WO2011137709A1 - 信干噪比预测方法及装置 - Google Patents

信干噪比预测方法及装置 Download PDF

Info

Publication number
WO2011137709A1
WO2011137709A1 PCT/CN2011/072745 CN2011072745W WO2011137709A1 WO 2011137709 A1 WO2011137709 A1 WO 2011137709A1 CN 2011072745 W CN2011072745 W CN 2011072745W WO 2011137709 A1 WO2011137709 A1 WO 2011137709A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
estimated
time domain
time
signal
Prior art date
Application number
PCT/CN2011/072745
Other languages
English (en)
French (fr)
Inventor
张庆宏
王衍文
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP11777130.3A priority Critical patent/EP2566074B1/en
Publication of WO2011137709A1 publication Critical patent/WO2011137709A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]

Definitions

  • the present invention relates to a Signal to Interference and Noise Ratio (SINR) prediction technique, and more particularly to a method for predicting a signal to interference and noise ratio based on a signal to interference and noise ratio of a previously transmitted reference signal (RS, Reference Signal) Device.
  • SINR Signal to Interference and Noise Ratio
  • the core of wireless communication is to predict the channel quality.
  • the accurate channel quality prediction result is the basis for reliable and efficient transmission in wireless communication.
  • the time selective fading and frequency selective fading characteristics of the wireless channel make the wireless channel change random in both the time domain and the frequency domain, making the prediction of the wireless channel extremely difficult and complicated.
  • a wireless communication system usually needs to obtain a time-selective fading characteristic and a frequency selective fading characteristic of a wireless channel by transmitting an RS, and then use the latest RS-based channel measurement result or its filtering result as a prediction result of the quality of the wireless channel.
  • RS often does not appear densely in two dimensions of time and frequency, that is, the wireless communication system cannot obtain the real-time channel quality on all spectrums of the wireless channel through the measurement result of the RS, thereby The prediction result of the channel is difficult to guarantee, which in turn affects the reliability and efficiency of wireless communication. Summary of the invention
  • the main object of the present invention is to provide a signal to interference and noise ratio prediction method and apparatus capable of performing signal to interference and noise ratio prediction based on a signal to interference and noise ratio of a previously transmitted RS in a wireless communication system.
  • a signal dry-to-noise ratio prediction method which sets a time domain threshold and/or a frequency domain threshold, and divides the time-frequency distance space into different regions according to the set time domain threshold and/or the frequency domain threshold, for each Setting a signal to interference and noise ratio SINR in the time-frequency region; the method includes:
  • the calculating a time domain difference and/or a frequency domain difference between the channel to be estimated and the reference RS is: when the channel to be estimated and the time-frequency region where the reference RS is located are all a set time-frequency unit, Calculating a time domain difference and/or a frequency domain difference of the time-frequency coordinates of the estimated channel or/and the reference RS; when the time-frequency region where the channel to be estimated or/and the reference RS is greater than a set time-frequency unit, Calculating, in the time-frequency unit, an average of the time domain coordinates and/or the frequency domain coordinates of the to-be-estimated channel or/and the reference RS, and using the coordinate average value as the coordinates of the to-be-estimated channel or/and the reference RS, And calculating a time domain difference and/or a frequency domain difference with the coordinates of the channel to be estimated or/and the reference RS.
  • the time-frequency distance space is divided into different areas according to the set time domain threshold and the frequency domain threshold:
  • the time-frequency distance space is divided into (m+1) X ( n+1 ) time-frequency regions, respectively, to 0
  • Bxy represents the divided time-frequency region
  • X represents the region number in the time domain
  • y represents the region number in the frequency domain; wherein, l ⁇ x ⁇ (m+1), l ⁇ y ⁇ (n+1 );
  • the transmission power of each RS and the estimated channel is complemented in the actual signal to interference and noise ratio prediction process.
  • the difference in spectral density allows the signal to interference and noise ratio prediction to be performed on the basis of equal emission power spectral density.
  • the transmit power spectral densities of all reference RSs and the estimated channel are equal (if there is a difference, the remaining estimated channel emissions may be added to the SINR measurements of the respective reference RSs.
  • the difference in power spectral density is used in the technical solution of the present invention.
  • the method for determining the signal to interference and noise ratio SINR for each time-frequency region is:
  • the signal to interference and noise ratio of the channel to be estimated is equal to the signal to interference and noise ratio of the reference RS; for B21, the SINR of the channel to be estimated is: SINR1 + [( SINR1 - SINR2 ) / ( T1 - T2 )] x ( T0 - T1), where SINR1 is the signal to interference and noise ratio of the RS closest to the channel to be estimated in the time domain,
  • SINR2 is the signal-to-noise ratio of the RS closest to the channel to be estimated in the time domain
  • T1 is the time domain coordinate of the RS closest to the channel to be estimated in the time domain
  • T2 is the RS closest to the channel to be estimated in the time domain.
  • Time domain coordinates, TO is the time domain coordinate of the channel to be estimated;
  • the inverse function of the probability distribution function of the signal to interference and noise ratio of all reference RSs is used to determine the SINR of the channel to be estimated;
  • the method for determining the signal to interference and noise ratio SINR for each time-frequency region is:
  • the signal to interference and noise ratio of the channel to be estimated is equal to the signal to interference and noise ratio of the reference RS; for B21, the SINR of the channel to be estimated is: SINR1 + [( SINR1 - SINR2 ) / ( T1 - T2 )] x ( T0 - T1), where SINR1 is the signal to interference and noise ratio of the RS closest to the channel to be estimated in the time domain,
  • SINR2 is the signal-to-noise ratio of the RS closest to the channel to be estimated in the time domain
  • T1 is the time domain coordinate of the RS closest to the channel to be estimated in the time domain
  • T2 is the RS closest to the channel to be estimated in the time domain.
  • Time domain coordinates, TO is the time domain coordinate of the channel to be estimated;
  • the SINR of the channel to be predicted is: SINR1 +[ ( SINR1-SINR2 ) I ( F1 - F2 ) ] x ( F0 - F1 ), where SINR1 is the signal to interference and noise ratio of the RS closest to the channel to be estimated in the time domain, and SINR2 is the signal dry noise of the RS closest to the channel to be estimated in the time domain F1 is the frequency domain coordinate of the RS closest to the channel to be estimated in the time domain, F2 is the frequency domain coordinate of the RS closest to the channel to be estimated in the time domain, and F0 is the frequency domain coordinate of the channel to be predicted;
  • the SINR determination function of the channel to be predicted is: yxFxl ( ) / ( x+y ) + xxFly ( ) / ( x+y ), where Fxl ( ) represents the region
  • the SINR determination function of Bxl, Fly ( ) represents the SINR determination function of the region Bly.
  • Bxy represents the divided time-frequency region
  • X represents the sequence of regions in the time domain
  • y represents the sequence of regions in the frequency domain; wherein, l ⁇ x ⁇ (m+1), l ⁇ y ⁇ (n+1 );
  • the method for determining the signal to interference and noise ratio SINR for each time-frequency region is:
  • the signal to interference and noise ratio of the channel to be estimated is equal to the signal to interference and noise ratio of the reference RS;
  • the SINR of the channel to be estimated is: SINR1 + [ ( SINR1 - SINR2 ) I ( T12 - T2 2 ) ] x ( T0 2 - T1 2 ), where SINR1 is the signal to interference and noise ratio of the RS closest to the channel to be estimated in the time domain, and SINR2 is the signal to interference and noise ratio of the RS closest to the channel to be estimated in the time domain; T1 is in the time domain The time domain coordinate of the RS closest to the channel to be estimated, ⁇ 2 is the time domain coordinate of the RS closest to the channel to be estimated in the time domain, and TO is the time domain coordinate of the channel to be estimated;
  • the inverse function of the probability distribution function of the signal to interference and noise ratio of all reference RSs is used to determine the SINR of the channel to be estimated;
  • the method for determining the signal to interference and noise ratio SINR for each time-frequency region is:
  • the signal to interference and noise ratio of the channel to be estimated is equal to the signal to interference and noise ratio of the reference RS;
  • the SINR of the channel to be estimated is: SINR1 + [( SINR1 - SINR2 ) / ( T1 - T2 )] x (T0-T1), where SINR1 is the signal to interference and noise ratio of the RS closest to the channel to be estimated in the time domain, and SINR2 is the signal to interference and noise ratio of the RS closest to the channel to be estimated in the time domain; T1 is in the time domain The time domain coordinate of the RS closest to the channel to be estimated, T2 is the time domain coordinate of the RS closest to the channel to be estimated in the time domain, and TO is the time domain coordinate of the channel to be estimated;
  • the SINR of the channel to be predicted is: SINR1 + [ ( SINR1 - SINR2 ) I ( F1 - F2 ) ] x ( F0 - F1 ), where SINR1 is the signal of the RS closest to the channel to be estimated in the time domain.
  • Noise ratio SINR2 is the signal-to-noise ratio of the RS closest to the channel to be estimated in the time domain
  • F1 is the frequency domain coordinate of the RS closest to the channel to be estimated in the time domain
  • F2 is the nearest time to the channel to be estimated in the time domain.
  • Frequency domain coordinates of the RS F0 is the frequency domain coordinate of the channel to be predicted;
  • the SINR determination function of the channel to be predicted is: yxFxl ( ) / ( x+y ) + xxFly ( ) / ( x+y ), where Fxl ( ) represents the region
  • the SINR determination function of Bxl, Fly ( ) represents the SINR determination function of the region Bly.
  • the reference RS when the reference RS is one, it is an RS that is sent last time from the channel to be estimated in the time domain, and when the reference RS is two, the first reference RS is sent last time in the time domain from the channel to be estimated.
  • the second reference RS is an RS that is transmitted last time from the channel to be estimated in the time domain; when the reference RS is three or more, the RS closest to the channel to be estimated is sequentially selected in the time domain as the corresponding reference RS.
  • n 1, 2 or 3.
  • a calculating unit configured to calculate a time domain difference and/or a frequency domain difference between the channel to be estimated and the reference RS; determining unit, configured to determine a time-frequency region to which the time domain difference and/or the frequency domain difference belongs, and according to the time zone The manner of determining the SINR corresponding to the frequency region determines the SINR of the channel to be estimated.
  • the calculating unit further calculates, when the time-frequency region where the channel to be estimated and the reference RS are located, a time-frequency unit, the time-frequency coordinates of the channel to be estimated or/and the reference RS.
  • Time domain difference and/or frequency domain difference are located, when the time-frequency region where the channel to be estimated and the reference RS are located, a time-frequency unit, the time-frequency coordinates of the channel to be estimated or/and the reference RS.
  • the time-domain coordinates of the channel to be estimated or/and the reference RS are calculated in the time-frequency unit and/or Or an average value of the frequency domain coordinates, using the coordinate average value as the coordinates of the channel to be estimated or/and the reference RS, and calculating the time domain difference sum with the coordinates of the channel to be estimated or/and the reference RS
  • the setting unit further divides the time-frequency distance space into (m+1) X (n+) when the set time domain has a width of m and the set frequency domain has a value of n.
  • Bxy represents the divided time-frequency region
  • X represents the sequence of regions in the time domain
  • y represents the sequence of regions in the frequency domain; wherein, l ⁇ x ⁇ (m+1), l ⁇ y ⁇ (n+1 );
  • the determining unit further, for B11, the signal to interference and noise ratio of the channel to be estimated is equal to the signal to interference and noise ratio of the reference RS;
  • the SINR of the channel to be estimated is: SINR1 + [( SINR1 - SINR2 ) / ( T1 - T2 )] x ( T0 - T1 ), where SINR1 is the signal dry noise of the RS closest to the channel to be estimated in the time domain. Ratio, SINR2 is the signal to interference and noise ratio of the RS closest to the channel to be estimated in the time domain; T1 is the time domain distance Estimating the time domain coordinates of the nearest RS of the channel, T2 is the time domain coordinate of the RS closest to the channel to be estimated in the time domain, and TO is the time domain coordinate of the channel to be estimated;
  • the inverse function of the probability distribution function of the signal to interference and noise ratio of all reference RSs is used to determine the SINR of the channel to be estimated;
  • the determining unit further, for B11, the signal to interference and noise ratio of the channel to be estimated is equal to the signal to interference and noise ratio of the reference RS;
  • the SINR of the channel to be estimated is: SINR1 + [( SINR1 - SINR2 ) / ( T1 - T2 )] x ( T0 - T1 ), where SINR1 is the signal dry noise of the RS closest to the channel to be estimated in the time domain.
  • SINR2 is the signal-to-noise ratio of the RS closest to the channel to be estimated in the time domain; T1 is the time domain coordinate of the RS closest to the channel to be estimated in the time domain, and T2 is the nearest time to the channel to be estimated in the time domain.
  • the time domain coordinate of the RS where TO is the time domain coordinate of the channel to be estimated;
  • the SINR of the channel to be predicted is: SINR1 + [ ( SINR1 - SINR2 ) I ( F1 - F2 ) ] x ( F0 - F1 ), where SINR1 is the signal of the RS closest to the channel to be estimated in the time domain.
  • Noise ratio SINR2 is the signal-to-noise ratio of the RS closest to the channel to be estimated in the time domain
  • F1 is the frequency domain coordinate of the RS closest to the channel to be estimated in the time domain
  • F2 is the nearest time to the channel to be estimated in the time domain.
  • Frequency domain coordinates of the RS F0 is the frequency domain coordinate of the channel to be predicted;
  • the SINR determination function of the channel to be predicted is: yxFxl ( ) / ( x+y ) + xxFly ( ) / ( x+y ), where Fxl ( ) represents the region
  • the SINR determination function of Bxl, Fly ( ) represents the SINR determination function of the region Bly.
  • Bxy represents the divided time-frequency region
  • X represents the sequence of regions in the time domain
  • y represents the sequence of regions in the frequency domain; wherein, l ⁇ x ⁇ (m+1), l ⁇ y ⁇ (n+1 );
  • the determining unit further, for B11, the signal to interference and noise ratio of the channel to be estimated is equal to the signal to interference and noise ratio of the reference RS;
  • the SINR of the channel to be estimated is: SINR1 + [ ( SINR1 - SINR2 ) I ( T12 - T2 2 ) ] x ( T0 2 - T1 2 ), where SINR1 is the RS in the time domain closest to the channel to be estimated.
  • the signal to interference and noise ratio, SINR2 is the signal to interference and noise ratio of the RS closest to the channel to be estimated in the time domain;
  • T1 is the time domain coordinate of the RS closest to the channel to be estimated in the time domain, and ⁇ 2 is the channel to be estimated in the time domain.
  • the time domain coordinate of the next most recent RS, and TO is the time domain coordinate of the channel to be estimated;
  • the inverse function of the probability distribution function of the signal to interference and noise ratio of all reference RSs is used to determine the SINR of the channel to be estimated;
  • the determining unit further, for B11, the signal to interference and noise ratio of the channel to be estimated is equal to the signal to interference and noise ratio of the reference RS;
  • the SINR of the channel to be estimated is: SINR1 + [( SINR1 - SINR2 ) / ( T1 - T2 )] x ( T0 - T1 ), where SINR1 is the signal dry noise of the RS closest to the channel to be estimated in the time domain.
  • SINR2 is the signal-to-noise ratio of the RS closest to the channel to be estimated in the time domain; T1 is the time domain coordinate of the RS closest to the channel to be estimated in the time domain, and T2 is the nearest time to the channel to be estimated in the time domain.
  • the time domain coordinate of the RS where TO is the time domain coordinate of the channel to be estimated;
  • the SINR of the channel to be predicted is: SINR1 + [ ( SINR1 - SINR2 ) I ( F1 - F2 ) ] x ( F0 - F1 ), where SINR1 is the signal of the RS closest to the channel to be estimated in the time domain. Noise ratio, SINR2 is the signal to interference and noise ratio of the RS closest to the channel to be estimated in the time domain; F1 is The frequency domain coordinate of the RS closest to the channel to be estimated in the time domain, F2 is the frequency domain coordinate of the RS closest to the channel to be estimated in the time domain, and F0 is the frequency domain coordinate of the channel to be predicted;
  • the SINR determination function of the channel to be predicted is: yxFxl ( ) / ( x+y ) + xxFly ( ) / ( x+y ), where Fxl ( ) represents the region
  • the SINR determination function of Bxl, Fly ( ) represents the SINR determination function of the region Bly.
  • the RS is the last time sent from the channel to be estimated in the time domain
  • the first reference RS is the last time sent from the channel to be estimated in the time domain
  • the second reference RS is the RS that is transmitted last time from the channel to be estimated in the time domain; when the reference RS is three or more, the RS closest to the channel to be estimated is sequentially selected in the time domain as the corresponding reference RS.
  • n 1, 2 or 3.
  • the corresponding threshold in the time domain and the frequency domain is preset, and the time-frequency distance space is divided into multiple regions according to the set threshold, and a corresponding SINR determination mode is set for each region; SINR is performed on the channel to be estimated.
  • the time domain difference between the time-frequency coordinates of the channel to be estimated and the time-frequency coordinates of the reference RS and the frequency domain difference are first determined, and the time domain difference and the region to which the frequency domain difference belongs are determined, according to the SINR corresponding to the region to which the region belongs.
  • the determining manner determines the SINR of the channel to be estimated.
  • the invention fully considers the correlation fading characteristics of the RS in the time domain and the frequency domain, and predicts the SINR of the channel to be estimated by combining the characteristics of the SINR of the RS transmitted before the system, and the prediction result is more accurate.
  • FIG. 1 is a flowchart of a method for predicting a signal to interference and noise ratio according to the present invention
  • FIG. 2 is a schematic diagram of a time-frequency region of video wide value partitioning according to the present invention.
  • FIG. 3 is a schematic diagram of a channel to be estimated and a reference RS
  • FIG. 4 is a schematic structural diagram of a signal dry-to-noise ratio prediction apparatus according to the present invention. detailed description
  • the basic idea of the present invention is that the time domain and the corresponding threshold of the frequency domain are preset, and the time-frequency distance space is divided into a plurality of regions according to the set threshold, and a corresponding SINR determination mode is set for each region;
  • the channel performs SINR prediction, first determining a time domain difference and a frequency domain difference between a time-frequency coordinate of the channel to be estimated and a time-frequency coordinate of the reference RS, and determining the time domain difference and the region to which the frequency domain difference belongs, according to the region to which the frequency domain belongs.
  • the corresponding SINR determination manner determines the SINR of the channel to be estimated.
  • FIG. 1 is a flowchart of a method for predicting a signal to interference and noise ratio according to the present invention. As shown in FIG. 1, the method for predicting a signal to interference and noise ratio of the present invention includes the following steps:
  • Step 101 Set a time domain threshold and/or a frequency domain threshold, and divide the time-frequency distance space into different regions according to the set time domain threshold and the frequency domain threshold, and determine the SINR for each time-frequency region.
  • the specific value of the time domain threshold and/or the frequency domain threshold is related to the frequency selection/time selection fading of the wireless channel, and the frequency selection/time selection is the smaller the frequency domain/time domain threshold is smaller, and vice versa.
  • the time domain threshold is set to 0.5ms, 0.1ms, lms, 2ms, 5ms, 10ms, 50ms.
  • the frequency domain threshold may be set to 12 subcarriers, 24 subcarriers, 36 subcarriers, 1 ⁇ , 5 MHz, 10 MHz, and the like.
  • the time domain is broadly defined to determine how to determine the SINR of the channel to be estimated by referring to the RS.
  • Step 102 Calculate a time domain difference between the channel to be estimated and the reference RS and a frequency domain difference, determine a time-frequency region to which the time domain difference and the frequency domain difference belong, and determine a channel to be estimated according to a determining manner of the SINR corresponding to the time-frequency region.
  • SINR Calculating a time domain difference between the channel to be estimated and the reference RS and a frequency domain difference, where: when the channel to be estimated and the time-frequency region where the reference RS is located are all a set time-frequency unit, the channel to be estimated or
  • the time-frequency distance space can be divided into (m+1) X ( n+1 ) regions, respectively 0 to a region between the thresholds, a region between the first threshold and the second threshold, ... (m-1) to the mth threshold, (n) -1 ) an area between the threshold value and the nth threshold, which is larger than the mth threshold and greater than the nth threshold; where m and n are integers greater than or equal to 0, m, n Not 0 at the same time.
  • the signal to interference and noise ratio of the channel to be estimated is equal to the signal to interference and noise ratio of the reference RS;
  • the SINR of the channel to be estimated is: SINR1 + [ ( SINR1 - SINR2 ) I ( T1 - T2 ) ] x ( T0 -T1), where SINR2 is the signal to interference and noise ratio of the reference RS, SINR1 is the signal to interference and noise ratio of the first reference RS; T2 is the time domain coordinate of the second reference RS, and T1 is the time domain coordinate of the first reference RS, TO is the time domain coordinate of the channel to be estimated; in the present invention, the first reference RS is the RS closest to the channel to be estimated in the time domain, and the second
  • SINR of the channel to be predicted is: SINR1 + [ ( SINR1 - SINR2 ) I ( F1 - F2 ) ] x ( F0 - F1 ), where SINR2 is the signal to interference and noise ratio of the reference signal, and SINR1 is the signal of the first reference signal. Noise ratio; F2 is the frequency domain coordinate of the second reference signal, and F1 is the frequency domain of the first reference signal.
  • F0 is the frequency i or coordinate of the channel to be predicted; for B13, B14 Bnl, Bl (n+1), the inverse function of the probability distribution function of the signal to interference and noise ratio of all reference signals is used to determine the SINR of the channel to be predicted; For Bxy, where ⁇ >1 and y>l, the SINR of the channel to be predicted is: The SINR determination function of the channel to be predicted is: yxFxl ( ) / ( x+y ) + xxFly ( ) / ( x+y ), Where Fxl ( ) represents the SINR determination function of the region Bxl, and Fly ( ) represents the SINR determination function of the region Bly.
  • the SINR of the channel to be predicted can also be determined by the inverse function of the probability distribution function of the signal to interference and noise ratio of all reference signals.
  • the SINR of the channel to be estimated may be determined as follows: SINR1 + [(SINR1-SINR2) I ( TP-T2 2 ) ]x ( T0 2 -T1 2 ), where SINR2 is the reference RS The noise ratio, SINR1 is the signal to interference and noise ratio of the first reference RS; ⁇ 2 is the time domain coordinate of the second reference RS, T1 is the time domain coordinate of the first reference RS, and TO is the time domain coordinate of the channel to be estimated.
  • the SINR of the channel to be estimated may be determined as follows: SINR1 + [(SINR1-SINR2) / VT1 2 - T2 2 ] x VT0 2 - Tl 2
  • SINR2 is the signal to interference and noise ratio of the reference RS
  • SINR1 is the first reference.
  • the signal to interference and noise ratio of the RS T2 is the time domain coordinate of the second reference RS
  • T1 is the time domain coordinate of the first reference RS
  • TO is the time domain coordinate of the channel to be estimated, T0>T1>T2.
  • the SINR of the channel to be estimated may be determined as follows: SINR1 + [(SINR1-SINR2) I (FP-F2 2 )]x (F0 2 -F1 2 ), where SINR2 is the reference RS The noise ratio, SINR1 is the signal to interference and noise ratio of the first reference RS; F2 is the time domain coordinate of the second reference RS, F1 is the time domain coordinate of the first reference RS, and F0 is the time domain coordinate of the channel to be estimated.
  • the SINR of the channel to be estimated may be determined as follows: SINR1 + [(SINR1-SINR2) /VF1 2 -F2 2 ]X F0 2 -F1 2
  • SINR2 is the signal to interference and noise ratio of the reference RS
  • SINR1 is the first Refer to the signal to interference and noise ratio of the RS
  • T2 is the time domain coordinate of the second reference RS
  • F1 is the time domain coordinate of the first reference RS
  • F0 is the time domain coordinate of the channel to be estimated, F0>F1>F2.
  • the foregoing reference RS is one, it is preferably the time domain closest to the channel to be estimated.
  • the first reference RS is the RS that is transmitted last time from the channel to be estimated in the time domain
  • the second reference RS is the RS that is transmitted last time from the channel to be estimated in the time domain;
  • the reference RS is three or more, the RS closest to the channel to be estimated is sequentially selected in the time domain as the corresponding reference RS.
  • n is preferably 1 or 2.
  • m can also be 3 or 4, etc.
  • n is also 3, etc., considering the implementation complexity, the values of m and n above are not too large.
  • the above two time domain thresholds and one frequency domain threshold value divide the time-frequency distance space into six regions, respectively, and the above time-frequency domain distance thresholds divide the entire time-frequency domain distance space. It is divided into 6 regions, which are respectively recorded as Bxy, where X is in the range of ⁇ 1 , 2, 3 ⁇ ; y is in the range of ⁇ 1 , 2 ⁇ ; the above six bodies are Bll, B21, B31, B21 , B22, B23, as shown in FIG. 2, wherein B11 corresponds to a region from 0 to TimeThl, 0 to FreqThl, B21 corresponds to a region i of TimeThl to TimeTh2, 0 to FreqThl, or ... B23 is greater than TimeTh2, greater than FreqThl Area.
  • the RS generally selects the previously transmitted RS that is closest to the current to be predicted as the reference RS.
  • the reference signal preferably is in the time domain from the RB.
  • the nearest RS (SRS) of the RS is used as its reference RS.
  • the latest reference signal be SINR1 for RS1 measurement, RS2, SINR2 for the second newest, and so on, RSk and SINRk.
  • the SINR of the current to-be-estimated channel is SINR1;
  • the SINR of the current channel to be estimated is: SINR1 + [ ( SINR1 - SINR2 ) / ( T1 - T2 ) ] x ( T0 - T1 ) ; or, the SINR of the current channel to be estimated is: SINR1 + [ ( SINR1 - SINR2 /VT1 2 -T2 2 ]X VT0 2 -T1 2 ; where T1 and T2 are the time domain coordinate values of RS1 and RS2, respectively, and TO is the time domain coordinate value of the current channel to be estimated.
  • x E [0 , 1] in the inverse function described above indicates the probability that the SINR of the current channel to be estimated is greater than the SINR mean of all the RSs described above.
  • the SINR of the channel to be predicted is: SINR1 + [ ( SINR1 - SINR2 ) I ( F1 - F2 ) ] x ( F0 - F1 ); or, the SINR of the current channel to be estimated is: SINR1 + [ ( SINR1 - SINR2 /VF1 2 -F2 2 ]X VF0 2 -F1 2 ; where SINR2 is the signal to interference and noise ratio of the reference signal, SINR1 is the signal to interference and noise ratio of the first reference signal; F2 is the frequency domain coordinate of the second reference signal, F1 is the frequency domain coordinate of the first reference signal, and F0 is the frequency domain coordinate of the channel to be predicted;
  • the inverse function of the probability distribution function of the signal to interference and noise ratio of all reference signals is used to determine the SINR of the channel to be predicted;
  • the SINR determination function of the channel to be predicted is: yxFxl ( ) / ( x+y ) + xxFly ( ) / ( x+y ), where Fxl ( ) represents the region
  • the SINR determination function of Bxl, Fly ( ) represents the SINR determination function of the region Bly.
  • the SINR of the channel to be predicted can also be determined by the inverse function of the probability distribution function of the signal to interference and noise ratio of all reference signals.
  • the SINR of the channel to be estimated at this time is Compared with the SINR of the reference RS, it is considered that there is no change, and the SINR of the channel to be estimated is equal to the SINR of the reference RS.
  • the current channel to be estimated is compared with the reference RS, and the channel fading in the frequency domain is still related to the channel fading between the FreqThl channel and the RS. For example, linear correlation, etc., the current function to be estimated is calculated by the correlation function.
  • the SINR of the channel is compared with the reference RS, and the channel fading in the frequency domain is still related to the channel fading between the FreqThl channel and the RS.
  • the current estimated channel is compared with the reference RS. Although the gap in the frequency domain is still in the FreqThl range, the gap in the time domain is already very large, and there is no correlation between them. Thus, the SINR of the current channel to be estimated is determined by relevant statistical means.
  • the current estimated channel has a larger frequency domain difference than the reference RS. Since the correlation in the frequency domain is very small, the SINR of the current to-be-estimated channel is determined in the manner of B31.
  • For the current channel to be estimated first determine its coordinate value in the time-frequency distance space. Specifically, as shown in FIG. 3, for each channel to be estimated, determine its position in the time domain and the frequency domain, specifically, When the time-frequency region where the channel to be estimated is located is a set time-frequency unit, the time-frequency unit of the location is its coordinate; when the time-frequency region where the channel to be estimated is located is greater than a set time-frequency unit, The average value of the time domain coordinates of the channel to be estimated is calculated in time-frequency units, and the calculated coordinate average value is used as the coordinates of the channel to be estimated.
  • the SINR is determined in such a way as to determine the SINR of the channel to be estimated.
  • the reference RS compared with the channel coordinates to be estimated is the RS transmitted before the system closest to the channel to be estimated in the time domain; the coordinate determination manner of the reference RS is the same as the coordinate determination mode of the channel to be estimated.
  • the specific values of the foregoing m and n may be determined according to the foregoing general area division manner, respectively, and the manner of determining the SINR of the channel to be estimated in the corresponding area may be determined.
  • 4 is a schematic structural diagram of a signal to interference and noise ratio prediction apparatus according to the present invention. As shown in FIG. 4, the signal to interference and noise ratio prediction apparatus includes a setting unit 40, a calculation unit 41, and a determining unit 42, where
  • the setting unit 40 is configured to set a time domain threshold and/or a frequency domain threshold, and divide the time-frequency distance space into different regions according to the set time domain threshold and the frequency domain threshold, and set each time-frequency region How to determine the SINR;
  • the calculating unit 41 is configured to calculate a time domain difference between the channel to be estimated and the reference RS and a frequency domain difference.
  • the determining unit 42 is configured to determine the time-frequency region to which the time domain difference and the frequency domain difference belong, and according to the time-frequency region to which the frequency domain region belongs. The manner in which the corresponding SINR is determined determines the SINR of the channel to be estimated.
  • the calculating unit 40 further calculates a time domain difference according to the time-frequency coordinates of the to-be-estimated channel or/and the reference RS when both the to-be-estimated channel and the time-frequency region where the reference RS is located are a set time-frequency unit. And frequency domain difference;
  • the time-domain coordinates and frequency of the to-be-estimated channel or/and the reference RS are calculated in the time-frequency unit.
  • the above setting unit further divides the time-frequency distance space into (m+1) X ( n+1 ) regions when the set time domain has a width of m and the set frequency domain has a value of n. , the area between 0 and the first threshold, the area between the first threshold and the second threshold, ...
  • the time-frequency region is divided by Bxy, X is the sequence of regions in the time domain, and y is the sequence of regions in the frequency domain; where, l ⁇ x ⁇ (m+l), l ⁇ y ⁇ (n+1); Determining unit 42, further, for B11, the signal to interference and noise ratio of the channel to be estimated is equal to the signal to interference and noise ratio of the reference RS;
  • the SINR of the channel to be estimated is: SINR1 + [( SINR1 - SINR2 ) / ( T1 - T2 )] x ( T0 - T1 ), where SINR2 is the signal to interference and noise ratio of the reference RS, and SINR1 is the first reference RS.
  • the SINR of the channel to be predicted is: SINR1 + [ ( SINR1 - SINR2 ) I ( F1 - F2 ) ] x ( F0 - F1 ), where SINR2 is the signal to interference and noise ratio of the reference signal, and SINR1 is the first reference.
  • F2 is the frequency domain coordinate of the second reference signal,
  • F1 is the frequency domain coordinate of the first reference signal, and
  • F0 is the frequency domain coordinate of the channel to be predicted;
  • the SINR determination function of the channel to be predicted is: yxFxl ( ) / ( x+y ) + xxFly ( ) / ( x+y ), where Fxl ( ) represents the region
  • the SINR determination function of Bxl, Fly ( ) represents the SINR determination function of the region Bly.
  • the SINR of the channel to be predicted can also be determined by the inverse function of the probability distribution function of the signal to interference and noise ratio of all reference signals.
  • the determining unit 42 further, for B21, the SINR of the channel to be estimated may also be: SINR1 + [ ( SINR1 - SINR2 ) I ( Tl 2 - T2 2 ) ] ⁇ ( ⁇ 0 2 - ⁇ 1 2 ), where SINR2
  • SINR1 is the signal to interference and noise ratio of the first reference RS
  • T2 is the time domain coordinate of the second reference RS
  • T1 is the time domain coordinate of the first reference RS
  • TO is the time of the channel to be estimated. Domain coordinates.
  • the method may also be: SINR1 + [ ( SINR1 - SINR2 ) I ( Fl 2 - F2 2 ) ] x ( F0 2 - F1 2 ), where SINR2 is the signal to interference and noise ratio of the reference RS, and SINR1 is the first reference RS Signal to interference and noise ratio; F2 is the time domain coordinate of the second reference RS, F1 is the time domain coordinate of the first reference RS, and F0 is the time domain coordinate of the channel to be estimated.
  • the SINR of the channel to be estimated may be determined as follows: SINR1 + [(SINR1-SINR2) /VF1 2 -F2 2 ]X VF0 2 -F1 2
  • SINR2 is the signal to interference and noise ratio of the reference RS
  • SINR1 is the first Refer to the signal to interference and noise ratio of the RS
  • T2 is the time domain coordinate of the second reference RS
  • F1 is the time domain coordinate of the first reference RS
  • F0 is the time domain coordinate of the channel to be estimated, F0>Fl>F2.
  • the reference RS When the reference RS is one, it is the RS that is transmitted last time from the channel to be estimated in the time domain, and when the reference RS is two, the first reference RS is the RS that is transmitted last time from the channel to be estimated in the time domain, and the second The reference RS is an RS that is transmitted last time from the channel to be estimated in the time domain; when the reference RS is three or more, the RS closest to the channel to be estimated is sequentially selected as the corresponding reference RS in the time domain.
  • the reference RS compared with the channel coordinates to be estimated is the RS transmitted before the system closest to the channel to be estimated in the time domain.
  • n 1, 2 or 3.
  • the signal to interference and noise ratio prediction apparatus shown in FIG. 4 is designed to implement the foregoing signal to interference and noise ratio prediction method.
  • the functions of each processing unit in the apparatus shown in FIG. 4 can refer to the description of the foregoing method. It is understood that the functions of the various processing units can be implemented by a program running on the processor, or by a specific logic circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

信干噪比预测方法及装置 技术领域
本发明涉及信干噪比( SINR, Signal to Interference and Noise Ratio )预 测技术, 尤其涉及一种基于之前发送的参考信号 (RS, Reference Signal ) 的信干噪比进行信干噪比预测的方法及装置。 背景技术
无线通信的核心就是对信道质量进行预测, 准确的信道质量预测结果 是无线通信中可靠高效传输的基础。 无线信道的时间选择性衰落与频率选 择性衰落特性使得无线信道变化在时域和频域两个维度上都存在着随机 性, 从而使得无线信道的预测变得异常困难和复杂。
当前应用中,无线通信系统通常需要通过发送 RS来获取无线信道的时 间选择性衰落特性和频率选择性衰落特性,进而将最新基于 RS的信道测量 结果或其滤波结果作为无线信道质量的预测结果。 无线通信系统中为了节 省宝贵的无线通信资源, RS往往不会在时频两个维度上密集地出现, 即无 线通信系统无法通过 RS 的测量结果获得无线信道的所有频谱上的实时信 道质量, 从而导致信道的预测结果难以保障, 进而影响无线通信的可靠性 和高效性。 发明内容
有鉴于此, 本发明的主要目的在于提供一种信干噪比预测方法及装置, 能根据无线通信系统中之前发送的 RS 的信干噪比对待估计信道进行信干 噪比预测。
为达到上述目的, 本发明的技术方案是这样实现的: 一种信干噪比预测方法, 设置时域阔值和 /或频域阔值, 按所设置时域 阔值和 /或频域阔值将时频距离空间划分为不同的区域, 为每个时频区域设 置信干噪比 SINR的确定方式; 所述方法包括:
计算待估计信道与参考 RS的时域差和 /或频域差, 确定所述时域差和 / 或频域差所属的时频区域,根据所属时频区域对应的 SINR的确定方式确定 待估计信道的 SINR。
优选地, 所述计算待估计信道与参考 RS的时域差和 /或频域差为: 所述待估计信道以及参考 RS 所在的时频区域均为一个设定的时频单 位时,以所述待估计信道或 /和参考 RS的时频坐标计算时域差和 /或频域差; 所述待估计信道或 /和参考 RS 所在的时频区域大于一个设定的时频单 位时, 以所述时频单位计算所述待估计信道或 /和参考 RS的时域坐标和 /或 频域坐标的平均值, 以所述坐标平均值作为所述待估计信道或 /和参考 RS 的坐标,并以所述待估计信道或 /和参考 RS的坐标计算时域差和 /或频域差。
优选地, 按所设置时域阔值以及频域阔值将时频距离空间划分为不同 的区域为:
所设置的时域阔值为 m个、 所设置的频域阔值为 n个时, 时频距离空 间被划分为 (m+1 ) X ( n+1 )个时频区域, 分别为 0至第一个阔值之间的 区域、 第一个阔值至第二个阔值之间的区域, ... ...第 (m-1 )个阔值至第 m 个阔值、 第 (n-1 )个阔值至第 n个阔值之间的区域, 大于第 m个阔值、 大 于第 n个阔值之间的区域; 其中 m、 n均为大于等于 0的整数, m、 n不同 时为 0。
优选地, 以 Bxy表示所划分时频区域, X表示时域上的区域序号, y表 示频域上的区域序号; 其中, l≤x≤ ( m+1 ) , l<y< ( n+1 );
本发明中,考虑到各个参考 RS与带估计信道的发射功率谱密度有所差 异,在实际信干噪比预测过程中均会补齐各个 RS与带估计信道的发射功率 谱密度之差, 使信干噪比预测工作在等发射功率谱密度的基础上进行。 不 失一般性地,本方法及系统后续内容中均假设所有参考 RS和带估计信道的 发射功率谱密度相等(若有差异, 可以在各个参考 RS的 SINR测量值上加 上其余待估计信道发射功率谱密度之差, 再使用本发明的技术方案)。
为每个时频区域设置信干噪比 SINR的确定方式为:
对于 B11 , 待估计信道的信干噪比与参考 RS的信干噪比相等; 对于 B21 ,待估计信道的 SINR为: SINR1 +[( SINR1-SINR2 )/( T1-T2 )]x ( T0-T1 ), 其中, SINR1 为时域上距待估计信道最近的 RS 的信干噪比,
SINR2为时域上距待估计信道次最近的 RS的信干噪比; T1为时域上距待 估计信道最近的 RS 的时域坐标, T2 为时域上距待估计信道次最近的 RS 的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于 y大于等于 2的区域,以所有参考 RS的信干噪比的概率分布函数 的反函数来确定待估计信道的 SINR;
或者, 为每个时频区域设置信干噪比 SINR的确定方式为:
对于 B11 , 待估计信道的信干噪比与参考 RS的信干噪比相等; 对于 B21 ,待估计信道的 SINR为: SINR1 +[( SINR1-SINR2 )/( T1-T2 )]x ( T0-T1 ), 其中, SINR1 为时域上距待估计信道最近的 RS 的信干噪比,
SINR2为时域上距待估计信道次最近的 RS的信干噪比; T1为时域上距待 估计信道最近的 RS 的时域坐标, T2 为时域上距待估计信道次最近的 RS 的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于应 B12 , 待预测信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( F1-F2 ) ]x ( F0-F1 ), 其中, SINR1为时域上距待估计信道最近的 RS的 信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; F1为 时域上距待估计信道最近的 RS的频域坐标, F2为时域上距待估计信道次 最近的 RS的频域坐标, F0为待预测信道的频域坐标;
对于 B13、 B14 Bnl、 Bl ( n+1 ), 以所有参考信号的信干噪比的概 率分布函数的反函数来确定待预测信道的 SINR;
对于 Bxy, 其中 χ>1且 y>l的情况, 待预测信道的 SINR确定函数为: yxFxl ( ) / ( x+y ) +xxFly ( ) / ( x+y ), 其中, Fxl ( )表示区域 Bxl 的 SINR确定函数, Fly ( )表示区域 Bly的 SINR确定函数。
优选地, 以 Bxy表示所划分时频区域, X表示时域上的区域顺序, y表 示频域上的区域顺序; 其中, l<x< ( m+1 ), l<y< ( n+1 );
为每个时频区域设置信干噪比 SINR的确定方式为:
对于 B11 , 待估计信道的信干噪比与参考 RS的信干噪比相等; 对于 B21 , 待估计信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( T12-T22 ) ]x ( T02-T12 ), 其中, SINR1为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS 的信干噪比; T1 为时域上距待估计信道最近的 RS的时域坐标, Τ2为时域上距待估计信道 次最近的 RS的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于 y大于等于 2的区域,以所有参考 RS的信干噪比的概率分布函数 的反函数来确定待估计信道的 SINR;
或者, 为每个时频区域设置信干噪比 SINR的确定方式为:
对于 B11 , 待估计信道的信干噪比与参考 RS的信干噪比相等; 对于 B21 ,待估计信道的 SINR为: SINR1 +[( SINR1-SINR2 )/( T1-T2 )]x ( T0-T1 ), 其中, SINR1 为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; T1为时域上距待 估计信道最近的 RS 的时域坐标, T2 为时域上距待估计信道次最近的 RS 的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于应 B12 , 待预测信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( F1-F2 ) ]x ( F0-F1 ), 其中, SINR1为时域上距待估计信道最近的 RS的 信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; F1为 时域上距待估计信道最近的 RS的频域坐标, F2为时域上距待估计信道次 最近的 RS的频域坐标, F0为待预测信道的频域坐标;
对于 B13、 B14 Bnl、 Bl ( n+1 ), 以所有参考信号的信干噪比的概 率分布函数的反函数来确定待预测信道的 SINR;
对于 Bxy, 其中 χ>1且 y>l的情况, 待预测信道的 SINR确定函数为: yxFxl ( ) / ( x+y ) +xxFly ( ) / ( x+y ), 其中, Fxl ( )表示区域 Bxl 的 SINR确定函数, Fly ( )表示区域 Bly的 SINR确定函数。
优选地, 所述参考 RS为一个时, 为时域上距待估计信道最近一次发送 的 RS , 所述参考 RS为两个时, 第一参考 RS为时域上距待估计信道最近 一次发送的 RS ,第二参考 RS为时域上距待估计信道次最近一次发送的 RS; 所述参考 RS为三个以上时, 在时域上依次选取距待估计信道最近的 RS作 为对应的参考 RS。
优选地, m为 1、 2、 3、 4, 对应的, n为 1、 2或 3。
一种信干噪比预测装置, 包括设置单元、 计算单元和确定单元, 其中: 设置单元, 用于设置时域阔值和 /或频域阔值, 并按所设置时域阔值和 / 或频域阔值将时频距离空间划分为不同的区域, 为每个时频区域设置 SINR 的确定方式;
计算单元, 用于计算待估计信道与参考 RS的时域差和 /或频域差; 确定单元, 用于确定所述时域差和 /或频域差所属的时频区域, 并根据 所属时频区域对应的 SINR的确定方式确定待估计信道的 SINR。
优选地, 所述计算单元, 进一步在所述待估计信道以及参考 RS所在的 时频区域均为一个设定的时频单位时, 以所述待估计信道或 /和参考 RS 的 时频坐标计算时域差和 /或频域差;
进一步在所述待估计信道或 /和参考 RS 所在的时频区域大于一个设定 的时频单位时, 以所述时频单位计算所述待估计信道或 /和参考 RS 的时域 坐标和 /或频域坐标的平均值, 以所述坐标平均值作为所述待估计信道或 / 和参考 RS的坐标,并以所述待估计信道或 /和参考 RS的坐标计算时域差和
/或频域差。
优选地, 所述设置单元进一步地, 在所设置的时域阔值为 m个、 所设 置的频域阔值为 n个时, 时频距离空间被划分为 (m+1 ) X ( n+1 )个区域, 分别为 0 至第一个阔值之间的区域、 第一个阔值至第二个阔值之间的区 域, ... ...第 (m-1 )个阔值至第 m个阔值、 第 (n-1 )个阔值至第 n个阔值 之间的区域, 大于第 m个阔值、 大于第 n个阔值之间的区域; 其中 m、 n 均为大于等于 0的整数, m、 n不同时为 0。
优选地, 以 Bxy表示所划分时频区域, X表示时域上的区域顺序, y表 示频域上的区域顺序; 其中, l<x< ( m+1 ) , l<y< ( n+1 );
所述确定单元, 进一步地, 对于 B11 , 待估计信道的信干噪比与参考 RS的信干噪比相等;
对于 B21 ,待估计信道的 SINR为: SINR1 +[( SINR1-SINR2 )/( T1-T2 )]x ( T0-T1 ), 其中, SINR1 为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; T1为时域上距待 估计信道最近的 RS 的时域坐标, T2 为时域上距待估计信道次最近的 RS 的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+ ) 1 , 以所有参考 RS的信干噪比的概 率分布函数的反函数来确定待估计信道的 SINR;
对于 y大于等于 2的区域,以所有参考 RS的信干噪比的概率分布函数 的反函数来确定待估计信道的 SINR;
或者, 所述确定单元, 进一步地, 对于 B11 , 待估计信道的信干噪比与 参考 RS的信干噪比相等;
对于 B21 ,待估计信道的 SINR为: SINR1 +[( SINR1-SINR2 )/( T1-T2 )]x ( T0-T1 ), 其中, SINR1 为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; T1为时域上距待 估计信道最近的 RS 的时域坐标, T2 为时域上距待估计信道次最近的 RS 的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于应 B12 , 待预测信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( F1-F2 ) ]x ( F0-F1 ), 其中, SINR1为时域上距待估计信道最近的 RS的 信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; F1为 时域上距待估计信道最近的 RS的频域坐标, F2为时域上距待估计信道次 最近的 RS的频域坐标, F0为待预测信道的频域坐标;
对于 B13、 B14 Bnl、 Bl ( n+1 ), 以所有参考信号的信干噪比的概 率分布函数的反函数来确定待预测信道的 SINR;
对于 Bxy, 其中 χ>1且 y>l的情况, 待预测信道的 SINR确定函数为: yxFxl ( ) / ( x+y ) +xxFly ( ) / ( x+y ), 其中, Fxl ( )表示区域 Bxl 的 SINR确定函数, Fly ( )表示区域 Bly的 SINR确定函数。 优选地, 以 Bxy表示所划分时频区域, X表示时域上的区域顺序, y表 示频域上的区域顺序; 其中, l<x< ( m+1 ), l<y< ( n+1 );
所述确定单元, 进一步地, 对于 B11 , 待估计信道的信干噪比与参考 RS的信干噪比相等;
对于 B21 , 待估计信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( T12-T22 ) ]x ( T02-T12 ), 其中, SINR1为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS 的信干噪比; T1 为时域上距待估计信道最近的 RS的时域坐标, Τ2为时域上距待估计信道 次最近的 RS的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于 y大于等于 2的区域,以所有参考 RS的信干噪比的概率分布函数 的反函数来确定待估计信道的 SINR;
或者, 所述确定单元, 进一步地, 对于 B11 , 待估计信道的信干噪比与 参考 RS的信干噪比相等;
对于 B21 ,待估计信道的 SINR为: SINR1 +[( SINR1-SINR2 )/( T1-T2 )]x ( T0-T1 ), 其中, SINR1 为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; T1为时域上距待 估计信道最近的 RS 的时域坐标, T2 为时域上距待估计信道次最近的 RS 的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于应 B12 , 待预测信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( F1-F2 ) ]x ( F0-F1 ), 其中, SINR1为时域上距待估计信道最近的 RS的 信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; F1为 时域上距待估计信道最近的 RS的频域坐标, F2为时域上距待估计信道次 最近的 RS的频域坐标, F0为待预测信道的频域坐标;
对于 B13、 B14 Bnl、 Bl ( n+1 ), 以所有参考信号的信干噪比的概 率分布函数的反函数来确定待预测信道的 SINR;
对于 Bxy, 其中 χ>1且 y>l的情况, 待预测信道的 SINR确定函数为: yxFxl ( ) / ( x+y ) +xxFly ( ) / ( x+y ), 其中, Fxl ( )表示区域 Bxl 的 SINR确定函数, Fly ( )表示区域 Bly的 SINR确定函数。。
优选地, 所述参考 RS为一个时, 为时域上距待估计信道最近一次发送 的 RS, 所述参考 RS为两个时, 第一参考 RS为时域上距待估计信道最近 一次发送的 RS,第二参考 RS为时域上距待估计信道次最近一次发送的 RS; 所述参考 RS为三个以上时, 在时域上依次选取距待估计信道最近的 RS作 为对应的参考 RS。
优选地, m为 1、 2、 3、 4, 对应的, n为 1、 2或 3。
本发明中, 预先设置时域以及频域的相应阔值, 根据所设置的阔值在 时频距离空间划分为多个区域, 为每个区域设置相应的 SINR确定方式; 在 对待估计信道进行 SINR预测时, 首先确定待估计信道的时频坐标与参考 RS的时频坐标之间的时域差以及频域差 , 确定该时域差以及频域差所属的 区域, 根据其所属区域对应的 SINR确定方式确定待估计信道的 SINR。 本 发明充分考虑了 RS 在时域及频域的相关衰落特性, 结合系统之前所发送 RS的 SINR的特征预测待估计信道的 SINR, 预测结果更准确。 附图说明
图 1为本发明信干噪比预测方法的流程图;
图 2为根据本发明视频阔值划分的时频区域的示意图;
图 3为待估计信道与参考 RS的示意图;
图 4为本发明信干噪比预测装置的组成结构示意图。 具体实施方式
本发明的基本思想为, 预先设置时域以及频域的相应阔值, 根据所设 置的阔值在时频距离空间划分为多个区域,为每个区域设置相应的 SINR确 定方式; 在对待估计信道进行 SINR预测时, 首先确定待估计信道的时频坐 标与参考 RS的时频坐标之间的时域差以及频域差,确定该时域差以及频域 差所属的区域, 根据其所属区域对应的 SINR确定方式确定待估计信道的 SINR。
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
图 1为本发明信干噪比预测方法的流程图, 如图 1所示, 本发明信干噪 比预测方法包括以下步骤:
步骤 101 : 设置时域阔值和 /或频域阔值,按所设置时域阔值以及频域阔 值将时频距离空间划分为不同的区域, 为每个时频区域设置 SINR的确定方 式。
具体的, 上述时域阔值和 /或频域阔值具体取值与无线信道的频选 /时选 衰落强弱相关, 频选 /时选愈强频域 /时域阔值愈小, 反之则愈大。 具体的, 可根据相关的仿真系统来设定; 或者, 根据系统对 SINR预测精度要求等进 行设置, 如设置为时域阔值设置为 0.5ms、 0.1ms , lms、 2ms , 5ms, 10ms, 50ms , 一个子帧、 子帧中的一个 OFDM符号等, 频域阔值可设置为 12个子 载波、 24个子载波、 36个子载波、 1ΜΗζ、 5MHz、 10MHz等。 设置时域阔 行界定, 以此来确定如何通过参考 RS来确定待估计信道的 SINR。
步骤 102: 计算待估计信道与参考 RS的时域差以及频域差, 确定所述时 域差及频域差所属的时频区域, 根据所属时频区域对应的 SINR的确定方式 确定待估计信道的 SINR。 计算待估计信道与参考 RS的时域差以及频域差, 具体为: 待估计信道 以及参考 RS所在的时频区域均为一个设定的时频单位时,以待估计信道或
/和参考 RS 的时频坐标计算时域差以及频域差。 待估计信道或 /和参考 RS 所在的时频区域大于一个设定的时频单位时, 以时频单位计算所述待估计 信道或 /和参考 RS 的时域坐标以及频域坐标的平均值, 以坐标平均值作为 所述待估计信道或 /和参考 RS 的坐标, 并以所述待估计信道或 /和参考 RS 的坐标计算时域差以及频域差。
当所设置的时域阔值为 m个、 所设置的频域阔值为 n个时, 时频距离 空间可以被划分为 (m+1 ) X ( n+1 )个区域, 分别为 0至第一个阔值之间 的区域、 第一个阔值至第二个阔值之间的区域, ... ...第 (m-1 )个阔值至第 m个阔值、 第 (n-1 )个阔值至第 n个阔值之间的区域, 大于第 m个阔值、 大于第 n个阔值之间的区域; 其中 m、 n均为大于等于 0的整数, m、 n不 同时为 0。 如果以 Bxy表示所划分时频区域, X表示时域上的区域顺序, y 表示频域上的区域顺序; 其中, l≤x≤ ( m+l ), l<y< ( n+1 ); 则对于 Bll , 待估计信道的信干噪比与参考 RS的信干噪比相等; 对于 B21 , 待估计信道 的 SINR为: SINR1 +[ ( SINR1-SINR2 ) I ( T1-T2 ) ]x ( T0-T1 ),其中, SINR2 为参考 RS的信干噪比, SINR1为第一参考 RS的信干噪比; T2为第二参考 RS的时域坐标, T1为第一参考 RS的时域坐标, TO为待估计信道的时域 坐标; 本发明中, 第一参考 RS为在时域上距待估计信道最近的 RS , 第二 参考 RS为在时域上距待估计信道次最近的 RS;对于 B31、 B41 Bml ,
B ( m+1 ) 1 , 以所有参考 RS的信干噪比的概率分布函数(概率分布函数表 示随机变量小于自变量 X的概率 )的反函数来确定待估计信道的 SINR; 对 于应 B12 , 待预测信道的 SINR为: SINR1 +[ ( SINR1-SINR2 ) I ( F1-F2 ) ]x ( F0-F1 ), 其中, SINR2为参考信号的信干噪比, SINR1 为第一参考信号 的信干噪比; F2为第二参考信号的频域坐标, F1为第一参考信号的频域坐 标, F0为待预测信道的频 i或坐标; 对于 B13、 B14 Bnl、 Bl ( n+1 ), 以所有参考信号的信干噪比的概率分布函数的反函数来确定待预测信道的 SINR; 对于 Bxy, 其中 χ>1且 y>l的情况, 待预测信道的 SINR为: 待预 测信道的 SINR确定函数为: yxFxl ( ) / ( x+y ) +xxFly ( ) / ( x+y ), 其中, Fxl ( )表示区域 Bxl的 SINR确定函数, Fly ( )表示区域 Bly的 SINR 确定函数。
当然, 对于 x>2且y>2的情况, 也可以以所有参考信号的信干噪比的 概率分布函数的反函数来确定待预测信道的 SINR。
上述的 B21 , 待估计信道的 SINR 的确定方式也可以为: SINR1 +[ ( SINR1-SINR2 ) I ( TP-T22 ) ]x ( T02-T12 ), 其中, SINR2为参考 RS的 信干噪比, SINR1为第一参考 RS的信干噪比; Τ2为第二参考 RS的时域坐 标, T1为第一参考 RS的时域坐标, TO为待估计信道的时域坐标。 上述待 估计信道的 SINR 的确定方式也可以为: SINRl +[ ( SINR1-SINR2 ) /VT12-T22 ]xVT02-Tl2其中, SINR2为参考 RS的信干噪比, SINR1为第一参 考 RS的信干噪比; T2为第二参考 RS的时域坐标, T1为第一参考 RS的时 域坐标, TO为待估计信道的时域坐标, T0> T1> T2。
上述的 B12 , 待估计信道的 SINR 的确定方式也可以为: SINR1 +[ ( SINR1-SINR2 ) I ( FP-F22 ) ]x ( F02-F12 ), 其中, SINR2为参考 RS的 信干噪比, SINR1为第一参考 RS的信干噪比; F2为第二参考 RS的时域坐 标, F1为第一参考 RS的时域坐标, F0为待估计信道的时域坐标。 上述待 估计信道的 SINR 的确定方式也可以为: SINRl +[ ( SINR1-SINR2 ) /VF12-F22 ]X F02-F12其中, SINR2为参考 RS的信干噪比, SINR1为第一参 考 RS的信干噪比; T2为第二参考 RS的时域坐标, F1为第一参考 RS的时 域坐标, F0为待估计信道的时域坐标, F0> F1> F2。
具体的, 上述的参考 RS为一个时,优选地为时域上距待估计信道最近 一次发送的 RS, 参考 RS为两个时, 第一参考 RS为时域上距待估计信道 最近一次发送的 RS, 第二参考 RS为时域上距待估计信道次最近一次发送 的 RS; 所述参考 RS为三个以上时, 在时域上依次选取距待估计信道最近 的 RS作为对应的参考 RS。
具体的, m优选为 1或 2, 对应的, n优选为 1或 2。 当然 m也可以为 3或 4等, n也为 3等, 其中, 考虑到实现复杂度, 上述 m、 n的取值不易 太大。
以下通过一具体示例, 进一步详细阐述本发明技术方案的实质。
设置 2个时域阔值: TimeThl、 TimeTh2, 且 0<TimeThl<TimeTh2; 设置 1个频域阔值 FreqThl , 且 0<FreqThl ;
如图 2所示, 上述的 2个时域阔值以及 1个频域阔值将时频距离空间划分 为 6个区域, 分别为则以上时频域距离阔值将整个时频域距离空间划分为 6 个区域, 分别记为 Bxy, 其中 X取值范围为 { 1 , 2, 3 } ; y取值范围为 { 1 , 2} ; 上述的 6个躯体, 分别为 Bll、 B21、 B31、 B21、 B22、 B23 , 如图 2所示, 其中, B11对应于 0至 TimeThl、 0至 FreqThl的区域, B21对应于 TimeThl至 TimeTh2、 0至 FreqThl的区 i或, …… B23于大于 TimeTh2、 大于 FreqThl的区 域。
进一步确定上述各区域中的 RS的 SINR确定方式, 即当前待预测的 RS 与参考 RS之间的坐标差即时域差以及频域差对应到图 2中的区域中时,分别 本发明中, 参考 RS—般会选择距离当前待预测最近的之前发送的 RS作 为参考 RS, 如图 3所示, 当对图中所示 RB处的 RS的 SINR进行预测时, 参考 信号优选时域上距离该 RB处的 RS最近的 RS ( SRS )作为其参考 RS。 设最新 参考信号为 RS1测量结果为 SINR1 , 次新的为 RS2、 SINR2, 如此以此类推 RSk、 SINRk。 则对于 B11而言, 当前待估计信道的 SINR为 SINR1 ; 对于 B21 , 当前待估计信道的 SINR为: SINR1 +[ ( SINR1-SINR2 ) / ( T1-T2 ) ]x ( T0-T1 ) ; 或者, 当前待估计信道的 SINR为: SINR1 +[ ( SINR1-SINR2 ) /VT12-T22 ]X VT02-T12; 其中, T1以及 T2分别为 RS1以及 RS2的时域坐标值, 而 TO为当前待估计信道的时域坐标值。
对于 B31 , 以系统之前发送的所有 RS的 SINR的概率分布函数的反函数 来确定, 上述反函数表示为 CDF1 ( X ), 本领域技术人员应当理解, 该反函 数的具体确定方式是公知技术, 并且该函数也并非本发明的发明点, 在此 不予赘述其具体实现细节。 上述的反函数中的 x E [0 , 1] , 表示当前待估计 信道的 SINR的大于上述所有 RS的 SINR均值的概率。
对于应 B12 , 待预测信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( F1-F2 ) ]x ( F0-F1 ); 或者, 当前待估计信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) /VF12-F22 ]X VF02-F12; 其中, SINR2为参考信号的信干 噪比, SINR1为第一参考信号的信干噪比; F2为第二参考信号的频域坐标, F1为第一参考信号的频域坐标, F0为待预测信道的频域坐标;
对于 B13 , 以所有参考信号的信干噪比的概率分布函数的反函数来确 定待预测信道的 SINR;
对于 Bxy, 其中 χ>1且 y>l的情况, 待预测信道的 SINR确定函数为: yxFxl ( ) / ( x+y ) +xxFly ( ) / ( x+y ), 其中, Fxl ( )表示区域 Bxl 的 SINR确定函数, Fly ( )表示区域 Bly的 SINR确定函数。
当然, 对于 x>2且y>2的情况, 也可以以所有参考信号的信干噪比的 概率分布函数的反函数来确定待预测信道的 SINR。
本发明中,对于 B11 , 由于待估计信道与参考 RS之间在时域及频域的差 距均在设定阔值(分别在 TimeThl以及 FreqThl ) 范围内, 因此, 此时的待 估计信道的 SINR与参考 RS的 SINR相比,认为没有变化,待估计信道的 SINR 等于参考 RS的 SINR。 对于 B21 ,当前待估计信道与参考 RS相比 ,其在频域上差距仍在 FreqThl 信道与 RS之间的信道衰落具有某种相关特性, 如线性相关等, 则通过相关 函数来计算当前待估计信道的 SINR。
而对于 B31 , 当前待估计信道与参考 RS相比, 虽然其在频域上差距仍在 FreqThl范围内,但时域上的差距已经非常大,它们之间已经不存在关联性。 由此, 通过相关的统计手段来确定当前待估计信道的 SINR。
而对于 B21、 B22、 B23 , 当前待估计信道与参考 RS相比, 频域差距较 大, 由于频域上的相关性非常小, 因此, 按对 B31的方式确定当前待估计信 道的 SINR。
对于当前待估计信道, 首先确定其在时频距离空间中的坐标值, 具体 的, 如图 3 所示, 对于每一待估计信道, 确定其在时域及频域上的位置, 具体的, 当待估计信道所在的时频区域为一个设定的时频单位时, 其所在 位置的时频单位即为其坐标; 当待估计信道所在的时频区域大于一个设定 的时频单位时, 以时频单位计算该待估计信道的时域坐标的平均值, 以所 计算的坐标平均值作为该待估计信道的坐标。
确定待估计信道与参考 RS (与待估计信道时域最近的之前发送的 RS ) 之间的时域差及频域差, 并与上述所设置的时频区域进行比较, 从而确定 出待估计信道的 SINR的确定方式, 从而确定出待估计信道的 SINR。 本发明 中, 与待估计信道坐标进行比较的参考 RS, 为时域上距离待估计信道最近 的系统之前发送的 RS; 参考 RS的坐标确定方式与待估计信道的坐标确定方 式相同。
当上述的阔值数大于上述设定范围时, 按前述 m、 n的具体取值依据前 述的通用区域划分方式分别确定相应区域的待估计信道的 SINR的确定方式 即可。 图 4为本发明信干噪比预测装置的组成结构示意图, 如图 4所示, 本 发明信干噪比预测装置包括设置单元 40、 计算单元 41和确定单元 42, 其 中,
设置单元 40, 用于设置时域阔值和 /或频域阔值, 并按所设置时域阔值 以及频域阔值将时频距离空间划分为不同的区域, 为每个时频区域设置 SINR的确定方式;
计算单元 41 , 用于计算待估计信道与参考 RS的时域差以及频域差; 确定单元 42, 用于确定所述时域差及频域差所属的时频区域, 并根据 所属时频区域对应的 SINR的确定方式确定待估计信道的 SINR。
上述计算单元 40, 进一步在所述待估计信道以及参考 RS所在的时频 区域均为一个设定的时频单位时, 以所述待估计信道或 /和参考 RS 的时频 坐标计算时域差以及频域差;
进一步在所述待估计信道或 /和参考 RS 所在的时频区域大于一个设定 的时频单位时, 以所述时频单位计算所述待估计信道或 /和参考 RS 的时域 坐标以及频域坐标的平均值, 以所述坐标平均值作为所述待估计信道或 /和 参考 RS的坐标,并以所述待估计信道或 /和参考 RS的坐标计算时域差以及 频域差。
上述设置单元进一步地, 在所设置的时域阔值为 m个、 所设置的频域 阔值为 n个时, 时频距离空间被划分为 (m+1 ) X ( n+1 )个区域, 分别为 0 至第一个阔值之间的区域、 第一个阔值至第二个阔值之间的区域, ... ...第
( m-1 )个阔值至第 m个阔值、 第(n-1 )个阔值至第 n个阔值之间的区域, 大于第 m个阔值、 大于第 n个阔值之间的区域; 其中 m、 n均为大于等于 0 的整数, m、 n不同时为 0。
以 Bxy表示所划分时频区域, X表示时域上的区域顺序, y表示频域上 的区域顺序; 其中, l≤x≤ ( m+ l ) , l<y< ( n+1 ); 确定单元 42 , 进一步地, 对于 B11 , 待估计信道的信干噪比与参考 RS 的信干噪比相等;
对于 B21 ,待估计信道的 SINR为: SINR1 +[( SINR1-SINR2 )/( T1-T2 )]x ( T0-T1 ), 其中, SINR2为参考 RS的信干噪比, SINR1为第一参考 RS的 信干噪比; T2为第二参考 RS的时域坐标, T1为第一参考 RS的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于应 B12 , 待预测信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( F1-F2 ) ]x ( F0-F1 ), 其中, SINR2为参考信号的信干噪比, SINR1为第 一参考信号的信干噪比; F2为第二参考信号的频域坐标, F1为第一参考信 号的频域坐标, F0为待预测信道的频域坐标;
对于 B13、 B14 Bnl、 Bl ( n+1 ), 以所有参考信号的信干噪比的概 率分布函数的反函数来确定待预测信道的 SINR;
对于 Bxy, 其中 χ>1且 y>l的情况, 待预测信道的 SINR确定函数为: yxFxl ( ) / ( x+y ) +xxFly ( ) / ( x+y ), 其中, Fxl ( )表示区域 Bxl 的 SINR确定函数, Fly ( )表示区域 Bly的 SINR确定函数。
当然, 对于 x>2且y>2的情况, 也可以以所有参考信号的信干噪比的 概率分布函数的反函数来确定待预测信道的 SINR。
或者, 确定单元 42, 进一步地, 对于 B21 , 待估计信道的 SINR也可 以为: SINR1 +[ ( SINR1-SINR2 ) I ( Tl2-T22 ) ]χ ( Τ02-Τ12 ), 其中, SINR2 为参考 RS的信干噪比, SINR1为第一参考 RS的信干噪比; T2为第二参考 RS的时域坐标, T1为第一参考 RS的时域坐标, TO为待估计信道的时域 坐标。
或者, 确定待遇 42, 进一步, 对应 B12 , 待估计信道的 SINR的确定 方式也可以为: SINR1 +[ ( SINR1-SINR2 ) I ( Fl2-F22 ) ]x ( F02-F12 ), 其中, SINR2为参考 RS的信干噪比, SINR1为第一参考 RS的信干噪比; F2为第 二参考 RS的时域坐标, F1为第一参考 RS的时域坐标, F0为待估计信道 的时域坐标。 上述待估计信道的 SINR 的确定方式也可以为: SINR1 +[ ( SINR1-SINR2 ) /VF12-F22 ]X VF02-F12其中, SINR2为参考 RS的信干噪 比, SINR1为第一参考 RS的信干噪比; T2为第二参考 RS的时域坐标, F1 为第一参考 RS的时域坐标, F0为待估计信道的时域坐标, F0> Fl> F2。
上述参考 RS为一个时, 为时域上距待估计信道最近一次发送的 RS , 所述参考 RS为两个时, 第一参考 RS为时域上距待估计信道最近一次发送 的 RS , 第二参考 RS为时域上距待估计信道次最近一次发送的 RS; 所述参 考 RS为三个以上时, 在时域上依次选取距待估计信道最近的 RS作为对应 的参考 RS。
本发明中, 与待估计信道坐标进行比较的参考 RS , 为时域上距离待估 计信道最近的系统之前发送的 RS。
上述 m为 1、 2、 3或 4, 对应的, n为 1、 2或 3。
本领域技术人员应当理解, 图 4所示的信干噪比预测装置是为实现前 述的信干噪比预测方法而设计的, 图 4所示装置中各处理单元的功能可参 照前述方法的描述而理解, 各处理单元的功能可通过运行于处理器上的程 序而实现, 也可通过具体的逻辑电路而实现。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、一种信干噪比预测方法,其特征在于,设置时域阔值和 /或频域阔值, 按所设置时域阔值和 /或频域阔值将时频距离空间划分为不同的区域, 为每 个时频区域设置信干噪比 SINR的确定方式; 所述方法包括:
计算待估计信道与参考 RS的时域差和 /或频域差, 确定所述时域差和 / 或频域差所属的时频区域,根据所属时频区域对应的 SINR的确定方式确定 待估计信道的 SINR。
2、 根据权利要求 1所述的方法, 其特征在于, 所述计算待估计信道与 参考 RS的时域差和 /或频域差为:
所述待估计信道以及参考 RS 所在的时频区域均为一个设定的时频单 位时,以所述待估计信道或 /和参考 RS的时频坐标计算时域差和 /或频域差; 所述待估计信道或 /和参考 RS 所在的时频区域大于一个设定的时频单 位时, 以所述时频单位计算所述待估计信道或 /和参考 RS的时域坐标和 /或 频域坐标的平均值, 以所述坐标平均值作为所述待估计信道或 /和参考 RS 的坐标,并以所述待估计信道或 /和参考 RS的坐标计算时域差和 /或频域差。
3、 根据权利要求 1 所述的方法, 其特征在于, 按所设置时域阔值和 / 或频域阔值将时频距离空间划分为不同的区域为:
所设置的时域阔值为 m个、 所设置的频域阔值为 n个时, 时频距离空 间被划分为 (m+1 ) X ( n+1 )个区域, 分别为 0至第一个阔值之间的区域、 第一个阔值至第二个阔值之间的区域, ... ...第(m-1 )个阔值至第 m个阔值、 第 (n-1 )个阔值至第 n个阔值之间的区域, 大于第 m个阔值、 大于第 n个 阔值之间的区域; 其中 m、 n均为大于等于 0的整数, m、 n不同时为 0。
4、 根据权利要求 3所述的方法, 其特征在于, 以 Bxy表示所划分时频 区域, X表示时域上的区域顺序, y表示频域上的区域顺序; 其中, l≤x≤
( m+1 ), l<y< ( n+1 ); 为每个时频区域设置信干噪比 SINR的确定方式为:
对于 B11 , 待估计信道的信干噪比与参考 RS的信干噪比相等; 对于 B21 ,待估计信道的 SINR为: SINR1 +[( SINR1-SINR2 )/( T1-T2 )]x ( T0-T1 ), 其中, SINR1 为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; T1为时域上距待 估计信道最近的 RS 的时域坐标, T2 为时域上距待估计信道次最近的 RS 的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于 y大于等于 2的区域,以所有参考 RS的信干噪比的概率分布函数 的反函数来确定待估计信道的 SINR;
或者, 为每个时频区域设置信干噪比 SINR的确定方式为:
对于 B11 , 待估计信道的信干噪比与参考 RS的信干噪比相等; 对于 B21 ,待估计信道的 SINR为: SINR1 +[( SINR1-SINR2 )/( T1-T2 )]x ( T0-T1 ), 其中, SINR1 为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; T1为时域上距待 估计信道最近的 RS 的时域坐标, T2 为时域上距待估计信道次最近的 RS 的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于应 B12 , 待预测信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( F1-F2 ) ]x ( F0-F1 ), 其中, SINR1为时域上距待估计信道最近的 RS的 信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; F1为 时域上距待估计信道最近的 RS的频域坐标, F2为时域上距待估计信道次 最近的 RS的频域坐标, F0为待预测信道的频域坐标; 对于 B13、 B14 Bnl、 Bl ( n+1 ), 以所有参考信号的信干噪比的概 率分布函数的反函数来确定待预测信道的 SINR;
对于 Bxy, 其中 χ>1且 y>l的情况, 待预测信道的 SINR确定函数为: yxFxl ( ) / ( x+y ) +xxFly ( ) / ( x+y ), 其中, Fxl ( )表示区域 Bxl 的 SINR确定函数, Fly ( )表示区域 Bly的 SINR确定函数。
5、 根据权利要求 3所述的方法, 其特征在于, 以 Bxy表示所划分时频 区域, X表示时域上的区域顺序, y表示频域上的区域顺序; 其中, l≤x≤ ( m+1 ), l<y< ( n+1 );
为每个时频区域设置信干噪比 SINR的确定方式为:
对于 B11 , 待估计信道的信干噪比与参考 RS的信干噪比相等; 对于 B21 , 待估计信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( T12-T22 ) ]x ( T02-T12 ), 其中, SINR1为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS 的信干噪比; T1 为时域上距待估计信道最近的 RS的时域坐标, Τ2为时域上距待估计信道 次最近的 RS的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于 y大于等于 2的区域,以所有参考 RS的信干噪比的概率分布函数 的反函数来确定待估计信道的 SINR;
或者, 为每个时频区域设置信干噪比 SINR的确定方式为:
对于 B11 , 待估计信道的信干噪比与参考 RS的信干噪比相等; 对于 B21 ,待估计信道的 SINR为: SINR1 +[( SINR1-SINR2 )/( T1-T2 )]x ( T0-T1 ), 其中, SINR1 为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; T1为时域上距待 估计信道最近的 RS 的时域坐标, T2 为时域上距待估计信道次最近的 RS 的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于应 B12 , 待预测信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( F1-F2 ) ]x ( F0-F1 ), 其中, SINR1为时域上距待估计信道最近的 RS的 信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; F1为 时域上距待估计信道最近的 RS的频域坐标, F2为时域上距待估计信道次 最近的 RS的频域坐标, F0为待预测信道的频域坐标;
对于 B13、 B14 Bnl、 Bl ( n+1 ), 以所有参考信号的信干噪比的概 率分布函数的反函数来确定待预测信道的 SINR;
对于 Bxy, 其中 χ>1且 y>l的情况, 待预测信道的 SINR确定函数为: yxFxl ( ) / ( x+y ) +xxFly ( ) / ( x+y ), 其中, Fxl ( )表示区域 Bxl 的 SINR确定函数, Fly ( )表示区域 Bly的 SINR确定函数。
6、 根据权利要求 4或 5所述的方法, 其特征在于, 所述参考 RS为一 个时, 为时域上距待估计信道最近一次发送的 RS , 所述参考 RS为两个时, 第一参考 RS为时域上距待估计信道最近一次发送的 RS , 第二参考 RS为 时域上距待估计信道次最近一次发送的 RS; 所述参考 RS为三个以上时, 在时域上依次选取距待估计信道最近的 RS作为对应的参考 RS。
7、 根据权利要求 6所述的方法, 其特征在于, m为 1、 2、 3、 4, 对应 的, n为 1、 2或 3。
8、 一种信干噪比预测装置, 其特征在于, 所述装置包括设置单元、 计 算单元和确定单元, 其中:
设置单元, 用于设置时域阔值和 /或频域阔值, 并按所设置时域阔值和 / 或频域阔值将时频距离空间划分为不同的区域, 为每个时频区域设置 SINR 的确定方式; 计算单元, 用于计算待估计信道与参考 RS的时域差和 /或频域差; 确定单元, 用于确定所述时域差和 /或频域差所属的时频区域, 并根据 所属时频区域对应的 SINR的确定方式确定待估计信道的 SINR。
9、 根据权利要求 8所述的装置, 其特征在于, 所述计算单元, 进一步 在所述待估计信道以及参考 RS 所在的时频区域均为一个设定的时频单位 时, 以所述待估计信道或 /和参考 RS的时频坐标计算时域差和 /或频域差; 进一步在所述待估计信道或 /和参考 RS 所在的时频区域大于一个设定 的时频单位时, 以所述时频单位计算所述待估计信道或 /和参考 RS 的时域 坐标和 /或频域坐标的平均值, 以所述坐标平均值作为所述待估计信道或 / 和参考 RS的坐标,并以所述待估计信道或 /和参考 RS的坐标计算时域差和 /或频域差。
10、 根据权利要求 8所述的装置, 其特征在于, 所述设置单元进一步 地, 在所设置的时域阔值为 m个、 所设置的频域阔值为 n个时, 时频距离 空间被划分为 (m+1 ) X ( n+1 )个区域, 分别为 0 至第一个阔值之间的区 域、 第一个阔值至第二个阔值之间的区域, ... ...第(m-1 )个阔值至第 m个 阔值、 第 (n-1 )个阔值至第 n个阔值之间的区域, 大于第 m个阔值、 大于 第 n个阔值之间的区域; 其中 m、 n均为大于等于 0的整数, m、 n不同时 为 0。
11、 根据权利要求 10所述的装置, 其特征在于, 以 Bxy表示所划分时 频区域, X表示时域上的区域顺序, y表示频域上的区域顺序; 其中, l≤x≤
( m+1 ), l<y< ( n+1 );
所述确定单元, 进一步地, 对于 B11 , 待估计信道的信干噪比与参考 RS的信干噪比相等;
对于 B21 ,待估计信道的 SINR为: SINR1 +[( SINR1-SINR2 )/( T1-T2 )]x ( T0-T1 ), 其中, SINR1 为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; T1为时域上距待 估计信道最近的 RS 的时域坐标, T2 为时域上距待估计信道次最近的 RS 的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+ ) 1 , 以所有参考 RS的信干噪比的概 率分布函数的反函数来确定待估计信道的 SINR;
对于 y大于等于 2的区域,以所有参考 RS的信干噪比的概率分布函数 的反函数来确定待估计信道的 SINR;
或者, 所述确定单元, 进一步地, 对于 B11 , 待估计信道的信干噪比与 参考 RS的信干噪比相等;
对于 B21 ,待估计信道的 SINR为: SINR1 +[( SINR1-SINR2 )/( T1-T2 )]x ( T0-T1 ), 其中, SINR1 为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; T1为时域上距待 估计信道最近的 RS 的时域坐标, T2 为时域上距待估计信道次最近的 RS 的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于应 B12 , 待预测信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( F1-F2 ) ]x ( F0-F1 ), 其中, SINR1为时域上距待估计信道最近的 RS的 信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; F1为 时域上距待估计信道最近的 RS的频域坐标, F2为时域上距待估计信道次 最近的 RS的频域坐标, F0为待预测信道的频域坐标;
对于 B13、 B14 Bnl、 Bl ( n+1 ), 以所有参考信号的信干噪比的概 率分布函数的反函数来确定待预测信道的 SINR;
对于 Bxy, 其中 χ>1且 y>l的情况, 待预测信道的 SINR确定函数为: yxFxl ( ) / ( x+y ) +xxFly ( ) / ( x+y ), 其中, Fxl ( )表示区域 Bxl 的 SINR确定函数, Fly ( )表示区域 Bly的 SINR确定函数。
12、 根据权利要求 10所述的装置, 其特征在于, 以 Bxy表示所划分时 频区域, X表示时域上的区域顺序, y表示频域上的区域顺序; 其中, l≤x≤ ( m+1 ), l<y< ( n+1 );
所述确定单元, 进一步地, 对于 B11 , 待估计信道的信干噪比与参考 RS的信干噪比相等;
对于 B21 , 待估计信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( T12-T22 ) ]x ( T02-T12 ), 其中, SINR1为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS 的信干噪比; T1 为时域上距待估计信道最近的 RS的时域坐标, Τ2为时域上距待估计信道 次最近的 RS的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于 y大于等于 2的区域,以所有参考 RS的信干噪比的概率分布函数 的反函数来确定待估计信道的 SINR;
或者, 所述确定单元, 进一步地, 对于 B11 , 待估计信道的信干噪比与 参考 RS的信干噪比相等;
对于 B21 ,待估计信道的 SINR为: SINR1 +[( SINR1-SINR2 )/( T1-T2 )]x ( T0-T1 ), 其中, SINR1 为时域上距待估计信道最近的 RS 的信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; T1为时域上距待 估计信道最近的 RS 的时域坐标, T2 为时域上距待估计信道次最近的 RS 的时域坐标, TO为待估计信道的时域坐标;
对于 B31、 B41 ... ... Bml、 B ( m+1 ) 1 , 以所有参考 RS的信干噪比的 概率分布函数的反函数来确定待估计信道的 SINR;
对于应 B12 , 待预测信道的 SINR 为: SINR1 +[ ( SINR1-SINR2 ) I ( F1-F2 ) ]x ( F0-F1 ), 其中, SINR1为时域上距待估计信道最近的 RS的 信干噪比, SINR2为时域上距待估计信道次最近的 RS的信干噪比; F1为 时域上距待估计信道最近的 RS的频域坐标, F2为时域上距待估计信道次 最近的 RS的频域坐标, F0为待预测信道的频域坐标;
对于 B13、 B14 Bnl、 Bl ( n+1 ), 以所有参考信号的信干噪比的概 率分布函数的反函数来确定待预测信道的 SINR;
对于 Bxy, 其中 χ>1且 y>l的情况, 待预测信道的 SINR确定函数为: yxFxl ( ) / ( x+y ) +xxFly ( ) / ( x+y ), 其中, Fxl ( )表示区域 Bxl 的 SINR确定函数, Fly ( )表示区域 Bly的 SINR确定函数。。
13、 根据权利要求 11或 12所述的装置, 其特征在于, 所述参考 RS为 一个时, 为时域上距待估计信道最近一次发送的 RS, 所述参考 RS为两个 时, 第一参考 RS为时域上距待估计信道最近一次发送的 RS, 第二参考 RS 为时域上距待估计信道次最近一次发送的 RS;所述参考 RS为三个以上时, 在时域上依次选取距待估计信道最近的 RS作为对应的参考 RS。
14、 根据权利要求 13所述的装置, 其特征在于, m为 1、 2、 3、 4, 对 应的, n为 1、 2或 3。
PCT/CN2011/072745 2010-05-06 2011-04-13 信干噪比预测方法及装置 WO2011137709A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11777130.3A EP2566074B1 (en) 2010-05-06 2011-04-13 Method and device for predicting signal to interference and noise ratio

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010165774.1 2010-05-06
CN2010101657741A CN102237935B (zh) 2010-05-06 2010-05-06 信干噪比预测方法及装置

Publications (1)

Publication Number Publication Date
WO2011137709A1 true WO2011137709A1 (zh) 2011-11-10

Family

ID=44888207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072745 WO2011137709A1 (zh) 2010-05-06 2011-04-13 信干噪比预测方法及装置

Country Status (3)

Country Link
EP (1) EP2566074B1 (zh)
CN (1) CN102237935B (zh)
WO (1) WO2011137709A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106888062A (zh) * 2015-12-10 2017-06-23 电信科学技术研究院 Cqi估计、sinr确定方法及相关设备
CN111465051A (zh) * 2020-03-25 2020-07-28 紫光展锐(重庆)科技有限公司 Sinr的估计方法、系统、电子设备和存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546061B (zh) * 2012-01-09 2014-04-23 西安交通大学 基于小波变换的自适应时频空穴检测方法
CN102946367B (zh) * 2012-11-13 2015-07-29 电子科技大学 一种低复杂度信干噪比近似估计方法
CN104935388B (zh) * 2015-04-30 2017-05-24 中国电子科技集团公司第七研究所 背景干扰噪声电平预测方法及系统
CN115361078B (zh) * 2022-10-21 2023-03-24 广东电网有限责任公司东莞供电局 一种传输区间确定方法、装置、电子设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080039098A1 (en) * 2006-08-14 2008-02-14 Texas Instruments Incorporated Methods and apparatus to schedule uplink transmissions in wireless communication systems
CN101237659A (zh) * 2007-01-05 2008-08-06 财团法人工业技术研究院 干扰测量及预测的方法
US20090238086A1 (en) * 2008-03-19 2009-09-24 Telefonaktiebolaget Lm Ericsson (Publ) Rank Dependent CQI Back-Off
CN101588590A (zh) * 2008-05-20 2009-11-25 中国移动通信集团公司 上行数据信道的信道质量估计方法及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834815B1 (ko) * 2006-03-03 2008-06-05 삼성전자주식회사 이동통신 시스템에서 프리앰블을 이용한 수신 신호 대 잡음및 간섭 비 측정 장치 및 방법
ATE497287T1 (de) * 2007-08-30 2011-02-15 Ericsson Telefon Ab L M Schätzung eines signal-zu-interferenz- verhältnisses bei einem empfänger eines drahtlosen kommunikationssystems
US8706068B2 (en) * 2008-06-23 2014-04-22 Telefonaktiebolaget L M Ericsson (Publ) Adaptive signal power measurement methods and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080039098A1 (en) * 2006-08-14 2008-02-14 Texas Instruments Incorporated Methods and apparatus to schedule uplink transmissions in wireless communication systems
CN101237659A (zh) * 2007-01-05 2008-08-06 财团法人工业技术研究院 干扰测量及预测的方法
US20090238086A1 (en) * 2008-03-19 2009-09-24 Telefonaktiebolaget Lm Ericsson (Publ) Rank Dependent CQI Back-Off
CN101588590A (zh) * 2008-05-20 2009-11-25 中国移动通信集团公司 上行数据信道的信道质量估计方法及设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106888062A (zh) * 2015-12-10 2017-06-23 电信科学技术研究院 Cqi估计、sinr确定方法及相关设备
CN111465051A (zh) * 2020-03-25 2020-07-28 紫光展锐(重庆)科技有限公司 Sinr的估计方法、系统、电子设备和存储介质
CN111465051B (zh) * 2020-03-25 2022-05-24 紫光展锐(重庆)科技有限公司 Sinr的估计方法、系统、电子设备和存储介质

Also Published As

Publication number Publication date
EP2566074A1 (en) 2013-03-06
CN102237935B (zh) 2013-12-11
EP2566074A4 (en) 2015-08-05
EP2566074B1 (en) 2018-02-14
CN102237935A (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
CN108712747B (zh) 一种基于频谱预测的链路快速建立方法
WO2011137709A1 (zh) 信干噪比预测方法及装置
KR100884960B1 (ko) 직교 주파수 분할 다중 시스템(ofdm)에서의 채널 추정 방법 및 장치
Sung et al. Temporal spectrum sharing based on primary user activity prediction
CN110602743B (zh) 一种进行下行信道特性参数测量的方法及用户设备
JP5043852B2 (ja) 通信チャネル推定の方法および装置
RU2014150510A (ru) Способы и устройства для определения оценки мощности сигнала посредством масштабирования
JP2013539616A (ja) Ueモビリティステータスを判定するための方法及び装置
KR101622798B1 (ko) 무선 통신 시스템에서 채널 추정 방법 및 장치
Capoglu et al. Effect of Doppler spread in OFDM-based UWB systems
JP2014072893A (ja) 干渉消去装置及び受信機
KR102010506B1 (ko) 무선 통신 시스템에서 송신 전력을 추정하기 위한 시스템 및 방법
KR20130028675A (ko) 잡음 비율 추정 메커니즘 및 그 동작 방법에 대한 모바일 통신 시스템
Singh et al. Threshold optimization of a finite sample-based cognitive radio network using energy detector
EP3734855A1 (en) Multiuser pairing method and apparatus, and base station
Giri Prasad et al. Group based multi-channel synchronized spectrum sensing in cognitive radio network with 5G
KR102094732B1 (ko) 직교 주파수 분할 다중화 시스템에서 적응적으로 채널을 추정하는 장치 및 그 장치를 이용한 방법
CN101719881B (zh) 一种噪声功率的估计方法、装置和通信系统
KR20140107998A (ko) 신호 감지 방법 및 장치
Hekkala et al. Cooperative spectrum sensing study using welch periodogram
WO2012103850A2 (zh) 一种传输模式配置方法和装置
Zhao et al. Efficient SINR estimating with accuracy control in large scale cognitive radio networks
CN102316506A (zh) 一种确定移动台速度范围的方法和设备
Soltani et al. On reducing multiband spectrum sensing duration for cognitive radio networks
Cheon et al. A heuristic resource allocation method for underwater uplink OFDMA system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011777130

Country of ref document: EP