WO2016184172A1 - 一种上行数据信道多天线合并方法及装置 - Google Patents

一种上行数据信道多天线合并方法及装置 Download PDF

Info

Publication number
WO2016184172A1
WO2016184172A1 PCT/CN2016/073187 CN2016073187W WO2016184172A1 WO 2016184172 A1 WO2016184172 A1 WO 2016184172A1 CN 2016073187 W CN2016073187 W CN 2016073187W WO 2016184172 A1 WO2016184172 A1 WO 2016184172A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
uplink
antennas
weight
channel estimation
Prior art date
Application number
PCT/CN2016/073187
Other languages
English (en)
French (fr)
Inventor
肖辉
董广明
刘燕武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016184172A1 publication Critical patent/WO2016184172A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0862Weighted combining receiver computing weights based on information from the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present application relates to the field of wireless communication technologies, for example, to an uplink data channel multi-antenna combining method and apparatus.
  • the SRS (Sounding Reference Signal) is a type of reference signal that is sent by the UE (terminal) for uplink transmission and the base station for uplink detection to measure the uplink channel quality.
  • the base station uplink sends the measurement result to the scheduler, and the scheduler performs frequency selection scheduling.
  • the so-called frequency selection scheduling means that the scheduler selects a frequency band with a better channel quality for the UE to transmit a PUSCH (Physical Uplink Shared Channel) signal according to the channel quality, and avoids the SINR (Signal to Interference plus Noise Ratio, the frequency band with poor signal-to-interference plus noise ratio.
  • the use of SRS can be mainly used for TA, SINR, UE speed measurement, and wave velocity shaping weight calculation.
  • the UE transmits the PUSCH signal to the base station through the air interface, and the base station demodulates the PUSCH signal transmitted by the UE, and the demodulation performance depends on the number of uplink receiving antennas of the base station and the channel quality of the uplink air interface.
  • the base station In order to meet the increasing demand for uplink and downlink traffic in wireless communications, integrated outdoor base stations using large-scale multi-antenna array technology are increasingly being studied and applied.
  • the number of antennas supported by the base station is 32, 64, 128, 256 or even more.
  • a base station may also need to support multiple carriers, and each carrier also has a limit on the number of supported users.
  • the present application has been made in order to provide an uplink data channel multi-antenna combining method and apparatus that solves the above problems.
  • an uplink data channel multi-antenna combining method is provided, which is applied to a base station side, and includes:
  • the signals of the uplink antennas are phase-aligned, and the merging between the antennas is performed according to the configured combining scheme.
  • the sounding reference signal SRS received by all uplink antennas of the base station is channel-estimated, and the combined compensation of each uplink antenna is determined according to the channel estimation and the antenna correction weight.
  • Weights including:
  • the weights are corrected to determine the combined compensation weight for each RB position of each uplink antenna.
  • the determining, according to the channel estimation and the antenna correction weight, the combined compensation weight of each uplink antenna including:
  • the phase alignment of the signals of each uplink antenna according to the combined compensation weight of each uplink antenna includes: multiplying the signal of each uplink antenna by the antenna Combine the compensation weights to achieve phase alignment of the signals of the uplink antennas.
  • the merging between the antennas according to the configured merging scheme includes:
  • the signals of the uplink antennas to be combined are accumulated and averaged.
  • an uplink data channel multi-antenna combining apparatus is further provided, which is applied to a base station side, and includes:
  • a data processing module configured to perform channel estimation on the sounding reference signal SRS received by all uplink antennas of the base station, and determine a combined compensation weight value of each uplink antenna according to the channel estimation and the antenna correction weight;
  • the antenna combining module is configured to perform phase alignment on the signals of the uplink antennas according to the combined compensation weight of each uplink antenna, and perform merging between the antennas according to the configured combining scheme.
  • the data processing module is configured to perform channel estimation on the sounding reference signal SRS received by all uplink antennas of the base station, and obtain channel estimation of each resource block RB position of each uplink antenna. And determining a combined compensation weight for each RB position of each uplink antenna according to the channel estimation of each RB position of each uplink antenna and the antenna correction weight of each uplink antenna.
  • the data processing module is configured to calculate an antenna compensation weight of each uplink antenna according to a channel estimation H of each uplink antenna. And calculating, according to the antenna compensation weight of each uplink antenna and the antenna correction weight of the uplink antenna, the combined compensation weight of each uplink antenna is calculated.
  • W AC is the antenna correction weight.
  • the antenna merging module is configured to multiply the signal of each uplink antenna by the combined compensation weight of the antenna to implement phase alignment of the signals of the uplink antennas.
  • the antenna merging module is configured to perform averaging on the signals of the uplink antennas to be combined according to the configured merging scheme to implement merging between the antennas.
  • the multi-antenna combining technique described in the embodiment of the present invention can not only ensure the combined PUSCH. Demodulation performance, while also meeting the requirements for multiple carriers and users in commercial systems.
  • FIG. 1 is a flowchart of a method for merging uplink data channels and multiple antennas according to Embodiment 1 of the present invention
  • FIG. 2 is a structural block diagram of an apparatus for merging uplink data channels and multiple antennas according to Embodiment 3 of the present invention.
  • the embodiment of the present invention provides an uplink data channel multi-antenna combining method capable of ensuring PUSCH demodulation performance and reducing system processing resource consumption in an existing large-scale multi-antenna array system, which is applied to a base station side, as shown in FIG.
  • the method includes the following steps:
  • Step S101 Perform channel estimation on the SRS signals received by all uplink antennas of the base station, and determine a combined compensation weight for each uplink antenna according to the channel estimation and the antenna correction weight; wherein the combined compensation weight of the uplink antenna reflects Upstream channel amplitude and phase offset.
  • channel estimation is performed on SRS signals received by all uplink antennas of the base station, channel estimation is performed for each resource block RB position of each uplink antenna, and channel estimation is performed for each RB position of each uplink antenna.
  • the antenna correction weight of each uplink antenna determining each uplink antenna The combined compensation weight of the RB position. That is to say, in this embodiment, the combined compensation weight of each uplink antenna is calculated in units of RBs.
  • the manner of determining the combined compensation weight of each uplink antenna according to the channel estimation and the antenna correction weight includes:
  • the antenna compensation weight of each uplink antenna is calculated according to the channel estimation H of each uplink antenna.
  • H * is the conjugate of the channel estimate H
  • is the modulus of the channel estimate H
  • the antenna correction weight can be calculated according to the currently known calculation manner, and the embodiment of the present invention does not uniquely limit the calculation manner.
  • Step S102 phase-align the signals of the uplink antennas according to the combined compensation weights of each uplink antenna, and perform merging between the antennas according to the configured combining scheme.
  • the phase alignment of the signals of the uplink antennas according to the combined compensation weights of each of the uplink antennas is performed by multiplying the signals of each of the uplink antennas by the combined compensation weights of the antennas.
  • the merging between the antennas according to the configured merging scheme includes:
  • the signals of the uplink antennas to be combined are accumulated and averaged to achieve merging between the antennas.
  • the merging scheme can be flexibly configured according to actual requirements and the number of carriers, the number of users, and the processing capability of the system. For example, a base station device design processing capability supports a single carrier 256 antennas, and for some scenarios, it is required to support dual carriers, each carrier The number of users cannot be reduced. At the same time, it is necessary to maintain the uplink demodulation performance and traffic requirements. Based on the original equipment, the merging scheme can be configured to combine 256 antennas for each carrier into 128 antennas, and a single carrier actually processes 128 antennas.
  • the multi-antenna combining technique using the method in the embodiment of the present invention can not only ensure the combined PUSCH demodulation performance, but also meet the requirements for multiple carriers and users in a commercial system.
  • the embodiment of the present invention provides a method for combining multiple antennas in an uplink data channel.
  • the multi-antenna combining scheme proposed by the embodiment of the present invention is described in more detail from the perspective of disclosing more technical details.
  • the method in this embodiment first configures a merge scheme, and then performs multi-antenna merge according to the merge scheme.
  • the merging scheme When configuring the merging scheme: first, determine the processing capability and the number of receiving antennas supported by the base station; then, determine the number of supported carriers and the number of users according to the requirements of the commercial scenario; and third, determine the antenna according to the demand and the processing capability of the base station itself.
  • the combination scheme is selected, and according to the selected antenna combining scheme, the antenna combining manner of each carrier is determined to perform subsequent combining processing.
  • the implementation principle is: after receiving the SRS signal sent by the UE, the base station first performs channel estimation on the received SRS signal, and calculates an uplink antenna combined compensation weight according to the channel estimation, and utilizes The combined compensation weights of the uplink antennas are phase-aligned to the PUSCH antenna signals received by the uplink antennas. After phase alignment, the antennas are combined according to the configured combining scheme, and the combined antenna data is sent to the demodulation module for solution. Tune.
  • the implementation process of multi-antenna combining is:
  • an SRS signal of all receiving antennas of the base station is obtained, and channel estimation is performed on the SRS signal to obtain a channel estimation H of each RB (Resource Block) position of each antenna.
  • RB Resource Block
  • the PUSCH uplink antenna compensation weight for each RB position of each antenna is calculated. This weight reflects the channel quality of each antenna from the UE to the base station.
  • the antenna signals of the antennas to be combined are accumulated and averaged to obtain a combined signal of the PUSCH antennas.
  • the data of the combined PUSCH antenna level is demodulated and decoded.
  • the solution in this embodiment can flexibly configure the antenna combining mode according to the processing capability and the resource of the base station, and flexibly configure the antenna combining mode to meet the requirements of the commercial scenario, and flexibly support the number of carriers and the number of users without degrading the PUSCH demodulation performance.
  • An embodiment of the present invention provides a multi-antenna combining device for an uplink data channel, which is applied to a base station side, as shown in FIG. 2, and includes:
  • the data processing module 210 is configured to perform channel estimation on the sounding reference signal SRS received by all the uplink antennas of the base station, and determine a combined compensation weight value of each uplink antenna according to the channel estimation and the antenna correction weight;
  • the antenna combining module 220 is configured to perform phase alignment on the signals of the uplink antennas according to the combined compensation weights of each of the uplink antennas, and perform merging between the antennas according to the configured combining scheme.
  • the data processing module 210 is configured to perform channel estimation on the sounding reference signal SRS received by all uplink antennas of the base station, and obtain channel estimates for each resource block RB position of each uplink antenna, and according to each uplink antenna.
  • the channel estimation of each RB position and the antenna correction weight of each uplink antenna determine the combined compensation weight for each RB position of each uplink antenna.
  • the data processing module 210 calculates the antenna compensation weight of each uplink antenna according to the channel estimation H of each uplink antenna. And calculating, according to the antenna compensation weight of each uplink antenna and the antenna correction weight of the uplink antenna, the combined compensation weight of each uplink antenna is calculated.
  • W AC is the antenna correction weight.
  • the antenna combining module 220 multiplies the signal of each uplink antenna by the day.
  • the combined compensation weights of the lines enable phase alignment of the signals of the respective uplink antennas.
  • the antenna merging module 220 performs averaging on the signals of the uplink antennas to be combined according to the configured merging scheme to implement merging between the antennas.
  • the multi-antenna combining device provided by the embodiment of the present invention can not only ensure the combined PUSCH demodulation performance, but also meet the requirements for multiple carriers and users in a commercial system.
  • the uplink data channel multi-antenna combining method and device disclosed in the present application performs channel estimation on the sounding reference signal SRS received by all uplink antennas of the base station, and determines the combined compensation right of each uplink antenna according to the channel estimation and the antenna correction weight. Value; according to the combined compensation weight of each uplink antenna, phase-align the signals of the uplink antennas, and perform merging between the antennas according to the configured combination scheme.
  • the multi-antenna combining technology described in the present application can not only ensure the combined PUSCH demodulation performance, but also meet the requirements for multiple carriers and users in a commercial system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

公开了一种上行数据信道多天线合并方法和装置,所述方法包括:对基站所有上行天线接收的探测参考信号SRS进行信道估计,并根据所述信道估计和天线校正权值,确定每根上行天线的合并补偿权值;根据每根上行天线的合并补偿权值,对各上行天线的信号进行相位对齐,并按照配置的合并方案,进行天线间的合并。采用本申请所述的多天线合并技术,不仅可以保证合并后的PUSCH解调性能,同时还能够满足商用系统中对于多载波和用户数的要求等。

Description

一种上行数据信道多天线合并方法及装置 技术领域
本申请涉及无线通信技术领域,例如涉及一种上行数据信道多天线合并方法和装置。
背景技术
SRS(Sounding Reference Signal,探测参考信号)是参考信号的一种,由UE(终端)上行发送,基站上行检测,用来测量上行信道质量。基站上行将测量结果发给调度器,由调度器进行频选调度。所谓频选调度,就是在调度的时候,调度器根据信道质量情况,选择信道质量较好的频带用于UE上行发送PUSCH(Physical Uplink Shared Channel,物理上行共享信道)信号,避开SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)较差的频带。使用SRS主要可以用来进行TA、SINR、UE测速,以及波速赋型权值计算等。
UE发射PUSCH信号经过空口到达基站,基站对UE发射的PUSCH信号进行解调,解调性能依赖于基站上行接收天线数及上行空口信道质量。为了满足日益增长的无线通信中对上下行流量的需求,应用大规模多天线阵列技术的一体化室外型基站越来越得到广泛研究和应用。该基站支持的天线数有32、64、128、256甚至更多。而在商用系统中一个基站还可能需要支持多载波,每个载波还有支持用户数的限制,为了保证每个载波的解调性能,支持的天线数不能减少,这样的话对于系统的处理能力将会是一个很大的考验。为了在一体化基站中更加灵活的设计支持载波数和用户能力数,同时为了保证解调性能就需要对上行业务数据信道PUSCH进行多天线合并,那么,怎么样合并才不会影响PUSCH多天线的解调性能正是本申请所要解决的技术问题。
发明内容
鉴于上述问题,提出了本申请以便提供一种解决上述问题的上行数据信道多天线合并方法和装置。
依据本发明实施例的一个方面,提供一种上行数据信道多天线合并方法,应用于基站侧,包括:
对基站所有上行天线接收的探测参考信号SRS进行信道估计,并根据所述信道估计和天线校正权值,确定每根上行天线的合并补偿权值;
根据每根上行天线的合并补偿权值,对各上行天线的信号进行相位对齐,并按照配置的合并方案,进行天线间的合并。
可选地,本发明实施例所述方法中,所述对基站所有上行天线接收的探测参考信号SRS进行信道估计,并根据所述信道估计和天线校正权值,确定每根上行天线的合并补偿权值,包括:
对基站所有上行天线接收的探测参考信号SRS进行信道估计,得到每根上行天线每个资源块RB位置的信道估计,并根据每根上行天线每个RB位置的信道估计和每根上行天线的天线校正权值,确定每根上行天线每个RB位置的合并补偿权值。
可选地,本发明实施例所述方法中,所述根据信道估计和天线校正权值,确定每根上行天线的合并补偿权值,包括:
根据每根上行天线的信道估计H,计算得到每根上行天线的天线补偿权值
Figure PCTCN2016073187-appb-000001
其中,H*为信道估计H的共轭,||H||为信道估计H的模;
根据每根上行天线的天线补偿权值和上行天线的天线校正权值,计算得到每根上行天线的合并补偿权值
Figure PCTCN2016073187-appb-000002
其中,WAC为天线校正权值。
可选地,本发明实施例所述方法中,所述根据每根上行天线的合并补偿权值,对各上行天线的信号进行相位对齐,包括:将每根上行天线的信号乘以该天线的合并补偿权值,实现对各上行天线的信号进行相位对齐。
可选地,本发明实施例所述方法中,所述按照配置的合并方案,进行天线间的合并,包括:
按照配置的合并方案,对需要合并的上行天线的信号进行累加求平均,实 现天线间的合并。
依据本发明实施例的另一个方面,还提供一种上行数据信道多天线合并装置,应用于基站侧,包括:
数据处理模块,配置为对基站所有上行天线接收的探测参考信号SRS进行信道估计,并根据所述信道估计和天线校正权值,确定每根上行天线的合并补偿权值;
天线合并模块,配置为根据每根上行天线的合并补偿权值,对各上行天线的信号进行相位对齐,并按照配置的合并方案,进行天线间的合并。
可选地,本发明实施例所述装置中,所述数据处理模块,配置为对基站所有上行天线接收的探测参考信号SRS进行信道估计,得到每根上行天线每个资源块RB位置的信道估计,并根据每根上行天线每个RB位置的信道估计和每根上行天线的天线校正权值,确定每根上行天线每个RB位置的合并补偿权值。
可选地,本发明实施例所述装置中,所述数据处理模块,配置为根据每根上行天线的信道估计H,计算得到每根上行天线的天线补偿权值
Figure PCTCN2016073187-appb-000003
以及根据每根上行天线的天线补偿权值和上行天线的天线校正权值,计算得到每根上行天线的合并补偿权值
Figure PCTCN2016073187-appb-000004
其中,WAC为天线校正权值。
可选地,本发明实施例所述装置中,所述天线合并模块,配置为将每根上行天线的信号乘以该天线的合并补偿权值,实现对各上行天线的信号进行相位对齐。
可选地,本发明实施例所述装置中,所述天线合并模块,配置为按照配置的合并方案,对需要合并的上行天线的信号进行累加求平均,实现天线间的合并。
本发明实施例有益效果如下:
采用本发明实施例所述的多天线合并技术,不仅可以保证合并后的PUSCH 解调性能,同时还能够满足商用系统中对于多载波和用户数的要求等。
附图概述
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的一种上行数据信道多天线合并方法的流程图;
图2为本发明实施例三提供的一种上行数据信道多天线合并装置的结构框图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
本发明实施例提供一种在现有大规模多天线阵列系统中既能保证PUSCH解调性能又能降低系统处理资源消耗的上行数据信道多天线合并方法,应用于基站侧,如图1所示,所述方法包括如下步骤:
步骤S101,对基站所有上行天线接收的SRS信号进行信道估计,并根据所述信道估计和天线校正权值,确定每根上行天线的合并补偿权值;其中,上行天线的合并补偿权值反应了上行信道幅度及相位偏移。
确切地讲,本实施例中,对基站所有上行天线接收的SRS信号进行信道估计,得到每根上行天线每个资源块RB位置的信道估计,并根据每根上行天线每个RB位置的信道估计和每根上行天线的天线校正权值,确定每根上行天线每个 RB位置的合并补偿权值。也就是说,本实施例中,以RB为单位,计算各上行天线的合并补偿权值。
在本发明的一个实施例中,根据信道估计和天线校正权值,确定每根上行天线的合并补偿权值的方式包括:
首先,根据每根上行天线的信道估计H,计算得到每根上行天线的天线补偿权值
Figure PCTCN2016073187-appb-000005
其中,H*为信道估计H的共轭,||H||为信道估计H的模;
然后,根据每根上行天线的天线补偿权值
Figure PCTCN2016073187-appb-000006
和上行天线的天线校正权值,计算得到每根上行天线的合并补偿权值
Figure PCTCN2016073187-appb-000007
其中,WAC为天线校正权值。其中,天线校正权值可以根据目前已知的计算方式计算得到,本发明实施例不对其计算方式进行唯一限定。
步骤S102,根据每根上行天线的合并补偿权值,对各上行天线的信号进行相位对齐,并按照配置的合并方案,进行天线间的合并。
其中,根据每根上行天线的合并补偿权值,对各上行天线的信号进行相位对齐,指:将每根上行天线的信号乘以其天线的合并补偿权值。
本发明实施例中,所述按照配置的合并方案,进行天线间的合并,包括:
按照配置的合并方案,对需要合并的上行天线的信号进行累加求平均,实现天线间的合并。
其中,合并方案可以根据实际需求以及系统的载波数、用户数、处理能力等灵活配置,比如某基站设备设计处理能力支持单个载波256天线,针对某些场景又需要支持双载波,每个载波的用户数还不能降低,同时还需要保持上行的解调性能及流量要求,基于原有设备就可以将合并方案配置为对每个载波进行256天线合并成128天线,单个载波实际处理128天线。
采用本发明实施例所述方法的多天线合并技术,不仅可以保证合并后的PUSCH解调性能,同时还能够满足商用系统中对于多载波和用户数的要求等。
实施例二
本发明实施例提供一种上行数据信道多天线合并方法,其从公开更多的技术细节角度出发,对本发明实施例提出的多天线合并方案进行更详细的阐述。
本实施例所述方法首先要配置合并方案,然后,根据合并方案进行多天线合并。
其中,配置合并方案时:首先,要确定本基站支持的处理能力及接收天线数;然后,根据商用场景需求,确定支持的载波数及用户数;第三,根据需求和基站本身处理能力确定天线合并方案选择,并根据选择的天线合并方案,确定每个载波的天线合并方式以进行后续的合并处理。
本实施例中,在进行多天线合并时,实施原理为:基站收到UE发送的SRS信号后,对收到的SRS信号首先进行信道估计,根据信道估计计算上行天线合并补偿权值,并利用各上行天线的合并补偿权值,对各上行天线接收到的PUSCH天线信号进行相位对齐,在相位对齐后,根据配置的合并方案,进行天线合并,合并后的天线数据送到解调模块进行解调。
本实施例中,多天线合并的实施过程为:
首先,获取基站上行所有接收天线的SRS信号,对该SRS信号进行信道估计,得到每根天线每个RB(Resource Block,资源块)位置的信道估计H。
其次,计算上行天线补偿权值。根据前一个步骤得到的H值,根据公式
Figure PCTCN2016073187-appb-000008
计算得到每个天线每个RB位置的PUSCH上行天线补偿权值。该权值反映了UE到基站每根天线的信道质量情况。
第三,基于计算出来的天线补偿权值,根据公式
Figure PCTCN2016073187-appb-000009
计算得到每根天线的合并补偿权值,并将每根天线的信号乘以其合并补偿权值,实现对各天线信号的相位对齐。其中,WAC为天线校正权值。
第四,按照配置的合并方案,对需要合并的各天线的天线信号进行累加求平均得到PUSCH天线合并后的信号。
第五,对合并后的PUSCH天线级的数据进行解调和译码。
本实施例所述方案,能够灵活的根据基站处理能力和资源情况,针对商用场景需求,灵活的配置天线合并方式,达到在不降低PUSCH解调性能的情况下灵活支持载波数和用户数。
实施例三
本发明实施例提供一种上行数据信道多天线合并装置,应用于基站侧,如图2所示,包括:
数据处理模块210,配置为对基站所有上行天线接收的探测参考信号SRS进行信道估计,并根据所述信道估计和天线校正权值,确定每根上行天线的合并补偿权值;
天线合并模块220,配置为根据每根上行天线的合并补偿权值,对各上行天线的信号进行相位对齐,并按照配置的合并方案,进行天线间的合并。
基于上述结构框架及实施原理,下面给出在上述结构下的几个实施方式,用以细化和优化本发明实施例所述装置的功能,以使本发明实施例方案的实施更方便,准确。涉及如下内容:
本发明实施例中,数据处理模块210,配置为对基站所有上行天线接收的探测参考信号SRS进行信道估计,得到每根上行天线每个资源块RB位置的信道估计,并根据每根上行天线每个RB位置的信道估计和每根上行天线的天线校正权值,确定每根上行天线每个RB位置的合并补偿权值。
本发明实施例中,数据处理模块210,根据每根上行天线的信道估计H,计算得到每根上行天线的天线补偿权值
Figure PCTCN2016073187-appb-000010
以及根据每根上行天线的天线补偿权值和上行天线的天线校正权值,计算得到每根上行天线的合并补偿权值
Figure PCTCN2016073187-appb-000011
其中,WAC为天线校正权值。
本发明实施例中,天线合并模块220,通过将每根上行天线的信号乘以该天 线的合并补偿权值,实现对各上行天线的信号进行相位对齐。
本发明实施例中,天线合并模块220,按照配置的合并方案,对需要合并的上行天线的信号进行累加求平均,实现天线间的合并。
采用本发明实施例提供的多天线合并装置,不仅可以保证合并后的PUSCH解调性能,同时还能够满足商用系统中对于多载波和用户数的要求等。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是其与其他实施例的不同之处。对于装置实施例而言,由于其基本相似与方法实施例,所以,描述的比较简单,相关之处参见方法实施例的部分说明即可。
虽然通过实施例描述了本申请,本领域的技术人员知道,本申请有许多变形和变化而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
工业实用性
本申请公开的上行数据信道多天线合并方法和装置,对基站所有上行天线接收的探测参考信号SRS进行信道估计,并根据所述信道估计和天线校正权值,确定每根上行天线的合并补偿权值;根据每根上行天线的合并补偿权值,对各上行天线的信号进行相位对齐,并按照配置的合并方案,进行天线间的合并。采用本申请所述的多天线合并技术,不仅可以保证合并后的PUSCH解调性能,同时还能够满足商用系统中对于多载波和用户数的要求等。

Claims (10)

  1. 一种上行数据信道多天线合并方法,应用于基站侧,包括:
    对基站所有上行天线接收的探测参考信号SRS进行信道估计,并根据所述信道估计和天线校正权值,确定每根上行天线的合并补偿权值;
    根据每根上行天线的合并补偿权值,对各上行天线的信号进行相位对齐,并按照配置的合并方案,进行天线间的合并。
  2. 如权利要求1所述的方法,其中,所述对基站所有上行天线接收的探测参考信号SRS进行信道估计,并根据所述信道估计和天线校正权值,确定每根上行天线的合并补偿权值,包括:
    对基站所有上行天线接收的探测参考信号SRS进行信道估计,得到每根上行天线每个资源块RB位置的信道估计,并根据每根上行天线每个RB位置的信道估计和每根上行天线的天线校正权值,确定每根上行天线每个RB位置的合并补偿权值。
  3. 如权利要求1或2所述的方法,其中,所述根据信道估计和天线校正权值,确定每根上行天线的合并补偿权值,包括:
    根据每根上行天线的信道估计H,计算得到每根上行天线的天线补偿权值
    Figure PCTCN2016073187-appb-100001
    其中,H*为信道估计H的共轭,||H||为信道估计H的模;
    根据每根上行天线的天线补偿权值和上行天线的天线校正权值,计算得到每根上行天线的合并补偿权值
    Figure PCTCN2016073187-appb-100002
    其中,WAC为天线校正权值。
  4. 如权利要求1所述的方法,其中,所述根据每根上行天线的合并补偿权值,对各上行天线的信号进行相位对齐,包括:将每根上行天线的信号乘以该天线的合并补偿权值,实现对各上行天线的信号进行相位对齐。
  5. 如权利要求1或4所述的方法,其中,所述按照配置的合并方案,进行天线间的合并,包括:
    按照配置的合并方案,对需要合并的上行天线的信号进行累加求平均,实 现天线间的合并。
  6. 一种上行数据信道多天线合并装置,应用于基站侧,包括:
    数据处理模块,配置为对基站所有上行天线接收的探测参考信号SRS进行信道估计,并根据所述信道估计和天线校正权值,确定每根上行天线的合并补偿权值;
    天线合并模块,配置为根据每根上行天线的合并补偿权值,对各上行天线的信号进行相位对齐,并按照配置的合并方案,进行天线间的合并。
  7. 如权利要求6所述的装置,其中,所述数据处理模块,配置为对基站所有上行天线接收的探测参考信号SRS进行信道估计,得到每根上行天线每个资源块RB位置的信道估计,并根据每根上行天线每个RB位置的信道估计和每根上行天线的天线校正权值,确定每根上行天线每个RB位置的合并补偿权值。
  8. 如权利要求6或7所述的装置,其中,所述数据处理模块,配置为根据每根上行天线的信道估计H,计算得到每根上行天线的天线补偿权值
    Figure PCTCN2016073187-appb-100003
    以及根据每根上行天线的天线补偿权值和上行天线的天线校正权值,计算得到每根上行天线的合并补偿权值
    Figure PCTCN2016073187-appb-100004
    其中,WAC为天线校正权值。
  9. 如权利要求6所述的装置,其中,所述天线合并模块,配置为将每根上行天线的信号乘以该天线的合并补偿权值,实现对各上行天线的信号进行相位对齐。
  10. 如权利要求6或9所述的装置,其中,所述天线合并模块,配置为按照配置的合并方案,对需要合并的上行天线的信号进行累加求平均,实现天线间的合并。
PCT/CN2016/073187 2015-10-10 2016-02-02 一种上行数据信道多天线合并方法及装置 WO2016184172A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510650339.0 2015-10-10
CN201510650339.0A CN106571860A (zh) 2015-10-10 2015-10-10 一种上行数据信道多天线合并方法及装置

Publications (1)

Publication Number Publication Date
WO2016184172A1 true WO2016184172A1 (zh) 2016-11-24

Family

ID=57319348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073187 WO2016184172A1 (zh) 2015-10-10 2016-02-02 一种上行数据信道多天线合并方法及装置

Country Status (2)

Country Link
CN (1) CN106571860A (zh)
WO (1) WO2016184172A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108234097A (zh) * 2016-12-21 2018-06-29 大唐移动通信设备有限公司 一种分解两天线终端测量信号的方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108880702B (zh) * 2017-05-10 2022-03-25 中兴通讯股份有限公司 一种fdd系统的天线校正方法、天线校正装置和基站
CN108989006A (zh) * 2017-06-05 2018-12-11 中兴通讯股份有限公司 空分多址的用户分组方法、装置、基站及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232315A (zh) * 2008-01-22 2008-07-30 中兴通讯股份有限公司 一种WiMAX系统中多天线测距码的检测方法
CN101540631A (zh) * 2009-04-27 2009-09-23 中兴通讯股份有限公司 测量参考信号的多天线发送方法及装置
WO2011135788A1 (ja) * 2010-04-30 2011-11-03 パナソニック株式会社 送信装置、受信装置、送信方法、及び通知方法
CN104639479A (zh) * 2015-02-03 2015-05-20 大唐移动通信设备有限公司 一种频偏校准方法及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082745B (zh) * 2010-04-19 2013-10-16 电信科学技术研究院 天线校准信息的上报、天线校准因子的确定方法及设备
CN103312641B (zh) * 2013-07-10 2016-04-13 东南大学 一种大规模天线阵列的信号合并方法
CN103368628B (zh) * 2013-07-18 2017-05-03 西安科技大学 一种td‑lte系统中基于码本的双流波束赋形方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232315A (zh) * 2008-01-22 2008-07-30 中兴通讯股份有限公司 一种WiMAX系统中多天线测距码的检测方法
CN101540631A (zh) * 2009-04-27 2009-09-23 中兴通讯股份有限公司 测量参考信号的多天线发送方法及装置
WO2011135788A1 (ja) * 2010-04-30 2011-11-03 パナソニック株式会社 送信装置、受信装置、送信方法、及び通知方法
CN104639479A (zh) * 2015-02-03 2015-05-20 大唐移动通信设备有限公司 一种频偏校准方法及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108234097A (zh) * 2016-12-21 2018-06-29 大唐移动通信设备有限公司 一种分解两天线终端测量信号的方法及装置
CN108234097B (zh) * 2016-12-21 2020-05-26 大唐移动通信设备有限公司 一种分解两天线终端测量信号的方法及装置

Also Published As

Publication number Publication date
CN106571860A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
US8248997B2 (en) Apparatus and method for positioning a wireless user equipment
US8155686B2 (en) Apparatus and method for selecting bandwidth for peer to peer communication in a broadband wireless communication system
CN105637775B (zh) 一种基站间互易性校正的方法及装置
US8380215B2 (en) Method and apparatus of scheduling in multi-cell cooperative wireless communication system
CN113315548A (zh) 用于联合接入点mimo传输的方法和系统
CN102413557B (zh) 上行参考信号传输方法、终端和多天线通信系统
KR20160016716A (ko) 분산 안테나 시스템을 지원하는 무선 통신 시스템에서 신호 송/수신 장치 및 방법
WO2011160581A1 (zh) 信道状态信息的处理方法及用户设备
CN102742312A (zh) 无线通信系统中的方法和装置
CN105009667A (zh) 一种干扰协调方法、装置及系统
CN109155924B (zh) 射频拉远单元rru间通道校正方法及装置
WO2018028608A1 (zh) 数据传输的方法和系统
CN110741568A (zh) 用于无线通信系统中的天线校准的方法和装置
WO2010023023A1 (en) Measurement in radio communication systems
WO2016184172A1 (zh) 一种上行数据信道多天线合并方法及装置
CN114389785A (zh) 参考信号的调整方法及装置、终端及网络侧设备
EP3706336A1 (en) Correction method and apparatus
CN102740314A (zh) 接收通道延时校正方法、装置及具有该装置的基站
WO2017016383A1 (zh) 一种控制信号发送、接收方法及设备
WO2014106390A1 (zh) 一种下行功率参数的配置方法及装置
US20180159602A1 (en) Method for channel precoding and base station and server using the same
US11057782B2 (en) Multi-cell coordination system and channel calibration method thereof
CN101754361A (zh) 一种多小区联合传输的方法、系统及装置
WO2016074442A1 (zh) 大规模多入多出系统中下行校正方法及装置
CN102545985B (zh) 协作多点传输中的干扰规避方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795659

Country of ref document: EP

Kind code of ref document: A1