WO2018028608A1 - 数据传输的方法和系统 - Google Patents

数据传输的方法和系统 Download PDF

Info

Publication number
WO2018028608A1
WO2018028608A1 PCT/CN2017/096651 CN2017096651W WO2018028608A1 WO 2018028608 A1 WO2018028608 A1 WO 2018028608A1 CN 2017096651 W CN2017096651 W CN 2017096651W WO 2018028608 A1 WO2018028608 A1 WO 2018028608A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
synchronization signal
signal
subcarrier spacing
subcarrier
Prior art date
Application number
PCT/CN2017/096651
Other languages
English (en)
French (fr)
Inventor
吴宁
栗忠峰
李新县
秦熠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17838738.7A priority Critical patent/EP3487241A4/en
Publication of WO2018028608A1 publication Critical patent/WO2018028608A1/zh
Priority to US16/265,654 priority patent/US10925017B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and system for data transmission.
  • the 5th-Generation (5G) mobile communication technology aims to provide a flexible system that can adapt to various business needs, providing a technical basis for future vertical business and industrial applications, from air interface to network, the entire network will More flexible and efficient.
  • new access technologies such as 5G technology
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTC massive machine type communications
  • broadcast a wireless local area network
  • Due to the service characteristics of each service type the reliability requirements and the delay requirements are different. Therefore, the requirements of system parameters such as subcarrier spacing, CP length, symbol length, and time unit length are different for each service.
  • the carrier frequency range that the 5G communication system can support extends from below 6 GHz to 70 GHz or higher.
  • the 5G communication system proposes a design that supports more subcarrier spacing and can support the same/different parameters at different frequency points.
  • the present invention provides a data transmission method and system. Based on data transmission of a multi-parameter system, data transmission is supported by one or more sub-carrier intervals using the same frequency point or different frequency points, and the service is improved for the service type requirement. The diversity and flexibility of data transmission.
  • the present invention provides a data transmission method, the method comprising:
  • the multi-parameter Based on data transmission of a multi-parameter system, the multi-parameter includes sub-carrier spacing, and the method includes: the multi-parameter system transmits data by using at least one sub-carrier interval through a physical channel or a physical signal.
  • the data transmission method and system provided by the present invention improves data transmission by using a physical channel or a physical signal at a subcarrier interval or a plurality of subcarrier intervals at the same frequency point or different frequency points based on data transmission of the parameter system.
  • the diversity and flexibility of data transmission while improving the coordination of parameters in a multi-parameter system.
  • the method before the multi-parameter system transmits data by using at least one sub-carrier interval through a physical channel or a physical signal, the method further includes: configuring a physical channel of the multi-parameter system Or physical signals, configuring data transmitted over physical channels or physical signals, and resources to which the configuration data is mapped.
  • configuring the physical signal of the multi-parameter system includes configuring the synchronization signal.
  • the configuring the synchronization signal comprises configuring the at least one synchronization signal, and using at least one of the first sequence transmitted by each synchronization signal One subcarrier spacing.
  • the at least one synchronization signal is configured according to a carrier frequency or a service type, and the first sequence used when each synchronization signal is transmitted Subcarrier spacing.
  • configuring the number and multi-parameter system of the at least one synchronization signal The number of supported at least one subcarrier spacing is equal, and each synchronization signal supports transmission of data at one subcarrier interval.
  • the configuring the synchronization signal further includes:
  • the number of at least one synchronization signal is configured to be less than the number of at least one subcarrier spacing supported by the multi-parameter system, and each synchronization signal supports transmitting data at at least one subcarrier interval.
  • configuring the data transmitted by the physical signal includes:
  • a first sequence of transmissions through the synchronization signal is determined.
  • the configuring the determining the first sequence transmitted by the synchronization signal includes:
  • the first sequence is determined based on one or more of an identification of a synchronization signal, a subcarrier spacing, or a carrier frequency.
  • the seven possible implementations of the first aspect, or the eighth possible implementation of the first aspect, in a ninth possible implementation of the first aspect include:
  • determining a location of the resource to which the first sequence is mapped includes:
  • the frequency domain location includes at least one by using a synchronization signal a resource block position and a subcarrier position to which the first sequence is mapped when the first sequence is transmitted by the subcarrier interval;
  • the time domain position includes a time unit to which the first sequence is mapped when the first sequence is transmitted by the synchronization signal at at least one subcarrier interval,
  • the time unit includes a first time unit, a second time unit, and a third time unit.
  • the tenth possible implementation manner of the first aspect or the manner of any one of the eleventh possible implementation manners of the first aspect, in a first aspect
  • a mapping relationship between a time unit to which a synchronization signal is mapped, a resource block position, and a subcarrier spacing position, and a synchronization signal is configured.
  • configuring the physical signal of the multi-parameter system includes configuring a reference signal of the multi-parameter system.
  • the second sequence is configured according to the subcarrier spacing, and the second sequence is at least one of the reference signals A sequence of carrier interval transmissions.
  • the method further includes:
  • the precoding granularity of the physical channel of the multi-parameter system is configured according to the subcarrier spacing or the carrier frequency.
  • the fai method includes: configuring a physical channel pre-configuration of the multi-parameter system according to a subcarrier spacing or a carrier frequency
  • the coding granularity including:
  • the precoding granularity of the physical channel is predefined by the parameter system or by signaling, wherein the signaling comprises a broadcast message, a medium access control layer control element or a physical layer control channel.
  • the present invention provides a system including a transmitting device and a receiving device, the transmitting device and the receiving device supporting data transmission in multiple parameters through a physical channel or a physical signal.
  • the multi-parameter includes a sub-carrier spacing, and the transmitting device and the receiving device support transmitting data at at least one of the sub-carrier intervals through a physical channel or a physical signal.
  • the data transmission method and system provided by the present invention improves data transmission by using a physical channel or a physical signal at a subcarrier interval or a plurality of subcarrier intervals at the same frequency point or different frequency points based on data transmission of the parameter system.
  • the diversity and flexibility of data transmission while improving the coordination of parameters in a multi-parameter system.
  • 1 is a schematic structural diagram of resources for transmitting data at the same subcarrier interval according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of resources for transmitting data at multiple subcarrier intervals at the same frequency point according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of resources for transmitting data at different frequency points and at different subcarrier intervals according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a corresponding relationship between a subcarrier spacing and a synchronization signal supported by a system and a subcarrier spacing used when transmitting data through a synchronization signal according to an embodiment of the present disclosure
  • FIG. 5( a ) is a schematic diagram showing a corresponding relationship between a subcarrier spacing and a synchronization signal supported by another system and a subcarrier spacing used when transmitting data through a synchronization signal according to an embodiment of the present disclosure
  • FIG. 5(b) is a schematic diagram showing a corresponding relationship between subcarrier spacing and synchronization signals supported by the system and subcarrier spacing used when transmitting data through the synchronization signal according to another embodiment of the present invention
  • FIG. 6(a) is a schematic structural diagram of a synchronization signal of frequency division multiplexing in a carrier frequency domain according to an embodiment of the present invention
  • FIG. 6(b) is a schematic structural diagram of a synchronization signal of time division multiplexing in a carrier frequency domain according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of resource locations of synchronization signal mapping according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of resource locations of another synchronization signal mapping according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a method for downlink synchronization according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a time unit according to an embodiment of the present invention.
  • FIG. 11(a) is a schematic structural diagram of a resource block of a subcarrier spacing according to an embodiment of the present invention.
  • FIG. 11(b) is a schematic structural diagram of a resource block of another seed carrier interval according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a resource block number according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of another resource block number according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of still another resource block number according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a resource block granularity according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of a system according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of another system according to an embodiment of the present invention.
  • the data transmission method and system provided by the present invention are applicable to a system supporting multi-parameter data transmission.
  • the multi-parameters may include a subcarrier spacing (SC), a length of a Cyclic Prefix (CP), and a length of a Cyclic Prefix (CP).
  • Time unit such as Time Interval (TTI), radio frame, subframe, symbol, etc.), resource block (RB) and other parameter information.
  • Various physical channels or physical signals for data transmission in the system such as synchronization signals, reference signals, data channels, and control channels, etc., can be applied.
  • the synchronization signal may also be referred to as a synchronization channel, or other names, such as a discovery signal or a discovery channel.
  • the reference signal may also be referred to as a pilot signal.
  • the method and system for data transmission provided by the embodiments of the present invention are mainly based on data transmission of a multi-parameter system, and further research is performed on supporting data transmission at different frequency points or different frequency points to support multiple different sub-carriers.
  • the physical channel or physical signal of the multi-system parameters is set so that the multi-parameters in the multi-parameter system can coordinate the data transmission.
  • the invention provides a multi-parameter data transmission based system, which can support transmitting data at multiple subcarrier intervals, for example: 7.5 kHz, 15 kHz, 30 kHz, 60 kHz, 120 kHz, and can be at the same frequency point and different frequency points.
  • One (such as 15 kHz or 30 kHz used) or multiple subcarrier spacing (eg, 15 kHz and 30 kHz on a 2 GHz carrier frequency, 60 kHz on a 30 GHz carrier frequency) is transmitted as shown in Figures 1, 2 and 3.
  • FIG. 1 is a schematic structural diagram of resources for transmitting data at the same subcarrier spacing according to an embodiment of the present invention;
  • FIG. 1 is a schematic structural diagram of resources for transmitting data at the same subcarrier spacing according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of resources for transmitting data at multiple subcarrier intervals at the same frequency point according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of resources for transmitting data at different frequency points and different subcarrier intervals according to an embodiment of the present invention.
  • the data here refers to the data sent by the physical channel or the physical signal.
  • the data sent on the physical channel includes the upper layer (such as RRC (Radio Resource Control) layer, MAC (Medium Access Control).
  • the information of the layer, etc., the data transmitted on the physical signal includes the sequence generated by the physical layer.
  • the data transmission method provided by the embodiment of the present invention improves the diversity and flexibility of service data transmission, and can expand the service type supported by multiple system parameters.
  • the method further includes: configuring a physical channel or a physical signal of the multi-parameter system, and determining the multi-parameter The data used by the system physical channel or physical signal to determine the resources to which the data of the multi-parameter system physical channel or signal is mapped.
  • the configuration may be understood as a definition or a setting, and the determination may be understood as an assumption or generation, use or transmission may be understood as transmission or reception.
  • configuring the physical channel of the multi-parameter system may include defining a resource structure (number of the RB) of the physical channel and determining a precoding granularity of the physical channel, where the resource structure includes the number of the resource block RB and the number of the subcarrier.
  • the precoding granularity of the physical channel is a unit for precoding the physical channel, or how many RBs of the physical channel can be precoded to transmit data once.
  • the physical signal defining the multi-parameter system may include configuring the synchronization signal.
  • the corresponding synchronization signals are configured for different subcarrier spacings supported by the multi-parameter system.
  • determining the data used by the multi-parameter system physical channel or physical signal may comprise determining a sequence of synchronization signal usage. In other words, the sequence used on the synchronization signal supported by the multi-parameter system is generated.
  • determining data used by the multi-parameter system physical channel or physical signal may include determining a sequence used by the reference signal.
  • the sequence used on the reference signal supported by the multi-parameter system is generated.
  • configuring the physical signal of the multi-parameter system may include configuring a subcarrier spacing or a relative subcarrier spacing used when the reference signal is sent.
  • determining resources to which the data of the multi-parameter system physical signal is mapped includes determining a number of transmissions of the reference signal over a period of time or a number of symbols mapped.
  • setting the multi-parameter system physical channel may include setting a sub-carrier spacing used when the physical layer random access channel is sent.
  • not only the synchronization signal but also other channels in the physical channel in the multi-parameter system, such as a channel such as a data channel and a control channel, and a reference signal in a physical signal, may be configured. This is not limited in the embodiment of the present invention.
  • configuring the synchronization signal may include configuring at least one synchronization signal, and employing at least one subcarrier spacing when transmitting the first sequence by each synchronization signal.
  • one or more synchronization signals are configured for the multi-parameter system, and each synchronization signal can support transmitting sequences at one or more sub-carrier intervals, so that the transmitting device (such as the base station) and the receiving device in the multi-parameter system (such as Terminal) complete synchronization.
  • the number of subcarrier spacings used when transmitting the synchronization sequence on one synchronization signal is less than or equal to the number of subcarrier spacings supported by the multi-parameter system.
  • the number of the configuration synchronization signals and the number of subcarrier spacings used when transmitting or receiving the first sequence by the synchronization signal are both less than or equal to the number of multiple subcarrier spacings supported by the multi-parameter system.
  • the number of subcarrier spacings used by the transmitting device in the multi-parameter system to transmit the first sequence by the synchronization signal is less than or equal to the number of multi-subcarrier spacings supported by the multi-parameter system, and the receiving in the multi-parameter system is configured.
  • the number of subcarrier spacings used by the device to receive the first sequence through the synchronization signal is less than or equal to the number of multiple subcarrier spacings supported by the multi-parameter system.
  • the number of configured synchronization signals may be equal to the number of multiple subcarriers supported by the multi-parameter system.
  • the number of multiple subcarrier spacings that the multi-parameter system can support is Four: 7.5KHz, 15KHz, 30KHz, 60KHz, and the number of synchronization signals is four.
  • Synchronization signal 1 transmission synchronization sequence at 3.75KHz subcarrier interval
  • synchronization signal 2 transmission of synchronization sequence at 15KHz subcarrier interval
  • synchronization channel 3 transmission of synchronization sequence at 60KHz subcarrier interval
  • synchronization channel 4 with 120KHz subcarrier Interval Send a synchronization sequence.
  • a sync signal transmits the sequence at a subcarrier interval.
  • the number of synchronization signals may be configured to be less than the number of multiple subcarrier spacings supported by the multi-parameter system, and each synchronization signal uses at least one subcarrier spacing to transmit or receive sequences.
  • the number of subcarrier spacings that the multi-parameter system can support is four: 7.5KHz, 15KHz, 60KHz, and 120kHz, respectively, and two synchronization signals can be configured: For the synchronization signal one and the synchronization signal two.
  • the synchronization signal or the synchronization signal 2 can use a subcarrier interval transmission sequence, as shown in FIG.
  • the synchronization signal can be transmitted using a subcarrier spacing of 15 kHz, and the synchronization signal can be used at 60 kHz.
  • the subcarrier spacing is sent in sequence.
  • the number of channels configured in each channel (such as a pilot channel, a data channel, a control channel, etc.) on a physical channel, and the corresponding signal transmitted through the channel thereof are used.
  • the number of subcarrier spacings is described.
  • the number of each channel in the physical channel configuring the multi-parameter system and the number of sub-carrier intervals used for transmitting the corresponding signal through the corresponding channel may also be configured in this manner, or may be performed by other configuration number relationships.
  • the configuration is not limited in the embodiment of the present invention.
  • At least one synchronization signal is configured according to a carrier frequency or a service type, and a subcarrier spacing used when each synchronization signal transmits the first sequence.
  • a synchronization signal and a subcarrier spacing used when transmitting a sequence by the synchronization signal may be set according to a carrier frequency.
  • configuring a carrier frequency below 6 GHz uses a synchronization signal transmission sequence that uses a 15 kHz subcarrier spacing transmission sequence.
  • the carrier frequency above 6 GHz transmits a sequence data transmission using another synchronization signal, which transmits the sequence using a subcarrier spacing of 60 kHz.
  • the synchronization signal and the subcarrier spacing used when transmitting the sequence by the synchronization signal may also be configured according to the type of service. For example, when configuring a multi-parameter system to support data transmission of an eMBB service, a synchronization signal is used, and transmission is performed at a subcarrier interval of 15 kHz. When configuring a multi-parameter system to support data transmission of the mMTC service, a synchronization signal is used to transmit at a subcarrier spacing of 3.75 kHz. When configuring the multi-parameter system to support the data transmission of the URLLC service, a synchronization signal is used, and the transmission is performed at a subcarrier interval of 60 kHz.
  • the multi-parameter system supports data transmission of eMBB and mMTC services when supporting a synchronization signal, which is transmitted at subcarrier intervals of 3.75 kHz and 15 kHz, or supports two synchronization signals, and one synchronization signal is transmitted at subcarrier intervals of 3.75 kHz. Another synchronization signal is transmitted at subcarrier intervals of 15 kHz.
  • the rule that the receiving device receives the first sequence in the multi-parameter system may also be configured, for example, by receiving capability of the receiving device or becoming a mode of the receiving device and a carrier frequency used for transmitting data. Or the receiving device of the signaling configuration receives the rule receiving data of the data.
  • the sending device sends the first sequence by using the synchronization signal at multiple subcarrier intervals, and the first sequence received by the receiving device.
  • the receiving device may receive the first sequence according to the receiver mode/receiver capability.
  • the receiving device type that supports the eMBB service or the receiving device capability is the receiving mode one or the receiving capability one, and the synchronization signal corresponding to the eMBB service is defined to transmit data at a 15 kHz subcarrier interval, and the receiving device receives the first carrier interval at 15 kHz.
  • a sequence For another example, the receiving device type or the receiving device capability supporting the mMTC service is defined as the receiving mode 2 or the receiving capability 2.
  • the synchronization signal corresponding to the mMTC service is defined to transmit the first sequence at 3.75 kHz subcarrier spacing, and the receiving device is 3.75 kHz.
  • the subcarrier interval receives the first sequence.
  • the receiving device type or the receiving device capability that supports the URLLC service is defined as receiving mode three or receiving capability three, and is defined.
  • the synchronization signal corresponding to the URLLC service transmits the first sequence at 60 kHz subcarrier intervals, and the receiving device receives the first sequence at 60 kHz subcarrier intervals.
  • the receiving device may receive the first sequence according to the carrier frequency.
  • the synchronization signal on the carrier frequency below 6 GHz is defined to transmit the first sequence at 15 kHz subcarrier intervals, and when the receiving device operates below 6 GHz, the first sequence is received at 15 kHz subcarrier intervals.
  • the synchronization signal on the carrier frequency above 6 GHz is defined to transmit the first sequence at 60 kHz subcarrier intervals
  • the receiving device operates at 6 GHz or higher and receives the first sequence at 30 kHz subcarrier intervals.
  • the receiving device may receive the number of one type of synchronization signal according to the signaling configuration and the subcarrier spacing used to receive the synchronization signal. For example, receiving signaling sent by the base station, the signaling notifying the receiving device (such as the terminal) to receive the first sequence at 15 kHz subcarrier intervals. After receiving the signaling, the terminal uses a 15 kHz subcarrier spacing for the reception of the first sequence.
  • the signaling may be broadcast signaling, Media Access Control (MAC) layer control signaling or medium access control layer control signaling, or physical layer control signaling.
  • MAC Media Access Control
  • a first sequence of synchronization signal usage is determined.
  • the first sequence may be determined according to one or more of an identifier of the synchronization signal, a subcarrier spacing, or a carrier frequency.
  • the first sequence of synchronization signals can be determined based on the synchronization signal ID.
  • a transmitting device in a multi-parameter system transmits a sequence through two synchronization signals in one cell, and the two synchronization signals may be referred to as a synchronization signal one and a synchronization signal two.
  • the sequence sent by the synchronization signal is the sequence value one
  • the sequence sent by the synchronization signal two is the sequence value 2.
  • the sequence value one and the sequence value two may be the same or different, and the present invention does not require specific requirements.
  • the first sequence may also be determined based on the subcarrier spacing.
  • two subcarrier spacings are used by one synchronization signal transmission sequence, which may be referred to as subcarrier spacing one and subcarrier spacing two.
  • Configuring the synchronization signal to transmit a sequence value of the first sequence at a subcarrier interval of one sequence value, and configuring the synchronization signal to transmit a sequence value of the first sequence at a subcarrier interval of two to a sequence value of two, and the sequence value one and the sequence value may be The same or different, the present invention does not make any specific requirements.
  • the synchronization sequence can also be determined based on the carrier frequency.
  • the synchronization signal can be transmitted at multiple carrier frequencies, which can be referred to as carrier frequency one and carrier frequency two. And configuring, on the carrier frequency one, the sequence value of the first sequence sent by the synchronization signal to be a sequence value of one, and configuring the sequence value of the first sequence sent by the synchronization signal on the carrier frequency two to be the sequence value two, the sequence value one and the sequence
  • the value two may be the same or different, and the present invention does not require specific requirements.
  • a rule for determining the first sequence according to any two or all of the identifier of the synchronization signal, the subcarrier spacing, or the carrier frequency may be configured.
  • determining a frequency domain location and a time domain location of the resource to which the first sequence is mapped is mapped.
  • the time-frequency resource includes a time domain location and a frequency domain location of the resource
  • the time domain location may refer to a location of a time unit such as a symbol position, a subframe position, and a radio frame position.
  • the frequency domain location may refer to a location of a resource block group, a location of a resource block (eg, RB), a location of a subcarrier, and the like of a frequency domain unit.
  • the synchronization signal may include a primary synchronization signal, or a primary synchronization signal and a secondary synchronization signal.
  • a primary synchronization signal When only the primary synchronization signal is present, it can be called a synchronization signal, which is also within the scope of the present invention.
  • the frequency domain resource to which the first sequence is mapped may be determined according to one or more of a synchronization signal identifier, a subcarrier spacing, or a carrier frequency.
  • a resource map of its corresponding first sequence is configured for each synchronization signal.
  • a resource map of its respective first sequence is configured for each subcarrier spacing of each synchronization signal. For example, as shown in FIG.
  • the resources of the synchronization signals of different subcarrier intervals may be frequency division multiplexing in a carrier frequency domain (as shown in FIG. 6(a)), or time division multiplexing (as shown in FIG. 6(b)), or Time division multiplexing plus frequency division multiplexing.
  • the resource mapping of the first sequence transmitted by the synchronization signal is configured according to the carrier frequency.
  • a sequence of transmissions at multiple frequency points may be configured by the same synchronization signal, a resource mapping position 1 of the first sequence is configured for a synchronization channel below 6 GHz, and a first sequence of resources is set for a synchronization channel above 6 GHz. Map to two.
  • each resource block is a resource mapping position of the first sequence.
  • the transmitting end may determine the primary synchronization signal and the secondary synchronization signal according to the location of the resource to which the sequence of the synchronization signal is mapped.
  • the relative position of the received signal may be determined by the receiving end according to the relative positions of the received primary synchronization signal and the secondary synchronization signal.
  • the transmitting end can configure the primary synchronization signal PSS in the synchronization signal to be mapped at one location, and the secondary synchronization signal can be mapped in the remaining multiple locations.
  • mapping position of the secondary synchronization signal is selected to perform mapping, and the mapped primary synchronization signal and the secondary synchronization signal are transmitted to the receiving device in the multi-parameter system.
  • the synchronization signals are transmitted at different time positions or frequency domain positions, the positions of the selected secondary synchronization signals are different.
  • the sequence used by the secondary synchronization signal is mapped to the position 0, and when the synchronization signal is transmitted in the subframe 1, the sequence used by the secondary synchronization signal is mapped to the position 1, in the subframe 2
  • the sequence used by the secondary synchronization signal is mapped to position 2.
  • the sequence used by the secondary synchronization signal is mapped to position 3
  • the secondary synchronization signal is used. The sequence is mapped to position 4.
  • the receiving end After the receiving device receives the primary synchronization signal and the secondary synchronization signal, when the primary synchronization signal and the secondary synchronization signal are in adjacent frequency domain units on the same time domain unit, when the secondary synchronization receiving frequency is higher than the primary synchronization, the receiving end considers the current For subframe 0. When the primary synchronization signal and the secondary synchronization signal are received in the same frequency domain unit on the same time domain unit, the secondary synchronization receiving frequency is lower than the primary synchronization, and the receiving end considers that the current subframe 1 is.
  • the receiving frequency of the secondary synchronization is higher than the primary synchronization, and the receiving end considers that the current subframe 2 is present.
  • the receiving end considers that the current subframe 3 is present.
  • the receiving end When receiving the primary synchronization signal and the secondary synchronization signal in a frequency domain unit adjacent to each other in the adjacent time domain unit, when the reception frequency of the secondary synchronization is lower than the primary synchronization, the receiving end considers that the current subframe 4 is present.
  • an RB position and a subcarrier position of a frequency domain resource to which the first sequence is mapped are configured.
  • the RB location may be a location indicated by the RB number of the transmission bandwidth at a certain baseline subcarrier spacing (for example, 15 kHz), or may be indicated by the RB number of the transmission bandwidth at the subcarrier spacing corresponding to the synchronization signal. Bit Set.
  • the subcarrier position may be a position indicating a subcarrier number after the transmission bandwidth is indicated by a certain subcarrier spacing, or may be indicated by subcarrier numbers after the subcarrier spacing corresponding to the synchronization signal. position.
  • the LTE configuration synchronization signal is located on 62 subcarriers of 6 RBs of the center bandwidth after RB numbering of the transmission bandwidth at 15 kHz.
  • the above is the process of configuring the synchronization channel in the physical channel and the corresponding relationship.
  • the following line synchronization is taken as an example to describe the manner of sending and receiving the device in the multi-parameter system configured in the embodiment of the present invention.
  • the multi-parameter system may include a transmitting device and a receiving device.
  • the sending device may be a base station
  • the receiving device may be a terminal.
  • the transmitting device and the receiving device are not limited.
  • a transmitting device which may be a base station (e.g., an access point), may refer to a device in the access network that communicates with the wireless terminal over one or more sectors over the air interface.
  • the base station device can also coordinate attribute management of the air interface.
  • the base station device may be an evolved base station (English: evolutional Node B; abbreviation: eNB or e-NodeB) in an LTE, or an access point, which is not limited by the present invention.
  • eNB evolutional Node B
  • e-NodeB evolved base station
  • the base station in the embodiment of the present invention may be not only a base station device but also a relay device or other network element device having a base station function.
  • the receiving device may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (English: Radio Access Network; RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and has
  • RAN Radio Access Network
  • the computer of the mobile terminal for example, may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a wireless terminal may also be called a system, a subscriber unit (English: Subscriber Unit; abbreviation: SU), a subscriber station (English: Subscriber Station; abbreviation: SS), a mobile station (English: Mobile Station; abbreviation: MB), a mobile station ( Mobile), remote station (English: Remote Station; abbreviation: RS), access point (English: Access Point; abbreviation: AP), remote terminal (English: Remote Terminal; abbreviation: RT), access terminal (English: Access Terminal; abbreviation: AT), user terminal (English: User Terminal; abbreviation: UT), user agent (English: User Agent; abbreviation: UA), terminal device (English: User Device; abbreviation: UD), or user equipment ( English: User Equipment; abbreviation: UE).
  • FIG. 9 is a flowchart of a method for downlink synchronization according to an embodiment of the present invention. As shown in FIG. 9, the execution body of the method 900 is a transmitting device and a receiving device included in the multi-parameter system.
  • the sending device determines, according to the multiple subcarrier spacing and the identifier of the synchronization channel, a time-frequency resource to which the first sequence is mapped, where the time-frequency resource includes a time domain location and a frequency domain location of the first sequence.
  • the identifier of the transmitting device synchronization channel and the subcarrier spacing that can be used determine at least one time-frequency resource that can be mapped, and the time-frequency resource of at least one of the available synchronization signals is selected.
  • the transmitting device determines the time-frequency resource to which the synchronization signal is mapped according to the identifier of the synchronization channel and the sub-carrier spacing, and selects the time-frequency position and frequency of the primary synchronization signal and the secondary synchronization signal according to the relationship between the relative position of the configured primary and secondary synchronization signals and the resource mapping relationship. Domain location.
  • the sending device determines the first sequence according to the subcarrier spacing, the identifier of the synchronization signal, and the time-frequency resource.
  • the transmitting device determines, according to the selected time domain location and the frequency domain location, the subcarrier spacing, the identifier of the synchronization signal, and the time-frequency resource, the first sequence sent by the synchronization signal, and maps the first sequence to the first sequence determined in S910.
  • the time-frequency resource is configured to enable the transmitting device to transmit the first sequence to the receiving device by using the selected synchronization signal and the selected sub-carrier spacing.
  • the time-frequency resource to which the first sequence is mapped may be determined according to one or more information of the sub-carrier spacing or the identifier of the synchronization signal, which is used in the embodiment of the present invention. No restrictions are imposed.
  • the first sequence may be determined according to one or more kinds of information of the subcarrier spacing or the identifier of the synchronization signal, which is not limited in the embodiment of the present invention.
  • the first sequence may be determined according to the identifier of the cell in the embodiment of the present invention, and the first sequence may be determined according to other information, which is not limited in the embodiment of the present invention. .
  • the sending device sends the first sequence to the receiving device.
  • the transmitting device maps the synchronization sequence to the time-frequency resource at the selected sub-carrier interval by the determined synchronization signal to send the first sequence to the receiving device, so that the receiving device performs downlink synchronization according to the synchronization signal.
  • the receiving device determines, according to the first sequence, the time-frequency resource that the sending device sends the first sequence and the used sub-carrier spacing.
  • the receiving device performs blind detection on the first sequence sent by the sending device to obtain the first sequence.
  • the receiving device obtains the first sequence, determining, according to the sequence value of the first sequence, the time-frequency resource and the sub-carrier spacing used by the sending device to send the first sequence, and completing the downlink synchronization.
  • the receiving device may determine the cell identifier according to the first sequence. If the relative positions of the primary synchronization signal and the secondary synchronization signal are different when the synchronization signal is transmitted on different time units or frequency domain resources, the receiving device may determine the current reception synchronization signal according to the relative positions of the received primary synchronization signal and the secondary synchronization signal. Time unit or frequency domain resource number. The corresponding information is determined according to the configuration of the first sequence, and the configuration of the first sequence is not limited in the embodiment of the present invention.
  • configuring the physical signal of the multi-parameter system may include configuring a relative subcarrier spacing used when the reference signal is sent.
  • the reference signal includes a Sounding Reference Signal (SRS), a CSI Reference Signals (CSI-RS), a Beaming Reference Signals (BRS), and a Beam Improvement Reference Signal ( Beamforming Refinement Reference Signals (BRRS), Demodulation Reference Signal (DM-RS), Discovery Reference Signal (DRS), and other reference signals for measurement, which are not specifically limited by the present invention.
  • SRS Sounding Reference Signal
  • CSI-RS CSI Reference Signals
  • BRS Beaming Reference Signals
  • BRS Beaming Reference Signals
  • BRRS Beamforming Refinement Reference Signals
  • DM-RS Demodulation Reference Signal
  • DRS Discovery Reference Signal
  • the subcarrier spacing or relative subcarrier spacing used by the reference signal is configured by pre-definition or signaling.
  • the base station sends signaling to the user equipment, where the signaling may include control information carried by the physical layer control signal and/or high layer signaling carried by the physical layer data channel, and is used to indicate the subcarrier spacing or relative subcarrier used by the reference signal.
  • the relative subcarrier spacing may include a relationship between a subcarrier spacing used when the reference signal is transmitted, and a subcarrier spacing used by the at least one physical channel or the physical signal.
  • the reference subcarrier spacing used by the reference signal is predefined or signaled, and the relative subcarrier spacing is used when transmitting the reference signal.
  • the baseline subcarrier spacing is configured by the base station by predefined or by signaling, for example, the baseline subcarrier spacing used by the configuration reference signal is 60 kHz.
  • the relative subcarrier spacing of the signaling configuration reference signal may include a correspondence between a predefined or signaling configuration signaling information bit and a subcarrier spacing of the reference signal or a relative subcarrier spacing of the reference signal.
  • the base station device Determining, by the base station device, the signaling bit according to a correspondence between the signaling information bit and a subcarrier spacing of the reference signal or a relative subcarrier spacing of the reference signal, and a subcarrier spacing or a relative subcarrier spacing used by the configured reference signal, Transmitting the signaling information bit to the user equipment by using a signaling, and after receiving the signaling, the user equipment determines, according to the correspondence between the signaling information bit and the reference signal subcarrier spacing or the relative subcarrier spacing, the reference information is used.
  • Subcarrier spacing For example, the correspondence between the configuration of the signaling information bits and the reference signal subcarrier spacing or the relative subcarrier spacing is as shown in Table 1. Table 1 is a comparison table of signaling information and the indicated reference signal subcarrier spacing.
  • the relative subcarrier spacing of the configuration reference signal is the subcarrier spacing of the reference signal relative to the subcarrier spacing of the data channel.
  • the subcarrier spacing used in the data channel transmission is 60 kHz.
  • the signaling information bits are set. Is 10, the signaling information is sent to the user equipment.
  • the subcarrier spacing used by the reference signal is 240 kHz, or the subcarrier spacing used by the reference signal is determined to be 4 times the subcarrier spacing used by the data channel, that is, the reference signal is used.
  • the subcarrier spacing is 240KHz.
  • the reference signal is transmitted using 4 time units.
  • the four time units may be continuous or discontinuous in the time domain, and the invention is not limited.
  • the time unit may refer to a symbol as shown in FIG. 10, where n represents the number of data symbols.
  • determining the resource to which the data of the physical signal of the multi-parameter system is mapped includes determining a number of transmissions of the reference signal over a period of time or a number of symbols mapped. .
  • the number of times the reference signal is transmitted or the number of symbols mapped to the reference signal is configured by a predefined or signaling.
  • the predefined or signaling configuration reference signal is transmitted a certain number of times or the number of symbols mapped to 4 in a certain period of time.
  • the base station device determines the signaling bit according to the correspondence between the signaling information bit and the reference signal in a certain period of time or the number of symbols to be mapped, and sends the signaling information bit to the user equipment by using signaling.
  • the user equipment determines, according to the correspondence between the signaling information bits and the reference signal in a certain period of time or the number of symbols to be mapped, the number of times the reference signal is sent or the symbol to be mapped in a certain period of time. Number.
  • the correspondence between the number of transmissions of the signaling information bits and the reference signal in a certain period of time or the number of symbols to be mapped is as shown in Table 2, and Table 2 is a reference table of signaling information and the indicated reference signal subcarrier spacing. .
  • the subcarrier spacing is 60 kHz.
  • the signaling information bit is set to 10. And transmitting the signaling information to the user equipment.
  • the user equipment receives the signaling information bit of 10
  • it is determined that the reference signal is transmitted 4 times or the 4 reference signal symbols are transmitted within a symbol length of one subcarrier interval of 60 KHz, so the subcarrier spacing used by the reference signal is 240 kHz.
  • configuring the multi-parameter system physical signal includes configuring a resource mapping method of the reference signal.
  • a resource mapping method of a reference signal is configured by pre-definition or signaling.
  • the resource mapping method of the predefined or signaling configuration reference signal maps one RE per 2 subcarriers.
  • the base station device determines the signaling bit according to the correspondence between the signaling information bit and the resource mapping method of the reference signal, and sends the signaling information bit to the user equipment by using a signaling, after the user equipment receives the signaling And determining a resource mapping method of the reference signal according to a correspondence relationship between the signaling information bit and a resource mapping method of the reference signal.
  • the correspondence between the resource mapping methods for configuring the signaling information bits and the reference signals is as shown in Table 3.
  • Table 3 is a comparison table between the signaling information and the indicated reference signal mapping method.
  • Reference signal mapping method Map one RE per 8 subcarriers 01 Map one RE per 4 subcarriers 10 Map one RE per 2 subcarriers 11 Map one RE per 1 subcarrier
  • the signaling information bit is set to 10, and the signaling information is sent to the user equipment.
  • the user equipment receives the signaling information bit of 10, it is determined that the reference signal maps one RE every 2 subcarriers.
  • the subcarrier spacing there is a corresponding relationship between the subcarrier spacing, the relative subcarrier spacing, the number of transmissions, the number of occupied symbols, and the mapping method of the configured reference signal, so the user determines other items according to one of the signaling indications.
  • it can be determined according to the correspondence relationship of Table 4.
  • Table 4 is a comparison table of subcarrier spacing/relative subcarrier spacing/number of transmissions/number of occupied symbols/mapping method.
  • determining data used by the physical signal of the multi-parameter system further includes determining a sequence used by the reference signal.
  • the reference signal may also be referred to as a pilot signal, and the reference signal may transmit data using at least one subcarrier interval.
  • the second sequence may be determined according to the subcarrier spacing.
  • the second sequence can also be a reference sequence.
  • the second sequence is a sequence transmitted by the reference signal at at least one of the subcarrier intervals.
  • the same carrier frequency may support transmitting the second sequence with a plurality of different subcarrier intervals.
  • Different carrier frequencies may support transmitting the second sequence with the same or different subcarrier spacing.
  • different subcarrier spacings may be configured on the same resource. Therefore, when estimating data channels/signals from different subcarrier spacings, different reference signals need to be designed for each subcarrier spacing for accurate Estimate data for different subcarrier spacings.
  • the sequence generation formula of the design reference signal of the present invention is a pseudo random sequence, wherein the pseudo random sequence Initialization generation formula contains the identifier of the subcarrier spacing
  • n' s represents the number of the subframe; Indicates the identity of the cell; N CP represents the type of Cyclic Prefix (CP); SC1 represents one subcarrier spacing in the subcarrier spacing, and SC0 represents other subcarrier spacing except SC1.
  • the method for determining the second sequence according to the subcarrier spacing may also be applied to the sequence used for physical channel scrambling.
  • setting the multi-parameter system physical channel may include setting a sub-carrier spacing used when the physical layer random access channel is sent.
  • the random access channel is used for uplink access, and the base station can obtain the user's access information and the round-trip transmission delay by measuring the random access channel. Similar to the configuration reference signal, in a beamforming-based system, shorter preamble symbols reduce the overhead of uplink access, so the present invention provides a faster beam by configuring a preamble signal using a larger subcarrier spacing. The method of switching reduces the overhead of uplink access.
  • the subcarrier spacing used when the physical layer random access channel is set to transmit includes a subcarrier spacing used by pre-defining or signaling the preamble signal.
  • the signaling includes broadcast information or high layer signaling, which is not limited in the present invention.
  • the signaling includes information bits indicating the subcarrier spacing used by the preamble.
  • setting a subcarrier spacing used when the physical layer random access channel is transmitted includes configuring a relative subcarrier of the preamble signal by signaling by configuring a baseline subcarrier spacing used by a preamble or signaling preamble signal. interval.
  • the relative subcarrier spacing may include a subcarrier spacing used when the random access channel is transmitted relative to the other at least The relationship of the subcarrier spacing used by a physical channel or physical signal.
  • the baseline subcarrier spacing is configured by the base station by predefined or signaling, for example, the baseline subcarrier spacing used to configure the preamble signal is 60 kHz, or the baseline subcarrier spacing used by the configuration preamble signal is, for example, the subcarrier spacing used by the data channel, such as 60kHz.
  • the base station device determines the signaling bit according to a correspondence between the signaling information bit and a relative subcarrier spacing of the preamble signal, and a subcarrier spacing or a relative subcarrier spacing used by the configured preamble signal, where the signaling information bit is used.
  • the user equipment determines the subcarrier spacing used by the preamble signal according to the correspondence between the signaling information bit and the preamble subcarrier spacing or the relative subcarrier spacing. For example, the correspondence between the signaling information bits and the preamble subcarrier spacing or the relative subcarrier spacing is as shown in Table 5.
  • Table 5 is a comparison table between the signaling information and the indicated preamble subcarrier spacing, as shown in Table 5.
  • Table 5 is a comparison table of signaling information and the indicated preamble subcarrier spacing.
  • Preamble signal subcarrier spacing Preamble signal relative to subcarrier spacing 00 60KHz X1 01 120KHz X2 10 240KHz X4 11 480KHz X8
  • the subcarrier spacing used in the data channel transmission is 60 kHz.
  • the base station side configures to transmit the preamble signal at 240 kHz, or when the subcarrier spacing used by the preamble signal is 4 times the subcarrier spacing used by the data channel, the signaling is set.
  • the information bit is 10, and the signaling information is sent to the user equipment.
  • the user equipment receives the signaling information bit of 10, it determines that the subcarrier spacing used by the preamble signal is 240 kHz, or determines that the subcarrier spacing used by the preamble signal is 4 times the subcarrier spacing used by the data channel, that is, the preamble signal is used.
  • the subcarrier spacing is 240KHz.
  • the subcarrier spacing used when the physical layer random access channel is configured to be sent includes the base station end performing downlink transmission, and configuring the downlink transmission received by the user equipment by using predefined and/or signaling.
  • the user equipment determines the subcarrier spacing of the preamble signal by the detected result of the received downlink transmission and the relationship between the detection result of the downlink transmission received by the user equipment and the subcarrier spacing of the preamble signal.
  • the downlink transmission performed by the base station includes a base station transmitting a reference signal.
  • the downlink transmission detection result includes the highest RSRP value measured.
  • the base station performs downlink transmission, transmits signals and/or channels, and the user measures the received reference signal to obtain the highest RSRP value.
  • the user determines the subcarrier spacing used by the preamble signal according to a correspondence between the highest RSRP measurement value configured by the base station and the preamble signal subcarrier spacing predefined or signaled. For example, the correspondence between the configuration of the highest RSRP measurement value and the preamble signal subcarrier spacing is as shown in Table 6.
  • the subcarrier spacing used when the physical layer random access channel is configured to be sent includes the base station end performing downlink transmission, and configuring the downlink transmission received by the user equipment by using predefined and/or signaling.
  • the user equipment determines the subcarrier spacing of the preamble signal by the detected result of the received downlink transmission and the relationship between the detection result of the downlink transmission received by the user equipment and the subcarrier spacing of the preamble signal.
  • the downlink transmission performed by the base station includes a signal and/or a channel transmitted by the base station.
  • the downlink transmission detection result includes the detected optimal beam sequence number.
  • the base station performs downlink transmission, transmits signals and/or channels, and the user detects the received signals and/or channels to obtain an optimal beam sequence number.
  • the user determines the subcarrier spacing used by the preamble according to the correspondence between the optimal beam sequence number configured by the base station and the preamble signal subcarrier spacing, which is predefined or signaled.
  • the correspondence between the optimal beam sequence number and the preamble signal subcarrier spacing is as shown in Table 7.
  • Optimal beam number Preamble signal subcarrier spacing 0 to 3 60KHz 4 ⁇ 7 120KHz 8 ⁇ 11 240KHz 12-15 480KHz
  • the maximum number of RBs supported by each subcarrier spacing and the minimum number of RBs are configured, thereby defining a maximum bandwidth corresponding to each subcarrier spacing.
  • each RB is 12 subcarrier spacings.
  • the minimum supported RB number is 15 for a 15 kHz subcarrier interval, and the maximum supported RB number is 110.
  • the minimum supported RB number of the 30 kHz subcarrier interval is 6, and the maximum supported RB number is 110.
  • the minimum supported RB number is 30 for the 30 kHz subcarrier interval, and the maximum supported RB number is 220.
  • the number of resource blocks when different subcarrier intervals coexist is configured or determined.
  • the number of the resource block includes the RB number and/or the number of the subband where the RB is located.
  • resource blocks (RBs) corresponding to each subcarrier spacing are sequentially numbered starting from M on the resource part where the subcarrier spacing is located.
  • M can be an integer, such as 0.
  • the resource portion refers to a portion of a contiguous resource that transmits data using the same subcarrier spacing.
  • the sequential accumulation number means that the number of the first resource block is M on one resource part, and the number of the remaining resource block is the number of the previous resource block plus N (the corresponding subcarrier spacing corresponding to the current resource block)
  • the maximum numbered value of the resource block is +1) modulo, where N is an integer, such as 1.
  • N is an integer, such as 1.
  • the maximum RB number range of the 40 MHz, 15 kHz subcarrier spacing and the 30 kHz subcarrier spacing is 109.
  • the first part of the resource uses 15 kHz subcarrier spacing when transmitting data, and the second part of resources transmits data. Make Interval with 30 kHz subcarriers.
  • the RBs corresponding to the 15 kHz subcarrier spacing on the first part of the resource are sequentially numbered starting from 0, and the RBs corresponding to the 30 kHz subcarrier spacing on the second partial resource are sequentially numbered starting from 0.
  • the resource block (RB) corresponding to each subcarrier interval is equal to the number value of the previous resource block, or the current resource block and the previous resource are added.
  • Which subcarrier spacing is used by the block, and the number of each resource block is sequentially accumulated with respect to the number of the previous resource block.
  • the sequential accumulation means that the number of the first resource block is M over the entire bandwidth, and the remaining resource blocks are The number is the modulo of the number of the previous resource block plus N, and the maximum number of the resource blocks corresponding to the subcarrier spacing corresponding to the current resource block is +1, where N is an integer, such as 1. As shown in FIG.
  • the maximum RB number range of the 40 MHz, 15 kHz subcarrier spacing and the 30 kHz subcarrier spacing is 109.
  • the first part of the resource uses 15 kHz subcarrier spacing when transmitting data, and the second part of resources transmits data.
  • a 30 kHz subcarrier spacing is used.
  • the RBs corresponding to the 15 kHz subcarrier spacing on the first part of the resource are sequentially numbered from 0.
  • the number of the first RB corresponding to the 30 kHz subcarrier spacing on the second part of the resource is the number of the last RB corresponding to the 15 kHz subcarrier interval plus After the first one, the modulo of 110 is obtained by 2, and the numbers of the remaining RBs corresponding to the 30 kHz subcarrier spacing on the second partial resource are sequentially accumulated with respect to the number of the previous RB.
  • the number of the resource block may be configured.
  • the resource blocks corresponding to each subcarrier interval are numbered independently.
  • the resource blocks corresponding to each subcarrier interval are numbered independently, that is, the number and/or subband number of the RB corresponding to each subcarrier is not affected by the number of the remaining subcarrier spacing, and the number and total of the resource blocks at the same location Only the number of the subcarriers in the bandwidth is the same, and is not affected by the coexistence of different subcarrier spacings, as shown in FIG.
  • the method may further include: configuring a precoding granularity of the physical channel of the multi-parameter system according to the subcarrier spacing or/and the carrier frequency.
  • the precoding granularity is a resource unit for precoding the channel, that is, the channel uses the same precoding matrix in a resource unit composed of one precoding granularity.
  • the precoding granularity corresponding to each seed carrier interval may be configured as an integer number of resource blocks (RBs) corresponding to the subcarrier spacing.
  • configuring the precoding granularity of the physical channel of the multi-parameter system according to the subcarrier spacing or/and the carrier frequency may include: pre-defining by the parameter system or configuring the precoding granularity of the physical channel by using signaling, where The signaling includes a broadcast message, a control unit (CE, Control Elements) of the Medium Access Control Sublayer Protocol (MAC layer), or a physical layer control channel.
  • the signaling includes a broadcast message, a control unit (CE, Control Elements) of the Medium Access Control Sublayer Protocol (MAC layer), or a physical layer control channel.
  • MIMO Multiple-Input Multiple-Output
  • the transmitted data is pre-encoded, so that the equivalent channel of the pre-coded data is better.
  • the MIMO requirement is met, wherein the precoding granularity is an integer number of resource blocks (RBs), that is, each integer RB is precoded by one unit (ie, data within this bandwidth is multiplied by a precoding matrix), and Different precoding granularities are configured for different system transmission bandwidths.
  • RBs resource blocks
  • the definition of RBs corresponding to each seed carrier interval may be different.
  • the frequency domain width and the time domain width of the RBs corresponding to the RBs with different subcarrier spacings are different.
  • an RB frequency domain width of 15 kHz is 180 kHz
  • an RB frequency domain width of 30 kHz is 360 kHz.
  • the frequency domain width of 2 RBs of 15 kHz may be smaller than the coherence bandwidth of the channel, and the frequency domain width of 2 RBs of 30 kHz may be More than the coherent bandwidth of the channel (the channel conditions in the coherent bandwidth are considered to be consistent), precoding with a precoding parameter in an unsmooth bandwidth cannot reflect the channel difference, so 30 kHz introduces performance degradation relative to 15 kHz. Therefore, in order to eliminate the performance of different subcarrier spacings applied to the same channel environment, the present invention introduces different sub-individuals.
  • the carrier spacing is configured with different precoding granularities. For example, the 15 kHz precoding granularity is 2 RBs, and the 30 kHz precoding granularity is 1 RB, as shown in FIG.
  • 16 is a system according to an embodiment of the present invention, which can support multi-parameter transmission data, where multiple parameters may include sub-carrier spacing (SC) and cyclic prefix (Cyclic Prefix) used when transmitting data.
  • SC sub-carrier spacing
  • Cyclic Prefix cyclic prefix
  • CP Length
  • subframe length subframe length
  • RB resource block
  • Various physical channels or physical signals for data transmission in the system such as synchronization signals, reference signals, data channels, and control channels, etc., can be applied.
  • the system 1600 can include a transmitting device 1610 and a receiving device 1620.
  • the transmitting device 1610 and the receiving device 1620 can transmit data through multiple physical channels or multiple physical signals, and each physical channel or physical signal can support data transmission with multiple parameters, which improves the flexibility of the multi-parameter system.
  • the system 1600 can support transmitting data at multiple subcarrier intervals.
  • the physical channel or the physical signal needs to be configured, and the configuration is performed through the physical channel or The data transmitted by the physical signal, and the resources to which the configuration data is mapped, or the data used (or transmitted) of the physical channel or physical signal of the multi-parameter system, determines the resources to which the data of the multi-parameter system physical channel or signal is mapped.
  • the physical channel may include a channel such as a data channel and a control channel;
  • the physical signal may include a synchronization signal and a reference signal, where the synchronization signal may also be referred to as a synchronization channel, and the reference signal may also be referred to as a pilot signal or a guide.
  • the frequency channel because the data transmitted on the synchronization signal and the reference signal is a sequence, the sequence does not include the upper layer (eg, RRC (Radio Resource Control) layer, MAC (Medium Access Control) layer, etc.)
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • Data, and data transmitted on physical channels is information from higher layers, so it is divided into physical channels and physical signals, such as physical signals such as synchronization signals and reference signals, data channels, control channels, etc. Physical channel.
  • configuring the physical signal of the multi-parameter system may include configuring a synchronization signal.
  • the configuring the synchronization signal includes configuring at least one synchronization signal, and at least one of the subcarrier spacings used when transmitting the first sequence by each of the synchronization signals.
  • the number of the at least one synchronization signal is equal to the number of at least one of the subcarriers supported by the multi-parameter system, and each of the synchronization signals supports Data is transmitted at one of the subcarrier intervals.
  • the configuring the synchronization signal further includes:
  • each of the synchronization signals supporting transmitting data at at least one of the subcarrier intervals.
  • At least one of the synchronization signals and a subcarrier spacing used when each of the synchronization signals transmits the first sequence are configured according to a carrier frequency or a service type.
  • the first sequence to be transmitted by the synchronization signal is configured.
  • the configuring the first sequence to be transmitted by the synchronization signal includes:
  • the first sequence is determined according to one or more of an identifier of the synchronization signal, the subcarrier spacing, or a carrier frequency.
  • the first sequence is configured to be mapped to a frequency domain location and a time domain location.
  • determining, according to the identifier of the synchronization signal, the subcarrier spacing, and one or more kinds of carrier frequency configurations determining that the first sequence is mapped to multiple frequency domain locations. And time domain location.
  • the frequency domain location includes a resource block location to which the first sequence is mapped when the first sequence is transmitted by using the synchronization signal at at least one of the subcarrier intervals And a subcarrier position;
  • the time domain location includes a transmission period of the synchronization signal, and the time unit to which the first sequence is mapped when the first sequence is transmitted by the synchronization signal at at least one of the subcarrier intervals,
  • the time unit includes a first time unit, a second time unit, and a third time unit.
  • a mapping relationship between the time unit to which the synchronization signal is mapped and the resource block location and the synchronization signal are configured.
  • the reference signal of the multi-parameter system is configured.
  • the second sequence is configured according to the subcarrier spacing, where the second sequence is a sequence transmitted by the reference signal at intervals of at least one of the subcarriers.
  • a precoding granularity of a physical channel of the multi-parameter system is configured according to the subcarrier spacing or a carrier frequency.
  • the precoding granularity of configuring the physical channel of the multi-parameter system according to the subcarrier spacing or the carrier frequency includes:
  • the precoding granularity of the physical channel is predefined by a parameter system or by signaling, wherein the signaling comprises a broadcast message, a medium access control sublayer protocol or a physical layer control channel.
  • the configuration of the above system is described by taking the synchronization signal in the physical signal as an example.
  • other physical channels such as data channels or control signals, etc.
  • the signal reference signal is not limited in the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种数据传输方法和系统,基于多参数系统的数据传输,多参数包括子载波间隔,该方法包括:多参数系统通过物理信道或物理信号采用至少一个子载波间隔发送数据。通过该数据传输方法,采用多子载波间隔传输数据,提高了业务数据传输的多样性。

Description

数据传输的方法和系统 技术领域
本发明涉及无线通信领域,尤其涉及一种数据传输的方法和系统。
背景技术
第五代(5th-Generation,5G)移动通信技术旨在提供一个灵活的、能适应各种业务需求的系统,为未来垂直业务及工业应用提供了技术基础,包括从空口到网络,整个网络将更加灵活高效。比如,为了更好的满足日益增长的业务类型需求,新的接入技术中(例如5G技术)要求支持eMBB,URLLC,mMTC以及广播等多种业务类型。由于每种业务类型的业务特点,可靠性要求和时延要求都具有一定的差异性,因此每种业务对于子载波间隔、CP长度,符号长度,时间单位长度等系统参数的需求不同。比如,5G通信系统能够支持的载波频率范围从6GHz以下扩展到了70GHz甚至更高,不同载波频率下产生的多普勒频移和以及相位噪声对系统的影响也会有很大的不同,通常载波频率越大对子载波间隔的需求越大。因此5G通信系统为了有效地支持业务的多样性、场景的多样性以及频谱的多样性,提出了支持更多子载波间隔,在不同频点可以支持相同/不同参数的设计。
但现有技术中,每种业务类型的业务数据传输均在固定频点上采用固定的子载波间隔进行传输,给不同业务类型的业务数据传输带来了一定的局限性。
发明内容
本发明提供了一种数据传输的方法和系统,基于多参数系统的数据传输,采用相同频点或者不同频点支持一种或者多种子载波间隔进行数据传输,针对业务类型的需求,提高了业务数据传输的多样性和灵活性。
第一方面,本发明提供了一种数据传输方法,该方法包括:
基于多参数系统的数据传输,多参数包括子载波间隔,该方法包括:多参数系统通过物理信道或物理信号采用至少一个子载波间隔传输数据。
通过本发明提供的数据传输方法和系统,基于所参数系统的数据传输,在相同频点或者不同频点通过物理信道或物理信号以一种子载波间隔或多种子载波间隔进行数据传输,提高了业务数据传输的多样性和灵活性,同时提高了多参数系统中各参数的协调性。
结合第一方面,在第一方面的第一种可能实现方式中,在多参数系统通过物理信道或物理信号采用至少一个子载波间隔传输数据之前,该方法还包括:配置多参数系统的物理信道或物理信号,配置通过物理信道或物理信号传输的数据,以及配置数据映射到的资源。
结合第一方面或第一方面的第一中可能实现的方式,在第一方面的第二中可能实现的方式中,配置多参数系统的物理信号包括配置同步信号。
结合第一方面的第二种可能实现方式,在第一方面的第三种可能实现的方式中,配置同步信号包括配置至少一个同步信号,以及通过每个同步信号传输第一序列时所使用至少一个子载波间隔。
结合第一方面的第三种可能实现方式,在第一方面的第四种可能实现的方式中,根据载波频率或业务类型配置至少一个同步信号以及每个同步信号传输第一序列时所使用的子载波间隔。
结合第一方面的第三种可能实现方式或第一方面的第四种可能实现的方式,在第一方面的第五种可能实现的方式中,配置至少一个同步信号的个数与多参数系统所支持的至少一个子载波间隔的个数相等,每个同步信号支持以一个子载波间隔传输数据。
结合第一方面的第三种可能实现方式或第一方面的第四种可能实现的方式,在第一方面的第六种可能实现的方式中,配置同步信号还包括:
配置至少一个同步信号的个数小于多参数系统所支持的至少一个子载波间隔的个数,每个同步信号支持以至少一个子载波间隔发送数据。
结合第一方面的第一种可能实现的方式,在第一方面的第七种可能实现的方式中,配置通过物理信号传输的数据包括:
确定通过同步信号传输的第一序列。
结合第一方面的第七种可能实现的方式,在第一方面的第八种可能实现的方式中,配置确定通过同步信号传输的第一序列,包括:
根据同步信号的标识、子载波间隔或载波频率中的一种或多种信息确定第一序列。
结合第一方面的第一种可能实现的方式,第一方面的七种可能实现的方式,或第一方面的第八种可能实现的方式,在第一方面的第九种可能实现的方式中,配置数据映射到的资源包括:
确定第一序列映射到的资源的位置。
结合第一方面的第九种可能实现的方式,在第一方面的第十种可能实现的方式中,确定第一序列映射到的资源的位置,包括:
根据同步信号的标识、子载波间隔,载波频率配置中的一种或者多种信息确定第一序列映射到多个可选位置中至少一个位置。
结合第一方面的第九种可能实现的方式或第一方面的第十种可能实现的方式,在第一方面的第十一种可能实现的方式中,频域位置包括通过同步信号以至少一个子载波间隔传输第一序列时,第一序列映射到的资源块位置和子载波位置;时域位置包括通过同步信号以至少一个子载波间隔传输第一序列时,第一序列映射到的时间单元,其中,时间单元包括第一时间单元、第二时间单元和第三时间单元。
结合第一方面的第九种可能实现的方式,第一方面的第十种可能实现的方式或第一方面的第十一种可能实现的方式中任一项可能实现的方式,在第一方面的第十二种可能实现的方式中,配置同步信号映射到的时间单元、资源块位置和子载波间隔位置,与同步信号的映射关系。
结合第一方面的第一种可能实现的方式中,在第一方面的第十三种可能实现的方式中,配置多参数系统的物理信号包括配置多参数系统的参考信号。
结合第一方面的第十三种可能实现的方式中,在第一方面的第十四种可能实现的方式中,根据子载波间隔配置第二序列,第二序列为通过参考信号以至少一个子载波间隔传输的序列。
结合第一方面或第一方面的第一种可能实现的方式中,在第一方面的第十五种可能实 现的方式中,该方法还包括:
根据子载波间隔或载波频率配置多参数系统的物理信道的预编码粒度。
结合第一方面的第十五种可能实现的方式中,在第一方面的第十六种可能实现的方式中,fai方法包括:根据子载波间隔或载波频率配置多参数系统的物理信道的预编码粒度,包括:
通过所参数系统预定义或者通过信令配置物理信道的预编码粒度,其中,信令包括广播消息、介质访问控制层控制元素或物理层控制信道。
第二方面,本发明提供一种系统,该系统包括发送设备和接收设备,发送设备和接收设备支持通过物理信道或物理信号以多参数传输数据。多参数包括子载波间隔,发送设备和接收设备支持通过物理信道或物理信号以至少一个所述子载波间隔传输数据。
基于本发明提供的数据传输方法和系统,基于所参数系统的数据传输,在相同频点或者不同频点通过物理信道或物理信号以一种子载波间隔或多种子载波间隔进行数据传输,提高了业务数据传输的多样性和灵活性,同时提高了多参数系统中各参数的协调性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种以相同子载波间隔传输数据的资源结构示意图;
图2为本发明实施例提供的一种在相同频点上以多种子载波间隔传输数据的资源结构示意图;
图3为本发明实施例提供的一种不同频点以不同子载波间隔传输数据的资源结构示意图;
图4为本发明实施例提供的一种系统所支持的子载波间隔与同步信号以及通过同步信号传输数据时所采用的子载波间隔的对应关系示意图;
图5(a)为本发明实施例提供的另一种系统所支持的子载波间隔与同步信号以及通过同步信号传输数据时所采用的子载波间隔的对应关系示意图;
图5(b)为本发明实施例提供的又一种系统所支持的子载波间隔与同步信号以及通过同步信号传输数据时所采用的子载波间隔的对应关系示意图;
图6(a)为本发明实施例提供的一种在载波频域上频分复用的同步信号的结构示意图;
图6(b)为本发明实施例提供的一种在载波频域上时分复用的同步信号的结构示意图;
图7为本发明实施例提供的一种同步信号映射的资源位置示意图;
图8为本发明实施例提供的另一种同步信号映射的资源位置示意图;
图9为本发明实施例提供的一种下行同步的方法流程图;
图10本发明实施例提供的时间单元的结构示意图;
图11(a)为本发明实施例提供的一种子载波间隔的资源块结构示意图;
图11(b)为本发明实施例提供的另一种子载波间隔的资源块结构示意图;
图12为本发明实施例提供的一种资源块编号的示意图;
图13为本发明实施例提供的另一种资源块编号的示意图;
图14为本发明实施例提供的再一种资源块编号的示意图;
图15为本发明实施例提供的子载波间隔采用资源块粒度的结构示意图;
图16为本发明实施例提供的一种系统示意图;
图17为本发明实施例提供的另一种系统示意图。
具体实施方式
本发明提供的数据传输方法和系统,适用于支持多参数数据传输的系统,多参数可以包括传输数据时采用的子载波间隔(subcarrier spacing,SC),循环前缀(Cyclic Prefix,CP)的长度、时间单位(比如时间间隔(Transmission Time Interval,TTI),无线帧,子帧,符号等)、资源块(Resource blocks,RB)等参数信息。可以应用在系统中数据传输的各个物理信道或者物理信号,例如同步信号、参考信号、数据信道以及控制信道等。需要说明的是,同步信号也可以称为同步信道,或者其他的名称,例如发现信号或发现信道。在本发明实施中,我们会称在同步信号上发送的序列为第一序列,或同步序列。
需要说明的是,参考信号也可以称为导频信号。在本发明实施中,我们会称在参考信号上发送的序列第二序列,或参考序列。
本发明实施例提供的数据传输的方法和系统主要基于多参数系统的数据传输,对在相同频点或不同频点支持多个不同的子载波间隔传输数据做进一步的研究。通过对多系统参数的物理信道或物理信号进行设置,以使多参数系统中的多参数可以协调的完成数据传输。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明提供的基于多参数数据传输的系统,该多参数系统可以支持以多种子载波间隔发送数据,例如:7.5kHz、15kHz、30kHz、60kHz、120kHz,可以在相同频点和不同频点上以一种(如都使用15kHz或30kHz)或者多种子载波间隔(例如,2GHz载波频率上使用15kHz和30kHz,30GHz载波频率上使用60kHz)发送信号,如图1,图2和图3所示。图1为本发明实施例提供的一种以相同子载波间隔发送数据的资源结构示意图;图2为本发明实施例提供的一种在相同频点上以多种子载波间隔发送数据的资源结构示意图,图3为本发明实施例提供的一种不同频点以不同子载波间隔发送数据的资源结构示意图。这里的数据是指通过物理信道或者物理信号发送的数据,在物理信道上发送的数据包括来自于高层(如:RRC(Radio Resource Control,无线资源控制)层,MAC(Medium Access Control,媒体访问控制)层等)的信息,物理信号上发送的数据包括物理层生成的序列。
通过本发明实施例提供的数据传输方法,提高了业务数据传输的多样性和灵活性,可以扩展多系统参数支持的业务类型。
可选地,在支持多参数系统中,在多参数系统通过物理信道或物理信号采用至少一个子载波间隔传输数据之前,该方法还包括:配置多参数系统的物理信道或物理信号,确定多参数系统物理信道或物理信号使用的数据,确定多参数系统物理信道或信号的数据映射到的资源。
需要说明的是,在本发明实施例中,配置可以理解为定义或设置,确定可以理解为假定或者生成,使用或传输可以理解为发送或者接收。
在本发明实施例,配置多参数系统的物理信道可以包括定义物理信道的资源结构(RB的编号)和确定物理信道的预编码粒度,其中,资源结构包括资源块RB的编号、子载波的编号;物理信道的预编码粒度为物理信道进行预编码的单位,或者说物理信道可以通过多少个RB为一组进行预编码传输一次数据。
可选地,在本发明实施例中,定义多参数系统的物理信号可以包括配置同步信号。换句话说,也就是为多参数系统所支持的不同子载波间隔配置对应的同步信号。
在本发明实施例中,确定多参数系统物理信道或物理信号使用的数据可以包括确定同步信号使用的序列。换句话说,也就是生成多参数系统所支持的同步信号上使用的序列。
可选地,在本发明实施例中,确定多参数系统物理信道或物理信号使用的数据可以包括确定参考信号使用的序列。换句话说,也就是生成多参数系统所支持的参考信号上使用的序列。
可选地,在本发明实施例中,配置多参数系统的物理信号可以包括配置参考信号发送时使用的子载波间隔或相对子载波间隔。
可选地,在本发明的实施例中,确定多参数系统物理信号的数据映射到的资源包括确定参考信号在一段时间内的发送次数或者映射到的符号个数。可选地,在本发明的实施例中,设置多参数系统物理信道可以包括设置物理层随机接入信道发送时使用的子载波间隔。
需要说明的是,在本发明实施例中,不仅可以配置同步信号,还可以配置多参数系统中物理信道中的其他信道,例如:数据信道、控制信道等信道,物理信号中的参考信号等。在本发明实施例中对此不作限制。
在本发明实施例中,配置同步信号可以包括配置至少一个同步信号,以及通过每个同步信号发送第一序列时采用至少一个子载波间隔。
也就是为多参数系统配置一个或多个同步信号,每个同步信号上可以支持以一种或者多种子载波间隔发送序列,以使多参数系统中的发送设备(如基站)和接收设备(如终端)完成同步。
可选地,作为本发明一个实施例,配置一个同步信号上发送同步序列时采用的子载波间隔的个数小于或等于所述多参数系统所支持的子载波间隔的个数。
在本发明实施例中,配置同步信号的个数和通过同步信号发送或接收第一序列时使用的子载波间隔的个数均小于或等于多参数系统所支持的多种子载波间隔的个数。或者说配置多参数系统中的发送设备通过同步信号发送第一序列时采用的子载波间隔的个数小于或等于多参数系统所支持的多子载波间隔的个数,配置多参数系统中的接收设备通过同步信号接收第一序列时采用的子载波间隔的个数小于或等于多参数系统所支持的多子载波间隔的个数。
在本发明实施例中,配置的同步信号的个数可以与多参数系统所支持的多种子载波间隔的个数相等,如图4所示,多参数系统可以支持的多种子载波间隔的数量为4个:分别为7.5KHz、15KHz、30KHz、60KHz,配置同步信号的数量为4个。分别为同步信号一:以3.75KHz子载波间隔发送同步序列、同步信号二:以15KHz子载波间隔发送同步序列、同步信道三:以60KHz子载波间隔发送同步序列、同步信道四:以120KHz子载波间隔发 送同步序列。在该实施例中,一个同步信号以一种子载波间隔发送序列。
[根据细则91更正 22.09.2017] 
在本发明实施例中,还可以配置同步信号的个数小于多参数系统所支持的多种子载波间隔的个数,每个同步信号使用至少一种子载波间隔发送或接收序列。例如图5(a)和图5(b)所示,多参数系统可以支持的多种子载波间隔的数量为4个:分别为7.5KHz、15KHz、60KHz、120kHz,可以配置两个同步信号:分别为同步信号一和同步信号二。其中,同步信号一或同步信号二上可以使用一种子载波间隔发送序列,如图5(a)所示:同步信号一上可以使用15kHz的子载波间隔发送序列,同步信号二上可以使用60kHz的子载波间隔发送序列;也可以使用多种子载波间隔发送序列,如图5(b)所示:同步信号一上可以使用15kHz或60kHz的子载波间隔发送序列,同步信号二上可以使用60kHz或120kHz的子载波间隔发送序列。
需要说明的是,在此以同步信号为例,对物理信道上的各信道(如导频信道、数据信道、控制信道等)中的配置的信道个数,以及通过其信道发送相应信号时采用的子载波间隔的个数进行说明。在本发明实施例中,配置多参数系统的物理信道中各个信道的个数以及通过相应信道发送相应信号所采用的子载波间隔的个数也可以这样配置,或者通过其他的配置个数关系进行配置,在本发明实施例中对此不作限制。
可选地,在本发明实施例中,根据载波频率或业务类型配置至少一个同步信号以及每个同步信号发送第一序列时所使用的子载波间隔。
例如,在本发明的实施例中,可以根据载波频率设置同步信号以及通过该同步信号发送序列时使用的子载波间隔。如,配置6GHz以下载波频率使用一个同步信号发送序列,该同步信号使用15kHz的子载波间隔发送序列。6GHz以上载波频率使用另一个同步信号发送序列数据传输,该主同步信号使用60kHz的子载波间隔发送序列。
在本发明的实施例中,还可以根据业务类型配置同步信号以及通过同步信号发送序列时使用的子载波间隔。例如,配置多参数系统支持eMBB业务的数据传输时采用一个同步信号,以15kHz的子载波间隔传输。配置多参数系统支持mMTC业务的数据传输时采用一个同步信号,以3.75kHz的子载波间隔传输。配置多参数系统支持URLLC业务的数据传输时采用一个同步信号,以60kHz的子载波间隔传输。配置多参数系统支持eMBB和mMTC业务的数据传输时支持一个同步信号,该同步信号以3.75kHz和15kHz的子载波间隔传输,或者支持两个同步信号,一个同步信号以3.75kHz的子载波间隔传输,另一个同步信号以15kHz的子载波间隔传输。
需要说明的是,在本发明实施例中,也可以配置多参数系统中接收设备接收第一序列的规则,例如通过接收设备的接收能力或者成为接收设备的模式、传输数据所采用的载波频率,或者信令配置的接收设备接收数据的规则接收数据,这里以同步信号为例,发送设备通过该同步信号以多子载波间隔发送第一序列,接收设备接收的第一序列。
如在本发明的实施例中,接收设备可以根据接收端模式/接收端能力接收第一序列。例如,定义了支持eMBB业务的接收设备类型或接收设备能力为接收模式一或者接收能力一,定义了eMBB业务对应的同步信号以15kHz子载波间隔发送数据,则接收设备以15kHz子载波间隔接收第一序列。又例如,定义了支持mMTC业务的接收设备类型或接收设备能力为接收模式二或者接收能力二,定义了mMTC业务对应的同步信号以3.75kHz子载波间隔发送第一序列,则接收设备以3.75kHz子载波间隔接收第一序列。再例如,定义了支持URLLC业务的接收设备类型或接收设备能力为接收模式三或者接收能力三,定义了 URLLC业务对应的同步信号以60kHz子载波间隔发送第一序列,则接收设备以60kHz子载波间隔接收第一序列。
在本发明的实施例中,接收设备可以根据载波频率接收第一序列。例如,定义6GHz以下载波频率上同步信号以15kHz子载波间隔发送第一序列,则接收设备工作于6GHz以下时,以15kHz子载波间隔接收第一序列。例如,定义6GHz以上载波频率上同步信号以60kHz子载波间隔发送第一序列,则接收设备工作于6GHz以上时,以30kHz子载波间隔接收第一序列。
在本发明的实施例中,接收设备可以根据信令配置接收一个类型同步信号的个数以及接收所述同步信号使用的子载波间隔。例如,接收基站发送的信令,该信令通知接收设备(如终端)以15kHz子载波间隔接收第一序列,。则终端接收到该信令后,对第一序列的接收使用15kHz子载波间隔。该信令可以是广播信令,媒体访问控制(Media Access Control,MAC)层控制信令或称为介质访问控制层控制信令,也可以是物理层控制信令。
可选地,作为本发明的另一个实施例,确定同步信号使用的第一序列。
在本发明实施例中,可以根据同步信号的标识、子载波间隔或载波频率中的一种或多种信息确定第一序列。
可以根据同步信号ID确定同步信号的第一序列。例如,多参数系统中的发送设备在一个小区中通过两个同步信号发送序列,这两个同步信号可以称为同步信号一和同步信号二。配置通过同步信号一发送的序列为序列值一,配置通过同步信号二发送的序列为序列值二,序列值一和序列值二可以相同或不同,本发明不做具体要求。
在本发明的实施例中,还可以根据子载波间隔确定第一序列。例如,通过一个同步信号发送序列使用两个子载波间隔,这两个子载波间隔可以称为子载波间隔一和子载波间隔二。配置该同步信号以子载波间隔一发送第一序列的序列值为序列值一,配置该同步信号以子载波间隔二发送第一序列的序列值为序列值二,序列值一和序列值二可以相同或不同,本发明不做具体要求。
在本发明的实施例中,还可以根据载波频率确定同步序列。例如,可以在多个载波频率发送同步信号,这两个载波频率可以称为载波频率一和载波频率二。配置在所述载波频率一上通过同步信号发送的第一序列的序列值为序列值一,配置在载波频率二上通过同步信号发送第一序列的序列值为序列值二,序列值一和序列值二可以相同或不同,本发明不做具体要求。
需要说明的是,在本发明实施例中,还可以配置根据同步信号的标识、子载波间隔或载波频率中的任何两个或者全部信息确定第一序列的规则,在本发明实施例中,不限制其规则的配置。
可选地,在本发明实施例中,确定第一序列映射到的资源的频域位置和时域位置。
确定至少一个同步信号使用至少一种子载波间隔发送时使用的第一序列的映射到的资源。具体地,确定第一序列映射到的时频资源,时频资源包括了资源的时域位置和频域位置,时域位置可以指符号位置,子帧位置,无线帧位置等时间单位的位置,频域位置可以指资源块组的位置,资源块(如,RB)位置,子载波的位置等频域单位的位置。具体地,在本发明实施例中同步信号可以包括主同步信号,或者主同步信号和辅同步信号。其中当只有主同步信号存在时,可以称为同步信号,也在本发明的保护范围。
本发明的实施例中,可以根据同步信号标识、子载波间隔或者载波频率中的一种或者多种信息确定第一序列映射到的频域资源。例如,当多参数系统中同步信号有多个时,针对每一个同步信号配置其相应的第一序列的资源映射。例如,当多参数系统中通过同步信号可以使用至少一个子载波间隔发送第一序列时,针对每一个同步信号的每个子载波间隔配置其相应的第一序列的资源映射。例如图6所示,不同子载波间隔的同步信号的资源可以是在一个载波频域上频分复用(如图6(a)),或者时分复用(如图6(b)),或者时分复用加上频分复用。
本发明的实施例中,根据载波频点配置通过同步信号发送的第一序列的资源映射。例如,当多参数系统中,在多个频点发送序列可以通过同一个同步信号,针对6GHz以下的同步信道配置第一序列的资源映射位置一,针对6GHz以上的同步信道设置第一序列的资源映射为二。
在本发明实施例中,配置一个同步信号或者配置一个同步信号以一种子载波间隔发送第一序列时,确定第一序列的资源映射到多个可选位置中的至少一个位置,由多参数系统中的发送设备选取一个位置进行发送,如图7所示,每个资源块均为第一序列的资源映射的位置,当多参数系统发送第一序列时,图7所示的4个位置中选择一个位置,并将第一序列映射在选定的位置上,将第一序列发送给多参数系统中的接收设备。
在本发明实施例中,配置一个同步信号或者配置一个同步信号以一种子载波间隔发送第一序列时,发送端可以根据同步信号的序列映射到的资源的位置可以确定主同步信号和辅同步信号的相对位置,接收端可以根据接收到的主同步信号和辅同步信号的相对位置确定同步信号的序列映射到的资源的位置。如图8所示,发送端可以配置同步信号中的主同步信号PSS映射在一个位置,配置辅同步信号可以映射在其余的多个位置,当多参数系统需要发送第一序列时,从多个辅同步信号的映射位置选择一个进行映射,并将映射后的主同步信号和辅同步信号发送给多参数系统中的接收设备。其中,在不同的时间位置或者频域位置发送同步信号时,选择的辅同步信号的位置不同。比如,对于发送设备,在子帧0发送同步信号时,辅同步信号使用的序列映射于位置0,在子帧1发送同步信号时,辅同步信号使用的序列映射于位置1,在子帧2发送同步信号时,辅同步信号使用的序列映射于位置2,在子帧3发送同步信号时,辅同步信号使用的序列映射于位置3,在子帧4发送同步信号时,辅同步信号使用的序列映射于位置4。接收设备接收到主同步信号和辅同步信号后,当主同步信号和辅同步信号在相同的时域单位上相邻的频域单位上,辅同步的接收频率高于主同步时,接收端认为当前为子帧0。当接收到主同步信号和辅同步信号在相同的时域单位上相邻的频域单位上,辅同步的接收频率低于主同步时,接收端认为当前为子帧1。当接收到主同步信号和辅同步信号在相邻的时域单位上相邻的频域单位,辅同步的接收频率高于主同步时,接收端认为当前为子帧2。当接收到主同步信号和辅同步信号在相邻的时域单位上相邻的频域单位上,辅同步的接收频率等于主同步时,接收端认为当前为子帧3。当接收到主同步信号和辅同步信号在相邻的时域单位上相邻的频域单位上,辅同步的接收频率低于主同步时,接收端认为当前为子帧4。
本发明的实施例中,配置第一序列映射到的频域资源的RB位置以及子载波位置。其中,RB位置可以是指以某个基线子载波间隔(比如15kHz)对传输带宽进行RB编号后指示的位置,也可以指以该同步信号对应的子载波间隔对传输带宽进行RB编号后指示的位 置。
其中,上述子载波位置可以是指以某个基线子载波间隔对传输带宽进行子载波编号后指示的位置,也可以指以该同步信号对应的子载波间隔对传输带宽进行子载波编号后指示的位置。
比如已有技术中,LTE配置同步信号位于以15kHz对传输带宽进行RB编号后的中心带宽的6个RB的62个子载波上。
以上为配置物理信道中同步信道的过程以及相应的关系,下面以下行同步为例,对本发明实施例配置的多参数系统中的设备发送和接收的方式进行详细说明。
在本发明实施例中,该多参数系统可以包括发送设备和接收设备。在本发明实施例中,发送设备可以为基站,接收设备可以为终端。但在本发明实施例中对发送设备和接收设备不作限制。
例如:发送设备可以为基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站设备还可协调对空中接口的属性管理。例如,基站设备可以是LTE中的演进型基站(英文:evolutional Node B;缩写:eNB或e-NodeB,)或接入点,本发明并不限定。需要说明的是,本发明实施例中所述的基站不仅可以是基站设备,还可以是中继设备,或者具备基站功能的其他网元设备。
接收设备可以为无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(英文:Radio Access Network;缩写:RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(英文:Personal Communication Service;缩写:PCS)电话、无绳电话、会话发起协议(英文:Session Initiation Protocol;缩写:SIP)话机、无线本地环路(英文:Wireless Local Loop;缩写:WLL)站、个人数字助理(英文:Personal Digital Assistant;缩写:PDA)等设备。无线终端也可以称为系统、订户单元(英文:Subscriber Unit;缩写:SU)、订户站(英文:Subscriber Station;缩写:SS),移动站(英文:Mobile Station;缩写:MB)、移动台(Mobile)、远程站(英文:Remote Station;缩写:RS)、接入点(英文:Access Point;缩写:AP)、远程终端(英文:Remote Terminal;缩写:RT)、接入终端(英文:Access Terminal;缩写:AT)、用户终端(英文:User Terminal;缩写:UT)、用户代理(英文:User Agent;缩写:UA)、终端设备(英文:User Device;缩写:UD)、或用户装备(英文:User Equipment;缩写:UE)。
图9为本发明实施例提供的一种下行同步的方法流程图。如图9所示,该方法900的执行主体为多参数系统中包括的发送设备和接收设备。
S910,发送设备根据多子载波间隔和同步信道的标识,确定第一序列映射到的时频资源,时频资源包括第一序列的时域位置和频域位置。
发送设备同步信道的标识以及可以使用的子载波间隔确定至少一个可以映射到的时频资源,选择其中至少一个可用的同步信号的时频资源。
发送设备根据同步信道的标识以及子载波间隔确定同步信号映射到的时频资源,根据配置的主辅同步信号的相对位置和资源映射的关系选择主同步信号和辅同步信号的时频位置和频域位置。
S920,发送设备根据子载波间隔、同步信号的标识和时频资源确定第一序列。
发送设备根据选择的时域位置和频域位置,以及子载波间隔、同步信号的标识以及时频资源确定通过该同步信号发要所送的第一序列,将第一序列映射在S910中确定的时频资源上,以便于发送设备通过选定的同步信号以及选择的子载波间隔向接收设备发送该第一序列。
需要说明的是,在本发明实施例中,还可以根据子载波间隔或同步信号的标识中的一种或者多种信息确定第一序列映射到的时频资源,在本发明实施例中对此不作任何限制。
需要说明的是,在本发明实施例中,还可以根据子载波间隔或同步信号的标识中的一种或者多种信息确定第一序列,在本发明实施例中对此不作任何限制。
还需要说明的是,在本发明实施例中可以根据小区的标识确定第一序列在本发明实施例中,还可以根据其他的信息确定第一序列,在本发明实施例中对此不作任何限制。
S930,发送设备向接收设备发送第一序列。
发送设备通过确定的同步信号以选定的子载波间隔将同步序列映射到时频资源向接收设备发送第一序列,以用于接收设备根据同步信号进行下行同步。
S940,接收设备根据第一序列确定发送设备发送第一序列的时频资源以及采用的子载波间隔。
接收设备对发送设备发送的第一序列进行盲检测,获取第一序列。当接收设备获取到第一序列时,根据第一序列的序列值确定发送设备发送该第一序列所采用的时频资源和子载波间隔,完成下行同步。
需要说明的是,如果不同小区标识的序列值不同,接收设备可以根据第一序列确定小区标识。如果在不同的时间单位或频域资源上发送同步信号时,主同步信号和辅同步信号的相对位置不同,接收设备可以根据接收到的主同步信号和辅同步信号的相对位置确定当前接收同步信号的时间单位或频域资源编号。根据第一序列的配置确定相应的信息,在本发明实施例中对第一序列的配置不作任何限制。
可选地,在本发明实施例中,配置多参数系统的物理信号可以包括配置参考信号发送时使用的相对子载波间隔。
其中,所述参考信号包括探测参考信号(Sounding Reference Signal,SRS)、信道状态信息参考信号(CSI Reference Signals,CSI-RS)、波束测量参考信号(Beamforming Reference Signals,BRS)、波束改善参考信号(Beamforming Refinement Reference Signals,BRRS)、解调参考信号(Demodulation Reference Signal,DM-RS)、发现参考信号(Discovery Reference Signal,DRS),也可以包括其他用于测量的参考信号,本发明不做具体限制。
在发明的实施例中,通过预定义或信令配置参考信号使用的子载波间隔或相对子载波间隔。例如,基站向用户设备发送信令,该信令可包含物理层控制信号承载的控制信息和/或物理层数据信道承载的高层信令,用于指示参考信号所使用的子载波间隔或相对子载波间隔。其中,所述相对子载波间隔可以包括参考信号发送时使用的子载波间隔相对其它至少一个物理信道或物理信号使用的子载波间隔的关系。
在本发明的实施例中,通过预定义或信令配置参考信号所使用的基线子载波间隔,参考信号发送时使用相对子载波间隔。例如,预定义或通过信令由基站配置基线子载波间隔,例如配置参考信号使用的基线子载波间隔为60kHz。例如,所述信令配置参考信号的相对子载波间隔可以包括,预定义或信令配置信令信息比特和参考信号的子载波间隔或参考信号的相对子载波间隔的对应关系。基站设备根据所述信令信息比特和参考信号的子载波间隔或参考信号的相对子载波间隔的对应关系,以及配置的参考信号使用的子载波间隔或相对子载波间隔确定所述信令比特,将所述信令信息比特通过信令发送给用户设备,用户设备接收到所述信令后,根据所述信令信息比特和参考信号子载波间隔或相对子载波间隔的对应关系确定参考信息使用的子载波间隔。例如,配置所述信令信息比特和参考信号子载波间隔或相对子载波间隔的对应关系如表1所示,表1为信令信息与指示的参考信号子载波间隔对照表。
表1
Figure PCTCN2017096651-appb-000001
例如表1中,配置参考信号的相对子载波间隔为参考信号的子载波间隔相对数据信道的子载波间隔。数据信道传输时使用的子载波间隔为60KHz,当基站侧配置以240kHz发送参考信号时,或者说参考信号使用的子载波间隔为数据信道使用的子载波间隔的4倍时,设置信令信息比特为10,将所述信令信息发送给用户设备。当用户设备接收到信令信息比特为10时,确定参考信号使用的子载波间隔为240kHz,或者确定参考信号使用的子载波间隔相对数据信道使用的子载波间隔为4倍关系,即参考信号使用的子载波间隔为240KHz。当数据信道使用60KHz子载波间隔,参考信号使用的子载波间隔为数据信道使用的子载波间隔的4倍时,参考信号发送时使用4个的时间单元发送。所述4个时间单元在时域内可以连续也可以不连续,本发明不做限制。所述时间单元可以指符号,如图10所示,其中,n表示数据符号的个数。
可选地,作为本发明另一个实施例中,确定多参数系统物理信号的数据映射到的资源包括确定参考信号在一段时间内的发送次数或者映射到的符号个数。。例如,本发明的实施例中,通过预定义或信令配置参考信号在一定时间内发送次数或者映射到的符号个数。例如,预定义或信令配置参考信号在一定时间内发送次数或者映射到的符号个数为4。基站设备根据所述信令信息比特和参考信号在一定时间内发送次数或者映射到的符号个数的对应关系确定所述信令比特,将所述信令信息比特通过信令发送给用户设备,用户设备接收到所述信令后,根据所述信令信息比特和参考信号在一定时间内发送次数或者映射到的符号个数的对应关系确定参考信号在一定时间内发送次数或者映射到的符号个数。例如,配置所述信令信息比特和参考信号在一定时间内发送次数或者映射到的符号个数的对应关系如表2所示,表2为信令信息与指示的参考信号子载波间隔对照表。
表2
信令信息比特 参考信号发送次数或符号数
00 1
01 2
10 4
11 8
例如,数据信道传输时使用的子载波间隔为60KHz,当基站侧配置在一个子载波间隔为60KHz的符号长度内发送4次参考信号或发送4个参考信号符号时,设置信令信息比特为10,将所述信令信息发送给用户设备。当用户设备接收到信令信息比特为10时,确定在一个子载波间隔为60KHz的符号长度内发送4次参考信号或发送4个参考信号符号,因此参考信号使用的子载波间隔为240kHz。
可选地,作为本发明另一个实施例中,配置多参数系统物理信号包括配置参考信号的资源映射方法。例如,本发明的实施例中,通过预定义或信令配置参考信号的资源映射方法。例如,预定义或信令配置参考信号的资源映射方法为每2个子载波映射一个RE。基站设备根据所述信令信息比特和参考信号的资源映射方法的对应关系确定所述信令比特,将所述信令信息比特通过信令发送给用户设备,用户设备接收到所述信令后,根据所述信令信息比特和参考信号的资源映射方法的对应关系确定参考信号的资源映射方法。例如,配置所述信令信息比特和参考信号的资源映射方法的对应关系如表3所示,表3为信令信息与指示的参考信号映射方法对照表。
表3
信令信息比特 参考信号映射方法
00 每8个子载波映射一个RE
01 每4个子载波映射一个RE
10 每2个子载波映射一个RE
11 每1个子载波映射一个RE
例如,当基站侧配置参考信号在每2个子载波映射一个RE时,设置信令信息比特为10,将所述信令信息发送给用户设备。当用户设备接收到信令信息比特为10时,确定参考信号在每2个子载波映射一个RE。
例如,本发明实施例中,配置的参考信号的子载波间隔、相对子载波间隔、发送次数、占用的符号数、映射方法存在对应关系,因此用户根据信令指示的其中一项确定其他各项,例如可以按照表4的对应关系来确定。表4为子载波间隔/相对子载波间隔/发送次数/占用的符号数/映射方法对照表。
表4
Figure PCTCN2017096651-appb-000002
Figure PCTCN2017096651-appb-000003
可选地,作为本发明另一实施例中,确定多参数系统的物理信号使用的数据还包括确定参考信号使用的序列。
在本发明实施例中,参考信号也可以称为导频信号,参考信号可以使用至少一个子载波间隔传输数据。
可选地,在本发明实施例中,可以根据子载波间隔确定第二序列。
第二序列也可以成为参考序列。第二序列为通过所述参考信号以至少一个所述子载波间隔发送的序列。
在本发明实施例中,相同的载波频率可以支持用多个不同的子载波间隔发送第二序列。不同的载波频率可以支持用相同或者不同的子载波间隔发送第二序列。对于支持多子载波间隔系统,相同的资源上可能配置不同的子载波间隔,因此对来自不同子载波间隔的数据信道/信号估计时,需要针对每个子载波间隔设计不同的参考信号,用于准确地估计不同子载波间隔的数据。
为了更好地估计相同资源上的不同子载波间隔的信道或者在子载波间隔切换时确保使用正确的当前子载波间隔,本发明设计参考信号的序列生成公式为伪随机序列,其中伪随机序列的初始化生成公式中包含子载波间隔的标识
Figure PCTCN2017096651-appb-000004
Figure PCTCN2017096651-appb-000005
Figure PCTCN2017096651-appb-000006
其中,n’s表示子帧(subframe)的编号;
Figure PCTCN2017096651-appb-000007
表示小区的标识;NCP表示循环前缀(Cyclic Prefix,CP)的类型;SC1表示子载波间隔中的一种子载波间隔,SC0表示除SC1以外的其他子载波间隔。
在本发明实施例中,根据根据子载波间隔确定第二序列的方法,也可以应用于物理信道加扰使用的序列。
可选地,在本发明的实施例中,设置多参数系统物理信道可以包括设置物理层随机接入信道发送时使用的子载波间隔。
随机接入信道用于上行接入,基站通过测量随机接入信道可以获取用户的接入信息及往返传输延时。与配置参考信号相似,在基于波束成型技术的系统中,更短的前导信号符号降低上行接入的开销,因此本发明提供了一种通过配置前导信号使用更大子载波间隔实现更快的波束切换的方法,降低了上行接入的开销。
在本发明的实施例中,设置物理层随机接入信道发送时使用的子载波间隔包括通过预定义或信令配置前导信号使用的子载波间隔。所述信令包括广播信息,或高层信令,本发明不做限制。所述信令中包含指示前导信号使用的子载波间隔的信息位。
在本发明的实施例中,设置物理层随机接入信道发送时使用的子载波间隔包括通过预定义或信令配置前导信号所使用的基线子载波间隔,通过信令配置前导信号的相对子载波间隔。所述相对子载波间隔可以包括随机接入信道发送时使用的子载波间隔相对其它至少 一个物理信道或物理信号使用的子载波间隔的关系。例如,预定义或通过信令由基站配置基线子载波间隔,例如配置前导信号使用的基线子载波间隔为60kHz,或者例如配置前导信号使用的基线子载波间隔为数据信道使用的子载波间隔,比如60kHz。基站设备根据所述信令信息比特和前导信号的相对子载波间隔的对应关系,以及配置的前导信号使用的子载波间隔或相对子载波间隔确定所述信令比特,将所述信令信息比特通过信令发送给用户设备,用户设备接收到所述信令后,根据所述信令信息比特和前导信号子载波间隔或相对子载波间隔的对应关系确定前导信号使用的子载波间隔。例如,配置所述信令信息比特和前导信号子载波间隔或相对子载波间隔的对应关系如表5所示,表5为信令信息与指示的前导信号子载波间隔对照表,表5所示,表5为信令信息与指示的前导信号子载波间隔对照表。
表5
信令信息比特 前导信号子载波间隔 前导信号相对子载波间隔
00 60KHz X1
01 120KHz X2
10 240KHz X4
11 480KHz X8
例如,数据信道传输时使用的子载波间隔为60KHz,当基站侧配置以240kHz发送前导信号时,或者说前导信号使用的子载波间隔为数据信道使用的子载波间隔的4倍时,设置信令信息比特为10,将所述信令信息发送给用户设备。当用户设备接收到信令信息比特为10时,确定前导信号使用的子载波间隔为240kHz,或者确定前导信号使用的子载波间隔相对数据信道使用的子载波间隔为4倍关系,即前导信号使用的子载波间隔为240KHz。
可选的,在本发明的实施例中,设置物理层随机接入信道发送时使用的子载波间隔包括基站端进行下行传输,通过预定义和/或信令配置用户设备接收到的下行传输的检测结果与前导信号的子载波间隔之间的关系。用户设备通过接收到的下行传输的检测结果以及用户设备接收到的下行传输的检测结果与前导信号的子载波间隔之间的关系确定前导信号的子载波间隔。所述基站端进行下行传输包括基站端传输参考信号。所述下行传输检测结果包括测量的最高RSRP值。例如,基站进行下行传输,发送信号和/或信道,用户对接收到的参考信号进行测量,获得最高RSRP值。用户根据预定义或通过信令由基站配置的最高RSRP测量值和前导信号子载波间隔的对应关系确定前导信号使用的子载波间隔。例如,配置所述最高RSRP测量值和前导信号子载波间隔的对应关系如表6所示。
表6
最高RSRP测量值(dBm) 前导信号子载波间隔
RSRP<-140 60KHz
-92>RSRP>=-140 120KHz
-44>RSRP>=-92 240KHz
RSRP>=-44 480KHz
例如上述表格中,当用户收到的下行传输,用户对下行传输进行测量,获得下行传输的最高RSRP值满足-44>RSRP>=-92,则用户采用240KHz的子载波间隔进行前导信号的发送。
可选的,在本发明的实施例中,设置物理层随机接入信道发送时使用的子载波间隔包括基站端进行下行传输,通过预定义和/或信令配置用户设备接收到的下行传输的检测结果与前导信号的子载波间隔之间的关系。用户设备通过接收到的下行传输的检测结果以及用户设备接收到的下行传输的检测结果与前导信号的子载波间隔之间的关系确定前导信号的子载波间隔。所述基站端进行下行传输包括基站端传输信号和/或信道。所述下行传输检测结果包括检测的最优波束序号。例如,基站进行下行传输,发送信号和/或信道,用户对接收到的信号和/或信道进行检测,获得最优波束序号。用户根据预定义或通过信令由基站配置的最优波束序号和前导信号子载波间隔的对应关系确定前导信号使用的子载波间隔。例如,配置所述最优波束序号和前导信号子载波间隔的对应关系如表7所示。
表7
最优波束序号 前导信号子载波间隔
0~3 60KHz
4~7 120KHz
8~11 240KHz
12~15 480KHz
例如上述表格中,当用户收到的下行传输,用户对下行传输进行检测,获得下行传输的最优波束序号满足8>=最优波束序号>=11,则用户采用240KHz的子载波间隔进行前导信号的发送。
在本发明的实施例中,配置每个子载波间隔支持的最大的RB个数和最小的RB数,从而定义了每个子载波间隔对应的最大带宽。例如,每个RB为12个子载波间隔,定义15kHz子载波间隔最小支持的RB个数为6,最大支持的RB个数为110,则定义了15kHz的实际可以使用的传输带宽范围为15kHz*12*6=1.08MHz至15kHz*12*110=19.8MHz。定义30kHz子载波间隔最小支持的RB个数为6,最大支持的RB个数为110,则定义了30kHz的实际可以使用的传输带宽范围为30kHz*12*6=2.16MHz至30kHz*12*110=39.6MHz。
在比如,如图11(a)所示,定义一个RB的带宽为180kHz,则对于15kHz每个RB为12个子载波,定义15kHz子载波间隔最小支持的RB个数为6,最大支持的RB个数为110,则定义了15kHz的实际可以使用的传输带宽范围为15kHz*12*6=1.08MHz至15kHz*12*110=19.8MHz。对于30kHz每个RB为6个子载波,定义30kHz子载波间隔最小支持的RB个数为12,最大支持的RB个数为220,则定义了30kHz的实际可以使用的传输带宽范围为30kHz*6*12=1.08MHz至30kHz*6*220=19.8MHz,如图11(b)所示。
在本发明的实施例中,配置或确定不同子载波间隔共存时的资源块的编号。其中资源块的编号包含了RB编号和/或者该RB所在的子带的编号。例如:在本发明的实施例中,当多个子载波间隔在一个载波上频分复用时,每个子载波间隔对应的资源块(RB)在其所在的资源部分上从M开始依次累加编号,M可以为整数,比如0。所述资源部分是指使用相同子载波间隔发送数据的一部分连续资源。所述依次累加编号是指在一个资源部分上,第一个资源块的编号为M,其余资源块的编号为前一个资源块的编号值加N后(当前资源块对应的子载波间隔对应的资源块的最大编号值+1)取模,其中N为整数,比如1。如图12所示,以40MHz,15kHz子载波间隔和30kHz子载波间隔的最大RB编号范围值为109为例,第一部分资源上传输数据时使用15kHz子载波间隔,第二部分资源上传输数据时使 用30kHz子载波间隔。在第一部分资源上15kHz子载波间隔对应的RB从0开始依次累加编号,第二部分资源上30kHz子载波间隔对应的RB从0开始依次累加编号。
或者,当多个子载波间隔在一个载波上频分复用时,每个子载波间隔对应的资源块(RB)等于前一个资源块的编号值依次累加得到,或者说无论当前资源块以及前一个资源块使用哪个子载波间隔,每个资源块的编号都相对前一个资源块的编号依次累加得到,所述依次累加是指在整个带宽上,第一个资源块的编号为M,其余资源块的编号为前一个资源块的编号值加N后对(当前资源块对应的子载波间隔对应的资源块的最大编号值+1)取模,其中N为整数,比如1。如图13所示,以40MHz,15kHz子载波间隔和30kHz子载波间隔的最大RB编号范围值为109为例,第一部分资源上传输数据时使用15kHz子载波间隔,第二部分资源上传输数据时使用30kHz子载波间隔。在第一部分资源上15kHz子载波间隔对应的RB从0开始依次累加编号,第二部分资源上30kHz子载波间隔对应的第一个RB的编号为15kHz子载波间隔对应的最后一个RB的编号1加上1后对110取模得到2,第二部分资源上30kHz子载波间隔对应的其余RB的编号相对前一个RB的编号依次累加。
也或者可以配置资源块的编号为,当多个子载波间隔在一个载波上频分复用时,每个子载波间隔对应的资源块独立进行编号。所述每个子载波间隔对应的资源块独立编号,即每个子载波对应的RB的编号和/或子带编号不受其余子载波间隔的编号的影响,相同的位置上的资源块的编号和整个带宽中仅有该子载波间隔时的编号值相同,不受不同子载波间隔的共存的影响,如图14所示。
可选地,作为本发明另一个实施例,该方法还可以包括:根据子载波间隔或/和载波频率配置多参数系统的物理信道的预编码粒度。其中,预编码粒度为信道进行预编码的资源单位,即信道在一个预编码粒度组成的资源单位内使用相同的预编码矩阵。可以配置每种子载波间隔对应的预编码粒度为该子载波间隔对应的整数个资源块(RB)。
在本发明实施例中,根据子载波间隔或/和载波频率配置多参数系统的物理信道的预编码粒度,可以包括:通过所参数系统预定义或者通过信令配置物理信道的预编码粒度,其中,信令包括广播消息、介质访问控制子层协议(MAC层)的控制单元(CE,Control Elements)或物理层控制信道。
现有LTE中已有方案:LTE中使用到多入多出(Multiple-Input Multiple-Output,MIMO)传输技术时,会对发送数据进行预编码,使得预编码后的数据的等效信道更好地满足MIMO需求,其中预编码的粒度为整数个资源块(Resource blocks,RB),即每个整数个RB为一个单位进行预编码(即这个带宽内的数据乘以一个预编码矩阵),且针对不同的系统传输带宽配置不同的预编码粒度。
由于5G中引入了多子载波间隔,每种子载波间隔对应的RB的定义可能不同。以LTE为例,每个RB包含12个子载波时,不同子载波间隔的RB对应的RB的频域宽度和时域宽度就不同。比如15kHz一个RB频域宽度为180kHz;30kHz一个RB频域宽度为360kHz。当这两个子载波间隔应用于相同的信道环境时,预编码粒度为2个RB时,15kHz的2个RB的频域宽度可能小于该信道的相干带宽,30kHz的2个RB的频域宽度可能大于该信道的相干带宽(相干带宽内信道条件认为一致),在一段不平滑的带宽内采用一个预编码参数进行预编码无法反应信道的差异性,因此30kHz相对15kHz会引入性能下降。因此为了消除不同的子载波间隔应用于相同信道环境时性能不会下降,本发明引入了针对不同子 载波间隔配置不同的预编码粒度。比如15kHz的预编码粒度为2个RB,30kHz的预编码粒度为1个RB,如图15所示。
需要说明的是,以上内容以同步信号、参考信号和数据信道的部分配置进行了说明,在本发明实施例中还可以对物理信道或物理信号中的其他信道或信号进行配置,以实现多参数系统采用多参数协调的数据传输。
图16为本发明实施例提供的一种系统,该系统可以支持多参数传输数据,其中多参数可以包括传输数据时采用的子载波间隔(sub-carrier spacing,SC),循环前缀(Cyclic Prefix,CP)的长度、子帧长度、资源块(Resource blocks,RB)等参数信息。可以应用在系统中数据传输的各个物理信道或者物理信号,例如同步信号、参考信号、数据信道以及控制信道等。
如图16所示,该系统1600可以包括发送设备1610和接收设备1620。
发送设备1610与接收设备1620可以通过多个物理信道或多个物理信号传输数据,每个物理信道或者物理信号上可以支持以多个参数传输数据,提高了多参数系统的灵活性。
如图17所示,以一种参数:子载波间隔为例,对本发明实施例进行说明。
在本发明实施例中,该系统1600可以通过支持以多子载波间隔传输数据。可选地,在本发明是实施例中,在发送设备1610与接收设备1620通过物理信道或者物理信号以至少一种子载波间隔传输数据之前,需要先配置物理信道或者物理信号,配置通过物理信道或物理信号传输的数据,以及配置数据映射到的资源,或者说确定多参数系统物理信道或物理信号使用(或传输)的数据,确定多参数系统物理信道或信号的数据映射到的资源。在本发明实施例中,物理信道可以包括数据信道、控制信道等信道;物理信号可以包括同步信号、参考信号,其中同步信号也可以称为同步信道,参考信号也可以称为导频信号或导频信道,由于同步信号与参考信号上传输的数据为序列,该序列不包括来自高层(如:RRC(Radio Resource Control,无线资源控制)层,MAC(Medium Access Control,媒体访问控制)层等)的数据,而物理信道(如数据信道、控制信道)上传输的数据为来自于高层的信息,因此区分为物理信道和物理信号,如同步信号、参考信号等物理信号,数据信道、控制信道等物理信道。
可选地,在本发明实施例中,配置所述多参数系统的物理信号可以包括配置同步信号。
可选地,作为本发明另一实施例,所述配置同步信号包括配置至少一个同步信号,以及通过每个所述同步信号传输第一序列时采用的至少一个所述子载波间隔。
可选地,作为本发明另一实施例,配置至少一个所述同步信号的个数与所述多参数系统所支持的至少一个所述子载波间隔的个数相等,每个所述同步信号支持以一个所述子载波间隔传输数据。
可选地,作为本发明另一实施例,所述配置同步信号还包括:
配置至少一个所述同步信号的个数小于所述多参数系统所支持的至少一个所述子载波间隔的个数,每个所述同步信号支持以至少一个所述子载波间隔发送数据。
可选地,作为本发明另一实施例,根据载波频率或业务类型配置至少一个所述同步信号以及每个所述同步信号传输所述第一序列时所使用的子载波间隔。
可选地,作为本发明另一实施例,配置通过所述同步信号所要传输的所述第一序列。
可选地,作为本发明另一实施例,所述配置所述同步信号所要传输的第一序列,包括:
根据所述同步信号的标识、所述子载波间隔或载波频率中的一种或多种信息确定所述第一序列。
可选地,作为本发明另一实施例,配置所述第一序列映射到频域位置和时域位置。
可选地,作为本发明另一实施例,根据所述同步信号的标识、所述子载波间隔,载波频率配置中的一种或者多种信息确定所述第一序列映射到多个频域位置和时域位置。
可选地,作为本发明另一实施例,所述频域位置包括通过所述同步信号以至少一个所述子载波间隔传输所述第一序列时,所述第一序列映射到的资源块位置和子载波位置;所述时域位置包括所述同步信号的发送周期,通过所述同步信号以至少一个所述子载波间隔传输所述第一序列时,所述第一序列映射到的时间单元,其中,所述时间单元包括第一时间单元、第二时间单元和第三时间单元。
可选地,作为本发明另一实施例,配置同步信号映射到的所述时间单元和所述资源块位置,与所述同步信号的映射关系。
可选地,作为本发明另一实施例,所述配置所述多参数系统的参考信号。
可选地,作为本发明另一实施例,根据所述子载波间隔配置第二序列,所述第二序列为通过所述参考信号以至少一个所述子载波间隔传输的序列。
可选地,作为本发明另一实施例,根据所述子载波间隔或载波频率配置所述多参数系统的物理信道的预编码粒度。
可选地,作为本发明另一实施例,所述根据所述子载波间隔或载波频率配置所述多参数系统的物理信道的预编码粒度,包括:
通过所述所参数系统预定义或者通过信令配置所述物理信道的所述预编码粒度,其中,所述信令包括广播消息、介质访问控制子层协议或物理层控制信道。
需要说明的是,对该系统的配置过程与图1至图14所提供的配置过程相同,为简洁描述,在这里不再赘述。
还需要说明的是,以上系统的配置以配置物理信号中的同步信号为例进行说明,在本发明实施例中,还可以配置系统中的其他物理通道(如数据信道或控制信号等)或者物理信号(参考信号),在本发明实施例中对此不作限制。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种数据传输方法,其特征在于,基于多参数系统的数据传输,所述多参数包括子载波间隔,所述方法包括:
    所述多参数系统通过物理信道或物理信号采用至少一个子载波间隔传输数据。
  2. 根据权利要求1所述的方法,其特征在于,在所述多参数系统通过物理信道或物理信号采用至少一个子载波间隔传输数据之前,所述方法还包括:
    配置所述多参数系统的所述物理信道或所述物理信号,配置通过所述物理信道或所述物理信号传输的所述数据,以及配置所述数据映射到的资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述配置所述多参数系统的物理信号包括配置同步信号。
  4. 根据权利要求3所述的方法,其特征在于,所述配置同步信号包括配置至少一个同步信号,以及通过每个所述同步信号传输第一序列时所使用至少一个所述子载波间隔。
  5. 根据权利要求4任一项所述的方法,其特征在于,根据载波频率或业务类型配置至少一个所述同步信号以及每个所述同步信号传输所述第一序列时所使用的子载波间隔。
  6. 根据权利要求4或5所述的方法,其特征在于,配置至少一个所述同步信号的个数与所述多参数系统所支持的至少一个所述子载波间隔的个数相等,每个所述同步信号支持以一个所述子载波间隔传输数据。
  7. 根据权利要求4或5所述的方法,其特征在于,所述配置同步信号还包括:
    配置至少一个所述同步信号的个数小于所述多参数系统所支持的至少一个所述子载波间隔的个数,每个所述同步信号支持以至少一个所述子载波间隔发送数据。
  8. 根据权利要求2所述的方法,其特征在于,所述配置通过所述物理信号传输的所述数据包括:
    确定通过所述同步信号传输的第一序列。
  9. 根据权利要求8所述的方法,其特征在于,所述配置所述确定通过所述同步信号传输的第一序列,包括:
    根据所述同步信号的标识、所述子载波间隔或载波频率中的一种或多种信息确定所述第一序列。
  10. 根据权利要求2、8或9任一项所述的方法,其特征在于,所述配置所述数据映射到的资源包括:
    确定所述第一序列映射到的资源的位置。
  11. 根据权利要求10所述的方法,其特征在于,所述确定所述第一序列映射到的资源的位置,包括:
    根据所述同步信号的标识、所述子载波间隔,载波频率配置中的一种或者多种信息确定所述第一序列映射到多个可选位置中至少一个位置。
  12. 根据权利要求10或11所述的方法,其特征在于,所述频域位置包括通过所述同步信号以至少一个所述子载波间隔传输所述第一序列时,所述第一序列映射到的资源块位置和子载波位置;所述时域位置包括通过所述同步信号以至少一个所述子载波间隔传输所 述第一序列时,所述第一序列映射到的时间单元,其中,所述时间单元包括第一时间单元、第二时间单元和第三时间单元。
  13. 根据权利要求10-12中任一项所述的方法,其特征在于,配置同步信号映射到的所述时间单元、所述资源块位置和子载波间隔位置,与所述同步信号的映射关系。
  14. 根据权利要求2所述的方法,其特征在于,所述配置所述多参数系统的所述物理信号包括配置所述多参数系统的参考信号。
  15. 根据权利要求14所述的方法,其特征在于,根据所述子载波间隔配置第二序列,所述第二序列为通过所述参考信号以至少一个所述子载波间隔传输的序列。
  16. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    根据所述子载波间隔或载波频率配置所述多参数系统的物理信道的预编码粒度。
  17. 根据权利要求16所述的方法,其特征在于,所述方法包括:所述根据所述子载波间隔或载波频率配置所述多参数系统的物理信道的预编码粒度,包括:
    通过所述所参数系统预定义或者通过信令配置所述物理信道的所述预编码粒度,其中,所述信令包括广播消息、介质访问控制层控制单元或物理层控制信道。
  18. 一种系统,其特征在于,所述系统包括发送设备和接收设备,所述发送设备和所述接收设备支持通过物理信道或物理信号以多参数传输数据。
  19. 根据权利要求18所述的系统,其特征在于,所述多参数包括子载波间隔,所述发送设备和所述接收设备支持通过物理信道或物理信号以多参数传输数据,包括:
    所述发送设备和所述接收设备支持通过物理信道或物理信号以至少一个子载波间隔传输数据。
PCT/CN2017/096651 2016-08-11 2017-08-09 数据传输的方法和系统 WO2018028608A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17838738.7A EP3487241A4 (en) 2016-08-11 2017-08-09 METHOD AND SYSTEM FOR DATA TRANSMISSION
US16/265,654 US10925017B2 (en) 2016-08-11 2019-02-01 Data transmission method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610665453.5A CN107734674B (zh) 2016-08-11 2016-08-11 数据传输的方法和系统
CN201610665453.5 2016-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/265,654 Continuation US10925017B2 (en) 2016-08-11 2019-02-01 Data transmission method and system

Publications (1)

Publication Number Publication Date
WO2018028608A1 true WO2018028608A1 (zh) 2018-02-15

Family

ID=61161723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096651 WO2018028608A1 (zh) 2016-08-11 2017-08-09 数据传输的方法和系统

Country Status (4)

Country Link
US (1) US10925017B2 (zh)
EP (1) EP3487241A4 (zh)
CN (1) CN107734674B (zh)
WO (1) WO2018028608A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116488782A (zh) * 2016-09-23 2023-07-25 荣耀终端有限公司 一种资源映射方法、发送端以及接收端
CN106455040B (zh) * 2016-11-30 2019-12-10 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端
EP3767868B1 (en) * 2017-01-06 2024-01-24 Sony Group Corporation Wireless telecommunications apparatuses and methods
CA3050335C (en) * 2017-01-17 2021-08-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method and apparatus
US11575554B2 (en) * 2017-08-11 2023-02-07 Apple Inc. Scrambling sequence initial seed configuration for reference signals, data, and control channel for new radio
CN110492969B (zh) * 2018-05-11 2022-04-29 中兴通讯股份有限公司 信号发送、接收方法及装置
CN114391291A (zh) * 2019-10-17 2022-04-22 华为技术有限公司 通信方法和通信装置
CN116250325A (zh) * 2020-10-09 2023-06-09 华为技术有限公司 用于无线通信的灵活参考符号模式

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065563A1 (ko) * 2012-10-22 2014-05-01 엘지전자 주식회사 사용자기기의 무선 프레임 설정 방법 및 사용자기기와, 기지국의 무선 프레임 설정 방법과 기지국
WO2015131827A1 (en) * 2014-03-07 2015-09-11 Huawei Technologies Co., Ltd. Systems and methods for ofdm with flexible sub-carrier spacing and symbol duration
CN105191195A (zh) * 2013-01-21 2015-12-23 瑞典爱立信有限公司 用于使用动态传输参数的通信的方法和布置
WO2016040290A1 (en) * 2014-09-08 2016-03-17 Interdigital Patent Holdings, Inc. Systems and methods of operating with different transmission time interval (tti) durations

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9137075B2 (en) * 2007-02-23 2015-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Subcarrier spacing identification
WO2013125887A1 (ko) * 2012-02-24 2013-08-29 엘지전자 주식회사 전송 방법 및 전송 장치
US10075972B2 (en) * 2013-10-28 2018-09-11 Lg Electronics Inc. Method and apparatus for transmitting and receiving signal for device-to-device terminal in wireless communication system
CN107210810B (zh) * 2015-02-11 2020-09-29 苹果公司 使用统一的灵活5g空中接口的设备、系统和方法
CN107567698B (zh) * 2015-05-08 2021-04-13 苹果公司 可配置同步信号和信道设计的设备和方法
EP3313136B1 (en) * 2015-06-19 2020-08-19 LG Electronics Inc. V2x message transmission method performed by terminal in wireless communication system, and terminal using same
MY182312A (en) * 2015-06-22 2021-01-19 Ericsson Telefon Ab L M Blanking pattern indication for resource utilization in cellular radio communication
JP6755298B2 (ja) * 2015-07-06 2020-09-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ワイヤレスシステムにおけるデータ送信のためのリソース割り当て
US11533675B2 (en) * 2015-07-27 2022-12-20 Apple Inc. System and methods for system operation for narrowband-LTE for cellular IoT
WO2017062050A1 (en) * 2015-10-07 2017-04-13 Intel IP Corporation Dynamically beamformed control channel for beamformed cells
WO2017078786A1 (en) * 2015-11-03 2017-05-11 Intel IP Corporation Short transmission time interval (tti)
EP3449673B1 (en) * 2016-04-26 2019-12-11 Telefonaktiebolaget LM Ericsson (PUBL) User equipment camping in wireless systems
CN109076034B (zh) * 2016-06-20 2020-08-25 Oppo广东移动通信有限公司 信息传输方法和装置
EP3338385A4 (en) * 2016-08-02 2019-05-15 Nec Corporation METHODS AND APPARATUSES FOR NUMBEROLOGY MULTIPLEXING

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065563A1 (ko) * 2012-10-22 2014-05-01 엘지전자 주식회사 사용자기기의 무선 프레임 설정 방법 및 사용자기기와, 기지국의 무선 프레임 설정 방법과 기지국
CN105191195A (zh) * 2013-01-21 2015-12-23 瑞典爱立信有限公司 用于使用动态传输参数的通信的方法和布置
WO2015131827A1 (en) * 2014-03-07 2015-09-11 Huawei Technologies Co., Ltd. Systems and methods for ofdm with flexible sub-carrier spacing and symbol duration
WO2016040290A1 (en) * 2014-09-08 2016-03-17 Interdigital Patent Holdings, Inc. Systems and methods of operating with different transmission time interval (tti) durations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Anaysis and Comparison on Numerology Candidates", 3GPP TSG-RAN WG1 MEETING#85 R1-164031, 16 May 2016 (2016-05-16), XP051089780 *

Also Published As

Publication number Publication date
EP3487241A1 (en) 2019-05-22
US10925017B2 (en) 2021-02-16
CN107734674B (zh) 2023-09-01
CN107734674A (zh) 2018-02-23
EP3487241A4 (en) 2019-07-24
US20190166569A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
US11637721B2 (en) Methods and arrangements for channel estimation
WO2018028608A1 (zh) 数据传输的方法和系统
US11128510B2 (en) Data transmission method, user equipment, and network side device
CN108809600B (zh) 一种通信方法、系统及相关设备
CN108667579B (zh) 一种数据发送方法、相关设备及系统
JP6736687B2 (ja) データ伝送方法、ネットワーク側装置および端末装置
WO2018082404A1 (zh) 资源指示方法、相关设备及系统
US20170353280A1 (en) Apparatus and method for transmitting muting information, and apparatus and method for acquiring channel state using same
CN113206731B (zh) 传输参考信号的方法和通信设备
EP2560449B1 (en) Method and device for sending sounding reference signals in multi-antenna system
KR101689940B1 (ko) 플렉시블한 기준 신호 구성을 지원하도록 시그널링하기 위한 방법 및 장치
CA2858514A1 (en) Initializing reference signal generation in wireless networks
CN104937873A (zh) 无线通信系统中的方法和节点
WO2011062066A1 (en) Method of notifying resource allocation for demodulation reference signals
WO2018059157A1 (zh) 参考信号传输方法、设备及系统、存储介质
CN109151886B (zh) 一种用于上报的方法、设备和系统
EP3573274A1 (en) Communication method and network device
WO2023212671A1 (en) Srs enhancement for multi-trp coherent joint transmission operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838738

Country of ref document: EP

Effective date: 20190212