WO2011135788A1 - 送信装置、受信装置、送信方法、及び通知方法 - Google Patents

送信装置、受信装置、送信方法、及び通知方法 Download PDF

Info

Publication number
WO2011135788A1
WO2011135788A1 PCT/JP2011/002170 JP2011002170W WO2011135788A1 WO 2011135788 A1 WO2011135788 A1 WO 2011135788A1 JP 2011002170 W JP2011002170 W JP 2011002170W WO 2011135788 A1 WO2011135788 A1 WO 2011135788A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
antenna
transmission
hopping pattern
frequency
Prior art date
Application number
PCT/JP2011/002170
Other languages
English (en)
French (fr)
Inventor
小川佳彦
西尾昭彦
中尾正悟
星野正幸
堀内綾子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012512640A priority Critical patent/JP5695034B2/ja
Priority to EP11774578.6A priority patent/EP2566267A4/en
Priority to US13/639,953 priority patent/US9031035B2/en
Publication of WO2011135788A1 publication Critical patent/WO2011135788A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0028Variable division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code

Definitions

  • the present invention relates to a reference signal transmitter, receiver, transmission method, and notification method.
  • SRS Sounding Reference signal
  • the SRS transmitted from each terminal is multiplexed by time, frequency and code division.
  • the SRS is transmitted at periodic intervals (Periodic).
  • Period Period
  • CycliccShift Sequence a cyclic shift sequence that is an orthogonal sequence.
  • a resource identified by time, frequency, and code to which SRS is mapped may be referred to as an SRS resource.
  • SRS transmission methods include wideband transmission and narrowband transmission.
  • SRS In broadband transmission, SRS is transmitted in a wide band at a time, whereas in narrow band transmission, SRS is transmitted in a narrow band at a time. Therefore, frequency hopping is adopted in narrowband transmission, and SRS can be transmitted in a band equivalent to the wideband by sequentially changing the transmission band (see FIG. 1).
  • Parameters necessary for transmission of this SRS (that is, SRS parameters) are reported from the base station to the terminal in the higher layer as broadcast information or RRC control information.
  • the SRS parameter includes an SRS transmission band, an SRS transmission interval, a cyclic shift number of a cyclic shift sequence multiplied by the SRS, and the like.
  • LTE-A LTE-Advanced
  • SU-MIMO Single-User-Multiple-Input-Multiple-Output
  • LTE-A LTE-Advanced
  • SU-MIMO Single-User-Multiple-Input-Multiple-Output
  • the data rate can be improved.
  • SRS parameters defined in LTE are used as common parameters common to a plurality of transmission antennas. That is, the plurality of transmission antennas transmit a plurality of SRSs with the same transmission band, transmission bandwidth, transmission interval, and the like. However, the cyclic shift numbers of the cyclic shift sequences multiplied by SRS are different from each other for a plurality of transmission antennas.
  • Non-Patent Document 3 a plurality of SRSs transmitted from a plurality of transmission antennas are code-multiplexed at the same time / frequency and transmitted using a common frequency hopping pattern.
  • FIG. 2A is a diagram illustrating a situation in which SRS is transmitted when there is no frequency hopping
  • FIG. 2B is a diagram illustrating a situation in which SRS is transmitted when there is frequency hopping.
  • the second method is a method of reducing the number of SRS resources per unit time by expanding the SRS transmission interval as compared with the first transmission method (see Non-Patent Document 3).
  • SRS resources can be reduced by widening the SRS transmission interval in each transmission antenna using SRS parameters (transmission interval) defined in LTE.
  • FIG. 3A is a diagram illustrating a situation in which SRS is transmitted when there is no frequency hopping
  • FIG. 3B is a diagram illustrating a situation in which SRS is transmitted when there is frequency hopping.
  • An object of the present invention is to provide a transmission apparatus, a reception apparatus, a transmission method, and a notification method that can suppress an increase in SRS resources while suppressing a decrease in follow-up performance with respect to channel time variations.
  • a transmission apparatus includes a plurality of antennas and transmits a reference signal from each antenna, and the reference signal is mapped to a time-frequency resource based on a hopping pattern of the reference signal. Mapping means for transmitting, and transmitting means for transmitting the mapped reference signal. In the hopping pattern, the frequency of transmission of the reference signal at the first antenna among the plurality of antennas is second. Higher than the transmission frequency of the reference signal at the antenna.
  • a receiving apparatus is a receiving apparatus that receives reference signals transmitted from a plurality of antennas of a transmitting apparatus, and a setting unit that sets a hopping pattern of the reference signal for the transmitting apparatus; Transmitting means for transmitting information related to the set hopping pattern to the transmission device, wherein in the hopping pattern, the frequency of transmission of the reference signal at the first antenna among the plurality of antennas is It is higher than the transmission frequency of the reference signal at the second antenna.
  • a transmission method is a transmission method of transmitting a reference signal from a plurality of antennas, wherein a transmission frequency of the reference signal at a first antenna among the plurality of antennas is a second antenna.
  • the reference signal mapped to the time-frequency resource is transmitted based on the hopping pattern of the reference signal set to be higher than the transmission frequency of the reference signal.
  • a notification method is a notification method for notifying information on reference signals transmitted from a plurality of antennas of a communication partner device, and is configured to notify the communication partner device of a first of the plurality of antennas.
  • Information related to the hopping pattern set so that the transmission frequency of the reference signal at one antenna is higher than the transmission frequency of the reference signal at the second antenna is transmitted to the communication partner apparatus.
  • a transmission device a reception device, a transmission method, and a notification method that can suppress an increase in SRS resources while suppressing a decrease in follow-up performance with respect to channel time variation.
  • Diagram for explaining SRS transmission methods (broadband transmission and narrowband transmission) Diagram showing the situation where SRS is sent Diagram showing the situation where SRS is sent
  • the block diagram which shows the structure of the base station which concerns on Embodiment 1 of this invention.
  • the block diagram which shows the structure of the terminal which concerns on Embodiment 1 of this invention.
  • Diagram for explaining SRS hopping pattern 1 Diagram for explaining switching from non-MIMO communication mode to MIMO communication mode Diagram for explaining SRS hopping pattern 2
  • the figure which uses for description of the SRS hopping pattern 4 which concerns on Embodiment 2 of this invention Diagram for explaining SRS hopping pattern 1
  • the figure which uses for description of the SRS hopping pattern 6 which concerns on Embodiment 4 of this invention
  • communication between the base station 100 and the terminal 200 can be performed without carrier-aggregation depending on resource allocation to the terminal 200 by the base station 100.
  • an LTE terminal can use only a communication method using one antenna (that is, a non-MIMO communication method), while an LTE-A terminal can switch between a non-MIMO communication method and a MIMO communication method.
  • a non-MIMO communication method that is, a non-MIMO communication method
  • an LTE-A terminal can switch between a non-MIMO communication method and a MIMO communication method.
  • one unit band is assumed.
  • FIG. 4 is a block diagram showing a configuration of base station 100 according to Embodiment 1 of the present invention.
  • the base station 100 includes a setting unit 101, a pilot processing unit 102, encoding / modulating units 103, 104, and 105, a multiplexing unit 106, an IFFT (Inverse Fast Fourier Transform) unit 107, and a CP ( (Cyclic Prefix) adding unit 108, transmitting unit 109, antenna 110, receiving unit 111, CP removing unit 112, FFT (Fast Fourier Transform) unit 113, extracting unit 114, frequency equalizing unit 115, An IDFT (Inverse Discrete Fourier Transform) unit 116, a data receiving unit 117, and an ACK / NACK receiving unit 118 are included.
  • Base station 100 is, for example, an LTE-A base station. In FIG. 4, only one antenna 110 is shown, but actually, a plurality of antennas 110 are provided.
  • the setting unit 101 sets an SRS hopping pattern for each antenna included in the setting target terminal 200, and generates SRS hopping pattern information.
  • the SRS hopping pattern information is included in the SRS parameter, and includes at least information regarding the frequency hopping pattern, the SRS transmission start timing, and the SRS transmission interval.
  • SRS parameters include cell-specific SRS transmission subframes, cell-specific SRS transmission bandwidth, SRS transmission bandwidth, Comb number (information related to transmission bandwidth), SRS transmission interval, hopping bandwidth, etc. included.
  • These SRS parameters are notified to each terminal through the encoding / modulation section 104 as setting information, as upper layer control information (that is, RRC control information), and also to the pilot processing section 102 and the extraction section 114. Is output.
  • the setting unit 101 sets the SRS transmission frequency at the first antenna among the plurality of antennas included in the setting target terminal 200 to be higher than the SRS transmission frequency at the second antenna. That is, the plurality of antennas included in setting target terminal 200 include a plurality of antennas having different SRS transmission frequencies. This is realized by setting the SRS transmission interval set for the first antenna to be shorter than the SRS transmission interval set for the second antenna.
  • setting section 101 further sets the transmission timing and frequency position at which SRS is transmitted from the second antenna with relatively low transmission frequency, and the transmission timing and frequency position at which SRS is transmitted from the first antenna. Match.
  • various methods can be considered as a method of notifying the SRS parameter.
  • the frequency hopping pattern of a plurality of antennas included in the setting target terminal 200 is composed of a part of a plurality of elements constituting one reference pattern
  • most of the SRS parameters are transmitted between the antennas.
  • the cyclic shift number set for a plurality of antennas included in the setting target terminal 200 can be obtained by sequentially adding a certain offset based on the cyclic shift number set for one antenna. Only the reference cyclic shift number and offset value need to be notified. Thereby, the amount of signaling can be reduced.
  • the setting unit 101 outputs information on the sequence group to the pilot processing unit 102 and the encoding / modulating unit 104.
  • This sequence group is set in units of cells in advance.
  • the setting unit 101 generates allocation control information for each allocation target terminal.
  • uplink allocation information indicating uplink resources (for example, PUSCH (Physical Uplink Shared Channel)) to which uplink data of the terminal is assigned, downlink resources (eg, PDSCH (Physical Downlink) to which downlink data destined for the terminal is assigned.
  • PDSCH Physical Downlink
  • MCS Mobility Control Service
  • HARQ HARQ information
  • the setting unit 101 performs PDCCH (Physical Downlink Control) including terminal-specific allocation control information (that is, allocation control information including uplink resource allocation information, downlink resource allocation information, MCS information, HARQ information, and the like for each allocation target terminal).
  • PDCCH Physical Downlink Control
  • terminal-specific allocation control information that is, allocation control information including uplink resource allocation information, downlink resource allocation information, MCS information, HARQ information, and the like for each allocation target terminal.
  • Channel Physical Downlink Control
  • the setting unit 101 includes a PDCCH information setting unit 121 and an upper layer information setting unit 122.
  • the PDCCH information setting unit 121 generates the above-described allocation control information, and an upper layer information setting unit 122 sets the setting information and the series group described above.
  • the setting unit 101 outputs the cyclic shift number and the SRS transmission bandwidth in the SRS parameters to the pilot signal processing unit 102, and outputs the others to the extraction unit 114.
  • Setting section 101 outputs terminal-specific allocation control information to encoding / modulation section 103. Also, the setting unit 101 outputs uplink resource allocation information of the allocation control information to the extraction unit 114 and the pilot processing unit 102, and outputs downlink resource allocation information to the multiplexing unit 106.
  • the SRS hopping pattern will be described in detail later.
  • the encoding / modulation unit 103 modulates the PDCCH signal input from the setting unit 101 after channel encoding, and outputs the modulated PDCCH signal to the multiplexing unit 106.
  • encoding / modulation section 103 sets the coding rate based on channel quality information (CQI: Channel Quality Indicator) reported from each terminal so that each terminal can obtain sufficient reception quality.
  • CQI Channel Quality Indicator
  • the coding / modulation section 103 sets a lower coding rate as the terminal is located near the cell boundary (that is, as the terminal has poor channel quality).
  • the encoding / modulation unit 104 modulates the setting information input from the setting unit 101 after channel coding, and outputs the modulated setting information to the multiplexing unit 106.
  • the encoding / modulation section 105 modulates the input transmission data (downlink data) after channel coding in each unit band, and outputs the modulated transmission data signal to the multiplexing section 106.
  • the multiplexing unit 106 receives the PDCCH signal input from the encoding / modulation unit 103, the setting information input from the encoding / modulation unit 104, and the data signal input from the encoding / modulation unit 105 ( That is, the PDSCH signal) is multiplexed.
  • multiplexing section 106 maps the PDCCH signal and the data signal (PDSCH signal) based on the downlink resource allocation information input from setting section 101. Note that the multiplexing unit 106 may map the setting information to the PDSCH. Then, multiplexing section 106 outputs the multiplexed signal to IFFT section 107.
  • the IFFT unit 107 converts the multiplexed signal input from the multiplexing unit 106 into a time waveform and outputs the time waveform to the CP adding unit 108.
  • CP adding section 108 adds an CP to the time waveform received from IFFT section 107 to generate an OFDM signal, and outputs the OFDM signal to transmitting section 109.
  • the transmission unit 109 performs transmission radio processing (up-conversion, digital analog (D / A) conversion, etc.) on the OFDM signal input from the CP addition unit 108 and transmits the signal via the antenna 110.
  • transmission radio processing up-conversion, digital analog (D / A) conversion, etc.
  • D / A digital analog
  • the reception unit 111 performs reception radio processing (down-conversion, analog digital (A / D) conversion, etc.) on the reception radio signal received in the reception band via the antenna 110, and the obtained reception signal is subjected to the CP removal unit. To 112.
  • CP removing section 112 removes the CP from the received signal
  • FFT section 113 converts the received signal after the CP removal into a frequency domain signal.
  • the extraction unit 114 identifies SRS resources based on the SRS parameters input from the setting unit 101, and extracts the SRS signal portion included in the identified SRS resources from the frequency domain signals input from the FFT unit 113. To do. This extracted SRS signal portion is output to pilot processing section 102. Further, the SRS signal portion other than the SRS signal portion in the frequency domain signal input from the FFT unit 113 is output to the frequency equalization unit 115. Regarding the reception frequency of SRS transmitted from terminal 200, the reception frequency of SRS transmitted from the first antenna among the plurality of antennas provided in terminal 200 is the same as that of SRS transmitted from the second antenna. It is more than the reception frequency.
  • the SRS reception interval transmitted from the first antenna is shorter than the SRS reception interval transmitted from the second antenna.
  • the reception timing and reception frequency position of the SRS transmitted from the second antenna having a relatively low transmission frequency are made to coincide with the reception timing and reception frequency position of the SRS transmitted from the first antenna.
  • the pilot processing unit 102 estimates the propagation path condition between the above-described setting target terminal and the own apparatus based on the information on the sequence group and the SRS parameter (that is, performs channel estimation).
  • the pilot processing unit 102 derives a sequence using information on the sequence group received from the setting unit 101 and SRS parameters (particularly, the SRS transmission bandwidth).
  • SRS parameters particularly, the SRS transmission bandwidth
  • pilot processing section 102 performs cyclic shift (here, phase rotation in the frequency domain) on the sequence derived as described above based on the SRS parameter (particularly, cyclic shift number) output from setting section 101. Apply. Then, pilot processing section 102 estimates the propagation path condition by multiplying the SRS received from extraction section 114 by the complex conjugate of the series subjected to the cyclic shift as described above to remove the interference component.
  • the estimated value thus obtained is output to the frequency equalization unit 115.
  • the cyclic shift amount and the transmission bandwidth may be different from those indicated by the SRS parameters. For example, it may be included in the uplink resource allocation information and notified by PDCCH.
  • the IDFT unit 116 converts the extracted signal into a time domain signal and outputs the obtained time domain signal to the data receiving unit 117 and the ACK / NACK receiving unit 118.
  • the data receiving unit 117 decodes the time domain signal received from the IDFT unit 116. Data receiving section 117 then outputs the decoded uplink data as received data.
  • the ACK / NACK receiving unit 118 extracts an ACK / NACK signal for downlink data from the time domain signal received from the IDFT unit 116, and performs ACK / NACK determination of the extracted ACK / NACK signal.
  • FIG. 5 is a block diagram showing a configuration of terminal 200 according to Embodiment 1 of the present invention.
  • terminal 200 includes antenna 201, receiving section 202, CP removing section 203, FFT section 204, separating section 205, setting information receiving section 206, PDCCH receiving section 207, and PDSCH receiving section 208.
  • the terminal 200 is, for example, an LTE-A terminal. In FIG. 5, only one antenna 201 is shown, but actually, a plurality of antennas 201 are provided.
  • the receiving unit 202 performs reception radio processing (down-conversion, analog-digital (A / D) conversion, etc.) on the received radio signal (here, OFDM signal) received in the reception band via the antenna 201, and is obtained.
  • the received signal is output to the CP removing unit 203.
  • the received signal includes PDSCH signal, PDCCH signal, and higher layer control information including setting information.
  • CP removing section 203 removes the CP from the received signal, and FFT section 204 converts the received signal after the CP removal into a frequency domain signal. This frequency domain signal is output to the separation unit 205.
  • the demultiplexing unit 205 demultiplexes the signal input from the FFT unit 204 into the above-described upper layer control signal (for example, RRC signalling), a PDCCH signal, and a data signal (that is, PDSCH signal). Separation section 205 then outputs the control signal to setting information reception section 206, outputs the PDCCH signal to PDCCH reception section 207, and outputs the PDSCH signal to PDSCH reception section 208.
  • the upper layer control signal for example, RRC signalling
  • PDCCH signal for example, a PDCCH signal
  • a data signal that is, PDSCH signal
  • the setting information receiving unit 206 reads SRS parameters (in particular, cyclic shift amount, SRS transmission bandwidth) and information related to the sequence group, and outputs the information to the pilot generation unit 216.
  • the setting information receiving unit 206 also includes SRS parameters (in particular, cell-specific SRS transmission subframes, cell-specific SRS transmission bands, SRS transmission bands, SRS transmission bandwidths, Comb numbers, transmission timings, transmission intervals, transmission sections, hopping bands). Width) and the like and output to the mapping unit 212.
  • the PDCCH reception unit 207 extracts a PDCCH signal addressed to the terminal from the PDCCH signal received from the separation unit 205. Then, PDCCH receiving section 207 outputs downlink resource allocation information included in the PDCCH signal addressed to the terminal itself to PDSCH receiving section 208, and outputs uplink resource allocation information to mapping section 212 and pilot generating section 216.
  • the PDSCH receiving unit 208 extracts received data (downlink data) from the PDSCH signal received from the demultiplexing unit 205 based on the downlink resource allocation information received from the PDCCH receiving unit 207. PDSCH receiving section 208 also performs error detection on the extracted received data (downlink data). Then, if there is an error in the received data as a result of error detection, the PDSCH receiving unit 208 generates a NACK signal as an ACK / NACK signal, and if there is no error in the received data, the PDSCH receiving unit 208 receives an ACK as an ACK / NACK signal. Generate a signal. The ACK / NACK signal generated in this way is output to modulation section 209.
  • Modulation section 209 modulates the ACK / NACK signal input from PDSCH reception section 208 and outputs the modulated ACK / NACK signal to DFT section 211.
  • Modulation section 210 modulates transmission data (that is, uplink data) and outputs the modulated data signal to DFT section 211.
  • the DFT unit 211 converts the ACK / NACK signal input from the modulation unit 209 and the data signal input from the modulation unit 210 into the frequency domain, and outputs a plurality of frequency components obtained to the mapping unit 212.
  • the pilot generation unit 216 transmits the SRS sequence based on the information about the sequence group and the SRS parameters (particularly, the cyclic shift number and the SRS transmission bandwidth) received from the setting information reception unit 206.
  • pilot generation section 216 determines the SRS sequence length and sequence number based on the sequence group information and SRS transmission bandwidth information, and selects the SRS sequence corresponding to the determined sequence number and sequence length. Generate. Then, pilot generation section 216 performs cyclic shift on the generated SRS sequence based on SRS parameters (particularly, cyclic shift number). Pilot generation section 216 also generates pilot signals other than SRS. For example, the pilot generation unit 216 uses the information on the sequence group output from the setting information reception unit 206 and the transmission bandwidth information of the uplink resource allocation information output from the PDCCH reception unit 207 to demodulate the data signal. A pilot signal is generated. When a cyclic shift is added to the pilot signal, pilot generation section 216 applies a cyclic shift amount included in uplink resource allocation information or the like to the pilot signal.
  • the mapping unit 212 maps the SRS sequence received from the pilot generation unit 216 based on the SRS hopping pattern information included in the SRS parameter received from the setting information reception unit 206. This SRS hopping pattern differs among at least some of the plurality of transmission antennas included in terminal 200.
  • mapping section 212 performs SRS so that the SRS transmission frequency at the first antenna among the plurality of antennas provided in terminal 200 is higher than the SRS transmission frequency at the second antenna.
  • the plurality of antennas included in terminal 200 includes a plurality of antennas having different SRS transmission frequencies. This is realized by making the SRS transmission interval transmitted from the first antenna shorter than the SRS transmission interval transmitted from the second antenna.
  • mapping section 212 further includes a transmission timing and frequency position for mapping SRS transmitted from the second antenna having a relatively low transmission frequency, a transmission timing for mapping SRS transmitted from the first antenna, and Match the frequency position.
  • mapping section 212 is input from pilot generation section 216, which is a frequency component corresponding to a data signal among a plurality of frequency components input from DFT section 211, in accordance with uplink resource allocation information input from PDCCH reception section 207.
  • the frequency component of the pilot sequence is mapped to the PUSCH.
  • mapping section 212 maps a frequency component or code resource corresponding to the ACK / NACK signal among the plurality of frequency components input from DFT section 211 to PUCCH.
  • the ACK / NACK signal is mapped to PUCCH, but may be mapped to PUSCH.
  • the IFFT unit 213 converts a plurality of frequency components mapped by the mapping unit 212 into a time domain waveform, and the CP adding unit 214 adds a CP to the time domain waveform.
  • the transmission unit 215 is configured to be able to change the transmission band, and sets the transmission band based on the band information input from the setting information reception unit 206. Then, the transmission unit 215 performs transmission wireless processing (up-conversion, digital analog (D / A) conversion, etc.) on the signal to which the CP is added, and transmits the signal via the antenna 201.
  • transmission wireless processing up-conversion, digital analog (D / A) conversion, etc.
  • the modulation unit 209, the modulation unit 210, the DFT unit 211, and the mapping unit 212 may be provided for each unit band.
  • the above SRS parameters are notified by higher layer information (that is, RRC signaling) with a long notification interval.
  • Traffic can be reduced.
  • traffic can be further reduced by notifying some or all of the SRS parameters as broadcast information.
  • PDCCH which has a shorter notification interval than RRC signaling.
  • the base station 100 instructs the SRS hopping pattern to the terminal 200, while the terminal 200 transmits an SRS according to the instructed SRS hopping pattern.
  • FIG. 6 is a diagram for explaining the SRS hopping pattern 1.
  • 6A shows an SRS hopping pattern when frequency hopping is not adopted (that is, when SRS is transmitted in a wide band)
  • FIG. 6B shows an SRS hopping pattern when frequency hopping is adopted. ing.
  • the SRS transmission frequency at the first antenna (antenna # 1) among the plurality of antennas included in the terminal 200 is the second antenna (antenna # 2). It is higher than the SRS transmission frequency.
  • the transmission timing and frequency position at which SRS is transmitted from the second antenna (antenna # 2), which has relatively low transmission frequency, are transmitted from the first antenna (antenna # 1). Coincides with the transmission timing and frequency position to be transmitted.
  • the SRS hopping pattern of the first antenna is regarded as a reference pattern
  • the SRS hopping pattern of the second antenna is composed of a part of elements constituting the SRS hopping pattern of the first antenna. .
  • MIMO communication that is, spatial multiplexing communication using a plurality of antennas
  • MIMO communication can improve the throughput when the propagation path condition is good. For this reason, the throughput can be improved even in an operation in which non-MIMO communication is normally performed with one transmission antenna and switching to MIMO communication using a plurality of transmission antennas is performed when reception quality is good.
  • frequency scheduling for data transmission that is, selection of resource block (RB) with good quality
  • MCS control non-MIMO communication only performs reception quality measurement with one antenna
  • reception quality may be measured with a plurality of antennas.
  • the SRS hopping pattern 1 SRS is not transmitted at all with some of the plurality of antennas included in the terminal 200, and the SRS transmission frequency is suppressed. Therefore, it is possible to limit the decrease in the followability with respect to the time fluctuation of the channel to some antennas.
  • the antenna corresponding to the amplifier with higher output is set as the first antenna described above, and the other antennas are set.
  • the second antenna described above may be used.
  • the antenna is used as the first antenna described above, and an antenna additionally used in the other MIMO communication modes is used as the second antenna described above. good. That is, here, the first antenna can be regarded as a main antenna.
  • setting section 101 sets an SRS hopping pattern for each antenna included in setting target terminal 200, and generates SRS hopping pattern information.
  • This SRS hopping pattern information is transmitted to terminal 200 via transmission means such as encoding / modulation section 104.
  • the SRS transmission frequency at the first antenna among the plurality of antennas included in the setting target terminal 200 is higher than the SRS transmission frequency at the second antenna. Further, the transmission timing and frequency position at which the SRS is transmitted from the second antenna coincide with the transmission timing and frequency position at which the SRS is transmitted from the first antenna.
  • mapping section 212 maps the SRS sequence received from pilot generation section 216 based on the SRS hopping pattern information received from base station 100.
  • the SRS transmission frequency at the first antenna among the plurality of antennas included in the setting target terminal 200 is higher than the SRS transmission frequency at the second antenna. Further, the transmission timing and frequency position at which the SRS is transmitted from the second antenna coincide with the transmission timing and frequency position at which the SRS is transmitted from the first antenna.
  • the SRS hopping pattern used in the first antenna is used as a reference pattern
  • the SRS hopping pattern used in the second antenna is composed of a part of elements constituting the reference pattern.
  • each of the SRS hopping pattern used in the first antenna and the SRS hopping pattern used in the second antenna is one of the elements constituting the reference pattern. It may be composed of parts.
  • the SRS hopping pattern used in the second antenna is composed of a part of the element group constituting the SRS hopping pattern used in the first antenna.
  • SRSs of antennas other than the main antenna may be transmitted with low frequency
  • SRSs of all transmission antennas may be transmitted with high frequency.
  • ⁇ SRS hopping pattern 2> In the above description, the description has been made assuming that both the transmission timing and the frequency position match between the first antenna and the second antenna. However, the present invention is not limited to this, and as shown in FIG. 8, as long as at least the timing at which SRS is transmitted matches between the first antenna and the second antenna, the frequency position is not necessarily limited. May not match.
  • the second embodiment relates to variations of the SRS hopping pattern. Specifically, the SRS hopping pattern applied to the second antenna is switched in units of the hopping pattern application period. As a result, the frequency at which the SRS is transmitted is dispersed.
  • setting section 101 of base station 100 sets an SRS hopping pattern for each antenna included in setting target terminal 200, and generates SRS hopping pattern information.
  • the setting unit 101 switches the SRS hopping pattern applied to the second antenna included in the setting target terminal 200 in units of hopping pattern application cycles.
  • the application period is composed of a plurality of subframes.
  • the setting unit 101 offsets an SRS hopping pattern to be applied to the second antenna in the reference application cycle, and an SRS hopping pattern to be applied to the reference SRS hopping pattern and each application cycle. Set further values.
  • the SRS hopping pattern and offset value to be applied to this reference application period are also included in the above-described SRS hopping pattern information.
  • the application cycle serving as the reference may be the first application cycle or the previous application cycle.
  • mapping section 212 of terminal 200 receives an SRS sequence received from pilot generation section 216 based on SRS hopping pattern information included in an SRS parameter received from setting information receiving section 206. To map.
  • mapping section 212 of terminal 200 switches the SRS hopping pattern applied to the second antenna in units of hopping pattern application cycles. Specifically, the mapping unit 212 circulates the SRS hopping pattern applied to the reference application cycle in an arbitrary application cycle in the time direction by the same number of subframes as the offset value assigned to the arbitrary application cycle. The SRS sequence is mapped based on the shifted SRS hopping pattern.
  • FIG. 9 is a diagram for explaining the SRS hopping pattern 4. As shown in FIG. 9, in the SRS hopping pattern 4, the SRS hopping pattern applied to the second antenna (antenna # 2) is switched in units of hopping pattern application cycles. In FIG. 9, one application period is composed of four subframes.
  • SRS is transmitted from the first antenna at the same frequency for each application period, while SRS is transmitted from an antenna other than the first antenna at a frequency corresponding to an offset value that is different for each application period. Is done.
  • the number of divisions of the frequency band allocated to terminal 200 is 4, and the number of subframes constituting the application period is 4, but in SRS hopping pattern 4, the combination of the number of divisions and the number of subframes is It is not limited to this.
  • the number of frequency band divisions allocated to terminal 200 may be five, and the number of subframes constituting the application period may be ten.
  • the frequency at which the SRS is transmitted can be dispersed.
  • the above-described application period may be a time required for mapping the SRS to all frequency bands according to the reference pattern, and a multiple of the transmission interval ratio between the main antenna and the other antennas is assigned to the terminal 200.
  • the time may be a multiple of the frequency band division number.
  • the number of frequency band divisions and the number of components of the reference pattern may be associated with each other, for example, by making the reference pattern components the same as the frequency band division numbers.
  • the SRS hopping pattern applied to the two antennas is switched in units of the hopping pattern application period. As a result, the frequency at which the SRS is transmitted is dispersed.
  • Embodiment 3 relates to variations of the SRS hopping pattern. Specifically, a section in which SRS is transmitted from the second antenna and a section in which no SRS is transmitted are mixed.
  • the setting unit 101 of the base station 100 sets an SRS hopping pattern for each antenna included in the setting target terminal 200 and generates SRS hopping pattern information.
  • the setting unit 101 of the base station 100 switches between a section in which SRS is transmitted from the second antenna included in the setting target terminal 200 and a section in which no transmission is performed.
  • N subframes are defined as one section, and an SRS transmission section and an SRS non-transmission section are switched in section units. This switching can be realized by setting the SRS transmission interval in units of sections.
  • the number N of subframes constituting one section may be fixed, may be notified from the base station 100 to the terminal 200 using an upper layer, or all of the terminals 200 allocated to the own apparatus. You may calculate based on a frequency band, the bandwidth of a partial band, and a frequency hopping pattern.
  • mapping section 212 of terminal 200 receives an SRS sequence received from pilot generation section 216 based on SRS hopping pattern information included in an SRS parameter received from setting information receiving section 206. To map.
  • mapping section 212 of terminal 200 according to Embodiment 2 switches between a section in which SRS is transmitted from the second antenna and a section in which no SRS is transmitted.
  • FIG. 12 is a diagram for explaining the SRS hopping pattern 5.
  • a section in which SRS is transmitted from the second antenna (antenna # 2) and a section in which no SRS is transmitted are mixed.
  • one section is composed of four subframes and coincides with the application period of the second embodiment.
  • Such switching of SRS transmission intervals is realized by the base station 100 transmitting to the terminal 200 information indicating that the SRS transmission interval in the second antenna is two intervals.
  • the SRS transmission frequency between the antennas of the terminal 200 Even with such an SRS hopping pattern, it is possible to bias the SRS transmission frequency between the antennas of the terminal 200. Further, similarly to the SRS hopping pattern 4, the frequency at which the SRS is transmitted can be dispersed.
  • Embodiment 4 relates to variations of the SRS hopping pattern. Specifically, the SRS transmission frequency in the second antenna differs depending on the frequency band.
  • FIG. 13 is a diagram for explaining the SRS hopping pattern 6.
  • the SRS hopping pattern applied to the second antenna (antenna # 2) is switched in units of hopping pattern application cycles.
  • the SRS hopping pattern 6 there are an application period in which the same SRS hopping pattern as that of the first antenna is used, and an SRS hopping pattern having a part of an element group constituting the SRS hopping pattern applied to the first antenna as a constituent element.
  • the application section used is mixed.
  • SRS is transmitted only in the first partial band and the second partial band in the first application section, while in the second application section, SRS is transmitted in all of the first to fourth partial bands. Is sent.
  • SRS may be constantly transmitted from the main antenna, and SRS transmission frequency may be decreased from other antennas.
  • the reception quality can be measured with a pilot signal transmitted for control information. Therefore, by interpolating using the reception quality measured by the pilot signal and the reception quality measured at the partial frequency with high transmission frequency, the reception quality of the partial band with low transmission frequency can be calculated. It is.
  • the element of the SRS hopping pattern applied to the non-main antenna is In some cases, the condition “is part of an element group constituting the reference pattern” cannot be satisfied. For example, as shown in FIG.
  • the transmission interval of the reference pattern is 2 ms (that is, SRS is transmitted at 2, 4, 6, 8, 10 ms), and the SRS hopping pattern applied to antennas other than the main antenna If the transmission interval is 5 ms (i.e., transmitted at 5 or 10 ms), there is no SRS transmission resource in the reference pattern at the time of 5 ms, so when using the SRS hopping pattern applied to the non-main antenna as it is The above condition is not satisfied.
  • the SRS hopping pattern transmission interval applied to each transmission antenna is only an integer multiple of the transmission interval of the reference pattern.
  • SRS transmission is not performed (that is, dropped) in a subframe corresponding to an element of the SRS hopping pattern applied to each antenna that does not satisfy the above condition.
  • the SRS hopping pattern element applied to each antenna does not transmit an SRS in a subframe corresponding to an element that does not satisfy the above condition, and matches the element constituting the reference pattern, and SRS transmission is performed in the subframe closest to the subframe.
  • SRS transmission is not performed with a 5 ms SRS resource, but before and after (4 ms or 6 ms). Done with SRS resources.
  • the subframe closest to the subframe prior to the subframe corresponding to the element that does not satisfy the above condition may be used, or the subframe closest to the subsequent subframe may be used.
  • Each of the SRS hopping patterns described in the above embodiments may be used alone, or the SRS hopping pattern may be switched.
  • SRS hopping pattern 1 is used, while the plurality of terminals included in terminal 200 is included.
  • SRS hopping pattern 3 is used for each antenna as in SRS hopping pattern 3.
  • Periodic SRS in which the transmission start is notified by the upper layer.
  • Periodic SRS may be replaced with Dynamic Aperiodic SRS notified by PDCCH (Physical Downlink Control Channel) or the like.
  • PDCCH Physical Downlink Control Channel
  • the main antenna for example, an antenna used in Non-MIMO
  • the non-main antenna for example, an antenna used additionally during MIMO
  • the invention is not limited to this.
  • the main antennas may be antennas # 1 and # 2
  • the non-main antennas may be antennas # 3 and # 4.
  • An antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
  • 3GPP LTE it is not specified how many physical antennas an antenna port is composed of, but it is specified as a minimum unit in which a base station can transmit different reference signals (Reference signal).
  • the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the transmission device, reception device, transmission method, and notification method of the present invention are useful as devices that can suppress an increase in SRS resources while suppressing a decrease in follow-up to channel time fluctuations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 MIMO通信と非MIMO通信とが切り替えられる場合に、チャネルの時間変動に対する追従性の低下を抑えつつ、SRS(Sounding Reference signal)リソースの増加を抑えることができる送信装置、受信装置、送信方法、及び通知方法。端末(200)において、マッピング部(212)は、基地局(100)から受け取るSRSホッピングパターンに関する情報に基づいて、パイロット生成部(216)から受け取るSRS系列をマッピングする。上記したSRSホッピングパターンでは、端末(200)が具備する複数のアンテナの内の第1のアンテナでのSRSの送信頻度が、第2のアンテナでのSRSの送信頻度よりも高い。

Description

送信装置、受信装置、送信方法、及び通知方法
 本発明は、参照信号の送信装置、受信装置、送信方法、及び通知方法に関する。
 3GPP LTE(3rd Generation Partnership Project Long-term Evolution,以降では、LTEと呼ぶ)の上り回線では、受信品質測定用に、Sounding Reference signal(SRS)が用いられる(非特許文献1、2参照)。
 各端末から送信されるSRSは、時間、周波数、符号分割で多重される。また、SRSは、定期的(Periodic)な間隔で送信される。特に、SRSが同一時刻/周波数に符号分割多重される場合には、直交系列である巡回シフト系列(Cyclic Shift Sequence)が用いられる。なお、以下では、SRSがマッピングされる、時間、周波数、及び符号で特定されるリソースを、SRSリソースと呼ぶことがある。
 また、SRSの送信方法には、広帯域送信と狭帯域送信とがある。広帯域送信では、SRSが一時に広帯域で送信される一方、狭帯域送信では、SRSが一時に狭い帯域で送信される。従って、狭帯域送信では周波数ホッピングが採用され、送信帯域を順次変更することにより、広帯域と同等の帯域でSRSを送信することができる(図1参照)。このSRSの送信に必要なパラメータ(つまり、SRSパラメータ)は、報知情報又はRRC制御情報として上位レイヤにおいて基地局から端末へ通知される。このSRSパラメータには、SRSの送信帯域、SRSの送信間隔、SRSに乗算される巡回シフト系列の巡回シフト番号などが含まれる。
 また、LTE-Advanced(以降では、LTE-Aと呼ぶ)では、上り回線に適用する通信方式として、4×4の送受信アンテナを用いる通信方式であるSU-MIMO(Single User-Multiple Input Multiple Output)が検討されている。このMIMO通信方式を採用することにより、データレートを向上させることができる。このMIMO方式を採用する場合、送信アンテナと受信アンテナとから成るアンテナペアの構成アンテナ間のチャネルを推定する必要がある。すなわち、MIMO方式を採用する場合には、SRSは、時間、周波数、符号分割を用いて、各送信アンテナから送信される必要がある。
 ところで、LTE-Aでは、SRSの送信方法として、以下に示すような方法が検討されている。
 第1の送信方法では、基本的には、LTEで定義されるSRSパラメータを、複数の送信アンテナで共通する共通パラメータとして用いる。すなわち、複数の送信アンテナは、送信帯域、送信帯域幅及び送信間隔などを一致させて、複数のSRSを送信する。ただし、SRSに乗算される循環シフト系列の巡回シフト番号は、複数の送信アンテナで互いに異なっている。例えば、非特許文献3では、複数の送信アンテナから送信される複数のSRSを、同一時間/周波数に符号多重すると共に共通の周波数ホッピングパターンを用いて送信している。
 しかしながら、第1の送信方法では、図2に示すように、送信アンテナの数に比例して、SRSリソースも増加することになるので、他のチャネルのリソースを圧迫する問題がある。図2Aは、周波数ホッピングが無い場合に、SRSが送信される状況を示す図であり、図2Bは、周波数ホッピングが有る場合に、SRSが送信される状況を示す図である。
 これに対して、第2の方法は、第1の送信方法よりも、SRSの送信間隔を拡げることにより、単位時間当たりのSRSリソース数を削減する方法である(非特許文献3参照)。例えば、LTEで定義されるSRSパラメータ(送信間隔)を用いて、各送信アンテナにおけるSRSの送信間隔を広げることで、SRSリソースを軽減することができる。
 しかしながら、図3に示すように、SRSの送信間隔を拡げると、チャネルの時間変動に追従できなくなる可能性がある。すなわち、SRSを用いた受信品質測定の誤差が大きくなる可能性がある。図3Aは、周波数ホッピングが無い場合に、SRSが送信される状況を示す図であり、図3Bは、周波数ホッピングが有る場合に、SRSが送信される状況を示す図である。
 本発明の目的は、チャネルの時間変動に対する追従性の低下を抑えつつ、SRSリソースの増加を抑えることができる送信装置、受信装置、送信方法、及び通知方法を提供することである。
 本発明の一態様の送信装置は、複数のアンテナを具備し、各アンテナから参照信号を送信する送信装置であって、前記参照信号のホッピングパターンに基づいて、前記参照信号を時間周波数リソースにマッピングするマッピング手段と、前記マッピングされた参照信号を送信する送信手段と、を具備し、前記ホッピングパターンでは、前記複数のアンテナの内の第1のアンテナでの前記参照信号の送信頻度が、第2のアンテナでの前記参照信号の送信頻度よりも高い。
 本発明の一態様の受信装置は、送信装置の複数のアンテナから送信された参照信号を受信する受信装置であって、前記送信装置に対して前記参照信号のホッピングパターンを設定する設定手段と、前記設定されたホッピングパターンに関する情報を前記送信装置へ送信する送信手段と、を具備し、前記ホッピングパターンでは、前記複数のアンテナの内の第1のアンテナでの前記参照信号の送信頻度が、第2のアンテナでの前記参照信号の送信頻度よりも高い。
 本発明の一態様の送信方法は、複数のアンテナから参照信号を送信する送信方法であって、前記複数のアンテナの内の第1のアンテナでの前記参照信号の送信頻度が、第2のアンテナでの前記参照信号の送信頻度よりも高くなるように設定された前記参照信号のホッピングパターンに基づいて、時間周波数リソースにマッピングされた参照信号を送信する。
 本発明の一態様の通知方法は、通信相手装置の複数のアンテナから送信される参照信号に関する情報を通知する通知方法であって、前記通信相手装置に対して、前記複数のアンテナの内の第1のアンテナでの前記参照信号の送信頻度が、第2のアンテナでの前記参照信号の送信頻度よりも高くなるように設定されたホッピングパターンに関する情報を、前記通信相手装置へ送信する。
 本発明によれば、チャネルの時間変動に対する追従性の低下を抑えつつ、SRSリソースの増加を抑えることができる送信装置、受信装置、送信方法、及び通知方法を提供することができる。
SRSの送信方法(広帯域送信及び狭帯域送信)の説明に供する図 SRSが送信される状況を示す図 SRSが送信される状況を示す図 本発明の実施の形態1に係る基地局の構成を示すブロック図 本発明の実施の形態1に係る端末の構成を示すブロック図 SRSホッピングパターン1の説明に供する図 非MIMO通信モードからMIMO通信モードへの切り替えの説明に供する図 SRSホッピングパターン2の説明に供する図 本発明の実施の形態2に係るSRSホッピングパターン4の説明に供する図 本発明の実施の形態2に係るSRSホッピングパターン4の説明に供する図 SRSホッピングパターン1の説明に供する図 本発明の実施の形態3に係るSRSホッピングパターン5の説明に供する図 本発明の実施の形態4に係るSRSホッピングパターン6の説明に供する図 他の実施の形態の説明に供する図
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
 [実施の形態1]
 [システムの概要]
 後述する基地局100及び端末200を含む通信システムでは、複数の下り単位バンド(CC:Component Carrier)を使用した通信、つまり、Carrier aggregationによる通信が行われる。
 また、基地局100と端末200との間でも、基地局100による端末200に対するリソース割当によっては、Carrier aggregationによらない通信が行われることも可能である。
 以下では、LTE向け及びLTE-A向けのFDDシステムを想定して説明する。また、LTE端末は、1つのアンテナを用いた通信方式(つまり、非MIMO通信方式)のみを用いることができる一方、LTE-A端末は、非MIMO通信方式とMIMO通信方式を切り替えることができる。また、以下では、1つの単位バンドを想定して説明する。
 [基地局100の構成]
 図4は、本発明の実施の形態1に係る基地局100の構成を示すブロック図である。図4において、基地局100は、設定部101と、パイロット処理部102と、符号化・変調部103,104,105と、多重部106と、IFFT(Inverse Fast Fourier Transform)部107と、CP(Cyclic Prefix)付加部108と、送信部109と、アンテナ110と、受信部111と、CP除去部112と、FFT(Fast Fourier Transform)部113と、抽出部114と、周波数等化部115と、IDFT(Inverse Discrete Fourier Transform)部116と、データ受信部117と、ACK/NACK受信部118とを有する。基地局100は、例えば、LTE-A基地局である。なお、図4では、アンテナ110が1つのみ示されているが、実際には、複数のアンテナ110が設けられている。
 設定部101は、設定対象端末200が具備するアンテナ毎に、SRSのホッピングパターンを設定し、SRSホッピングパターン情報を生成する。SRSホッピングパターン情報は、SRSパラメータに含まれるものであり、周波数ホッピングパターン、SRS送信開始タイミング、及びSRS送信間隔に関する情報が少なくとも含まれる。SRSパラメータには、これらの他に、セル固有のSRS送信サブフレーム、セル固有のSRS送信帯域、SRS送信帯域幅、Comb番号(送信帯域に関連する情報)、SRS送信区間、ホッピング帯域幅等が含まれる。これらのSRSパラメータは、設定情報として、上位レイヤの制御情報(つまり、RRC制御情報)として、符号化・変調部104を介して各端末へ通知されると共に、パイロット処理部102及び抽出部114へ出力される。
 具体的には、設定部101は、設定対象端末200が具備する複数のアンテナの内、第1のアンテナでのSRSの送信頻度を、第2のアンテナでのSRSの送信頻度よりも高くする。すなわち、設定対象端末200が具備する複数のアンテナには、SRSの送信頻度が互いに異なる複数のアンテナが含まれる。これは、第1のアンテナに設定されるSRS送信間隔を第2のアンテナに設定されるSRS送信間隔よりも短く設定することにより、実現される。
 ここでは、さらに、設定部101は、相対的に送信頻度の低い第2のアンテナからSRSの送信される送信タイミング及び周波数位置を、第1のアンテナからSRSの送信される送信タイミング及び周波数位置と一致させる。
 ここで、SRSパラメータの通知方法には、種々の方法が考えられる。例えば、設定対象端末200が具備する複数のアンテナの周波数ホッピングパターンが、1つの基準パターンを構成する複数の要素の内の一部から構成される場合には、SRSパラメータの大部分をアンテナ間で共通とすることができる。従って、この場合には、共通部分については1つに纏めて、異なる部分のみがアンテナ毎に通知されても良い。これにより、シグナリング量を低減することができる。また、例えば、設定対象端末200が具備する複数のアンテナに対して設定される巡回シフト番号が、1つのアンテナに設定される巡回シフト番号を基準として一定のオフセットを順次加算することでもとめられる場合には、基準となる巡回シフト番号及びオフセット値のみが通知されれば良い。これにより、シグナリング量を低減することができる。
 また、設定部101は、系列グループに関する情報を、パイロット処理部102及び符号化・変調部104へ出力する。この系列グループは、予めセル単位で設定されている。
 また、設定部101は、割当対象端末ごとに、割当制御情報を生成する。この割当制御情報には、端末の上り回線データを割り当てる上りリソース(例えば,PUSCH(Physical Uplink Shared Channel))を示す上り割当情報、端末宛ての下り回線データを割り当てる下りリソース(例えば,PDSCH(Physical Downlink Shared Channel))を示す下り割当情報、MCS情報、及び、HARQ情報などを含む。
 そして、設定部101は、端末個別の割当制御情報(つまり、割当対象端末毎の上りリソース割当情報、下りリソース割当情報、MCS情報、HARQ情報等を含む割当制御情報)を含むPDCCH(Physical Downlink Control Channel)信号を生成する。
 具体的には、設定部101は、PDCCH情報設定部121と、上位レイヤ情報設定部122とを有し、PDCCH情報設定部121が、上記した割当制御情報の生成を行い、上位レイヤ情報設定部122が、上記した設定情報及び系列グループの設定を行う。
 そして、設定部101は、SRSパラメータの内の巡回シフト番号及びSRS送信帯域幅をパイロット信号処理部102へ出力し、それ以外を抽出部114へ出力する。また、設定部101は、端末個別の割当制御情報を符号化・変調部103に出力する。また、設定部101は、割当制御情報のうち、上りリソース割当情報を抽出部114、パイロット処理部102に出力し、下りリソース割当情報を多重部106に出力する。
 なお、SRSホッピングパターンについては、後に詳しく説明する。
 符号化・変調部103は,設定部101から入力されるPDCCH信号をチャネル符号化後に変調して、変調後のPDCCH信号を多重部106に出力する。ここで、符号化・変調部103は、各端末から報告されるチャネル品質情報(CQI:Channel Quality Indicator)に基づいて、各端末で十分な受信品質が得られるように符号化率を設定する。例えば、符号化・変調部103は、セル境界付近に位置する端末ほど(つまり、チャネル品質が悪い端末ほど)、より低い符号化率を設定する。
 符号化・変調部104は、設定部101から入力される設定情報をチャネル符号化後に変調して、変調後の設定情報を多重部106に出力する。
 符号化・変調部105は、各単位バンドにおいて、入力される送信データ(下り回線データ)をチャネル符号化後に変調して、変調後の送信データ信号を多重部106に出力する。
 多重部106は、各単位バンドにおいて、符号化・変調部103から入力されるPDCCH信号、符号化・変調部104から入力される設定情報、および符号化・変調部105から入力されるデータ信号(つまり,PDSCH信号)を多重する。ここで、多重部106は、設定部101から入力される下りリソース割当情報に基づいて、PDCCH信号およびデータ信号(PDSCH信号)をマッピングする。なお、多重部106は、設定情報をPDSCHにマッピングしてもよい。そして、多重部106は、多重信号をIFFT部107に出力する。
 IFFT部107は、多重部106から入力される多重信号を時間波形に変換し、CP付加部108に出力する。
 CP付加部108は、IFFT部107から受け取る時間波形にCPを付加してOFDM信号を生成し、送信部109に出力する。
 送信部109は、CP付加部108から入力されるOFDM信号に対して送信無線処理(アップコンバート、ディジタルアナログ(D/A)変換など)を施し、アンテナ110を介して送信する。ここでは、単数のアンテナで示しているが、複数のアンテナを有していてもよい。
 受信部111は、アンテナ110を介して受信帯域で受信した受信無線信号に対して受信無線処理(ダウンコンバート、アナログディジタル(A/D)変換など)を施し、得られた受信信号をCP除去部112に出力する。
 CP除去部112は、受信信号からCPを除去し、FFT部113は、CP除去後の受信信号を周波数領域信号に変換する。
 抽出部114は,設定部101から入力されるSRSパラメータに基づいて、SRSリソースを特定し、FFT部113から入力される周波数領域信号の内、その特定したSRSリソースに含まれるSRS信号部分を抽出する。この抽出されたSRS信号部分は、パイロット処理部102に出力される。また、FFT部113から入力される周波数領域信号の内、SRS信号部分以外のSRS信号部分は、周波数等化部115へ出力される。なお、端末200から送信されるSRSの受信頻度に関しては、端末200が具備する複数のアンテナの内、第1のアンテナから送信されるSRSの受信頻度が、第2のアンテナから送信されるSRSの受信頻度よりも多くなっている。すなわち、第1のアンテナから送信されるSRSの受信間隔は、第2のアンテナから送信されるSRSの受信間隔よりも短くなっている。ここでは、さらに、相対的に送信頻度の低い第2のアンテナから送信されるSRSの受信タイミング及び受信周波数位置は、第1のアンテナから送信されたSRSの受信タイミング及び受信周波数位置と一致させる。
 パイロット処理部102は、系列グループに関する情報及びSRSパラメータに基づいて、上記した設定対象端末と自装置との間の伝搬路状況を推定する(つまり、チャネル推定する)。
 具体的には、パイロット処理部102は、設定部101から受け取る系列グループに関する情報及びSRSパラメータ(特に、SRS送信帯域幅)を用いて、系列を導出する。ここで、送信帯域幅と系列との対応関係としては、例えば、非特許文献2に記載された対応関係が用いられる。また、パイロット処理部102は、設定部101から出力されるSRSパラメータ(特に、巡回シフト番号)に基づいて、上記のように導出した系列に対して巡回シフト(ここで、周波数領域では位相回転)を施す。そして、パイロット処理部102は、抽出部114から受け取るSRSに対して、上記のように巡回シフトを施した系列の複素共役を乗算して干渉成分を取り除くことにより、伝播路状況を推定する。こうして得られた推定値は、周波数等化部115に出力される。なお、SRS以外のパイロット信号では、巡回シフト量、送信帯域幅がSRSパラメータで指示されたものと異なるものでも良い。例えば、上りリソース割当情報に含まれてPDCCHで通知されるものでも良い。
 IDFT部116は、抽出信号を時間領域信号に変換し、得られた時間領域信号をデータ受信部117およびACK/NACK受信部118に出力する。
 データ受信部117は、IDFT部116から受け取る時間領域信号を復号する。そして、データ受信部117は、復号後の上り回線データを受信データとして出力する。
 ACK/NACK受信部118は、IDFT部116から受け取る時間領域信号の内、下り回線データに対するACK/NACK信号を抽出し、抽出したACK/NACK信号のACK/NACK判定を行う。
 [端末200の構成]
 図5は、本発明の実施の形態1に係る端末200の構成を示すブロック図である。図5において、端末200は、アンテナ201と、受信部202と、CP除去部203と、FFT部204と、分離部205と、設定情報受信部206と、PDCCH受信部207と、PDSCH受信部208と、変調部209,210と、DFT(Discrete Fourier transform)部211と、マッピング部212と、IFFT部213と、CP付加部214と、送信部215と、パイロット生成部216とを有する。端末200は、例えば、LTE-A端末である。なお、図5では、アンテナ201が1つのみ示されているが、実際には、複数のアンテナ201が設けられている。
 受信部202は,アンテナ201を介して受信帯域で受信した受信無線信号(ここでは、OFDM信号)に対して受信無線処理(ダウンコンバート、アナログディジタル(A/D)変換など)を施し、得られた受信信号をCP除去部203に出力する。なお、受信信号には、PDSCH信号、PDCCH信号、および設定情報を含む上位レイヤの制御情報が含まれる。
 CP除去部203は、受信信号からCPを除去し、FFT部204は、CP除去後の受信信号を周波数領域信号に変換する。この周波数領域信号は、分離部205に出力される。
 分離部205は、FFT部204から入力される信号を、上記した上位レイヤの制御信号(例えば、RRC signaling等)と、PDCCH信号と、データ信号(つまり、PDSCH信号)とに分離する。そして、分離部205は、制御信号を設定情報受信部206に出力し、PDCCH信号をPDCCH受信部207に出力し、PDSCH信号をPDSCH受信部208に出力する。
 設定情報受信部206は、SRSパラメータ(特に、巡回シフト量、SRS送信帯域幅)及び系列グループに関する情報を読み取り、パイロット生成部216に出力する。また、設定情報受信部206は,SRSパラメータ(特に、セル固有SRS送信サブフレーム、セル固有SRS送信帯域、SRS送信帯域、SRS送信帯域幅、Comb番号、送信タイミング、送信間隔、送信区間、ホッピング帯域幅など)を読み取り、マッピング部212に出力する。
 PDCCH受信部207は、分離部205から受け取るPDCCH信号から自端末宛てのPDCCH信号を抽出する。そして、PDCCH受信部207は、自端末宛てのPDCCH信号に含まれる下りリソース割当情報をPDSCH受信部208に出力し、上りリソース割当情報をマッピング部212及びパイロット生成部216に出力する。
 PDSCH受信部208は、PDCCH受信部207から受け取る下りリソース割当情報に基づいて、分離部205から受け取るPDSCH信号から受信データ(下り回線データ)を抽出する。また、PDSCH受信部208は、抽出した受信データ(下り回線データ)に対して誤り検出を行う。そして、PDSCH受信部208は、誤り検出の結果、受信データに誤りがある場合には、ACK/NACK信号としてNACK信号を生成し、受信データに誤りが無い場合には、ACK/NACK信号としてACK信号を生成する。こうして生成されたACK/NACK信号は、変調部209に出力される。
 変調部209は、PDSCH受信部208から入力されるACK/NACK信号を変調し、変調後のACK/NACK信号をDFT部211に出力する。
 変調部210は、送信データ(つまり、上り回線データ)を変調し、変調後のデータ信号をDFT部211に出力する。
 DFT部211は、変調部209から入力されるACK/NACK信号および変調部210から入力されるデータ信号を周波数領域に変換し、得られる複数の周波数成分をマッピング部212に出力する。
 パイロット生成部216は、設定情報受信部206から受け取る、系列グループに関する情報及びSRSパラメータ(特に、巡回シフト番号、SRS送信帯域幅)に基づいたSRS系列を送出する。
 具体的には、パイロット生成部216は、系列グループに関する情報およびSRS送信帯域幅情報に基づいてSRSの系列長および系列番号を決定し、この決定された系列番号及び系列長に対応するSRS系列を生成する。そして、パイロット生成部216は、SRSパラメータ(特に、巡回シフト番号)に基づいて、生成したSRS系列に巡回シフトを施す。また、パイロット生成部216は、SRS以外のパイロット信号も生成する。例えば、パイロット生成部216は設定情報受信部206から出力される系列グループに関する情報、及び、PDCCH受信部207から出力される上りリソース割当情報の送信帯域幅情報に基づいて、データ信号の復調用のパイロット信号を生成する。なお、パイロット信号に巡回シフトが加えられる場合には、パイロット生成部216は、そのパイロット信号に対して、上りリソース割当情などに含まれる巡回シフト量を施す。
 マッピング部212は、設定情報受信部206から受け取るSRSパラメータに含まれるSRSホッピングパターン情報に基づいて、パイロット生成部216から受け取るSRS系列をマッピングする。このSRSホッピングパターンは、端末200の具備する複数の送信アンテナの内の少なくとも一部のアンテナ間で異なっている。
 具体的には、マッピング部212は、端末200が具備する複数のアンテナの内、第1のアンテナでのSRSの送信頻度が第2のアンテナでのSRSの送信頻度よりも多くなるように、SRSをマッピングする。すなわち、端末200が具備する複数のアンテナには、SRSの送信頻度が互いに異なる複数のアンテナが含まれる。これは、第1のアンテナから送信されるSRSの送信間隔を第2のアンテナから送信されるSRSの送信間隔よりも短くすることにより、実現される。
 ここでは、さらに、マッピング部212は、相対的に送信頻度の低い第2のアンテナから送信するSRSをマッピングする送信タイミング及び周波数位置と、第1のアンテナから送信されるSRSをマッピングする送信タイミング及び周波数位置とを一致させる。
 また、マッピング部212は、PDCCH受信部207から入力される上りリソース割当情報に従って、DFT部211から入力される複数の周波数成分の内、データ信号に相当する周波数成分、パイロット生成部216から入力されるパイロット系列の周波数成分を、PUSCHにマッピングする。また、マッピング部212は、DFT部211から入力される複数の周波数成分の内、ACK/NACK信号に相当する周波数成分またはコードリソースをPUCCHにマッピングする。なお、ここではACK/NACK信号をPUCCHにマッピングしたが、PUSCHにマッピングしてもよい。
 IFFT部213は、マッピング部212でマッピングされた複数の周波数成分を時間領域波形に変換し、CP付加部214は、その時間領域波形にCPを付加する。
 送信部215は,送信帯域を変更可能に構成されており、設定情報受信部206から入力される帯域情報に基づいて、送信帯域を設定する。そして、送信部215は、CPが付加された信号に送信無線処理(アップコンバート、ディジタルアナログ(D/A)変換など)を施してアンテナ201を介して送信する。
 なお、変調部209、変調部210、DFT部211およびマッピング部212は、単位バンド毎に設けられてもよい。
 また、上記したSRSパラメータは、各セルのトラヒック状況の変化が小さい場合又は平均的な受信品質を測定したい場合などには、通知間隔が長い上位レイヤ情報(つまり、RRCシグナリング)で通知することにより、トラヒックを軽減することができる。さらには、SRSパラメータの一部または全てを報知情報として通知することにより、よりトラヒックを軽減することができる。しかしながら、トラヒック状況などに応じてより動的に変更する必要がある場合などには、SRSパラメータの一部または全てを、RRCシグナリングに比べて通知間隔が短いPDCCHによって通知することが好ましい。
 [基地局100及び端末200の動作]
 以上の構成を有する基地局100及び端末200の動作について説明する。ここでは、特に、SRSホッピングパターンについて説明する。
 上述の通り、基地局100は、端末200に対してSRSホッピングパターンを指示する一方、端末200は、その指示されたSRSホッピングパターンに従って、SRSを送信する。
 〈SRSホッピングパターン1〉
 図6は、SRSホッピングパターン1の説明に供する図である。図6Aには、周波数ホッピングが採用されない場合(つまり、広帯域でSRSが送信される場合)のSRSホッピングパターンが示され、図6Bには、周波数ホッピングが採用される場合のSRSホッピングパターンが示されている。
 図6に示すように、SRSホッピングパターン1では、端末200が具備する複数のアンテナの内、第1のアンテナ(アンテナ#1)でのSRSの送信頻度は、第2のアンテナ(アンテナ#2)でのSRSの送信頻度よりも高くなっている。
 さらに、SRSホッピングパターン1では、相対的に送信頻度の低い第2のアンテナ(アンテナ#2)からSRSの送信される送信タイミング及び周波数位置は、第1のアンテナ(アンテナ#1)からSRSの送信される送信タイミング及び周波数位置と一致する。
 また、別の見方をすれば、次のように理解することもできる。すなわち、第1のアンテナのSRSホッピングパターンを基準パターンと捉えると、第2のアンテナのSRSホッピングパターンは、第1のアンテナのSRSホッピングパターンを構成する要素群の内の一部から構成されている。
 このようにすることで、上記した第1の送信方法に比べて、SRSリソースの増加を抑えることができる。
 ここで、MIMO通信(つまり、複数のアンテナを用いた空間多重通信)は、伝搬路状況の良好な場合に、スループットを向上することができる。このため、通常は1本の送信アンテナで非MIMO通信を行い、受信品質が良い場合には、複数の送信アンテナを用いるMIMO通信に切り替えるという運用でも、スループットを向上することできる。データ送信のための周波数スケジューリング(つまり、品質の良好なリソースブロック(RB)の選択等)及びMCS制御を実行するためには、非MIMO通信では1本のアンテナでの受信品質測定のみを行い、MIMO通信では複数のアンテナで受信品質測定を行えば良い。
 しかしながら、図7に示すように、1本のアンテナのみの受信品質を測定している場合では、それ以外のアンテナの受信品質が未定であるため、非MIMO通信モードからMIMO通信モードに切り替えるタイミングを把握することできない。すなわち、非MIMO通信モードからMIMO通信モードに切り替えるためには、非MIMO通信モードが採用されているタイミングでも、MIMO通信モードで用いられるアンテナの受信品質を定期的に測定しておく必要がある。
 これに対して、SRSホッピングパターン1では、端末200が具備する複数のアンテナの内、一部のアンテナで、全くSRSが送信されないのではなく、SRSの送信頻度が抑えられている。従って、チャネルの時間変動に対する追従性の低下を、一部のアンテナに限定することができる。
 また、端末200の具備する複数のアンテナにそれぞれ対応する複数のアンプの利得にバラツキがある場合には、より出力の高いアンプに対応するアンテナを上記した第1のアンテナとし、それ以外のアンテナを上記した第2のアンテナとしても良い。又は、非MIMOモードで使用するアンテナが決まっている場合には、そのアンテナを上記した第1のアンテナとし、それ以外のMIMO通信モード時に追加的に用いられるアンテナを上記した第2のアンテナとしても良い。つまり、ここでは、第1のアンテナを主要アンテナと捉えることができる。
 以上のように本実施の形態によれば、基地局100において、設定部101が、設定対象端末200が具備するアンテナ毎に、SRSのホッピングパターンを設定し、SRSホッピングパターン情報を生成する。このSRSホッピングパターン情報は、符号化・変調部104等の送信手段を介して端末200へ送信される。
 そして、その設定されるSRSホッピングパターンでは、設定対象端末200が具備する複数のアンテナの内、第1のアンテナでのSRSの送信頻度が、第2のアンテナでのSRSの送信頻度よりも高い。さらに、第2のアンテナからSRSの送信される送信タイミング及び周波数位置が、第1のアンテナからSRSの送信される送信タイミング及び周波数位置と一致する。
 また、端末200において、マッピング部212は、基地局100から受け取るSRSホッピングパターン情報に基づいて、パイロット生成部216から受け取るSRS系列をマッピングする。
 そして、そのSRSホッピングパターンでは、設定対象端末200が具備する複数のアンテナの内、第1のアンテナでのSRSの送信頻度が、第2のアンテナでのSRSの送信頻度よりも高い。さらに、第2のアンテナからSRSの送信される送信タイミング及び周波数位置が、第1のアンテナからSRSの送信される送信タイミング及び周波数位置と一致する。
 こうすることで、MIMO通信と非MIMO通信とが切り替えられる場合にも、チャネルの時間変動に対する追従性の低下を抑えつつ、SRSリソースの増加を抑えることができる。
 特に、第1のアンテナ及び第2のアンテナから同一時間、同一周波数にSRSが送信されるリソースでは、時間差及び周波数の差による受信品質の測定誤差が少ない。そのため、MIMO送信におけるウェイト設定などで、高精度な設定ができる。また、第2のアンテナから送信されず、第1のアンテナからSRSが送信される時間周波数リソースでは、符号多重されるSRSの数が少なくなるので、SRS間の系列間干渉も軽減できる。これにより、誤差の少ない受信品質推定が可能になる。
 なお、以上の説明では、第1のアンテナで用いられるSRSホッピングパターンを基準パターンとし、第2のアンテナで用いられるSRSホッピングパターンが基準パターンを構成する要素群の内の一部から構成されるものとして説明した。しかしながら、本発明はこれに限定されるものではなく、第1のアンテナで用いられるSRSホッピングパターン及び第2のアンテナで用いられるSRSホッピングパターンのそれぞれが、基準パターンを構成する要素群の内の一部から構成されるものでも良い。ただし、第2のアンテナで用いられるSRSホッピングパターンが、第1のアンテナで用いられるSRSホッピングパターンを構成する要素群の内の一部から構成される。
 また、非MIMO通信モードでは,主要アンテナ以外のアンテナのSRSを低頻度で送信し、MIMO通信モードでは、全ての送信アンテナのSRSを高頻度で送信するようにしても良い。これにより、MIMO通信モード時の伝搬路品質を高精度で測定可能である。
 〈SRSホッピングパターン2〉
 以上の説明では、第1のアンテナと第2のアンテナとで、送信タイミング及び周波数位置の両方が一致するものとして説明を行った。しかしながら、本発明はこれに限定されるものではなく、図8に示すように、第1のアンテナと第2のアンテナとで、少なくともSRSが送信されるタイミングが一致していれば、必ずしも周波数位置が一致しなくても良い。
 〈SRSホッピングパターン3〉
 さらには、第1のアンテナと第2のアンテナとで、SRSが送信タイミング及び周波数位置の両方が一致しなくても良い。要は、第1のアンテナでのSRSの送信頻度が、第2のアンテナでのSRSの送信頻度よりも高ければ良い。こうすることで、MIMO通信と非MIMO通信とが切り替えられる場合にも、チャネルの時間変動に対する追従性の低下を抑えつつ、SRSリソースの増加を抑えることができる。
 [実施の形態2]
 実施の形態2は、SRSホッピングパターンのバリエーションに関する。具体的には、第2のアンテナに適用されるSRSホッピングパターンが、ホッピングパターンの適用周期単位で切り替えられる。これにより、SRSが送信される周波数が分散される。
 実施の形態2に係る基地局及び端末の基本構成は、実施の形態1と共通するので、図4、5を援用して説明する。
 実施の形態2に係る基地局100の設定部101は、実施の形態1と同様に、設定対象端末200が具備するアンテナ毎に、SRSのホッピングパターンを設定し、SRSホッピングパターン情報を生成する。
 ただし、実施の形態2において、設定部101は、設定対象端末200が具備する第2のアンテナに適用されるSRSホッピングパターンを、ホッピングパターンの適用周期単位で切り替える。適用周期は、複数のサブフレームから構成される。具体的には、設定部101は、基準となる適用周期に第2のアンテナに対して適用するSRSホッピングパターンと、当該基準となるSRSホッピングパターンと各適用周期に適用するSRSホッピングパターンとのオフセット値とをさらに設定する。この基準となる適用周期に適用するSRSホッピングパターン、及び、オフセット値も、上記したSRSホッピングパターン情報に含められる。
 この基準となる適用周期は、最初の適用周期でも良いし、直前の適用周期でも良い。
 実施の形態2に係る端末200のマッピング部212は、実施の形態1と同様に、設定情報受信部206から受け取るSRSパラメータに含まれるSRSホッピングパターン情報に基づいて、パイロット生成部216から受け取るSRS系列をマッピングする。
 ただし、実施の形態2に係る端末200のマッピング部212は、第2のアンテナに適用されるSRSホッピングパターンを、ホッピングパターンの適用周期単位で切り替える。具体的には、マッピング部212は、任意の適用周期において、基準となる適用周期に適用するSRSホッピングパターンを、その任意の適用周期に割り当てられたオフセット値と同数のサブフレームだけ時間方向に循環シフトさせたSRSホッピングパターンに基づいて、SRS系列をマッピングする。
 以上の構成を有する基地局100及び端末200の動作について説明する。
 〈SRSホッピングパターン4〉
 図9は、SRSホッピングパターン4の説明に供する図である。図9に示すようにSRSホッピングパターン4では、第2のアンテナ(アンテナ#2)に適用されるSRSホッピングパターンが、ホッピングパターンの適用周期単位で切り替えられる。図9では、1つの適用周期は、4つのサブフレームから構成されている。
 図9においては、最初の適用周期では、1番目のサブフレームと3番目のサブフレームとでSRSが送信され、次の適用周期では、最初の適用周期に対するオフセット値として1が設定されているので、2番目のサブフレームと4番目のサブフレームとで、SRSが送信される。また、3番目の適用周期では、最初の適用周期に対するオフセット値として0が設定されているので、1番目のサブフレームと3番目のサブフレームとでSRSが送信される。すなわち、図9においては、奇数番目のサブフレームでSRSが送信される適用周期と、偶数番目のサブフレームでSRSが送信される適用周期とが、交互に繰り返されている。
 すなわち、図9では、第1のアンテナから、適用周期毎に同じ周波数でSRSが送信される一方、第1のアンテナ以外のアンテナから、適用周期毎に異なるオフセット値に対応する周波数でSRSが送信される。
 なお、図9では、端末200に割り当てられる周波数帯域の分割数が4であり、適用周期を構成するサブフレーム数が4であるが、SRSホッピングパターン4では、分割数及びサブフレーム数の組み合わせはこれに限定されるものではない。例えば、図10に示すように、端末200に割り当てられる周波数帯域の分割数が5であり、適用周期を構成するサブフレーム数が10であっても良い。
 ここで、図11に示すように、第2のアンテナからSRSが送信される周波数を固定化すると、一部の周波数ではSRSが全く送信されない状況が生じる。具体的には、図11に示すように、端末200に割り当てられる周波数帯域が偶数の部分帯域に分割される場合、第1のアンテナ以外のアンテナでは、2番目の部分帯域と4番目の部分帯域とからは常にSRSが送信されない。なお、第1のアンテナ以外のアンテナから送信されるSRSの周波数帯域を2倍に拡げることにより、端末200に割り当てられる周波数帯域の全体をカバーする方法も考えられる。しかしながら、この方法では、異なる帯域幅を持つ複数の系列を符号多重することになり、巡回シフト系列(直交系列)による系列間干渉の軽減効果が小さくなる。従って、受信品質に測定誤差が大きくなる。また、SRSの送信帯域を拡げると、SRSリソースが増加してしまう問題もある。
 これに対して、SRSホッピングパターン4を用いることにより、SRSが送信される周波数を分散することができる。
 なお、上記した適用周期は、基準パターンによって全ての周波数帯域にSRSがマッピングされるのに要する時間としても良いし、主要アンテナとそれ以外のアンテナの送信間隔比の倍数が、端末200に割り当てられる周波数帯域の分割数の倍数となる時間でも良い。また、基準パターンの構成要素を周波数帯域の分割数と同じにするなど、周波数帯域の分割数と基準パターンの構成要素の数とを関連付けても良い。
 以上のように本実施の形態によれば、2のアンテナに適用されるSRSホッピングパターンが、ホッピングパターンの適用周期単位で切り替えられる。これにより、SRSが送信される周波数が分散される。
 [実施の形態3]
 実施の形態3は、SRSホッピングパターンのバリエーションに関する。具体的には、第2のアンテナからSRSが送信される区間と、全く送信されない区間とが混在する。
 実施の形態3に係る基地局及び端末の基本構成は、実施の形態1と共通するので、図4、5を援用して説明する。
 実施の形態3に係る基地局100の設定部101は、実施の形態1と同様に、設定対象端末200が具備するアンテナ毎に、SRSのホッピングパターンを設定し、SRSホッピングパターン情報を生成する。
 ただし、実施の形態3に係る基地局100の設定部101は、設定対象端末200が具備する第2のアンテナからSRSが送信される区間と全く送信されない区間とを切り替える。例えば、Nサブフレームを1区間とし、SRS送信区間とSRS非送信区間とを区間単位で切り替える。この切り替えは、SRSの送信間隔を区間単位にすることで、実現できる。また、1区間を構成するサブフレームの数Nは、固定にしても良いし、上位レイヤを用いて基地局100から端末200へ通知しても良いし、端末200が自装置に割り当てられた全周波数帯域、部分帯域の帯域幅、及び周波数ホッピングパターンに基づいて算出しても良い。
 実施の形態2に係る端末200のマッピング部212は、実施の形態1と同様に、設定情報受信部206から受け取るSRSパラメータに含まれるSRSホッピングパターン情報に基づいて、パイロット生成部216から受け取るSRS系列をマッピングする。
 ただし、実施の形態2に係る端末200のマッピング部212は、第2のアンテナからSRSが送信される区間と全く送信されない区間とを切り替える。
 以上の構成を有する基地局100及び端末200の動作について説明する。
 〈SRSホッピングパターン5〉
 図12は、SRSホッピングパターン5の説明に供する図である。図12に示すようにSRSホッピングパターン5では、第2のアンテナ(アンテナ#2)からSRSが送信される区間と、全く送信されない区間とが混在する。図12では、1区間は、4つのサブフレームから構成され、実施の形態2の適用周期と一致している。また、SRSの送信区間に着目すると、SRS送信区間では、第1のアンテナのSRSホッピングパターンと第2のアンテナのSRSホッピングパターンとが一致している。
 このようなSRSの送信区間の切り替えは、基地局100が端末200に対して第2のアンテナにおけるSRSの送信間隔が2区間であることを示す情報を送信することで実現される。
 このようなSRSホッピングパターンによっても、端末200のアンテナ間でSRSの送信頻度に偏りを持たせることができる。また、SRSホッピングパターン4と同様に、SRSが送信される周波数を分散することもできている。
 [実施の形態4]
 実施の形態4は、SRSホッピングパターンのバリエーションに関する。具体的には、第2のアンテナにおけるSRSの送信頻度が、周波数帯域に応じて異なる。
 〈SRSホッピングパターン6〉
 図13は、SRSホッピングパターン6の説明に供する図である。図13に示すようにSRSホッピングパターン6では、第2のアンテナ(アンテナ#2)に適用されるSRSホッピングパターンが、ホッピングパターンの適用周期単位で切り替えられる。SRSホッピングパターン6では、第1のアンテナと同じSRSホッピングパターンが用いられる適用周期と、第1のアンテナに適用されるSRSホッピングパターンを構成する要素群の一部を構成要素とするSRSホッピングパターンが用いられる適用区間とが混在する。
 図13においては、最初の適用区間では、1番目の部分帯域及び2番目の部分帯域でのみSRSが送信される一方、2番目の適用区間では、1番目から4番目の部分帯域の全てでSRSが送信される。
 このようなSRSホッピングパターンによっても、端末200のアンテナ間でSRSの送信頻度に偏りを持たせることができる。さらに、複数の部分帯域間で、第2のアンテナからSRSが送信される頻度に偏りを持たせることができる。
 なお、端末200に割り当てられた周波数帯域の両端付近に位置する部分帯域では、主要アンテナからはSRSを常に送信し、それ以外のアンテナからはSRSの送信頻度を減少させても良い。両端の周波数帯域では、制御情報用に送信されるパイロット信号で受信品質を測定できる。従って、そのパイロット信号によって測定された受信品質と、送信頻度の高い部分周波数で測定された受信品質とを用いて補間することにより、送信頻度が少ない部分帯域の受信品質を算出することができるからである。
 [他の実施の形態]
 (1)実施の形態1において、基準パターンの送信間隔と、非主要アンテナに適用されるSRSホッピングパターンの送信間隔との関係によっては、「非主要アンテナに適用されるSRSホッピングパターンの要素が、基準パターンを構成する要素群の一部である」という条件を満すことができない場合がある。例えば、図14に示すように、基準パターンの送信間隔が2ms(つまり、2, 4, 6, 8, 10msでSRSが送信される)であり、主要アンテナ以外のアンテナに適用されるSRSホッピングパターンの送信間隔が5ms(つまり、5, 10msで送信)である場合には、基準パターンには5ms時点にSRS送信リソースが存在しないので、非主要アンテナに適用されるSRSホッピングパターンをそのまま用いる場合には、上記条件が満たされない。
 このような状況を避けるための第1の方法として、各送信アンテナに適用されるSRSホッピングパターン送信間隔を、基準パターンの送信間隔の整数倍のみとする。
 また、第2の方法として、各アンテナに適用されるSRSホッピングパターンの要素で、上記条件を満たさない要素に対応するサブフレームでは、SRSの送信を行わない(つまり、ドロップする)。
 また、第3の方法として、各アンテナに適用されるSRSホッピングパターンの要素で、上記条件を満たさない要素に対応するサブフレームではSRSの送信を行わず、基準パターンを構成する要素と一致し且つそのサブフレームに最も近いサブフレームで、SRSの送信を行う。例えば、図14に示すように、主要アンテナ以外のアンテナに適用されるSRSホッピングパターンの送信間隔が5msである場合、SRSの送信は、5msのSRSリソースでは行われず、その前後(4ms又は6ms)のSRSリソースで行われる。なお、上記条件を満たさない要素に対応するサブフレームよりも前のサブフレームで最も近いサブフレームとしても良いし、後ろのサブフレームで最も近いサブフレームとしても良い。
 (2)上記各実施の形態において説明したSRSホッピングパターンは、それぞれが単独で用いられても良いし、SRSホッピングパターンを切り替えても良い。
 例えば、端末200が具備する複数のアンテナの全てから、同一のタイミング及び周波数位置でSRSが送信される第1のモードの場合には、SRSホッピングパターン1を用いる一方、端末200が具備する複数のアンテナの全てから、異なるタイミング及び周波数位置でSRSが送信される第2のモードの場合には、SRSホッピングパターン3のように、各アンテナで独立のSRSホッピングパターンを用いる。
 こうすることで、両方のモードの利点を活用することができる。すなわち、第2のモードでは、複数のアンテナから独立のリソースでSRSを送信するので、空きリソースを効率良く柔軟に利用することができる。また、第1のモードでは、複数のアンテナから同一リソースでSRSが送信されるので、時間差及び周波数の差による受信品質の測定誤差が少ない。そのため、MIMO送信におけるウェイト設定などで、高精度な設定ができる。
 (3)上記各実施の形態では、上位レイヤによって送信開始などが通知されるPeriodic SRSを前提にして説明した。しかしながら、本発明はこれに限定されるものではなく、Periodic SRSを、PDCCH(Physical Downlink Control Channel)などで通知されるDynamic Aperiodic SRSなどに置き換えても良い。Dynamic Aperiodic SRSが長期的な区間で送信される場合には、本発明と同様の効果を得ることができる。
 (4)上記各実施の形態では、主要アンテナ(例えば、Non-MIMOで用いるアンテナ)をアンテナ#1、非主要アンテナ(例えば、MIMO時に追加で用いるアンテナ)をアンテナ#2として説明したが、本発明はこれに限定されるものではない。例えば、主要アンテナをアンテナ#1,2とし、非主要アンテナをアンテナ#3、4としても良い。
 (5)上記各実施の形態では、アンテナとして説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。
 アンテナポートとは、1本又は複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。
 例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。
 また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
 (6)上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアでも実現することも可能である。
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2010年4月30日出願の特願2010-105321の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明の送信装置、受信装置、送信方法、及び通知方法は、チャネルの時間変動に対する追従性の低下を抑えつつ、SRSリソースの増加を抑えることができるものとして有用である。
 100 基地局
 101 設定部
 102 パイロット処理部
 103,104,105 符号化・変調部
 106 多重部
 107,213 IFFT部
 108,214 CP付加部
 109,215 送信部
 110,201 アンテナ
 111,202 受信部
 112,203 CP除去部
 113,204 FFT部
 114 抽出部
 115 周波数等化部
 116 IDFT部
 117 データ受信部
 118 ACK/NACK受信部
 121 PDCCH情報設定部
 122 上位レイヤ情報設定部
 200 端末
 205 分離部
 206 設定情報受信部
 207 PDCCH受信部
 208 PDSCH受信部
 209,210 変調部
 211 DFT部
 212 マッピング部
 216 パイロット生成部

Claims (8)

  1.  複数のアンテナを具備し、各アンテナから参照信号を送信する送信装置であって、
     前記参照信号のホッピングパターンに基づいて、前記参照信号を時間周波数リソースにマッピングするマッピング手段と、
     前記マッピングされた参照信号を送信する送信手段と、
     を具備し、
     前記ホッピングパターンでは、前記複数のアンテナの内の第1のアンテナでの前記参照信号の送信頻度が、第2のアンテナでの前記参照信号の送信頻度よりも高い、
     送信装置。
  2.  前記ホッピングパターンでは、前記第2のアンテナから前記参照信号が送信される時間周波数リソースが、前記第1のアンテナから前記参照信号が送信される時間周波数リソースと一致する、
     請求項1に記載の送信装置。
  3.  前記第2のアンテナについてのホッピングパターンが、所定の周期毎に変更される、
     請求項2に記載の送信装置。
  4.  前記ホッピングパターンでは、前記第2のアンテナから前記参照信号が複数のサブフレームで連続的に送信される送信区間と、前記参照信号が複数のサブフレームに亘って送信されない無送信区間とが混在する、
     請求項1に記載の送信装置。
  5.  前記ホッピングパターンでは、前記第2のアンテナから送信される前記参照信号の送信頻度が、周波数帯域によって異なる、
     請求項1に記載の送信装置。
  6.  送信装置の複数のアンテナから送信された参照信号を受信する受信装置であって、
     前記送信装置に対して前記参照信号のホッピングパターンを設定する設定手段と、
     前記設定されたホッピングパターンに関する情報を前記送信装置へ送信する送信手段と、
     を具備し、
     前記ホッピングパターンでは、前記複数のアンテナの内の第1のアンテナでの前記参照信号の送信頻度が、第2のアンテナでの前記参照信号の送信頻度よりも高い、
     受信装置。
  7.  複数のアンテナから参照信号を送信する送信方法であって、
     前記複数のアンテナの内の第1のアンテナでの前記参照信号の送信頻度が、第2のアンテナでの前記参照信号の送信頻度よりも高くなるように設定された前記参照信号のホッピングパターンに基づいて、時間周波数リソースにマッピングされた参照信号を送信する、
     送信方法。
  8.  通信相手装置の複数のアンテナから送信される参照信号に関する情報を通知する通知方法であって、
     前記通信相手装置に対して、前記複数のアンテナの内の第1のアンテナでの前記参照信号の送信頻度が、第2のアンテナでの前記参照信号の送信頻度よりも高くなるように設定されたホッピングパターンに関する情報を、前記通信相手装置へ送信する、
     通知方法。
PCT/JP2011/002170 2010-04-30 2011-04-12 送信装置、受信装置、送信方法、及び通知方法 WO2011135788A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012512640A JP5695034B2 (ja) 2010-04-30 2011-04-12 送信装置、受信装置、送信方法、及び通知方法
EP11774578.6A EP2566267A4 (en) 2010-04-30 2011-04-12 SENDING DEVICE, RECEIVING DEVICE, SENDING METHOD AND NOTIFICATION METHOD
US13/639,953 US9031035B2 (en) 2010-04-30 2011-04-12 Transmitter apparatus, receiver apparatus, transmission method, and notification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010105321 2010-04-30
JP2010-105321 2010-04-30

Publications (1)

Publication Number Publication Date
WO2011135788A1 true WO2011135788A1 (ja) 2011-11-03

Family

ID=44861116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002170 WO2011135788A1 (ja) 2010-04-30 2011-04-12 送信装置、受信装置、送信方法、及び通知方法

Country Status (4)

Country Link
US (1) US9031035B2 (ja)
EP (1) EP2566267A4 (ja)
JP (1) JP5695034B2 (ja)
WO (1) WO2011135788A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162357A1 (ja) * 2013-04-04 2014-10-09 富士通株式会社 無線通信方法、無線通信システム、無線局および無線端末
JP2016518768A (ja) * 2013-04-05 2016-06-23 クゥアルコム・インコーポレイテッドQualcomm Incorporated Lteにおける適応アンテナ管理
WO2016184172A1 (zh) * 2015-10-10 2016-11-24 中兴通讯股份有限公司 一种上行数据信道多天线合并方法及装置
JP2018019343A (ja) * 2016-07-29 2018-02-01 ソニー株式会社 端末装置、基地局、方法及び記録媒体
JP2018529267A (ja) * 2015-08-13 2018-10-04 華為技術有限公司Huawei Technologies Co.,Ltd. アップリンク参照信号送信方法、ユーザ端末、及び基地局
JP2020511037A (ja) * 2017-02-14 2020-04-09 エルジー エレクトロニクス インコーポレイティド Srs設定情報を受信する方法及びそのための端末
JP2020530672A (ja) * 2017-07-05 2020-10-22 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 無線通信方法及び装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102040614B1 (ko) * 2011-05-10 2019-11-05 엘지전자 주식회사 복수의 안테나 포트를 이용하여 신호를 전송하는 방법 및 이를 위한 송신단 장치
US9402256B2 (en) 2012-08-08 2016-07-26 Blackberry Limited Method and system having reference signal design for new carrier types
US9184889B2 (en) * 2012-08-08 2015-11-10 Blackberry Limited Method and system having reference signal design for new carrier types
CN111770038A (zh) * 2014-12-16 2020-10-13 富士通株式会社 下行信道估计方法、装置、通信系统以及终端
WO2017029067A1 (en) * 2015-08-14 2017-02-23 Sony Corporation Devices and methods for stopping cqi measurements according to battery level or ue mobility in a multicarrier system
US11165607B2 (en) 2017-01-17 2021-11-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting sounding reference signal, terminal device and network device
JP7031243B2 (ja) * 2017-11-16 2022-03-08 横河電機株式会社 アンテナモジュールおよび無線機器
US11277248B2 (en) * 2017-11-16 2022-03-15 Lg Electronics Inc. Method for transmitting and receiving SRS resource and communication device therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248559B2 (en) * 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
KR101355313B1 (ko) * 2006-10-12 2014-01-23 엘지전자 주식회사 Mimo 시스템에서의 참조신호 배치 방법
US20110026482A1 (en) * 2008-03-27 2011-02-03 Postdata Co., Ltd. Method and apparatus for pilot signal transmission

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
3GPP: "3GPP TSG RAN; E-UTRA Radio Resource Control (RRC); Protocol specification (TS36.331 v8.8.0)", 3GPP
3GPP: "3GPP TSG RAN; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation(TS36.211 v8.9.0)", 3GPP
3GPP: "Views on SRS Enhancement for LTE-Advanced (Rl-102305)", 3GPP
MITSUBISHI ELECTRIC: "UL Sounding RS Control Signaling for Closed Loop Antenna Selection", 3GPP RAN WG1 #51BIS, R1-080017, 14 January 2008 (2008-01-14), XP050108563 *
MOTOROLA: "Views on SRS Enhancements for LTE-A", 3GPP TSG RAN WG1 #60BIS, R1-102142, 12 April 2010 (2010-04-12), XP050419444 *
QUALCOMM INCORPORATED: "SRS Enhancements for LTE-A", 3GPP TSG RANI WG1 #60BIS, R1-102341, 12 April 2010 (2010-04-12), XP050419570 *
See also references of EP2566267A4 *
WUYUAN LI ET AL.: "A New Transmit Diversity Method Based on Waterpouring Principle in Multiple Antennas Systems", PROCEEDINGS OF THE 2010 2ND INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND ENGINEERING (ICISE), 4 December 2010 (2010-12-04), XP031851793 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014162357A1 (ja) * 2013-04-04 2017-02-16 富士通株式会社 無線通信方法、無線通信システム、無線局および無線端末
WO2014162357A1 (ja) * 2013-04-04 2014-10-09 富士通株式会社 無線通信方法、無線通信システム、無線局および無線端末
JP2016518768A (ja) * 2013-04-05 2016-06-23 クゥアルコム・インコーポレイテッドQualcomm Incorporated Lteにおける適応アンテナ管理
JP2018026820A (ja) * 2013-04-05 2018-02-15 クゥアルコム・インコーポレイテッドQualcomm Incorporated Lteにおける適応アンテナ管理
JP2018529267A (ja) * 2015-08-13 2018-10-04 華為技術有限公司Huawei Technologies Co.,Ltd. アップリンク参照信号送信方法、ユーザ端末、及び基地局
US10735159B2 (en) 2015-08-13 2020-08-04 Huawei Technologies Co., Ltd. Uplink reference signal transmission method, user terminal, and base station
WO2016184172A1 (zh) * 2015-10-10 2016-11-24 中兴通讯股份有限公司 一种上行数据信道多天线合并方法及装置
US11088803B2 (en) 2016-07-29 2021-08-10 Sony Corporation Terminal apparatus, base station, method and recording medium for processing uplink reference signals
WO2018020899A1 (ja) * 2016-07-29 2018-02-01 ソニー株式会社 端末装置、基地局、方法及び記録媒体
JP2018019343A (ja) * 2016-07-29 2018-02-01 ソニー株式会社 端末装置、基地局、方法及び記録媒体
US11736257B2 (en) 2016-07-29 2023-08-22 Sony Group Corporation Terminal apparatus, base station, method and recording medium for processing uplink reference signals
JP2020511037A (ja) * 2017-02-14 2020-04-09 エルジー エレクトロニクス インコーポレイティド Srs設定情報を受信する方法及びそのための端末
US10972241B2 (en) 2017-02-14 2021-04-06 Lg Electronics Inc. Method for receiving SRS configuration information and terminal therefor
JP2020530672A (ja) * 2017-07-05 2020-10-22 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 無線通信方法及び装置
JP6995888B2 (ja) 2017-07-05 2022-01-17 オッポ広東移動通信有限公司 無線通信方法及び装置
US11540269B2 (en) 2017-07-05 2022-12-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device

Also Published As

Publication number Publication date
JP5695034B2 (ja) 2015-04-01
EP2566267A1 (en) 2013-03-06
JPWO2011135788A1 (ja) 2013-07-18
US20130114564A1 (en) 2013-05-09
US9031035B2 (en) 2015-05-12
EP2566267A4 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5695034B2 (ja) 送信装置、受信装置、送信方法、及び通知方法
US11863496B2 (en) Integrated circuit for controlling radio communication
US11824805B2 (en) Transmitter, receiver, transmission method, and reception method with phase tracking reference signal mapping
JP5914628B2 (ja) 多重アンテナ及びサウンディングレファレンス信号ホッピングを使用する上向きリンク無線通信システムにおけるサウンディングレファレンス信号伝送方法及び装置
KR101448653B1 (ko) 주파수 호핑 패턴 및 이를 이용한 상향링크 신호 전송 방법
AU2008262750B2 (en) Partitioning of frequency resources for transmission of control signals and data signals in SC-FDMA communication systems
CN110050452B (zh) 基站装置、终端装置、通信方法及集成电路
RU2696258C2 (ru) Устройство связи и способ связи
JP5592936B2 (ja) 端末装置、基地局装置、パイロット送信方法、及び、伝搬路推定方法
CN109644416A (zh) 参考信号序列的映射方法、配置方法、基站和用户设备
WO2009132178A2 (en) Backward compatible bandwidth extension
WO2011052222A1 (ja) 無線通信装置及び参照信号生成方法
JP2008118311A (ja) ユーザ端末装置及び基地局装置
WO2012046399A1 (ja) 送信装置、受信装置、送信方法、及び受信方法
KR101560027B1 (ko) 기지국 장치, 단말 장치, 주파수 리소스 할당 방법, 송신 신호 송신 방법, 및 집적 회로
JP7288114B2 (ja) 端末及び通信方法
EP3577866B1 (en) Systems and methods for minimizing performance impact from known signal distortions
CN108282288B (zh) 一种参考信号配置的方法、基站、用户设备和系统
CN111865517B (zh) 发送参考信号的方法和装置
JP2010200077A (ja) 移動通信システム、基地局装置、移動局装置および移動通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774578

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512640

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13639953

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011774578

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE