WO2011135737A1 - Heating apparatus and cooling apparatus - Google Patents

Heating apparatus and cooling apparatus Download PDF

Info

Publication number
WO2011135737A1
WO2011135737A1 PCT/JP2010/064495 JP2010064495W WO2011135737A1 WO 2011135737 A1 WO2011135737 A1 WO 2011135737A1 JP 2010064495 W JP2010064495 W JP 2010064495W WO 2011135737 A1 WO2011135737 A1 WO 2011135737A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
unit
circuit board
printed circuit
heating
Prior art date
Application number
PCT/JP2010/064495
Other languages
French (fr)
Japanese (ja)
Inventor
加賀谷智丈
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Priority to JP2012512621A priority Critical patent/JP5158288B2/en
Publication of WO2011135737A1 publication Critical patent/WO2011135737A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/012Soldering with the use of hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/203Fluxing, i.e. applying flux onto surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • B23K3/085Cooling, heat sink or heat shielding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits

Definitions

  • the present invention has a blowout port that blows out gas heated by a heater or gas cooled by a cooling unit, and a plurality of nozzles and blowout hole plates that blow the gas blown out from the blowout port onto a conveyed object such as a printed circuit board.
  • the present invention relates to a heating device and a cooling device including
  • a heating furnace such as a reflow apparatus is used.
  • a reflow apparatus has a preheating zone, a main heating zone, and a cooling zone in a tunnel-like muffle, and a heater for heating is provided in the preheating zone and the main heating zone, and a water cooling pipe is provided in the cooling zone.
  • a cooling mechanism including a cooling fan or the like is provided.
  • the heater used in this reflow apparatus includes an infrared heater and a hot air blowing heater.
  • the infrared heater emits infrared rays when the infrared heater is energized.
  • the solder paste applied to the soldering portion is melted by the emitted infrared rays to perform soldering.
  • the infrared heater has a problem that it is difficult to sufficiently heat a soldered portion that becomes a shadow of an electronic component because infrared rays have straightness.
  • the hot air blowing heater convects hot air heated by the heater with a fan driven by a motor in the heating zone of the reflow device. For this reason, hot air blowing heaters can heat the entire printed circuit board evenly where hot air is in the shadows of electronic components and narrow gaps (for example, through holes). Adopted in the device.
  • the hot air blowing heaters provided in the reflow apparatus include a heater that blows hot air from a wide outlet and a heater that blows hot air from many holes.
  • the former heater has a large opening area at the air outlet, so the flow rate of hot air is relatively slow, and the heating efficiency when hot air collides with the printed circuit board is low.
  • the latter heater the flow rate of hot air is faster than that of the former heater, and since there are many holes, there is no shortage of hot air flow. For this reason, the latter heater has high heating efficiency.
  • the reflow apparatus often uses a heater that blows hot air from a large number of holes.
  • the following description regarding the heater is a hot air blowing heater having a plurality of holes.
  • a large number of hot air blowing heaters are installed on the upper and lower parts of the printed circuit board conveyance part in the preheating zone and the main heating zone, respectively.
  • the preheating zone is composed of 5 zones
  • a total of 10 hot air blowing heaters are installed, 5 each above and below.
  • the main heating zone is composed of three zones
  • a total of six hot air blowing heaters are installed, three on the top and one on the bottom.
  • a total of 16 hot-air blowing heaters are installed in the upper and lower 8 pieces.
  • the number of heaters to be used is appropriately selected according to the type of electronic component to be soldered to the printed circuit board, that is, according to the temperature profile of the heating object.
  • the temperature is usually set to be lower than that of the main heating zone or the amount of hot air is reduced.
  • the printed circuit board is heated slowly, the printed circuit board gets used to heat, and the solvent in the solder paste is volatilized.
  • the printed circuit board accustomed to heat by preheating and the solvent in the solder paste is volatilized is transported to the main heating zone of the reflow device and heated.
  • the temperature is usually set higher than that in the preheating zone, or the amount of hot air is increased to heat.
  • the temperature of the printed circuit board is increased, the soldering is performed by heating the printed circuit board in a short time and melting the solder powder in the solder paste.
  • a desired temperature profile suitable for the printed circuit board can be set by controlling the flow rate and temperature of the hot air blown from each hot air blowing heater by the control means.
  • the temperature of the hot air is controlled by a temperature controller, and the flow rate of the heated hot air blown into the muffle is controlled by changing the output of a fan motor that rotates the fan.
  • an inverter motor that can easily control the output of the fan motor is generally used as this motor.
  • Patent Document 1 discloses a soldering apparatus that blows hot air from a large number of holes.
  • this soldering apparatus a large number of holes are formed in the reflow panel, and hot air heated by a heater blows out from the numerous holes.
  • Patent Document 2 discloses an arrangement structure of gas blowing holes. In this array structure, uniform heating is performed by shifting the array in the width direction.
  • FIG. 14 shows a conventional reflow device in which the vertical axis is the temperature (° C.) of the printed circuit board and the horizontal axis is the elapsed time (transport time) (seconds) after the printed circuit board is inserted into the reflow device (patent)
  • the printed circuit board passes through the preheating zone A with a transfer time of about 70 seconds to about 230 seconds, passes through the main heating zone B with a transfer time of about 230 seconds to about 280 seconds, Pass the cooling zone C after 280 seconds.
  • the temperature of the printed circuit board is finely raised (about 0.5 to several degrees).
  • the printed circuit board includes a first transport guide (hereinafter referred to as “transport guide L ⁇ b> 1”) and a second transport guide (hereinafter referred to as “transport guide L ⁇ b> 2”).
  • the hot air outlet 20 is composed of a plurality of circular holes in a lattice shape in the transport direction E and the direction orthogonal to the transport direction E.
  • a plurality of circular holes are arranged at a pitch N with respect to the conveying direction E, and a plurality of circular holes are also arranged at a predetermined pitch interval in a direction orthogonal to the conveying direction E.
  • the printed circuit board is transported in the transport direction E, and hot air is continuously applied to the printed circuit board in the transport direction E.
  • hot air is not blown to a portion corresponding to a portion where the hot air outlet 20 does not exist on the printed circuit board. That is, as the printed board is transported, the density of the hot air blown onto the printed board becomes lighter and darker (difference in the amount of hot air hits), so that the temperature of the printed board in the direction perpendicular to the transport direction E is uniform. There was a problem of not becoming.
  • Patent Document 2 discloses a heating device that performs uniform heating by shifting the arrangement in the width direction, but also in this heating device, hot air is blown between the hot air outlet and the hot air outlet. As a result, the strength of the temperature rise of the printed circuit board tends to be strong. As shown in FIG. 14, it can be seen that the temperature of the printed circuit board easily rises and falls due to the shape of the temperature profile of the heating device.
  • the fine temperature rise and fall of the printed circuit board as shown in FIG. 14 does not become a big problem when soldering the printed circuit board, but it is not completely free from the possibility of soldering failure.
  • the strength of the temperature of the printed circuit board is likely to increase and decrease, and there is a similar problem.
  • the present invention solves such problems, and heats or cools the entire printed circuit board uniformly and stably without causing the temperature of the printed circuit board to rise or fall finely during heating or cooling of the printed circuit board. It is an object of the present invention to provide a heating device and a cooling device that can be used.
  • a heating device includes a transport unit that transports a transported object in a predetermined transport direction, a heating unit that heats a gas, and a blowout port that blows out the gas heated by the heating unit. And a plurality of nozzles for blowing the gas blown from the blowout outlet onto the conveyed product conveyed by the conveying unit, and the plurality of nozzles are arranged in a staggered manner at a predetermined angle with respect to the conveying direction. It is characterized by this.
  • the heating device includes a transport unit that transports the transported object in a predetermined transport direction, a heating unit that heats the gas, and a blowout port that blows out the gas heated by the heating unit. And a plurality of nozzles for blowing the gas blown from the outlet onto the conveyed product conveyed by the conveying unit.
  • a transport unit that transports the transported object in a predetermined transport direction
  • a heating unit that heats the gas
  • a blowout port that blows out the gas heated by the heating unit.
  • a plurality of nozzles for blowing the gas blown from the outlet onto the conveyed product conveyed by the conveying unit for example, two or four of the adjacent nozzles are spaced apart from each other by the same distance, and are arranged in a staggered manner at a predetermined angle with respect to the conveyance direction of the conveyed product. Thereby, gas can be sprayed now uniformly on the whole conveyed product.
  • the heating device includes a transport unit that transports the transported object in a predetermined transport direction, a heating unit that heats the gas, and a blowout hole that blows out the gas heated by the heating unit.
  • a blow hole plate that blows the blown gas onto a conveyed product conveyed by the conveyance unit, and the blow holes of the blow hole plate are arranged in a staggered manner at a predetermined angle with respect to the conveyance direction.
  • the heating device includes a transport unit that transports the transported object in a predetermined transport direction, a heating unit that heats the gas, and a blowout hole that blows out the gas heated by the heating unit.
  • a blowout hole plate that blows the gas blown out from the holes onto the conveyed product conveyed by the conveyance unit.
  • the blowing holes of the blowing hole plate are arranged in a staggered manner at a predetermined angle with respect to the transport direction. Thereby, gas can be sprayed now uniformly on the whole conveyed product.
  • the cooling device has a transport unit that transports a transported object in a predetermined transport direction, a cooling unit that cools the gas, and a blowout port that blows out the gas cooled by the cooling unit. And a plurality of nozzles for blowing the gas to the conveyed product conveyed by the conveying unit, and the plurality of nozzles are arranged in a staggered manner at a predetermined angle with respect to the conveying direction.
  • the cooling device includes a transport unit that transports a transported object in a predetermined transport direction, a cooling unit that cools the gas, and a blowout port that blows out the gas heated by the cooling unit. And a plurality of nozzles for blowing the gas blown from the outlet onto the conveyed product conveyed by the conveying unit.
  • a transport unit that transports a transported object in a predetermined transport direction
  • a cooling unit that cools the gas
  • a blowout port that blows out the gas heated by the cooling unit.
  • a plurality of nozzles for blowing the gas blown from the outlet onto the conveyed product conveyed by the conveying unit for example, two or four of the adjacent nozzles are spaced apart from each other by the same distance, and are arranged in a staggered manner at a predetermined angle with respect to the conveyance direction of the conveyed product. Thereby, gas can be sprayed now uniformly on the whole conveyed product.
  • the cooling device includes a transport unit that transports a transported object in a predetermined transport direction, a cooling unit that cools the gas, and a blowout hole that blows out the gas cooled by the cooling unit.
  • a blow hole plate that blows the blown gas onto a conveyed product conveyed by the conveyance unit, and the blow holes of the blow hole plate are arranged in a staggered manner at a predetermined angle with respect to the conveyance direction.
  • the cooling device includes a transport unit that transports a conveyed product in a predetermined transport direction, a cooling unit that cools the gas, and a blowout hole that blows out the gas cooled by the cooling unit.
  • a blowout hole plate that blows the gas blown out from the holes onto the conveyed product conveyed by the conveyance unit.
  • the blowing holes of the blowing hole plate are arranged in a staggered manner at a predetermined angle with respect to the transport direction. Thereby, gas can be sprayed now uniformly on the whole conveyed product.
  • the uniformly heated gas can be sprayed on the entire conveyed object, so that the temperature of the conveyed object does not rise and fall during the heating of the conveyed object, so that the entire conveyed object can be uniformly distributed. It can be heated stably. As a result, the heating efficiency can be improved, and the possibility of occurrence of poor soldering can be reduced.
  • the uniformly cooled gas can be sprayed on the entire conveyed object, so that the temperature of the conveyed object does not rise and fall during the cooling of the conveyed object, and the entire conveyed object can be evenly distributed. It can be cooled stably. As a result, the cooling efficiency can be improved, and the possibility of occurrence of poor soldering can be reduced.
  • the arrangement of the plurality of air outlets in the present invention in a zigzag pattern means that a plurality of air outlets are arranged (row arrangement) with a predetermined pitch N with respect to the direction of conveyance of the printed circuit board and in the direction of conveyance of the printed circuit board.
  • N the row arrangement shifted by a half pitch (N / 2) in the transport direction is further shifted by a predetermined pitch M in the direction perpendicular to the transport direction of the printed circuit board. It is.
  • the adjacent row arrangements are arranged with a half-pitch shift, so that the odd-numbered columns and the even-numbered columns are matched with each other, and the odd-numbered and even-numbered columns are arranged with a half-pitch shifted in the transport direction.
  • a staggered arrangement in locations where there are no air outlets, the hot air from the three surrounding air outlets is complemented, so the density of the hot air is also reduced.
  • the staggered arrangement is made at a predetermined angle with respect to the transport direction, a portion where there is no air outlet, that is, a blank area for heating or cooling disappears as the printed circuit board is transported. The strength of heating or cooling disappears.
  • the concentration of hot air or cold air blown onto the printed circuit board becomes more uniform, and the temperature of the printed circuit board does not rise or fall finely during heating or cooling of the printed circuit board. can do.
  • the hot air or cold air blown to the printed circuit board becomes almost uniform at any location, Heating or cooling can be performed more efficiently.
  • FIG. 2 is a perspective view illustrating a configuration example of a nozzle device 1.
  • FIG. 2 is a plan view showing a configuration example of a nozzle device 1.
  • FIG. It is sectional drawing which shows the structural example of the nozzle apparatus 1 cut
  • 4 is a cross-sectional perspective view illustrating a configuration example of a blowing nozzle 2.
  • FIG. 3 is an exploded perspective view showing an assembly example of the nozzle device 1.
  • FIG. 3 is a front sectional view showing a configuration example of a preheater section 33.
  • FIG. 3 is a front sectional view showing a configuration example of a preheater section 33.
  • FIG. 3 is explanatory drawing which shows the temperature profile example of the conventional reflow apparatus. It is explanatory drawing which shows the example of arrangement
  • the reflow apparatus 100 is an example of a heating apparatus, and includes a main body 101 and a conveyor 102 that is an example of a conveyance unit that conveys a conveyance object such as a printed circuit board.
  • the main body 101 has three zones: a preheating zone A, a main heating zone B, and a cooling zone C.
  • the printed circuit board to be soldered by the reflow apparatus 100 is conveyed by the conveyor 102 in the order of the preheating zone A, the main heating zone B, and the cooling zone C.
  • the printed circuit board is held between conveyance guides L1 and L2 of a conveyor 102, which will be described later with reference to FIG.
  • the preheating zone A is an area for slowly heating the printed circuit board and the electronic components mounted on the printed circuit board to acclimatize to heat, and is an area for volatilizing the solvent in the solder paste.
  • the preheating zone A differs depending on the solder composition, the type of printed circuit board, and the like, but is generally set to 150 to 180 degrees with lead-free paste.
  • the main heating zone B is an area where the temperature is higher than that of the preheating zone A and is set to 240 degrees with a lead-free paste, and soldering is performed by melting the solder powder in the solder paste.
  • the cooling zone C is an area for cooling the soldered printed circuit board.
  • a first heater unit (hereinafter referred to as “heater unit 103”), which is an example of a heating unit, is arranged on each of the five zones above and below the conveyor 102.
  • a nozzle device 1 is provided.
  • a second heater unit (hereinafter referred to as “heater unit 104”), which is an example of a heating unit, is arranged in three zones above and below the conveyor 102.
  • a nozzle device 1 is provided.
  • the heater units 103 and 104 are an example of a heating unit, and include a heating wire heater (not shown), a fan, a fan motor that rotates the fan, and the like.
  • the heater units 103 and 104 reflow the heated gas by, for example, heating a gas (for example, an inert gas such as air or nitrogen gas) with a heating wire heater and driving a fan motor to rotate the fan. It blows out as hot air into the apparatus 100.
  • the flow rate of hot air blown from the heaters 103 and 104 is controlled by the rotational speed of the fan motor.
  • the temperature of the heater unit 104 is set higher than the temperature of the heater unit 103.
  • a cooling unit 105 which is an example of a cooling device, is disposed one zone at a time above and below the conveyor 102, and each cooling unit 105 is provided with a nozzle device 1.
  • the cooling unit 105 includes a cooling mechanism including a water cooling pipe (not shown), a fan, a fan motor that rotates the fan, and the like.
  • the cooling unit 105 cools the gas by flowing water into the pipe of the water-cooled pipe to cool the pipe and bringing the gas into contact with the pipe. Then, the cooling unit 105 drives the fan motor to rotate the fan, and the gas cooled by the pipe is blown out from the nozzle device 1 as cold air into the reflow device 100 to cool the soldered printed circuit board.
  • the cooling mechanism may be configured only by air cooling with a fan by removing the water cooling pipe.
  • the number of zones of the preheating zone A and the main heating zone B, the number of heaters of the heater units 103 and 104, and the vertical arrangement of the heaters are not limited to this example, and can be changed as appropriate.
  • the nozzle device 1 includes a plurality of blowing nozzles 2, a nozzle cover 3, a mounting plate 4, and a fixed plate 5.
  • a blow-out port 22 that blows out the gas heated by the heaters 103 and 104 described above is provided at the tip of the blow-out nozzle 2, and the blow-out nozzle 2 transports the gas blown from the blow-out port 22 in the transport direction E. Sprayed onto a printed circuit board (not shown).
  • the plurality of blowing nozzles 2 are arranged in a staggered manner with an angle ⁇ with respect to the transport direction E, with the adjacent blowing nozzles 2 being separated from each other by the same distance L.
  • an equilateral triangle having a distance L on one side is drawn from a line segment connecting adjacent blowing nozzles 2.
  • the angle ⁇ is desirably 15 degrees or less.
  • blowout ports 22 of the adjacent blowout nozzles 2 are arranged so as to form an equilateral triangle as described above, if the adjacent blowout nozzles 2 are divided into a plurality of blocks, the combination of the blocks becomes easy. In addition, the manufacturing cost of the blowout nozzle and the assembly cost of the nozzle device can be reduced.
  • the nozzle nozzle 3 is covered with the blowing nozzle 2.
  • the nozzle cover 3 is provided with a suction port 3a and a blowing nozzle hole 3b close to each other.
  • the blowing nozzle hole 3 b is fitted to the tip of the blowing nozzle 2.
  • the suction port 3a has an oval shape, and sucks in gas that is stored in the muffle or gas that is blown out from the blowing nozzle 2 and collides with the printed circuit board to be reflected.
  • the gas reflected on the printed board may interfere with the high temperature gas blown out from the air outlet 22.
  • the gas reflected on the printed circuit board is deprived of heat by the printed circuit board and the temperature of the gas is lowered and interferes with the gas blown out from the air outlet 22, the temperature of the gas blown out from the air outlet 22 is lowered. In some cases, the gas blowing direction from the air outlet 22 may be disturbed. Therefore, the suction port 3a is provided, and the gas reflected on the printed board is immediately sucked into the suction port 3a. Thereby, the gas reflected on the printed circuit board does not interfere with the gas blown out from the outlet 22.
  • a mounting plate 4 is provided below the blowing nozzle 2 and the nozzle cover 3.
  • the mounting plate 4 is provided with a nozzle mounting hole 4b and a fitting groove 4d.
  • the heater plate mounting hole 4a is provided in the outer peripheral portion of the mounting plate 4, and the nozzle device 1 is mounted to the heater units 103 and 104 by screwing screws or the like into the heater plate mounting hole 4a.
  • suction ports 4 c are provided on both sides of the mounting plate 4. The suction port 4 c is for returning the gas in the muffle sucked by the suction port 3 a to the heater portions 103 and 104.
  • the fixed plate 5 is attached to the lower part of the attachment plate 4 with the blowing nozzle 2 supported.
  • the fixing plate 5 fixes the blowing nozzle 2 in the blowing nozzle hole 3 b of the nozzle cover 3.
  • the nozzle cover 3 and the mounting plate 4 are fixed by a known method such as screwing.
  • the fixed plate 5 has a fixed plate hole 5 a at a position corresponding to the air outlet 22.
  • the fixed plate hole 5 a is a hole through which the gas heated by the heater units 103 and 104 is passed and supplied to the blowing nozzle 2.
  • the nozzle device 1 configured as described above blows the gas heated by the heaters 103 and 104 from the fixed plate hole 5a of the fixed plate 5 into the muffle of the reflow device 100 through the outlet 22 of the nozzle 2.
  • the gas is blown onto the printed circuit board to heat the printed circuit board to a predetermined temperature.
  • the gas sprayed and reflected on the printed circuit board is refluxed to the heater portions 103 and 104 through the suction port 3 a of the nozzle cover 3 and the suction port 4 c of the mounting plate 4.
  • the refluxed gas is heated again by the heaters 103 and 104, and the heated hot air is repeatedly circulated from the blowing nozzle 2 into the muffle.
  • the suction port 3 a is blown out from the blowout port 22 and sucks the gas reflected by colliding with the printed circuit board. Therefore, the gas reflected on the printed circuit board obstructs the gas blown out from the blowout port 22. Can be prevented. As a result, in the nozzle device 1, the gas reflected on the printed circuit board does not interfere with the gas reflected on the printed circuit board by the gas blown out from the air outlet 22, and the temperature of the gas is lowered, or the gas blowing direction is changed. It can prevent being disturbed.
  • the blowout nozzle 2 includes a nozzle body 21 and a blowout port 22.
  • the nozzle body 21 has a convex portion 21a at the lower end, and is formed of a metal material having good thermal conductivity such as aluminum or copper.
  • the convex portion 21 a is for fitting into the nozzle mounting hole 4 b of the mounting plate 4.
  • the nozzle body 21 is provided with a gas flow path 24.
  • the gas flow path 24 flows the gas heated by the heaters 103 and 104 and the gas cooled by the cooling unit 105 to the outlet 22 at the tip of the nozzle.
  • the blowout nozzle 2 configured in this manner allows the gas heated by the heaters 103 and 104 and the gas cooled by the cooling unit 105 to flow from the fixed plate hole 5a of the fixed plate 5 to the gas flow path 24 and the blowout nozzle 2.
  • the gas is blown into the muffle of the reflow apparatus 100 through the outlet 22 and blown to the printed circuit board.
  • the blowout nozzle 2 is provided with a blowout port 22 in the nozzle body 21.
  • the air outlet 22 may be formed by making the nozzle body 21 by a die casting method or the like and then drilling it with a drill or the like.
  • the nozzle body 21 and the air outlet 22 may be simultaneously formed by a die casting method or the like. You may produce by.
  • FIG. 7 in order to make the drawing easier to see, some blowout nozzles 2 are omitted.
  • the nozzle cover 3 is provided with a blowing nozzle hole 3b and a suction port 3a.
  • the blowout nozzle hole 3 b has a diameter one size larger than that of the blowout port 22 in order to fit so as to surround the blowout port 22.
  • the suction port 3 a has an oval shape, and is formed in the vicinity of the blowing nozzle hole 3 b in order to be positioned in the vicinity of the blowing nozzle 2.
  • the suction port 3a and the blowing nozzle hole 3b may be formed by drilling the nozzle cover 3 with a drill or the like, or may be formed by punching the nozzle cover 3 with a press die. Good.
  • the mounting plate 4 is provided with a heater mounting hole 4a, a nozzle mounting hole 4b and a suction port 4c.
  • the nozzle mounting hole 4b is smaller than the outer periphery of the convex portion 21a in order to fix the convex portion 21a at the rear end of the blowing nozzle 2. Further, when the blowing nozzle 2 is inserted into the nozzle mounting hole 4b in a press-fit manner, the blowing nozzle 2 can be temporarily fixed to the mounting plate 4 when the nozzle device 1 is assembled. Work becomes easier when installing.
  • the suction port 4 c is for returning the gas sucked from the suction port 3 a of the nozzle cover 3 to the heater portions 103 and 104.
  • the heater mounting hole 4a, the nozzle mounting hole 4b, and the suction port 4c may be formed by drilling the mounting plate 4 with a drill as in the nozzle cover 3 described above. It may be formed by punching and punching.
  • the mounting plate 4 is provided with a fitting groove 4d on the outer periphery thereof.
  • the fitting groove 4 d is for fitting the outer peripheral portion of the nozzle cover 3 that covers the upper portion of the mounting plate 4.
  • the nozzle groove 3 can be assembled without being displaced from the mounting plate 4 by the fitting groove 4d.
  • the fixing plate 5 is provided with a fixing plate hole 5a.
  • the fixed plate hole 5a is a hole provided for supplying the gas heated by the heaters 103 and 104 to the lower part of the blowout port 22 and blowing hot air from the blowout port 22 into the muffle of the reflow device 100.
  • the fixed plate hole 5a may be formed by drilling the fixed plate 5 with a drill in the same manner as the nozzle cover 3 and the mounting plate 4 described above, or by punching the fixed plate 5 with a press die. You may form by doing.
  • the production methods of the nozzle cover 3, the mounting plate 4 and the fixing plate 5 can be changed as appropriate.
  • the blowing nozzle 2 Assuming that the blowing nozzle 2, the nozzle cover 3, the mounting plate 4 and the fixing plate 5 are formed as described above, first, the blowing nozzle is inserted into the nozzle mounting hole 4b of the mounting plate 4 as shown in FIG. 2 is attached from the upper side of the blower outlet 22. Then, the protruding portion 21a at the rear end of the blowing nozzle 2 comes into contact with the nozzle mounting hole 4b, and the blowing nozzle 2 and the mounting plate 4 are fitted.
  • the fixed plate 5 is attached to the lower part of the blowout nozzle 2 and the mounting plate 4 fitted.
  • the fixing plate 5 is attached to the mounting plate 4 in a state of supporting the blowing nozzle 2 by screwing screws into screw holes (not shown) of the fixing plate 5, and the blowing nozzle 2, the mounting plate 4 and the fixing plate 5. are integrated.
  • the upper part of the integrated blowing nozzle 2, mounting plate 4 and fixed plate 5 is covered with a nozzle cover 3. Since the fitting groove 4 d is provided in the mounting plate 4, the nozzle cover 3 may be displaced from the mounting plate 4 by fitting the outer peripheral portion of the nozzle cover 3 to the mounting plate 4 by the fitting groove 4 d. Absent.
  • the nozzle cover 3 and the mounting plate 4 are fixed by a known method such as screwing. By such a method, the nozzle device 1 is easily assembled.
  • the blowing nozzle 2, the mounting plate 4, the fixed plate 5 and the nozzle cover 3 may be joined by welding. Further, the mounting plate 4 may be deleted by screwing the blowing nozzle 2 directly to the nozzle cover 3 and fixing the blowing nozzle 2 to the nozzle cover.
  • the assembly method of the nozzle device 1 is not limited to this example, and can be changed as appropriate.
  • FIG. 8 shows the temperature profile of the reflow apparatus 100 where the vertical axis is the temperature (° C.) of the printed circuit board and the horizontal axis is the elapsed time (transport time) (seconds) after the printed circuit board is inserted into the reflow apparatus.
  • the printed circuit board passes through the preheating zone A with a transport time of about 70 seconds to about 230 seconds, passes through the main heating zone B with a transport time of about 230 seconds to about 285 seconds, It passes through the cooling zone C after 285 seconds.
  • the conventional reflow apparatus shows a slight increase in the temperature of the printed circuit board in the preheating zone A and the main heating zone B.
  • the temperature of the printed circuit board does not rise and fall finely in the preheating zone A and the main heating zone B, and draws a smooth waveform.
  • the reflow apparatus 100 can prevent the gas blown out from the plurality of blowout nozzles 2 and can blow the gas uniformly over the entire printed circuit board. Thereby, the whole printed circuit board can be heated uniformly and stably. As a result, the heating efficiency of the printed circuit board can be improved, and the possibility of occurrence of poor soldering can be reduced.
  • the conveyor 102 that transports the printed circuit board in the predetermined transport direction E, and the heater unit that is provided on the upper and lower portions of the conveyor 102 and heats the gas.
  • 103 and 104 and a plurality of blowout nozzles for blowing the gas heated by the heaters 103 and 104 to blow the gas blown from the blowout port 22 onto the printed circuit board conveyed by the conveyor 102. 2 is provided.
  • the plurality of blowing nozzles 2 are arranged in a staggered manner at a predetermined angle ⁇ ( ⁇ is 15 degrees or less) with respect to the conveyance direction E of the printed circuit board. As a result, the gas can be sprayed uniformly over the entire printed circuit board.
  • the reflow apparatus 100 can uniformly and stably heat the entire printed circuit board without causing the temperature of the printed circuit board to rise and fall finely during the heating of the printed circuit board (see FIG. 8). As a result, the heating efficiency of the print can be improved, and the possibility of occurrence of soldering defects can be reduced.
  • adjacent blowing nozzles are spaced apart from each other by the same distance L, and are arranged in a staggered manner at a predetermined angle with respect to the transport direction.
  • the present invention is not limited to this. As shown in FIG. 9, they may be arranged in a staggered manner at a predetermined angle ⁇ with respect to the transport direction E.
  • the printed circuit board is held between the conveyance guides L1 and L2 and conveyed in the direction indicated by the conveyance direction E.
  • an isosceles triangle having a distance M1 as a base and a distance M2 as two sides is drawn from a line connecting adjacent blowing nozzles.
  • the angle ⁇ is desirably 15 degrees or less.
  • the reflow apparatus which is an example of the heating apparatus has been described in detail.
  • the present invention is not limited to this and can be applied to a cooling apparatus.
  • the blowout hole plate 10 includes a plate body portion 11, a blowout hole 12, a suction port 13, and a mounting hole 14.
  • the blowout hole plate 10 is a substitute for the nozzle device 1 shown in the first embodiment described above, and has no nozzle shape. By making the plate shape, the manufacturing cost can be reduced. .
  • the blowout hole plate 10 is attached via the attachment hole 14.
  • the plate body 11 is provided with a blowout hole 12, a suction port 13, and a mounting hole 14.
  • the blowout holes 12 are arranged in a staggered manner at a predetermined angle with respect to the direction in which the conveyor 102 transports the printed circuit board. The gas heated by the heaters 103 and 104 shown in FIG. 1 and the gas cooled by the cooling unit 105 are blown out from the blowout holes 12.
  • the gas blown out from the blowout hole 12 collides with, for example, a printed circuit board that has been conveyed directly above or below the blowout hole plate 10. Then, the gas is reflected by the printed circuit board and sucked by the suction port 13. Thereby, the gas reflected from the printed circuit board does not interfere with the gas blown out from the blowout hole 12.
  • the suction port 13 is provided with a net so that particles and the like do not enter the preheater portion 33.
  • blowing hole plate 10 which concerns on 2nd Embodiment, it is the blowing hole plate which has the blowing holes 12 arrange
  • the heated or cooled gas can be sprayed uniformly over the entire printed circuit board.
  • the manufacturing cost can be reduced as compared with the nozzle device 1 described in the first embodiment.
  • a flow soldering apparatus 30 including the blowout hole plate 10 described in the second embodiment will be described.
  • Components having the same names and reference numerals as those in the first and second embodiments have the same functions, and thus description thereof is omitted.
  • the flow solder device 30 is an example of a heating device, and includes a main body case 31, a transport unit 32, a preheater unit 33, a jet solder tank 34, and a cooling unit 35.
  • the main body case 31 covers the transport section 32, the preheater section 33, the jet solder tank 34 and the cooling section 35, and protects the printed circuit board (not shown) from being contaminated by particles such as dust from the outside.
  • the transport unit 32 transports the printed circuit board.
  • the conveyance unit 32 conveys the printed circuit board in the order of the pre-heater unit 33, the jet solder tank 34, and the cooling unit 35, and carries it out of the flow soldering device 30.
  • the pre-heater unit 33 dries the printed circuit board coated with the flux in the fluxer process, which is a process before the printed circuit board is put into the flow soldering apparatus 30, with hot air, and performs soldering in a jet solder bath 34 described later. When this is performed, the printed circuit board is preheated in order to improve the adhesion of the solder, which is the degree to which the solder is adhered to the printed circuit board (the preheater section 33 will be described in detail with reference to FIGS. 12 and 13). .
  • the pre-heater section 33 is provided with the blowout hole plate 10 described in the second embodiment (see FIG. 10).
  • the preheater section 33 blows hot air from the blowout holes 12 formed in a staggered manner at a predetermined angle with respect to the transport direction of the printed circuit board, which is formed in the blowout hole plate 10. Thereby, it becomes possible to blow hot air uniformly over the entire printed circuit board.
  • the pre-heater unit 33 can uniformly and stably heat the entire printed circuit board without the temperature of the printed circuit board rising and falling finely during the heating of the printed circuit board (see FIG. 8). As a result, the heating efficiency of the print can be improved, and the possibility of occurrence of soldering defects can be reduced.
  • the pre-heater unit 33 includes first to fourth heaters, and the first to fourth heaters are provided side by side with respect to the conveyance direction of the printed circuit board, and each of the first to fourth heaters is provided. The temperature can be adjusted.
  • a jet solder bath 34 is provided adjacent to the preheater section 33.
  • the jet solder tank 34 sprays solder onto the printed circuit board dried by the pre-heater unit 33 to form solder at predetermined locations on the printed circuit board.
  • the jet solder bath 34 is provided with a cooling unit 35 adjacent thereto.
  • the cooling unit 35 is an example of a cooling device, and sends air blown by a fan (not shown) constituting the cooling unit 35 to the printed circuit board to cool the printed circuit board heated in the preheater unit 33 and the jet solder tank 34. is there.
  • a fan not shown
  • the cooling unit 35 is provided with the blowing hole plate 10 having the blowing holes 12 arranged in a staggered manner at a predetermined angle with respect to the transport direction, like the preheater unit 33.
  • the cooling unit 35 blows out cold air from the blowout holes 12 of the blowout hole plate 10. Thereby, it becomes possible to blow cold air uniformly over the entire printed circuit board.
  • the preheater section 33 includes the blowout hole plate 10, the current plate 331, the heater 332, the fan 333, and the motor 334.
  • the blowing hole plate 10 is provided on the upper part of the preheater portion 33.
  • a rectifying plate 331 and a heater 332 are provided below the blowout hole plate 10 and inside the preheater portion 33.
  • the rectifying plate 331 rectifies the flow of gas blown out from the blowout hole 12.
  • the heater 332 is an example of a heating unit, and heats the gas sucked by the suction port 13 provided in the blowout hole plate 10.
  • a fan 333 is provided directly under the heater 332.
  • the fan 333 is a so-called sirocco fan and discharges the gas sucked from the vertical direction in the horizontal direction.
  • the fan 333 is provided with a motor 334.
  • the motor 334 is a power source that pivotally supports the fan 333 and rotates the fan 333 at a desired rotational speed.
  • the number of rotations of the motor 334 and the heating temperature of the heater 332 are controlled by a control unit (not shown), thereby controlling the temperature of the gas blown to the printed circuit board conveyed to the preheater unit 33.
  • the transport unit 32 that transports the printed circuit board in a predetermined transport direction, and the preheater that is provided below the transport unit 32 and heats the gas.
  • a blowout hole plate 10 that blows the gas blown from the blowout hole 12 onto the printed circuit board conveyed by the conveyance unit 32.
  • the blowing holes 12 of the blowing hole plate 10 are arranged in a staggered manner at a predetermined angle with respect to the transport direction of the printed circuit board. Thereby, it becomes possible to blow hot air uniformly over the entire printed circuit board. As a result, the entire printed circuit board can be heated uniformly and stably, the heating efficiency of the print can be improved, and the possibility of defective soldering can be reduced.
  • the present invention is not limited to a reflow device or a flow soldering device, but can be applied to a heating device that heats an object with hot air or a cooling device that cools an object with cold air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Disclosed are a heating apparatus and a cooling apparatus, whereby a whole printed substrate can be uniformly and stably heated or cooled without minutely increasing or reducing the temperature of the printed substrate while the printed substrate is being heated or cooled. A plurality of blowing nozzles (2) are disposed in zigzag arrangement at a predetermined angle (θ) (θ is 15 degrees or less) with respect to the transfer direction (E) of the printed substrate by having the adjacent blowing nozzles (2) at same intervals (L), thereby making it possible to uniformly spray a gas to the whole printed substrate. A reflow apparatus (100) can stably heat or cool the whole printed substrate without minutely increasing or reducing the temperature of the printed substrate while the printed substrate is being heated or cooled. As a result, heating efficiency and cooling efficiency of the printed substrate can be improved, and a possibility of generating a soldering failure can be reduced.

Description

加熱装置及び冷却装置Heating device and cooling device
 本発明は、ヒータで加熱された気体や冷却部で冷却された気体を吹き出す吹出口を有し、この吹出口から吹き出される気体をプリント基板等の搬送物に吹き付ける複数のノズルや吹き出し孔プレートを備える加熱装置及び冷却装置に関するものである。 The present invention has a blowout port that blows out gas heated by a heater or gas cooled by a cooling unit, and a plurality of nozzles and blowout hole plates that blow the gas blown out from the blowout port onto a conveyed object such as a printed circuit board. The present invention relates to a heating device and a cooling device including
 はんだ材を溶融させて電子部品をプリント基板にはんだ付けする際には、リフロー装置等の加熱炉が使用される。このようなリフロー装置は、トンネル状のマッフル内に予備加熱ゾーン、本加熱ゾーン及び冷却ゾーンを有し、予備加熱ゾーン及び本加熱ゾーンには加熱用のヒータが設けられ、冷却ゾーンには水冷パイプや冷却ファン等で構成される冷却機構が設けられるものである。 When a solder material is melted and an electronic component is soldered to a printed circuit board, a heating furnace such as a reflow apparatus is used. Such a reflow apparatus has a preheating zone, a main heating zone, and a cooling zone in a tunnel-like muffle, and a heater for heating is provided in the preheating zone and the main heating zone, and a water cooling pipe is provided in the cooling zone. And a cooling mechanism including a cooling fan or the like is provided.
 このリフロー装置に用いられるヒータには、赤外線ヒータと熱風吹き出しヒータとがある。赤外線ヒータは、当該赤外線ヒータを通電すると、赤外線を放出する。この放出された赤外線によってはんだ付け部に塗布されたソルダペーストが溶融してはんだ付けを行う。しかしながら、赤外線ヒータは、赤外線が直進性を有するために、電子部品の影となるはんだ付け部を十分に加熱することが困難であるという問題がある。 The heater used in this reflow apparatus includes an infrared heater and a hot air blowing heater. The infrared heater emits infrared rays when the infrared heater is energized. The solder paste applied to the soldering portion is melted by the emitted infrared rays to perform soldering. However, the infrared heater has a problem that it is difficult to sufficiently heat a soldered portion that becomes a shadow of an electronic component because infrared rays have straightness.
 一方、熱風吹き出しヒータは、モータで駆動するファンにより、ヒータで加熱された熱風をリフロー装置の加熱ゾーンで対流させるものである。このため、熱風吹き出しヒータは、熱風が電子部品の影になるところや狭い隙間(例えば、スルーホール等)にも侵入して、プリント基板全体を均一に加熱することができ、今日では多くのリフロー装置に採用されている。 On the other hand, the hot air blowing heater convects hot air heated by the heater with a fan driven by a motor in the heating zone of the reflow device. For this reason, hot air blowing heaters can heat the entire printed circuit board evenly where hot air is in the shadows of electronic components and narrow gaps (for example, through holes). Adopted in the device.
 リフロー装置に設けられる熱風吹き出しヒータとしては、開口面積が広い吹出口から熱風を吹き出すヒータと、多数の孔から熱風を吹き出すヒータとがある。前者のヒータは、吹出口の開口面積が広いので熱風の流速が比較的遅くなり、プリント基板に熱風が衝突したときの加熱効率が低い。一方、後者のヒータは、熱風の流速が前者のヒータより速くなり、かつ、孔が多数あるので熱風の流量不足が生じない。このため、後者のヒータは加熱効率が高い。このことより、リフロー装置は、多数の孔から熱風を吹き出すヒータを用いることが多い。以後のヒータに関する説明は、複数の孔を有する熱風吹き出しヒータである。 The hot air blowing heaters provided in the reflow apparatus include a heater that blows hot air from a wide outlet and a heater that blows hot air from many holes. The former heater has a large opening area at the air outlet, so the flow rate of hot air is relatively slow, and the heating efficiency when hot air collides with the printed circuit board is low. On the other hand, in the latter heater, the flow rate of hot air is faster than that of the former heater, and since there are many holes, there is no shortage of hot air flow. For this reason, the latter heater has high heating efficiency. For this reason, the reflow apparatus often uses a heater that blows hot air from a large number of holes. The following description regarding the heater is a hot air blowing heater having a plurality of holes.
 一般に、リフロー装置では、予備加熱ゾーン及び本加熱ゾーンのプリント基板の搬送部の上下部にそれぞれ多数の熱風吹き出しヒータを設置する。例えば、予備加熱ゾーンが5ゾーンから構成されている場合であれば上下にそれぞれ5個ずつ、合計10個の熱風吹き出しヒータが設置される。また、本加熱ゾーンが3ゾーンで構成されている場合であれば上下にそれぞれ3個ずつ、合計6個の熱風吹き出しヒータが設置される。このため、一つのリフロー装置では上下8個ずつ、合計16個の熱風吹き出しヒータが設置されることになる。 Generally, in a reflow apparatus, a large number of hot air blowing heaters are installed on the upper and lower parts of the printed circuit board conveyance part in the preheating zone and the main heating zone, respectively. For example, in the case where the preheating zone is composed of 5 zones, a total of 10 hot air blowing heaters are installed, 5 each above and below. If the main heating zone is composed of three zones, a total of six hot air blowing heaters are installed, three on the top and one on the bottom. For this reason, in one reflow apparatus, a total of 16 hot-air blowing heaters are installed in the upper and lower 8 pieces.
 なお、このゾーン構成は、プリント基板にはんだ付けされる電子部品の種類に応じて、即ち、加熱対象物の温度プロファイルに応じて、使用されるヒータ数等が適宜選択される。 In this zone configuration, the number of heaters to be used is appropriately selected according to the type of electronic component to be soldered to the printed circuit board, that is, according to the temperature profile of the heating object.
 予備加熱ゾーンでは、通常、本加熱ゾーンよりも温度を低くしたり、又は、熱風の風量を少なくして加熱するように設定されている。これにより、プリント基板がゆっくりと加熱されて、当該プリント基板が熱に慣れる共に、ソルダペースト中の溶剤が揮散される。 In the preheating zone, the temperature is usually set to be lower than that of the main heating zone or the amount of hot air is reduced. As a result, the printed circuit board is heated slowly, the printed circuit board gets used to heat, and the solvent in the solder paste is volatilized.
 予備加熱によって熱に慣れ、かつ、ソルダペースト中の溶剤が揮散したプリント基板は、リフロー装置の本加熱ゾーンに搬送されて本加熱される。本加熱ゾーンでは、通常、予備加熱ゾーンよりも温度が高くしたり、又は、熱風の風量を多くして加熱するように設定されている。これにより、プリント基板の昇温を早めて、短時間で加熱させ、ソルダペースト中のはんだ粉末を溶融させることによりはんだ付けを行う。 The printed circuit board accustomed to heat by preheating and the solvent in the solder paste is volatilized is transported to the main heating zone of the reflow device and heated. In the main heating zone, the temperature is usually set higher than that in the preheating zone, or the amount of hot air is increased to heat. As a result, the temperature of the printed circuit board is increased, the soldering is performed by heating the printed circuit board in a short time and melting the solder powder in the solder paste.
 また、予備加熱ゾーン及び本加熱ゾーンでは、それぞれの熱風吹き出しヒータから吹き出される熱風の流速と温度とを制御手段で制御することで、プリント基板に適した所望の温度プロファイルを設定できる。例えば、温調器で熱風の温度を制御すると共に、ファンを回転させるファンモータの出力を変化させることでマッフル内に吹き出る暖められた熱風の流速を制御する。因みに、このモータは、ファンモータの出力制御がしやすいインバータモータが一般的に用いられている。 Also, in the preheating zone and the main heating zone, a desired temperature profile suitable for the printed circuit board can be set by controlling the flow rate and temperature of the hot air blown from each hot air blowing heater by the control means. For example, the temperature of the hot air is controlled by a temperature controller, and the flow rate of the heated hot air blown into the muffle is controlled by changing the output of a fan motor that rotates the fan. Incidentally, an inverter motor that can easily control the output of the fan motor is generally used as this motor.
 特許文献1には、多数の孔から熱風を吹き出すはんだ付け装置について開示されている。このはんだ付け装置では、リフローパネルに多数の孔が穿設されていて、この多数の孔からヒータで熱せられた熱風が吹き出す。 Patent Document 1 discloses a soldering apparatus that blows hot air from a large number of holes. In this soldering apparatus, a large number of holes are formed in the reflow panel, and hot air heated by a heater blows out from the numerous holes.
 特許文献2には、気体吹き出し穴の配列構造について開示されている。この配列構造では、幅方向に配列をずらして均一加熱を行うようにしたものである。 Patent Document 2 discloses an arrangement structure of gas blowing holes. In this array structure, uniform heating is performed by shifting the array in the width direction.
 図14は、縦軸をプリント基板の温度(℃)とし、横軸をリフロー装置にプリント基板を投入してからの経過時間(搬送時間)(秒)としたときの、従来のリフロー装置(特許文献2)の温度プロファイル例を示す説明図である。図14に示すように、プリント基板は、搬送時間が約70秒から約230秒で予備加熱ゾーンAを通過し、搬送時間が約230秒から約280秒で本加熱ゾーンBを通過し、約280秒以降で冷却ゾーンCを通過する。予備加熱ゾーンA及び本加熱ゾーンBでは、プリント基板の温度が細かく(約0.5~数度程度)昇降している。 FIG. 14 shows a conventional reflow device in which the vertical axis is the temperature (° C.) of the printed circuit board and the horizontal axis is the elapsed time (transport time) (seconds) after the printed circuit board is inserted into the reflow device (patent) It is explanatory drawing which shows the temperature profile example of literature 2). As shown in FIG. 14, the printed circuit board passes through the preheating zone A with a transfer time of about 70 seconds to about 230 seconds, passes through the main heating zone B with a transfer time of about 230 seconds to about 280 seconds, Pass the cooling zone C after 280 seconds. In the preheating zone A and the main heating zone B, the temperature of the printed circuit board is finely raised (about 0.5 to several degrees).
特開平11-307927号公報Japanese Patent Laid-Open No. 11-307927 特開2004-214535号公報JP 2004-214535 A
 ところで、特許文献1では、図15に示すように、プリント基板は、搬送用コンベアの第1の搬送ガイド(以下、「搬送ガイドL1」という)と第2の搬送ガイド(以下、「搬送ガイドL2」という)との間で保持されて矢印で示す搬送方向Eに搬送される。熱風吹出口20は、搬送方向E及び搬送方向Eに直交する方向に格子状に複数の円形の穴から構成されている。この円形の穴は、搬送方向Eに対してピッチNで複数個配列されていると共に、搬送方向Eに対して直交する方向にも所定のピッチ間隔をもって複数個配列されている。 Incidentally, in Patent Document 1, as shown in FIG. 15, the printed circuit board includes a first transport guide (hereinafter referred to as “transport guide L <b> 1”) and a second transport guide (hereinafter referred to as “transport guide L <b> 2”). Is conveyed in the conveying direction E indicated by the arrow. The hot air outlet 20 is composed of a plurality of circular holes in a lattice shape in the transport direction E and the direction orthogonal to the transport direction E. A plurality of circular holes are arranged at a pitch N with respect to the conveying direction E, and a plurality of circular holes are also arranged at a predetermined pitch interval in a direction orthogonal to the conveying direction E.
 このように、複数の円形の穴を配置した熱風吹出口20から熱風が吹き出されると、搬送方向Eにプリント基板が搬送されると共に、当該プリント基板には搬送方向Eに連続的に熱風が吹き付けられるが、搬送方向Eに直交する方向には、熱風吹出口20の存在しない部分があるため、プリント基板において熱風吹出口20の存在しない部分に対応する箇所には熱風が吹き付けられない。すなわち、プリント基板の搬送に伴って、プリント基板に吹き付ける熱風の濃度に濃淡(熱風が当たる量の差)ができてしまい、よって、搬送方向Eに直交する方向でのプリント基板の温度が均一にならないという問題があった。 As described above, when hot air is blown out from the hot air outlet 20 in which a plurality of circular holes are arranged, the printed circuit board is transported in the transport direction E, and hot air is continuously applied to the printed circuit board in the transport direction E. Although there is a portion where the hot air outlet 20 does not exist in a direction orthogonal to the transport direction E, hot air is not blown to a portion corresponding to a portion where the hot air outlet 20 does not exist on the printed circuit board. That is, as the printed board is transported, the density of the hot air blown onto the printed board becomes lighter and darker (difference in the amount of hot air hits), so that the temperature of the printed board in the direction perpendicular to the transport direction E is uniform. There was a problem of not becoming.
 また、特許文献2では、幅方向に配列をずらして均一加熱を行うようにした加熱装置が開示されているが、この加熱装置においても、熱風吹出口と熱風吹出口の存在しない箇所とで熱風の密度の濃淡ができてしまい、プリント基板の昇温の強さに強弱が出易い。図14に示すように、この加熱装置の温度プロファイルの形状上も、プリント基板の温度の昇降が起こり易いことがわかる。 Further, Patent Document 2 discloses a heating device that performs uniform heating by shifting the arrangement in the width direction, but also in this heating device, hot air is blown between the hot air outlet and the hot air outlet. As a result, the strength of the temperature rise of the printed circuit board tends to be strong. As shown in FIG. 14, it can be seen that the temperature of the printed circuit board easily rises and falls due to the shape of the temperature profile of the heating device.
 図14のようなプリント基板の細かい温度昇降は、プリント基板のはんだ付けの際に大きな問題となることはないが、はんだ付け不良が発生する可能性が全くないわけではない。また、はんだ付け後のプリント基板の冷却時においても、同様にプリント基板の降温の強さに強弱が出易く、同様の問題を有している。 The fine temperature rise and fall of the printed circuit board as shown in FIG. 14 does not become a big problem when soldering the printed circuit board, but it is not completely free from the possibility of soldering failure. In addition, when the printed circuit board is cooled after soldering, the strength of the temperature of the printed circuit board is likely to increase and decrease, and there is a similar problem.
 本発明は、このような課題を解決したものであって、プリント基板の加熱中又は冷却中に当該プリント基板の温度が細かく昇降することなく、プリント基板全体に均一に安定して加熱又は冷却することができる加熱装置及び冷却装置を提供することを目的とする。 The present invention solves such problems, and heats or cools the entire printed circuit board uniformly and stably without causing the temperature of the printed circuit board to rise or fall finely during heating or cooling of the printed circuit board. It is an object of the present invention to provide a heating device and a cooling device that can be used.
 上述の課題を解決するために、本発明に係る加熱装置は、搬送物を所定の搬送方向に搬送する搬送部と、気体を加熱する加熱部と、加熱部で加熱された気体を吹き出す吹出口を有し、吹出口から吹き出される気体を、搬送部によって搬送された搬送物に吹き付ける複数のノズルとを備え、複数のノズルは、搬送方向に対して所定の角度で千鳥状に配置されることを特徴とするものである。 In order to solve the above-described problems, a heating device according to the present invention includes a transport unit that transports a transported object in a predetermined transport direction, a heating unit that heats a gas, and a blowout port that blows out the gas heated by the heating unit. And a plurality of nozzles for blowing the gas blown from the blowout outlet onto the conveyed product conveyed by the conveying unit, and the plurality of nozzles are arranged in a staggered manner at a predetermined angle with respect to the conveying direction. It is characterized by this.
 本発明に係る加熱装置によれば、搬送物を所定の搬送方向に搬送する搬送部と、気体を加熱する加熱部と、この加熱部で加熱された気体を吹き出す吹出口を有し、この吹出口から吹き出される気体を、搬送部によって搬送された搬送物に吹き付ける複数のノズルとを備える。これを前提にして、複数のノズルは、例えば隣接するノズルの2つ又は4つが互いに同じ距離だけ離間して、搬送物の搬送方向に対して所定の角度で千鳥状に配置される。これにより、搬送物全体に均一に気体を吹き付けることができるようになる。 The heating device according to the present invention includes a transport unit that transports the transported object in a predetermined transport direction, a heating unit that heats the gas, and a blowout port that blows out the gas heated by the heating unit. And a plurality of nozzles for blowing the gas blown from the outlet onto the conveyed product conveyed by the conveying unit. On the premise of this, for example, two or four of the adjacent nozzles are spaced apart from each other by the same distance, and are arranged in a staggered manner at a predetermined angle with respect to the conveyance direction of the conveyed product. Thereby, gas can be sprayed now uniformly on the whole conveyed product.
 また、本発明に係る加熱装置は、搬送物を所定の搬送方向に搬送する搬送部と、気体を加熱する加熱部と、加熱部で加熱された気体を吹き出す吹出孔を有し、吹出孔から吹き出される気体を、搬送部によって搬送された搬送物に吹き付ける吹出孔プレートとを備え、吹出孔プレートの吹出孔は、搬送方向に対して所定の角度で千鳥状に配置されることを特徴とするものである。 Moreover, the heating device according to the present invention includes a transport unit that transports the transported object in a predetermined transport direction, a heating unit that heats the gas, and a blowout hole that blows out the gas heated by the heating unit. A blow hole plate that blows the blown gas onto a conveyed product conveyed by the conveyance unit, and the blow holes of the blow hole plate are arranged in a staggered manner at a predetermined angle with respect to the conveyance direction. To do.
 本発明に係る加熱装置によれば、搬送物を所定の搬送方向に搬送する搬送部と、気体を加熱する加熱部と、この加熱部で加熱された気体を吹き出す吹出孔を有し、この吹出孔から吹き出される気体を、搬送部によって搬送された搬送物に吹き付ける吹出孔プレートとを備える。これを前提にして、吹出孔プレートの吹出孔は、搬送方向に対して所定の角度で千鳥状に配置される。これにより、搬送物全体に均一に気体を吹き付けることができるようになる。 The heating device according to the present invention includes a transport unit that transports the transported object in a predetermined transport direction, a heating unit that heats the gas, and a blowout hole that blows out the gas heated by the heating unit. A blowout hole plate that blows the gas blown out from the holes onto the conveyed product conveyed by the conveyance unit. On the premise of this, the blowing holes of the blowing hole plate are arranged in a staggered manner at a predetermined angle with respect to the transport direction. Thereby, gas can be sprayed now uniformly on the whole conveyed product.
 本発明に係る冷却装置は、搬送物を所定の搬送方向に搬送する搬送部と、気体を冷却する冷却部と、冷却部で冷却された気体を吹き出す吹出口を有し、吹出口から吹き出される気体を、搬送部によって搬送された搬送物に吹き付ける複数のノズルとを備え、複数のノズルは、搬送方向に対して所定の角度で千鳥状に配置されることを特徴とするものである。 The cooling device according to the present invention has a transport unit that transports a transported object in a predetermined transport direction, a cooling unit that cools the gas, and a blowout port that blows out the gas cooled by the cooling unit. And a plurality of nozzles for blowing the gas to the conveyed product conveyed by the conveying unit, and the plurality of nozzles are arranged in a staggered manner at a predetermined angle with respect to the conveying direction.
 本発明に係る冷却装置によれば、搬送物を所定の搬送方向に搬送する搬送部と、気体を冷却する冷却部と、この冷却部で加熱された気体を吹き出す吹出口を有し、この吹出口から吹き出される気体を、搬送部によって搬送された搬送物に吹き付ける複数のノズルとを備える。これを前提にして、複数のノズルは、例えば隣接するノズルの2つ又は4つが互いに同じ距離だけ離間して、搬送物の搬送方向に対して所定の角度で千鳥状に配置される。これにより、搬送物全体に均一に気体を吹き付けることができるようになる。 The cooling device according to the present invention includes a transport unit that transports a transported object in a predetermined transport direction, a cooling unit that cools the gas, and a blowout port that blows out the gas heated by the cooling unit. And a plurality of nozzles for blowing the gas blown from the outlet onto the conveyed product conveyed by the conveying unit. On the premise of this, for example, two or four of the adjacent nozzles are spaced apart from each other by the same distance, and are arranged in a staggered manner at a predetermined angle with respect to the conveyance direction of the conveyed product. Thereby, gas can be sprayed now uniformly on the whole conveyed product.
 また、本発明に係る冷却装置は、搬送物を所定の搬送方向に搬送する搬送部と、気体を冷却する冷却部と、冷却部で冷却された気体を吹き出す吹出孔を有し、吹出孔から吹き出される気体を、搬送部によって搬送された搬送物に吹き付ける吹出孔プレートとを備え、吹出孔プレートの吹出孔は、搬送方向に対して所定の角度で千鳥状に配置されることを特徴とするものである。 Moreover, the cooling device according to the present invention includes a transport unit that transports a transported object in a predetermined transport direction, a cooling unit that cools the gas, and a blowout hole that blows out the gas cooled by the cooling unit. A blow hole plate that blows the blown gas onto a conveyed product conveyed by the conveyance unit, and the blow holes of the blow hole plate are arranged in a staggered manner at a predetermined angle with respect to the conveyance direction. To do.
 本発明に係る冷却装置によれば、搬送物を所定の搬送方向に搬送する搬送部と、気体を冷却する冷却部と、この冷却部で冷却された気体を吹き出す吹出孔を有し、この吹出孔から吹き出される気体を、搬送部によって搬送された搬送物に吹き付ける吹出孔プレートとを備える。これを前提にして、吹出孔プレートの吹出孔は、搬送方向に対して所定の角度で千鳥状に配置される。これにより、搬送物全体に均一に気体を吹き付けることができるようになる。 The cooling device according to the present invention includes a transport unit that transports a conveyed product in a predetermined transport direction, a cooling unit that cools the gas, and a blowout hole that blows out the gas cooled by the cooling unit. A blowout hole plate that blows the gas blown out from the holes onto the conveyed product conveyed by the conveyance unit. On the premise of this, the blowing holes of the blowing hole plate are arranged in a staggered manner at a predetermined angle with respect to the transport direction. Thereby, gas can be sprayed now uniformly on the whole conveyed product.
 本発明に係る加熱装置によれば、搬送物全体に均一に加熱された気体を吹き付けることができるので、搬送物の加熱中に当該搬送物の温度が昇降することなく、搬送物全体に均一に安定して加熱することができる。この結果、加熱効率を向上することができ、はんだ付け不良が発生する可能性を低減することができる。 According to the heating device according to the present invention, the uniformly heated gas can be sprayed on the entire conveyed object, so that the temperature of the conveyed object does not rise and fall during the heating of the conveyed object, so that the entire conveyed object can be uniformly distributed. It can be heated stably. As a result, the heating efficiency can be improved, and the possibility of occurrence of poor soldering can be reduced.
 本発明に係る冷却装置によれば、搬送物全体に均一に冷却された気体を吹き付けることができるので、搬送物の冷却中に当該搬送物の温度が昇降することなく、搬送物全体に均一に安定して冷却することができる。この結果、冷却効率を向上することができ、はんだ付け不良が発生する可能性を低減することができる。 According to the cooling device of the present invention, the uniformly cooled gas can be sprayed on the entire conveyed object, so that the temperature of the conveyed object does not rise and fall during the cooling of the conveyed object, and the entire conveyed object can be evenly distributed. It can be cooled stably. As a result, the cooling efficiency can be improved, and the possibility of occurrence of poor soldering can be reduced.
 なお、本発明における複数の吹出口を千鳥状に配置するとは、プリント基板の搬送方向に対しては所定のピッチNをもって複数の吹出口を配列(列配列)すると共に、プリント基板の搬送方向に対し直交する方向に対しては、前記列配列を搬送方向に半ピッチ(N/2)ずらした列配列を更にプリント基板の搬送方向に対し直交する方向に所定のピッチMだけずらして配置したものである。 The arrangement of the plurality of air outlets in the present invention in a zigzag pattern means that a plurality of air outlets are arranged (row arrangement) with a predetermined pitch N with respect to the direction of conveyance of the printed circuit board and in the direction of conveyance of the printed circuit board. On the other hand, with respect to the direction orthogonal to the above, the row arrangement shifted by a half pitch (N / 2) in the transport direction is further shifted by a predetermined pitch M in the direction perpendicular to the transport direction of the printed circuit board. It is.
 従って、相隣り合う列配列では半ピッチずれた列配列になるので、奇数列どうし、偶数列どうしでそれぞれが一致した列配列となり、奇数列と偶数列とでは搬送方向に半ピッチずれた配列となる。このような千鳥状配置によって、吹出口の存在しない箇所では、周囲の3個の吹出口からの熱風により補完されるので、熱風の濃度の濃淡も緩和される。これに加えて、搬送方向に対して所定の角度で千鳥状に配置したので、プリント基板の搬送に伴って、吹出口が存在しない箇所、すなわち、加熱又は冷却の空白地帯がなくなるために急激な加熱又は冷却の強弱がなくなる。これにより、プリント基板に吹き付ける熱風又は冷風の濃度がより均一になり、プリント基板の加熱又は冷却中に当該プリント基板の温度が細かく昇降することなく、プリント基板全体に均一に安定して加熱又は冷却することができる。 Therefore, the adjacent row arrangements are arranged with a half-pitch shift, so that the odd-numbered columns and the even-numbered columns are matched with each other, and the odd-numbered and even-numbered columns are arranged with a half-pitch shifted in the transport direction. Become. By such a staggered arrangement, in locations where there are no air outlets, the hot air from the three surrounding air outlets is complemented, so the density of the hot air is also reduced. In addition to this, since the staggered arrangement is made at a predetermined angle with respect to the transport direction, a portion where there is no air outlet, that is, a blank area for heating or cooling disappears as the printed circuit board is transported. The strength of heating or cooling disappears. As a result, the concentration of hot air or cold air blown onto the printed circuit board becomes more uniform, and the temperature of the printed circuit board does not rise or fall finely during heating or cooling of the printed circuit board. can do.
 更に、隣接するノズルの各々が互いに同じ距離だけ離間して、搬送方向に対して所定の角度で千鳥状に配置した場合には、プリント基板に吹き付ける熱風又は冷風がどの箇所もほぼ均一になり、より効率的に加熱又は冷却することができる。 Furthermore, when the adjacent nozzles are separated from each other by the same distance and are arranged in a staggered manner at a predetermined angle with respect to the transport direction, the hot air or cold air blown to the printed circuit board becomes almost uniform at any location, Heating or cooling can be performed more efficiently.
第1の実施の形態に係るリフロー装置100の構成例を示す正面断面図である。It is a front sectional view showing an example of composition of reflow device 100 concerning a 1st embodiment. ノズル装置1の構成例を示す斜視図である。2 is a perspective view illustrating a configuration example of a nozzle device 1. FIG. ノズル装置1の構成例を示す平面図である。2 is a plan view showing a configuration example of a nozzle device 1. FIG. D-D線で切断したノズル装置1の構成例を示す断面図である。It is sectional drawing which shows the structural example of the nozzle apparatus 1 cut | disconnected by the DD line. 吹き出しノズル2の構成例を示す斜視図である。It is a perspective view which shows the structural example of the blowing nozzle. 吹き出しノズル2の構成例を示す断面斜視図である。4 is a cross-sectional perspective view illustrating a configuration example of a blowing nozzle 2. FIG. ノズル装置1の組立例を示す分解斜視図である。3 is an exploded perspective view showing an assembly example of the nozzle device 1. FIG. リフロー装置100の温度プロファイル例を示す説明図である。It is explanatory drawing which shows the temperature profile example of the reflow apparatus. 吹き出しノズル2の他の配置例を示す説明図である。It is explanatory drawing which shows the other example of arrangement | positioning of the blowing nozzle. 第2の実施の形態に係る吹出孔プレート10の構成例を示す斜視図である。It is a perspective view which shows the structural example of the blowing hole plate 10 which concerns on 2nd Embodiment. 第3の実施の形態に係るフローはんだ装置30の構成例を示す概略正面図である。It is a schematic front view which shows the structural example of the flow soldering apparatus 30 which concerns on 3rd Embodiment. プリヒータ部33の構成例を示す断面斜視図である。4 is a cross-sectional perspective view showing a configuration example of a preheater section 33. FIG. プリヒータ部33の構成例を示す正面断面図である。3 is a front sectional view showing a configuration example of a preheater section 33. FIG. 従来のリフロー装置の温度プロファイル例を示す説明図である。It is explanatory drawing which shows the temperature profile example of the conventional reflow apparatus. 従来の熱風吹出口20の配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of the conventional hot air blower outlet.
 以下、図面を参照して本発明の加熱装置の一例として、リフロー装置100及びフローはんだ装置30について説明する。 Hereinafter, the reflow apparatus 100 and the flow solder apparatus 30 will be described as examples of the heating apparatus of the present invention with reference to the drawings.
 <第1の実施の形態> 
 [リフロー装置100の構成例] 
 まずは、第1の実施の形態に係るリフロー装置100の構成例について説明する。図1に示すように、リフロー装置100は、加熱装置の一例であり、本体部101、プリント基板等の搬送物を搬送する搬送部の一例であるコンベア102で構成される。
<First Embodiment>
[Configuration Example of Reflow Device 100]
First, a configuration example of the reflow apparatus 100 according to the first embodiment will be described. As illustrated in FIG. 1, the reflow apparatus 100 is an example of a heating apparatus, and includes a main body 101 and a conveyor 102 that is an example of a conveyance unit that conveys a conveyance object such as a printed circuit board.
 本体部101には、予備加熱ゾーンA、本加熱ゾーンB及び冷却ゾーンCの3つのゾーンがある。リフロー装置100ではんだ付けされるプリント基板は、コンベア102によって予備加熱ゾーンA、本加熱ゾーンB及び冷却ゾーンCの順番で搬送される。なお、プリント基板は、図3で後述するコンベア102の搬送ガイドL1,L2間で保持されて搬送方向Eで示す方向に搬送される。 The main body 101 has three zones: a preheating zone A, a main heating zone B, and a cooling zone C. The printed circuit board to be soldered by the reflow apparatus 100 is conveyed by the conveyor 102 in the order of the preheating zone A, the main heating zone B, and the cooling zone C. The printed circuit board is held between conveyance guides L1 and L2 of a conveyor 102, which will be described later with reference to FIG.
 予備加熱ゾーンAは、プリント基板やこのプリント基板に実装された電子部品等をゆっくり加熱して熱に慣らすための領域であって、ソルダペースト中の溶剤を揮散させる領域である。予備加熱ゾーンAは、はんだ組成やプリント基板の種類等で異なるが、概ね鉛フリーペーストで150~180度に設定される。本加熱ゾーンBは、予備加熱ゾーンAよりも温度が高く、概ね鉛フリーペーストで240度に設定され、ソルダペースト中のはんだ粉末を溶融させてはんだ付けを行う領域である。また。冷却ゾーンCは、はんだ付けされたプリント基板を冷却する領域である。 The preheating zone A is an area for slowly heating the printed circuit board and the electronic components mounted on the printed circuit board to acclimatize to heat, and is an area for volatilizing the solvent in the solder paste. The preheating zone A differs depending on the solder composition, the type of printed circuit board, and the like, but is generally set to 150 to 180 degrees with lead-free paste. The main heating zone B is an area where the temperature is higher than that of the preheating zone A and is set to 240 degrees with a lead-free paste, and soldering is performed by melting the solder powder in the solder paste. Also. The cooling zone C is an area for cooling the soldered printed circuit board.
 予備加熱ゾーンAには、加熱部の一例である第1のヒータ部(以下、「ヒータ部103」という)が、コンベア102の上下に各5ゾーンずつ配置されると共に、各ヒータ部103にはノズル装置1が設けられている。 In the preheating zone A, a first heater unit (hereinafter referred to as “heater unit 103”), which is an example of a heating unit, is arranged on each of the five zones above and below the conveyor 102. A nozzle device 1 is provided.
 本加熱ゾーンBには、加熱部の一例である第2のヒータ部(以下、「ヒータ部104」という)が、コンベア102の上下に各3ゾーンずつ配置されると共に、各ヒータ部104にはノズル装置1が設けられている。 In the main heating zone B, a second heater unit (hereinafter referred to as “heater unit 104”), which is an example of a heating unit, is arranged in three zones above and below the conveyor 102. A nozzle device 1 is provided.
 ヒータ部103,104は、加熱部の一例であり、図示しない電熱線ヒータ、ファン及びファンを回転させるファンモータ等から構成される。ヒータ部103,104は、例えば、電熱線ヒータで気体(例えば、空気や窒素ガス等の不活性ガス)を加熱し、ファンモータを駆動してファンを回転させることで、加熱された気体をリフロー装置100内に熱風として吹き出す。ヒータ部103,104から吹き出される熱風の流量は、ファンモータの回転速度によって制御される。通常、ヒータ部104の温度は、ヒータ部103の温度よりも高く設定されている。 The heater units 103 and 104 are an example of a heating unit, and include a heating wire heater (not shown), a fan, a fan motor that rotates the fan, and the like. The heater units 103 and 104 reflow the heated gas by, for example, heating a gas (for example, an inert gas such as air or nitrogen gas) with a heating wire heater and driving a fan motor to rotate the fan. It blows out as hot air into the apparatus 100. The flow rate of hot air blown from the heaters 103 and 104 is controlled by the rotational speed of the fan motor. Usually, the temperature of the heater unit 104 is set higher than the temperature of the heater unit 103.
 冷却ゾーンCには、冷却装置の一例である冷却部105がコンベア102の上下に各1ゾーンずつ配置されると共に、各冷却部105にはノズル装置1が設けられている。 In the cooling zone C, a cooling unit 105, which is an example of a cooling device, is disposed one zone at a time above and below the conveyor 102, and each cooling unit 105 is provided with a nozzle device 1.
 冷却部105は、図示しない水冷パイプ等からなる冷却機構、ファン及びファンを回転させるファンモータ等から構成される。冷却部105は、例えば、水冷パイプのパイプ内に水を流動させてパイプを冷却し、そのパイプに気体を接触させることで当該気体を冷却する。そして、冷却部105は、ファンモータを駆動してファンを回転させて、パイプによって冷却された気体をリフロー装置100内に冷風としてノズル装置1から吹き出して、はんだ付けされたプリント基板を冷却する。 The cooling unit 105 includes a cooling mechanism including a water cooling pipe (not shown), a fan, a fan motor that rotates the fan, and the like. For example, the cooling unit 105 cools the gas by flowing water into the pipe of the water-cooled pipe to cool the pipe and bringing the gas into contact with the pipe. Then, the cooling unit 105 drives the fan motor to rotate the fan, and the gas cooled by the pipe is blown out from the nozzle device 1 as cold air into the reflow device 100 to cool the soldered printed circuit board.
 なお、冷却機構は、水冷パイプを削除して、ファンによる空冷のみの構成であっても構わない。また、予備加熱ゾーンA及び本加熱ゾーンBのそれぞれのゾーン数やヒータ部103,104のヒータ数やヒータの上下配置は、本例に限られることなく、適宜変更可能である。 It should be noted that the cooling mechanism may be configured only by air cooling with a fan by removing the water cooling pipe. Further, the number of zones of the preheating zone A and the main heating zone B, the number of heaters of the heater units 103 and 104, and the vertical arrangement of the heaters are not limited to this example, and can be changed as appropriate.
 [ノズル装置1の構成例] 
 次に、ヒータ部103,104に設けられるノズル装置1の構成例について説明する。図2、図3及び図4に示すように、ノズル装置1は、複数の吹き出しノズル2、ノズルカバー3、取付プレート4及び固定プレート5で構成される。
[Configuration Example of Nozzle Device 1]
Next, a configuration example of the nozzle device 1 provided in the heater units 103 and 104 will be described. As shown in FIGS. 2, 3, and 4, the nozzle device 1 includes a plurality of blowing nozzles 2, a nozzle cover 3, a mounting plate 4, and a fixed plate 5.
 吹き出しノズル2の先端には前述のヒータ部103,104で加熱された気体を吹き出す吹出口22が設けられ、吹き出しノズル2は、吹出口22から吹き出される気体を、搬送方向Eに向かって搬送される図示しないプリント基板に吹き付ける。複数の吹き出しノズル2は、隣接する吹き出しノズル2の各々が互いに同じ距離Lだけ離間して、搬送方向Eに対して角度θを有して千鳥状に配置される。この場合、隣接の吹き出しノズル2同士を結ぶ線分から、1辺が距離Lの正三角形が描かれる。このように、吹き出しノズル2の吹出口22を正三角形配置にした場合には、プリント基板に吹き付ける熱風がどの箇所もほぼ均一になり、より効率的に加熱することができる。また、角度θは、15度以下であることが望ましい。 A blow-out port 22 that blows out the gas heated by the heaters 103 and 104 described above is provided at the tip of the blow-out nozzle 2, and the blow-out nozzle 2 transports the gas blown from the blow-out port 22 in the transport direction E. Sprayed onto a printed circuit board (not shown). The plurality of blowing nozzles 2 are arranged in a staggered manner with an angle θ with respect to the transport direction E, with the adjacent blowing nozzles 2 being separated from each other by the same distance L. In this case, an equilateral triangle having a distance L on one side is drawn from a line segment connecting adjacent blowing nozzles 2. Thus, when the blower outlet 22 of the blowout nozzle 2 is arranged in an equilateral triangle, the hot air blown to the printed circuit board is almost uniform, and can be heated more efficiently. Further, the angle θ is desirably 15 degrees or less.
 これにより、搬送方向Eに対して所定の角度θで千鳥状に配置したので、プリント基板の搬送に伴って、吹出口22が存在しない箇所、すなわち、加熱の空白地帯がなくなるために急激な加熱の強弱がなくなる。この結果、プリント基板に吹き付ける熱風の濃度がより均一になり、プリント基板の加熱中に当該プリント基板の温度が細かく昇降することなく、プリント基板全体に均一に安定して加熱することができる。 Thereby, since it arrange | positioned at predetermined | prescribed angle (theta) with respect to the conveyance direction E at the predetermined angle (theta), since the location where the blower outlet 22 does not exist, ie, the heating blank zone, disappears with conveyance of a printed circuit board, rapid heating is carried out. The strength of is lost. As a result, the concentration of the hot air blown onto the printed circuit board becomes more uniform, and the entire printed circuit board can be heated uniformly and stably without the temperature of the printed circuit board rising and falling finely during heating of the printed circuit board.
 また、このように、隣接する吹き出しノズル2の吹出口22が正三角形をなすように配置した場合には、隣接する吹き出しノズル2を複数個でブロック化すると、ブロックどうしの組み合わせが容易になるので、吹き出しノズルの製造コストやノズル装置の組立てコストも削減できる。 Further, when the blowout ports 22 of the adjacent blowout nozzles 2 are arranged so as to form an equilateral triangle as described above, if the adjacent blowout nozzles 2 are divided into a plurality of blocks, the combination of the blocks becomes easy. In addition, the manufacturing cost of the blowout nozzle and the assembly cost of the nozzle device can be reduced.
 吹き出しノズル2にはノズルカバー3が覆われる。ノズルカバー3には吸込口3a及び吹き出しノズル用孔3bが互いに近接して設けられる。吹き出しノズル用孔3bは、吹き出しノズル2の先端に嵌合される。吸込口3aは、長円形状を有し、マッフル内に貯留する気体や、吹き出しノズル2から吹き出されてプリント基板に衝突して反射した気体を吸い込む。 The nozzle nozzle 3 is covered with the blowing nozzle 2. The nozzle cover 3 is provided with a suction port 3a and a blowing nozzle hole 3b close to each other. The blowing nozzle hole 3 b is fitted to the tip of the blowing nozzle 2. The suction port 3a has an oval shape, and sucks in gas that is stored in the muffle or gas that is blown out from the blowing nozzle 2 and collides with the printed circuit board to be reflected.
 このプリント基板に反射した気体は、吹出口22から吹き出す高温となった気体に干渉してしまうことがある。プリント基板に反射した気体は、プリント基板に熱を奪われて当該気体の温度が低下していて、吹出口22から吹き出す気体に干渉してしまうと、吹出口22から吹き出す気体の温度を下げてしまったり、吹出口22から吹き出す気体の吹出方向を乱してしまったりすることがある。そのため、吸込口3aを設けて、プリント基板に反射した気体を直ちに当該吸込口3aに吸い込ませる。これにより、プリント基板に反射した気体は、吹出口22から吹き出す気体の妨げとならない。 The gas reflected on the printed board may interfere with the high temperature gas blown out from the air outlet 22. When the gas reflected on the printed circuit board is deprived of heat by the printed circuit board and the temperature of the gas is lowered and interferes with the gas blown out from the air outlet 22, the temperature of the gas blown out from the air outlet 22 is lowered. In some cases, the gas blowing direction from the air outlet 22 may be disturbed. Therefore, the suction port 3a is provided, and the gas reflected on the printed board is immediately sucked into the suction port 3a. Thereby, the gas reflected on the printed circuit board does not interfere with the gas blown out from the outlet 22.
 吹き出しノズル2及びノズルカバー3の下部には取付プレート4が設けられる。取付プレート4にはノズル取付孔4b及び嵌合溝4dが設けられる。吹き出しノズル2をノズル取付孔4bに挿入し、嵌合溝4dにノズルカバー3を嵌合することにより、吹き出しノズル2、ノズルカバー3及び取付プレート4が一体となる。 A mounting plate 4 is provided below the blowing nozzle 2 and the nozzle cover 3. The mounting plate 4 is provided with a nozzle mounting hole 4b and a fitting groove 4d. By inserting the blowing nozzle 2 into the nozzle mounting hole 4b and fitting the nozzle cover 3 into the fitting groove 4d, the blowing nozzle 2, the nozzle cover 3 and the mounting plate 4 are integrated.
 また、取付プレート4の外周部にはヒータ部取付孔4aが設けられ、ヒータ部取付孔4aにネジ等を螺合してヒータ部103,104にノズル装置1が取り付けられる。更に、取付プレート4の両側には吸込口4cが設けられる。吸込口4cは、吸込口3aによって吸い込まれたマッフル内の気体をヒータ部103,104に還流するためのものである。 Further, the heater plate mounting hole 4a is provided in the outer peripheral portion of the mounting plate 4, and the nozzle device 1 is mounted to the heater units 103 and 104 by screwing screws or the like into the heater plate mounting hole 4a. Further, suction ports 4 c are provided on both sides of the mounting plate 4. The suction port 4 c is for returning the gas in the muffle sucked by the suction port 3 a to the heater portions 103 and 104.
 取付プレート4の下部には固定プレート5が吹き出しノズル2を支持した状態で取り付けられる。固定プレート5は、吹き出しノズル2をノズルカバー3の吹き出しノズル用孔3bに固定する。ノズルカバー3と取付プレート4とは、ネジ止め等の周知の方法によって固定される。また、固定プレート5は、吹出口22に対応する位置に固定プレート孔5aを有する。固定プレート孔5aは、ヒータ部103,104によって加熱された気体を通過させて吹き出しノズル2に供給する孔である。 The fixed plate 5 is attached to the lower part of the attachment plate 4 with the blowing nozzle 2 supported. The fixing plate 5 fixes the blowing nozzle 2 in the blowing nozzle hole 3 b of the nozzle cover 3. The nozzle cover 3 and the mounting plate 4 are fixed by a known method such as screwing. The fixed plate 5 has a fixed plate hole 5 a at a position corresponding to the air outlet 22. The fixed plate hole 5 a is a hole through which the gas heated by the heater units 103 and 104 is passed and supplied to the blowing nozzle 2.
 このように構成されたノズル装置1は、ヒータ部103,104によって加熱された気体を固定プレート5の固定プレート孔5aからノズル2の吹出口22を介してリフロー装置100のマッフル内に吹き出して、プリント基板に当該気体を吹き付けてプリント基板を所定の温度まで加熱する。また、プリント基板に吹き付けられて反射した気体は、ノズルカバー3の吸込口3a及び取付プレート4の吸込口4cを介してヒータ部103,104に還流される。その還流された気体は、再度ヒータ部103,104で熱せられ、その熱せられた熱風が吹き出しノズル2からマッフル内に吹き出すという循環を繰り返す。 The nozzle device 1 configured as described above blows the gas heated by the heaters 103 and 104 from the fixed plate hole 5a of the fixed plate 5 into the muffle of the reflow device 100 through the outlet 22 of the nozzle 2. The gas is blown onto the printed circuit board to heat the printed circuit board to a predetermined temperature. Further, the gas sprayed and reflected on the printed circuit board is refluxed to the heater portions 103 and 104 through the suction port 3 a of the nozzle cover 3 and the suction port 4 c of the mounting plate 4. The refluxed gas is heated again by the heaters 103 and 104, and the heated hot air is repeatedly circulated from the blowing nozzle 2 into the muffle.
 更に、ノズル装置1は、吸込口3aが吹出口22から吹き出されてプリント基板に衝突して反射した気体を吸い込むので、プリント基板に反射した気体は、吹出口22から吹き出す気体の妨げとなることを防止できる。この結果、ノズル装置1は、プリント基板に反射した気体が、吹出口22から吹き出す気体がプリント基板に反射した気体に干渉されず、当該気体の温度を下げてしまったり、当該気体の吹出方向を乱してしまったりすることを防止できる。 Further, in the nozzle device 1, the suction port 3 a is blown out from the blowout port 22 and sucks the gas reflected by colliding with the printed circuit board. Therefore, the gas reflected on the printed circuit board obstructs the gas blown out from the blowout port 22. Can be prevented. As a result, in the nozzle device 1, the gas reflected on the printed circuit board does not interfere with the gas reflected on the printed circuit board by the gas blown out from the air outlet 22, and the temperature of the gas is lowered, or the gas blowing direction is changed. It can prevent being disturbed.
 [吹き出しノズル2の構成例] 
 次に、吹き出しノズル2の構成例について説明する。図5及び図6に示すように、吹き出しノズル2は、ノズル本体部21及び吹出口22で構成される。ノズル本体部21は、下端部に凸部21aを有し、アルミニウムや銅等の熱伝導率の良好な金属材料で形成される。この凸部21aは、取付プレート4のノズル取付孔4bに嵌合するためのものである。また、ノズル本体部21には気体流動路24が設けられる。気体流動路24は、ヒータ部103,104で加熱された気体や冷却部105によって冷却された気体をノズル先端にある吹出口22まで流動する。
[Configuration example of the blowing nozzle 2]
Next, a configuration example of the blowing nozzle 2 will be described. As shown in FIGS. 5 and 6, the blowout nozzle 2 includes a nozzle body 21 and a blowout port 22. The nozzle body 21 has a convex portion 21a at the lower end, and is formed of a metal material having good thermal conductivity such as aluminum or copper. The convex portion 21 a is for fitting into the nozzle mounting hole 4 b of the mounting plate 4. The nozzle body 21 is provided with a gas flow path 24. The gas flow path 24 flows the gas heated by the heaters 103 and 104 and the gas cooled by the cooling unit 105 to the outlet 22 at the tip of the nozzle.
 このように構成された吹き出しノズル2は、ヒータ部103,104によって加熱された気体や冷却部105によって冷却された気体を固定プレート5の固定プレート孔5aから吹き出しノズル2の気体流動路24及び吹出口22を介してリフロー装置100のマッフル内に吹き出してプリント基板に当該気体を吹き付ける。 The blowout nozzle 2 configured in this manner allows the gas heated by the heaters 103 and 104 and the gas cooled by the cooling unit 105 to flow from the fixed plate hole 5a of the fixed plate 5 to the gas flow path 24 and the blowout nozzle 2. The gas is blown into the muffle of the reflow apparatus 100 through the outlet 22 and blown to the printed circuit board.
 [ノズル装置1の組立例] 
 次に、ノズル装置1の組立例について説明する。図5に示したように、吹き出しノズル2は、ノズル本体部21に吹出口22が設けられる。吹出口22は、ノズル本体部21を金型鋳造法等で作製してからドリル等で穿設することで形成してもよいし、ノズル本体部21及び吹出口22を同時に金型鋳造法等で作製してもよい。図7では、図面を見易くするために一部の吹き出しノズル2を省略している。
[Assembly example of nozzle device 1]
Next, an assembly example of the nozzle device 1 will be described. As shown in FIG. 5, the blowout nozzle 2 is provided with a blowout port 22 in the nozzle body 21. The air outlet 22 may be formed by making the nozzle body 21 by a die casting method or the like and then drilling it with a drill or the like. The nozzle body 21 and the air outlet 22 may be simultaneously formed by a die casting method or the like. You may produce by. In FIG. 7, in order to make the drawing easier to see, some blowout nozzles 2 are omitted.
 ノズルカバー3には、吹き出しノズル用孔3b及び吸込口3aが穿設される。吹き出しノズル用孔3bは、吹出口22を囲うように嵌合するために、吹出口22よりも一回り大きな径を有する。吸込口3aは、長円形状を有し、吹き出しノズル2の近傍に位置させるために、吹き出しノズル用孔3bの近傍に穿設される。吸込口3a及び吹き出しノズル用孔3bは、ノズルカバー3にドリル等で穿設することで形成してもよいし、ノズルカバー3にプレス金型でパンチングして穿設することで形成してもよい。 The nozzle cover 3 is provided with a blowing nozzle hole 3b and a suction port 3a. The blowout nozzle hole 3 b has a diameter one size larger than that of the blowout port 22 in order to fit so as to surround the blowout port 22. The suction port 3 a has an oval shape, and is formed in the vicinity of the blowing nozzle hole 3 b in order to be positioned in the vicinity of the blowing nozzle 2. The suction port 3a and the blowing nozzle hole 3b may be formed by drilling the nozzle cover 3 with a drill or the like, or may be formed by punching the nozzle cover 3 with a press die. Good.
 取付プレート4には、ヒータ部取付孔4a、ノズル取付孔4b及び吸込口4cが穿設される。ノズル取付孔4bは、吹き出しノズル2の後端にある凸部21aを固定させるために、凸部21aの外周よりも小さくなっている。また、吹き出しノズル2をノズル取付孔4bに対して圧入気味に挿入させると、ノズル装置1の組み立て時に、吹き出しノズル2を取付プレート4に仮固定できるので、後述する固定プレート5を取付プレート4に取り付ける際に作業が行いやすくなる。 The mounting plate 4 is provided with a heater mounting hole 4a, a nozzle mounting hole 4b and a suction port 4c. The nozzle mounting hole 4b is smaller than the outer periphery of the convex portion 21a in order to fix the convex portion 21a at the rear end of the blowing nozzle 2. Further, when the blowing nozzle 2 is inserted into the nozzle mounting hole 4b in a press-fit manner, the blowing nozzle 2 can be temporarily fixed to the mounting plate 4 when the nozzle device 1 is assembled. Work becomes easier when installing.
 吸込口4cは、ノズルカバー3の吸込口3aから吸い込まれた気体をヒータ部103,104に還流させるためのものである。ヒータ部取付孔4a、ノズル取付孔4b及び吸込口4cは、前述のノズルカバー3と同様に、取付プレート4にドリルで穿設することで形成してもよいし、取付プレート4にプレス金型でパンチングして穿設することで形成してもよい。また、取付プレート4にはその外周に嵌合溝4dが設けられる。嵌合溝4dは、取付プレート4の上部を覆うノズルカバー3の外周部を嵌合するものである。嵌合溝4dにより、ノズルカバー3が取付プレート4からずれることなく組立可能になる。 The suction port 4 c is for returning the gas sucked from the suction port 3 a of the nozzle cover 3 to the heater portions 103 and 104. The heater mounting hole 4a, the nozzle mounting hole 4b, and the suction port 4c may be formed by drilling the mounting plate 4 with a drill as in the nozzle cover 3 described above. It may be formed by punching and punching. The mounting plate 4 is provided with a fitting groove 4d on the outer periphery thereof. The fitting groove 4 d is for fitting the outer peripheral portion of the nozzle cover 3 that covers the upper portion of the mounting plate 4. The nozzle groove 3 can be assembled without being displaced from the mounting plate 4 by the fitting groove 4d.
 固定プレート5には固定プレート孔5aが穿設される。固定プレート孔5aは、ヒータ部103,104により加熱された気体を吹出口22の下部に供給して、吹出口22から熱風をリフロー装置100のマッフル内に吹き出させるために設けられた孔である。固定プレート孔5aは、前述のノズルカバー3及び取付プレート4と同様に、固定プレート5にドリルで穿設することで形成してもよいし、固定プレート5にプレス金型でパンチングして穿設することで形成してもよい。ノズルカバー3、取付プレート4及び固定プレート5の作製方法は、適宜変更可能である。 The fixing plate 5 is provided with a fixing plate hole 5a. The fixed plate hole 5a is a hole provided for supplying the gas heated by the heaters 103 and 104 to the lower part of the blowout port 22 and blowing hot air from the blowout port 22 into the muffle of the reflow device 100. . The fixed plate hole 5a may be formed by drilling the fixed plate 5 with a drill in the same manner as the nozzle cover 3 and the mounting plate 4 described above, or by punching the fixed plate 5 with a press die. You may form by doing. The production methods of the nozzle cover 3, the mounting plate 4 and the fixing plate 5 can be changed as appropriate.
 吹き出しノズル2、ノズルカバー3、取付プレート4及び固定プレート5が、上述のように形成されたことを前提にして、図7に示すように、まず、取付プレート4のノズル取付孔4bに吹き出しノズル2を吹出口22の上部側から取り付ける。すると、ノズル取付孔4bに吹き出しノズル2の後端にある凸部21aが当接して、吹き出しノズル2と取付プレート4とが嵌合する。 Assuming that the blowing nozzle 2, the nozzle cover 3, the mounting plate 4 and the fixing plate 5 are formed as described above, first, the blowing nozzle is inserted into the nozzle mounting hole 4b of the mounting plate 4 as shown in FIG. 2 is attached from the upper side of the blower outlet 22. Then, the protruding portion 21a at the rear end of the blowing nozzle 2 comes into contact with the nozzle mounting hole 4b, and the blowing nozzle 2 and the mounting plate 4 are fitted.
 次に、嵌合された吹き出しノズル2及び取付プレート4の下部に固定プレート5を取り付ける。このとき、固定プレート5の図示しないネジ孔にネジを螺合することで取付プレート4に固定プレート5が吹き出しノズル2を支持した状態で取り付けられて、吹き出しノズル2、取付プレート4及び固定プレート5が一体化される。 Next, the fixed plate 5 is attached to the lower part of the blowout nozzle 2 and the mounting plate 4 fitted. At this time, the fixing plate 5 is attached to the mounting plate 4 in a state of supporting the blowing nozzle 2 by screwing screws into screw holes (not shown) of the fixing plate 5, and the blowing nozzle 2, the mounting plate 4 and the fixing plate 5. Are integrated.
 最後に、一体化された吹き出しノズル2、取付プレート4及び固定プレート5の上部をノズルカバー3で覆う。取付プレート4には嵌合溝4dが設けられているので、この嵌合溝4dによってノズルカバー3の外周部が取付プレート4に嵌合することで、ノズルカバー3が取付プレート4からずれることがない。そして、ノズルカバー3と取付プレート4とは、ネジ止め等の周知の方法によって固定される。このような方法により、ノズル装置1が簡単に組み立てられる。 Finally, the upper part of the integrated blowing nozzle 2, mounting plate 4 and fixed plate 5 is covered with a nozzle cover 3. Since the fitting groove 4 d is provided in the mounting plate 4, the nozzle cover 3 may be displaced from the mounting plate 4 by fitting the outer peripheral portion of the nozzle cover 3 to the mounting plate 4 by the fitting groove 4 d. Absent. The nozzle cover 3 and the mounting plate 4 are fixed by a known method such as screwing. By such a method, the nozzle device 1 is easily assembled.
 因みに、吹き出しノズル2、取付プレート4及び固定プレート5とノズルカバー3とを、溶接により接合してもよい。また、ノズルカバー3に吹き出しノズル2を直接ネジ止めして、吹き出しノズル2をノズルカバーに固定させることで、取付プレート4を削除する構成であってもよい。ノズル装置1の組立方法は、本例に限定されず、適宜変更可能である。 Incidentally, the blowing nozzle 2, the mounting plate 4, the fixed plate 5 and the nozzle cover 3 may be joined by welding. Further, the mounting plate 4 may be deleted by screwing the blowing nozzle 2 directly to the nozzle cover 3 and fixing the blowing nozzle 2 to the nozzle cover. The assembly method of the nozzle device 1 is not limited to this example, and can be changed as appropriate.
 [リフロー装置100の温度プロファイル例] 
 次に、リフロー装置100の温度プロファイル例について説明する。図8は、縦軸をプリント基板の温度(℃)とし、横軸をリフロー装置にプリント基板を投入してからの経過時間(搬送時間)(秒)としたときの、リフロー装置100の温度プロファイル例を示す説明図である。図8に示すように、プリント基板は、搬送時間が約70秒から約230秒で予備加熱ゾーンAを通過し、搬送時間が約230秒から約285秒で本加熱ゾーンBを通過し、約285秒以降で冷却ゾーンCを通過する。
[Temperature profile example of reflow apparatus 100]
Next, an example of the temperature profile of the reflow apparatus 100 will be described. FIG. 8 shows the temperature profile of the reflow apparatus 100 where the vertical axis is the temperature (° C.) of the printed circuit board and the horizontal axis is the elapsed time (transport time) (seconds) after the printed circuit board is inserted into the reflow apparatus. It is explanatory drawing which shows an example. As shown in FIG. 8, the printed circuit board passes through the preheating zone A with a transport time of about 70 seconds to about 230 seconds, passes through the main heating zone B with a transport time of about 230 seconds to about 285 seconds, It passes through the cooling zone C after 285 seconds.
 図14で示した従来のリフロー装置の温度プロファイル例と比較すると、従来のリフロー装置は、予備加熱ゾーンA及び本加熱ゾーンBでプリント基板の温度が細かく昇降しているのに対して、本実施の形態に係るリフロー装置100は、予備加熱ゾーンA及び本加熱ゾーンBでプリント基板の温度が細かく昇降せず、滑らかな波形を描いている。 Compared with the temperature profile example of the conventional reflow apparatus shown in FIG. 14, the conventional reflow apparatus shows a slight increase in the temperature of the printed circuit board in the preheating zone A and the main heating zone B. In the reflow apparatus 100 according to the embodiment, the temperature of the printed circuit board does not rise and fall finely in the preheating zone A and the main heating zone B, and draws a smooth waveform.
 この温度プロファイル例からわかるように、リフロー装置100は、複数の吹き出しノズル2から吹き出される気体の干渉を防止でき、かつ、プリント基板全体に均一に気体を吹き付けることができる。これにより、プリント基板全体に均一に安定して加熱することができる。この結果、プリント基板の加熱効率を向上することができ、はんだ付け不良が発生する可能性を低減することができる。 As can be seen from this temperature profile example, the reflow apparatus 100 can prevent the gas blown out from the plurality of blowout nozzles 2 and can blow the gas uniformly over the entire printed circuit board. Thereby, the whole printed circuit board can be heated uniformly and stably. As a result, the heating efficiency of the printed circuit board can be improved, and the possibility of occurrence of poor soldering can be reduced.
 このように、第1の実施の形態に係るリフロー装置100によれば、プリント基板を所定の搬送方向Eに搬送するコンベア102と、このコンベア102の上下部に設けられ、気体を加熱するヒータ部103,104と、このヒータ部103,104で加熱された気体を吹き出す吹出口22を有し、この吹出口22から吹き出される気体を、コンベア102によって搬送されたプリント基板に吹き付ける複数の吹き出しノズル2とを備える。 As described above, according to the reflow apparatus 100 according to the first embodiment, the conveyor 102 that transports the printed circuit board in the predetermined transport direction E, and the heater unit that is provided on the upper and lower portions of the conveyor 102 and heats the gas. 103 and 104 and a plurality of blowout nozzles for blowing the gas heated by the heaters 103 and 104 to blow the gas blown from the blowout port 22 onto the printed circuit board conveyed by the conveyor 102. 2 is provided.
 これを前提にして、複数の吹き出しノズル2は、プリント基板の搬送方向Eに対して所定の角度θ(θは15度以下)で千鳥状に配置される。これにより、プリント基板全体に均一に気体を吹き付けることができるようになる。 On the premise of this, the plurality of blowing nozzles 2 are arranged in a staggered manner at a predetermined angle θ (θ is 15 degrees or less) with respect to the conveyance direction E of the printed circuit board. As a result, the gas can be sprayed uniformly over the entire printed circuit board.
 これにより、リフロー装置100は、プリント基板の加熱中に当該プリント基板の温度が細かく昇降することなく(図8参照)、プリント基板全体に均一に安定して加熱することができる。この結果、プリントの加熱効率を向上することができ、はんだ付け不良が発生する可能性を低減することができる。 Thereby, the reflow apparatus 100 can uniformly and stably heat the entire printed circuit board without causing the temperature of the printed circuit board to rise and fall finely during the heating of the printed circuit board (see FIG. 8). As a result, the heating efficiency of the print can be improved, and the possibility of occurrence of soldering defects can be reduced.
 なお、本実施の形態では、隣接する吹き出しノズルの各々が互いに同じ距離Lだけ離間して、搬送方向に対して所定の角度で千鳥状に配置されることについて説明したが、これに限定されず、図9に示すように、搬送方向Eに対して所定の角度θで千鳥状に配置されるものであってもよい。なお、プリント基板は、搬送ガイドL1,L2間で保持されて搬送方向Eで示す方向に搬送される。 In the present embodiment, it has been described that adjacent blowing nozzles are spaced apart from each other by the same distance L, and are arranged in a staggered manner at a predetermined angle with respect to the transport direction. However, the present invention is not limited to this. As shown in FIG. 9, they may be arranged in a staggered manner at a predetermined angle θ with respect to the transport direction E. The printed circuit board is held between the conveyance guides L1 and L2 and conveyed in the direction indicated by the conveyance direction E.
 この場合、隣接の吹き出しノズル同士を結ぶ線分から、距離M1を底辺とし、距離M2を2辺とする二等辺三角形が描かれる。また、角度θは、15度以下であることが望ましい。これにより、本実施の形態と同様に、複数の吹き出しノズル2から吹き出される気体の干渉を防止でき、かつ、プリント基板全体に均一に気体を吹き付けることができる。 In this case, an isosceles triangle having a distance M1 as a base and a distance M2 as two sides is drawn from a line connecting adjacent blowing nozzles. Further, the angle θ is desirably 15 degrees or less. Thereby, like this Embodiment, interference of the gas which blows off from the several blowing nozzle 2 can be prevented, and gas can be sprayed uniformly on the whole printed circuit board.
 また、本実施の形態では、加熱装置の一例であるリフロー装置について詳しく説明したが、本発明はこれに限定されず、冷却装置においても適用可能である。 In this embodiment, the reflow apparatus which is an example of the heating apparatus has been described in detail. However, the present invention is not limited to this and can be applied to a cooling apparatus.
 <第2の実施の形態> 
 第2の実施の形態では、前述の第1の実施の形態で説明したノズル装置1を代替することができる吹出孔プレート10について説明する。
<Second Embodiment>
In the second embodiment, a blowout hole plate 10 that can replace the nozzle device 1 described in the first embodiment will be described.
 図10に示すように、吹出孔プレート10は、プレート本体部11、吹出孔12、吸込口13及び取付孔14で構成される。吹出孔プレート10は、前述の第1の実施の形態で示したノズル装置1の代替するものであり、ノズル形状はなく、プレート形状にすることにより、製造コストの削減することができるものである。例えば、図1に示したリフロー装置100に取り付けられたノズル装置1の代わりに、吹出孔プレート10が取付孔14を介して取り付けられる。 As shown in FIG. 10, the blowout hole plate 10 includes a plate body portion 11, a blowout hole 12, a suction port 13, and a mounting hole 14. The blowout hole plate 10 is a substitute for the nozzle device 1 shown in the first embodiment described above, and has no nozzle shape. By making the plate shape, the manufacturing cost can be reduced. . For example, instead of the nozzle device 1 attached to the reflow device 100 shown in FIG. 1, the blowout hole plate 10 is attached via the attachment hole 14.
 プレート本体部11には吹出孔12、吸込口13及び取付孔14が設けられる。吹出孔12は、前述のコンベア102がプリント基板を搬送する方向に対して所定の角度で千鳥状に配置されている。図1で示したヒータ部103,104によって加熱された気体や、冷却部105によって冷却された気体が、この吹出孔12から吹き出される。 The plate body 11 is provided with a blowout hole 12, a suction port 13, and a mounting hole 14. The blowout holes 12 are arranged in a staggered manner at a predetermined angle with respect to the direction in which the conveyor 102 transports the printed circuit board. The gas heated by the heaters 103 and 104 shown in FIG. 1 and the gas cooled by the cooling unit 105 are blown out from the blowout holes 12.
 吹出孔12から吹き出された気体は、例えば、吹出孔プレート10の直上又は直下に搬送されてきたプリント基板に衝突する。すると、その気体は、当該プリント基板によって反射されて、吸込口13によって吸い込まれる。これにより、プリント基板から反射された気体が、吹出孔12から吹き出す気体の妨げとならない。因みに、吸込口13には、パーティクル等がプリヒータ部33内部に入り込まないように、網が設けられている。 The gas blown out from the blowout hole 12 collides with, for example, a printed circuit board that has been conveyed directly above or below the blowout hole plate 10. Then, the gas is reflected by the printed circuit board and sucked by the suction port 13. Thereby, the gas reflected from the printed circuit board does not interfere with the gas blown out from the blowout hole 12. Incidentally, the suction port 13 is provided with a net so that particles and the like do not enter the preheater portion 33.
 このように、第2の実施の形態に係る吹出孔プレート10によれば、ノズル装置1の代わりに、搬送方向に対して所定の角度で千鳥状に配置された吹出孔12を有する吹出孔プレート10をリフロー装置100に取り付けることにより、プリント基板全体に均一に、加熱又は冷却された気体を吹き付けることができるようになる。そして、前述の第1の実施の形態で説明したノズル装置1よりも製造コストを削減することができる。 Thus, according to the blowing hole plate 10 which concerns on 2nd Embodiment, it is the blowing hole plate which has the blowing holes 12 arrange | positioned at a predetermined angle with respect to the conveyance direction instead of the nozzle apparatus 1. By attaching 10 to the reflow apparatus 100, the heated or cooled gas can be sprayed uniformly over the entire printed circuit board. In addition, the manufacturing cost can be reduced as compared with the nozzle device 1 described in the first embodiment.
 <第3の実施の形態> 
 第3の実施の形態では、前述の第2の実施の形態で説明した吹出孔プレート10を備えたフローはんだ装置30について説明する。前述の第1乃至2の実施の形態と同じ名称及び符号のものは同じ機能を有するので、その説明を省略する。
<Third Embodiment>
In the third embodiment, a flow soldering apparatus 30 including the blowout hole plate 10 described in the second embodiment will be described. Components having the same names and reference numerals as those in the first and second embodiments have the same functions, and thus description thereof is omitted.
 [フローはんだ装置30の構成例] 
 まずは、フローはんだ装置30の構成例について説明する。図11に示すように、フローはんだ装置30は、加熱装置の一例であり、本体ケース31、搬送部32、プリヒータ部33、噴流はんだ槽34及び冷却部35で構成される。
[Configuration example of flow soldering apparatus 30]
First, a configuration example of the flow soldering apparatus 30 will be described. As shown in FIG. 11, the flow solder device 30 is an example of a heating device, and includes a main body case 31, a transport unit 32, a preheater unit 33, a jet solder tank 34, and a cooling unit 35.
 本体ケース31は、搬送部32、プリヒータ部33、噴流はんだ槽34及び冷却部35を覆い、外部からの埃等のパーティクルに図示しないプリント基板が汚染されないように保護するものである。 The main body case 31 covers the transport section 32, the preheater section 33, the jet solder tank 34 and the cooling section 35, and protects the printed circuit board (not shown) from being contaminated by particles such as dust from the outside.
 搬送部32は、プリント基板を搬送するものである。搬送部32は、プリヒータ部33、噴流はんだ槽34及び冷却部35の順番でプリント基板を搬送して、フローはんだ装置30外に搬出する。 The transport unit 32 transports the printed circuit board. The conveyance unit 32 conveys the printed circuit board in the order of the pre-heater unit 33, the jet solder tank 34, and the cooling unit 35, and carries it out of the flow soldering device 30.
 プリヒータ部33は、プリント基板がフローはんだ装置30に投入される前の工程であるフラクサ工程でフラックスが塗布された当該プリント基板を熱風で乾燥させ、かつ、後述する噴流はんだ槽34によるはんだ付けを行う際、プリント基板にはんだを付着させる度合いであるはんだの付着力を向上させるために当該プリント基板を予備加熱するものである(プリヒータ部33については、図12及び図13で詳細に説明する)。 The pre-heater unit 33 dries the printed circuit board coated with the flux in the fluxer process, which is a process before the printed circuit board is put into the flow soldering apparatus 30, with hot air, and performs soldering in a jet solder bath 34 described later. When this is performed, the printed circuit board is preheated in order to improve the adhesion of the solder, which is the degree to which the solder is adhered to the printed circuit board (the preheater section 33 will be described in detail with reference to FIGS. 12 and 13). .
 プリヒータ部33には、第2の実施の形態で説明した吹出孔プレート10が設けられる(図10参照)。プリヒータ部33は、吹出孔プレート10に穿設された、プリント基板の搬送方向に対して所定の角度で千鳥状に配置されている吹出孔12から熱風を吹き出す。これにより、プリント基板全体に均一に熱風を吹き付けることができるようになる。 The pre-heater section 33 is provided with the blowout hole plate 10 described in the second embodiment (see FIG. 10). The preheater section 33 blows hot air from the blowout holes 12 formed in a staggered manner at a predetermined angle with respect to the transport direction of the printed circuit board, which is formed in the blowout hole plate 10. Thereby, it becomes possible to blow hot air uniformly over the entire printed circuit board.
 この結果、プリヒータ部33では、プリント基板の加熱中に当該プリント基板の温度が細かく昇降することなく(図8参照)、プリント基板全体に均一に安定して加熱することができる。この結果、プリントの加熱効率を向上することができ、はんだ付け不良が発生する可能性を低減することができる。 As a result, the pre-heater unit 33 can uniformly and stably heat the entire printed circuit board without the temperature of the printed circuit board rising and falling finely during the heating of the printed circuit board (see FIG. 8). As a result, the heating efficiency of the print can be improved, and the possibility of occurrence of soldering defects can be reduced.
 また、プリヒータ部33は、第1乃至第4のヒータを備え、第1乃至第4のヒータがプリント基板の搬送方向に対して並んで設けられており、第1乃至第4のヒータのそれぞれが温度調節可能になっている。 The pre-heater unit 33 includes first to fourth heaters, and the first to fourth heaters are provided side by side with respect to the conveyance direction of the printed circuit board, and each of the first to fourth heaters is provided. The temperature can be adjusted.
 プリヒータ部33には噴流はんだ槽34が隣接して設けられる。噴流はんだ槽34は、プリヒータ部33で乾燥されたプリント基板にはんだを噴き付けて、プリント基板の所定の箇所にはんだを形成させる。 A jet solder bath 34 is provided adjacent to the preheater section 33. The jet solder tank 34 sprays solder onto the printed circuit board dried by the pre-heater unit 33 to form solder at predetermined locations on the printed circuit board.
 噴流はんだ槽34には冷却部35が隣接して設けられる。冷却部35は、冷却装置の一例であり、当該冷却部35を構成する図示しないファンによる送風をプリント基板に送り、プリヒータ部33及び噴流はんだ槽34にて加熱されたプリント基板を冷却するものである。プリント基板を冷却部35で冷却することで、プリント基板に付着させたはんだに生じるクラック等を防ぐことができる。 The jet solder bath 34 is provided with a cooling unit 35 adjacent thereto. The cooling unit 35 is an example of a cooling device, and sends air blown by a fan (not shown) constituting the cooling unit 35 to the printed circuit board to cool the printed circuit board heated in the preheater unit 33 and the jet solder tank 34. is there. By cooling the printed circuit board with the cooling unit 35, it is possible to prevent cracks and the like generated in the solder adhered to the printed circuit board.
 冷却部35には、プリヒータ部33と同様に、搬送方向に対して所定の角度で千鳥状に配置されている吹出孔12を有する吹出孔プレート10が設けられる。冷却部35は、吹出孔プレート10の吹出孔12から冷風を吹き出す。これにより、プリント基板全体に均一に冷風を吹き付けることができるようになる。 The cooling unit 35 is provided with the blowing hole plate 10 having the blowing holes 12 arranged in a staggered manner at a predetermined angle with respect to the transport direction, like the preheater unit 33. The cooling unit 35 blows out cold air from the blowout holes 12 of the blowout hole plate 10. Thereby, it becomes possible to blow cold air uniformly over the entire printed circuit board.
 [プリヒータ部33の構成例] 
 次に、プリヒータ部33の構成例について説明する。図12及び図13に示すように、プリヒータ部33は、吹出孔プレート10、整流板331、ヒータ332、ファン333及びモータ334で構成される。
[Configuration Example of Preheater Unit 33]
Next, a configuration example of the preheater unit 33 will be described. As shown in FIGS. 12 and 13, the preheater section 33 includes the blowout hole plate 10, the current plate 331, the heater 332, the fan 333, and the motor 334.
 プリヒータ部33の上部には吹出孔プレート10が設けられる。吹出孔プレート10の下方であってプリヒータ部33の内部には整流板331及びヒータ332が設けられる。整流板331は、吹出孔12から吹き出される気体の流れを整流するものである。ヒータ332は、加熱部の一例であり、吹出孔プレート10に設けられた吸込口13により吸い込まれた気体を加熱するものである。 The blowing hole plate 10 is provided on the upper part of the preheater portion 33. A rectifying plate 331 and a heater 332 are provided below the blowout hole plate 10 and inside the preheater portion 33. The rectifying plate 331 rectifies the flow of gas blown out from the blowout hole 12. The heater 332 is an example of a heating unit, and heats the gas sucked by the suction port 13 provided in the blowout hole plate 10.
 ヒータ332の直下にはファン333が設けられる。ファン333は、所謂シロッコファンであり、縦方向から吸い込んだ気体を横方向に吐き出すファンである。ファン333にはモータ334が設けられる。モータ334は、ファン333を軸支して当該ファン333を所望の回転数で回転させる動力源である。モータ334の回転数や、ヒータ332の加熱温度は、図示しない制御部によって制御され、これにより、プリヒータ部33に搬送されてくるプリント基板に吹き付ける気体の温度が制御される。 A fan 333 is provided directly under the heater 332. The fan 333 is a so-called sirocco fan and discharges the gas sucked from the vertical direction in the horizontal direction. The fan 333 is provided with a motor 334. The motor 334 is a power source that pivotally supports the fan 333 and rotates the fan 333 at a desired rotational speed. The number of rotations of the motor 334 and the heating temperature of the heater 332 are controlled by a control unit (not shown), thereby controlling the temperature of the gas blown to the printed circuit board conveyed to the preheater unit 33.
 このように、第3の実施の形態に係るフローはんだ装置30によれば、プリント基板を所定の搬送方向に搬送する搬送部32と、この搬送部32の下方に設けられ、気体を加熱するプリヒータ部33と、このプリヒータ部33で加熱された気体を吹き出す吹出孔12を有し、この吹出孔12から吹き出される気体を、搬送部32によって搬送されたプリント基板に吹き付ける吹出孔プレート10とを備える。 Thus, according to the flow soldering apparatus 30 according to the third embodiment, the transport unit 32 that transports the printed circuit board in a predetermined transport direction, and the preheater that is provided below the transport unit 32 and heats the gas. And a blowout hole plate 10 that blows the gas blown from the blowout hole 12 onto the printed circuit board conveyed by the conveyance unit 32. Prepare.
 これを前提にして、吹出孔プレート10の吹出孔12は、プリント基板の搬送方向に対して所定の角度で千鳥状に配置される。これにより、プリント基板全体に均一に熱風を吹き付けることができるようになる。この結果、プリント基板全体に均一に安定して加熱することができ、プリントの加熱効率を向上することができ、はんだ付け不良が発生する可能性を低減することができる。 Assuming this, the blowing holes 12 of the blowing hole plate 10 are arranged in a staggered manner at a predetermined angle with respect to the transport direction of the printed circuit board. Thereby, it becomes possible to blow hot air uniformly over the entire printed circuit board. As a result, the entire printed circuit board can be heated uniformly and stably, the heating efficiency of the print can be improved, and the possibility of defective soldering can be reduced.
 なお、本実施の形態では、吹出孔プレート10が設けられるフローはんだ装置30について説明したが、これに限定されず、吹出孔プレート10の代わりに第1の実施の形態で説明したノズル装置1が設けられたフローはんだ装置でも上述の効果を得ることができる。 In addition, in this Embodiment, although the flow solder apparatus 30 provided with the blowing hole plate 10 was demonstrated, it is not limited to this, The nozzle apparatus 1 demonstrated in 1st Embodiment instead of the blowing hole plate 10 is used. The above-described effects can be obtained even with the provided flow soldering apparatus.
 また、本発明は、リフロー装置やフローはんだ装置だけに限定されず、熱風によって対象物を加熱する加熱装置や、冷風によって対象物を冷却する冷却装置にも適用可能である。 Further, the present invention is not limited to a reflow device or a flow soldering device, but can be applied to a heating device that heats an object with hot air or a cooling device that cools an object with cold air.
 1・・・ノズル装置、2・・・吹き出しノズル、3・・・ノズルカバー、3a,4c・・・吸込口、3b・・・吹き出しノズル用孔、4・・・取付プレート、5・・・固定プレート、10・・・吹出孔プレート、20・・・熱風吹出口、21・・・ノズル本体部、22・・・吹出口、30・・・フローはんだ装置(加熱装置)、33・・・プリヒータ部、100・・・リフロー装置(加熱装置)、101・・・本体部、102・・・コンベア(搬送部)、103・・・第1のヒータ部(加熱部)、104・・・第2のヒータ部(加熱部)、105・・・冷却部(冷却装置) DESCRIPTION OF SYMBOLS 1 ... Nozzle device, 2 ... Blowing nozzle, 3 ... Nozzle cover, 3a, 4c ... Suction port, 3b ... Hole for blowing nozzle, 4 ... Mounting plate, 5 ... Fixed plate, 10 ... Blow hole plate, 20 ... Hot air outlet, 21 ... Nozzle body part, 22 ... Blower, 30 ... Flow soldering device (heating device), 33 ... Preheater unit, 100 ... reflow device (heating device), 101 ... main body unit, 102 ... conveyor (conveying unit), 103 ... first heater unit (heating unit), 104 ... first 2 heater parts (heating part), 105... Cooling part (cooling device)

Claims (8)

  1.  搬送物を所定の搬送方向に搬送する搬送部と、
     気体を加熱する加熱部と、
     前記加熱部で加熱された気体を吹き出す吹出口を有し、前記吹出口から吹き出される気体を、前記搬送部によって搬送された搬送物に吹き付ける複数のノズルとを備え、
    前記複数のノズルは、
     前記搬送方向に対して所定の角度で千鳥状に配置されることを特徴とする加熱装置。
    A transport unit for transporting a transported object in a predetermined transport direction;
    A heating unit for heating the gas;
    A blower outlet that blows out the gas heated by the heating unit; and a plurality of nozzles that blow the gas blown from the blower outlet onto the conveyed product conveyed by the conveyance unit;
    The plurality of nozzles are:
    The heating device is arranged in a staggered manner at a predetermined angle with respect to the transport direction.
  2.  前記複数のノズルは、
     隣接するノズルの各々が互いに同じ距離だけ離間して、前記搬送方向に対して所定の角度で千鳥状に配置されることを特徴とする請求項1に記載の加熱装置。
    The plurality of nozzles are:
    2. The heating apparatus according to claim 1, wherein the adjacent nozzles are spaced apart from each other by the same distance and are arranged in a staggered manner at a predetermined angle with respect to the transport direction.
  3.  前記複数のノズルは、
     前記搬送方向に対して15度以下の角度で千鳥状に配置されることを特徴とする請求項1又は2に記載の加熱装置。
    The plurality of nozzles are:
    The heating device according to claim 1, wherein the heating device is arranged in a staggered manner at an angle of 15 degrees or less with respect to the transport direction.
  4.  搬送物を所定の搬送方向に搬送する搬送部と、
     気体を加熱する加熱部と、
     前記加熱部で加熱された気体を吹き出す吹出孔を有し、前記吹出孔から吹き出される気体を、前記搬送部によって搬送された搬送物に吹き付ける吹出孔プレートとを備え、
     前記吹出孔プレートの吹出孔は、
     前記搬送方向に対して所定の角度で千鳥状に配置されることを特徴とする加熱装置。
    A transport unit for transporting a transported object in a predetermined transport direction;
    A heating unit for heating the gas;
    A blow hole that blows out the gas heated by the heating unit, and a blow hole plate that blows the gas blown from the blow hole onto the transported object transported by the transport unit;
    The outlet holes of the outlet hole plate are:
    The heating device is arranged in a staggered manner at a predetermined angle with respect to the transport direction.
  5.  搬送物を所定の搬送方向に搬送する搬送部と、
     気体を冷却する冷却部と、
     前記冷却部で冷却された気体を吹き出す吹出口を有し、前記吹出口から吹き出される気体を、前記搬送部によって搬送された搬送物に吹き付ける複数のノズルとを備え、
     前記複数のノズルは、
     前記搬送方向に対して所定の角度で千鳥状に配置されることを特徴とする冷却装置。
    A transport unit for transporting a transported object in a predetermined transport direction;
    A cooling unit for cooling the gas;
    It has a blowout port that blows out the gas cooled by the cooling unit, and includes a plurality of nozzles that blow the gas blown out from the blowout port onto the conveyed product conveyed by the conveyance unit,
    The plurality of nozzles are:
    The cooling device is arranged in a staggered manner at a predetermined angle with respect to the transport direction.
  6.  前記複数のノズルは、
     隣接するノズルの各々が互いに同じ距離だけ離間して、前記搬送方向に対して所定の角度で千鳥状に配置されることを特徴とする請求項5に記載の冷却装置。
    The plurality of nozzles are:
    6. The cooling device according to claim 5, wherein each of the adjacent nozzles is spaced apart from each other by the same distance and arranged in a staggered manner at a predetermined angle with respect to the transport direction.
  7.  前記複数のノズルは、
     前記搬送方向に対して15度以下の角度で千鳥状に配置されることを特徴とする請求項5又は6に記載の冷却装置。
    The plurality of nozzles are:
    The cooling device according to claim 5 or 6, wherein the cooling device is arranged in a staggered manner at an angle of 15 degrees or less with respect to the transport direction.
  8.  搬送物を所定の搬送方向に搬送する搬送部と、
     気体を冷却する冷却部と、
     前記冷却部で冷却された気体を吹き出す吹出孔を有し、前記吹出孔から吹き出される気体を、前記搬送部によって搬送された搬送物に吹き付ける吹出孔プレートとを備え、
     前記吹出し孔プレートの吹出孔は、
     前記搬送方向に対して所定の角度で千鳥状に配置されることを特徴とする冷却装置。
    A transport unit for transporting a transported object in a predetermined transport direction;
    A cooling unit for cooling the gas;
    A blowout hole for blowing out the gas cooled by the cooling unit, and a blowout hole plate for blowing the gas blown out from the blowout hole to a conveyed product conveyed by the conveyance unit;
    The outlet hole of the outlet hole plate is
    The cooling device is arranged in a staggered manner at a predetermined angle with respect to the transport direction.
PCT/JP2010/064495 2010-04-28 2010-08-26 Heating apparatus and cooling apparatus WO2011135737A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012512621A JP5158288B2 (en) 2010-04-28 2010-08-26 Heating device and cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-104512 2010-04-28
JP2010104512 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011135737A1 true WO2011135737A1 (en) 2011-11-03

Family

ID=44861072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064495 WO2011135737A1 (en) 2010-04-28 2010-08-26 Heating apparatus and cooling apparatus

Country Status (3)

Country Link
JP (1) JP5158288B2 (en)
TW (1) TW201138579A (en)
WO (1) WO2011135737A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103946A1 (en) * 2012-12-28 2014-07-03 千住金属工業株式会社 Gas-blowing-hole array structure and soldering device
WO2014103945A1 (en) * 2012-12-28 2014-07-03 千住金属工業株式会社 Gas-intake-hole array structure and soldering device
CN104096941A (en) * 2014-07-24 2014-10-15 亳州联滔电子有限公司 Semi-automatic welding machine
CN107234314A (en) * 2017-06-28 2017-10-10 鞍山中电科技有限公司 A kind of electronic component array hot air welding device and its application method
US9981487B2 (en) 2016-03-04 2018-05-29 Seiko Epson Corporation Printing apparatus
CN117283075A (en) * 2023-11-23 2023-12-26 徐州工程学院 Lead-free wave soldering machine for emergency lighting LED lamp production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093232A (en) * 1996-09-11 1998-04-10 Nihon Dennetsu Kk Reflow soldering equipment
JP2004195476A (en) * 2002-12-16 2004-07-15 Tamura Seisakusho Co Ltd Cooling device for soldering, and reflow device
JP2005028424A (en) * 2003-07-09 2005-02-03 Tamura Seisakusho Co Ltd Reflow device
WO2006013895A1 (en) * 2004-08-04 2006-02-09 Senju Metal Industry Co., Ltd. Reflow oven

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093232A (en) * 1996-09-11 1998-04-10 Nihon Dennetsu Kk Reflow soldering equipment
JP2004195476A (en) * 2002-12-16 2004-07-15 Tamura Seisakusho Co Ltd Cooling device for soldering, and reflow device
JP2005028424A (en) * 2003-07-09 2005-02-03 Tamura Seisakusho Co Ltd Reflow device
WO2006013895A1 (en) * 2004-08-04 2006-02-09 Senju Metal Industry Co., Ltd. Reflow oven

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9485872B2 (en) 2012-12-28 2016-11-01 Senju Metal Industry Co., Ltd. Gas-blowing-hole array structure and soldering apparatus
US9511379B2 (en) 2012-12-28 2016-12-06 Senju Metal Industry Co., Ltd. Gas-intake-port array structure and soldering apparatus
CN104904329A (en) * 2012-12-28 2015-09-09 千住金属工业株式会社 Gas-intake-hole array structure and soldering device
JP2014130936A (en) * 2012-12-28 2014-07-10 Senju Metal Ind Co Ltd Structure for aligning gas suction hole and soldering device
KR101582079B1 (en) 2012-12-28 2015-12-31 센주긴조쿠고교 가부시키가이샤 Gas-blowing-hole array structure and soldering device
KR20150094781A (en) * 2012-12-28 2015-08-19 센주긴조쿠고교 가부시키가이샤 Gas-intake-hole array structure and soldering device
KR20150094780A (en) * 2012-12-28 2015-08-19 센주긴조쿠고교 가부시키가이샤 Gas-blowing-hole array structure and soldering device
CN104885579A (en) * 2012-12-28 2015-09-02 千住金属工业株式会社 Gas-blowing-hole array structure and soldering device
JP2014130937A (en) * 2012-12-28 2014-07-10 Senju Metal Ind Co Ltd Structure for aligning gas blow hole and soldering device
WO2014103945A1 (en) * 2012-12-28 2014-07-03 千住金属工業株式会社 Gas-intake-hole array structure and soldering device
KR101596654B1 (en) 2012-12-28 2016-02-22 센주긴조쿠고교 가부시키가이샤 Gas-intake-hole array structure and soldering device
US20150382482A1 (en) * 2012-12-28 2015-12-31 Senju Metal lndustry Co., Ltd. Gas-blowing-hole array structure and soldering apparatus
WO2014103946A1 (en) * 2012-12-28 2014-07-03 千住金属工業株式会社 Gas-blowing-hole array structure and soldering device
CN104096941A (en) * 2014-07-24 2014-10-15 亳州联滔电子有限公司 Semi-automatic welding machine
US9981487B2 (en) 2016-03-04 2018-05-29 Seiko Epson Corporation Printing apparatus
CN107234314A (en) * 2017-06-28 2017-10-10 鞍山中电科技有限公司 A kind of electronic component array hot air welding device and its application method
CN107234314B (en) * 2017-06-28 2023-09-15 鞍山中电科技有限公司 Electronic component array type hot air welding device and application method thereof
CN117283075B (en) * 2023-11-23 2024-02-27 徐州工程学院 Lead-free wave soldering machine for emergency lighting LED lamp production
CN117283075A (en) * 2023-11-23 2023-12-26 徐州工程学院 Lead-free wave soldering machine for emergency lighting LED lamp production

Also Published As

Publication number Publication date
TW201138579A (en) 2011-11-01
JP5158288B2 (en) 2013-03-06
JPWO2011135737A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5915809B2 (en) Soldering equipment
JP5158288B2 (en) Heating device and cooling device
JP4319647B2 (en) Reflow furnace
JP2001326455A (en) Method and device for reflow
JP2003332727A (en) Heat shielding member and reflow apparatus
JP2003332725A (en) Reflow heating method and device
KR20100012154A (en) Reflow device
JP2018162932A (en) Reflow device
JP4524377B2 (en) Reflow device
JP4957797B2 (en) heating furnace
JP2000059020A (en) Single-sided reflow furnace cooling device for soldering
JP2007012874A (en) Substrate heating method, substrate heating apparatus, and hot-air reflow apparatus
JPH11307927A (en) Soldering equipment and soldering method
JPH0738252A (en) Reflow furnace and hot ai blow-off type heater used therefor
JP4368672B2 (en) Circuit board heating apparatus and method, and reflow furnace equipped with the heating apparatus
JP2007035774A (en) Reflow soldering equipment and reflow soldering method
JP2018073902A (en) Reflow device
JP2004358542A (en) Reflow furnace and method for controlling temperature in reflow furnace
JP2002043733A (en) Reflow soldering apparatus
JP2008172154A (en) Reflow furnace
JP4404250B2 (en) Circuit board heating apparatus and method, and reflow furnace equipped with the heating apparatus
JP2913299B2 (en) Reflow soldering equipment
JPH09214123A (en) Reflow equipment
JPH0846350A (en) Reflow soldering device
JPH11192545A (en) Reflow device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850752

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012512621

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850752

Country of ref document: EP

Kind code of ref document: A1