仪探头,尤其是其光纤型探头,目镜和物镜都能分别在探头后部操作调焦,不同视力的人调焦操作时,能达到相同的最佳视觉分辨率,和系统的最佳光学测量精度,并且完全不受前端空气吹扫装置的影响。物镜调焦后的位置,能被探头后端盖帽方便锁定和密封,不怕现场震动和油污蒸汽的侵蚀。无需借助水冷装置就能长期在高温环境中使用,并对高温目标测量能有很好的重复性和长期稳定性。只要传输光纤通过防爆区域,即可完全放心地用于多晶硅生产的高精度、防爆测温。
综上所述,本发明以简单的结构设计方法,有效综合和超越了现有各种红外测温仪光学探头的优点,尤其是其中的光纤型探头,更有高光学分辨率,全密封,物镜调焦不受空气吹扫器使用的影响,耐高温,不怕震动,和防爆的性能,在各种不同的场合(目前能适用于测量100℃到3000℃目标的温度范围),大大提高了其在工业方面使用的实用性和通用性。除了空气吹扫,几乎没有其它的附加使用成本。

Claims (1)

1. 一种红外测温仪的光学系统及其调焦结构,包括:目镜筒(100), 物镜筒构件(200),物镜调焦圈(300),分光镜构件(400),光学外筒构件(500);
所述的红外测温仪的光学系统和调焦结构,其结构特征是:光学外筒(500)的内腔有分光镜构件(400)和物镜筒构件(200),外部装有红外线聚焦光点接受器件的连接端口(503),后端有同轴叠装的物镜调焦圈(300)与目镜筒(100),并有保护盖帽(507);
所述的红外测温仪的光学系统和调焦结构,其调焦操作特征是:在光学外筒后端拉伸目镜筒(100),可使目镜(101)移位调焦,旋转物镜调焦圈(300),可使物镜(201)移位调焦;
所述的红外测温仪的光学系统和调焦结构,其保护特征是:后端盖帽(507),能锁定物镜(201)的测量像距和对整个调焦操作部位实施全密封保护;
所述的红外测温仪的光学系统和调焦结构,其适用范围特征是:能直接作为 光纤红外测温仪的光学探头,也能用来构建各种其它种类或形式的红外测温仪。
2. 根据权利要求1所述的红外测温仪的光学系统和调焦结构,其特征是:目镜筒(100)中间装有瞄准目镜(101),后端目视瞄准眼罩直径略大,可被拉伸调焦;在被盖帽(507)前推时,能压紧锁定物镜调焦圈(300);目镜筒(100)颈部环槽上嵌有O型橡胶圈(103),能弹性微调压紧配合、增大物镜调焦圈(300)转动阻尼。
3. 根据权利要求1所述的红外测温仪的光学系统和调焦结构,其特征是:物镜调焦圈(300)前段与物镜筒构件(200)的后段构成一种传动配合,前者旋转时能推动后者作直线移动;物镜调焦圈(300)中段上有用于定位安装在光学外筒(500)中的环型滑槽(301);后端外径略大、有滚花,靠在光学外筒(500)的外端,供手持旋转操作;其中轴部分是空的,不影响目镜筒(100)的安装和移动。
4. 根据权利要求1所述的红外测温仪的光学系统和调焦结构,其特征是:物镜筒构件(200)的前端装有物镜(201);中段是一条两边贯通、两边连接的滑槽,可容纳分光镜构件(400);物镜筒构件(200)的后段与物镜调焦圈(300)的前段构成一种传动配合,当后者旋转时,能带动前者直线移动。
5. 根据权利要求1所述的红外测温仪的光学系统和调焦结构,其特征是:分光镜构件(400)端头458斜面上装有分光镜(402),前、后二段罗纹连接,中间装有分划板(401);其前段两边为柱面,两边为平面;能嵌在物镜筒构件(200)的中段滑槽内,又能被精确定位在光学外筒(500)中间;其后段外径与物镜调焦圈(300)的内径滑配,内径与目镜筒(100)的前段外径滑配安装。
6. 根据权利要求1所述的红外测温仪的光学系统和调焦结构,其特征是:光学外筒构件(500)的前端有光路密封保护窗(501);前段上有定位螺孔和螺丝(502),配合物镜筒构件(200)上的直线定位滑槽(202)安装;中段上装有接受红外线聚焦光点的器件连接端口(503);并有定位螺孔及螺丝(504),配合分光镜构件(400)的安装定位;后段上有定位螺孔及螺丝(505),配合物镜调焦圈(300)上的环型定位滑槽(301)安装;后端有外螺纹,退刀槽卡有0型密封橡胶圈(506),并有配套的密封旋帽(507)。
7. 根据权利要求1所述的红外测温仪的光学系统和调焦结构,其调焦方式的特征是:操作者拉伸目镜筒(100)的后端,可调节目镜(101)与分划板(401)之间的相对距离,通过瞄准目镜(101),看清分划板(401)的分划面上的中心瞄准圆;再旋转物镜调焦圈(300),可带动物镜筒构件(200)直线移动,调节物镜(201)与分划板(401)之间的相对距离,看清在分划面上的目标成像,并在瞄准圆内判断出目标的有效被测温区域;此时,目标辐射的红外线被分光镜(402)反射,聚焦光点落在连接端口(503)的中央,可由插入的光纤传输给远端的红外测温传感器接收,经光电变换、后续电路处理,显示被测温度和输出相应的电信号;用于非光纤传输测温时,连接端口(503)可为直接安装红外测温传感器的座套。
8. 根据权利要求1所述的红外测温仪的光学系统和调焦结构,其保护方式的特征是:探头后端盖帽(507),能推进目镜筒(100)轴向压紧物镜调焦圈(300),锁定物镜(201)的测量像距和密封保护整个调焦操作部位。
9. 根据权利要求1所述的红外测温仪的光学系统和调焦结构,其适用性特征是:可直接用作为光纤红外测温仪的光学探头;但不受此局限,基于所述光学系统和调焦结构,扩展构建的各种光学测温探头和红外测温仪,均归属本发明的权利要求范围。
PCT/CN2011/072851 2010-05-06 2011-04-15 一种用于红外测温仪的光学系统和调焦结构 WO2011137713A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2012144003/28A RU2540439C2 (ru) 2010-05-06 2011-04-15 Оптическая система, содержащая фокусирующую конструкцию, для инфракрасного термометра
US13/695,751 US8870452B2 (en) 2010-05-06 2011-04-15 Optical system and focusing structure for infrared thermometer
JP2013506466A JP5486732B2 (ja) 2010-05-06 2011-04-15 赤外線放射温度計用の光学システム及びピント合わせ構造
EP11777134.5A EP2554960B1 (en) 2010-05-06 2011-04-15 Optical system and focusing structure for infrared thermometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010164390.8 2010-05-06
CN2010101643908A CN101922971B (zh) 2010-05-06 2010-05-06 一种用于红外测温仪的光学系统和调焦结构

Publications (1)

Publication Number Publication Date
WO2011137713A1 true WO2011137713A1 (zh) 2011-11-10

Family

ID=43338034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072851 WO2011137713A1 (zh) 2010-05-06 2011-04-15 一种用于红外测温仪的光学系统和调焦结构

Country Status (6)

Country Link
US (1) US8870452B2 (zh)
EP (1) EP2554960B1 (zh)
JP (1) JP5486732B2 (zh)
CN (1) CN101922971B (zh)
RU (1) RU2540439C2 (zh)
WO (1) WO2011137713A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289536A (zh) * 2016-10-26 2017-01-04 中国科学院云南天文台 一种用于光学镜面的红外测温装置
CN108051094A (zh) * 2018-01-16 2018-05-18 淮安中甲仪器仪表有限公司 提高温度传感性能的方法及耐温硅光电现场温度传感装置
CN113358365A (zh) * 2021-05-26 2021-09-07 电子科技大学 一种航空发动机涡轮盘辐射信息采集探头
CN113588117A (zh) * 2021-08-10 2021-11-02 电子科技大学 一种航空发动机涡轮盘的高稳定性辐射测温微型探头
CN113654665A (zh) * 2021-09-03 2021-11-16 安徽淮光智能科技有限公司 一种便于冷却防护的高温光纤探头

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541470B2 (en) * 2011-10-31 2017-01-10 Measurement Ltd. Combination tire temperature, pressure and depth measuring device
CN102636268A (zh) * 2012-03-31 2012-08-15 马钢(集团)控股有限公司 一种用于焦炉立火道的温度在线测量装置及其测量方法
US9415459B2 (en) 2012-04-06 2016-08-16 Illinois Tool Works Inc. Welding systems having non-contact temperature measurement systems
US9266182B2 (en) * 2012-04-06 2016-02-23 Illinois Tools Works Inc. Welding torch with a temperature measurement device
CN102928948A (zh) * 2012-11-22 2013-02-13 福鼎市一雄光学仪器有限公司 同步监控双系统光学成像安防长焦镜头
CN103868599A (zh) * 2014-02-22 2014-06-18 袁国炳 红外测温光学探头在小炉盖上的瞄准和定位安装装置
CN105425529B (zh) * 2015-11-20 2018-08-10 中国空气动力研究与发展中心超高速空气动力研究所 多序列激光阴影照相中的补偿滤光装置结构
DE102015223362A1 (de) * 2015-11-25 2017-06-01 Minimax Gmbh & Co. Kg Explosionsgeschütztes Gehäuse für Mittel zum Senden und Empfangen elektromagnetischer Strahlung
CN106768366A (zh) * 2017-01-12 2017-05-31 杭州电子科技大学 一种利用微型光谱仪测量高温的方法及装置
CN107449512A (zh) * 2017-08-15 2017-12-08 合肥明英富海生物科技有限公司 一种测温仪的壳体
CN108344513B (zh) * 2018-03-08 2023-08-01 辽宁艾科瑞焦化节能环保工程技术有限公司 具有瞄准与成像功能的焦炉鼻梁砖测温装置及其使用方法
CN109120921B (zh) * 2018-09-17 2020-02-14 北京空间机电研究所 一种低温真空遥感器焦面调整机构
CN110864816B (zh) * 2019-12-05 2023-05-26 国网河南省电力公司焦作供电公司 多光谱高压带电设备参数采集仪用红外测温仪
CN111024242A (zh) * 2019-12-13 2020-04-17 浙江大立科技股份有限公司 红外热像仪及其连续自动对焦方法
CN113125020B (zh) * 2021-04-21 2022-04-05 刘建松 一种防堵型红外测温仪
CN113467071B (zh) * 2021-07-27 2023-08-29 郑州光超医疗科技有限公司 一种可调焦的在体组织高分辨率光学扫描探头
CN114414063B (zh) * 2021-12-17 2024-01-19 杭州麦乐克科技股份有限公司 双调焦红外高温测温装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2476831Y (zh) * 2001-05-10 2002-02-13 哈尔滨市鑫锚门窗制造有限公司 微型摄像镜头保护器
CN2519254Y (zh) * 2001-12-07 2002-10-30 陕西斯达煤矿安全装备有限责任公司 本质安全型红外测温仪
CN201166586Y (zh) * 2007-08-01 2008-12-17 袁国炳 用于光纤红外测温仪的光学探头

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2798962A (en) * 1951-06-30 1957-07-09 Servo Corp Of America Total-radiation pyrometer
DE1797032B2 (de) * 1968-08-07 1976-07-22 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Farbtemperatur-messgeraet
US4215273A (en) * 1979-03-29 1980-07-29 Nasa Multispectral scanner optical system
JPS58221128A (ja) * 1982-06-17 1983-12-22 Mitsubishi Electric Corp 温度・熱エネルギ−測定装置
US4632547A (en) * 1985-09-10 1986-12-30 Broomer Research Corporation Autocollimating alignment telescope
JPS6337310A (ja) * 1986-08-01 1988-02-18 Olympus Optical Co Ltd 内視鏡先端部
DE3828381C2 (de) * 1988-08-20 1997-09-11 Zeiss Carl Fa Verfahren und Einrichtung zur automatischen Fokussierung eines optischen Systems
JPH03135787A (ja) * 1989-10-20 1991-06-10 Jeol Ltd X線検出器
JP2638311B2 (ja) * 1991-01-10 1997-08-06 動力炉・核燃料開発事業団 マイクロ波高電界中における加熱温度測定装置
RU2046303C1 (ru) * 1993-03-03 1995-10-20 Товарищество с ограниченной ответственностью "Контар" Оптический пирометр
US5368392B1 (en) * 1993-09-17 1998-11-03 Omega Engineering Method and apparatus for measuring temperature using infrared techniques
US5823679A (en) * 1993-09-17 1998-10-20 Omega Engineering, Inc. Method and apparatus for measuring temperature including aiming light
IL107659A0 (en) * 1993-11-18 1994-07-31 State Of Israel Ministy Of Def A hand-held infra red imaging probe
US5626424A (en) * 1994-07-21 1997-05-06 Raytek Subsidiary, Inc. Dual light source aiming mechanism and improved actuation system for hand-held temperature measuring unit
JP3708991B2 (ja) * 1994-12-28 2005-10-19 ペンタックス株式会社 インナーフォーカスの望遠鏡
US5653537A (en) * 1995-03-17 1997-08-05 Ircon, Inc. Non-contacting infrared temperature thermometer detector apparatus
DE19528590C3 (de) * 1995-08-03 2003-11-27 Raytek Gmbh Vorrichtung zur Temperaturmessung
JPH10133086A (ja) * 1996-10-25 1998-05-22 Nikon Corp 顕微鏡の接眼レンズ
US5836694A (en) * 1996-12-10 1998-11-17 Raytek Subsidiary, Inc. Laser and scope aiming mechanism for a hand-held temperature measuring unit
DE19654276A1 (de) * 1996-12-24 1998-06-25 Raytek Gmbh Vorrichtung zur berührungslosen Temperaturmessung
US7885697B2 (en) * 2004-07-13 2011-02-08 Dexcom, Inc. Transcutaneous analyte sensor
DE19853513A1 (de) * 1997-11-21 1999-05-27 Omega Engineering Kombination aus Pyrometer und Multimeter
US6951411B1 (en) * 1999-06-18 2005-10-04 Spectrx, Inc. Light beam generation, and focusing and redirecting device
US6519083B2 (en) * 2000-07-26 2003-02-11 James A. Heinrich Power focusing device for a telescopic sight
JP3927934B2 (ja) * 2003-09-02 2007-06-13 キヤノン株式会社 撮像装置および撮像装置のフォーカス制御方法
US7355178B2 (en) * 2004-06-22 2008-04-08 Everest Charles E Infrared thermometer with through-the-lens visible targeting system
US8565848B2 (en) * 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
CN101715059B (zh) * 2005-12-06 2012-09-26 松下电器产业株式会社 数字相机、相机机身、相机系统及该数字相机的控制方法
JP2007199039A (ja) * 2006-01-30 2007-08-09 Sumitomo Metal Ind Ltd 表面温度測定装置
CA2675890A1 (en) * 2007-01-19 2008-07-24 University Health Network Electrostatically driven imaging probe
US8240912B2 (en) * 2008-08-15 2012-08-14 Fluke Corporation Multi-zone non-contact spot thermometer
CN102374902B (zh) * 2010-08-11 2014-03-26 曹柏林 一种提高辐射温度计测温准确度的量子论修正方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2476831Y (zh) * 2001-05-10 2002-02-13 哈尔滨市鑫锚门窗制造有限公司 微型摄像镜头保护器
CN2519254Y (zh) * 2001-12-07 2002-10-30 陕西斯达煤矿安全装备有限责任公司 本质安全型红外测温仪
CN201166586Y (zh) * 2007-08-01 2008-12-17 袁国炳 用于光纤红外测温仪的光学探头

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289536A (zh) * 2016-10-26 2017-01-04 中国科学院云南天文台 一种用于光学镜面的红外测温装置
CN108051094A (zh) * 2018-01-16 2018-05-18 淮安中甲仪器仪表有限公司 提高温度传感性能的方法及耐温硅光电现场温度传感装置
CN108051094B (zh) * 2018-01-16 2023-12-05 江苏新全凯科技有限公司 提高温度传感性能的方法及耐温硅光电现场温度传感装置
CN113358365A (zh) * 2021-05-26 2021-09-07 电子科技大学 一种航空发动机涡轮盘辐射信息采集探头
CN113358365B (zh) * 2021-05-26 2022-11-08 电子科技大学 一种航空发动机涡轮盘辐射信息采集探头
CN113588117A (zh) * 2021-08-10 2021-11-02 电子科技大学 一种航空发动机涡轮盘的高稳定性辐射测温微型探头
CN113588117B (zh) * 2021-08-10 2022-10-14 电子科技大学 一种航空发动机涡轮盘的高稳定性辐射测温微型探头
CN113654665A (zh) * 2021-09-03 2021-11-16 安徽淮光智能科技有限公司 一种便于冷却防护的高温光纤探头

Also Published As

Publication number Publication date
US20130051424A1 (en) 2013-02-28
JP5486732B2 (ja) 2014-05-07
EP2554960B1 (en) 2016-08-31
CN101922971A (zh) 2010-12-22
CN101922971B (zh) 2012-09-05
EP2554960A4 (en) 2015-07-08
RU2540439C2 (ru) 2015-02-10
EP2554960A1 (en) 2013-02-06
RU2012144003A (ru) 2014-04-27
JP2013527440A (ja) 2013-06-27
US8870452B2 (en) 2014-10-28

Similar Documents

Publication Publication Date Title
WO2011137713A1 (zh) 一种用于红外测温仪的光学系统和调焦结构
CA2623827C (en) Collimated optical system
KR101374660B1 (ko) 고온 셀의 내부를 관찰하기 위한 장치, 이러한 장치가 장착되는 고온 셀, 및 그 장치를 유지하기 위한 방법
CN105388578B (zh) 长波红外光学机械无热化镜头及其补偿调节方法
CN103226234A (zh) 别汉棱镜光轴的调试方法
CN213599937U (zh) 射击设备、瞄准装置及其红外成像装置
JP2004212671A (ja) 赤道儀
CA2758619A1 (en) Ganged focus mechanism for an optical device
JP2005017643A (ja) 対物レンズおよび光学装置
CN104344898A (zh) 一种潜望式双目热像仪
CN211527344U (zh) 一种具有定位功能的手持式三维扫描仪
RU2383846C2 (ru) Многоканальный прицельно-наблюдательный оптико-электронный прибор
CN210109641U (zh) 一种瞄准系统
CN114136938A (zh) 一种多功能微型宽场显微成像装置及其成像方法
CN209074530U (zh) 自聚焦光纤内窥镜
贾学志 et al. Design and experiment research on precision focusing mechanism of space remote sensor
JP2007193081A (ja) 撮影装置および接眼レンズ
JP5479012B2 (ja) 連結部材および望遠鏡
JP4135822B2 (ja) 内視鏡の観察像投影部
CN114839737A (zh) 一种分划板调整装置及方法
JP2017219590A (ja) 取付アダプタ
JP2582945Y2 (ja) 測温内視鏡
Li et al. Camera calibration of the stereo vision measurement system
Zheng et al. Athermalization design in the big-aperture IR zoom telescope
CN107983547A (zh) 监控莲蓬头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777134

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012144003

Country of ref document: RU

Ref document number: 2391/MUMNP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2011777134

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011777134

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013506466

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13695751

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE