WO2011136095A1 - Treatment agent for decomposition of chemical substance which comprises persulfuric acid salt and silver complex, and method for decomposition of chemical substance using same - Google Patents

Treatment agent for decomposition of chemical substance which comprises persulfuric acid salt and silver complex, and method for decomposition of chemical substance using same Download PDF

Info

Publication number
WO2011136095A1
WO2011136095A1 PCT/JP2011/059678 JP2011059678W WO2011136095A1 WO 2011136095 A1 WO2011136095 A1 WO 2011136095A1 JP 2011059678 W JP2011059678 W JP 2011059678W WO 2011136095 A1 WO2011136095 A1 WO 2011136095A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
chemical substance
acid
persulfate
complex
Prior art date
Application number
PCT/JP2011/059678
Other languages
French (fr)
Japanese (ja)
Inventor
成康 吉岡
健一 君塚
浄 吉田
孝 海老原
洋介 新開
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201180021291.7A priority Critical patent/CN102883783B/en
Priority to KR1020127026310A priority patent/KR101771761B1/en
Priority to JP2012512796A priority patent/JP5817718B2/en
Publication of WO2011136095A1 publication Critical patent/WO2011136095A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/38Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by oxidation; by combustion
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/36Detoxification by using acid or alkaline reagents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/002Reclamation of contaminated soil involving in-situ ground water treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/02Extraction using liquids, e.g. washing, leaching, flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/38Radicals substituted by singly-bound nitrogen atoms having only hydrogen or hydrocarbon radicals attached to the substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages

Definitions

  • the present invention relates to a chemical substance decomposition treatment agent containing persulfate and a silver complex, and a chemical substance decomposition method using the same.
  • the chemical treatment methods covered by the Soil Contamination Countermeasures Law or Oil Contamination Countermeasure Guidelines include in-situ oxidative decomposition, bioremediation, and iron powder method.
  • the in-situ oxidative decomposition method is a method of purifying by combining an oxidizing agent such as persulfate or hydrogen peroxide and a catalyst such as iron, but it is difficult to decompose a hardly decomposable substance such as dichloromethane. In addition, it was difficult to decompose a substance such as dichloromethane by the bio method or the iron powder method.
  • Examples of cyan treatment methods include alkali chlorine method, acid volatilization recovery method, coagulation precipitation method, hydrothermal reaction method and the like.
  • the alkali chlorine method is a method in which an object to be treated is brought to an alkaline state having a pH of 10 or more, and then an oxidant such as chlorine, hypochlorous acid, potassium permanganate is added to oxidize and decompose (see Non-Patent Document 1). ).
  • this method can decompose cyanide which is relatively easy to decompose, it is difficult to decompose a hardly decomposable metal cyano complex such as hexacyanoferrate (II) ion.
  • the coagulation precipitation method is a treatment method applicable to cyan treatment of a hardly decomposable metal cyano complex that is difficult to oxidatively decompose (see Non-Patent Document 2). For example, by adding excess iron ions, copper ions, or zinc ions to wastewater containing hexacyanoferrate (II) ions, precipitation of insoluble heavy metal salt of hexacyanoferrate (II) acid is generated from the wastewater. It can be separated and removed.
  • this treatment method is a technique that separates cyan as an insoluble precipitate without decomposing it, so it cannot be applied to the soil in situ purification method.
  • the acid volatilization recovery method is a method in which hydrogen cyanide is generated and volatilized and removed as a gas by bringing a treatment target into an acidic state having a pH of 3 or less.
  • hydrogen cyanide is known as a very toxic substance, there is a problem in safety, particularly when soil and / or groundwater is treated in situ.
  • by making the soil acidic at pH 3 or less heavy metal components in the soil may elute and secondary contamination by heavy metals may occur, and corrosion of steel frames and underground pipes that are underground structures may occur.
  • the hydrothermal reaction method is a technique for decomposing cyanide by treating a metal cyano complex at 150 ° C. or higher under pressure (see Patent Document 1).
  • this treatment method requires that the object to be treated be transferred to a pressure vessel for treatment, it has been difficult to apply it to in-situ purification.
  • Patent Document 2 discloses a method for decomposing cyanide by oxidizing an object containing a metal cyano complex at a high temperature of 80 ° C. or higher.
  • Patent Document 2 discloses a method for decomposing cyanide by oxidizing an object containing a metal cyano complex at a high temperature of 80 ° C. or higher.
  • Patent Document 3 discloses a method for decomposing cyanide in an object containing a metal cyano complex using ozone having high oxidizing power.
  • ozone that is toxic may adversely affect the ecosystem, and the ozone remaining after the treatment needs to be decomposed, resulting in a disadvantage that the burden on the facility increases.
  • Patent Document 4 discloses a method for purifying contaminants contaminated with chemical substances by adding persulfate within a range of 100 to 1000 mg / L while maintaining the reaction region at pH 5 or higher.
  • persulfate is effective for chemical substances such as organochlorine compounds, it has been difficult to decompose hardly decomposable metal cyano complexes.
  • An object of the present invention is to solve at least one of the various problems of the prior art as described above, and to decompose chemical substances safely and efficiently, and more economically advantageous treatment agent for chemical substance decomposition, And providing a method for decomposing a chemical substance using the same.
  • the present inventors can easily decompose a hardly decomposable chemical substance by using a treatment agent containing a persulfate and a silver complex. As a result, the present invention has been completed.
  • One embodiment of the present invention is a treating agent for decomposing a chemical substance, which contains a persulfate and a silver complex.
  • the silver complex is at least selected from the group consisting of a compound having a pyridine ring, a compound having a pyrimidine ring, a compound having an ethylenediamine structure, hydroxycarboxylic acids, amino acids, and diaminopropane.
  • the silver complex may be 2,2′-bipyridine, 2-picolylamine, terpyridine, picolinic acid, 2-pyridineethanol, 3-aminopyridine, 2-aminopyrimidine, ethylenediamine. And at least one selected from the group consisting of tetramethylethylenediamine, ethylenediaminetetraacetic acid, lactic acid, glycolic acid, 1,2-diaminopropane, 1,3-diaminopropane, and glycine. It is a processing agent as described in said ⁇ 2>.
  • ⁇ 4> Another embodiment of the present invention is a treating agent for decomposing a chemical substance, comprising a persulfate, a silver compound, and a complexing agent.
  • the complexing agent comprises 2,2′-bipyridine, 2-picolylamine, terpyridine, picolinic acid, 2-pyridineethanol, 3-aminopyridine, 2-aminopyrimidine, ethylenediamine,
  • the treatment agent according to ⁇ 4>, wherein the treatment agent is at least one selected from the group consisting of tetramethylethylenediamine, ethylenediaminetetraacetic acid, lactic acid, glycolic acid, 1,2-diaminopropane, 1,3-diaminopropane, and glycine.
  • the silver compound is silver nitrate, silver sulfate, silver nitrite, silver sulfite, silver carbonate, silver phosphate, silver borate, silver acetate, silver oxalate, silver citrate and silver oxide.
  • Another preferred embodiment of the present invention is the treatment agent according to any one of ⁇ 1> to ⁇ 6>, wherein the persulfate is peroxodisulfate.
  • ⁇ 8> Another preferred embodiment of the present invention is the treatment agent according to any one of ⁇ 1> to ⁇ 7>, further comprising a sulfate.
  • ⁇ 9> Another preferred embodiment of the present invention is the treatment agent according to any one of ⁇ 1> to ⁇ 8>, wherein the chemical substance is a cyanide and / or a metal cyano complex.
  • ⁇ 10> Another embodiment of the present invention provides the treatment agent according to any one of the above ⁇ 1> to ⁇ 8> and at least one of a volatile organic compound, a crude oil-derived product, a cyanide, or a metal cyano complex.
  • a chemical substance decomposing method characterized by bringing a chemical substance into contact therewith.
  • a preferred embodiment of the present invention is the decomposition method according to ⁇ 10>, wherein the pH of the chemical substance during the treatment is maintained at 4 to 11.
  • Another preferable embodiment of the present invention is the decomposition method according to ⁇ 10> or ⁇ 11>, further comprising adding a pH adjuster.
  • ⁇ 13> Another preferable aspect of the present invention is the decomposition method according to ⁇ 12>, wherein the pH adjuster is an acetic acid buffer.
  • the acetic acid buffer is acetic acid and / or sodium acetate.
  • ⁇ 15> Another preferable aspect of the present invention is the decomposition method according to any one of the above ⁇ 10> to ⁇ 14>, wherein the temperature of the chemical substance during the treatment is at most 70 ° C. . ⁇ 16>
  • Another preferable aspect of the present invention is that any one of the above ⁇ 10> to ⁇ 15>, wherein the chemical substance is one or a combination of two or more selected from the group consisting of soil, groundwater, wastewater, and waste. It is the decomposition method of crab.
  • ⁇ 17> Another preferable aspect of the present invention is that when the chemical substance includes a cyanide and / or a metal cyano complex, the chemical substance contains at least 0.1 g of persulfate per 1.0 mg CN of the cyanide compound in the chemical substance.
  • ⁇ 18> Another preferable aspect of the present invention is the decomposition method according to any one of ⁇ 10> to ⁇ 17>, wherein the treatment agent and the chemical substance are mixed with stirring.
  • the chemical substance decomposition treatment agent and the chemical substance decomposition method using the same according to the preferred embodiments of the present invention, the following effects are obtained.
  • (1) It is possible to safely and effectively decompose chemical substances such as cyanide, metal cyano complex, and dichloromethane which have extremely high oxidizing power and are difficult to oxidatively decompose.
  • (2) Decompose cyanide and metal cyano complexes without generating hydrogen cyanide and eluting heavy metal components to decompose cyan while keeping the pH of the target chemical substance near neutral. Can do.
  • the target chemical substance is soil and / or groundwater contaminated with cyanide, metal cyano complex, etc., it can be oxidatively decomposed in situ. Therefore, according to the present invention, it is possible to safely and effectively decompose chemical substances such as cyanide and metal cyano complex that cause contamination.
  • One embodiment of the present invention is a treating agent for decomposing a chemical substance, which is a treating agent for decomposing a chemical substance, and contains a persulfate and a silver complex.
  • a silver complex instead of the silver complex, a silver compound and a complexing agent may be included, and a silver complex may be formed when the treatment agent is used.
  • the chemical substance in the present invention is a chemical substance that causes contamination of soil, groundwater, drainage, waste, and the like. Substances regulated by the Soil Contamination Countermeasures Law such as volatile organic compounds, cyanides, metal cyano complexes, etc. It is a crude oil-derived product that has guidelines for oil slicks and oily odors.
  • the cyanide in the present invention refers to a compound having cyanide ions by dissociation. Examples of the cyanide include hydrogen cyanide, sodium cyanide, potassium cyanide and the like.
  • Metal cyano complexes refer to complexes and salts of complexes that can generate cyanide ions, cyanide, or hydrogen cyanide upon dissociation.
  • iron cyano complexes such as hexacyanoiron (II) ion, hexacyanoiron (III) ion, pentacyanonitrosyl iron (II) ion, copper cyano complex, zinc cyano complex, nickel cyano complex, silver cyano complex, cobalt A cyano complex, a gold cyano complex, etc. are mentioned.
  • the volatile organic compound in the present invention include 1,1-dichloroethylene, cis-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, 1,3-dichloropropene, dichloromethane, 1,2-dichloroethane, 1,1,1.
  • crude oil-derived product of the present invention examples include light oil, kerosene, gasoline, and heavy oil.
  • the treatment agent of the present invention can be applied to an object containing a chemical substance.
  • the object include a solid, liquid, or slurry containing a chemical substance.
  • the object may include a gas in a part thereof.
  • one or a combination of two or more selected from soil, groundwater, drainage, and waste can be used, but the invention is not limited to these four types.
  • the persulfate in the treatment agent of the present invention is not particularly limited, and for example, sodium persulfate, potassium persulfate, ammonium persulfate and the like can be used.
  • Sodium persulfate and ammonium persulfate are preferable because of their high solubility in water, and sodium persulfate is more preferable because there is no risk of secondary contamination with ammoniacal nitrogen.
  • the use of peroxodisulfate is preferred, and the use of sodium peroxodisulfate is particularly preferred.
  • the amount of persulfate used can be selected according to the chemical substance content in the object, using the treatability test as an index of whether or not the object can be purified.
  • the amount is preferably at least 0.1 g, more preferably 0.2 g or more, and most preferably 0.5 g or more per 1.0 mg CN of the cyanide compound in the object.
  • the upper limit of the amount of persulfate used is preferably 50 g or less, more preferably 20 g or less, and most preferably 10 g or less, per kg of the object in consideration of economy and moderate pH fluctuation of the object.
  • the amount of cyanide compound can be determined from the total cyan density measured in accordance with “38.1.2 Total Cyan” and “38.3 4-pyridinecarboxylic acid-pyrazolone spectrophotometric method” of JIS K0102: 2008. it can.
  • the complexing agent used for forming the silver complex in the present invention is not particularly limited, but is selected from a compound having a pyridine ring, a compound having a pyrimidine ring, a compound having an ethylenediamine structure, hydroxycarboxylic acids, amino acids, and diaminopropane.
  • a compound having a pyridine ring examples include 2,2′-bipyridine, 2-picolylamine, terpyridine, picolinic acid, 2-pyridineethanol, 3-aminopyridine, 2-aminopyrimidine, 2- (aminomethyl) pyridine, and the like. Is mentioned.
  • Examples of the compound having a pyrimidine ring include 2-aminopyrimidine, 2-amino-4-methylpyrimidine, 2-amino-4,6-dimethylpyrimidine, 2,4-dimethylaminopyrimidine and the like.
  • Examples of the compound having an ethylenediamine structure include ethylenediamine, tetramethylethylenediamine, ethylenediaminetetraacetic acid, 1,2-diaminopropane, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, and the like.
  • hydroxycarboxylic acids include lactic acid, malic acid, glycolic acid, tartaric acid, citric acid, gluconic acid, and glucaric acid.
  • amino acids include glycine, alanine, aspartic acid, nitrilotriacetic acid, 1,3-propanediaminetetraacetic acid and the like.
  • the complexing agent in the present invention is 2,2′-bipyridine, 2-picolylamine, terpyridine, picolinic acid, 2-pyridineethanol, 3-aminopyridine, 2-aminopyrimidine, ethylenediamine, tetramethylethylenediamine, One or more selected from ethylenediaminetetraacetic acid, lactic acid, glycolic acid, 1,2-diaminopropane, 1,3-diaminopropane, and glycine, and particularly preferably 2,2′-bipyridine.
  • the silver compound used in the silver complex is not particularly limited as long as it can form a silver complex with the complexing agent.
  • the compounding ratio of the silver compound and the complexing agent in the silver complex in the present invention is not particularly limited as long as the effects of the present invention are not impaired, but the complexing agent for the silver compound (as silver ions) is not limited.
  • the molar ratio (complexing agent / silver ion) is preferably 0.2 to 3, more preferably 0.5 to 3, and most preferably 0.5 to 2. Too much complexing agent is not economical, and if the molar ratio is too small, silver salt is precipitated, which is not preferable.
  • the use amount of the silver complex can be selected according to the content of the chemical substance in the target object using the treatability test as an index of whether or not the target object can be purified. In this case, it is preferably at least 0.1 mgAg, more preferably 0.5 mgAg or more, and most preferably 1.0 mgAg or more per 1.0 mgCN of cyanide compound in the object. In consideration of economy, the upper limit of the amount of silver complex used is preferably 100 mgAg or less, more preferably 40 mgAg or less, and most preferably 10 mgAg or less per kg of the target.
  • the treatment agent of the present invention contains a persulfate and a silver complex, or contains a persulfate, a silver compound, and a complexing agent, but the persulfate and the silver complex (or the complex with the silver compound).
  • the agent may be mixed in advance or may be mixed immediately before use. Moreover, it is also possible to mix the aqueous solution containing each independently just before use.
  • the sulfate used in the present invention is not limited, but is desirably the same cationic species as the persulfate used for the purpose of minimizing the types of substances imparted to the environment.
  • sodium persulfate when sodium persulfate is selected as the cleaning agent, it is preferable to select sodium sulfate as the sulfate.
  • the amount of sulfate used together with the persulfate is at least 1 part by weight per 100 parts by weight of the persulfate, preferably 1 to 20 parts by weight, more preferably 1 to 10 parts by weight. If the amount is less than 1 part by weight, the effect of improving the decomposition of the pollutant cannot be obtained, and the effect as expected can not be obtained even if it is supplied in excess, which is economically undesirable.
  • the chemical substance in the object can be decomposed by bringing the treatment agent into contact with the object containing the chemical substance. It is also effective to forcibly stir and mix the treatment agent and the object in order to efficiently bring the treatment agent into contact with the object and promote decomposition. Moreover, when the chemical substance concentration of the object is high, the treatment agent can be repeatedly added to the object for treatment.
  • the pH of the object during the treatment it is preferable to maintain the pH of the object during the treatment at 4 to 11.
  • Decomposition of cyanide and / or metal cyano complex with a low pH of the object may generate hydrogen cyanide, and an insoluble silver oxide precipitate may be formed at a high pH, which may result in failure to decompose cyanide.
  • a pH adjusting agent can be used to keep the pH of the object at 4-11.
  • a treatment agent containing a persulfate since a treatment agent containing a persulfate is used, the pH of the object may be lowered with the progress of decomposition, and therefore the addition of a pH adjuster is suitable.
  • a pH adjuster The combination of an alkaline compound and / or an alkaline compound and an acidic compound can be used, Preferably the compound group called a pH buffer agent can be used.
  • the pH buffering agent include citric acid-based, phosphoric acid-based, boric acid-based, carbonic acid-based, and acetic acid-based buffers.
  • acetic acid-based buffers are preferable.
  • the acetate buffer lithium acetate, sodium acetate, potassium acetate, calcium acetate, magnesium acetate and the like can be used.
  • sodium acetate and / or acetic acid from an economical viewpoint.
  • the sodium acetate either a trihydrate or an anhydride can be used.
  • the treatment agent of the present invention is industrially very advantageous because it does not require an auxiliary facility for heating an object and can be suitably used for in situ purification of soil and / or groundwater. .
  • the object may be heated when it is necessary to perform the decomposition process quickly.
  • the object is further cyanide and / or metal cyano complex.
  • the temperature of the object is at most 70 ° C., more preferably 50 ° C. or less.
  • the chemical substance decomposition method of the present invention can be suitably used for in situ purification of soil and / or groundwater.
  • rate and direction of addition can also be controlled by performing suction or pressure reduction in a position different from an addition position.
  • the concentration of persulfate was determined by a potassium permanganate titration method.
  • Example 1 Simulated contaminated water having a concentration of 10 mg CN / L was prepared by dissolving potassium hexacyanoferrate (II) (special grade reagent manufactured by Kosou Chemical Co., Ltd.) in pure water.
  • II potassium hexacyanoferrate
  • 2,2′-bipyridine a special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • a complexing agent was dissolved in a sulfuric acid aqueous solution to prepare a 0.16 wt% sulfuric acid acidic 2,2′-bipyridine aqueous solution.
  • Silver nitrate (special grade reagent manufactured by Koso Chemicals Co., Ltd.) as a silver compound is dissolved in pure water to prepare an aqueous silver nitrate solution, and the aqueous sulfuric acid 2,2′-bipyridine solution is mixed, and silver-2,2 as a silver complex.
  • An aqueous solution of '-bipyridine complex was prepared.
  • the residual rate of persulfate was calculated from the concentration of persulfate before and after standing.
  • the persulfate concentration was measured by back titration as described below.
  • the concentration of the aqueous ammonium iron (II) sulfate solution was measured by taking an aqueous ammonium iron (II) sulfate solution in a beaker, adding an appropriate amount of aqueous sulfuric acid solution, and titrating with an aqueous potassium permanganate solution.
  • a sample containing an ammonium iron sulfate (II) aqueous solution and a persulfate was taken in a beaker.
  • the total cyan density before and after standing was measured.
  • the total cyan density was measured by the following method.
  • the value obtained by dividing the total amount of cyan contained in the precipitate and supernatant by the amount of treatment liquid was defined as the total cyan concentration.
  • a sample was taken in a beaker and diluted with pure water as necessary.
  • Ascorbic acid equivalent to 10 times the amount of persulfate contained in the sample was added as a 10 wt% ascorbic acid aqueous solution to remove the persulfate.
  • Examples 2-4 Instead of 2,2'-bipyridine as a complexing agent, 2-picolylamine (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), ethylenediamine (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), or tetramethylethylenediamine (Sigma Aldrich) The experiment was conducted in the same manner as in Example 1 except that (Reagent manufactured by Co., Ltd.) was used. The results are shown in Table 1.
  • Comparative Example 1 The experiment was performed in the same manner as in Example 1 except that the silver complex 2,2′-bipyridine complex aqueous solution which was a silver complex was not added. The results are shown in Table 1.
  • Comparative Example 2 An experiment was conducted in the same manner as in Example 1 except that a silver nitrate aqueous solution was mixed with contaminated water instead of the silver complex without using a sulfuric acid acidic 2,2′-bipyridine aqueous solution as a complexing agent. The results are shown in Table 1.
  • decomposition of the cyanide compound was promoted by adding a persulfate, a silver compound, and a complexing agent containing a pyridine ring or an ethylenediamine structure as the treating agent of the present invention.
  • cyanide can be effectively decomposed when 2,2'-bipyridine of Example 1 is used as a complexing agent.
  • Examples 5-7 Instead of sodium acetate trihydrate as a pH adjuster, trisodium citrate dihydrate (special grade reagent manufactured by Kosou Chemical Co., Ltd.), disodium phosphate dihydrate, or sodium bicarbonate (small The experiment was conducted in the same manner as in Example 1 except that the soaking time was 2 days, 6 days, or 4 days. The results are shown in Table 3.
  • acetic acid-based, citric acid-based, phosphoric acid-based and carbonate-based buffers can be used as pH adjusters in the decomposition method of the present invention.
  • Example 1 using sodium acetate as a pH adjuster and Example 7 using sodium hydrogen carbonate, the cyanide decomposition effect was high.
  • Example 10-11 The experiment was performed in the same manner as in Example 1 except that the concentration of the simulated contaminated water, the amount of sodium persulfate, the silver complex, and the pH adjuster were changed. The results are shown in Table 4.
  • Example 12-14 The experiment was performed in the same manner as in Example 1 except that the addition amount of sodium persulfate as a persulfate and the addition amount of sodium acetate trihydrate as a pH adjuster were changed. The results are shown in Table 5.
  • Example 15-17 Experiments were conducted in the same manner as in Example 1 except that the concentration of the silver nitrate aqueous solution as the silver compound and the sulfuric acid acidic 2,2′-bipyridine aqueous solution as the complexing agent were changed when preparing the silver complex aqueous solution. The results are shown in Table 6.
  • Example 18 The experiment was performed in the same manner as in Example 13 except that ammonium persulfate (special grade reagent manufactured by Kanto Chemical Co., Inc.) was used as the persulfate instead of sodium persulfate. The results are shown in Table 7.
  • ammonium persulfate special grade reagent manufactured by Kanto Chemical Co., Inc.
  • Example 19 Dichloromethane (special grade reagent manufactured by Koso Chemicals Co., Ltd.) was dissolved in pure water to prepare simulated contaminated water having a concentration of 19 mg / L. 2,2′-bipyridine (a special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) as a complexing agent was dissolved in a sulfuric acid aqueous solution to prepare a 0.16 wt% sulfuric acid acidic 2,2′-bipyridine aqueous solution.
  • 2,2′-bipyridine a special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • Silver nitrate (special grade reagent manufactured by Koso Chemicals Co., Ltd.) as a silver compound is dissolved in pure water to prepare an aqueous silver nitrate solution, and the aqueous sulfuric acid 2,2′-bipyridine solution is mixed, and silver-2,2 as a silver complex.
  • An aqueous solution of '-bipyridine complex was prepared.
  • aqueous solution of sodium hydrogen carbonate (special grade reagent manufactured by Koso Chemicals Co., Ltd.) as a pH adjuster was added to a concentration of 0.1 M, and persulfate After dissolving sodium persulfate (sodium peroxodisulfate manufactured by Koso Chemicals Co., Ltd., first grade reagent), 100 mL of simulated contaminated water was added and the above silver-2,2′-bipyridine complex aqueous solution was mixed. Further, pure water was added to the bottle mouth and sealed, and the mixture was stirred at room temperature for 2 days.
  • sodium hydrogen carbonate special grade reagent manufactured by Koso Chemicals Co., Ltd.
  • the persulfate concentration and the dichloromethane concentration before and after standing were measured.
  • the dichloromethane concentration was measured by a headspace gas chromatograph method. The results are shown in Table 8. Each concentration was adjusted to a predetermined concentration in the entire system (131 mL).
  • Examples 20-31 An experiment was conducted in the same manner as in Example 19 except that the complexing agent shown in Table 8 was used instead of 2,2′-bipyridine as the complexing agent. The results are shown in Table 8.
  • Comparative Example 5 The experiment was performed in the same manner as in Example 19 except that the silver-2,2′-bipyridine complex aqueous solution which is a silver complex was not used. The results are shown in Table 8.
  • Example 32 Example 1 except that 3.40 g of sodium acetate trihydrate was dissolved instead of 1.36 g of sodium acetate trihydrate as a pH adjusting agent, and the standing time was changed to 2 days instead of 6 days. The experiment was conducted in the same manner as in 1. The results are shown in Table 9.
  • Example 33 Instead of mixing an aqueous silver-2,2′-bipyridine complex solution, which is a silver complex, after dissolving sodium acetate trihydrate, which is a pH adjusting agent, and sodium persulfate, which is a persulfate, An experiment was conducted in the same manner as in Example 32 except that the hydrate was dissolved, the aqueous silver-2,2′-bipyridine complex was mixed, and sodium persulfate was further dissolved. The results are shown in Table 9.
  • Example 34 Simulated contaminated water having a concentration of 20 mg CN / L was prepared by dissolving potassium hexacyanoferrate (II) in pure water.
  • 2,2′-bipyridine as a complexing agent was dissolved in an aqueous sulfuric acid solution to prepare a 0.16 wt% sulfuric acid acidic 2,2′-bipyridine aqueous solution.
  • Silver nitrate was dissolved in pure water as a silver compound to prepare a silver nitrate aqueous solution, and the above sulfuric acid acidic 2,2′-bipyridine aqueous solution was mixed to prepare a silver-2,2′-bipyridine complex aqueous solution as a silver complex.
  • Example 35 The experiment was conducted in the same manner as in Example 32 except that 2-picolylamine was used in place of 2,2′-bipyridine as a complexing agent. The results are shown in Table 9.
  • Example 36 The experiment was conducted in the same manner as in Example 33 except that 2-picolylamine was used in place of 2,2′-bipyridine as a complexing agent. The results are shown in Table 9.
  • Example 37 The experiment was conducted in the same manner as in Example 34 except that 2-picolylamine was used in place of 2,2′-bipyridine as a complexing agent. The results are shown in Table 9.
  • Comparative Example 7 An experiment was conducted in the same manner as in Example 32, except that an aqueous 2,2′-bipyridine sulfate solution as a complexing agent was not used, and an aqueous silver nitrate solution was used instead of the silver complex. The results are shown in Table 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed are: a treatment agent for use in the decomposition of a chemical substance, which can decompose the chemical substance safely and with high efficiency and is economically advantageous; and a method for decomposing a chemical substance using the treatment agent. Specifically disclosed are: a treatment agent for use in the decomposition of a chemical substance, which is characterized by comprising a persulfuric acid salt and a silver complex; and a method for decomposing a chemical substance using the treatment agent.

Description

過硫酸塩および銀錯体を含む化学物質分解用処理剤及びそれを用いた化学物質の分解方法Chemical substance treatment agent containing persulfate and silver complex, and chemical substance decomposition method using the same
 本発明は、過硫酸塩および銀錯体を含む化学物質分解用処理剤、及びそれを用いた化学物質の分解方法に関する。 The present invention relates to a chemical substance decomposition treatment agent containing persulfate and a silver complex, and a chemical substance decomposition method using the same.
 土壌汚染対策法の対象とされている化学物質、例えば揮発性有機化合物、シアン化物及び/又は金属シアノ錯体を取り扱った地歴のある土地の多くは、要措置区域や形質変更時要届出区域に指定され、社会問題となっている。また、油汚染ガイドラインの対象とされている原油由来物は、油汚染を生じさせ、生活環境に悪影響を与える原因となっている。ここでのシアン化物とは、例えば、シアン化水素、シアン化ナトリウムといったシアン化物イオンを発生するシアン化物が挙げられる。また金属シアノ錯体とは、例えば、鉄シアノ錯体や銅シアノ錯体のイオン及びその塩が挙げられる。 Most of the land with a history of handling chemical substances subject to the Soil Contamination Countermeasures Law, such as volatile organic compounds, cyanides, and / or metal cyano complexes, should be placed in the action area or the notification area required for transformation. Designated and has become a social problem. In addition, crude oil-derived substances that are the subject of oil pollution guidelines cause oil pollution and have a negative impact on the living environment. Examples of the cyanide include cyanide that generates cyanide ions such as hydrogen cyanide and sodium cyanide. Examples of the metal cyano complex include iron cyano complex and copper cyano complex ions and salts thereof.
 土壌汚染対策法または油汚染対策ガイドラインの対象とされている化学物質の処理方法としては、原位置酸化分解法、バイオレメディエーション、鉄粉法などが挙げられる。原位置酸化分解法は過硫酸塩や過酸化水素のような酸化剤と、鉄などの触媒とを組み合わせて浄化する手法であるが、ジクロロメタンのような難分解性物質の分解は難しかった。また、バイオ法や鉄粉法でもジクロロメタンのような物質の分解は困難であった。 The chemical treatment methods covered by the Soil Contamination Countermeasures Law or Oil Contamination Countermeasure Guidelines include in-situ oxidative decomposition, bioremediation, and iron powder method. The in-situ oxidative decomposition method is a method of purifying by combining an oxidizing agent such as persulfate or hydrogen peroxide and a catalyst such as iron, but it is difficult to decompose a hardly decomposable substance such as dichloromethane. In addition, it was difficult to decompose a substance such as dichloromethane by the bio method or the iron powder method.
 シアンの処理方法としては、アルカリ塩素法、酸揮発回収法、凝集沈殿法、水熱反応法等の方法が挙げられる。
 アルカリ塩素法は、処理対象物をpH10以上のアルカリ性の状態にした後に、塩素、次亜塩素酸、過マンガン酸カリウム等の酸化剤を加えて、酸化分解する方法である(非特許文献1参照)。しかし、この方法は比較的分解しやすいシアン化物を分解できるものの、ヘキサシアノ鉄(II)酸イオンといった難分解性の金属シアノ錯体の分解は困難であった。
Examples of cyan treatment methods include alkali chlorine method, acid volatilization recovery method, coagulation precipitation method, hydrothermal reaction method and the like.
The alkali chlorine method is a method in which an object to be treated is brought to an alkaline state having a pH of 10 or more, and then an oxidant such as chlorine, hypochlorous acid, potassium permanganate is added to oxidize and decompose (see Non-Patent Document 1). ). However, although this method can decompose cyanide which is relatively easy to decompose, it is difficult to decompose a hardly decomposable metal cyano complex such as hexacyanoferrate (II) ion.
 凝集沈殿法は、酸化分解が困難な難分解性の金属シアノ錯体のシアン処理にも適用できる処理方法である(非特許文献2参照)。例えば、ヘキサシアノ鉄(II)酸イオンを含有する排水に過剰の鉄イオン、銅イオン、または亜鉛イオンを添加することで、不溶性のヘキサシアノ鉄(II)酸の重金属塩の沈殿が生成し排水中から分離除去することができる。しかし、本処理法はシアンを分解せずに不溶性沈殿として分離する技術であるため、土壌の原位置浄化法には適用出来なかった。 The coagulation precipitation method is a treatment method applicable to cyan treatment of a hardly decomposable metal cyano complex that is difficult to oxidatively decompose (see Non-Patent Document 2). For example, by adding excess iron ions, copper ions, or zinc ions to wastewater containing hexacyanoferrate (II) ions, precipitation of insoluble heavy metal salt of hexacyanoferrate (II) acid is generated from the wastewater. It can be separated and removed. However, this treatment method is a technique that separates cyan as an insoluble precipitate without decomposing it, so it cannot be applied to the soil in situ purification method.
 酸揮発回収法は、処理対象物をpH3以下の酸性の状態にすることで、シアン化水素を生成させ、気体として揮発除去する方法である。しかし、シアン化水素は猛毒として知られているため安全性に問題があり、特に土壌および/または地下水を原位置で処理する場合においては問題があった。また、土壌をpH3以下の酸性にすることで土壌中の重金属成分が溶出して重金属による二次汚染が発生する恐れや、地下構造物である鉄骨や地下配管の腐食が生じる恐れもあった。 The acid volatilization recovery method is a method in which hydrogen cyanide is generated and volatilized and removed as a gas by bringing a treatment target into an acidic state having a pH of 3 or less. However, since hydrogen cyanide is known as a very toxic substance, there is a problem in safety, particularly when soil and / or groundwater is treated in situ. Further, by making the soil acidic at pH 3 or less, heavy metal components in the soil may elute and secondary contamination by heavy metals may occur, and corrosion of steel frames and underground pipes that are underground structures may occur.
 水熱反応法は、金属シアノ錯体を加圧下、150℃以上で処理することで、シアンを分解する技術である(特許文献1参照)。しかし、本処理法は処理対象物を耐圧容器に移して処理する必要があるため、原位置浄化に適用することは困難であった。 The hydrothermal reaction method is a technique for decomposing cyanide by treating a metal cyano complex at 150 ° C. or higher under pressure (see Patent Document 1). However, since this treatment method requires that the object to be treated be transferred to a pressure vessel for treatment, it has been difficult to apply it to in-situ purification.
 これらに対し、金属シアノ錯体を含有する対象物を80℃以上の高温で酸化処理することでシアンを分解する方法が特許文献2に開示されている。しかし、大量の土壌および/または地下水を原位置にて高温に加熱維持することは経済的に困難であるため、原位置浄化に適用することは困難であった。 On the other hand, Patent Document 2 discloses a method for decomposing cyanide by oxidizing an object containing a metal cyano complex at a high temperature of 80 ° C. or higher. However, since it is economically difficult to heat and maintain a large amount of soil and / or groundwater at a high temperature in situ, it has been difficult to apply in situ purification.
 高い酸化力を有するオゾンを用いて金属シアノ錯体を含有する対象物中のシアンを分解する方法が特許文献3に開示されている。しかし、有毒であるオゾンを使用することは生態系に悪影響を与える恐れがある上、処理後に残留したオゾンを分解処理する必要があるため、設備負担が大きくなるとの欠点があった。 Patent Document 3 discloses a method for decomposing cyanide in an object containing a metal cyano complex using ozone having high oxidizing power. However, the use of ozone that is toxic may adversely affect the ecosystem, and the ozone remaining after the treatment needs to be decomposed, resulting in a disadvantage that the burden on the facility increases.
 生物学的分解方法も試みられているが、毒性を有するシアンを高濃度に含む汚染に対しては、適用が難しいという欠点があった。
 また、反応領域をpH5以上に保持しつつ過硫酸塩を100~1000mg/Lの範囲内で添加して、化学物質によって汚染された汚染物を浄化する方法が特許文献4に開示されている。しかし、過硫酸塩の添加による浄化は、有機塩素化合物等の化学物質に対しては有効であるものの、難分解性の金属シアノ錯体の分解は困難であった。
Biological degradation methods have also been attempted, but they have the drawback of being difficult to apply to contamination containing high concentrations of toxic cyanide.
Patent Document 4 discloses a method for purifying contaminants contaminated with chemical substances by adding persulfate within a range of 100 to 1000 mg / L while maintaining the reaction region at pH 5 or higher. However, although purification by addition of persulfate is effective for chemical substances such as organochlorine compounds, it has been difficult to decompose hardly decomposable metal cyano complexes.
特公昭55-50718号公報Japanese Patent Publication No. 55-50718 特開昭50-118962号公報Japanese Patent Laid-Open No. 50-118962 特開2000-153284号公報JP 2000-153284 A 特許4027209号公報Japanese Patent No. 4027209
 本発明の目的は、上述した様な従来技術の各種問題点の少なくとも一つを解決することであり、化学物質を安全且つ効率よく分解し、さらに経済的に有利な化学物質分解用処理剤、及びそれを用いた化学物質の分解方法を提供することにある。 An object of the present invention is to solve at least one of the various problems of the prior art as described above, and to decompose chemical substances safely and efficiently, and more economically advantageous treatment agent for chemical substance decomposition, And providing a method for decomposing a chemical substance using the same.
 本発明者らは、上述した問題点を解決するために鋭意研究を行った結果、過硫酸塩および銀錯体を含む処理剤を用いることで、難分解性の化学物質を容易に分解可能であることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors can easily decompose a hardly decomposable chemical substance by using a treatment agent containing a persulfate and a silver complex. As a result, the present invention has been completed.
 即ち、上記課題は以下の本発明によって解決することができる。
<1> 本発明の一実施形態は、化学物質の分解に用いる処理剤であって、過硫酸塩および銀錯体を含むことを特徴とする化学物質分解用処理剤である。
<2> 本発明の好ましい態様は、前記銀錯体が、ピリジン環を有する化合物、ピリミジン環を有する化合物、エチレンジアミン構造を有する化合物、ヒドロキシカルボン酸類、アミノ酸類及びジアミノプロパンからなる群から選択される少なくとも一種を錯化剤として形成されていることを特徴とする上記<1>に記載の処理剤である。
<3> 本発明の別の好ましい態様は、前記銀錯体が、2,2’-ビピリジン、2-ピコリルアミン、ターピリジン、ピコリン酸、2-ピリジンエタノール、3-アミノピリジン、2-アミノピリミジン、エチレンジアミン、テトラメチルエチレンジアミン、エチレンジアミン四酢酸、乳酸、グリコール酸、1,2-ジアミノプロパン、1,3-ジアミノプロパン及びグリシンからなる群から選択される少なくとも一種を錯化剤として形成されていることを特徴とする上記<2>に記載の処理剤である。
<4> 本発明の別の一実施形態は、化学物質の分解に用いる処理剤であって、過硫酸塩、銀化合物および錯化剤を含むことを特徴とする化学物質分解用処理剤である。
<5> 本発明の好ましい態様は、前記錯化剤が、2,2’-ビピリジン、2-ピコリルアミン、ターピリジン、ピコリン酸、2-ピリジンエタノール、3-アミノピリジン、2-アミノピリミジン、エチレンジアミン、テトラメチルエチレンジアミン、エチレンジアミン四酢酸、乳酸、グリコール酸、1,2-ジアミノプロパン、1,3-ジアミノプロパン及びグリシンからなる群から選択される少なくとも一種である上記<4>に記載の処理剤である。
<6> 本発明の好ましい態様は、前記銀化合物が、硝酸銀、硫酸銀、亜硝酸銀、亜硫酸銀、炭酸銀、リン酸銀、ホウ酸銀、酢酸銀、シュウ酸銀、クエン酸銀及び酸化銀からなる群より選択される少なくとも一つである上記<4>または<5>に記載の処理剤である。
<7> 本発明の別の好ましい態様は、前記過硫酸塩がペルオキソ二硫酸塩である上記<1>~<6>のいずれかに記載の処理剤である。
<8> 本発明の別の好ましい態様は、さらに硫酸塩を含む上記<1>~<7>のいずれかに記載の処理剤である。
<9> 本発明の別の好ましい態様は、前記化学物質がシアン化物及び/又は金属シアノ錯体である上記<1>~<8>のいずれかに記載の処理剤である。
<10> 本発明の別の一実施形態は、上記<1>~<8>のいずれかに記載の処理剤と、揮発性有機化合物、原油由来物、シアン化物又は金属シアノ錯体の少なくとも一種を含む化学物質とを接触させることを特徴とする化学物質の分解方法である。
<11> 本発明の好ましい態様は、処理中の前記化学物質のpHを4~11に保つことを特徴とする上記<10>に記載の分解方法である。
<12> 本発明の別の好ましい態様は、さらにpH調整剤を添加することを特徴とする上記<10>又は<11>に記載の分解方法である。
<13> 本発明の別の好ましい態様は、前記pH調整剤が酢酸系緩衝剤である上記<12>に記載の分解方法である。
<14> 本発明の別の好ましい態様は、前記酢酸系緩衝剤が酢酸および/または酢酸ナトリウムである上記<13>に記載の分解方法である。
<15> 本発明の別の好ましい態様は、処理中の前記化学物質の温度を高くとも70℃とすることを特徴とする上記<10>~<14>のいずれかに記載の分解方法である。
<16> 本発明の別の好ましい態様は、前記化学物質が土壌、地下水、排水及び廃棄物からなる群から選択される一種又は二種以上の組み合わせである上記<10>~<15>のいずれかに記載の分解方法である。
<17> 本発明の別の好ましい態様は、前記化学物質がシアン化物及び/又は金属シアノ錯体を含む場合に、前記化学物質中のシアン化合物1.0mgCNあたり少なくとも0.1gの過硫酸塩を含有する処理剤を用いることを特徴とする上記<10>~<16>のいずれかに記載の分解方法である。
<18> 本発明の別の好ましい態様は、前記処理剤と前記化学物質とを攪拌混合することを特徴とする上記<10>~<17>のいずれかに記載の分解方法である。
That is, the said subject can be solved by the following this invention.
<1> One embodiment of the present invention is a treating agent for decomposing a chemical substance, which contains a persulfate and a silver complex.
<2> In a preferred embodiment of the present invention, the silver complex is at least selected from the group consisting of a compound having a pyridine ring, a compound having a pyrimidine ring, a compound having an ethylenediamine structure, hydroxycarboxylic acids, amino acids, and diaminopropane. The processing agent according to <1>, wherein one type is formed as a complexing agent.
<3> In another preferred embodiment of the present invention, the silver complex may be 2,2′-bipyridine, 2-picolylamine, terpyridine, picolinic acid, 2-pyridineethanol, 3-aminopyridine, 2-aminopyrimidine, ethylenediamine. And at least one selected from the group consisting of tetramethylethylenediamine, ethylenediaminetetraacetic acid, lactic acid, glycolic acid, 1,2-diaminopropane, 1,3-diaminopropane, and glycine. It is a processing agent as described in said <2>.
<4> Another embodiment of the present invention is a treating agent for decomposing a chemical substance, comprising a persulfate, a silver compound, and a complexing agent. .
<5> In a preferred embodiment of the present invention, the complexing agent comprises 2,2′-bipyridine, 2-picolylamine, terpyridine, picolinic acid, 2-pyridineethanol, 3-aminopyridine, 2-aminopyrimidine, ethylenediamine, The treatment agent according to <4>, wherein the treatment agent is at least one selected from the group consisting of tetramethylethylenediamine, ethylenediaminetetraacetic acid, lactic acid, glycolic acid, 1,2-diaminopropane, 1,3-diaminopropane, and glycine. .
<6> In a preferred embodiment of the present invention, the silver compound is silver nitrate, silver sulfate, silver nitrite, silver sulfite, silver carbonate, silver phosphate, silver borate, silver acetate, silver oxalate, silver citrate and silver oxide. The treatment agent according to <4> or <5>, which is at least one selected from the group consisting of:
<7> Another preferred embodiment of the present invention is the treatment agent according to any one of <1> to <6>, wherein the persulfate is peroxodisulfate.
<8> Another preferred embodiment of the present invention is the treatment agent according to any one of <1> to <7>, further comprising a sulfate.
<9> Another preferred embodiment of the present invention is the treatment agent according to any one of <1> to <8>, wherein the chemical substance is a cyanide and / or a metal cyano complex.
<10> Another embodiment of the present invention provides the treatment agent according to any one of the above <1> to <8> and at least one of a volatile organic compound, a crude oil-derived product, a cyanide, or a metal cyano complex. A chemical substance decomposing method characterized by bringing a chemical substance into contact therewith.
<11> A preferred embodiment of the present invention is the decomposition method according to <10>, wherein the pH of the chemical substance during the treatment is maintained at 4 to 11.
<12> Another preferable embodiment of the present invention is the decomposition method according to <10> or <11>, further comprising adding a pH adjuster.
<13> Another preferable aspect of the present invention is the decomposition method according to <12>, wherein the pH adjuster is an acetic acid buffer.
<14> Another preferable aspect of the present invention is the decomposition method according to <13>, wherein the acetic acid buffer is acetic acid and / or sodium acetate.
<15> Another preferable aspect of the present invention is the decomposition method according to any one of the above <10> to <14>, wherein the temperature of the chemical substance during the treatment is at most 70 ° C. .
<16> Another preferable aspect of the present invention is that any one of the above <10> to <15>, wherein the chemical substance is one or a combination of two or more selected from the group consisting of soil, groundwater, wastewater, and waste. It is the decomposition method of crab.
<17> Another preferable aspect of the present invention is that when the chemical substance includes a cyanide and / or a metal cyano complex, the chemical substance contains at least 0.1 g of persulfate per 1.0 mg CN of the cyanide compound in the chemical substance. The decomposition method according to any one of <10> to <16>, wherein the treating agent is used.
<18> Another preferable aspect of the present invention is the decomposition method according to any one of <10> to <17>, wherein the treatment agent and the chemical substance are mixed with stirring.
 本発明の好ましい態様の化学物質分解用処理剤、及びそれを用いた化学物質の分解方法によれば、以下の効果を有する。
(1)極めて高い酸化力を有し、酸化分解が困難なシアン化物、金属シアノ錯体、ジクロロメタンなどの化学物質を安全に、かつ効果的に分解することができる。
(2)対象物である化学物質のpHを中性付近に保ちつつシアンを分解するため、シアン化水素を発生させることなく、かつ重金属成分を溶出させることなく、シアン化物や金属シアノ錯体を分解することができる。
(3)対象物である化学物質がシアン化物、金属シアノ錯体などで汚染された土壌および/または地下水の場合は、原位置で酸化分解することが可能である。
 したがって、本発明によれば、汚染原因となるシアン化物、金属シアノ錯体などの化学物質を安全に、かつ効果的に分解することが可能である。
According to the chemical substance decomposition treatment agent and the chemical substance decomposition method using the same according to the preferred embodiments of the present invention, the following effects are obtained.
(1) It is possible to safely and effectively decompose chemical substances such as cyanide, metal cyano complex, and dichloromethane which have extremely high oxidizing power and are difficult to oxidatively decompose.
(2) Decompose cyanide and metal cyano complexes without generating hydrogen cyanide and eluting heavy metal components to decompose cyan while keeping the pH of the target chemical substance near neutral. Can do.
(3) When the target chemical substance is soil and / or groundwater contaminated with cyanide, metal cyano complex, etc., it can be oxidatively decomposed in situ.
Therefore, according to the present invention, it is possible to safely and effectively decompose chemical substances such as cyanide and metal cyano complex that cause contamination.
 以下、本発明を詳細に説明する。
 本発明の一実施形態は、化学物質の分解に用いる処理剤であって、過硫酸塩および銀錯体を含むことを特徴とする化学物質分解用処理剤である。上記銀錯体の代わりに、銀化合物および錯化剤を含んでいて、処理剤の使用時に銀錯体が形成されるものであってもよい。
Hereinafter, the present invention will be described in detail.
One embodiment of the present invention is a treating agent for decomposing a chemical substance, which is a treating agent for decomposing a chemical substance, and contains a persulfate and a silver complex. Instead of the silver complex, a silver compound and a complexing agent may be included, and a silver complex may be formed when the treatment agent is used.
 本発明における化学物質は、土壌、地下水、排水及び廃棄物などの汚染原因となる化学物質であり、揮発性有機化合物、シアン化物、金属シアノ錯体などの土壌汚染対策法で規制されている物質や、油膜・油臭としてガイドラインが定められている原油由来物である。本発明におけるシアン化物は、解離によってシアン化物イオンを有する化合物をいう。シアン化物としては、例えば、シアン化水素、シアン化ナトリウム、シアン化カリウム等が挙げられる。金属シアノ錯体は、解離によってシアン化物イオン、シアン化物、またはシアン化水素を発生しうる錯体および錯体の塩をいう。例えば、ヘキサシアノ鉄(II)酸イオン、ヘキサシアノ鉄(III)酸イオン、ペンタシアノニトロシル鉄(II)酸イオン等の鉄シアノ錯体、銅シアノ錯体、亜鉛シアノ錯体、ニッケルシアノ錯体、銀シアノ錯体、コバルトシアノ錯体、金シアノ錯体等が挙げられる。本発明における揮発性有機化合物としては、例えば、1,1-ジクロロエチレン、cis-1,2-ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン、1,3-ジクロロプロペン、ジクロロメタン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、四塩化炭素、ベンゼン等が挙げられる。本発明の原油由来物としては、例えば軽油、灯油、ガソリン、重油等が挙げられる。 The chemical substance in the present invention is a chemical substance that causes contamination of soil, groundwater, drainage, waste, and the like. Substances regulated by the Soil Contamination Countermeasures Law such as volatile organic compounds, cyanides, metal cyano complexes, etc. It is a crude oil-derived product that has guidelines for oil slicks and oily odors. The cyanide in the present invention refers to a compound having cyanide ions by dissociation. Examples of the cyanide include hydrogen cyanide, sodium cyanide, potassium cyanide and the like. Metal cyano complexes refer to complexes and salts of complexes that can generate cyanide ions, cyanide, or hydrogen cyanide upon dissociation. For example, iron cyano complexes such as hexacyanoiron (II) ion, hexacyanoiron (III) ion, pentacyanonitrosyl iron (II) ion, copper cyano complex, zinc cyano complex, nickel cyano complex, silver cyano complex, cobalt A cyano complex, a gold cyano complex, etc. are mentioned. Examples of the volatile organic compound in the present invention include 1,1-dichloroethylene, cis-1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, 1,3-dichloropropene, dichloromethane, 1,2-dichloroethane, 1,1,1. -Trichloroethane, 1,1,2-trichloroethane, carbon tetrachloride, benzene and the like. Examples of the crude oil-derived product of the present invention include light oil, kerosene, gasoline, and heavy oil.
 本発明の処理剤は、化学物質を含有する対象物に適用することができる。対象物としては、化学物質を含有する固体、液体またはスラリーが挙げられる。対象物はその一部に気体を含んでもよい。例えば、土壌、地下水、排水及び廃棄物から選択される一種又は二種以上の組み合わせが挙げられるが、この4種に制限されるものではない。 The treatment agent of the present invention can be applied to an object containing a chemical substance. Examples of the object include a solid, liquid, or slurry containing a chemical substance. The object may include a gas in a part thereof. For example, one or a combination of two or more selected from soil, groundwater, drainage, and waste can be used, but the invention is not limited to these four types.
 本発明の処理剤における過硫酸塩には特に制限はなく、例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等が使用できる。水への溶解度の大きさから、過硫酸ナトリウム、及び過硫酸アンモニウムが好ましく、アンモニア性窒素による二次汚染の恐れがないことから、過硫酸ナトリウムがより好ましい。更に、過硫酸塩の中でもペルオキソ二硫酸塩の使用が好ましく、特に、ペルオキソ二硫酸ナトリウムの使用が好ましい。過硫酸塩を添加する様態に特に制限はなく、水溶液、懸濁液、粉体、エアロゾル等が使用可能である。過硫酸塩の使用量は、トリータビリティー試験によって対象物の浄化可否を指標として、対象物中の化学物質の含有量に応じて適当な量を選択することができるが、化学物質がシアン化合物の場合は、好ましくは対象物中のシアン化合物1.0mgCNあたり少なくとも0.1g、より好ましくは0.2g以上、最も好ましくは0.5g以上である。過硫酸塩の使用量の上限は、経済性および対象物のpH変動をやわらげることを考慮すると、好ましくは対象物1kgあたり50g以下、より好ましくは20g以下、最も好ましくは10g以下である。ここで、シアン化合物量はJIS K0102:2008の「38.1.2 全シアン」および「38.3 4-ピリジンカルボン酸-ピラゾロン吸光光度法」に準拠して測定した全シアン濃度から求めることができる。 The persulfate in the treatment agent of the present invention is not particularly limited, and for example, sodium persulfate, potassium persulfate, ammonium persulfate and the like can be used. Sodium persulfate and ammonium persulfate are preferable because of their high solubility in water, and sodium persulfate is more preferable because there is no risk of secondary contamination with ammoniacal nitrogen. Furthermore, among persulfates, the use of peroxodisulfate is preferred, and the use of sodium peroxodisulfate is particularly preferred. There is no restriction | limiting in particular in the aspect which adds a persulfate, Aqueous solution, suspension, powder, aerosol, etc. can be used. The amount of persulfate used can be selected according to the chemical substance content in the object, using the treatability test as an index of whether or not the object can be purified. In this case, the amount is preferably at least 0.1 g, more preferably 0.2 g or more, and most preferably 0.5 g or more per 1.0 mg CN of the cyanide compound in the object. The upper limit of the amount of persulfate used is preferably 50 g or less, more preferably 20 g or less, and most preferably 10 g or less, per kg of the object in consideration of economy and moderate pH fluctuation of the object. Here, the amount of cyanide compound can be determined from the total cyan density measured in accordance with “38.1.2 Total Cyan” and “38.3 4-pyridinecarboxylic acid-pyrazolone spectrophotometric method” of JIS K0102: 2008. it can.
 本発明における銀錯体の形成に用いられる錯化剤には特に制限はないが、ピリジン環を有する化合物、ピリミジン環を有する化合物、エチレンジアミン構造を有する化合物、ヒドロキシカルボン酸類、アミノ酸類及びジアミノプロパンから選ばれる化合物が好ましい。
 ピリジン環を有する化合物としては、例えば、2,2’-ビピリジン、2-ピコリルアミン、ターピリジン、ピコリン酸、2-ピリジンエタノール、3-アミノピリジン、2-アミノピリミジン、2-(アミノメチル)ピリジン等が挙げられる。
 ピリミジン環を有する化合物としては、例えば、2-アミノピリミジン、2-アミノ-4-メチルピリミジン、2-アミノ-4,6-ジメチルピリミジン、2,4-ジメチルアミノピリミジン等が挙げられる。
 エチレンジアミン構造を有する化合物としては、例えば、エチレンジアミン、テトラメチルエチレンジアミン、エチレンジアミン四酢酸、1,2-ジアミノプロパン、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸等が挙げられる。
 ヒドロキシカルボン酸類としては、例えば、乳酸、リンゴ酸、グリコール酸、酒石酸、クエン酸、グルコン酸、グルカル酸等が挙げられる。
 アミノ酸類としては、例えば、グリシン、アラニン、アスパラギン酸、ニトリロ三酢酸、1,3-プロパンジアミン四酢酸等が挙げられる。
The complexing agent used for forming the silver complex in the present invention is not particularly limited, but is selected from a compound having a pyridine ring, a compound having a pyrimidine ring, a compound having an ethylenediamine structure, hydroxycarboxylic acids, amino acids, and diaminopropane. Are preferred.
Examples of the compound having a pyridine ring include 2,2′-bipyridine, 2-picolylamine, terpyridine, picolinic acid, 2-pyridineethanol, 3-aminopyridine, 2-aminopyrimidine, 2- (aminomethyl) pyridine, and the like. Is mentioned.
Examples of the compound having a pyrimidine ring include 2-aminopyrimidine, 2-amino-4-methylpyrimidine, 2-amino-4,6-dimethylpyrimidine, 2,4-dimethylaminopyrimidine and the like.
Examples of the compound having an ethylenediamine structure include ethylenediamine, tetramethylethylenediamine, ethylenediaminetetraacetic acid, 1,2-diaminopropane, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, and the like.
Examples of hydroxycarboxylic acids include lactic acid, malic acid, glycolic acid, tartaric acid, citric acid, gluconic acid, and glucaric acid.
Examples of amino acids include glycine, alanine, aspartic acid, nitrilotriacetic acid, 1,3-propanediaminetetraacetic acid and the like.
 本発明における錯化剤は、より好ましくは、2,2’-ビピリジン、2-ピコリルアミン、ターピリジン、ピコリン酸、2-ピリジンエタノール、3-アミノピリジン、2-アミノピリミジン、エチレンジアミン、テトラメチルエチレンジアミン、エチレンジアミン四酢酸、乳酸、グリコール酸、1,2-ジアミノプロパン、1,3-ジアミノプロパン及びグリシンから選ばれる一種以上であり、特に好ましくは、2,2’-ビピリジンである。 More preferably, the complexing agent in the present invention is 2,2′-bipyridine, 2-picolylamine, terpyridine, picolinic acid, 2-pyridineethanol, 3-aminopyridine, 2-aminopyrimidine, ethylenediamine, tetramethylethylenediamine, One or more selected from ethylenediaminetetraacetic acid, lactic acid, glycolic acid, 1,2-diaminopropane, 1,3-diaminopropane, and glycine, and particularly preferably 2,2′-bipyridine.
 また、銀錯体に用いられる銀化合物は、上記錯化剤と銀錯体を形成できるものであれば特に制限はないが、例えば、硝酸銀、硫酸銀、亜硝酸銀、亜硫酸銀、炭酸銀、リン酸銀、ホウ酸銀、酢酸銀、シュウ酸銀、クエン酸銀、酸化銀などが挙げられ、このうち硝酸銀、硫酸銀、酢酸銀、及び酸化銀が好適である。本発明における銀錯体における銀化合物と錯化剤との配合比は、本発明の効果を損なわない範囲であれば特に制限されるものではないが、銀化合物(銀イオンとして)に対する錯化剤のモル比(錯化剤/銀イオン)として、好ましくは0.2~3、より好ましくは0.5~3、最も好ましくは0.5~2である。錯化剤を多くし過ぎることは経済性に反し、モル比を小さくし過ぎると銀塩の沈殿が生じ好ましくない。 The silver compound used in the silver complex is not particularly limited as long as it can form a silver complex with the complexing agent. For example, silver nitrate, silver sulfate, silver nitrite, silver sulfite, silver carbonate, silver phosphate Silver borate, silver acetate, silver oxalate, silver citrate, silver oxide, and the like, among which silver nitrate, silver sulfate, silver acetate, and silver oxide are preferable. The compounding ratio of the silver compound and the complexing agent in the silver complex in the present invention is not particularly limited as long as the effects of the present invention are not impaired, but the complexing agent for the silver compound (as silver ions) is not limited. The molar ratio (complexing agent / silver ion) is preferably 0.2 to 3, more preferably 0.5 to 3, and most preferably 0.5 to 2. Too much complexing agent is not economical, and if the molar ratio is too small, silver salt is precipitated, which is not preferable.
 銀錯体を添加する様態に特に制限はなく、水溶液、懸濁液、粉体、エアロゾル等が使用可能である。銀錯体の使用量は、トリータビリティー試験によって対象物の浄化可否を指標として、対象物中の化学物質の含有量に応じて適当な量を選択することができるが、化学物質がシアン化合物の場合は、好ましくは対象物中のシアン化合物1.0mgCNあたり少なくとも0.1mgAg、より好ましくは0.5mgAg以上、最も好ましくは1.0mgAg以上である。銀錯体の使用量の上限は、経済性を考慮すると、好ましくは対象物1kgあたり100mgAg以下、より好ましくは40mgAg以下、最も好ましくは10mgAg以下である。 There are no particular restrictions on the manner in which the silver complex is added, and aqueous solutions, suspensions, powders, aerosols, and the like can be used. The use amount of the silver complex can be selected according to the content of the chemical substance in the target object using the treatability test as an index of whether or not the target object can be purified. In this case, it is preferably at least 0.1 mgAg, more preferably 0.5 mgAg or more, and most preferably 1.0 mgAg or more per 1.0 mgCN of cyanide compound in the object. In consideration of economy, the upper limit of the amount of silver complex used is preferably 100 mgAg or less, more preferably 40 mgAg or less, and most preferably 10 mgAg or less per kg of the target.
 本発明の処理剤は過硫酸塩と銀錯体とを含有するか、過硫酸塩と銀化合物と錯化剤とを含有するものであるが、過硫酸塩と銀錯体(あるいは銀化合物と錯化剤)は予め混合しておいても良いし、使用直前に混合しても良い。また、それぞれを単独で含む水溶液を使用直前に混合することも可能である。 The treatment agent of the present invention contains a persulfate and a silver complex, or contains a persulfate, a silver compound, and a complexing agent, but the persulfate and the silver complex (or the complex with the silver compound). The agent) may be mixed in advance or may be mixed immediately before use. Moreover, it is also possible to mix the aqueous solution containing each independently just before use.
 本発明に用いられる硫酸塩に制限はないが、環境に与える物質の種類を極力少なくする目的で、使用する過硫酸塩と同一のカチオン種であることが望ましい。例えば、過硫酸ナトリウムを浄化剤として選定した場合は、硫酸塩として硫酸ナトリウムを選定することが好ましい。過硫酸塩と共に用いる硫酸塩の量は、過硫酸塩100重量部に対して少なくとも1重量部であり、好ましくは1~20重量部、さらに好ましくは1~10重量部である。1重量部未満であると汚染物質の分解向上の効果が得られず、過剰に供給しても期待する程の効果は得られないため、経済的に好ましくない。 The sulfate used in the present invention is not limited, but is desirably the same cationic species as the persulfate used for the purpose of minimizing the types of substances imparted to the environment. For example, when sodium persulfate is selected as the cleaning agent, it is preferable to select sodium sulfate as the sulfate. The amount of sulfate used together with the persulfate is at least 1 part by weight per 100 parts by weight of the persulfate, preferably 1 to 20 parts by weight, more preferably 1 to 10 parts by weight. If the amount is less than 1 part by weight, the effect of improving the decomposition of the pollutant cannot be obtained, and the effect as expected can not be obtained even if it is supplied in excess, which is economically undesirable.
 本発明においては、上記処理剤と化学物質を含む対象物とを接触させることで対象物中の化学物質を分解することができる。上記処理剤と対象物とを効率よく接触させて分解を促進するために、処理剤と対象物とを強制的に攪拌混合することも効果的である。また、対象物の化学物質濃度が高い場合は、上記処理剤を対象物に繰り返し添加し処理することも可能である。 In the present invention, the chemical substance in the object can be decomposed by bringing the treatment agent into contact with the object containing the chemical substance. It is also effective to forcibly stir and mix the treatment agent and the object in order to efficiently bring the treatment agent into contact with the object and promote decomposition. Moreover, when the chemical substance concentration of the object is high, the treatment agent can be repeatedly added to the object for treatment.
 対象物中のシアン化物及び/又は金属シアノ錯体の分解においては、処理中の対象物のpHを4~11に保つことが好ましい。対象物のpHが低い状態でシアン化物及び/又は金属シアノ錯体を分解すると、シアン化水素が発生する恐れがあり、pHが高い状態では不溶性の酸化銀沈殿が生成し、シアンの分解が不全となる恐れがある。さらに環境保護の観点からいえばpH4~9で実施することが好ましい。 In the decomposition of the cyanide and / or metal cyano complex in the object, it is preferable to maintain the pH of the object during the treatment at 4 to 11. Decomposition of cyanide and / or metal cyano complex with a low pH of the object may generate hydrogen cyanide, and an insoluble silver oxide precipitate may be formed at a high pH, which may result in failure to decompose cyanide. There is. Furthermore, from the viewpoint of environmental protection, it is preferable to carry out at pH 4-9.
 薬剤の添加や分解の進行とともに対象物のpHが変動する場合には、対象物のpHを4~11に保つために、pH調整剤を用いることができる。本発明では過硫酸塩を含有する処理剤を用いることから分解の進行と共に対象物のpHが低下することがあるため、pH調整剤の添加は好適である。pH調整剤には特に制限はないが、アルカリ性化合物および/またはアルカリ性化合物と酸性化合物の組合せが使用でき、好ましくはpH緩衝剤と称される化合物群が使用できる。pH緩衝剤としては、クエン酸系、リン酸系、ホウ酸系、炭酸系、酢酸系緩衝剤などが挙げられ、このうち酢酸系緩衝剤が好ましい。酢酸系緩衝剤としては、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸カルシウム、酢酸マグネシウム等が使用できる。このうち、経済性の観点から酢酸ナトリウムおよび/または酢酸を使用することが好ましい。酢酸ナトリウムは、三水和物、無水物のいずれもが使用できる。 When the pH of the object fluctuates as the drug is added or decomposed, a pH adjusting agent can be used to keep the pH of the object at 4-11. In the present invention, since a treatment agent containing a persulfate is used, the pH of the object may be lowered with the progress of decomposition, and therefore the addition of a pH adjuster is suitable. Although there is no restriction | limiting in particular in a pH adjuster, The combination of an alkaline compound and / or an alkaline compound and an acidic compound can be used, Preferably the compound group called a pH buffer agent can be used. Examples of the pH buffering agent include citric acid-based, phosphoric acid-based, boric acid-based, carbonic acid-based, and acetic acid-based buffers. Among these, acetic acid-based buffers are preferable. As the acetate buffer, lithium acetate, sodium acetate, potassium acetate, calcium acetate, magnesium acetate and the like can be used. Among these, it is preferable to use sodium acetate and / or acetic acid from an economical viewpoint. As the sodium acetate, either a trihydrate or an anhydride can be used.
 本発明の処理剤による化学物質の分解においては、対象物を加熱しなくても化学物質を効率よく分解させることができる。したがって、本発明の処理剤を用いれば、対象物を加熱するための付帯設備を必要とせず、また土壌及び/又は地下水の原位置浄化にも好適に使用できることから工業的に非常に有利である。分解処理を迅速に行う必要がある場合には対象物を加熱してもよいが、熱源を扱うことによる作業の危険性や経済性の観点から、さらに対象物がシアン化物及び/又は金属シアノ錯体である場合には加熱によってシアン化水素が発生するおそれがあることなどを考慮すると、対象物の温度は高くとも70℃、より好ましくは50℃以下である。 In the decomposition of the chemical substance by the treatment agent of the present invention, the chemical substance can be efficiently decomposed without heating the object. Therefore, the treatment agent of the present invention is industrially very advantageous because it does not require an auxiliary facility for heating an object and can be suitably used for in situ purification of soil and / or groundwater. . The object may be heated when it is necessary to perform the decomposition process quickly. However, from the viewpoint of the risk of work by handling the heat source and the economical efficiency, the object is further cyanide and / or metal cyano complex. In consideration of the possibility that hydrogen cyanide may be generated by heating, the temperature of the object is at most 70 ° C., more preferably 50 ° C. or less.
 本発明の化学物質の分解方法は、土壌および/または地下水の原位置での浄化に好適に使用できる。土壌および/または地下水への上記処理剤、及びpH調整剤の添加方法には特に制限はなく、注入、圧入、噴射、攪拌、自然拡散、浸透、揚水注入システムへの添加などが使用可能である。また、添加位置と異なる位置で吸引や減圧を行うことによって、添加の速度や方向を制御することもできる。 The chemical substance decomposition method of the present invention can be suitably used for in situ purification of soil and / or groundwater. There is no restriction | limiting in particular in the addition method of the said processing agent and pH adjuster to soil and / or groundwater, Injection | pouring, press injection, injection, stirring, natural diffusion, osmosis | permeation, the addition to a pumping water injection system, etc. can be used. . Moreover, the speed | rate and direction of addition can also be controlled by performing suction or pressure reduction in a position different from an addition position.
 次に実施例を示して、本発明を更に具体的に説明する。但し本発明は以下の実施例により制限されるものではない。尚、過硫酸塩の濃度は過マンガン酸カリウム滴定法により求めた。 Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples. The concentration of persulfate was determined by a potassium permanganate titration method.
実施例1
 純水にヘキサシアノ鉄(II)酸カリウム(小宗化学薬品(株)製特級試薬)を溶解させて、濃度が10mgCN/Lの模擬汚染水を調製した。錯化剤として2,2’-ビピリジン(和光純薬工業(株)製特級試薬)を硫酸水溶液に溶解し、0.16重量%硫酸酸性2,2’-ビピリジン水溶液を調製した。銀化合物として硝酸銀(小宗化学薬品(株)製特級試薬)を純水に溶解し硝酸銀水溶液を調製し、上記硫酸酸性2,2’-ビピリジン水溶液を混合し、銀錯体として銀-2,2’-ビピリジン錯体水溶液を調製した。ガラス製サンプル管に模擬汚染水50.0gを入れ、pH調整剤として酢酸ナトリウム三水和物(小宗化学薬品(株)製特級試薬)1.36gおよび過硫酸塩として過硫酸ナトリウム(小宗化学薬品(株)製ペルオキソ二硫酸ナトリウム、一級試薬)を溶解させたのちに、上記銀-2,2’-ビピリジン錯体水溶液を混合して、室温下、暗所にて6日間静置した。静置前後の過硫酸塩濃度および全シアン濃度を下記方法により測定した。結果を表1に示す。
Example 1
Simulated contaminated water having a concentration of 10 mg CN / L was prepared by dissolving potassium hexacyanoferrate (II) (special grade reagent manufactured by Kosou Chemical Co., Ltd.) in pure water. 2,2′-bipyridine (a special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) as a complexing agent was dissolved in a sulfuric acid aqueous solution to prepare a 0.16 wt% sulfuric acid acidic 2,2′-bipyridine aqueous solution. Silver nitrate (special grade reagent manufactured by Koso Chemicals Co., Ltd.) as a silver compound is dissolved in pure water to prepare an aqueous silver nitrate solution, and the aqueous sulfuric acid 2,2′-bipyridine solution is mixed, and silver-2,2 as a silver complex. An aqueous solution of '-bipyridine complex was prepared. Put 50.0 g of simulated contaminated water into a glass sample tube, 1.36 g of sodium acetate trihydrate (special grade reagent manufactured by Kosou Chemical Co., Ltd.) as a pH adjuster, and sodium persulfate (Kosune as a persulfate) After dissolving sodium peroxodisulfate (primary reagent) manufactured by Chemicals Co., Ltd., the above silver-2,2′-bipyridine complex aqueous solution was mixed and allowed to stand at room temperature in the dark for 6 days. The persulfate concentration and the total cyan concentration before and after standing were measured by the following methods. The results are shown in Table 1.
<過硫酸塩濃度の測定>
 静置前後の過硫酸塩濃度から過硫酸塩の残存率を算出した。過硫酸塩濃度は以下に記載した逆滴定によって測定した。
(1)ビーカーに硫酸アンモニウム鉄(II)水溶液を取り、硫酸水溶液を適量添加したのち、過マンガン酸カリウム水溶液で滴定することで、硫酸アンモニウム鉄(II)水溶液の濃度を測定した。
(2)ビーカーに硫酸アンモニウム鉄(II)水溶液、および過硫酸塩を含有する試料を取った。この時、過硫酸塩に対し硫酸アンモニウム鉄(II)が過剰となるように採取した。
(3)硫酸水溶液を適量添加した。
(4)過マンガン酸カリウム水溶液で滴定した。
<Measurement of persulfate concentration>
The residual rate of persulfate was calculated from the concentration of persulfate before and after standing. The persulfate concentration was measured by back titration as described below.
(1) The concentration of the aqueous ammonium iron (II) sulfate solution was measured by taking an aqueous ammonium iron (II) sulfate solution in a beaker, adding an appropriate amount of aqueous sulfuric acid solution, and titrating with an aqueous potassium permanganate solution.
(2) A sample containing an ammonium iron sulfate (II) aqueous solution and a persulfate was taken in a beaker. At this time, it sample | collected so that ammonium iron sulfate (II) might become excess with respect to persulfate.
(3) An appropriate amount of sulfuric acid aqueous solution was added.
(4) Titrated with aqueous potassium permanganate solution.
<全シアン濃度の測定>
 静置前後の全シアン濃度を測定した。全シアン濃度は以下の方法で測定した。静置後の処理液に沈殿が含まれる場合は、沈殿および上澄液に含まれる全シアン量の合計を処理液量で除した値を全シアン濃度とした。
(1)サンプルをビーカーに取り、必要に応じて純水で希釈した。
(2)サンプルに含有される過硫酸塩の10倍当量のアスコルビン酸を10重量%アスコルビン酸水溶液として加えて、過硫酸塩を除去した。
(3)過硫酸塩を除去したサンプルに含まれる全シアン濃度を、JIS K0102:2008の「38.1.2 全シアン」および「38.3 4-ピリジンカルボン酸-ピラゾロン吸光光度法」に従って測定した。なお、前記JISに準拠した測定において、全シアン濃度の定量限界は0.1mgCN/Lである。
<Measurement of total cyan density>
The total cyan density before and after standing was measured. The total cyan density was measured by the following method. When the treatment liquid after standing contained precipitation, the value obtained by dividing the total amount of cyan contained in the precipitate and supernatant by the amount of treatment liquid was defined as the total cyan concentration.
(1) A sample was taken in a beaker and diluted with pure water as necessary.
(2) Ascorbic acid equivalent to 10 times the amount of persulfate contained in the sample was added as a 10 wt% ascorbic acid aqueous solution to remove the persulfate.
(3) The total cyan concentration contained in the sample from which the persulfate has been removed is measured according to “38.1.2 Total cyan” and “38.3 4-pyridinecarboxylic acid-pyrazolone spectrophotometry” of JIS K0102: 2008. did. In addition, in the measurement based on the said JIS, the fixed limit of total cyan density | concentration is 0.1 mgCN / L.
実施例2~4
 錯化剤として2,2’-ビピリジンの代わりに、2-ピコリルアミン(東京化成工業(株)製試薬)、エチレンジアミン(和光純薬工業(株)製特級試薬)、またはテトラメチルエチレンジアミン(シグマ アルドリッチ(株)製試薬)を用いたほかは、実施例1と同様に実験をおこなった。その結果を表1に示す。
Examples 2-4
Instead of 2,2'-bipyridine as a complexing agent, 2-picolylamine (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), ethylenediamine (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), or tetramethylethylenediamine (Sigma Aldrich) The experiment was conducted in the same manner as in Example 1 except that (Reagent manufactured by Co., Ltd.) was used. The results are shown in Table 1.
比較例1
 銀錯体である銀-2,2’-ビピリジン錯体水溶液を加えなかったほかは、実施例1と同様に実験をおこなった。結果を表1に示す。
Comparative Example 1
The experiment was performed in the same manner as in Example 1 except that the silver complex 2,2′-bipyridine complex aqueous solution which was a silver complex was not added. The results are shown in Table 1.
比較例2
 錯化剤である硫酸酸性2,2’-ビピリジン水溶液を使用せずに、銀錯体の代わりに硝酸銀水溶液を汚染水に混合したほかは、実施例1と同様に実験をおこなった。結果を表1に示す。
Comparative Example 2
An experiment was conducted in the same manner as in Example 1 except that a silver nitrate aqueous solution was mixed with contaminated water instead of the silver complex without using a sulfuric acid acidic 2,2′-bipyridine aqueous solution as a complexing agent. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、本発明の処理剤として過硫酸塩と銀化合物とピリジン環又はエチレンジアミン構造を含む錯化剤とを添加することでシアン化合物の分解が促進された。特に、実施例1の2,2’-ビピリジンを錯化剤に用いた場合にシアン化合物を効果的に分解できることが示された。 As shown in Table 1, decomposition of the cyanide compound was promoted by adding a persulfate, a silver compound, and a complexing agent containing a pyridine ring or an ethylenediamine structure as the treating agent of the present invention. In particular, it was shown that cyanide can be effectively decomposed when 2,2'-bipyridine of Example 1 is used as a complexing agent.
比較例3~4
 硫酸第一鉄七水和物(和光純薬工業(株)製特級試薬)および硫酸酸性2,2’-ビピリジン水溶液を混合して、鉄錯体水溶液を調製した。また、過マンガン酸カリウム(和光純薬工業(株)製精密分析用試薬)および硫酸酸性2,2’-ビピリジン水溶液を混合して、マンガン錯体水溶液を調製した。そして、実施例1の銀錯体水溶液の代わりに、前記鉄錯体水溶液または前記マンガン錯体水溶液を用い、静置時間を5日としたほかは、実施例1と同様に実験を行った。結果を表2に示す。
Comparative Examples 3-4
An iron complex aqueous solution was prepared by mixing ferrous sulfate heptahydrate (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) and sulfuric acid acidic 2,2′-bipyridine aqueous solution. In addition, an aqueous manganese complex solution was prepared by mixing potassium permanganate (a reagent for precision analysis manufactured by Wako Pure Chemical Industries, Ltd.) and an aqueous 2,2′-bipyridine sulfate. And it experimented similarly to Example 1 except having used the said iron complex aqueous solution or the said manganese complex aqueous solution instead of the silver complex aqueous solution of Example 1, and having set stationary time to 5 days. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、過硫酸塩と鉄錯体または過硫酸塩とマンガン錯体を添加した場合には、シアン化合物をほとんど分解できないことが分かった。 As shown in Table 2, it was found that when a persulfate and iron complex or a persulfate and manganese complex was added, the cyanide compound could hardly be decomposed.
実施例5~7
 pH調整剤として酢酸ナトリウム三水和物の代わりに、クエン酸三ナトリウム二水和物(小宗化学薬品(株)製特級試薬)、リン酸二ナトリウム二水和物、または炭酸水素ナトリウム(小宗化学薬品(株)製特級試薬)を用い、静置時間を2日、6日、または4日としたほかは、実施例1と同様に実験を行った。結果を表3に示す。
Examples 5-7
Instead of sodium acetate trihydrate as a pH adjuster, trisodium citrate dihydrate (special grade reagent manufactured by Kosou Chemical Co., Ltd.), disodium phosphate dihydrate, or sodium bicarbonate (small The experiment was conducted in the same manner as in Example 1 except that the soaking time was 2 days, 6 days, or 4 days. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、本発明の分解方法にpH調整剤として酢酸系、クエン酸系、リン酸系及び炭酸系緩衝剤を使用可能であった。特に、pH調整剤として酢酸ナトリウムを用いた実施例1、及び炭酸水素ナトリウムを用いた実施例7においてシアン化合物の分解効果が高かった。 As shown in Table 3, acetic acid-based, citric acid-based, phosphoric acid-based and carbonate-based buffers can be used as pH adjusters in the decomposition method of the present invention. In particular, in Example 1 using sodium acetate as a pH adjuster and Example 7 using sodium hydrogen carbonate, the cyanide decomposition effect was high.
実施例8~9
 銀錯体の添加量を変更したほかは、実施例1と同様に実験を行った。結果を表4に示す。
Examples 8-9
The experiment was performed in the same manner as in Example 1 except that the addition amount of the silver complex was changed. The results are shown in Table 4.
実施例10~11
 模擬汚染水の濃度、過硫酸ナトリウム、銀錯体およびpH調整剤の添加量を変更したほかは、実施例1と同様に実験を行った。結果を表4に示す。
Examples 10-11
The experiment was performed in the same manner as in Example 1 except that the concentration of the simulated contaminated water, the amount of sodium persulfate, the silver complex, and the pH adjuster were changed. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、銀錯体の使用量をシアン化合物1.0mgCNあたり0.2mgAg以上とした系ではシアン化合物の分解が促進された。銀錯体の使用量をシアン化合物1.0mgCNあたり1.0mgAgとした場合には、6日静置後に環境基準(土壌の汚染に係る環境基準)に適合する全シアン濃度0.1mgCN/L未満にまでシアン化合物を分解した。 As shown in Table 4, in the system in which the amount of silver complex used was 0.2 mg Ag or more per 1.0 mg CN of cyanide, decomposition of cyanide was promoted. When the amount of silver complex used is 1.0 mg Ag per 1.0 mg CN of cyanide, the total cyan concentration is less than 0.1 mg CN / L that meets the environmental standards (environmental standards related to soil contamination) after 6 days of standing. The cyanide was decomposed until.
実施例12~14
 過硫酸塩である過硫酸ナトリウムの添加量およびpH調整剤である酢酸ナトリウム三水和物の添加量を変えたほかは、実施例1と同様に実験を行った。結果を表5に示す。
Examples 12-14
The experiment was performed in the same manner as in Example 1 except that the addition amount of sodium persulfate as a persulfate and the addition amount of sodium acetate trihydrate as a pH adjuster were changed. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、過硫酸塩の使用量をシアン化合物1.0mgCNあたり0.2g以上とした系ではシアン化合物の分解が促進された。過硫酸塩の使用量をシアン化合物1.0mgCNあたり0.5g以上とした場合には、6日静置後に環境基準(土壌の汚染に係る環境基準)に適合する全シアン濃度0.1mgCN/L未満にまでシアン化合物を分解した。 As shown in Table 5, in the system in which the amount of persulfate used was 0.2 g or more per 1.0 mg CN of cyanide, decomposition of cyanide was promoted. When the amount of persulfate used is 0.5 g or more per 1.0 mg CN of cyanide, the total cyanide concentration is 0.1 mg CN / L that meets the environmental standards (environmental standards related to soil contamination) after 6 days of standing. The cyanide was decomposed to less than
実施例15~17
 銀錯体水溶液を調製する際に、銀化合物である硝酸銀水溶液および錯化剤である硫酸酸性2,2’-ビピリジン水溶液の濃度を変えたほかは、実施例1と同様に実験を行った。結果を表6に示す。
Examples 15-17
Experiments were conducted in the same manner as in Example 1 except that the concentration of the silver nitrate aqueous solution as the silver compound and the sulfuric acid acidic 2,2′-bipyridine aqueous solution as the complexing agent were changed when preparing the silver complex aqueous solution. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、錯化剤/銀イオンのモル比を0.5倍以上とした場合は、6日静置後に環境基準(土壌の汚染に係る環境基準)に適合する全シアン濃度0.1mgCN/L未満にまでシアン化合物を分解した。 As shown in Table 6, when the complexing agent / silver ion molar ratio is 0.5 times or more, the total cyan density that meets the environmental standards (environmental standards related to soil contamination) after standing for 6 days The cyanide was decomposed to less than 0.1 mg CN / L.
実施例18
 過硫酸塩として過硫酸ナトリウムの代わりに過硫酸アンモニウム(関東化学(株)製特級試薬)を用いたほかは、実施例13と同様に実験を行った。その結果を表7に示す。
Example 18
The experiment was performed in the same manner as in Example 13 except that ammonium persulfate (special grade reagent manufactured by Kanto Chemical Co., Inc.) was used as the persulfate instead of sodium persulfate. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示されるように、本発明の処理剤として過硫酸アンモニウムを用いた場合には、過硫酸ナトリウムを用いた場合と同様にシアン化合物の分解効果が良好であった。 As shown in Table 7, when ammonium persulfate was used as the treating agent of the present invention, the decomposition effect of the cyanide was as good as when sodium persulfate was used.
実施例19
 純水にジクロロメタン(小宗化学薬品(株)製特級試薬)を溶解させて、濃度が19mg/Lの模擬汚染水を調製した。錯化剤として2,2’-ビピリジン(和光純薬工業(株)製特級試薬)を硫酸水溶液に溶解し、0.16重量%硫酸酸性2,2’-ビピリジン水溶液を調製した。銀化合物として硝酸銀(小宗化学薬品(株)製特級試薬)を純水に溶解し硝酸銀水溶液を調製し、上記硫酸酸性2,2’-ビピリジン水溶液を混合し、銀錯体として銀-2,2’-ビピリジン錯体水溶液を調製した。
 ガラス製耐圧ネジ口瓶(攪拌子を除く容積:131mL)に、pH調整剤として炭酸水素ナトリウム(小宗化学薬品(株)製特級試薬)水溶液を0.1Mとなるように加え、過硫酸塩として過硫酸ナトリウム(小宗化学薬品(株)製ペルオキソ二硫酸ナトリウム、一級試薬)を溶解させたのちに、模擬汚染水を100mL入れ、上記銀-2,2’-ビピリジン錯体水溶液を混合して、さらに純水を瓶の口いっぱいまで入れ密栓し、室温下、2日間攪拌した。静置前後の過硫酸塩濃度およびジクロロメタン濃度を測定した。ジクロロメタン濃度はヘッドスペース・ガスクロマトグラフ法により測定した。結果を表8に示す。なお、各濃度は全系(131mL)中で所定濃度となるように調整した。
Example 19
Dichloromethane (special grade reagent manufactured by Koso Chemicals Co., Ltd.) was dissolved in pure water to prepare simulated contaminated water having a concentration of 19 mg / L. 2,2′-bipyridine (a special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) as a complexing agent was dissolved in a sulfuric acid aqueous solution to prepare a 0.16 wt% sulfuric acid acidic 2,2′-bipyridine aqueous solution. Silver nitrate (special grade reagent manufactured by Koso Chemicals Co., Ltd.) as a silver compound is dissolved in pure water to prepare an aqueous silver nitrate solution, and the aqueous sulfuric acid 2,2′-bipyridine solution is mixed, and silver-2,2 as a silver complex. An aqueous solution of '-bipyridine complex was prepared.
To a glass pressure screw cap bottle (volume excluding a stirrer: 131 mL), an aqueous solution of sodium hydrogen carbonate (special grade reagent manufactured by Koso Chemicals Co., Ltd.) as a pH adjuster was added to a concentration of 0.1 M, and persulfate After dissolving sodium persulfate (sodium peroxodisulfate manufactured by Koso Chemicals Co., Ltd., first grade reagent), 100 mL of simulated contaminated water was added and the above silver-2,2′-bipyridine complex aqueous solution was mixed. Further, pure water was added to the bottle mouth and sealed, and the mixture was stirred at room temperature for 2 days. The persulfate concentration and the dichloromethane concentration before and after standing were measured. The dichloromethane concentration was measured by a headspace gas chromatograph method. The results are shown in Table 8. Each concentration was adjusted to a predetermined concentration in the entire system (131 mL).
実施例20~31
 錯化剤として2,2’-ビピリジンの代わりに表8に示した錯化剤を用いた以外は実施例19と同様に実験を行った。結果を表8に示す。
Examples 20-31
An experiment was conducted in the same manner as in Example 19 except that the complexing agent shown in Table 8 was used instead of 2,2′-bipyridine as the complexing agent. The results are shown in Table 8.
比較例5
 銀錯体である銀-2,2’-ビピリジン錯体水溶液を用いなかった以外は実施例19と同様に実験を行った。結果を表8に示す。
Comparative Example 5
The experiment was performed in the same manner as in Example 19 except that the silver-2,2′-bipyridine complex aqueous solution which is a silver complex was not used. The results are shown in Table 8.
比較例6
 銀錯体である銀-2,2’-ビピリジン錯体水溶液を用いず代わりに硝酸銀水溶液を用いた以外は実施例19と同様に実験を行った。結果を表8に示す。
Comparative Example 6
An experiment was conducted in the same manner as in Example 19 except that the silver-2,2′-bipyridine complex aqueous solution, which was a silver complex, was not used but a silver nitrate aqueous solution was used instead. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示されるように、本発明の過硫酸ナトリウムと銀錯体を含む処理剤を用いた場合には、ジクロロメタンの分解効果が良好であった。 As shown in Table 8, when the treatment agent containing sodium persulfate and silver complex of the present invention was used, the decomposition effect of dichloromethane was good.
実施例32
 pH調整剤として酢酸ナトリウム三水和物1.36gを溶解させる代わりに酢酸ナトリウム三水和物3.40gを溶解させ、静置時間を6日間とする代わりに2日間としたほかは、実施例1と同様に実験をおこなった。その結果を表9に示す。
Example 32
Example 1 except that 3.40 g of sodium acetate trihydrate was dissolved instead of 1.36 g of sodium acetate trihydrate as a pH adjusting agent, and the standing time was changed to 2 days instead of 6 days. The experiment was conducted in the same manner as in 1. The results are shown in Table 9.
実施例33
 pH調整剤である酢酸ナトリウム三水和物および過硫酸塩である過硫酸ナトリウムを溶解させたのちに、銀錯体である銀-2,2’-ビピリジン錯体水溶液を混合する代わりに、酢酸ナトリウム三水和物を溶解させたのちに、銀-2,2’-ビピリジン錯体水溶液を混合し、さらに過硫酸ナトリウムを溶解させたほかは、実施例32と同様に実験をおこなった。その結果を表9に示す。
Example 33
Instead of mixing an aqueous silver-2,2′-bipyridine complex solution, which is a silver complex, after dissolving sodium acetate trihydrate, which is a pH adjusting agent, and sodium persulfate, which is a persulfate, An experiment was conducted in the same manner as in Example 32 except that the hydrate was dissolved, the aqueous silver-2,2′-bipyridine complex was mixed, and sodium persulfate was further dissolved. The results are shown in Table 9.
実施例34
 純水にヘキサシアノ鉄(II)酸カリウムを溶解させて、濃度が20mgCN/Lの模擬汚染水を調製した。錯化剤として2,2’-ビピリジンを硫酸水溶液に溶解し、0.16重量%硫酸酸性2,2’-ビピリジン水溶液を調製した。銀化合物として硝酸銀を純水に溶解し硝酸銀水溶液を調製し、上記硫酸酸性2,2’-ビピリジン水溶液を混合し、銀錯体として銀-2,2’-ビピリジン錯体水溶液を調製した。ガラス製サンプル管に模擬汚染水25.0gを入れ、pH調整剤として酢酸ナトリウム三水和物(小宗化学薬品(株)製特級試薬)1.36gを溶解させた。過硫酸塩として過硫酸ナトリウム(小宗化学薬品(株)製ペルオキソ二硫酸ナトリウム、一級試薬)を純水25.0gに溶解させた過硫酸ナトリウム水溶液に上記銀-2,2’-ビピリジン錯体水溶液を混合したのち、全量を速やかに酢酸ナトリウム三水和物を溶解させた模擬汚染水に混合した。室温下、暗所にて2日間静置した。静置前後の過硫酸塩濃度および全シアン濃度を上記方法により測定した。結果を表9に示す。
Example 34
Simulated contaminated water having a concentration of 20 mg CN / L was prepared by dissolving potassium hexacyanoferrate (II) in pure water. 2,2′-bipyridine as a complexing agent was dissolved in an aqueous sulfuric acid solution to prepare a 0.16 wt% sulfuric acid acidic 2,2′-bipyridine aqueous solution. Silver nitrate was dissolved in pure water as a silver compound to prepare a silver nitrate aqueous solution, and the above sulfuric acid acidic 2,2′-bipyridine aqueous solution was mixed to prepare a silver-2,2′-bipyridine complex aqueous solution as a silver complex. 25.0 g of simulated contaminated water was placed in a glass sample tube, and 1.36 g of sodium acetate trihydrate (special grade reagent manufactured by Kosou Chemical Co., Ltd.) was dissolved as a pH adjuster. The above silver-2,2′-bipyridine complex aqueous solution is added to a sodium persulfate aqueous solution in which sodium persulfate (sodium peroxodisulfate, first grade reagent, manufactured by Komune Chemical Co., Ltd.) is dissolved in 25.0 g of pure water as a persulfate. After mixing, the entire amount was immediately mixed with simulated contaminated water in which sodium acetate trihydrate was dissolved. The mixture was allowed to stand in the dark at room temperature for 2 days. The persulfate concentration and the total cyan concentration before and after standing were measured by the above methods. The results are shown in Table 9.
実施例35
 錯化剤として2,2’-ビピリジンの代わりに2-ピコリルアミンを用いた以外は実施例32と同様に実験を行った。結果を表9に示す。
Example 35
The experiment was conducted in the same manner as in Example 32 except that 2-picolylamine was used in place of 2,2′-bipyridine as a complexing agent. The results are shown in Table 9.
実施例36
 錯化剤として2,2’-ビピリジンの代わりに2-ピコリルアミンを用いた以外は実施例33と同様に実験を行った。結果を表9に示す。
Example 36
The experiment was conducted in the same manner as in Example 33 except that 2-picolylamine was used in place of 2,2′-bipyridine as a complexing agent. The results are shown in Table 9.
実施例37
 錯化剤として2,2’-ビピリジンの代わりに2-ピコリルアミンを用いた以外は実施例34と同様に実験を行った。結果を表9に示す。
Example 37
The experiment was conducted in the same manner as in Example 34 except that 2-picolylamine was used in place of 2,2′-bipyridine as a complexing agent. The results are shown in Table 9.
比較例7
 錯化剤である硫酸酸性2,2’-ビピリジン水溶液を使用せずに、銀錯体の代わりに硝酸銀水溶液を用いたほかは、実施例32と同様に実験をおこなった。結果を表9に示す。
Comparative Example 7
An experiment was conducted in the same manner as in Example 32, except that an aqueous 2,2′-bipyridine sulfate solution as a complexing agent was not used, and an aqueous silver nitrate solution was used instead of the silver complex. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009

 
Figure JPOXMLDOC01-appb-T000009

 
 表9に示されるように、本発明の処理剤によるシアノ化合物の分解効果は良好であった。 As shown in Table 9, the decomposition effect of the cyano compound by the treatment agent of the present invention was good.

Claims (18)

  1.  化学物質の分解に用いる処理剤であって、過硫酸塩および銀錯体を含むことを特徴とする化学物質分解用処理剤。 A chemical agent for treating chemical substances, comprising a persulfate and a silver complex.
  2.  前記銀錯体が、ピリジン環を有する化合物、ピリミジン環を有する化合物、エチレンジアミン構造を有する化合物、ヒドロキシカルボン酸類、アミノ酸類及びジアミノプロパンからなる群から選択される少なくとも一種を錯化剤として形成されていることを特徴とする請求項1に記載の処理剤。 The silver complex is formed using at least one selected from the group consisting of a compound having a pyridine ring, a compound having a pyrimidine ring, a compound having an ethylenediamine structure, a hydroxycarboxylic acid, an amino acid, and diaminopropane as a complexing agent. The treatment agent according to claim 1.
  3.  前記銀錯体が、2,2’-ビピリジン、2-ピコリルアミン、ターピリジン、ピコリン酸、2-ピリジンエタノール、3-アミノピリジン、2-アミノピリミジン、エチレンジアミン、テトラメチルエチレンジアミン、エチレンジアミン四酢酸、乳酸、グリコール酸、1,2-ジアミノプロパン、1,3-ジアミノプロパン及びグリシンからなる群から選択される少なくとも一種を錯化剤として形成されていることを特徴とする請求項2に記載の処理剤。 The silver complex is 2,2′-bipyridine, 2-picolylamine, terpyridine, picolinic acid, 2-pyridineethanol, 3-aminopyridine, 2-aminopyrimidine, ethylenediamine, tetramethylethylenediamine, ethylenediaminetetraacetic acid, lactic acid, glycol The processing agent according to claim 2, wherein at least one selected from the group consisting of acid, 1,2-diaminopropane, 1,3-diaminopropane and glycine is formed as a complexing agent.
  4.  化学物質の分解に用いる処理剤であって、過硫酸塩、銀化合物および錯化剤を含むことを特徴とする化学物質分解用処理剤。 A treating agent for decomposing a chemical substance, comprising a persulfate, a silver compound, and a complexing agent, which is used for decomposing a chemical substance.
  5.  前記錯化剤が、2,2’-ビピリジン、2-ピコリルアミン、ターピリジン、ピコリン酸、2-ピリジンエタノール、3-アミノピリジン、2-アミノピリミジン、エチレンジアミン、テトラメチルエチレンジアミン、エチレンジアミン四酢酸、乳酸、グリコール酸、1,2-ジアミノプロパン、1,3-ジアミノプロパン及びグリシンからなる群から選択される少なくとも一種である請求項4に記載の処理剤。 The complexing agent is 2,2′-bipyridine, 2-picolylamine, terpyridine, picolinic acid, 2-pyridineethanol, 3-aminopyridine, 2-aminopyrimidine, ethylenediamine, tetramethylethylenediamine, ethylenediaminetetraacetic acid, lactic acid, The treatment agent according to claim 4, which is at least one selected from the group consisting of glycolic acid, 1,2-diaminopropane, 1,3-diaminopropane and glycine.
  6.  前記銀化合物が、硝酸銀、硫酸銀、亜硝酸銀、亜硫酸銀、炭酸銀、リン酸銀、ホウ酸銀、酢酸銀、シュウ酸銀、クエン酸銀及び酸化銀からなる群より選択される少なくとも一つである請求項4または5に記載の処理剤。 The silver compound is at least one selected from the group consisting of silver nitrate, silver sulfate, silver nitrite, silver sulfite, silver carbonate, silver phosphate, silver borate, silver acetate, silver oxalate, silver citrate and silver oxide. The treatment agent according to claim 4 or 5.
  7.  前記過硫酸塩がペルオキソ二硫酸塩である請求項1~6のいずれかに記載の処理剤。 The treatment agent according to any one of claims 1 to 6, wherein the persulfate is peroxodisulfate.
  8.  さらに硫酸塩を含む請求項1~7のいずれか一項に記載の処理剤。 The treating agent according to any one of claims 1 to 7, further comprising a sulfate.
  9.  前記化学物質がシアン化物及び/又は金属シアノ錯体である請求項1~8のいずれかに記載の処理剤。 The treatment agent according to any one of claims 1 to 8, wherein the chemical substance is a cyanide and / or a metal cyano complex.
  10.  請求項1~8のいずれか一項に記載の処理剤と、揮発性有機化合物、原油由来物、シアン化物又は金属シアノ錯体の少なくとも一種を含む化学物質とを接触させることを特徴とする化学物質の分解方法。 A chemical substance comprising the treatment agent according to any one of claims 1 to 8 and a chemical substance containing at least one of a volatile organic compound, a crude oil-derived product, a cyanide, or a metal cyano complex. Disassembly method.
  11.  処理中の前記化学物質のpHを4~11に保つことを特徴とする請求項10に記載の分解方法。 The decomposition method according to claim 10, wherein the pH of the chemical substance during the treatment is maintained at 4 to 11.
  12.  さらにpH調整剤を添加することを特徴とする請求項10又は11に記載の分解方法。 The decomposition method according to claim 10 or 11, further comprising adding a pH adjusting agent.
  13.  前記pH調整剤が酢酸系緩衝剤である請求項12に記載の分解方法。 The decomposition method according to claim 12, wherein the pH adjuster is an acetic acid buffer.
  14.  前記酢酸系緩衝剤が酢酸および/または酢酸ナトリウムである請求項13に記載の分解方法。 The decomposition method according to claim 13, wherein the acetic acid buffer is acetic acid and / or sodium acetate.
  15.  処理中の前記化学物質の温度を高くとも70℃とすることを特徴とする請求項10~14のいずれか一項に記載の分解方法。 The decomposition method according to any one of Claims 10 to 14, wherein the temperature of the chemical substance during the treatment is at most 70 ° C.
  16.  前記化学物質が土壌、地下水、排水及び廃棄物からなる群から選択される一種又は二種以上の組み合わせである請求項10~15のいずれか一項に記載の分解方法。 The decomposition method according to any one of claims 10 to 15, wherein the chemical substance is one or a combination of two or more selected from the group consisting of soil, groundwater, drainage, and waste.
  17.  前記化学物質がシアン化物及び/又は金属シアノ錯体を含む場合に、前記化学物質中のシアン化合物1.0mgCNあたり少なくとも0.1gの過硫酸塩を含有する処理剤を用いることを特徴とする請求項10~16のいずれか一項に記載の分解方法。 When the chemical substance contains a cyanide and / or a metal cyano complex, a treating agent containing at least 0.1 g of persulfate per 1.0 mg CN of cyanide compound in the chemical substance is used. The decomposition method according to any one of 10 to 16.
  18.  前記処理剤と前記化学物質とを攪拌混合することを特徴とする請求項10~17のいずれか一項に記載の分解方法。 The decomposition method according to any one of claims 10 to 17, wherein the treatment agent and the chemical substance are stirred and mixed.
PCT/JP2011/059678 2010-04-26 2011-04-20 Treatment agent for decomposition of chemical substance which comprises persulfuric acid salt and silver complex, and method for decomposition of chemical substance using same WO2011136095A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180021291.7A CN102883783B (en) 2010-04-26 2011-04-20 Chemical substance degraded inorganic agent containing persulfate and silver complex and employ its biodegrading process of chemical substance
KR1020127026310A KR101771761B1 (en) 2010-04-26 2011-04-20 Treatment agent for decomposition of chemical substance which comprises persulfuric acid salt and silver complex, and method for decomposition of chemical substance using same
JP2012512796A JP5817718B2 (en) 2010-04-26 2011-04-20 Chemical substance treatment agent containing persulfate and silver complex, and chemical substance decomposition method using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-100925 2010-04-26
JP2010100925 2010-04-26
JP2011-016555 2011-01-28
JP2011016555 2011-01-28

Publications (1)

Publication Number Publication Date
WO2011136095A1 true WO2011136095A1 (en) 2011-11-03

Family

ID=44861401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059678 WO2011136095A1 (en) 2010-04-26 2011-04-20 Treatment agent for decomposition of chemical substance which comprises persulfuric acid salt and silver complex, and method for decomposition of chemical substance using same

Country Status (5)

Country Link
JP (1) JP5817718B2 (en)
KR (1) KR101771761B1 (en)
CN (1) CN102883783B (en)
TW (1) TWI558439B (en)
WO (1) WO2011136095A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183466A (en) * 2011-03-04 2012-09-27 Nippon Steel Engineering Co Ltd Method for purifying polluted region
JP5194223B1 (en) * 2012-03-05 2013-05-08 株式会社セイネン Chemical treatment agent
JP2013158711A (en) * 2012-02-06 2013-08-19 Taisei Corp Method of cleaning cyanogen compound
CN103965122A (en) * 2014-03-18 2014-08-06 浙江工业大学 Nitration method of quinoxaline substituted alkane
JP2016049510A (en) * 2014-09-01 2016-04-11 新日鉄住金エンジニアリング株式会社 Purification method of contaminated region

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752601B (en) * 2013-12-31 2015-08-05 北京高能时代环境技术股份有限公司 A kind of method for orgnic compound pollution in rehabilitating soil and/or water
CN104261506B (en) * 2014-09-19 2016-04-20 山东大学 The method of the formaldehyde in a kind of terpyridyl base gelatinous material process trade effluent
CN104438300B (en) * 2014-10-23 2017-01-18 江苏盖亚环境工程有限公司 Synergetic restoration method for gasoline contaminated soil
CN105344704B (en) * 2015-11-30 2019-02-26 重庆大学 A kind of method of petroleum hydrocarbon contaminated soil reparation
CN108530999B (en) * 2018-04-26 2020-09-01 云南大学 Conductive anticorrosive paint using organic silver as photocuring accelerator
CN111362449B (en) * 2020-02-19 2021-10-15 大连理工大学 Method for removing antibiotic resistance genes by activating persulfate through silver ammonia solution
KR102657465B1 (en) 2021-03-04 2024-04-16 (주) 테크윈 Stabilization method of persulfate solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345189A (en) * 1992-06-12 1993-12-27 Nippon Steel Corp Method for treating organic halogen compound-containing waste water
JP2002361269A (en) * 2001-06-06 2002-12-17 Nippon Gosei Alcohol Kk Method for treating water containing phosphorus
JP2006326121A (en) * 2005-05-30 2006-12-07 Adeka Corp Chemical substance decomposition agent and cleaning method using thereof
JP2010082600A (en) * 2008-10-02 2010-04-15 Mitsubishi Gas Chemical Co Inc Method of cleaning soil and/or groundwater

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1560450A (en) * 1968-01-16 1969-03-21
FR2219121A1 (en) * 1973-02-26 1974-09-20 Degremont Cyanide effluent purication - by successive absorption in cationic, weak anionic and strong anionic resin beds
JPS57180481A (en) * 1981-04-28 1982-11-06 Mitsubishi Heavy Ind Ltd Decomposing method for cyan of high concentration
EP0832852A3 (en) * 1996-09-30 1998-07-29 Peroxid-Chemie GmbH Process for degrading noxious substances
US20040197150A1 (en) * 2003-04-04 2004-10-07 Xpert Design And Diagnostics, Llc Chemical oxidation of organic and inorganic contaminants by chelated transition metals catalyzed persulfate
AU2005205064A1 (en) * 2004-01-12 2005-07-28 Ciba Specialty Chemicals Holding Inc. Use of metal complex compounds comprising pyridine pyrimidine or s-triazine derived ligands as catalysts for oxidations with organic peroxy acids and/or precursors of organic peroxy acids and H2O2
DK1720802T3 (en) * 2004-02-26 2013-09-30 Fmc Corp Oxidation of organic compounds at high pH
US7794607B2 (en) * 2005-06-22 2010-09-14 Truox, Inc. Composition and method for enhanced sanitation and oxidation of aqueous systems
US7695631B2 (en) * 2005-06-22 2010-04-13 Truox, Inc. Composition and method for reducing chemical oxygen demand in water
US7572390B2 (en) * 2005-06-22 2009-08-11 Truox, Inc. Composition and method for reducing chemical oxygen demand in water
US20090044345A1 (en) * 2006-02-06 2009-02-19 Gunther Schlingloff Use of Metal Complex Compounds as Oxidation Catalysts
WO2008065631A1 (en) * 2006-11-30 2008-06-05 Joanne Raphael Katz Method and composition for treating water
CN101172691A (en) * 2007-12-11 2008-05-07 大连海事大学 Method for processing sulphuric acid free radical oxidized water
CN101549916A (en) * 2008-03-31 2009-10-07 李成心 Method for treating electroplating cyanide waste water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345189A (en) * 1992-06-12 1993-12-27 Nippon Steel Corp Method for treating organic halogen compound-containing waste water
JP2002361269A (en) * 2001-06-06 2002-12-17 Nippon Gosei Alcohol Kk Method for treating water containing phosphorus
JP2006326121A (en) * 2005-05-30 2006-12-07 Adeka Corp Chemical substance decomposition agent and cleaning method using thereof
JP2010082600A (en) * 2008-10-02 2010-04-15 Mitsubishi Gas Chemical Co Inc Method of cleaning soil and/or groundwater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183466A (en) * 2011-03-04 2012-09-27 Nippon Steel Engineering Co Ltd Method for purifying polluted region
JP2013158711A (en) * 2012-02-06 2013-08-19 Taisei Corp Method of cleaning cyanogen compound
JP5194223B1 (en) * 2012-03-05 2013-05-08 株式会社セイネン Chemical treatment agent
JP2013184983A (en) * 2012-03-05 2013-09-19 Seinen:Kk Chemical treatment agent
CN103965122A (en) * 2014-03-18 2014-08-06 浙江工业大学 Nitration method of quinoxaline substituted alkane
JP2016049510A (en) * 2014-09-01 2016-04-11 新日鉄住金エンジニアリング株式会社 Purification method of contaminated region

Also Published As

Publication number Publication date
TWI558439B (en) 2016-11-21
KR101771761B1 (en) 2017-08-25
CN102883783A (en) 2013-01-16
KR20130061669A (en) 2013-06-11
CN102883783B (en) 2016-01-13
TW201136630A (en) 2011-11-01
JP5817718B2 (en) 2015-11-18
JPWO2011136095A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5817718B2 (en) Chemical substance treatment agent containing persulfate and silver complex, and chemical substance decomposition method using the same
JP5522040B2 (en) Soil and / or groundwater purification agent and purification method
JP5029562B2 (en) Soil and / or groundwater purification method
US11235994B2 (en) Methods for treating selenocyanate in wastewater
JP5945682B2 (en) Treatment method of wastewater containing cyanide
JP2020104115A (en) Method for treating cyanogen-containing waste water
KR20110099326A (en) Aqueous hydrogen peroxide solution of excellent stability
JP6145682B2 (en) Method of treating complex cyanide-containing wastewater and treating agent used therefor
US20220176426A1 (en) Compositions and methods for oxidizing and sequestering carbon and stabilizing metals
Bedner et al. Making chlorine greener: investigation of alternatives to sulfite for dechlorination
JP2004202357A (en) Method for purifying organic compound-polluted object
KR102117850B1 (en) Treatment agent for cyanide-containing wastewater and method for treating cyanide-containing wastewater using the same
CN105110518A (en) Treatment method for acidic organic wastewater
JP2021053620A (en) Treatment method for cyanide-containing wastewater
JPH05345189A (en) Method for treating organic halogen compound-containing waste water
JP4639309B2 (en) Treatment method of wastewater containing cyanide
JP3850323B2 (en) Detoxification method for organic halogen compounds
KR102116420B1 (en) Waste water treatment method of removing fluorine and cyanides
CN110639491B (en) Catalyst for harmless treatment of highly toxic wastewater and preparation method and application thereof
JP2011000497A (en) Iron chelate aqueous solution and decontamination method of soil and/or ground water
JP2017196585A (en) Cyanogen chloride volatilization suppression method
KR20230065575A (en) Treating method for exhaust gas and waste water containing hydrogen cyanide
JP2022117162A (en) Waste water treatment method
JP2020196000A (en) Treatment method for cyanide-containing wastewater
JP2021016845A (en) Method for treating cyanide-containing wastewater

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021291.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774878

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512796

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127026310

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774878

Country of ref document: EP

Kind code of ref document: A1